MC33690DWR2 [MOTOROLA]

Consumer Circuit, BICMOS, PDSO20, PLASTIC, SOIC-20;
MC33690DWR2
型号: MC33690DWR2
厂家: MOTOROLA    MOTOROLA
描述:

Consumer Circuit, BICMOS, PDSO20, PLASTIC, SOIC-20

信息通信管理 光电二极管
文件: 总24页 (文件大小:218K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MOTOROLA  
SEMICONDUCTOR TECHNICAL  
Order this document  
by MC33690/D  
MC33690  
Standalone Tag Reader Circuit  
STARC  
STANDALONE  
TAG READER  
CIRCUIT  
The Standalone Tag Reader Circuit (STARC) is an integrated  
circuit dedicated to the automotive immobilizer applications. It  
combines on the same chip all the circuitry to interface with a  
transponder : antenna drivers and demodulator.  
A low dropout voltage regulator and a physical interface fully  
compatible with the ISO 9141 norm are also available.  
The Standalone Tag Reader Circuit is fabricated with the  
SMARTMOSTM3.5 technology. This process is a double layer  
metal, 1.4µm, 45V technology, combining CMOS and bipolar  
devices.  
DW SUFFIX  
Plastic Package  
CASE 751D  
SO - 20  
Contactless 125kHz tag reader module :  
- Self synchronous sample & hold demodulator  
- Amplitude or phase modulation detection  
- High sensitivity  
- Fast “read after write“ demodulator settling time  
- Low resistance and high current antenna drivers :  
2@ 150mA (typ.)  
Pin Connections  
- Bidirectionnal data transmission  
- Multi tag, multi scheme operation.  
1
VSUP  
SOURCE  
GATE  
TD1  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
Tx  
2
3
Rx  
Low dropout voltage regulator :  
- Wide input supply voltage range :  
from 5.5V up to 40V  
- Output current capability up to 150mA DC with an  
external power transistor  
- 5V output voltage with a 5% accuracy  
- Low voltage reset function  
- Low current consumption in standby mode :  
300µA (typ.).  
K
4
AM  
XTAL1  
XTAL2  
VSS  
5
6
VDD  
TD2  
7
LVR  
MODE1  
MODE2  
RD  
8
DOUT  
CEXT  
AGND  
9
10  
ISO 9141 transmitter and receiver module :  
- Input voltage thresholds ratiometric to the supply  
voltage  
- Current limitation  
- Ouput slew rate control  
- No external protection device required.  
ORDERING INFORMATION  
Operating  
Junction  
Temperature  
Range  
Device  
Package  
T
= -40°C to  
125°C  
J
MC33690DW  
SOIC 20  
This document contains information on a new product under development. Motorola  
reserves the right to change or discontinue this product without notice.  
REV 4.8  
© Motorola, Inc., 2002.  
MC33690  
BLOCK DIAGRAM  
Figure 1 : Standalone Tag Reader Circuit  
Optional : external N channel MOS required for sourced current > 50mA.  
A recommended reference is MMFT 3055VL from Motorola.  
VBAT  
VDD  
VSUP  
C1  
GATE  
SOURCE  
Voltage Regulator  
LVR  
VDD  
10µF  
VSS  
TD1  
8MHz  
RA  
R1  
XTAL1  
XTAL2  
LA  
RD  
R2  
MODE1  
MODE2  
DOUT  
Tag Reader  
CA  
TD2  
AM  
CEXT  
10nF  
CEXT  
VBAT  
AGND  
Tx  
510Ω  
ISO 9141 Interface  
K
Rx  
revision 4.8, 5 February 2002  
© Motorola, Inc., 2002.  
MOTOROLA SEMICONDUCTORS PRODUCTS  
2
MC33690  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
Supply voltage  
VSUP  
VSS-0.3 to +40  
V
Supply voltage without using the voltage regulator  
(VSUP = VDD  
VDD  
VSS-0.3 to +7  
V
)
Voltage on SOURCE  
Current into/from GATE  
Voltage on GATE  
V
SS-0.3 to +40  
0
V
mA  
V
V
SS-0.3  
Voltage on pins :  
MODE1/2, CEXT, DOUT, LVR, XTAL1/2, Rx, Tx  
VSS-0.3 to VDD +0.3  
V
Voltage on RD  
10  
V
V
Voltage on K and AM  
VSS-3 to 40  
Current on TD1 & TD2  
(Drivers on & off)  
300  
mA  
Voltage on AGND  
VSS 0.3  
2000  
V
V
ESD voltage capability (HBM, see note 1)  
ESD voltage capability (MM, see note 1)  
Solder heat resistance test (10s)  
Junction temperature  
200  
V
260  
°C  
°C  
°C  
TJ  
Ts  
170  
Storage temperature  
-65 to +150  
Note 1 :  
Human Body model, AEC-Q100-002 Rev. C.  
Machine Model, AEC-Q100-003 Rev. E.  
THERMAL CHARACTERISTIC  
Characteristic  
Junction to ambiant thermal resistance (SOIC20)  
Symbol  
Value  
Unit  
Rth  
80  
°C/W  
revision 4.8, 5 February 2002  
© Motorola, Inc., 2002.  
MOTOROLA SEMICONDUCTORS PRODUCTS  
3
MC33690  
PIN FUNCTION DESCRIPTION  
Pin  
1
Function  
VSUP  
SOURCE  
GATE  
TD1  
Description  
Power supply  
2
External N channel transistor source  
External N channel transistor gate  
Antenna driver 1 output  
3
4
5
VSS  
Power and digital ground  
Voltage regulator output  
Antenna driver 2 output  
6
VDD  
7
TD2  
8
MODE1  
MODE2  
RD  
Mode selection input 1  
9
Mode selection input 2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
Demodulator input  
AGND  
CEXT  
DOUT  
LVR  
Demodulator ground  
Comparator reference input  
Demodulator output (5V)  
Low Voltage Reset input/output  
Oscillator output  
XTAL2  
XTAL1  
AM  
Oscillator input  
Amplitude modulation input  
ISO 9141 transmitter output and receiver input  
ISO 9141 receiver monitor output  
ISO 9141 transmitter input  
K
Rx  
Tx  
revision 4.8, 5 February 2002  
© Motorola, Inc., 2002.  
MOTOROLA SEMICONDUCTORS PRODUCTS  
4
MC33690  
DESCRIPTION  
TAG READER MODULE  
The Tag Reader module is dedicated for  
automotive or industrial applications where  
information has to be transmitted contactless.  
The tag reader module is a write/read (challenge/  
response) controller for applications which  
demand high security level.  
The use of a synchronous sample & hold  
technique allows communication with all  
avalaible tags using admittance switching  
producing absorption of the RF field.  
Load amplitude or phase shift modulation can be  
detected at high bit rates up to 8kHz.  
125kHz is the typical operational carrier  
frequency of the tag reader module with a 8MHz  
clock.  
The tag reader module is connected to a serial  
tuned LC circuit which generates a magnetic field  
power supplying the tag.  
Figure 2 : Tag Reader block diagram  
AM Data  
RA  
TD1  
Clock 8MHz  
1/32 counter  
1/2  
LA  
8MHz  
4MHz  
125kHz  
Shutdown  
LVR  
125kHz  
Self synchronous  
sample & hold  
Setup & Preload  
CA  
TD2  
Interface  
-
11.25° , 22.5° , 33.75° , 45° , 56.25° , 67.5° , 78.75° , 90°  
+ 0°, -11.25°, -22.5°, -33.75°, -45°, -56.25°, -67.5°, -78.75°  
R1  
+
VDD  
Buffer  
Comparator  
+
-
500ns  
+
RD  
100KΩ  
Data out  
D
C
Q
S/H  
Buffer  
-
VDD  
R2  
500µA  
CEXT  
10nF  
AGND  
CEXT  
revision 4.8, 5 February 2002  
© Motorola, Inc., 2002.  
MOTOROLA SEMICONDUCTORS PRODUCTS  
5
MC33690  
The antenna phase shift evaluation is only  
done :  
- after each wake-up command (see pages  
10 to 12),  
- or after reset (see page 7).  
This is necessary to obtain the best demodulator  
performances.  
In order to ensure a fast demodulator settling  
time after wake up, reset or a write sequence, the  
external capacitor CEXT is preloaded at its  
working voltage.  
Read function  
When answering to the base station, a  
transponder generates an absorption modulation  
of the magnetic field. It results in an amplitude/  
phase modulation of the current across the  
antenna. This information is picked up at the  
antenna tap point between the coil and the  
capacitor. An external resistive ladder down  
scales this voltage to a level compatible with the  
demodulator input voltage range (see parameter  
V
INRD page 16).  
This preset occurs 256µs after switching the  
antenna drivers on and its duration is 128µs.  
After wake up or reset, the preset has the same  
duration but begins 518µs after clock settling.  
After power on reset, VSUP must meet the  
minimum specified value, enabling the nominal  
operation of VDD, before the start of the preset.  
Otherwise the preset must be done by the user  
through a standby/wake-up sequence.  
The demodulator (see figure 2) consists of :  
- an input stage (emitter follower),  
- a sample & hold circuit,  
- a voltage follower,  
- a low offset voltage comparator.  
The sampling time is automatically set to take  
into account a phase shift due to the tolerances  
of the antenna components (L and C) and of the  
oscillator. The allowed phase shift measured at  
the input RD ranges from -45° to +45°. Assuming  
that the phase reference is the falling edge of the  
driving signal TD1, this leads to a sampling time  
phase ranging from -78.75° to 90° with discrete  
steps of 11.25°. After reset condition, the  
sampling time phase is +11.25°.  
Write function  
Whatever the selected configuration (see  
page 9), the write function is achieved by  
switching on/off the output drivers TD1/2.  
Once the drivers have been set in high  
impedance, the load current flows alternatively  
Figure 3 : Current flow when the buffers are switched off  
VDD  
RA  
TD1  
ILOAD  
LA  
R1  
VDD  
CA  
TD2  
revision 4.8, 5 February 2002  
© Motorola, Inc., 2002.  
MOTOROLA SEMICONDUCTORS PRODUCTS  
6
MC33690  
VOLTAGE REGULATOR  
The low dropout voltage regulator provides a  
regulated 5V supply for the internal circuitry. It  
can also supply external peripherals or sensors.  
The input supply voltage ranges from 5.5V to  
over 40V.  
internal LDMOS. The threshold voltage of this  
transistor must be lower than the one of the  
internal LDMOS (1.95V typ.) in order to prevent  
the current from flowing into the LDMOS. Its  
breakdown voltage must be higher than the  
maximum supply voltage.  
This voltage regulator uses a series combination  
of high voltage LDMOS and low voltage PMOS  
transistors to provide regulation. An external low  
ESR capacitor is required for the regulator  
stability.  
A low voltage reset function monitors the VDD  
output. An internal 10µA pull-up current source  
allows, when an external capacitor is connected  
between LVR and GND, to generate delays at  
power up (5ms typ. with CReset=22nF) .  
The LVR pin is also the input generating the  
internal reset signal. Applying a logic low level on  
this pin resets the circuit :  
The maximum average current is limited by the  
power dissipation capability of the SO 20  
package.  
This limitation can be overcome by connecting  
an external N channel MOS in parallel with the  
- all the internal flip flops are reset,  
- the drivers TD1/2 are switched on.  
Figure 4 : Voltage regulator block diagram  
VBAT  
VSUP  
GATE  
C1  
N channel  
Charge pump  
LDMOS  
1MHz oscillator  
SOURCE  
Voltage reference  
and biasing  
-
P channel  
MOS  
+
VDD  
generator  
VDD  
VDD  
C2  
C3  
10µF  
100nF  
VDD  
reset  
10µA  
LVR  
CReset  
Comparator  
-
+
revision 4.8, 5 February 2002  
© Motorola, Inc., 2002.  
MOTOROLA SEMICONDUCTORS PRODUCTS  
7
MC33690  
ISO 9141 PHYSICAL INTERFACE  
This interface module is fully compatible with  
any capacitive load and protects against short  
circuit to the battery voltage. An overtemperature  
protection shuts the driver down when the  
junction temperature exceeds 150°C (typ). Once  
shut down by the overtemperature protection,  
the driver can be switched on again :  
the ISO 9141 norm describing the diagnosis line.  
It includes one transmitter (pin K) and 2 receivers  
(pins K and AM).  
The input stages consist of high voltage CMOS  
triggers. The thresholds are ratiometric to VSUP.  
A ground referenced current source (2.5µA typ.)  
pulls down the input when unconnected.  
- if the junction temperature has decreased  
below the threshold,  
- and by applying an off/on command, coming  
either from the demodulator in configurations A  
and B or directly applied on the input Tx in  
configuration C (see pin K status in table 1 page  
9).  
When a negative voltage is applied on the K or  
AM lines, the input current is internally limited by  
a 2kresistor (typ.) in series with a diode.  
The electromagnetic emission is reduced thanks  
to the voltage slew rate control (5V/µs typ.).  
A current limitation allows the transmitter to drive  
Figure 5 : ISO 9141interface  
VDD  
VSUP  
VSUP  
L line  
AM  
2kΩ  
AM data  
From configuration controller  
VDD  
GND  
2.5µA  
GND  
2kΩ  
Rx  
2.5µA  
GND  
VBAT  
GND  
From configuration controller  
Over temperature  
detector  
K line  
Tag Reader module output  
VDD  
K
Command  
Tx  
Current limitation  
revision 4.8, 5 February 2002  
© Motorola, Inc., 2002.  
MOTOROLA SEMICONDUCTORS PRODUCTS  
8
MC33690  
COMMUNICATION MODES DESCRIPTION  
The STARC offers 3 different communication  
modes. Therefore it can be used as a standalone  
circuit connected to an Electronic Control Unit  
(ECU) through a bus line or it can be directly  
connected to a microcontroller in case of a single  
board architecture.  
Table 1. Communication modes description  
Configuration  
pins  
Configuration  
Bus type  
Pin status  
& function description  
Type  
Name Mode1 Mode2  
K output/input :  
- demodulator output,  
1 wire  
(VBAT)  
- amplitude modulation input  
- shutdown/wake-up  
AM must be connected to VSUP  
DOUT forces a low level  
A
B
0
0
0
1
x
Standalone  
K output :  
- demodulator output  
AM input :  
- amplitude modulation input,  
- shutdown/wake-up  
DOUT forces a low level  
2 wires  
(VBAT)  
DOUT output :  
- demodulator output  
AM input :  
- amplitude modulation input  
MODE2 input :  
- shutdown/wake-up  
Direct  
connection  
to a MCU  
2 wires  
(VDD)  
C
1
K output/input (standalone ISO 9141 inter-  
face) :  
- driven by Tx and monitored by Rx  
1
0
K input (standalone ISO 9141 interface) :  
- monitored by Rx  
-Tx disabled  
revision 4.8, 5 February 2002  
© Motorola, Inc., 2002.  
MOTOROLA SEMICONDUCTORS PRODUCTS  
9
MC33690  
STANDALONE CONFIGURATION WITH ONE WIRE BUS  
When a low level is applied on pins MODE1  
and MODE2, the circuit is in configuration A  
(standalone single wire bus configuration, see  
figure 13 page 18).  
The circuit can be put into standby mode by  
forcing the K line at zero during more than 2 ms  
after entering the write mode. Once the K line is  
released, the circuit sends an acknowledge pulse  
before entering into standby mode.  
After power on, the circuit is set into read mode.  
The demodulator output is directly routed to the  
ISO 9141 interface output K.  
In standby mode, the oscillator and most of the  
internal biasing currents are switched off.  
Therefore, the functions (tag reader, ISO 9141  
driver) are inactive except the voltage regulator  
and the ISO 9141 receiver on pin K. The driver  
output TD1 forces a low level and TD2 a high  
level. A rising edge on K wakes up the circuit.  
After completion of the wake-up sequence, the  
circuit is automatically set in read mode.  
The circuit can be set into write mode at anytime  
by violation of all possible patterns on the single  
wire bus during more than 1ms. Then the K line  
achieves the amplitude modulation by switching  
on/off both antenna drivers.  
After 1ms of inactivity at the end of the challenge  
phase (bus in idle recessive one state), the circuit  
is set back into read mode.  
In configuration A, DOUT and Rx outputs always  
force a low level, Tx is disabled.  
Figure 6 : Mode access description in one wire bus configuration  
Read to write mode :  
T
t < T +T ’  
1
1
1
0
0
0
K line  
0
0
1
read mode  
write mode  
Write to read mode :  
K line  
t T  
0
write mode  
read mode  
Write to standby mode :  
T
T
t T  
K line  
2
2
1
standby mode  
read mode  
write mode  
acknowledge  
Standby mode to read mode :  
K line  
wake-up sequence  
standby mode  
Figure 7 : Configuration A state diagram  
T0 K line low  
write  
TD1/2 off  
reset  
read  
K line high < T0’  
write  
TD1/2  
switching  
K line low  
T0 K line high  
T1 K line low  
wake up  
standby  
K
revision 4.8, 5 February 2002  
© Motorola, Inc., 2002.  
MOTOROLA SEMICONDUCTORS PRODUCTS  
10  
MC33690  
Timing definitions for a 8MHz crystal:  
- Tref is crystal oscillator period (125 ns typ.)  
- T0=8064.Tref = 1.008ms typ.  
- T0=7932.Tref = 0.992ms typ.  
- T1=16256.Tref = 2.032ms typ.  
- T1=16128.Tref = 2.016ms typ.  
- T2=4096.Tref, = 512µs typ.  
T0 is the minimum time required to guarantee  
that the device toggles from read to write (or from  
write to read). But indeed, the STARC may toggle  
from read to write (or from write to read) between  
T0 and T0.  
T1 is the minimum time required to guarantee  
that the device toggles from write to standby. But  
indeed, the STARC may toggle in standby  
between T1 and T1.  
revision 4.8, 5 February 2002  
© Motorola, Inc., 2002.  
MOTOROLA SEMICONDUCTORS PRODUCTS  
11  
MC33690  
STANDALONE CONFIGURATION WITH TWO WIRES BUS  
When a low level is applied on MODE1 and a  
high level on MODE2, the circuit is in  
configuration B (standalone 2 wires bus  
configuration, see figure 14 page 19).  
forcing the AM line at zero during more than 2  
ms. The circuit sends an acknowledge pulse  
before entering into standby mode  
In standby mode, the oscillator and most of the  
internal biasing currents are switched off.  
Therefore, the functions (tag reader, ISO 9141  
driver) are inactive except the voltage regulator  
and the ISO 9141 receiver on pin AM. The driver  
output TD1 forces a low level and TD2 a high  
level. A rising edge on AM wakes up the circuit.  
After completion of the wake-up sequence, the  
circuit is automatically set in read mode.  
The K pin is set as an output sending the  
demodulated data.  
The AM pin is set as a VSUP referenced input pin  
receiving the amplitude modulation and the  
shutdown/wake-up commands. Forcing high and  
low levels on AM achieves the amplitude  
modulation by switching on/off both antenna  
drivers. Meanwhile, this amplitude modulation  
can be monitored on the K output. This allows  
antenna short and open circuit diagnosis.  
The circuit can be put into standby mode by  
In configuration B, DOUT and Rx outputs always  
force a low level, Tx is disabled.  
Figure 8 : Modes access description in two wires bus configuration  
Read & write sequences :  
drivers on  
data write modulation  
drivers off  
1
1
1
1
0
0
0
0
0
AM line  
data read  
data write  
K line  
1
1
0
AM line monitoring  
Entering into standby mode :  
AM line  
K line  
t T1  
standby mode  
acknowledge  
T1  
T2  
T2  
Coming out of standby mode :  
AM line  
standby mode  
wake-up sequence  
data read  
K line  
Figure 9 : Configuration B state diagram  
reset  
TD1/2  
switching  
AM line low  
AM line high  
wake up  
AM line high  
TD1/2 off  
AM line low  
T1 AM line low  
AM  
standby  
revision 4.8, 5 February 2002  
© Motorola, Inc., 2002.  
MOTOROLA SEMICONDUCTORS PRODUCTS  
12  
MC33690  
DIRECT CONNECTION TO A MICROCONTROLLER CONFIGURATION  
When a high level is applied on MODE1, the  
circuit is in configuration C (direct connection to  
a microcontroller configuration, see figure 15  
page 19).  
regulator. The driver outputs TD1 and TD2 are  
frozen in their state (high or low level) before  
entering into standby mode. DOUT forces a low  
level.  
The demodulated data are sent through DOUT.  
The AM pin is set as a VDD referenced input pin  
receiving the AM command. Forcing high and  
low levels on AM achieves the amplitude  
modulation by switching on/off both antenna  
drivers. Meanwhile, this amplitude modulation  
can be monitored on DOUT. This allows antenna  
short and open circuit diagnosis.  
The ISO 9141 interface K is standalone and can  
be directly controlled by the input pin Tx and  
monitored by the output Rx.  
Applying a logic high level on Tx switches the  
output driver K on (dominant zero state when an  
external pull-up resistor is connected between K  
and VBAT). Applying a logic low level turns the  
driver off (one recessive state).  
Rx monitors the voltage at the K pin. When the  
voltage is below the low threshold voltage, Rx  
forces a logic low level. When the voltage is  
above the high threshold voltage, Rx forces a  
logic high level.  
The circuit can be put into standby mode by  
applying a low level on the MODE2 pin.  
In standby mode, the oscillator and most of the  
internal biasing currents are switched off.  
Therefore, the functions (tag reader, ISO 9141  
interface) are inactive except the voltage  
In standby mode, Tx is disabled and Rx output  
monitors the voltage at the K pin.  
Figure 10 : Configuration C state diagram  
reset  
TD1/2  
switching  
AM low  
AM high  
AM high  
TD1/2 off  
wake up  
AM low  
mode2 low  
mode2 low  
mode2 high  
standby  
revision 4.8, 5 February 2002  
© Motorola, Inc., 2002.  
MOTOROLA SEMICONDUCTORS PRODUCTS  
13  
MC33690  
ELECTRICAL CHARACTERISTICS  
Typical values reflect average measurements at VSUP=12V and TJ=25°C.  
SUPPLY CURRENT  
6V VSUP 16V, VSS = 0V, TJ = 40°C to +125°C, unless otherwise noted  
Test Conditions  
& Comments  
Symbol  
Type  
Max Unit  
Parameter  
Min  
Typ  
Pin VSUP  
9.1 Standby mode current  
I
-
-
300  
1.5  
500  
2.5  
µA  
SUP1  
1
9.2 Operating mode current  
I
mA  
See note  
SUP2  
1. Circuit in configuration C, no current sunk from VDD, drivers TD1/2 switched off, Tx forced to low.  
VOLTAGE REGULATOR  
6V VSUP 16V, VSS = 0V, TJ = 40°C to +125°C, unless otherwise noted  
Test Conditions  
& Comments  
Parameter  
Symbol  
Min  
Typ  
Max Unit Type  
Pins VSUP & VDD  
1.1 Output Voltage (5.5V V  
40V)  
40V)  
V
4.75  
-
5.0  
-
5.25  
50  
V
SUP  
SUP  
VDD1  
Without external MOS transistor  
I
50mA  
1.3 Total Output Current  
I
OUT  
mA  
VDD1  
Without external MOS transistor  
1.5 Load Regulation  
V
V
-
20  
60  
mV  
LoadReg1  
1 to 50mA I  
change  
OUT  
1.9 Output Voltage (5.5V V  
V
With external MOS transistor,  
4.7  
-
5.0  
-
5.3  
V
VDD2  
1
2
see notes and  
150mA  
1.11 Total Output Current  
I
150  
mA  
VDD2  
I
OUT  
With external MOS transistor  
1 to 150mA I change  
1.6 Load Regulation  
-
65  
-1  
150  
-
mV  
mV  
LoadReg2  
OUT  
1.4 Line Regulation (6V V  
16V)  
V
I = 1mA  
OUT  
-15  
SUP  
LineReg  
1. The stability is ensured with a decoupling capacitor between VDD and VSS : C  
10µF with ESR 3.  
OUT  
2. The current capability can be increased up to 150mA by using an external N channel MOS transistor (see figure 1 page 2). The main  
characteristics for choosing this component are : VT < 1.8V and BVDSS > 40V.  
revision 4.8, 5 February 2002  
© Motorola, Inc., 2002.  
MOTOROLA SEMICONDUCTORS PRODUCTS  
14  
MC33690  
LOW VOLTAGE RESET  
6V VSUP 16V, VSS = 0V, TJ = 40°C to +125°C, unless otherwise noted  
Test Conditions  
& Comments  
Parameter  
Symbol  
Min  
Typ  
Max Unit Type  
Pin LVR  
1.6 Low Voltage Reset Low Threshold  
1.7 Low Voltage Reset Hysteresis  
1.12 Pull-up Current  
V
I
4.1  
50  
5
4.35  
100  
10  
4.6  
150  
15  
V
LVRON  
1
See note and figure 11  
V
mV  
µA  
LVRH  
V
V
= 2.5V  
= 2.5V  
LVR  
LVR  
LVRUP  
1.13 Output Resistance in reset condition  
1.14 Input Low Voltage  
R
200  
0
370  
-
500  
LVR  
0.3 x  
V
V
ILLVR  
V
DD  
0.7 x  
1.15 Input High Voltage  
V
-
V
V
IHLVR  
DD  
V
DD  
1. As the voltage regulator and the low voltage reset are using the same internal voltage reference, it is ensured that the low voltage reset  
will only occur when the voltage regulator is out of regulation.  
Figure 11 : Low voltage reset waveform  
VDD  
VLVRON + VLVRH  
VLVRON  
LVR  
OSCILLATOR  
6V VSUP 16V, VSS = 0V, TJ = 40°C to +125°C, unless otherwise noted  
Test Condition  
& Comments  
Characteristic  
Symbol  
Min  
Typ  
Max Unit Type  
Pins XTAL1, XTAL2  
8.0 Input Capacitance  
8.1 Voltage gain V  
C
V
V
V
= 2.5V  
-
-
5
25  
-
-
-
pF  
-
XTAL1  
XTAL1  
XTAL1  
/ V  
A
= 2.5V  
XTAL2  
XTAL1  
OSC  
1
8.3 Clock input level  
See note  
1.5  
V
Vpp  
XTAL1  
DD  
1. This level ensures the circuit operation with a 8MHz clock. It is applied through a capacitive coupling. A 1Mresistor connected between  
XTAL1 and XTAL2 biases the oscillator input.  
revision 4.8, 5 February 2002  
© Motorola, Inc., 2002.  
MOTOROLA SEMICONDUCTORS PRODUCTS  
15  
MC33690  
TAG READER  
6V VSUP 16V, VSS = 0V, TJ = 40°C to +125°C, unless otherwise noted  
Test Conditions  
& Comments  
Parameter  
Symbol  
Min  
Typ  
Max Unit Type  
DEMODULATOR (pin RD)  
2.0 Input Voltage Range  
V
F
3
4
4
5
8
V
INRD  
MOD  
2.2 Input Modulation Frequency  
0.5  
kHz  
6.5V V  
See figure 12 and note  
16V  
SUP  
2.3 Demodulator Sensitivity  
2.31 Demodulator Sensitivity  
V
V
-
-
5
7
15  
30  
mV  
mV  
SENSE1  
SENSE2  
1
6V V < 6.5V  
SUP  
See figure 12 and note 1  
See figure 12  
Configuration C  
see note for configurations A  
2.4 Demodulation Delay  
t
-
7.5  
10  
µs  
Demod  
2
and B  
2.5 After Write Pulse Settling Time  
t
-
-
394  
646  
400  
700  
µs  
µs  
Settling1  
Settling2  
Recovery Time after wake-up or reset  
2.6 from clock stable to demodulator valid  
output  
3
t
See note  
DRIVERS (pins TD1, TD2)  
Output Carrier Frequency to Crystal  
Frequency Ratio  
R
FTD/  
FXTAL  
3.5  
-
64  
-
-
3.0 Turn on/off Delay  
t
-
-
-
-
250  
4
ns  
on/off  
3.1 Driver1/2 Low Side Out. Resistance  
3.2 Driver1/2 High Side Out. Resistance  
R
I
= 150mA DC  
= -150mA DC  
2.4  
2.1  
TDL  
LOAD  
R
I
4
TDH  
LOAD  
1. The sensitivity is measured in the following application conditions : I  
= 50mA peak, V = 4V peak, C  
= 10nF, square wave  
ANTENNA  
RD  
EXT  
modulation F  
=F  
/32.  
MOD  
TD1  
2. Not including the delay due to the slew rate of the K output.  
3. Clock stable condition implies V meets the specification (see page 15).  
XTAL1  
Figure 12 : Demodulator parameters definition  
VRD  
VSENSE  
Demodulator  
output (K or DOUT)  
tDemod  
revision 4.8, 5 February 2002  
© Motorola, Inc., 2002.  
MOTOROLA SEMICONDUCTORS PRODUCTS  
16  
MC33690  
ISO 9141 INTERFACE  
6V VSUP 16V, VSS = 0V, TJ = 40°C to +125°C, unless otherwise noted  
Test Conditions  
& Comments  
Parameter  
Receiver (pins K & AM)  
4.0 Input Low Voltage  
Symbol  
Min  
Typ  
Max Unit Type  
0.3 x  
V
V
V
-3  
-
-
IL  
V
SUP  
0.65 x  
4.1 Input High Voltage  
40  
V
IH  
V
SUP  
4.2 Input Hysteresis Voltage  
4.3 Biasing Current  
V
0.4  
1
0.65  
3
1.3  
5
V
HY1  
I
0V V 16V  
µA  
mA  
µs  
B
IN  
4.31 Input Current  
I
-3 V < 0  
-2  
-1  
-
BM  
IN  
4.4 K to Rx delay  
tdkrx  
2
10  
Driver (pin K)  
5.0 Output Falling Edge Slew Rate  
5.1 Output Rising Edge Slew Rate  
SR  
3.5  
3.5  
5
5
6.5  
6.5  
V/µs  
V/µs  
F
SR  
R
= 510Ω,  
Pull-up  
see note  
R
1
SR  
SYME-  
TRY  
5.2 Rise Fall Slew Rates Symmetry  
-1  
-
0
1.1  
-
1
1.4  
0
V/µs  
V
5.3 Output Low Voltage  
V
I
= 25mA  
LOAD  
OLK  
Input Current  
5.4  
I
-3V V 0V  
-2  
mA  
IK  
IN  
(driver switched on or off)  
5.5 Current Limitation Threshold  
I
0V V 40V  
35  
50  
65  
mA  
L
IN  
5.6 Thermal Shutdown Threshold  
TH  
130  
150  
170  
°C  
SDWN  
1. Calculated from 20% to 80% of the output swing.  
DIGITAL I/O  
6V VSUP 16V, VSS = 0V, TJ = 40°C to +125°C, unless otherwise noted  
Test Condition  
& Comments  
Characteristic  
INPUT (pins MODE1, MODE2, AM, TX)  
6.0 Input Low Voltage  
Symbol  
Min  
Typ  
Max Unit Type  
0.3 x  
V
V
V
0
-
-
ILD  
V
DD  
0.7 x  
6.1 Input High Voltage  
V
V
V
IHD  
HD  
DD  
V
DD  
V
6.2 Input Hysteresis Voltage  
OUTPUT (pins DOUT,RX)  
7.0 Output Low Voltage  
.24  
.7  
1
0.2 x  
V
I
= 500uA  
= -500uA  
LOAD  
0
0.5  
V
OL  
LOAD  
V
DD  
0.8 x  
7.1 Output High Voltage  
V
I
4.6  
-
V
V
OH  
DD  
V
DD  
1
7.2 Fall/Rise Time  
t
C
=10pF, see note  
-
150  
ns  
F/R  
LOAD  
1. Calculated from 10% to 90% of the output swing.  
revision 4.8, 5 February 2002  
© Motorola, Inc., 2002.  
MOTOROLA SEMICONDUCTORS PRODUCTS  
17  
MC33690  
APPLICATION SCHEMES  
Figure 13 : Standalone configuration with one wire bus  
VBAT  
C1  
VSUP  
NC  
GATE  
NC  
SOURCE  
NC  
C2  
C3  
VDD  
VSS  
TD1  
RD  
LVR  
8.2pF  
8.2pF  
10µF 100nF  
VSS  
XTAL1  
XTAL2  
MODE1  
8MHz  
RA  
1MΩ  
LA  
R1  
STARC  
R2  
CA  
TD2  
MODE2  
NC  
CEXT  
10nF  
DOUT  
VSUP VBAT  
CEXT  
510Ω  
AGND  
AM  
K
Tx  
NC  
Rx  
If no external MOS transistor is necessary to increase the voltage regulator current capability, the pins GATE  
and SOURCE must be left unconnected.  
In this configuration, the outputs Rx and DOUT force a low level.  
C1 is not required for the STARC functionality and only acts as a reservoir of energy.  
To preserve the demodulator sensitivity, CEXT and R2 should be connected to AGND, and VSS connected to  
AGND using a low resistance path.  
revision 4.8, 5 February 2002  
© Motorola, Inc., 2002.  
MOTOROLA SEMICONDUCTORS PRODUCTS  
18  
MC33690  
Figure 14 : Standalone configuration with two wires bus  
VBAT  
C1  
VSUP  
NC  
GATE  
NC  
SOURCE  
NC  
C2  
10µF 100nF  
C3  
VDD  
VSS  
TD1  
LVR  
8.2pF  
8.2pF  
VSS  
XTAL1  
XTAL2  
MODE1  
8MHz  
RA  
1MΩ  
LA  
R1  
STARC  
RD  
R2  
VDD  
VBAT  
CA  
TD2  
MODE2  
NC  
510Ω  
DOUT  
CEXT  
10nF  
CEXT  
AGND  
Tx  
K
AM  
NC  
Rx  
If no external MOS transistor is necessary to increase the voltage regulator current capability, the pins GATE  
and SOURCE must be left unconnected.  
C1 is not required for the STARC functionality and only acts as a reservoir of energy.  
To preserve the demodulator sensitivity, CEXT and R2 should be connected to AGND, and VSS connected to  
AGND using a low resistance path.  
revision 4.8, 5 February 2002  
© Motorola, Inc., 2002.  
MOTOROLA SEMICONDUCTORS PRODUCTS  
19  
MC33690  
Figure 15 : Direct connection to a microcontroller  
VBAT  
C1  
VSUP  
NC  
NC  
GATE  
To microcontroller  
power supply pin  
SOURCE  
To microcontroller  
port/reset pin  
C2  
C3  
VDD  
LVR  
8.2pF  
8MHz  
8.2pF  
10uF 100nF  
VSS  
XTAL1  
XTAL2  
VSS  
TD1  
RA  
1MΩ  
VDD  
LA  
R1  
STARC  
RD  
MODE1  
MODE2  
DOUT  
AM  
R2  
CA  
TD2  
To microcontroller  
port  
CEXT  
10nF  
VBAT  
CEXT  
AGND  
Tx  
510Ω  
To microcontroller  
port  
K
Rx  
If no external MOS transistor is necessary to increase the voltage regulator current capability, the pins GATE  
and SOURCE must be left unconnected.  
C1 is not required for the STARC functionality and only acts as a reservoir of energy.  
To preserve the demodulator sensitivity, CEXT and R2 should be connected to AGND, and VSS connected to  
AGND using a low resistance path.  
revision 4.8, 5 February 2002  
© Motorola, Inc., 2002.  
MOTOROLA SEMICONDUCTORS PRODUCTS  
20  
MC33690  
Notes  
revision 4.8, 5 February 2002  
© Motorola, Inc., 2002.  
MOTOROLA SEMICONDUCTORS PRODUCTS  
21  
MC33690  
Notes  
revision 4.8, 5 February 2002  
© Motorola, Inc., 2002.  
MOTOROLA SEMICONDUCTORS PRODUCTS  
22  
MC33690  
Notes  
revision 4.8, 5 February 2002  
© Motorola, Inc., 2002.  
MOTOROLA SEMICONDUCTORS PRODUCTS  
23  
MC33690  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specifically disclaims any and all liability, including without limitation consequential or incidental damages. Typicalparameters which may be provided in Motorola  
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including  
Typicalsmust be validated for each customer application by customers technical experts. Motorola does not convey any license under its patent rights nor the  
rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or  
other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal  
injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney  
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office.  
Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. All other product or service names are the property of their respective owners.  
© Motorola, Inc. 2002  
HOW TO REACH US:  
USA/EUROPE/LOCATIONS NOT LISTED: Motorola Literature Distribution: P.O. Box 5405, Denver, Colorado 80217.  
1-303-675-2140 or 1-800-441-2447  
JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1 Minami-Azabu. Minato-ku, Tokyo 106-8573 Japan.  
81-3-3440-3569  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tao Po, N.T.,  
Hong Kong. 852-26668334  
TECHNICAL INFORMATION CENTER: 1-800-521-6274  
HOME PAGE: http://motorola.com/semiconductors/  
MC33690/D  

相关型号:

MC33690_07

MC33690 Standalone Tag
FREESCALE

MC33696

PLL Tuned UHF Transceiver for Data Transfer Applications
FREESCALE

MC33696FCAE

PLL Tuned UHF Transceiver for Data Transfer Applications
FREESCALE

MC33696FCAE/R2

PLL Tuned UHF Transceiver for Data Transfer Applications
FREESCALE

MC33696FCAER2

PLL Tuned UHF Transceiver for Data Transfer Applications
FREESCALE

MC33696FCE

PLL Tuned UHF Transceiver for Data Transfer Applications
FREESCALE

MC33696FCE/R2

PLL Tuned UHF Transceiver for Data Transfer Applications
FREESCALE

MC33696FCER2

PLL Tuned UHF Transceiver for Data Transfer Applications
FREESCALE

MC33696FJAE

PLL Tuned UHF Transceiver for Data Transfer Applications
FREESCALE

MC33696FJAE/R2

PLL Tuned UHF Transceiver for Data Transfer Applications
FREESCALE

MC33696FJAER2

PLL Tuned UHF Transceiver for Data Transfer Applications
FREESCALE

MC33696FJE

PLL Tuned UHF Transceiver for Data Transfer Applications
FREESCALE