MC34129P [MOTOROLA]

HIGH PERFORMANCE CURRENT MODE CONTROLLERS; 高性能电流模式控制器
MC34129P
型号: MC34129P
厂家: MOTOROLA    MOTOROLA
描述:

HIGH PERFORMANCE CURRENT MODE CONTROLLERS
高性能电流模式控制器

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管
文件: 总16页 (文件大小:351K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document by MC34129/D  
HIGH PERFORMANCE  
CURRENT MODE  
CONTROLLERS  
The MC34129/MC33129 are high performance current mode switching  
regulators specifically designed for use in low power digital telephone  
applications. These integrated circuits feature a unique internal fault timer  
that provides automatic restart for overload recovery. For enhanced system  
efficiency, a start/run comparator is included to implement bootstrapped  
SEMICONDUCTOR  
TECHNICAL DATA  
operation of V . Other functions contained are a temperature compensated  
CC  
reference, reference amplifier, fully accessible error amplifier, sawtooth  
oscillator with sync input, pulse width modulator comparator, and a high  
current totem pole driver ideally suited for driving a power MOSFET.  
Also included are protective features consisting of soft–start,  
undervoltage lockout, cycle–by–cycle current limiting, adjustable deadtime,  
and a latch for single pulse metering.  
P SUFFIX  
PLASTIC PACKAGE  
CASE 646  
14  
Although these devices are primarily intended for use in digital telephone  
systems, they can be used cost effectively in many other applications.  
1
Current Mode Operation to 300 kHz  
Automatic Feed Forward Compensation  
Latching PWM for Cycle–by–Cycle Current Limiting  
Continuous Retry after Fault Timeout  
Soft–Start with Maximum Peak Switch Current Clamp  
Internally Trimmed 2% Bandgap Reference  
High Current Totem Pole Driver  
D SUFFIX  
PLASTIC PACKAGE  
14  
CASE 751A  
(SO–14)  
1
Input Undervoltage Lockout  
Low Startup and Operating Current  
Direct Interface with Motorola SENSEFET Products  
PIN CONNECTIONS  
Drive Output  
Drive Ground  
Ramp Input  
1
2
3
4
5
6
7
14 V  
CC  
13 Start/Run Output  
12  
11  
10  
9
C
Soft–Start  
Feedback/  
PWM Input  
Error Amp  
Inverting Input  
Error Amp  
Noninverting Input  
Sync/Inhibit  
Input  
Simplified Block Diagram  
R /C  
T
T
13  
14  
Start/Run  
Output  
Start/Run  
V
2.5 V  
Gnd  
ref  
8
V
1.25 V  
ref  
Soft–Start  
and  
Fault Timer  
12  
Undervoltage  
Lockout  
C
Soft–Start  
V
CC  
(Top View)  
8
1.25V  
Reference  
V
1.25V  
ref  
7
6
Gnd  
Error Amp  
Noninverting  
Input  
Inverting  
Input  
Feedback/  
PWM Input  
Drive Out  
Drive Gnd  
Ramp Input  
9
ORDERING INFORMATION  
Operating  
+
10  
X2  
V
2.5V  
ref  
Temperature Range  
Device  
Package  
11  
1
Latching  
PWM  
MC34129D  
MC34129P  
MC33129D  
MC33129P  
SO–14  
T
= 0° to +70°C  
A
5
4
Plastic DIP  
Oscillator  
R /C  
T
T
2
SO–14  
T
= 40° to +85°C  
3
A
Sync/Inhibit  
Input  
Plastic DIP  
Motorola, Inc. 1996  
Rev 1  
MC34129 MC33129  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
50  
Unit  
mA  
mA  
V
V
CC  
Zener Current  
I
Z(VCC)  
Start/Run Output Zener Current  
Analog Inputs (Pins 3, 5, 9, 10, 11, 12)  
Sync Input Voltage  
I
50  
Z(Start/Run)  
–0.3 to 5.5  
V
sync  
–0.3 to V  
1.0  
V
CC  
Drive Output Current, Source or Sink  
Current, Reference Outputs (Pins 6, 8)  
I
A
DRV  
I
20  
mA  
ref  
Power Dissipation and Thermal Characteristics  
D Suffix, Plastic Package Case 751A  
Maximum Power Dissipation @ T = 70°C  
Thermal Resistance, Junction–to–Air  
P Suffix, Plastic Package Case 646  
P
552  
145  
mW  
°C/W  
A
D
R
θJA  
Maximum Power Dissipation @ T = 70°C  
Thermal Resistance, Junction–to–Air  
P
800  
100  
mW  
°C/W  
A
D
R
θJA  
Operating Junction Temperature  
T
+150  
°C  
°C  
J
Operating Ambient Temperature  
MC34129  
T
A
0 to +70  
MC33129  
–40 to +85  
Storage Temperature Range  
T
stg  
–65 to +150  
°C  
ELECTRICAL CHARACTERISTICS (V  
CC  
= 10 V, T = 25°C [Note 1], unless otherwise noted.)  
A
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
REFERENCE SECTIONS  
Reference Output Voltage, T = 25°C  
V
ref  
V
A
1.25 V Ref., I = 0 mA  
1.225  
2.375  
1.250  
2.500  
1.275  
2.625  
L
2.50 V Ref., I = 1.0 mA  
L
Reference Output Voltage, T = T  
to T  
V
ref  
V
A
low  
high  
1.25 V Ref., I = 0 mA  
1.200  
2.250  
1.300  
2.750  
L
2.50 V Ref., I = 1.0 mA  
L
Line Regulation (V  
= 4.0 V to 12 V)  
1.25 V Ref., I = 0 mA  
Reg  
mV  
mV  
CC  
line  
2.0  
10  
12  
50  
L
2.50 V Ref., I = 1.0 mA  
L
Load Regulation  
Reg  
load  
1.25 V Ref., I = –10 µA to +500 µA  
1.0  
3.0  
12  
25  
L
2.50 V Ref., I = –0.1 mA to +1.0 mA  
L
ERROR AMPLIFIER  
Input Offset Voltage (V = 1.25 V)  
in  
V
IO  
mV  
T
= 25°C  
1.5  
10  
A
T
A
= T  
to T  
high  
low  
Input Offset Current (V = 1.25 V)  
I
10  
nA  
nA  
in  
IO  
Input Bias Current (V = 1.25 V)  
I
in  
IB  
T
T
A
= 25°C  
= T  
25  
200  
A
to T  
high  
low  
Input Common Mode Voltage Range  
Open Loop Voltage Gain (V = 1.25 V)  
V
ICR  
0.5 to 5.5  
87  
V
dB  
kHz  
dB  
µA  
V
A
VOL  
65  
500  
65  
40  
O
Gain Bandwidth Product (V = 1.25 V, f = 100 kHz)  
GBW  
750  
85  
O
Power Supply Rejection Ratio (V  
= 5.0 V to 10 V)  
PSRR  
CC  
Output Source Current (V = 1.5 V)  
O
I
80  
Source  
Output Voltage Swing  
High State (I  
= 0 µA)  
V
V
1.75  
1.96  
0.1  
2.25  
0.15  
Source  
= 500 µA)  
OH  
OL  
Low State (I  
Sink  
NOTE: 1. T  
low  
=
0°C for MC34129  
–40°C for MC33129  
T
= +70°C for MC34129  
+85°C for MC33129  
high  
2
MOTOROLA ANALOG IC DEVICE DATA  
MC34129 MC33129  
ELECTRICAL CHARACTERISTICS (V  
CC  
= 10 V, T = 25°C [Note 1], unless otherwise noted.)  
A
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
PWM COMPARATOR  
Input Offset Voltage (V = 1.25 V)  
in  
V
150  
275  
–120  
250  
400  
–250  
mV  
µA  
ns  
IO  
Input Bias Current  
I
IB  
Propagation Delay, Ramp Input to Drive Output  
t
PLH(IN/DRV)  
SOFT–START  
Capacitor Charge Current (Pin 12 = 0 V)  
I
0.75  
1.2  
15  
1.50  
40  
µA  
mV  
V
chg  
Buffer Input Offset Voltage (V = 1.25 V)  
in  
V
IO  
Buffer Output Voltage (I  
= 100 µA)  
V
0.15  
0.225  
Sink  
OL  
FAULT TIMER  
Restart Delay Time  
t
200  
400  
600  
µs  
DLY  
START/RUN COMPARATOR  
Threshold Voltage (Pin 12)  
V
2.0  
350  
10  
V
mV  
V
th  
Threshold Hysteresis Voltage (Pin 12)  
Output Voltage (I = 500 µA)  
V
H
V
9.0  
10.3  
2.0  
Sink  
Output Off–State Leakage Current (V  
OL  
S/R(leak)  
= 15 V)  
I
0.4  
µA  
V
OH  
Output Zener Voltage (I = 10 mA)  
Z
V
(V + 7.6)  
CC  
Z
OSCILLATOR  
Frequency (R = 25.5 k, C = 390 pF)  
f
OSC  
80  
100  
350  
120  
460  
kHz  
µA  
T
T
Capacitor C Discharge Current (Pin 5 = 1.2 V)  
T
I
240  
dischg  
Sync Input Current  
µA  
High State (V = 2.0 V)  
Low State (V = 0.8 V)  
in  
I
I
IL  
40  
15  
125  
35  
in  
IH  
Sync Input Resistance  
R
12.5  
32  
50  
kΩ  
in  
DRIVE OUTPUT  
Output Voltage  
V
High State (I  
Low State (I  
= 200 mA)  
= 200 mA)  
V
V
8.3  
8.9  
1.4  
1.8  
Source  
Source  
OH  
OL  
Low State Holding Current  
Output Voltage Rise Time (C = 500 pF)  
I
225  
390  
30  
µA  
ns  
ns  
kΩ  
H
t
L
r
Output Voltage Fall Time (C = 500 pF)  
L
t
f
Output Pull–Down Resistance  
R
100  
225  
350  
PD  
UNDERVOLTAGE LOCKOUT  
Startup Threshold  
V
3.0  
5.0  
3.6  
10  
4.2  
15  
V
th  
Hysteresis  
V
%
H
TOTAL DEVICE  
Power Supply Current  
I
1.0  
12  
2.5  
4.0  
mA  
V
CC  
R
T
= 25.5 k, C = 390 pF, C = 500 pF  
T L  
Power Supply Zener Voltage (I = 10 mA)  
V
14.3  
Z
Z
NOTE: 1. T  
low  
=
0°C for MC34129  
–40°C for MC33129  
T
= +70°C for MC34129  
+85°C for MC33129  
high  
3
MOTOROLA ANALOG IC DEVICE DATA  
MC34129 MC33129  
Figure 1. Timing Resistor versus  
Oscillator Frequency  
Figure 2. Output Deadtime versus  
Oscillator Frequency  
1.0 M  
500 k  
100  
V
= 10 V  
= 25°C  
500 pF  
2.0 nF  
1.0 nF  
200 pF  
CC  
50  
20  
C
= 5.0 nF  
T
T
A
100 pF  
200 k  
100 k  
50 k  
5.0  
V
= 10 V  
20 k  
10 k  
2.0  
1.0  
CC  
= 25°C  
T
A
100pF  
C
= 5.0 nF  
10  
2.0 nF  
20  
1.0 nF  
50  
500 pF  
100  
200 pF  
200  
T
5.0  
500  
5.0  
10  
20  
50  
100  
200  
500  
f
, OSCILLATOR FREQUENCY (kHz)  
f , OSCILLATOR FREQUENCY (kHz)  
OSC  
OSC  
Figure 3. Oscillator Frequency Change  
versus Temperature  
Figure 4. Error Amp Open Loop Gain and  
Phase versus Frequency  
60  
0
V
V
R
= 10 V  
= 1.25 V  
= 25°C  
CC  
V
R
C
= 10 V  
= 25.5 k  
= 390 pF  
8.0  
CC  
T
T
O
=
L
40  
20  
0
45  
T
A
Gain  
4.0  
0
Phase  
90  
–4.0  
–8.0  
135  
–20  
1.0 k  
180  
–55  
–25  
0
25  
50  
75  
100  
125  
10 k  
100 k  
f, FREQUENCY (Hz)  
1.0 M  
10 M  
T , AMBIENT TEMPERATURE (  
°
C)  
A
Figure 5. Error Amp Small–Signal  
Transient Response  
Figure 6. Error Amp Large–Signal  
Transient Response  
T
= 25°C  
A
T
= 25°C  
A
1.05 V  
1.5 V  
1.0 V  
0.5 V  
1.0 V  
0.95 V  
0.5  
µs/DIV  
1.0 µs/DIV  
4
MOTOROLA ANALOG IC DEVICE DATA  
MC34129 MC33129  
Figure 7. Error Amp Open Loop DC Gain  
versus Load Resistance  
Figure 8. Error Amp Output Saturation  
versus Sink Current  
90  
80  
1.0  
V
= 10 V  
CC  
Pins 8 to 9, 6 to 10  
Pins 2, 5, 7 to Gnd  
0.8  
0.6  
T
= 25°C  
A
70  
60  
0.4  
0.2  
0
V
V
R
= 10 V  
= 1.25 V  
to 1.25 V  
CC  
O
L
ref  
T
= 25°C  
A
50  
0
20  
40  
60  
80  
100  
0
2.0  
4.0  
6.0  
8.0  
R , OUTPUT LOAD RESISTANCE (k  
)  
I
Sink  
, OUTPUT SINK CURRENT (mA)  
L
Figure 9. Soft–Start Buffer Output Saturation  
versus Sink Current  
Figure 10. Reference Output Voltage versus  
Supply Voltage  
3.2  
2.4  
1.0  
T
= 25°C  
A
V
= 10 V  
CC  
V
2.5 V, R = 2.5 k  
L
ref  
Pins 8 to 9  
Pins 2, 5, 7, 10, 12 to Gnd  
0.8  
0.6  
T
= 25°C  
A
1.6  
0.8  
0
V
1.25 V, R = ∞  
L
ref  
0.4  
0.2  
0
0
100  
200  
300  
400  
A)  
500  
0
4.0  
8.0  
, SUPPLY VOLTAGE (V)  
12  
16  
I
, OUTPUT SINK CURRENT (  
µ
V
CC  
Sink  
Figure 11. 1.25 V Reference Output Voltage  
Change versus Source Current  
Figure 12. 2.5 V Reference Output Voltage  
Change versus Source Current  
0
0
V
= 10 V  
V
= 10 V  
CC  
CC  
–4.0  
–8.0  
–12  
–16  
–4.0  
–8.0  
–12  
–16  
+25°C  
T
= – 40°C  
+85°C  
A
T
= – 40  
°C  
25°C  
85°C  
A
–20  
–24  
–20  
–24  
0
2.0  
4.0  
6.0  
8.0  
10  
0
0.4  
0.8  
1.2  
1.6  
2.0  
I
, REFERENCE OUTPUT SOURCE CURRENT (mA)  
I
, REFERENCE OUTPUT SOURCE CURRENT (mA)  
ref  
ref  
5
MOTOROLA ANALOG IC DEVICE DATA  
MC34129 MC33129  
Figure 13. 1.25 V Reference Output Voltage  
versus Temperature  
Figure 14. 2.5 V Reference Output Voltage  
versus Temperature  
*V = 1.225 V  
ref  
*V = 1.250 V  
ref  
*V = 1.275 V  
ref  
*V = 2.375 V  
ref  
*V = 2.500 V  
ref  
*V = 2.625 V  
ref  
0
–2.0  
–4.0  
–6.0  
–8.0  
0
4.0  
8.0  
–12  
–16  
V
R
= 10 V  
CC  
L
ref  
V
= 10 V  
R = 2.5 k  
L
CC  
=
*V at T = 25  
°C  
A
*V at T = 25  
ref  
°C  
A
–10  
–20  
–55  
–25  
0
25  
50  
75  
C)  
100  
125  
–55  
–25  
0
25  
50  
75  
C)  
100  
125  
T , AMBIENT TEMPERATURE (  
°
T , AMBIENT TEMPERATURE (  
°
A
A
Figure 15. Drive Output Saturation  
versus Load Current  
Figure 16. Drive Output Waveform  
0
–1.0  
–2.0  
–3.0  
3.0  
R
C
=
V
V
T
= 10 V  
L
L
CC  
10  
CC  
= 25  
= 500 pF  
= 25°C  
°C  
A
T
A
Source Saturation  
(Load to Ground)  
Sink Saturation  
(Load to V  
)
CC  
2.0  
0
1.0  
Gnd  
0
0
200  
400  
600  
800  
1.0 µs/DIV  
I
, OUTPUT LOAD CURRENT (mA)  
O
Figure 17. Supply Current versus Supply Voltage  
10  
R
C
= 25.5 k  
= 390 pF  
= 25°C  
T
T
8.0  
6.0  
T
A
4.0  
2.0  
C
= 500 pF  
L
C
= 15 pF  
12  
L
0
0
4.0  
8.0  
, SUPPLY VOLTAGE (V)  
16  
V
CC  
6
MOTOROLA ANALOG IC DEVICE DATA  
MC34129 MC33129  
PIN FUNCTION DESCRIPTION  
Pin  
Function  
Drive Output  
Description  
1
This output directly drives the gate of a power MOSFET. Peak currents up to 1.0 A are  
sourced and sinked by this pin.  
2
3
4
Drive Ground  
Ramp Input  
This pin is a separate power ground return that is connected back to the power source. It is  
used to reduce the effects of switching transient noise on the control circuitry.  
A voltage proportional to the inductor current is connected to this input. The PWM uses this  
information to terminate output switch conduction.  
Sync/Inhibit Input  
A rectangular waveform applied to this input will synchronize the Oscillator and limit the  
maximum Drive Output duty cycle. A dc voltage within the range of 2.0 V to V  
the controller.  
will inhibit  
CC  
5
6
R /C  
The free–running Oscillator frequency and maximum Drive Output duty cycle are  
programmed by connecting resistor R to V 2.5 V and capacitor C to Ground. Operation  
to 300 kHz is possible.  
T
T
T
ref  
T
V
ref  
2.50 V  
This output is derived from V 1.25 V. It provides charging current for capacitor C through  
ref  
T
resistor R .  
T
7
8
9
Ground  
1.25 V  
This pin is the control circuitry ground return and is connected back to the source ground.  
This output furnishes a voltage reference for the Error Amplifier noninverting input.  
V
ref  
Error Amp Noninverting Input  
Error Amp Inverting Input  
Feedback/PWM Input  
This is the noninverting input of the Error Amplifier. It is normally connected to the 1.25 V  
reference.  
10  
11  
12  
13  
This is the inverting input of the Error Amplifier. It is normally connected to the switching  
power supply output through a resistor divider.  
This pin is available for loop compensation. It is connected to the Error Amplifier and  
Soft–Start Buffer outputs, and the Pulse Width Modulator input.  
C
A capacitor C  
inductor current during startup.  
is connected from this pin to Ground for a controlled ramp–up of peak  
Soft–Start  
Soft–Start  
Start/Run Output  
This output controls the state of an external bootstrap transistor. During the start mode,  
operating bias is supplied by the transistor from V . In the run mode, the transistor is  
in  
switched off and bias is supplied by an auxiliary power transformer winding.  
14  
V
CC  
This pin is the positive supply of the control IC. The controller is functional over a minimum  
V
CC  
range of 4.2 V to 12 V.  
7
MOTOROLA ANALOG IC DEVICE DATA  
MC34129 MC33129  
OPERATING DESCRIPTION  
The MC34129 series are high performance current mode  
peak inductor current under normal operating conditions is  
controlled by the voltage at Pin 11 where:  
switching regulator controllers specifically designed for use in  
low power telecommunication applications. Implementation  
will allow remote digital telephones and terminals to shed  
their power cords and derive operating power directly from  
the twisted pair used for data transmission. Although these  
devices are primarily intended for use in digital telephone  
systems, they can be used cost effectively in a wide range of  
converter applications. A representative block diagram is  
shown in Figure 18.  
V
– 0.275 V  
S
(Pin 11)  
R
I
pk  
=
Abnormal operating conditions occur when the power  
supply output is overloaded or if output voltage sensing is  
lost. Under these conditions, the voltage at Pin 11 will be  
internally clamped to 1.95 V by the output of the Soft–Start  
Buffer. Therefore the maximum peak switch current is:  
1.95 V – 0.275  
1.675 V  
Oscillator  
I
=
=
pk(max)  
R
R
S
S
The oscillator frequency is programmed by the values  
selected for the timing components R and C . Capacitor C  
is charged from the 2.5 V reference through resistor R to  
T
approximately 1.25 V and discharged by an internal current  
T
T
T
When designing a high power switching regulator it  
becomes desirable to reduce the internal clamp voltage in  
order to keep the power dissipation of R to a reasonable  
S
sink to ground. During the discharge of C , the oscillator  
T
level. A simple method which adjusts this voltage in discrete  
increments is shown in Figure 22. This method is possible  
because the Ramp Input bias current is always negative  
(typically –120 µA). A positive temperature coefficient equal  
generates an internal blanking pulse that holds the lower  
input of the NOR gate high. This causes the Drive Output to  
be in a low state, thus producing a controlled amount of  
output deadtime. Figure 1 shows Oscillator Frequency  
to that of the diode string will be exhibited by I  
. An  
pk(max)  
versus R and Figure 2 Output Deadtime versus Frequency,  
T
adjustable method that is more precise and temperature  
stable is shown in Figure 23. Erratic operation due to noise  
pickup can result if there is an excessive reduction of the  
clamp voltage. In this situation, high frequency circuit layout  
techniques are imperative.  
both for given values of C . Note that many values of R and  
T
T
C
will give the same oscillator frequency but only one  
T
combination will yield a specific output deadtime at a give  
frequency. In many noise sensitive applications it may be  
desirable to frequency–lock one or more switching regulators  
to an external system clock. This can be accomplished by  
applying the clock signal to the Synch/Inhibit Input. For  
reliable locking, the free–running oscillator frequency should  
be about 10% less than the clock frequency. Referring to the  
timing diagram shown Figure 19, the rising edge of the clock  
signal applied to the Sync/Inhibit Input, terminates charging  
A narrow spike on the leading edge of the current  
waveform can usually be observed and may cause the power  
supply to exhibit an instability when the output is lightly  
loaded. This spike is due to the power transformer  
interwinding capacitance and output rectifier recovery time.  
The addition of an RC filter on the Ramp Input with a time  
constant that approximates the spike duration will usually  
eliminate the instability; refer to Figure 25.  
of C and Drive Output conduction. By tailoring the clock  
T
waveform, accurate duty cycle clamping of the Drive Output  
can be achieved. A circuit method is shown in Figure 20. The  
Sync/Inhibit Input may also be used as a means for system  
shutdown by applying a dc voltage that is within the range of  
Error Amp and Soft–Start Buffer  
A fully–compensated Error Amplifier with access to both  
inputs and output is provided for maximum design flexibility.  
The Error Amplifier output is common with that of the  
Soft–Start Buffer. These outputs are open–collector (sink  
only) and are ORed together at the inverting input of the PWM  
Comparator. With this configuration, the amplifier that  
demands lower peak inductor current dominates control of  
the loop. Soft–Start is mandatory for stable startup when  
power is provided through a high source impedance such as  
the long twisted pair used in telecommunications. It  
effectively removes the load from the output of the switching  
power supply upon initial startup. The Soft–Start Buffer is  
configured as a unity gain follower with the noninverting input  
connected to Pin 12. An internal 1.0 µA current source  
2.0 V to V  
.
CC  
PWM Comparator and Latch  
The MC34129 operates as a current mode controller  
whereby output switch conduction is initiated by the oscillator  
and terminated when the peak inductor current reaches a  
threshold level established by the output of the Error Amp or  
Soft–Start Buffer (Pin 11). Thus the error signal controls the  
peak inductor current on a cycle–by–cycle basis. The PWM  
Comparator–Latch configuration used, ensures that only a  
single pulse appears at the Drive Output during any given  
oscillator cycle. The inductor current is converted to a voltage  
by inserting the ground–referenced resistor R in series with  
S
charges the soft–start capacitor (C  
) to an internally  
Soft–Start  
the source of output switch Q . The Ramp Input adds an  
1
clamped level of 1.95 V. The rate of change of peak inductor  
current, during startup, is programmed by the capacitor value  
selected. Either the Fault Timer or the Undervoltage Lockout  
can discharge the soft–start capacitor.  
offset of 275 mV to this voltage to guarantee that no pulses  
appear at the Drive Output when Pin 11 is at its lowest state.  
This occurs at the beginning of the soft–start interval or when  
the power supply is operating and the load is removed. The  
8
MOTOROLA ANALOG IC DEVICE DATA  
MC34129 MC33129  
Figure 18. Representative Block Diagram  
V
= 20V  
in  
Start/Run  
Output  
+
+
1.95V  
13  
14  
Start/Run  
Comparator  
V
CC  
7.0V  
+
Undervoltage  
Lockout  
1.0µA  
12  
Fault Timer  
V
V
CC  
CC  
3.6V  
14.3V  
V
PWM  
Comparator  
CC  
C
Soft–Start  
80µA  
+
8
1.25V  
Reference  
7
6
+
Noninverting  
Input  
Inverting  
Input  
Feedback/PWM  
Input  
9
275mV  
2.5V Reference  
+
+
10  
+
1.25V  
Error Amp  
R
V
CC  
11  
Soft–Start  
Buffer  
Latch  
R
R
Q1  
T
R
Q
1
2
Drive Output  
5
4
Oscillator  
32k  
S
Drive  
Gnd  
C
T
3
Ramp Input  
Sync/Inhibit Input  
R
S
+
Sink Only  
Positive True Logic  
=
Figure 19. Timing Diagram  
600 µs Delay  
Sync/Inhibit Input  
Capacitor C  
Latch  
T
“Set” Input  
Feedback/PWM Input  
Ramp Input  
Latch  
“Reset” Input  
Drive Output  
20 V  
Start/Run  
Output  
14.3 V  
9
MOTOROLA ANALOG IC DEVICE DATA  
MC34129 MC33129  
Fault Timer  
Drive Output and Drive Ground  
This unique circuit prevents sustained operating in a  
lockout condition. This can occur with conventional switching  
control ICs when operating from a power source with a high  
series impedance. If the power required by the load is greater  
than that available from the source, the input voltage will  
collapse, causing the lockout condition. The Fault Timer  
provides automatic recovery when this condition is detected.  
Under normal operating conditions, the output of the PWM  
Comparator will reset the Latch and discharge the internal  
Fault Timer capacitor on a cycle–by–cycle basis. Under  
operating conditions where the required power into the load is  
The MC34129 contains a single totem–pole output stage  
that was specifically designed for direct drive of power  
MOSFETs. It is capable of up to ±1.0 A peak drive current and  
has a typical fall time of 30 ns with a 500 pF load. The  
totem–pole stage consists of an NPN transistor for turn–on  
drive and a high speed SCR for turn–off. The SCR design  
requires less average supply current (I ) when compared to  
CC  
conventional switching control ICs that use an all NPN  
totem–pole. The SCR accomplishes this during turn–off of  
the MOSFET, by utilizing the gate charge as regenerative  
on–bias, whereas the conventional all transistor design  
requires continuous base current. Conversion efficiency in  
low power applications is greatly enhanced with this  
greater than that available from the source (V ), the Ramp  
in  
Input voltage (plus offset) will not reach the comparator  
threshold level (Pin 11), and the output of the PWM  
Comparator will remain low. If this condition persists for more  
reduction of I . The SCR’s low–state holding current (I ) is  
CC  
H
typically 225 µA. An internal 225 kpull–down resistor is  
included to shunt the Drive Output off–state leakage to  
ground when the Undervoltage Lockout is active. A separate  
Drive Ground is provided to reduce the effects of switching  
transient noise imposed on the Ramp Input. This feature  
that600µs,theFaultTimerwillactive,dischargingC  
Soft–Start  
and initiating a soft–start cycle. The power supply will operate  
in a skip cycle or hiccup mode until either the load power or  
source impedance is reduced. The minimum fault timeout is  
200 µs, which limits the useful switching frequency to a  
minimum of 5.0 kHz.  
becomes particularly useful when the I  
reduced. Figure 24 shows the proper implementation of the  
MC34129 with a current sensing power MOSFET.  
clamp level is  
pk(max)  
Start/Run Comparator  
Undervoltage Lockout  
A bootstrap startup circuit is included to improve system  
efficiency when operating from a high input voltage. The  
output of the Start/Run Comparator controls the state of an  
external transistor. A typical application is shown in Figure 21.  
The Undervoltage Lockout comparator holds the Drive  
Output and C  
pins in the low state when V  
is less  
Soft–Start  
CC  
than 3.6 V. This ensures that the MC34129 is fully functional  
before the output stage is enabled and a soft–start cycle  
begins. A built–in hysteresis of 350 mV prevents erratic  
While C  
(Pin 14) from V  
is charging, startup bias is supplied to V  
through transistor Q2. When  
in  
reaches the 1.95 V clamp level, the Start–Run  
Soft–Start  
CC  
C
output behavior as V crosses the comparator threshold  
Soft–Start  
output switches low (V  
CC  
= 50 mV), turning off Q2. Operating  
voltage. A 14.3 V zener is connected as a shunt regulator  
from V to ground. Its purpose is to protect the MOSFET  
CC  
bias is now derived from the auxiliary bootstrap winding of the  
transformer, and all drive power is efficiently converted down  
CC  
gate from excessive drove voltage during system startup. An  
external 9.1 V zener is required when driving low threshold  
MOSFETs. Refer to Figure 21. The minimum operating  
voltage range of the IC is 4.2 V to 12 V.  
from V . The start time must be long enough for the power  
in  
supply output to reach regulation. This will ensure that there  
is sufficient bias voltage at the auxiliary bootstrap winding for  
sustained operation.  
References  
1.95VC  
The 1.25 V bandgap reference is trimmed to ±2.0%  
Soft–Start  
t
=
= 1.95 C in µF  
Soft–Start  
Start  
tolerance at T = 25°C. It is intended to be used in  
1.0 µA  
A
conjunction with the Error Amp. The 2.50 V reference is  
derived from the 1.25 V reference by an internal op amp with  
The Start/Run Comparator has 350 mV of hysteresis. The  
output off–state is clamped to V + 7.6 V by the internal  
zener and PNP transistor base–emitter junction.  
a fixed gain of 2.0. It has an output tolerance of ±5.0% at T =  
A
CC  
25°C and its primary purpose is to supply charging current to  
the oscillator timing capacitor.  
For further information, please refer to AN976.  
10  
MOTOROLA ANALOG IC DEVICE DATA  
MC34129 MC33129  
Figure 20. External Duty Cycle Clamp  
and Multi–Unit Synchronization  
Figure 21. Bootstrap Startup  
V
in  
2.5V  
6
13  
14  
+
+
Q2  
C
Soft–Start  
+
9.1  
V
12  
+
5.0V  
8
5
4
+
1.25V  
7
OSC  
R
R
9
8
4
A
B
+
+
5.0k  
6
2.5V  
10  
+
+
6
5
R
3
7
11  
1
5.0k  
Q
R
S
+
2
Q
S
5
2
3
OSC  
To Additional  
MC34129’s  
MC1455  
5.0k  
4
C
1
R
1.44  
(R + 2R )C  
B
f =  
D
=
max  
The external 9.1 V zener is required when driving low threshold MOSFETs.  
R
+ 2R  
A
B
A
B
Figure 22. Discrete Step Reduction of Clamp Level  
Figure 23. Adjustable Reduction of Clamp Level  
V
in  
V
8
in  
1.25V  
+
8
1.25V  
9
+
+
9
275mV  
+
10  
+
+
R2  
275mV  
10  
11  
11  
R1  
Q1  
Q1  
R
1
R
1
Q
S
Q
S
2
3
2
3
D1  
D2  
R
S
R
S
120µA  
1.25  
– 0.275  
1.675 – (V  
+ V  
)
F(D1)  
F(D2)  
R2  
R1  
I
=
pk(max)  
+ 1  
R
S
1.25 V  
R1 + R2  
If:  
1.0 mA  
Then: I ≈  
pk(max)  
R
S
11  
MOTOROLA ANALOG IC DEVICE DATA  
MC34129 MC33129  
Figure 24. Current Sensing Power MOSFET  
Figure 25. Current Waveform Spike Suppression  
V
R
I
r
in  
S
r
pk DS(on)  
V
RS  
8
+ r  
DM(on)  
S
1.25V  
V
in  
If: SENSEFET = MTP10N10M  
= 200  
9
R
S
+
Then: V  
0.075 I  
pk  
RS  
10  
D
Q1  
1
SENSEFET  
S
11  
1
2
3
G
R
K
M
2
C
R
S
3
Power Ground:  
To Input Source  
Return  
R
1/4W  
S
The addition of the RC filter will eliminate instability caused by the  
leading edge spike on the current waveform.  
Control Circuitry Ground:  
To Pin 7  
Virtually lossless current sensing can be achieved with the implementation of a  
SENSEFET power switch.  
Figure 26. MOSFET Parasitic Oscillations  
Figure 27. Bipolar Transistor Drive  
I
B
V
in  
+
V
in  
t
0
Base Charge  
Removal  
Q1  
C1  
1
2
R
g
1
2
3
Q1  
3
R
S
R
S
Series gate resistor R will damp any high frequency parasitic  
oscillations caused by the MOSFET input capacitance and any  
series wiring inductance in the gate–source circuit.  
g
The totem–pole output can furnish negative base current for enhanced  
transistor turn–off, with the addition of capacitor C1.  
12  
MOTOROLA ANALOG IC DEVICE DATA  
MC34129 MC33129  
Figure 28. Non–Isolated 725 mW Flyback Regulator  
V
= 20V to 48V  
in  
+
220k  
50  
2.2k  
13  
+
2N5551  
1N4148  
+ 10  
14  
12  
+
1N5819  
100  
5V/125mA  
1N958A  
T1  
0.1  
+
+
36k  
R2  
8
9
+
1.25V  
7
6
Gnd  
+
+
10  
2.5 V  
12k  
R1  
+
100  
500pF  
11  
1
–5V/20mA  
24k  
1N5819  
R
S
Q
MTP  
2N20L  
5
4
2
3
OSC  
470pF  
T1: Coilcraft #G6807–A  
Primary = 90T #28 AWG  
Secondary  
Gap = 0.05 n, for Lp of 600  
Core = Ferroxcube 813E187–3C8  
±5V = 26T #30 AW  
10  
128kHz  
Sync  
µH  
Bobbin = Ferroxcube E187PCB1–8  
Test  
Conditions  
5.0 V = 125 mA, I  
Results  
= 1.0 mV  
= 2.0 mV  
150 mVpp  
77%  
Line Regulation 5.0 V  
Load Regulation 5.0 V  
Output Ripple 5.0 V  
Efficiency  
V
in  
V
in  
V
in  
V
in  
= 20 V to 40 V, I  
–5.0 V = 20 mA  
–5.0 V = 20 mA  
out  
out  
out  
= 30 V, I  
= 30 V, I  
= 30 V, I  
5.0 V = 0 mA to 150 mA, I  
out  
out  
out  
5.0 V = 125 mA, I  
5.0 V = 125 mA, I  
–5.0 V = 20 mA  
–5.0 V = 20 mA  
out  
out  
R2  
R1  
V
out  
= 1.25  
+ 1  
13  
MOTOROLA ANALOG IC DEVICE DATA  
MC34129 MC33129  
Figure 29. Isolated 2.0 W Flyback Regulator  
V
= 20V to 48V  
in  
220k  
+
100  
2.2k  
13  
+
2N5551  
180  
pF  
1N5819  
1N5819  
1N5819  
100  
14  
5V/380mA  
+
12  
+
T1  
+
2
0.1  
8
9
+
7
6
1.25V  
0.1  
Gnd  
+
140k  
330  
+
+
100  
2.5V  
+
10  
20k  
–5V/20mA  
1N5819  
11  
1
24k  
R
S
Q
MTP  
2N20  
5
4
2
3
OSC  
470pF  
128kHz  
Sync  
100pF  
100  
2.7k  
0.1  
1
6
T1: Primary = 35T #32 AWG  
Feedback = 12T #32 AWG  
10k  
4
Secondary  
Gap = 0.004  
Core = Ferroxcube 813E187–3C8  
±
5 V = 7T #32 AWG  
, for Lp of 180  
µH  
2
5
Bobbin = Ferroxcube E187PCB1–8  
MOC5007  
Test  
Conditions  
5.0 V = 380 mA, I –5.0 V = 20 mA  
out  
Results  
Line Regulation 5.0 V  
Load Regulation 5.0 V  
Output Ripple 5.0 V  
Efficiency  
V
= 20 V to 40 V, I  
= 1.0 mV  
in  
in  
in  
in  
out  
V
V
V
= 30 V, I  
= 30 V, I  
= 30 V, I  
5.0 V = 100 mA to 380 mA, I  
–5.0 V = 20 mA  
out  
= 15 mV  
150 mVpp  
73%  
out  
out  
out  
5.0 V = 380 mA, I  
5.0 V = 380 mA, I  
–5.0 V = 20 mA  
–5.0 V = 20 mA  
out  
out  
14  
MOTOROLA ANALOG IC DEVICE DATA  
MC34129 MC33129  
Figure 30. Isolated 3.0 W Flyback Regulator with Secondary Side Sensing  
V
= 12V  
in  
L1  
1N5821  
13  
14  
5/60mA  
100  
+
51  
12  
1/2  
+
100  
+
4N26  
470  
0.1  
0.1  
8
9
+
1.25V  
7
6
+
+
TL431A  
MTP10N10M  
Return  
D
2.5V  
+
10  
11  
1
S
R
S
G
Q
5
4
K
M
2
3
OSC  
T1: Primary = 22T #18 AWG  
Secondary = 22T #18 AWG  
Lp = 50  
Core = Ferroxcube  
2616PA100–3C8  
Bobbin = Ferroxcube 2616F1D  
µH  
1/2  
4N26  
L1:  
Coilcraft Z7156, 15 µH  
Test  
Conditions  
Results  
= 1.0 mV  
= 8.0 mV  
20 mVpp  
81%  
Line Regulation  
Load Regulation  
Output Ripple  
Efficiency  
V
in  
V
in  
V
in  
V
in  
= 8.0 V to 12 V, I  
600 mA  
out  
= 12 V, I  
= 12 V, I  
= 12 V, I  
= 100 mA to 600 mA  
= 600 mA  
out  
out  
out  
= 600 mA  
An economical method of achieving secondary sensing is to combine the TL431A with a 4N26 optocoupler.  
15  
MOTOROLA ANALOG IC DEVICE DATA  
MC34129 MC33129  
OUTLINE DIMENSIONS  
P SUFFIX  
PLASTIC PACKAGE  
CASE 646–06  
ISSUE L  
NOTES:  
1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE  
POSITION AT SEATING PLANE AT MAXIMUM  
MATERIAL CONDITION.  
2. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
3. DIMENSION B DOES NOT INCLUDE MOLD  
FLASH.  
14  
1
8
7
B
4. ROUNDED CORNERS OPTIONAL.  
INCHES  
MILLIMETERS  
A
F
DIM  
A
B
C
D
F
G
H
J
K
L
M
N
MIN  
MAX  
0.770  
0.260  
0.185  
0.021  
0.070  
MIN  
18.16  
6.10  
3.69  
0.38  
1.02  
MAX  
19.56  
6.60  
4.69  
0.53  
1.78  
0.715  
0.240  
0.145  
0.015  
0.040  
L
C
0.100 BSC  
2.54 BSC  
0.052  
0.008  
0.115  
0.095  
0.015  
0.135  
1.32  
0.20  
2.92  
2.41  
0.38  
3.43  
J
N
0.300 BSC  
7.62 BSC  
SEATING  
PLANE  
K
0
10  
0
10  
0.015  
0.039  
0.39  
1.01  
H
G
D
M
D SUFFIX  
PLASTIC PACKAGE  
CASE 751A–03  
(SO–14)  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
ISSUE F  
–A–  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
14  
8
7
–B–  
P 7 PL  
M
M
0.25 (0.010)  
B
1
MILLIMETERS  
INCHES  
G
DIM  
A
B
C
D
F
G
J
K
M
P
MIN  
8.55  
3.80  
1.35  
0.35  
0.40  
MAX  
8.75  
4.00  
1.75  
0.49  
1.25  
MIN  
MAX  
0.344  
0.157  
0.068  
0.019  
0.049  
F
R X 45  
C
0.337  
0.150  
0.054  
0.014  
0.016  
–T–  
SEATING  
PLANE  
J
M
1.27 BSC  
0.050 BSC  
K
D 14 PL  
0.19  
0.10  
0
0.25  
0.25  
7
0.008  
0.004  
0
0.009  
0.009  
7
M
S
S
0.25 (0.010)  
T
B
A
5.80  
0.25  
6.20  
0.50  
0.228  
0.010  
0.244  
0.019  
R
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arisingoutof,directlyorindirectly,anyclaimofpersonalinjuryordeathassociatedwithsuchunintendedorunauthorizeduse,evenifsuchclaimallegesthatMotorola  
was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
re registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,  
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
INTERNET: http://Design–NET.com  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MC34129/D  

相关型号:

MC3412L

D/A Converter, 12-Bit, 1 Func, Bipolar, CDIP24
MOTOROLA

MC3414

N-Channel 20-V (D-S) MOSFET Fast switching speed
FREESCALE

MC34142FN

0.5A DECODER BASED PRPHL DRVR, PQCC28, PLASTIC, LCC-28
MOTOROLA

MC34151

High Speed Dual MOSFET Drivers
ONSEMI

MC34151D

HIGH SPEED DUAL MOSFET DRIVERS
MOTOROLA

MC34151D

High Speed Dual MOSFET Drivers
ONSEMI

MC34151DG

High Speed Dual MOSFET Drivers
ONSEMI

MC34151DR2

High Speed Dual MOSFET Drivers
ONSEMI

MC34151DR2G

High Speed Dual MOSFET Drivers
ONSEMI

MC34151P

High Speed Dual MOSFET Drivers
ONSEMI

MC34151P

HIGH SPEED DUAL MOSFET DRIVERS
MOTOROLA

MC34151PG

High Speed Dual MOSFET Drivers
ONSEMI