MC34161P [MOTOROLA]

UNIVERSAL VOLTAGE MONITORS; 通用电压监测器
MC34161P
型号: MC34161P
厂家: MOTOROLA    MOTOROLA
描述:

UNIVERSAL VOLTAGE MONITORS
通用电压监测器

电源电路 电源管理电路 光电二极管 监视器
文件: 总16页 (文件大小:296K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document by MC34161/D  
The MC34161/MC33161 are universal voltage monitors intended for use  
in a wide variety of voltage sensing applications. These devices offer the  
circuit designer an economical solution for positive and negative voltage  
detection. The circuit consists of two comparator channels each with  
hysteresis, a unique Mode Select Input for channel programming, a pinned  
out 2.54 V reference, and two open collector outputs capable of sinking in  
excess of 10 mA. Each comparator channel can be configured as either  
inverting or noninverting by the Mode Select Input. This allows over, under,  
and window detection of positive and negative voltages. The minimum  
supply voltage needed for these devices to be fully functional is 2.0 V for  
positive voltage sensing and 4.0 V for negative voltage sensing.  
UNIVERSAL VOLTAGE  
MONITORS  
SEMICONDUCTOR  
TECHNICAL DATA  
Applications include direct monitoring of positive and negative voltages  
used in appliance, automotive, consumer, and industrial equipment.  
P SUFFIX  
PLASTIC PACKAGE  
CASE 626  
Unique Mode Select Input Allows Channel Programming  
Over, Under, and Window Voltage Detection  
Positive and Negative Voltage Detection  
8
1
Fully Functional at 2.0 V for Positve Voltage Sensing and 4.0 V for  
Negative Voltage Sensing  
Pinned Out 2.54 V Reference with Current Limit Protection  
Low Standby Current  
Open Collector Outputs for Enhanced Device Flexibility  
D SUFFIX  
PLASTIC PACKAGE  
8
CASE 751  
(SO–8)  
1
PIN CONNECTIONS  
Simplified Block Diagram  
(Positive Voltage Window Detector Application)  
V
1
2
3
4
8
7
6
5
V
CC  
ref  
V
CC  
Input 1  
Mode Select  
Output 1  
Input 2  
Gnd  
8
Output 2  
1
2.54V  
Reference  
(TOP VIEW)  
V
S
7
2
+
6
5
+
2.8V  
+
+
+
1.27V  
ORDERING INFORMATION  
Operating  
+
+
3
0.6V  
+
Temperature Range  
Device  
Package  
MC34161D  
MC34161P  
SO–8  
1.27V  
T
A
= 0° to +70°C  
Plastic DIP  
MC33161D  
MC33161P  
SO–8  
4
T
A
= –40° to +85°C  
Plastic DIP  
Motorola, Inc. 1998  
Rev 1.1  
MC34161 MC33161  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
V
Power Supply Input Voltage  
V
CC  
40  
– 1.0 to +40  
20  
Comparator Input Voltage Range  
Comparator Output Sink Current (Pins 5 and 6) (Note 1)  
Comparator Output Voltage  
V
in  
V
I
mA  
V
Sink  
V
out  
40  
Power Dissipation and Thermal Characteristics (Note 1)  
P Suffix, Plastic Package, Case 626  
Maximum Power Dissipation @ T = 70°C  
Thermal Resistance, Junction–to–Air  
D Suffix, Plastic Package, Case 751  
P
800  
100  
mW  
°C/W  
A
D
R
θJA  
Maximum Power Dissipation @ T = 70°C  
Thermal Resistance, Junction–to–Air  
P
450  
178  
mW  
°C/W  
A
D
R
θJA  
Operating Junction Temperature  
T
+150  
°C  
°C  
J
Operating Ambient Temperature (Note 3)  
MC34161  
MC33161  
T
A
0 to +70  
– 40 to +85  
Storage Temperature Range  
T
stg  
– 55 to +150  
°C  
ELECTRICAL CHARACTERISTICS (V  
= 5.0 V, for typical values T = 25°C, for min/max values T is the operating  
A A  
CC  
ambient temperature range that applies [Notes 2 and 3], unless otherwise noted.)  
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
COMPARATOR INPUTS  
Threshold Voltage, V Increasing (T = 25°C)  
V
th  
1.245  
1.235  
1.27  
1.295  
1.295  
V
in  
A
Threshold Voltage, V Increasing (T = T  
to T  
)
max  
in  
A
min  
Threshold Voltage Variation (V  
= 2.0 V to 40 V)  
V  
th  
15  
7.0  
25  
15  
35  
mV  
mV  
mV  
V
CC  
Threshold Hysteresis, V Decreasing  
in  
V
H
Threshold Difference |V  
– V  
|
V
D
1.0  
1.27  
15  
th1  
th2  
Reference to Threshold Difference (V – V ), (V – V  
)
V
RTD  
1.20  
1.32  
ref in1 ref in2  
Input Bias Current (V = 1.0 V)  
Input Bias Current (V = 1.5 V)  
in  
I
IB  
40  
85  
200  
400  
nA  
in  
MODE SELECT INPUT  
Mode Select Threshold Voltage (Figure 5) Channel 1  
Mode Select Threshold Voltage (Figure 5) Channel 2  
V
V
V
+0.15  
0.3  
V
+0.23  
0.63  
V
+0.30  
0.9  
V
th(CH 1)  
th(CH 2)  
ref  
ref  
ref  
COMPARATOR OUTPUTS  
Output Sink Saturation Voltage (I  
Output Sink Saturation Voltage (I  
Output Sink Saturation Voltage (I  
= 2.0 mA)  
= 10 mA)  
= 0.25 mA, V  
V
OL  
0.05  
0.22  
0.02  
0.3  
0.6  
0.2  
V
Sink  
Sink  
Sink  
= 1.0 V)  
CC  
Off–State Leakage Current (V  
= 40 V)  
I
0
1.0  
µA  
OH  
OH  
REFERENCE OUTPUT  
Output Voltage (I = 0 mA, T = 25°C)  
V
2.48  
2.54  
0.6  
5.0  
2.60  
15  
V
O
A
ref  
Reg  
Load Regulation (I = 0 mA to 2.0 mA)  
mV  
mV  
V
O
load  
Line Regulation (V  
CC  
= 4.0 V to 40 V)  
Reg  
15  
line  
Total Output Variation over Line, Load, and Temperature  
Short Circuit Current  
V  
2.45  
2.60  
30  
ref  
I
8.5  
mA  
SC  
TOTAL DEVICE  
Power Supply Current (V  
Power Supply Current (V  
, V , V  
= Gnd) (V  
= 5.0 V)  
= 40 V)  
I
CC  
450  
560  
700  
900  
µA  
Mode in1 in2  
CC  
CC  
, V 1, V 2 = Gd) (V  
Mode in in  
Operating Voltage Range (Positive Sensing)  
Operating Voltage Range (Negative Sensing)  
V
CC  
2.0  
4.0  
40  
40  
V
NOTES: 1. Maximum package power dissipation must be observed.  
2. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.  
3. T  
=
0°C for MC34161  
–40°C for MC33161  
T
= +70°C for MC34161  
+85°C for MC33161  
low  
high  
2
MOTOROLA ANALOG IC DEVICE DATA  
MC34161 MC33161  
Figure 2. Comparator Input Bias Current  
versus Input Voltage  
Figure 1. Comparator Input Threshold Voltage  
6.0  
500  
400  
300  
200  
100  
V
R
= 5.0 V  
= 10 k to V  
CC  
L
CC  
V
V
CC  
5.0  
4.0  
3.0  
2.0  
1.0  
T
A = 25°C  
T
A
T
= 85  
= 25  
°
°
C
C
A
T
= 85  
= 25  
= –40  
°
°
C
C
A
T
A
T
A
T
= –40°C  
T
°C  
A
A
0
1.22  
0
1.23  
1.24  
1.25  
1.26  
1.27  
1.28  
1.29  
0
1.0  
2.0  
V , INPUT VOLTAGE (V)  
in  
3.0  
4.0  
5.0  
V
, INPUT VOLTAGE (V)  
in  
Figure 3. Output Propagation Delay Time  
versus Percent Overdrive  
Figure 4. Output Voltage versus Supply Voltage  
3600  
3000  
2400  
8.0  
V
T
= 5.0 V  
= 25°C  
Undervoltage Detector  
Programmed to trip at 4.5 V  
CC  
A
1. V  
2. V  
3. V  
4. V  
= Gnd, Output Falling  
Mode  
Mode  
Mode  
Mode  
= V , Output Rising  
CC  
R
R
= 1.8 k, R = 4.7 k  
= 10 k to V  
CC  
= V , Output Falling  
CC  
1
L
2
6.0  
4.0  
2.0  
0
= Gnd, Output Rising  
Refer to Figure 16  
1800  
1200  
1
2
T
= –40  
= –25  
= –85°C  
°
°
C
C
A
3
T
A
A
T
4
600  
0
2.0  
4.0  
6.0  
8.0  
10  
0
2.0  
4.0  
, SUPPLY VOLTAGE (V)  
6.0  
8.0  
PERCENT OVERDRIVE (%)  
V
CC  
Figure 6. Mode Select Input Current  
versus Input Voltage  
Figure 5. Mode Select Thresholds  
6.0  
40  
V
= 5.0 V  
= 25°C  
Channel 2 Threshold  
Channel 1 Threshold  
CC  
35  
30  
25  
20  
15  
10  
5.0  
4.0  
3.0  
2.0  
1.0  
0
T
A
V
R
= 5.0 V  
= 10 k to V  
CC  
L
CC  
T
T
T
= 85°C  
= 25°C  
= –40°C  
A
A
A
T
= 85  
= 25  
°
C
C
A
T
= –40°C  
A
T
°
A
5.0  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0
1.0  
2.0  
3.0  
4.0  
5.0  
V
, MODE SELECT INPUT VOLTAGE (V)  
V , MODE SELECT INPUT VOLTAGE (V)  
Mode  
Mode  
3
MOTOROLA ANALOG IC DEVICE DATA  
MC34161 MC33161  
Figure 7. Reference Voltage  
versus Supply Voltage  
Figure 8. Reference Voltage  
versus Ambient Temperature  
2.8  
2.610  
2.578  
2.546  
2.514  
V
Max = 2.60 V  
ref  
2.4  
2.0  
1.6  
1.2  
0.8  
V
Typ = 2.54 V  
ref  
V
V
= 5.0 V  
CC  
= Gnd  
Mode  
2.482  
2.450  
V
= Gnd  
Mode  
= 25  
0.4  
0
T
°C  
V
Min = 2.48 V  
A
ref  
0
10  
20  
30  
40  
8.0  
40  
–55  
–25  
0
25  
50  
75  
100  
125  
V
, SUPPLY VOLTAGE (V)  
T , AMBIENT TEMPERATURE (°C)  
CC  
A
Figure 9. Reference Voltage Change  
versus Source Current  
Figure 10. Output Saturation Voltage  
versus Output Sink Current  
0
–2.0  
–4.0  
–6.0  
0.5  
0.4  
0.3  
V
V
= 5.0 V  
CC  
= Gnd  
Mode  
T
= 85°C  
A
T
= 25°C  
A
V
V
= 5.0 V  
CC  
= Gnd  
Mode  
0.2  
0.1  
0
T
= –40°C  
A
–8.0  
–10  
0
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
0
4.0  
8.0  
12  
16  
I
, REFERENCE SOURCE CURRENT (mA)  
I , OUTPUT SINK CURRENT (mA)  
out  
ref  
Figure 11. Supply Current versus  
Supply Voltage  
Figure 12. Supply Current  
versus Output Sink Current  
1.6  
0.8  
V
= V  
CC  
Mode  
Pins 2, 3 = Gnd  
V
= Gnd  
Mode  
Pins 2, 3 = 1.5 V  
0.6  
0.4  
1.2  
0.8  
V
= V  
ref  
Mode  
Pin 1 = 1.5 V  
Pin 2 = Gnd  
V
V
= 5.0 V  
CC  
0.2  
0
= Gnd  
0.4  
Mode  
I
T
measured at Pin 8  
CC  
= 25°C  
T
= 25  
°C  
A
A
0
0
10  
20  
, SUPPLY VOLTAGE (V)  
30  
0
4.0  
8.0  
12  
16  
V
I
, OUTPUT SINK CURRENT (mA)  
CC  
out  
4
MOTOROLA ANALOG IC DEVICE DATA  
MC34161 MC33161  
Figure 13. MC34161 Representative Block Diagram  
V
CC  
8
2.54V  
Reference  
V
ref  
1
Channel 1  
Mode Select  
Input 1  
7
2
+
+
Output 1  
2.8V  
+
6
5
+
+
1.27V  
Channel 2  
+
+
Output 2  
0.6V  
Input 2  
+
3
1.27V  
4
Gnd  
Figure 14. Truth Table  
Mode Select  
Pin 7  
Input 1  
Pin 2  
Output 1  
Pin 6  
Input 2  
Pin 3  
Output 2  
Pin 5  
Comments  
GND  
0
1
0
1
0
1
0
1
Channels 1 & 2: Noninverting  
V
ref  
0
1
0
1
0
1
1
0
Channel 1: Noninverting  
Channel 2: Inverting  
V
CC  
(>2.0 V)  
0
1
1
0
0
1
1
0
Channels 1 & 2: Inverting  
5
MOTOROLA ANALOG IC DEVICE DATA  
MC34161 MC33161  
FUNCTIONAL DESCRIPTION  
Introduction  
Reference  
To be competitive in today’s electronic equipment market,  
new circuits must be designed to increase system reliability  
with minimal incremental cost. The circuit designer can take a  
significant step toward attaining these goals by implementing  
economical circuitry that continuously monitors critical circuit  
voltages and provides a fault signal in the event of an  
out–of–tolerance condition. The MC34161, MC33161 series  
are universal voltage monitors intended for use in a wide  
variety of voltage sensing applications. The main objectives  
of this series was to configure a device that can be used in as  
many voltage sensing applications as possible while  
minimizing cost. The flexibility objective is achieved by the  
utilization of a unique Mode Select input that is used in  
conjunction with traditional circuit building blocks. The cost  
objective is achieved by processing the device on a standard  
Bipolar Analog flow, and by limiting the package to eight pins.  
The device consists of two comparator channels each with  
hysteresis, a mode select input for channel programming, a  
pinned out reference, and two open collector outputs. Each  
comparator channel can be configured as either inverting or  
noninverting by the Mode Select input. This allows a single  
device to perform over, under, and window detection of  
positive and negative voltages. A detailed description of each  
section of the device is given below with the representative  
block diagram shown in Figure 13.  
The 2.54 V reference is pinned out to provide a means for  
the input comparators to sense negative voltages, as well as  
a means to program the Mode Select input for window  
detection applications. The reference is capable of sourcing  
in excess of 2.0 mA output current and has built–in short  
circuit protection. The output voltage has a guaranteed  
tolerance of ±2.4% at room temperature.  
The 2.54 V reference is derived by gaining up the internal  
1.27 V reference by a factor of two. With a power supply  
voltage of 4.0 V, the 2.54 V reference is in full regulation,  
allowing the device to accurately sense negative voltages.  
Mode Select Circuit  
The key feature that allows this device to be flexible is the  
Mode Select input. This input allows the user to program  
each of the channels for various types of voltage sensing  
applications. Figure 14 shows that the Mode Select input has  
three defined states. These states determine whether  
Channel 1 and/or Channel 2 operate in the inverting or  
noninverting mode. The Mode Select thresholds are shown in  
Figure 5. The input circuitry forms a tristate switch with  
thresholds at 0.63 V and V + 0.23 V. The mode select input  
ref  
current is 10 µA when connected to the reference output, and  
42 µA when connected to a V  
of 5.0 V, refer to Figure 6.  
CC  
Output Stage  
Input Comparators  
The output stage uses a positive feedback base boost  
circuit for enhanced sink saturation, while maintaining a  
relatively low device standby current. Figure 10 shows that  
the sink saturation voltage is about 0.2 V at 8.0 mA over  
temperature. By combining the low output saturation  
characteristics with low voltage comparator operation, this  
The input comparators of each channel are identical, each  
having an upper threshold voltage of 1.27 V ±2.0% with 25  
mV of hysteresis. The hysteresis is provided to enhance  
output switching by preventing oscillations as the comparator  
thresholds are crossed. The comparators have an input bias  
current of 60 nA at their threshold which approximates a  
21.2 Mresistor to ground. This high impedance minimizes  
loading of the external voltage divider for well defined trip  
points. For all positive voltage sensing applications, both  
device is capable of sensing positive voltages at a V  
1.0 V. These characteristics are important in undervoltage  
sensing applications where the output must stay in a low  
of  
CC  
state as V  
approaches ground. Figure 4 shows the Output  
CC  
comparator channels are fully functional at a V  
of 2.0 V. In  
CC  
Voltage versus Supply Voltage in an undervoltage sensing  
application. Note that as V drops below the programmed  
order to provide enhanced device ruggedness for hostile  
industrial environments, additional circuitry was designed  
into the inputs to prevent device latch–up as well as to  
suppress electrostatic discharges (ESD).  
CC  
4.5 V trip point, the output stays in a well defined active low  
state until V drops below 1.0 V.  
CC  
APPLICATIONS  
The following circuit figures illustrate the flexibility of this  
device. Included are voltage sensing applications for over,  
under, and window detectors, as well as three unique  
configurations. Many of the voltage detection circuits are  
shown with the open collector outputs of each channel  
connected together driving a light emitting diode (LED). This  
‘ORed’ connection is shown for ease of explanation and it is  
only required for window detection applications. Note that  
many of the voltage detection circuits are shown with a  
dashed line output connection. This connection gives the  
inverse function of the solid line connection. For example, the  
solid line output connection of Figure 15 has the LED ‘ON’  
when input voltage V is above trip voltage V , for  
S
2
overvoltage detection. The dashed line output connection  
has the LED ‘ON’ when V is below trip voltage V , for  
S
2
undervoltage detection.  
6
MOTOROLA ANALOG IC DEVICE DATA  
MC34161 MC33161  
Figure 15. Dual Postive Overvoltage Detector  
V
CC  
8
V
V
2
2.54V  
Reference  
Input V  
Output  
V
S
Hys  
1
7
2
V
S1  
1
+
+
+
R
2
Gnd  
2.8V  
+
6
5
V
V
+
+
CC  
S2  
R
1
Voltage  
Pins 5, 6  
1.27V  
+
LED ‘ON’  
Gnd  
R
2
0.6V  
+
3
R
1
1.27V  
4
The above figure shows the MC34161 configured as a dual positive overvoltage detector. As the input voltage increases from ground, the LED will turn ‘ON’ when  
or V exceeds V . With the dashed line output connection, the circuit becomes a dual positive undervoltage detector. As the input voltage decreases from the  
V
S1  
S2  
2
peak towards ground, the LED will turn ‘ON’ when V or V falls below V .  
S1 S2  
1
For known resistor values, the voltage trip points are:  
For a specific trip voltage, the required resistor ratio is:  
R
R
R
th  
R
R
R
V
R
R
V
V
2
1
2
1
2
1
1
2
1
2
V
(V  
V )  
1
V
V
1
1
1
1
th  
H
2
V
V
H
th  
th  
Figure 16. Dual Postive Undervoltage Detector  
V
CC  
8
2.54V  
Reference  
V
V
2
1
Input V  
Output  
S
V
Hys  
V
S1  
+
2.8V  
1
7
2
+
+
R
2
+
6
5
Gnd  
+
+
V
S2  
R
V
1
1.27V  
CC  
+
0.6V  
Voltage  
Pins 5, 6  
LED ‘ON’  
R
2
Gnd  
+
3
R
1
1.27V  
4
The above figure shows the MC34161 configured as a dual positive undervoltage detector. As the input voltage decreases towards ground, the LED will turn ‘ON’  
when V or V falls below V . With the dashed line output connection, the circuit becomes a dual positive overvoltage detector. As the input voltage increases from  
S1  
S2  
1
ground, the LED will turn ‘ON’ when V or V exceeds V .  
S1 S2  
2
For known resistor values, the voltage trip points are:  
For a specific trip voltage, the required resistor ratio is:  
R
R
V
R
R
V
V
R
R
R
R
2
1
1
2
1
2
2
1
2
1
1
1
V
(V  
V )  
1
V
V
th  
1
1
th  
H
2
V
V
H
th  
th  
7
MOTOROLA ANALOG IC DEVICE DATA  
MC34161 MC33161  
Figure 17. Dual Negative Overvoltage Detector  
V
CC  
8
2.54V  
Reference  
Gnd  
1
R
2
7
2
V
1
+
+
+
2.8V  
R1  
Input –V  
V
+
S
Hys  
6
5
–V  
S1  
+
+
V
2
1.27V  
+
R
2
Output  
Voltage  
Pins 5, 6  
V
CC  
Gnd  
R1  
0.6V  
+
–V  
S2  
LED ‘ON’  
3
1.27V  
4
The above figure shows the MC34161 configured as a dual negative overvoltage detector. As the input voltage increases from ground, the LED will turn ‘ON’ when  
–V or –V exceeds V . With the dashed line output connection, the circuit becomes a dual negative undervoltage detector. As the input voltage decreases from  
S1  
S2  
2
the peak towards ground, the LED will turn ‘ON’ when –V or –V falls below V .  
S1  
S2  
1
For known resistor values, the voltage trip points are:  
For a specific trip voltage, the required resistor ratio is:  
R
R
R
R
R
R
V
V
V
R
R
V
V
V
V
V
1
2
1
2
1
2
1
th  
1
2
2
th  
H
H
V
(V  
V
)
V
V
(V  
V
V
)
V
V
H
1
th  
ref  
th  
2
th  
H
ref  
th  
V
V
th  
ref  
th  
ref  
Figure 18. Dual Negative Undervoltage Detector  
V
CC  
8
2.54V  
Reference  
1
R
2
Gnd  
+
2.8V  
7
2
+
+
R1  
V
1
+
6
5
–V  
S1  
V
+
+
Hys  
Input –V  
S
1.27V  
V
+
0.6V  
2
R
R1  
2
Output  
Voltage  
Pins 5, 6  
V
CC  
–V  
S2  
+
3
LED ‘ON’  
1.27V  
Gnd  
4
The above figure shows the MC34161 configured as a dual negative undervoltage detector. As the input voltage decreases towards ground, the LED will turn ‘ON’  
when –V or –V falls below V . With the dashed line output connection, the circuit becomes a dual negative overvoltage detector. As the input voltage increases  
S1  
S2  
1
from ground, the LED will turn ‘ON’ when –V or –V exceeds V .  
S1  
S2  
2
For known resistor values, the voltage trip points are:  
For a specific trip voltage, the required resistor ratio is:  
R
R
R
R
R
R
V
V
V
R
R
V
V
V
V
V
1
2
1
2
1
2
1
th  
1
2
2
th  
H
H
V
(V  
V
)
V
V
(V  
V
V
)
V
V
H
1
th  
ref  
th  
2
th  
H
ref  
th  
V
V
th  
ref  
th  
ref  
8
MOTOROLA ANALOG IC DEVICE DATA  
MC34161 MC33161  
Figure 19. Positive Voltage Window Detector  
V
CC  
8
2.54V  
Reference  
V
V
4
3
CH2  
CH1  
V
Hys2  
V
1
7
2
S
Input V  
Output  
S
V
V
2
1
V
Hys1  
+
+
R
3
2.8V  
+
6
5
+
+
Gnd  
1.27V  
R
+
0.6V  
2
1
V
+
CC  
‘ON’  
LED ‘OFF’  
LED ‘ON’  
‘OFF’  
LED ‘ON’  
Voltage  
Pins 5, 6  
+
3
Gnd  
R
1.27V  
4
The above figure shows the MC34161 configured as a positive voltage window detector. This is accomplished by connecting channel 1 as an undervoltage detector,  
and channel 2 as an overvoltage detector. When the input voltage V falls out of the window established by V and V , the LED will turn ‘ON’. As the input voltage  
S
2
1
4
falls within the window, V increasing from ground and exceeding V , or V decreasing from the peak towards ground and falling below V , the LED will turn ‘OFF’.  
S
S
3
With the dashed line output connection, the LED will turn ‘ON’ when the input voltage V is within the window.  
S
For known resistor values, the voltage trip points are:  
For a specific trip voltage, the required resistor ratio is:  
R
3
R
R
R
R
V (V  
3
V
V
)
)
R
R
V (V  
V
V
)
H1  
2
3
2
1
th2  
th1  
H2  
H1  
3
1
3
1
th1  
V
V
(V  
V
)
1
V
V
(V  
V )  
H2  
1
1
1
2
th1  
H1  
3
4
th2  
R
R
R
1
V (V  
V (V  
V
)
1
2
1
1
1
th2  
H2  
R
R
R
R
R
V
V
x
V
R
R
V (V  
V
V
)
3
2
3
2
1
4
2
th2  
3
1
4
2
th1  
V
1
V
1
th1  
th2  
R
R
R
1
x
V
V
x
2
1
2
th1  
th2  
V
CC  
Figure 20. Negative Voltage Window Detector  
8
2.54V  
Reference  
1
Gnd  
+
2.8V  
V
V
1
CH2  
CH1  
V
Hys2  
7
2
+
+
R
R
R
3
2
Input –V  
+
S
6
5
V
V
+
3
4
V
Hys1  
1.27V  
+
0.6V  
2
V
Output  
Voltage  
CC  
Gnd  
+
‘ON’  
LED ‘OFF’  
LED ‘ON’  
‘OFF’  
LED ‘ON’  
3
+
1
Pins 5, 6  
1.27V  
–V  
S
4
The above figure shows the MC34161 configured as a negative voltage window detector. When the input voltage –V falls out of the window established by V and  
S
1
V , theLEDwillturnON’. Astheinputvoltagefallswithinthewindow, –V increasingfromgroundandexceedingV , orV decreasingfromthepeaktowardsground  
4
S
2
S
and falling below V , the LED will turn ‘OFF’. With the dashed line output connection, the LED will turn ‘ON’ when the input voltage –V is within the window.  
3
S
For known resistor values, the voltage trip points are:  
For a specific trip voltage, the required resistor ratio is:  
R (V  
1
V
)
R
R
R
R
V
V
th2  
th2  
2
ref  
1
1
3
3
1
V
V
V
V
V
1
2
3
4
th2  
)
R
R
R
R
R
R
R
R
R
R
V
V
3
2
2
1
1
3
3
2
2
th2  
ref  
R (V  
1
V
V
V
V
V
H2  
th2  
R
H2  
R
ref  
2
th2  
V
V
th2  
H2  
th1  
V
V
V
2
3
th2  
H2  
ref  
(R  
1
R )(V  
2
V
V
)
V
V
th1  
ref  
th1  
ref  
V
th1  
)
R
V
V
th1  
3
3
(R  
1
R )(V  
V
V
V
V
2
th1  
R
H1  
ref  
th1  
H1  
ref  
V
V
H1  
V
V
V
th1  
3
4
H1  
9
MOTOROLA ANALOG IC DEVICE DATA  
MC34161 MC33161  
Figure 21. Positive and Negative Overvoltage Detector  
V
CC  
8
V
V
4
2.54V  
Reference  
Input V  
V
Hys2  
S2  
1
7
2
3
+
2.8V  
Gnd  
+
+
R
4
–V  
+
S1  
V
V
6
5
1
2
V
R
3
Input –V  
+
+
Hys1  
S1  
1.27V  
+
0.6V  
Output  
Voltage  
Pins 5, 6  
V
CC  
R2  
LED ‘ON’  
+
V
S2  
3
Gnd  
R
1
1.27V  
4
The above figure shows the MC34161 configured as a positive and negative overvoltage detector. As the input voltage increases from ground, the LED will turn ‘ON’  
when either –V exceeds V , or V exceeds V . With the dashed line output connection, the circuit becomes a positive and negative undervoltage detector. As the  
S1  
2
S2  
4
input voltage decreases from the peak towards ground, the LED will turn ‘ON’ when either V falls below V , or –V falls below V .  
S2 S1  
3
1
For known resistor values, the voltage trip points are:  
For a specific trip voltage, the required resistor ratio is:  
R
R
(V  
(V  
V
)
th1  
R
3
R
R
R
R
V
4
3
4
1
2
1
2
1
V
V
(V  
(V  
V
V
)
V
V
V
(V  
V
V
)
1
1
1
2
th1  
th1  
ref  
th1  
3
4
th2  
H2  
V
)
R
V
th1  
ref  
4
th2  
R
R
(V  
V
V
)
H1  
R
R
R
R
R
R
V
3
3
4
2
th1  
3
4
2
2
1
V
)
V
V
1
1
(V  
V
V
)
H1  
ref  
th1  
H1  
th2  
V
V
th1  
H1  
ref  
1
th2  
H2  
Figure 22. Positive and Negative Undervoltage Detector  
V
CC  
8
V
V
2
1
2.54V  
Reference  
V
Input V  
Hys1  
S1  
1
7
+
2.8V  
Gnd  
+
+
R
4
V
3
+
6
5
Input –V  
V
2
V
S2  
+
+
S1  
Hys2  
R
3
1.27V  
V
+
0.6V  
4
R
2
V
Output  
Voltage  
Pins 5, 6  
CC  
+
LED ‘ON’  
3
R
1
1.27V  
Gnd  
–V  
S2  
4
The above figure shows the MC34161 configured as a positive and negative undervoltage detector. As the input voltage decreases toward ground, the LED will turn  
‘ONwhen either V falls below V , or –V falls below V . With the dashed line output connection, the circuit becomes a positive and negative overvoltage detector.  
S1  
1
S2  
3
As the input voltage increases from the ground, the LED will turn ‘ON’ when either V exceeds V , or –V exceeds V .  
S1 S1  
2
1
For known resistor values, the voltage trip points are:  
For a specific trip voltage, the required resistor ratio is:  
R
R
R
R
R
R
V
R
R
V
V
V
th2  
4
3
1
2
4
3
2
1
2
4
H2  
V
V
(V  
V
)
1
V
V
(V  
(V  
V
V
)
V
1
1
2
th1  
H1  
3
4
th  
th  
ref  
th2  
)
V
V
V
V
V
V
th1  
th2  
H2  
ref  
R
R
R
R
R
R
V
R
R
V
V
th2  
V
4
1
2
4
3
1
1
2
3
V
1
V
V
V
H2  
1
th1  
H2  
ref  
th2  
V
3
th1  
H1  
th2  
ref  
10  
MOTOROLA ANALOG IC DEVICE DATA  
MC34161 MC33161  
Figure 23. Overvoltage Detector with Audio Alarm  
V
CC  
8
R
A
2.54V  
Reference  
V
V
2
Piezo  
1
7
2
V
Input V  
Output  
Hys  
V
S
S
+
2.8V  
1
R
+
+
2
+
Gnd  
6
5
+
+
R
1
V
1.27V  
CC  
+
0.6V  
Voltage  
Pins 5, 6  
Osc ‘ON’  
Gnd  
+
3
1.27V  
4
R
C
B
T
The above figure shows the MC34161 configured as an overvoltage detector with an audio alarm. Channel 1 monitors input voltage V while channel 2 is connected  
S
as a simple RC oscillator. As the input voltage increases from ground, the output of channel 1 allows the oscillator to turn ‘ON’ when V exceeds V .  
S
2
For known resistor values, the voltage trip points are:  
For a specific trip voltage, the required resistor ratio is:  
R
R
R
R
R
R
V
R
R
V
V
2
1
2
1
2
1
1
2
1
2
V
(V  
V )  
1
V
V
th  
1
1
1
1
th  
H
2
V
V
H
th  
th  
Figure 24. Microprocessor Reset with Time Delay  
V
8
CC  
2.54V  
Reference  
1
V
V
2
1
Input V  
Output  
V
S
Hys  
R
3
7
+
2.8V  
+
+
Gnd  
+
6
5
2
V
+
+
S
V
CC  
1.27V  
Voltage  
Pin 5  
+
R
DLY  
Gnd  
R
2
0.6V  
+
t
DLY  
3
R
Output  
Voltage  
Pin 6  
V
1
CC  
1.27V  
Reset LED ‘ON’  
Gnd  
4
C
DLY  
The above figure shows the MC34161 configured as a microprocessor reset with a time delay. Channel 2 monitors input voltage V while channel 1 performs the time  
S
delayfunction.Astheinputvoltagedecreasestowardsground,theoutputofchannel2quicklydischargesC  
whenV fallsbelowV .Astheinputvoltageincreases  
DLY  
S 1  
from ground, the output of channel 2 allows R  
to charge C when V exceeds V .  
DLY S 2  
DLY  
For known resistor values, the voltage trip points are:  
For a specific trip voltage, the required resistor ratio is:  
R
R
R
R
R
R
V
R
R
V
V
2
1
2
1
2
1
1
2
1
2
V
(V  
V )  
H
1
V
V
th  
1
1
1
1
th  
2
V
V
H
th  
th  
1
V
For known R  
C
values, the reset time delay is:  
t
DLY  
= R  
C
In  
DLY DLY  
DLY DLY  
th  
1 –  
V
CC  
11  
MOTOROLA ANALOG IC DEVICE DATA  
MC34161 MC33161  
Figure 25. Automatic AC Line Voltage Selector  
B+  
+
+
220  
250V  
75k  
75k  
MAC  
228A6FP  
MR506  
T
Input  
92 Vac to  
276 Vac  
8
220  
250V  
10k  
3.0A  
2.54V  
RTN  
Reference  
1.2k  
1
10k  
+
7
2
+
+
2.8V  
+
6
5
+
+
1.27V  
100k  
+
0.6V  
1.6M  
+
3
1.27V  
+
10  
+
1N  
4742  
47  
4
10k  
3W  
The above circuit shows the MC34161 configured as an automatic line voltage selector. The IC controls the triac, enabling the circuit to function  
as a fullwave voltage doubler or a fullwave bridge. Channel 1 senses the negative half cycles of the AC line voltage. If the line voltage is less  
than150 V, the circuit will switch from bridge mode to voltage doubling mode after a preset time delay. The delay is controlled by the 100 kresistor  
and the 10 µF capacitor. If the line voltage is greater than 150 V, the circuit will immediately return to fullwave bridge mode.  
12  
MOTOROLA ANALOG IC DEVICE DATA  
MC34161 MC33161  
Figure 26. Step–Down Converter  
470µH  
MPS750  
V
V
in  
12V  
O
+
5.0V/250mA  
+
8
330  
1000  
1N5819  
470  
2.54V  
Reference  
1.8k  
0.01  
1
7
2
+
+
+
0.01  
4.7k  
1.6k  
2.8V  
+
6
+
+
1.27V  
+
0.6V  
+
5
3
1.27V  
47k  
4
0.005  
Test  
Conditions  
= 9.5 V to 24 V, I = 250 mA  
Results  
Line Regulation  
V
in  
V
in  
V
in  
V
in  
40 mV = ±0.1%  
2.0 mV = ±0.2%  
50 mVpp  
O
Load Regulation  
Output Ripple  
Efficiency  
= 12 V, I = 0.25 mA to 250 mA  
O
= 12 V, I = 250 mA  
O
= 12 V, I = 250 mA  
87.8%  
O
The above figure shows the MC34161 configured as a step–down converter. Channel 1 monitors the output voltage while Channel 2  
performs the oscillator function. Upon initial power–up, the converters output voltage will be below nominal, and the output of Channel  
1 will allow the oscillator to run. The external switch transistor will eventually pump–up the output capacitor until its voltage exceeds the  
input threshold of Channel 1. The output of Channel 1 will then switch low and disable the oscillator. The oscillator will commence  
operation when the output voltage falls below the lower threshold of Channel 1.  
13  
MOTOROLA ANALOG IC DEVICE DATA  
MC34161 MC33161  
OUTLINE DIMENSIONS  
P SUFFIX  
PLASTIC PACKAGE  
CASE 626–05  
ISSUE K  
8
5
NOTES:  
1. DIMENSION L TO CENTER OF LEAD WHEN  
–B–  
FORMED PARALLEL.  
2. PACKAGE CONTOUR OPTIONAL (ROUND OR  
SQUARE CORNERS).  
1
4
3. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
F
MILLIMETERS  
INCHES  
–A–  
NOTE 2  
DIM  
A
B
C
D
F
MIN  
9.40  
6.10  
3.94  
0.38  
1.02  
MAX  
10.16  
6.60  
4.45  
0.51  
1.78  
MIN  
MAX  
0.400  
0.260  
0.175  
0.020  
0.070  
L
0.370  
0.240  
0.155  
0.015  
0.040  
C
G
H
J
K
L
2.54 BSC  
0.100 BSC  
0.76  
0.20  
2.92  
1.27  
0.30  
3.43  
0.030  
0.008  
0.115  
0.050  
0.012  
0.135  
J
–T–  
SEATING  
PLANE  
N
7.62 BSC  
0.300 BSC  
M
M
N
–––  
10  
–––  
10  
D
K
0.76  
1.01  
0.030  
0.040  
G
H
M
M
M
0.13 (0.005)  
T
A
B
D SUFFIX  
PLASTIC PACKAGE  
CASE 751–06  
(SO–8)  
ISSUE T  
NOTES:  
D
A
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
C
2. DIMENSIONS ARE IN MILLIMETER.  
3. DIMENSION D AND E DO NOT INCLUDE MOLD  
PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.  
5. DIMENSION B DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS  
OF THE B DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
8
1
5
M
M
0.25  
B
H
E
4
h X 45  
MILLIMETERS  
B
e
DIM  
A
A1  
B
C
D
E
e
H
h
MIN  
1.35  
0.10  
0.35  
0.19  
4.80  
3.80  
MAX  
1.75  
0.25  
0.49  
0.25  
5.00  
4.00  
A
C
SEATING  
PLANE  
L
1.27 BSC  
0.10  
5.80  
0.25  
0.40  
0
6.20  
0.50  
1.25  
7
A1  
B
L
M
S
S
0.25  
C
B
A
14  
MOTOROLA ANALOG IC DEVICE DATA  
MC34161 MC33161  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arisingoutof,directlyorindirectly,anyclaimofpersonalinjuryordeathassociatedwithsuchunintendedorunauthorizeduse,evenifsuchclaimallegesthatMotorola  
was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
15  
MOTOROLA ANALOG IC DEVICE DATA  
MC34161 MC33161  
Mfax is a trademark of Motorola, Inc.  
JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 141,  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447 4–32–1 Nishi–Gotanda, Shagawa–ku, Tokyo, Japan. 03–5487–8488  
Customer Focus Center: 1–800–521–6274  
Mfax : RMFAX0@email.sps.mot.com – TOUCHTONE 1–602–244–6609  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
Motorola Fax Back System  
– US & Canada ONLY 1–800–774–1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
– http://sps.motorola.com/mfax/  
HOME PAGE: http://motorola.com/sps/  
MC34161/D  

相关型号:

MC34161PG

Universal Voltage Monitors
ONSEMI

MC34161_06

Universal Voltage Monitors
ONSEMI

MC34161_15

Universal Voltage Monitors
ONSEMI

MC34163

POWER SWITCHING REGULATORS
ONSEMI

MC34163DW

POWER SWITCHING REGULATORS
ONSEMI

MC34163DWG

3.4 A, Step−Up/Down/Inverting Switching Regulators
ONSEMI

MC34163DWR2

3.4 A, Step−Up/Down/Inverting Switching Regulators
ONSEMI

MC34163DWR2G

3.4 A, Step−Up/Down/Inverting Switching Regulators
ONSEMI

MC34163P

POWER SWITCHING REGULATORS
ONSEMI

MC34163PG

3.4 A, Step−Up/Down/Inverting Switching Regulators
ONSEMI

MC34163_05

3.4 A, Step−Up/Down/Inverting Switching Regulators
ONSEMI

MC34163_08

3.4 A, Step-Up/Down/ Inverting Switching Regulators
ONSEMI