MC68HC908BD48 [MOTOROLA]

HCMOS Microcontroller Unit; HCMOS微控制器单元
MC68HC908BD48
型号: MC68HC908BD48
厂家: MOTOROLA    MOTOROLA
描述:

HCMOS Microcontroller Unit
HCMOS微控制器单元

微控制器
文件: 总291页 (文件大小:888K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC68HC908BD48/D  
REV. 1.0  
MC68HC908BD48  
HCMOS Mic roc ontrolle r Unit  
TECHNICAL DATA  
Te c hnic a l Da ta — MC68HC908BD48  
List of Se c tions  
Section 1. General Description . . . . . . . . . . . . . . . . . . . .25  
Section 2. Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Section 3. Random-Access Memory (RAM) . . . . . . . . . .53  
Section 4. FLASH Memory . . . . . . . . . . . . . . . . . . . . . . . .55  
Section 5. Configuration Register (CONFIG) . . . . . . . . .63  
Section 6. Central Processor Unit (CPU) . . . . . . . . . . . .67  
Section 7. System Integration Module (SIM) . . . . . . . . .87  
Section 8. Oscillator (OSC) . . . . . . . . . . . . . . . . . . . . . .111  
Section 9. Monitor ROM (MON) . . . . . . . . . . . . . . . . . . .115  
Section 10. Timer Interface Module (TIM) . . . . . . . . . . .125  
Section 11. Pulse Width Modulator (PWM) . . . . . . . . . .147  
Section 12. Analog-to-Digital Converter (ADC) . . . . . .153  
Section 13. Universal Serial Bus Module (USB). . . . . .163  
Section 14. Multi-Master IIC Interface (MMIIC) . . . . . . .179  
Section 15. DDC12AB Interface . . . . . . . . . . . . . . . . . . .193  
Section 16. Sync Processor. . . . . . . . . . . . . . . . . . . . . .209  
Section 17. Input/Output (I/O) Ports . . . . . . . . . . . . . . .229  
Section 18. External Interrupt (IRQ) . . . . . . . . . . . . . . .251  
Section 19. Computer Operating Properly (COP) . . . .257  
Section 20. Break Module (BRK) . . . . . . . . . . . . . . . . . .263  
Section 21. Electrical Specifications. . . . . . . . . . . . . . .271  
Section 22. Mechanical Specifications . . . . . . . . . . . . .283  
Section 23. Ordering Information . . . . . . . . . . . . . . . . .287  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
List of Sections  
3
List of Se c tions  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
4
List of Sections  
Te c hnic a l Da ta — MC68HC908BD48  
Ta b le of Conte nts  
Section 1. General Description  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Section 2. Memory Map  
2.1  
2.2  
2.3  
2.4  
2.5  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . .35  
Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Input/Output (I/O) Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Section 3. Random-Access Memory (RAM)  
3.1  
3.2  
3.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Section 4. FLASH Memory  
4.1  
4.2  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Table of Contents  
5
Ta b le of Conte nts  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
FLASH Control Register (FLCR) . . . . . . . . . . . . . . . . . . . . . . .56  
FLASH Block Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . .57  
FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . .58  
FLASH Program Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
FLASH Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
FLASH Block Protect Register (FLBPR). . . . . . . . . . . . . . . . . .61  
Section 5. Configuration Register (CONFIG)  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
5.1  
5.2  
5.3  
5.3.1  
5.3.2  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
Configuration Register 0. . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
Configuration Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
Section 6. Central Processor Unit (CPU)  
6.1  
6.2  
6.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
6.4  
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
6.4.1  
6.4.2  
6.4.3  
6.4.4  
6.4.5  
6.5  
Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
6.6  
6.6.1  
6.6.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
6.7  
CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .75  
Technical Data  
MC68HC908BD48 Rev. 1.0  
6
Table of Contents  
MOTOROLA  
Table of Contents  
6.8  
6.9  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
Section 7. System Integration Module (SIM)  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
7.1  
7.2  
7.3  
SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . .91  
Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
Clock Start-Up from POR. . . . . . . . . . . . . . . . . . . . . . . . . . .91  
Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . .91  
7.3.1  
7.3.2  
7.3.3  
7.4  
7.4.1  
7.4.2  
7.4.2.1  
7.4.2.2  
7.4.2.3  
7.4.2.4  
Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . .92  
External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
Active Resets from Internal Sources . . . . . . . . . . . . . . . . . .93  
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
Computer Operating Properly (COP) Reset . . . . . . . . . .95  
Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
Illegal Address Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
7.5  
SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . .96  
SIM Counter During Stop Mode Recovery. . . . . . . . . . . . . .97  
SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . .97  
7.5.1  
7.5.2  
7.5.3  
7.6  
7.6.1  
Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98  
Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . .100  
SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101  
Interrupt Status Registers. . . . . . . . . . . . . . . . . . . . . . . . . .101  
Interrupt Status Register 1. . . . . . . . . . . . . . . . . . . . . . .103  
Interrupt Status Register 2. . . . . . . . . . . . . . . . . . . . . . .103  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104  
Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104  
Status Flag Protection in Break Mode . . . . . . . . . . . . . . . .104  
7.6.1.1  
7.6.1.2  
7.6.2  
7.6.2.1  
7.6.2.2  
7.6.3  
7.6.4  
7.6.5  
7.7  
7.7.1  
7.7.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Table of Contents  
7
Ta b le of Conte nts  
7.8  
SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108  
SIM Break Status Register (SBSR) . . . . . . . . . . . . . . . . . .108  
SIM Reset Status Register (SRSR) . . . . . . . . . . . . . . . . . .109  
SIM Break Flag Control Register (SBFCR) . . . . . . . . . . . .110  
7.8.1  
7.8.2  
7.8.3  
Section 8. Oscillator (OSC)  
8.1  
8.2  
8.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111  
Oscillator External Connections . . . . . . . . . . . . . . . . . . . . . . .112  
8.4  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113  
Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . .113  
Crystal Amplifier Output Pin (OSC2) . . . . . . . . . . . . . . . . .113  
Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . .113  
External Clock Source (OSCXCLK) . . . . . . . . . . . . . . . . . .113  
Oscillator Out (OSCOUT). . . . . . . . . . . . . . . . . . . . . . . . . .113  
8.4.1  
8.4.2  
8.4.3  
8.4.4  
8.4.5  
8.5  
8.5.1  
8.5.2  
Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114  
8.6  
Oscillator During Break Mode. . . . . . . . . . . . . . . . . . . . . . . . .114  
Section 9. Monitor ROM (MON)  
9.1  
9.2  
9.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116  
9.4  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116  
Entering Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . .118  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119  
Echoing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120  
Break Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120  
Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121  
Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124  
9.4.1  
9.4.2  
9.4.3  
9.4.4  
9.4.5  
9.4.6  
Technical Data  
MC68HC908BD48 Rev. 1.0  
8
Table of Contents  
MOTOROLA  
Table of Contents  
Section 10. Timer Interface Module (TIM)  
10.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125  
10.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126  
10.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126  
10.4 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126  
10.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127  
10.5.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . .129  
10.5.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129  
10.5.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129  
10.5.3.1  
10.5.3.2  
Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . .130  
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .131  
10.5.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . .131  
10.5.4.1  
10.5.4.2  
10.5.4.3  
Unbuffered PWM Signal Generation . . . . . . . . . . . . . . .132  
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . .133  
PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134  
10.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135  
10.7 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135  
10.8 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .136  
10.9 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136  
10.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137  
10.10.1 TIM Status and Control Register (TSC) . . . . . . . . . . . . . . .137  
10.10.2 TIM Counter Registers (TCNTH:TCNTL). . . . . . . . . . . . . .139  
10.10.3 TIM Counter Modulo Registers (TMODH:TMODL) . . . . . .140  
10.10.4 TIM Channel Status and Control Registers (TSC0:TSC1).141  
10.10.5 TIM Channel Registers (TCH0H/L:TCH1H/L) . . . . . . . . . .145  
Section 11. Pulse Width Modulator (PWM)  
11.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
11.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
11.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
11.4 PWM Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Table of Contents  
9
Ta b le of Conte nts  
11.4.1 PWM Data Registers 0 to 15 (0PWM–15PWM). . . . . . . . .150  
11.4.2 PWM Control Registers 1 and 2 (PWMCR1:PWMCR2) . .151  
Section 12. Analog-to-Digital Converter (ADC)  
12.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153  
12.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153  
12.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154  
12.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154  
12.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155  
12.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156  
12.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156  
12.4.4 Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . .156  
12.4.5 Accuracy and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . .157  
12.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157  
12.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157  
12.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157  
12.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157  
12.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157  
12.7.1 ADC Voltage In (ADCVIN) . . . . . . . . . . . . . . . . . . . . . . . . .158  
12.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158  
12.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . .158  
12.8.2 ADC Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160  
12.8.3 ADC Input Clock Register . . . . . . . . . . . . . . . . . . . . . . . . .161  
Section 13. Universal Serial Bus Module (USB)  
13.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163  
13.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163  
13.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164  
13.4 I/O Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164  
13.5 Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165  
13.5.1 USB Address Register (UADR) . . . . . . . . . . . . . . . . . . . . .166  
Technical Data  
MC68HC908BD48 Rev. 1.0  
10  
Table of Contents  
MOTOROLA  
Table of Contents  
13.5.2 USB Interrupt Register (UINTR). . . . . . . . . . . . . . . . . . . . .166  
13.5.3 USB Interrupt Register 1 (UIR1). . . . . . . . . . . . . . . . . . . . .169  
13.5.4 USB Control Register 0 (UCR0). . . . . . . . . . . . . . . . . . . . .171  
13.5.5 USB Control Register 1 (UCR1). . . . . . . . . . . . . . . . . . . . .172  
13.5.6 USB Control Register 2 (UCR2). . . . . . . . . . . . . . . . . . . . .174  
13.5.7 USB Status Register (USR) . . . . . . . . . . . . . . . . . . . . . . . .175  
13.5.8 USB Endpoint 0 Data Registers 0 to 7  
(UD0R0–UD0R7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177  
13.5.9 USB Endpoint 1/2 Data Registers 0 to 7  
(UD1R0–UD1R7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177  
Section 14. Multi-Master IIC Interface (MMIIC)  
14.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179  
14.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179  
14.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180  
14.4 I/O Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180  
14.5 Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181  
14.5.1 Multi-Master IIC Address Register (MMADR) . . . . . . . . . .182  
14.5.2 Multi-Master IIC Control Register (MMCR) . . . . . . . . . . . .183  
14.5.3 Multi-Master IIC Master Control Register (MIMCR) . . . . . .184  
14.5.4 Multi-Master IIC Status Register (MMSR) . . . . . . . . . . . . .186  
14.5.5 Multi-Master IIC Data Transmit Register (MMDTR) . . . . . .188  
14.5.6 Multi-Master IIC Data Receive Register (MMDRR) . . . . . .189  
14.6 Programming Considerations . . . . . . . . . . . . . . . . . . . . . . . . .190  
Section 15. DDC12AB Interface  
15.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193  
15.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193  
15.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194  
15.4 I/O Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194  
15.5 DDC Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196  
15.6 Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Table of Contents  
11  
Ta b le of Conte nts  
15.6.1 DDC Address Register (DADR) . . . . . . . . . . . . . . . . . . . . .196  
15.6.2 DDC2 Address Register (D2ADR) . . . . . . . . . . . . . . . . . . .197  
15.6.3 DDC Control Register (DCR) . . . . . . . . . . . . . . . . . . . . . . .198  
15.6.4 DDC Master Control Register (DMCR) . . . . . . . . . . . . . . .199  
15.6.5 DDC Status Register (DSR). . . . . . . . . . . . . . . . . . . . . . . .202  
15.6.6 DDC Data Transmit Register (DDTR) . . . . . . . . . . . . . . . .204  
15.6.7 DDC Data Receive Register (DDRR). . . . . . . . . . . . . . . . .205  
15.7 Programming Considerations . . . . . . . . . . . . . . . . . . . . . . . . .206  
Section 16. Sync Processor  
16.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209  
16.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209  
16.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211  
16.4 I/O Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211  
16.5 Functional Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213  
16.5.1 Polarity Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .214  
16.5.1.1  
16.5.1.2  
16.5.1.3  
Hsync Polarity Detection . . . . . . . . . . . . . . . . . . . . . . . .214  
Vsync Polarity Detection . . . . . . . . . . . . . . . . . . . . . . . .214  
Composite Sync Polarity Detection . . . . . . . . . . . . . . . .214  
16.5.2 Sync Signal Counters. . . . . . . . . . . . . . . . . . . . . . . . . . . . .215  
16.5.3 Polarity Controlled HSYNCO and VSYNCO Outputs. . . . .215  
16.5.4 Clamp Pulse Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216  
16.5.5 Low Vertical Frequency Detect . . . . . . . . . . . . . . . . . . . . .217  
16.6 Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .217  
16.6.1 Sync Processor Control & Status Register (SPCSR). . . . .217  
16.6.2 Sync Processor Input/Output Control Register (SPIOCR) .219  
16.6.3 Vertical Frequency Registers (VFRs). . . . . . . . . . . . . . . . .221  
16.6.4 Hsync Frequency Registers (HFRs). . . . . . . . . . . . . . . . . .223  
16.6.5 Sync Processor Control Register 1 (SPCR1). . . . . . . . . . .225  
16.6.6 H&V Sync Output Control Register (HVOCR) . . . . . . . . . .226  
16.7 System Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227  
Technical Data  
MC68HC908BD48 Rev. 1.0  
12  
Table of Contents  
MOTOROLA  
Table of Contents  
Section 17. Input/Output (I/O) Ports  
17.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229  
17.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229  
17.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233  
17.3.1 Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233  
17.3.2 Data Direction Register A . . . . . . . . . . . . . . . . . . . . . . . . .234  
17.3.3 Port A Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235  
17.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236  
17.4.1 Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236  
17.4.2 Data Direction Register B . . . . . . . . . . . . . . . . . . . . . . . . .237  
17.4.3 Port B Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238  
17.5 Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239  
17.5.1 Port C Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239  
17.5.2 Data Direction Register C . . . . . . . . . . . . . . . . . . . . . . . . .240  
17.5.3 Port C Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241  
17.6 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .242  
17.6.1 Port D Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .242  
17.6.2 Data Direction Register D. . . . . . . . . . . . . . . . . . . . . . . . . .243  
17.6.3 Port D Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .245  
17.7 Port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .247  
17.7.1 Port E Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .247  
17.7.2 Data Direction Register E. . . . . . . . . . . . . . . . . . . . . . . . . .248  
17.7.3 Port E Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250  
Section 18. External Interrupt (IRQ)  
18.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251  
18.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251  
18.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251  
18.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252  
18.5 IRQ Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .254  
18.6 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . .255  
18.7 IRQ Status and Control Register . . . . . . . . . . . . . . . . . . . . . .255  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Table of Contents  
13  
Ta b le of Conte nts  
Section 19. Computer Operating Properly (COP)  
19.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257  
19.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257  
19.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .258  
19.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .259  
19.4.1 OSCXCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .259  
19.4.2 STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .259  
19.4.3 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .259  
19.4.4 Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .259  
19.4.5 Internal Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .260  
19.4.6 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .260  
19.4.7 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . .260  
19.4.8 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . .260  
19.5 COP Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .261  
19.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .261  
19.7 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .261  
19.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .261  
19.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .262  
19.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .262  
19.9 COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . .262  
Section 20. Break Module (BRK)  
20.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .263  
20.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .263  
20.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .264  
20.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .264  
20.4.1 Flag Protection During Break Interrupts. . . . . . . . . . . . . . .266  
20.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .266  
20.4.3 TIM During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . .266  
20.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .266  
20.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266  
Technical Data  
MC68HC908BD48 Rev. 1.0  
14  
Table of Contents  
MOTOROLA  
Table of Contents  
20.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266  
20.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267  
20.6 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267  
20.6.1 Break Status and Control Register. . . . . . . . . . . . . . . . . . .267  
20.6.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . .268  
20.6.3 SIM Break Status Register. . . . . . . . . . . . . . . . . . . . . . . . .268  
20.6.4 SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . .270  
Section 21. Electrical Specifications  
21.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271  
21.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271  
21.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . .272  
21.4 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . .273  
21.5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .273  
21.6 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . .274  
21.7 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .275  
21.8 Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .275  
21.9 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .276  
21.10 USB DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . .277  
21.11 USB Low Speed Source Electrical Characteristics. . . . . . . . .278  
21.12 Timer Interface Module Characteristics . . . . . . . . . . . . . . . . .278  
21.13 DDC12AB/MMIIC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . .279  
21.13.1 DDC12AB/MMIIC Interface Input Signal Timing . . . . . . . .279  
21.13.2 DDC12AB/MMIIC Interface Output Signal Timing . . . . . . .279  
21.14 Sync Processor Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .280  
21.15 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .281  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Table of Contents  
15  
Ta b le of Conte nts  
Section 22. Mechanical Specifications  
22.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .283  
22.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .283  
22.3 28-Pin Plastic Dual In-Line Package (PDIP). . . . . . . . . . . . . .284  
22.4 42-Pin Shrink Dual in-Line Package (SDIP) . . . . . . . . . . . . . .284  
22.5 44-Pin Plastic Quad Flat Pack (QFP) . . . . . . . . . . . . . . . . . . .285  
Section 23. Ordering Information  
23.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .287  
23.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .287  
23.3 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .287  
Technical Data  
MC68HC908BD48 Rev. 1.0  
16  
Table of Contents  
MOTOROLA  
Te c hnic a l Da ta — MC68HC908BD48  
List of Fig ure s  
Figure  
Title  
Page  
1-1  
1-2  
1-3  
1-4  
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
44-Pin QFP Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . .29  
42-Pin SDIP Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . .30  
28-Pin PDIP Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . .31  
2-1  
2-2  
Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Control, Status, and Data Registers . . . . . . . . . . . . . . . . . . . . .39  
4-1  
4-2  
4-3  
4-4  
FLASH Control Register (FLCR) . . . . . . . . . . . . . . . . . . . . . . .56  
FLASH Programming Flowchart. . . . . . . . . . . . . . . . . . . . . . . .60  
FLASH Block Protect Register (FLBPR). . . . . . . . . . . . . . . . . .61  
FLASH Block Protect Start Address . . . . . . . . . . . . . . . . . . . . .62  
5-1  
5-2  
Configuration Register 0 (CONFIG0) . . . . . . . . . . . . . . . . . . . .64  
Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . . .65  
6-1  
6-2  
6-3  
6-4  
6-5  
6-6  
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
Accumulator (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
Index Register (H:X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
Stack Pointer (SP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Program Counter (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Condition Code Register (CCR) . . . . . . . . . . . . . . . . . . . . . . . .72  
7-1  
7-2  
7-3  
7-4  
7-5  
7-6  
7-7  
SIM Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
OSC Clock Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
External Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
Internal Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
Sources of Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
POR Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95  
Interrupt Entry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
List of Figures  
17  
List of Fig ure s  
Figure  
Title  
Page  
7-8  
7-9  
Interrupt Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98  
Interrupt Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
7-10 Interrupt Recognition Example . . . . . . . . . . . . . . . . . . . . . . . .100  
7-11 Interrupt Status Register 1 (INT1). . . . . . . . . . . . . . . . . . . . . .103  
7-12 Interrupt Status Register 2 (INT2). . . . . . . . . . . . . . . . . . . . . .103  
7-13 Wait Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
7-14 Wait Recovery from Interrupt or Break . . . . . . . . . . . . . . . . . .106  
7-15 Wait Recovery from Internal Reset. . . . . . . . . . . . . . . . . . . . .106  
7-16 Stop Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107  
7-17 Stop Mode Recovery from Interrupt or Break. . . . . . . . . . . . .107  
7-18 SIM Break Status Register (SBSR) . . . . . . . . . . . . . . . . . . . .108  
7-19 SIM Reset Status Register (SRSR) . . . . . . . . . . . . . . . . . . . .109  
7-20 SIM Break Flag Control Register (SBFCR) . . . . . . . . . . . . . .110  
8-1  
Oscillator External Connections . . . . . . . . . . . . . . . . . . . . . . .112  
9-1  
9-2  
9-3  
9-4  
9-5  
Monitor Mode Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117  
Monitor Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119  
Sample Monitor Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . .119  
Read Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120  
Break Transaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120  
10-1 TIM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127  
10-2 PWM Period and Pulse Width . . . . . . . . . . . . . . . . . . . . . . . .132  
10-3 TIM Status and Control Register (TSC) . . . . . . . . . . . . . . . . .137  
10-4 TIM Counter Registers (TCNTH:TCNTL) . . . . . . . . . . . . . . . .140  
10-5 TIM Counter Modulo Registers (TMODH:TMODL). . . . . . . . .141  
10-6 TIM Channel Status and Control Registers (TSC0:TSC1) . . .142  
10-7 CHxMAX Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145  
10-8 TIM Channel Registers (TCH0H/L:TCH1H/L). . . . . . . . . . . . .146  
11-1 PWM Data Registers 0 to 15 (0PWM–15PWM) . . . . . . . . . . .150  
11-2 PWM Control Register 1 and 2 (PWMCR1:PWMCR2). . . . . .151  
11-3 8-Bit PWM Output Waveforms . . . . . . . . . . . . . . . . . . . . . . . .152  
12-1 ADC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155  
Technical Data  
MC68HC908BD48 Rev. 1.0  
18  
List of Figures  
MOTOROLA  
List of Figures  
Figure  
Title  
Page  
12-2 ADC Status and Control Register (ADSCR). . . . . . . . . . . . . .158  
12-3 ADC Data Register (ADR) . . . . . . . . . . . . . . . . . . . . . . . . . . .160  
12-4 ADC Input Clock Register (ADICLK) . . . . . . . . . . . . . . . . . . .161  
13-1 USB Address Register (UADR) . . . . . . . . . . . . . . . . . . . . . . .166  
13-2 USB Interrupt Register (UINTR) . . . . . . . . . . . . . . . . . . . . . . .166  
13-3 USB Interrupt Register 1 (UIR1). . . . . . . . . . . . . . . . . . . . . . .169  
13-4 USB Control Register 0 (UCR0) . . . . . . . . . . . . . . . . . . . . . . .171  
13-5 USB Control Register 1 (UCR1) . . . . . . . . . . . . . . . . . . . . . . .172  
13-6 USB Control Register 2 (UCR2) . . . . . . . . . . . . . . . . . . . . . . .174  
13-7 USB Status Register (USR) . . . . . . . . . . . . . . . . . . . . . . . . . .175  
13-8 USB Endpoint 0 Data Registers 0 to 7 (UD0R0–UD0R7) . . .177  
13-9 USB Endpoint 1 Data Registers 0 to 7 (UD1R0–UD1R7) . . .177  
14-1 Multi-Master IIC Address Register (MMADR). . . . . . . . . . . . .182  
14-2 Multi-Master IIC Control Register (MMCR). . . . . . . . . . . . . . .183  
14-3 Multi-Master IIC Master Control Register (MIMCR) . . . . . . . .184  
14-4 Multi-Master IIC Status Register (MMSR) . . . . . . . . . . . . . . .186  
14-5 Multi-Master IIC Data Transmit Register (MMDTR) . . . . . . . .188  
14-6 Multi-Master IIC Data Receive Register (MMDRR) . . . . . . . .189  
14-7 Data Transfer Sequences for Master/Slave  
Transmit/Receive Modes. . . . . . . . . . . . . . . . . . . . . . . . . .191  
15-1 DDC Address Register (DADR) . . . . . . . . . . . . . . . . . . . . . . .196  
15-2 DDC2 Address Register (D2ADR) . . . . . . . . . . . . . . . . . . . . .197  
15-3 DDC Control Register (DCR) . . . . . . . . . . . . . . . . . . . . . . . . .198  
15-4 DDC Master Control Register (DMCR). . . . . . . . . . . . . . . . . .199  
15-5 DDC Status Register (DSR) . . . . . . . . . . . . . . . . . . . . . . . . . .202  
15-6 DDC Data Transmit Register (DDTR). . . . . . . . . . . . . . . . . . .204  
15-7 DDC Data Receive Register (DDRR) . . . . . . . . . . . . . . . . . . .205  
15-8 Data Transfer Sequences for Master/Slave  
Transmit/Receive Modes. . . . . . . . . . . . . . . . . . . . . . . . . .207  
16-1 Sync Processor Block Diagram . . . . . . . . . . . . . . . . . . . . . . .213  
16-2 Clamp Pulse Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . .216  
16-3 Sync Processor Control & Status Register (SPCSR) . . . . . . .217  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
List of Figures  
19  
List of Fig ure s  
Figure  
Title  
Page  
16-4 Sync Processor Input/Output Control Register (SPIOCR) . . .219  
16-5 Vertical Frequency High Register. . . . . . . . . . . . . . . . . . . . . .221  
16-6 Vertical Frequency Low Register . . . . . . . . . . . . . . . . . . . . . .221  
16-7 Hsync Frequency High Register. . . . . . . . . . . . . . . . . . . . . . .223  
16-8 Hsync Frequency Low Register . . . . . . . . . . . . . . . . . . . . . . .223  
16-9 Sync Processor Control Register 1 (SPCR1) . . . . . . . . . . . . .225  
16-10 H&V Sync Output Control Register (HVOCR) . . . . . . . . . . . .226  
17-1 Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . . . .233  
17-2 Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . . . .234  
17-3 Port A I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234  
17-4 PWM Control Register 1 (PWMCR1) . . . . . . . . . . . . . . . . . . .235  
17-5 Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . . . .236  
17-6 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . . . .237  
17-7 Port B I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237  
17-8 PWM Control Register 1 (PWMCR1) . . . . . . . . . . . . . . . . . . .238  
17-9 Port C Data Register (PTC) . . . . . . . . . . . . . . . . . . . . . . . . . .239  
17-10 Data Direction Register C (DDRC) . . . . . . . . . . . . . . . . . . . . .240  
17-11 Port C I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241  
17-12 Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . . . .242  
17-13 Data Direction Register D (DDRD) . . . . . . . . . . . . . . . . . . . . .243  
17-14 Port D I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .244  
17-15 Port D Configuration Register (PDCR) . . . . . . . . . . . . . . . . . .245  
17-16 Port E Data Register (PTE) . . . . . . . . . . . . . . . . . . . . . . . . . .247  
17-17 Data Direction Register E (DDRE) . . . . . . . . . . . . . . . . . . . . .248  
17-18 Port E I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249  
17-19 Configuration Register 0 (CONFIG0) . . . . . . . . . . . . . . . . . . .250  
18-1 IRQ Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . .253  
18-2 IRQ Status and Control Register (INTSCR) . . . . . . . . . . . . . .256  
19-1 COP Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .258  
19-2 Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . .260  
19-3 COP Control Register (COPCTL). . . . . . . . . . . . . . . . . . . . . .261  
20-1 Break Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . .265  
Technical Data  
MC68HC908BD48 Rev. 1.0  
20  
List of Figures  
MOTOROLA  
List of Figures  
Figure  
Title  
Page  
20-2 Break Status and Control Register (BRKSCR). . . . . . . . . . . .267  
20-3 Break Address Register High (BRKH) . . . . . . . . . . . . . . . . . .268  
20-4 Break Address Register Low (BRKL) . . . . . . . . . . . . . . . . . . .268  
20-5 SIM Break Status Register (SBSR) . . . . . . . . . . . . . . . . . . . .269  
20-6 SIM Break Flag Control Register (SBFCR) . . . . . . . . . . . . . .270  
21-1 ADC Input Voltage vs. Step Readings . . . . . . . . . . . . . . . . . .277  
22-1 28-Pin PDIP (Case 710) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .284  
22-2 42-Pin SDIP (Case 858) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .284  
22-3 44-Pin QFP (Case 824E) . . . . . . . . . . . . . . . . . . . . . . . . . . . .285  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
List of Figures  
21  
List of Fig ure s  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
22  
List of Figures  
Te c hnic a l Da ta — MC68HC908BD48  
List of Ta b le s  
Table  
Title  
Page  
1-1  
1-2  
I/Os on 28-Pin Device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
2-1  
Vector Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
6-1  
6-2  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76  
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
7-1  
7-2  
7-3  
7-4  
7-5  
SIM I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
Signal Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
PIN Bit Set Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
Interrupt Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102  
SIM Registers Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . .108  
9-1  
9-2  
9-3  
9-4  
9-5  
9-6  
9-7  
9-8  
9-9  
Mode Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118  
Mode Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119  
READ (Read Memory) Command . . . . . . . . . . . . . . . . . . . . .121  
WRITE (Write Memory) Command. . . . . . . . . . . . . . . . . . . . .122  
IREAD (Indexed Read) Command . . . . . . . . . . . . . . . . . . . . .122  
IWRITE (Indexed Write) Command . . . . . . . . . . . . . . . . . . . .123  
READSP (Read Stack Pointer) Command. . . . . . . . . . . . . . .123  
RUN (Run User Program) Command. . . . . . . . . . . . . . . . . . .124  
Monitor Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . .124  
10-1 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126  
10-2 TIM I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . .128  
10-3 Prescaler Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139  
10-4 Mode, Edge, and Level Selection. . . . . . . . . . . . . . . . . . . . . .144  
11-1 PWM I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . .148  
11-2 PWM Channels and Port I/O pins. . . . . . . . . . . . . . . . . . . . . .151  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
List of Tables  
23  
List of Ta b le s  
Table  
Title  
Page  
12-1 ADC Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154  
12-2 MUX Channel Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160  
12-3 ADC Clock Divide Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161  
13-1 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164  
13-2 USB I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . .165  
14-1 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180  
14-2 MMIIC I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . .181  
14-3 Baud Rate Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186  
15-1 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194  
15-2 DDC I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . .195  
15-3 Baud Rate Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201  
16-1 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211  
16-2 Sync Processor I/O Register Summary . . . . . . . . . . . . . . . . .212  
16-3 Sync Output Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215  
16-4 Sync Output Polarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216  
16-5 ATPOL, VINVO, and HINVO setting. . . . . . . . . . . . . . . . . . . .219  
16-6 Sample Vertical Frame Frequencies . . . . . . . . . . . . . . . . . . .222  
16-7 Clamp Pulse Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223  
16-8 HSYNC Polarity Detection Pulse Width . . . . . . . . . . . . . . . . .225  
16-9 ATPOL, VINVO, and HINVO setting. . . . . . . . . . . . . . . . . . . .226  
16-10 Free-Running HSYNC and VSYNC Options . . . . . . . . . . . . .227  
17-1 I/O Port Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . .230  
17-2 Port Control Register Bits Summary. . . . . . . . . . . . . . . . . . . .232  
17-3 Port A Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235  
17-4 Port B Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238  
17-5 Port C Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241  
17-6 Port D Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .244  
17-7 Port E Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249  
18-1 IRQ I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . .253  
20-1 Break Module I/O Register Summary. . . . . . . . . . . . . . . . . . .265  
23-1 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .287  
Technical Data  
MC68HC908BD48 Rev. 1.0  
24  
List of Tables  
MOTOROLA  
Te c hnic a l Da ta — MC68HC908BD48  
Se c tion 1. Ge ne ra l De sc rip tion  
1.1 Conte nts  
1.2  
1.3  
1.4  
1.5  
1.6  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
1.2 Introd uc tion  
The MC68HC908BD48 is a member of the low-cost, high-performance  
M68HC08 Family of 8-bit microcontroller units (MCUs). The M68HC08  
Family is based on the customer-specified integrated circuit (CSIC)  
design strategy. All MCUs in the family use the enhanced M68HC08  
central processor unit (CPU08) and are available with a variety of  
modules, memory sizes and types, and package types.  
With special modules such as the sync processor, analog-to-digital  
converter, pulse modulator module, DDC12AB interface, multi-master  
IIC interface, and universal serial bus interface, the MC68HC908BD48  
is designed specifically for use in digital monitor systems.  
1.3 Fe a ture s  
Features of the MC68HC908BD48 MCU include the following:  
• High-performance M68HC08 architecture  
• Fully upward-compatible object code with M6805, M146805, and  
M68HC05 families  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
General Description  
25  
 
 
Ge ne ra l De sc rip tion  
• Low-power design; fully static with stop and wait modes  
• 5V operating voltage  
• 6MHz internal bus frequency; with 24MHz external crystal  
• 48,128 bytes of on-chip FLASH memory  
• 1,024 bytes of on-chip random access memory (RAM)  
• Sync signal processor with the following features:  
– Horizontal and vertical frequency counters  
– Low vertical frequency indicator (40.7Hz)  
– Polarity controlled Hsync and Vsync outputs from separate  
sync or composite sync inputs  
– Internal generated free-running Hsync and Vsync pulses  
– CLAMP pulse output to the external pre-amp chip  
• 6-channel, 8-bit analog-to-digital converter (ADC)  
• 16-channel, 8-bit pulse width modulator (PWM)  
• Full universal serial bus (USB) specification 1.0 compliant low-  
speed bus with 3 endpoints:  
– 1 Control endpoint (two 8-byte buffer)  
– 2 Interrupt endpoints (one 8-byte buffer shared)  
• On-chip 3.3V regulator for USB pull-up resistor  
1
• DDC12AB module with the following:  
– DDC1 hardware  
2
– Multi-master IIC hardware for DDC2AB; with dual address  
• Additional multi-master IIC module  
• 16-bit, 2-channel timer interface modules (TIM) with selectable  
input capture, output compare, and PWM capability on one  
channel  
• Up to 32 general purpose input/output (I/O) pins, including:  
– 32 shared-function I/O pin for 42-pin and 44-pin packages  
1. DDC is a VESA bus standard.  
2. IIC is a proprietary Philips interface bus.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
26  
General Description  
General Description  
MCU Block Diagram  
– 4 open-drain I/O pins for 42-pin and 44-pin packages  
– 19 shared-function I/O pin for 28-pin package  
– 2 open-drain I/O pins for 28-pin package  
• System protection features:  
– Optional computer operating properly (COP) reset  
– Illegal opcode detection with reset  
– Illegal address detection with reset  
1
• FLASH memory security  
• Master reset pin with internal pull-up and power-on reset  
• IRQ with programmable pull-up and schmitt-trigger input  
• 28-pin PDIP, 42-pin SDIP, and 44-pin QFP packages  
Features of the CPU08 include the following:  
• Enhanced HC05 Programming Model  
• Extensive Loop Control Functions  
• 16 Addressing Modes (Eight More Than the HC05)  
• 16-Bit Index Register and Stack Pointer  
• Memory-to-Memory Data Transfers  
• Fast 8 × 8 Multiply Instruction  
• Fast 16/8 Divide Instruction  
• Binary-Coded Decimal (BCD) Instructions  
• Optimization for Controller Applications  
• Third Party C Language Support  
1.4 MCU Bloc k Dia g ra m  
Figure 1-1 shows the structure of the MC68HC908BD48.  
1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or  
copying the FLASH difficult for unauthorized users.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
General Description  
27  
INTERNAL BUS  
M68HC08 CPU  
CPU  
ARITHMETIC/LOGIC  
UNIT (ALU)  
PULSE WIDTH MODULATOR  
MODULE  
PTA7/PWM15–PTA0/PWM8  
PTB7/PWM7–PTB0/PWM0  
PTC5/ADC5–PTC0/ADC0  
REGISTERS  
CONTROL AND STATUS REGISTERS — 80 BYTES  
USER FLASH — 48,128 BYTES  
8-BIT ANALOG-TO-DIGITAL  
CONVERTER MODULE  
USER RAM — 1024 BYTES  
MULTI-MASTER IIC  
INTERFACE MODULE  
MONITOR ROM — 512+470 BYTES  
USER FLASH VECTOR SPACE — 26 BYTES  
DDC12AB  
INTERFACE MODULE  
UNIVERSAL SERIAL BUS  
INTERFACE MODULE  
OSC1  
OSC2  
OSCILLATOR  
÷2  
HSYNC  
VSYNC  
SYNC PROCESSOR  
MODULE  
PTD6/IICSDA  
PTD5/IICSCL  
SYSTEM INTEGRATION  
MODULE  
RST  
IRQ  
2-CHANNEL TIMER INTERFACE  
MODULE  
PTD4/CLAMP  
PTD3/DDCSCL  
EXTERNAL IRQ  
MODULE  
PTD2/DDCSDA  
PTD1/D–  
MONITOR MODULE  
PTD0/D+  
COMPUTER OPERATING  
PROPERLY MODULE  
SECURITY  
MODULE  
PTE2/VSYNCO  
POWER-ON RESET  
MODULE  
PTE1/HSYNCO  
PTE0/SOG/TCH0  
V
V
DD  
SS  
POWER  
MONITOR MODE ENTRY  
MODULE  
V
DD3  
SS1  
† Pin is +5V open-drain  
‡ Pin is +3.3V  
USB VOLATGE REGULATOR  
V
Figure 1-1. MCU Block Diagram  
General Description  
Pin Assignments  
1.5 Pin Assig nm e nts  
OSC2  
OSC1  
PTE2/VSYNCO  
PTE1/HSYNCO  
PTB0/PWM0  
PTB1/PWM1  
PTB2/PWM2  
PTB3/PWM3  
PTB4/PWM4  
1
33  
2
3
32  
31  
30  
29  
28  
27  
26  
25  
24  
VSS  
RST  
4
PTB7/PWM7  
PTB6/PWM6  
PTB5/PWM5  
PTC5/ADC5  
PTC4/ADC4  
IRQ  
5
6
7
VSS1  
8
NC  
9
PTD2/DDCSDA  
PTD3/DDCSCL  
10  
PTE0/SOG/TCH0  
11  
23  
Figure 1-2. 44-Pin QFP Pin Assignments  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
General Description  
29  
Ge ne ra l De sc rip tion  
VSYNC  
VDD3  
1
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
HSYNC  
2
PTC0/ADC0  
PTC1/ADC1  
PTC2/ADC2  
PTC3/ADC3  
PTE2/VSYNCO  
PTE1/HSYNCO  
PTB0/PWM0  
PTB1/PWM1  
PTB2/PWM2  
PTB3/PWM3  
PTB4/PWM4  
3
PD1/D–  
PD0/D+  
4
VDD  
5
OSC2  
6
OSC1  
7
VSS  
8
RST  
9
PTB7/PWM7  
PTB6/PWM6  
PTB5/PWM5  
PTC5/ADC5  
PTC4/ADC4  
IRQ  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
VSS1  
PTD2/DDCSDA  
PTD3/DDCSCL  
PTD4/CLAMP  
PTD5/IICSCL  
PTD6/IICSDA  
PTA0/PWM8  
PTA1/PWM9  
PTA2/PWM10  
PTE0/SOG/TCH0  
PTA7/PWM15  
PTA6/PWM14  
PTA5/PWM13  
PTA4/PWM12  
PTA3/PWM11  
Figure 1-3. 42-Pin SDIP Pin Assignments  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
30  
General Description  
General Description  
Pin Assignments  
HSYNC  
VSYNC  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
PTC0/ADC0  
2
PTC1/ADC1  
3
PTC2/ADC2  
VDD3  
VDD  
4
PTC3/ADC3  
OSC2  
5
PTE2/VSYNCO  
PTE1/HSYNCO  
PTB0/PWM0  
PTB1/PWM1  
PTD2/DDCSDA  
PTD3/DDCSCL  
PTA0/PWM8  
PTA1/PWM9  
OSC1  
6
VSS  
7
RST  
8
PTC4/ADC4  
IRQ  
9
10  
11  
12  
13  
14  
PTA7/PWM15  
PTB6/PWM14  
PTA5/PWM13  
PTA4/PWM12  
PTA2/PWM10  
PTA3/PWM11  
Figure 1-4. 28-Pin PDIP Pin Assignments  
Table 1-1. I/Os on 28-Pin Device  
Signals Not Bonded Out on 28-Pin Device  
PD1/D–  
PD0/D+  
PTB2/PWM2  
PTB3/PWM3  
PTB4/PWM4  
VSS1  
PTB7/PWM7  
PTB6/PWM6  
PTB5/PWM5  
PTC5/ADC5  
PTE0/SOG/TCH0  
PTD4/CLAMP  
PTD5/IICSCL  
PTD6/IICSDA  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
General Description  
31  
Ge ne ra l De sc rip tion  
1.6 Pin Func tions  
Description of the pin functions are provided in Table 1-2.  
Table 1-2. Pin Functions  
PIN NAME  
VDD  
PIN DESCRIPTION  
Power supply input to the MCU.  
Power supply ground.  
VSS  
VDD3  
VSS1  
3.3V regulated output from the MCU.  
Power supply ground.  
Connections to the on-chip oscillator.  
An external clock can be connected directly to  
OSC1; with OSC2 floating.  
OSC1  
OSC2  
See Section 8. Oscillator (OSC).  
A logic 0 on the RST pin forces the MCU to a  
known startup state. RST is bidirectional, allowing  
a reset of the entire system. It is driven low when  
any internal reset source is asserted. This pin  
contains an internal pullup resistor.  
RST  
IRQ  
See Section 7. System Integration Module  
(SIM).  
External IRQ pin; with software programmable  
internal pull-up and schmitt trigger input.  
This pin is also used for mode entry selection.  
See Section 7. System Integration Module  
(SIM).  
Vsync input to the sync processor.  
See Section 16. Sync Processor.  
VSYNC  
HSYNC  
Hsync input to the sync processor.  
See Section 16. Sync Processor.  
These are shared-function pins. Each pin can be  
configured as a standard I/O pin or a PWM output  
channel.  
See Section 17. Input/Output (I/O) Ports and  
Section 11. Pulse Width Modulator (PWM).  
PTA7/PWM15–PTA0/PWM8  
PTB7/PWM7–PTB0/PWM0  
These are shared-function pins. Each pin can be  
configured as a standard I/O pin or a PWM output  
channel.  
See Section 17. Input/Output (I/O) Ports and  
Section 11. Pulse Width Modulator (PWM).  
Technical Data  
MC68HC908BD48 Rev. 1.0  
32  
General Description  
MOTOROLA  
General Description  
Pin Functions  
Table 1-2. Pin Functions  
PIN NAME  
PIN DESCRIPTION  
These are shared-function pins. Each pin can be  
configured as a standard I/O pin or an ADC input  
channel.  
PTC5/ADC5–PTC0/ADC0  
See Section 17. Input/Output (I/O) Ports and  
Section 12. Analog-to-Digital Converter (ADC).  
This is a shared function pin. It can be configured  
as a standard I/O pin or the data line of the multi-  
master IIC module. This pin is open-drain when  
configured as output.  
PTD6/IICSDA  
See Section 17. Input/Output (I/O) Ports and  
Section 14. Multi-Master IIC Interface (MMIIC).  
This is a shared function pin. It can be configured  
as a standard I/O pin or the clock line of the multi-  
master IIC module. This pin is open-drain when  
configured as output.  
See Section 17. Input/Output (I/O) Ports and  
Section 14. Multi-Master IIC Interface (MMIIC).  
PTD5/IICSCL  
PTD4/CLAMP  
PTD3/DDCSCL  
This is a shared function pin. It can be configured  
as a standard I/O pin or the clamp output from the  
sync processor.  
See Section 17. Input/Output (I/O) Ports and  
Section 16. Sync Processor.  
This is a shared function pin. It can be configured  
as a standard I/O pin or as the clock line of the  
DDC12AB module. This pin is open-drain when  
configured as output.  
See Section 17. Input/Output (I/O) Ports and  
Section 15. DDC12AB Interface.  
This is a shared function pin. It can be configured  
as a standard I/O pin or the data line of the  
DDC12AB module. This pin is open-drain when  
configured as output.  
PTD2/DDCSDA  
See Section 17. Input/Output (I/O) Ports and  
Section 15. DDC12AB Interface.  
These are 3.3V, shared function pins. The pins  
can be configured as standard I/O pins or USB  
interface differential data lines.  
See Section 17. Input/Output (I/O) Ports and  
Section 13. Universal Serial Bus Module (USB).  
PTD1/D–  
PTD0/D+  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
General Description  
33  
Ge ne ra l De sc rip tion  
Table 1-2. Pin Functions  
PIN NAME  
PIN DESCRIPTION  
This is a shared function pin. It can be configured  
as a standard I/O pin or the Hsync output from the  
sync processor.  
PTE2/VSYNCO  
See Section 17. Input/Output (I/O) Ports and  
Section 16. Sync Processor.  
This is a shared function pin. It can be configured  
as a standard I/O pin or the Vsync output from the  
sync processor.  
PTE1/HSYNCO  
See Section 17. Input/Output (I/O) Ports and  
Section 16. Sync Processor.  
This is a shared function pin. It can be configured  
as a standard I/O pin, the SOG input to the sync  
processor, or the timer channel 0 I/O pin.  
See Section 17. Input/Output (I/O) Ports,  
Section 16. Sync Processor, and Section 10.  
Timer Interface Module (TIM).  
PTE0/SOG/TCH0  
NOTE: Any unused inputs and I/O ports should be tied to an appropriate logic  
level (either V or V ). Although the I/O ports of the  
DD  
SS  
MC68HC908BD48 do not require termination, termination is  
recommended to reduce the possibility of static damage.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
34  
General Description  
Te c hnic a l Da ta — MC68HC908BD48  
Se c tion 2. Me m ory Ma p  
2.1 Conte nts  
2.2  
2.3  
2.4  
2.5  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . .35  
Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Input/Output (I/O) Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
2.2 Introd uc tion  
The CPU08 can address 64 Kbytes of memory space. The memory  
map, shown in Figure 2-1, includes:  
• 48,128 bytes of FLASH memory  
• 1,024 bytes of random-access memory (RAM)  
• 26 bytes of user-defined vectors  
• 512 + 470 bytes of monitor ROM  
2.3 Unimplemented Me m ory Loc a tions  
Accessing an unimplemented location can cause an illegal address  
reset if illegal address resets are enabled. In the memory map  
(Figure 2-1) and in register figures in this document, unimplemented  
locations are shaded.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Memory Map  
35  
 
 
Me m ory Ma p  
2.4 Re se rve d Me m ory Loc a tions  
Accessing a reserved location can have unpredictable effects on MCU  
operation. In the Figure 2-1 and in register figures in this document,  
reserved locations are marked with the word Reserved or with the  
letter R.  
2.5 Inp ut/ Outp ut (I/ O) Se c tion  
Most of the control, status, and data registers are in the zero page area  
of $0000–$005F. Additional I/O registers have these addresses:  
• $FE00; SIM Break Status Register, SBSR  
• $FE01; SIM Reset Status Register, SRSR  
• $FE02; reserved  
• $FE03; SIM Break Flag Control Register, SBFCR  
• $FE04; Interrupt Status Register 1, INT1  
• $FE05; Interrupt Status Register 2, INT2  
• $FE06; reserved  
• $FE07; FLASH Control Register, FLCR  
• $FE08; FLASH block protect register, FLBPR  
• $FE09; reserved  
• $FE0A; reserved  
• $FE0B; reserved  
• $FE0C; Break Address Register High, BRKH  
• $FE0D; Break Address Register Low, BRKL  
• $FE0E; Break Status and Control Register, BRKSCR  
Data registers are shown in Figure 2-2. Table 2-1 is a list of vector  
locations.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
36  
Memory Map  
MOTOROLA  
Memory Map  
Input/Output (I/O) Section  
$0000  
I/O Registers  
96 Bytes  
$005F  
$0060  
Unimplemented  
32 Bytes  
$007F  
$0080  
RAM  
1,024 Bytes  
$047F  
$0480  
Unimplemented  
1,920 Bytes  
$0BFF  
$0C00  
Reserved  
256 Bytes  
$0CFF  
$0D00  
Unimplemented  
13,056 Bytes  
$3FFF  
$4000  
FLASH Memory  
48,128 Bytes  
$FBFF  
$FC00  
Monitor ROM  
512 Bytes  
$FDFF  
$FE00  
$FE01  
$FE02  
$FE03  
$FE04  
SIM Break Status Register (SBSR)  
SIM Reset Status Register (SRSR)  
Reserved  
SIM Break Flag Control Register (SBFCR)  
Interrupt Status Register 1 (INT1)  
Figure 2-1. Memory Map  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Memory Map  
37  
Me m ory Ma p  
$FE05  
$FE06  
$FE07  
$FE08  
$FE09  
$FE0A  
$FE0B  
$FE0C  
$FE0D  
$FE0E  
$FE0F  
$FE10  
Interrupt Status Register 2 (INT2)  
Reserved  
FLASH Control Register (FLCR)  
FLASH Block Protect Register (FLBPR)  
Reserved  
Reserved  
Reserved  
Break Address Register High (BRKH)  
Break Address Register Low (BRKL)  
Break Status and Control Register (BRKSCR)  
Reserved  
Monitor ROM  
470 Bytes  
$FFE5  
$FFE6  
FLASH Vectors  
26 Bytes  
$FFFF  
Figure 2-1. Memory Map (Continued)  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
38  
Memory Map  
Memory Map  
Input/Output (I/O) Section  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
PTA7  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
Port A Data Register  
(PTA)  
$0000  
Unaffected by reset  
PTB4 PTB3  
Unaffected by reset  
PTC4 PTC3  
Unaffected by reset  
PTD4 PTD3  
Unaffected by reset  
PTB7  
0
PTB6  
0
PTB5  
PTC5  
PTD5  
PTB2  
PTC2  
PTD2  
PTB1  
PTC1  
PTD1  
PTB0  
PTC0  
PTD0  
Port B Data Register  
(PTB)  
$0001  
$0002  
$0003  
$0004  
$0005  
$0006  
$0007  
$0008  
$0009  
Port C Data Register  
(PTC)  
0
PTD6  
Port D Data Register  
(PTD)  
DDRA7  
0
DDRA6  
0
DDRA5  
0
DDRA4  
0
DDRA3  
0
DDRA2  
DDRA1  
DDRA0  
Data Direction Register A  
(DDRA)  
0
DDRB2  
0
0
DDRB1  
0
0
DDRB0  
0
DDRB7  
DDRB6  
DDRB5  
0
DDRB4  
0
DDRB3  
0
Data Direction Register B  
(DDRB)  
0
0
0
0
DDRC5  
0
DDRC4  
0
DDRC3  
0
DDRC2  
0
DDRC1  
0
DDRC0  
0
Data Direction Register C  
(DDRC)  
0
0
0
DDRD6  
DDRD5  
DDRD4  
DDRD3  
DDRD2  
0
DDRD1  
0
DDRD0  
0
Data Direction Register D  
(DDRD)  
0
0
0
0
0
0
0
0
0
0
PTE2  
PTE1  
PTE0  
Port E Data Register  
(PTE)  
Unaffected by reset  
0
0
0
0
0
0
0
0
DDRE2  
DDRE1  
0
DDRE0  
0
Data Direction Register E  
(DDRE)  
0
0
0
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 1 of 12)  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Memory Map  
39  
Me m ory Ma p  
Addr.  
Register Name  
TIM Status and Control  
Bit 7  
TOF  
0
6
TOIE  
0
5
TSTOP  
1
4
0
3
2
PS2  
0
1
PS1  
0
Bit 0  
PS0  
0
Read:  
0
$000A  
Register Write:  
(TSC)  
TRST  
0
Reset:  
0
0
Read:  
Unimplemented Write:  
Reset:  
$000B  
$000C  
$000D  
$000E  
$000F  
$0010  
$0011  
$0012  
$0013  
0
0
0
0
0
0
0
0
Read:  
Bit15  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
Bit8  
TIM Counter Register  
High Write:  
(TCNTH)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
0
0
0
0
0
0
0
0
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
TIM Counter Register Low  
(TCNTL)  
0
Bit15  
1
0
Bit14  
1
0
Bit13  
1
0
Bit12  
1
0
Bit11  
1
0
Bit10  
1
0
Bit9  
1
0
Bit8  
1
TIM Counter Modulo  
Register High Write:  
(TMODH)  
Reset:  
Read:  
TIM Counter Modulo  
Bit7  
Bit6  
1
Bit5  
1
Bit4  
1
Bit3  
1
Bit2  
1
Bit1  
1
Bit0  
1
Register Low Write:  
(TMODL)  
Reset:  
1
CH0F  
0
Read:  
TIM Channel 0 Status and  
CH0MAX  
0
CH0IE  
0
MS0B  
0
MS0A  
0
ELS0B  
0
ELS0A  
0
TOV0  
0
Control Register Write:  
(TSC0)  
Reset:  
0
Read:  
TIM Channel 0  
Bit15  
Bit7  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
Bit8  
Register High Write:  
(TCH0H)  
Reset:  
Indeterminate after reset  
Bit4 Bit3  
Indeterminate after reset  
Read:  
TIM Channel 0  
Bit6  
Bit5  
Bit2  
Bit1  
Bit0  
Register Low Write:  
(TCH0L)  
Reset:  
Read:  
CH1F  
0
0
TIM Channel 1 Status and  
CH1MAX  
0
CH1IE  
0
MS1A  
0
ELS1B  
ELS1A  
TOV1  
0
Control Register Write:  
0
0
(TSC1)  
Reset:  
0
0
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 12)  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
40  
Memory Map  
Memory Map  
Input/Output (I/O) Section  
Addr.  
Register Name  
TIM Channel 1  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Bit15  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
Bit8  
$0014  
Register High Write:  
(TCH1H)  
Reset:  
Indeterminate after reset  
Bit4 Bit3  
Indeterminate after reset  
Read:  
TIM Channel 1  
Register Low Write:  
Bit7  
Bit6  
Bit5  
Bit2  
Bit1  
Bit0  
$0015  
$0016  
$0017  
$0018  
$0019  
$001A  
$001B  
$001C  
$001D  
(TCH1L)  
Reset:  
Read:  
ALIF  
0
NAKIF  
0
BB  
0
MAST  
0
MRW  
0
BR2  
0
BR1  
0
BR0  
0
DDC Master Control  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Register (DMCR)  
EXTAD  
DAD7  
1
DAD6  
0
DAD5  
DAD4  
DAD3  
0
DAD2  
0
DAD1  
0
DDC Address Register  
(DADR)  
1
0
0
0
0
0
DEN  
DIEN  
TXAK  
SCLIEN DDC1EN  
DDC Control Register  
(DCR)  
0
RXIF  
0
0
TXIF  
0
0
0
0
0
0
0
MATCH  
SRW  
RXAK  
SCLIF  
TXBE  
RXBF  
DDC Status Register  
(DSR)  
0
0
0
0
0
0
1
1
0
DDC  
DTD7  
DTD6  
DTD5  
DTD4  
DTD3  
DTD2  
DTD1  
DTD0  
Data Transmit Register Write:  
(DDTR)  
Reset:  
1
1
1
1
1
1
1
1
DDC Read:  
DRD7  
DRD6  
DRD5  
DRD4  
DRD3  
DRD2  
DRD1  
DRD0  
Data Receive Register  
Write:  
(DDRR)  
Reset:  
Read:  
0
D2AD7  
0
0
D2AD6  
0
0
D2AD5  
0
0
0
0
0
0
0
D2AD4  
D2AD3  
D2AD2  
D2AD1  
DDC2 Address Register  
Write:  
(D2ADR)  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
0
HSYNCOE VSYNCOE  
SOGE  
Configuration Register 0  
Write:  
(CONFIG0)  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 12)  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Memory Map  
41  
Me m ory Ma p  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
0
1
IMASK  
0
Bit 0  
MODE  
0
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
0
0
0
IRQF  
IRQ Status and Control  
Register (INTSCR)  
$001E  
ACK  
0
0
0
0
0
0
0
0
0
0
SSREC  
0
COPRS  
0
STOP  
0
COPD  
0
Configuration Register 1  
$001F  
(CONFIG1)  
0
0
0
0
† One-time writable register after each reset.  
Read:  
0PWM4  
0PWM3  
0PWM2  
0PWM1  
0PWM0  
0BRM2  
0BRM1  
0BRM0  
PWM0 Data Register  
$0020  
$0021  
$0022  
$0023  
$0024  
$0025  
$0026  
$0027  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
(0PWM)  
0
0
0
0
0
0
0
0
1PWM4  
1PWM3  
1PWM2  
1PWM1  
1PWM0  
1BRM2  
1BRM1  
1BRM0  
PWM1 Data Register  
(1PWM)  
0
0
0
0
0
0
2BRM2  
0
0
0
2PWM4  
2PWM3  
2PWM2  
2PWM1  
2PWM0  
2BRM1  
2BRM0  
PWM2 Data Register  
(2PWM)  
0
0
0
0
0
3PWM0  
0
0
0
3PWM4  
3PWM3  
3PWM2  
3PWM1  
3BRM2  
0
3BRM1  
3BRM0  
PWM3 Data Register  
(3PWM)  
0
0
0
0
0
0
4PWM4  
4PWM3  
4PWM2  
4PWM1  
4PWM0  
0
4BRM2  
0
4BRM1  
4BRM0  
PWM4 Data Register  
(4PWM)  
0
0
0
0
0
0
5PWM4  
5PWM3  
5PWM2  
5PWM1  
5PWM0  
0
5BRM2  
0
5BRM1  
5BRM0  
PWM5 Data Register  
(5PWM)  
0
0
0
0
0
6BRM1  
0
0
6BRM0  
0
6PWM4  
6PWM3  
6PWM2  
6PWM1  
6PWM0  
0
6BRM2  
0
PWM6 Data Register  
(6PWM)  
0
7PWM4  
0
0
7PWM3  
0
0
7PWM2  
0
0
7PWM1  
0
7PWM0  
7BRM2  
7BRM1  
0
7BRM0  
0
PWM7 Data Register  
(7PWM)  
0
0
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 12)  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
42  
Memory Map  
Memory Map  
Input/Output (I/O) Section  
Addr.  
Register Name  
Bit 7  
PWM7E  
0
6
5
4
3
2
1
Bit 0  
PWM0E  
0
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
PWM6E  
0
PWM5E  
0
PWM4E  
0
PWM3E  
PWM2E  
PWM1E  
PWM Control Register 1  
(PWMCR1)  
$0028  
0
UADD3  
0
0
UADD2  
0
0
UADD1  
0
USBEN  
UADD6  
UADD5  
UADD4  
UADD0  
0
USB Address Register  
(UADR)  
$0029  
$002A  
$002B  
$002C  
$002D  
$002E  
$002F  
$0030  
$0031  
0
0
0
0
TBEF  
RBFF  
EOPIF  
RSTIF  
TBIE  
0
RBIE  
0
EOPIE  
0
RSTIE  
0
USB Interrupt Register  
(UINTR)  
0
T0SEQ  
0
0
0
0
STALL0  
TX0E  
RX0E  
TP0SIZ3 TP0SIZ2 TP0SIZ1 TP0SIZ0  
USB Control Register 0  
(UCR0)  
0
0
0
0
0
0
0
0
Read: RSEQ  
Write:  
SETUP  
TX1ST  
RPSIZ3  
RPSIZ2  
RPSIZ1  
RPSIZ0  
USB Status Register  
(USR)  
Indeterminate after reset  
PULLEN SUSPND ENABLE2 ENABLE1 STALL2  
Reset:  
Read:  
Write:  
Reset:  
0
0
0
STALL1  
USB Control Register 2  
(UCR2)  
0
0
0
0
0
0
0
Read: TXD1F  
RESUMF  
0
RESUMFR  
0
0
TBEFR  
0
0
RBFFR  
0
0
TXD1FR  
0
0
EOPFR  
0
USB Interrupt Register 1  
TXD1IE  
(UIR1) Write:  
Reset:  
0
T1SEQ  
0
0
ENDADD  
0
0
TX1E  
0
Read:  
Write:  
Reset:  
FRESUM TP1SIZ3 TP1SIZ2 TP1SIZ1 TP1SIZ0  
USB Control Register 1  
(UCR1)  
0
0
0
0
0
Read: UE0RD07 UE0RD06 UE0RD05 UE0RD04 UE0RD03 UE0RD02 UE0RD01 UE0RD00  
Write: UE0TD07 UE0TD06 UE0TD05 UE0TD04 UE0TD03 UE0TD02 UE0TD01 UE0TD00  
USB Endpoint 0 Data  
Register 0 (UD0R0)  
Reset:  
Indeterminate after reset  
Read: UE0RD17 UE0RD16 UE0RD15 UE0RD14 UE0RD13 UE0RD12 UE0RD11 UE0RD10  
Write: UE0TD17 UE0TD16 UE0TD15 UE0TD14 UE0TD13 UE0TD12 UE0TD11 UE0TD10  
USB Endpoint 0 Data  
Register 1 (UD0R1)  
Reset:  
Indeterminate after reset  
R
= Unimplemented  
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 12)  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Memory Map  
43  
Me m ory Ma p  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read: UE0RD27 UE0RD26 UE0RD25 UE0RD24 UE0RD23 UE0RD22 UE0RD21 UE0RD20  
Write: UE0TD27 UE0TD26 UE0TD25 UE0TD24 UE0TD23 UE0TD22 UE0TD21 UE0TD20  
USB Endpoint 0 Data  
Register 2 (UD0R2)  
$0032  
Reset:  
Indeterminate after reset  
Read: UE0RD37 UE0RD36 UE0RD35 UE0RD34 UE0RD33 UE0RD32 UE0RD31 UE0RD30  
Write: UE0TD37 UE0TD36 UE0TD35 UE0TD34 UE0TD33 UE0TD32 UE0TD31 UE0TD30  
USB Endpoint 0 Data  
Register 3 (UD0R3)  
$0033  
$0034  
$0035  
$0036  
$0037  
$0038  
$0039  
$003A  
$003B  
Reset:  
Indeterminate after reset  
Read: UE0RD47 UE0RD46 UE0RD45 UE0RD44 UE0RD43 UE0RD42 UE0RD41 UE0RD40  
Write: UE0TD47 UE0TD46 UE0TD45 UE0TD44 UE0TD43 UE0TD42 UE0TD41 UE0TD40  
USB Endpoint 0 Data  
Register 4 (UD0R4)  
Indeterminate after reset  
Reset:  
Read: UE0RD57 UE0RD56 UE0RD55 UE0RD54 UE0RD53 UE0RD52 UE0RD51 UE0RD50  
Write: UE0TD57 UE0TD56 UE0TD55 UE0TD54 UE0TD53 UE0TD52 UE0TD51 UE0TD50  
USB Endpoint 0 Data  
Register 5 (UD0R5)  
Indeterminate after reset  
Reset:  
Read: UE0RD67 UE0RD66 UE0RD65 UE0RD64 UE0RD63 UE0RD62 UE0RD61 UE0RD60  
Write: UE0TD67 UE0TD66 UE0TD65 UE0TD64 UE0TD63 UE0TD62 UE0TD61 UE0TD60  
USB Endpoint 0 Data  
Register 6 (UD0R6)  
Indeterminate after reset  
Reset:  
Read: UE0RD77 UE0RD76 UE0RD75 UE0RD74 UE0RD73 UE0RD72 UE0RD71 UE0RD70  
Write: UE0TD77 UE0TD76 UE0TD75 UE0TD74 UE0TD73 UE0TD72 UE0TD71 UE0TD70  
USB Endpoint 0 Data  
Register 7 (UD0R7)  
Indeterminate after reset  
Reset:  
Read:  
USB Endpoint 1/2 Data  
Register 0 (UD1R0)  
Write: UE1TD07 UE1TD06 UE1TD05 UE1TD04 UE1TD03 UE1TD02 UE1TD01 UE1TD00  
Indeterminate after reset  
Reset:  
Read:  
USB Endpoint 1/2 Data  
Register 1 (UD1R1)  
Write: UE1TD17 UE1TD16 UE1TD15 UE1TD14 UE1TD13 UE1TD12 UE1TD11 UE1TD10  
Indeterminate after reset  
Reset:  
Read:  
USB Endpoint 1/2 Data  
Register 2 (UD1R2)  
Write: UE1TD27 UE1TD26 UE1TD25 UE1TD24 UE1TD23 UE1TD22 UE1TD21 UE1TD20  
Indeterminate after reset  
Reset:  
Read:  
USB Endpoint 1/2 Data  
Register 3 (UD1R3)  
Write: UE1TD37 UE1TD36 UE1TD35 UE1TD34 UE1TD33 UE1TD32 UE1TD31 UE1TD30  
Indeterminate after reset  
R
Reset:  
= Unimplemented  
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 6 of 12)  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
44  
Memory Map  
Memory Map  
Input/Output (I/O) Section  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
USB Endpoint 1/2 Data  
Register 4 (UD1R4)  
$003C  
Write: UE1TD47 UE1TD46 UE1TD45 UE1TD44 UE1TD43 UE1TD42 UE1TD41 UE1TD40  
Indeterminate after reset  
Reset:  
Read:  
USB Endpoint 1/2 Data  
Register 5 (UD1R5)  
$003D  
$003E  
$003F  
$0040  
$0041  
$0042  
$0043  
$0044  
$0045  
Write: UE1TD57 UE1TD56 UE1TD55 UE1TD54 UE1TD53 UE1TD52 UE1TD51 UE1TD50  
Indeterminate after reset  
Reset:  
Read:  
USB Endpoint 1/2 Data  
Register 6 (UD1R6)  
Write: UE1TD67 UE1TD66 UE1TD65 UE1TD64 UE1TD63 UE1TD62 UE1TD61 UE1TD60  
Indeterminate after reset  
Reset:  
Read:  
USB Endpoint 1/2 Data  
Register 7 (UD1R7)  
Write: UE1TD77 UE1TD76 UE1TD75 UE1TD74 UE1TD73 UE1TD72 UE1TD71 UE1TD70  
Indeterminate after reset  
Reset:  
Read:  
VSIF  
VPOL  
HPOL  
Sync Processor Control  
VSIE  
VEDGE  
COMP  
VINVO  
HINVO  
and Status Register Write:  
0
0
(SPCSR)  
Reset:  
0
0
0
0
0
0
0
0
Read:  
VOF  
0
VF12  
VF11  
VF10  
VF9  
VF8  
Vertical Frequency High  
Register Write:  
(VFHR)  
CPW1  
0
CPW0  
0
Reset:  
0
0
0
0
0
0
Read:  
VF7  
VF6  
VF5  
VF4  
VF3  
VF2  
VF1  
VF0  
Vertical Frequency Low  
Register Write:  
(VFLR)  
Reset:  
0
0
0
0
0
0
0
0
Read:  
HFH7  
HFH6  
HFH5  
HFH4  
HFH3  
HFH2  
HFH1  
HFH0  
Hsync Frequency High  
Register Write:  
(HFHR)  
Reset:  
0
0
0
0
0
0
0
0
0
0
Read: HOVER  
HFL4  
HFL3  
HFL2  
HFL1  
HFL0  
Hsync Frequency Low  
Register Write:  
(HFLR)  
Reset:  
0
0
0
COINV  
0
0
R
0
0
0
0
BPOR  
0
0
SOUT  
0
Read: VSYNCS HSYNCS  
Sync Processor I/O  
CLAMPOE  
SOGSEL  
Control Register Write:  
(SPIOCR)  
Reset:  
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 7 of 12)  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Memory Map  
45  
Me m ory Ma p  
Addr.  
Register Name  
Sync Processor Control  
Bit 7  
6
5
4
3
2
R
0
1
ATPOL  
0
Bit 0  
FSHF  
0
Read:  
LVSIF  
LVSIE  
HPS1  
HPS0  
R
$0046  
Register 1 Write:  
(SPCR1)  
0
0
0
Reset:  
0
R
0
0
0
0
0
0
0
Read:  
H&V Sync Output Control  
HVOCR2 HVOCR1 HVOCR0  
$0047  
$0048  
$0049  
$004A  
$004B  
$004C  
$004D  
$004E  
$004F  
Register Write:  
(HVOCR)  
Reset:  
0
0
0
0
0
0
0
Read:  
Unimplemented Write:  
Reset:  
Read:  
0
DDCSCLE DDCDATE  
IICDATE IICSCLE CLAMPE  
USBD–E USBD+E  
Port D Configuration  
Write:  
Register (PDCR)  
Reset:  
0
0
0
0
0
0
0
0
Read:  
Multi-Master IIC  
Master Control Register Write:  
MMNAKIF  
MMALIF  
MMBB  
0
MMAST  
0
MMRW  
MMBR2  
0
MMBR1  
0
MMBR0  
0
(MIMCR)  
Reset:  
0
MMAD7  
1
0
MMAD6  
0
0
Read:  
Multi-Master IIC Address  
MMEXTAD  
MMAD5  
MMAD4  
MMAD3  
MMAD2  
MMAD1  
Register Write:  
(MMADR)  
Reset:  
1
0
0
0
0
MMTXAK  
0
0
0
0
0
0
0
Read:  
Multi-Master IIC  
Control Register Write:  
MMEN  
MMIEN  
(MMCR)  
Reset:  
0
0
0
0
0
0
0
0
Read: MMRXIF MMTXIF MMATCH MMSRW MMRXAK  
MMTXBE MMRXBF  
Multi-Master IIC  
Status Register Write:  
0
0
0
0
(MMSR)  
Reset:  
0
0
1
0
1
0
Read:  
Multi-Master IIC  
Data Transmit Register Write:  
MMTD7  
MMTD6  
MMTD5  
MMTD4  
MMTD3  
MMTD2  
MMTD1  
MMTD0  
(MMDTR)  
Reset:  
1
1
1
1
1
1
1
1
Multi-Master IIC Read: MMRD7  
Data Receive Register  
MMRD6  
MMRD5  
MMRD4  
MMRD3  
MMRD2  
MMRD1  
MMRD0  
Write:  
(MMDRR)  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 8 of 12)  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
46  
Memory Map  
Memory Map  
Input/Output (I/O) Section  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
$0050  
Unimplemented Write:  
Reset:  
Read:  
8PWM4  
8PWM3  
8PWM2  
8PWM1  
8PWM0  
8BRM2  
8BRM1  
8BRM0  
PWM8 Data Register  
$0051  
$0052  
$0053  
$0054  
$0055  
$0056  
$0057  
$0058  
$0059  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
(8PWM)  
0
9PWM4  
0
0
9PWM3  
0
0
9PWM2  
0
0
9PWM1  
0
0
9PWM0  
0
0
9BRM2  
0
0
9BRM1  
0
0
9BRM0  
0
PWM9 Data Register  
(9PWM)  
10PWM4 10PWM3 10PWM2 10PWM1 10PWM0 10BRM2 10BRM1 10BRM0  
PWM10 Data Register  
(10PWM)  
0
0
0
0
0
0
0
0
11PWM4 11PWM3 11PWM2 11PWM1 11PWM0 11BRM2 11BRM1 11BRM0  
PWM11 Data Register  
(11PWM)  
0
0
0
0
0
0
0
0
12PWM4 12PWM3 12PWM2 12PWM1 12PWM0 12BRM2 12BRM1 12BRM0  
PWM12 Data Register  
(12PWM)  
0
0
0
0
0
0
0
0
13PWM4 13PWM3 13PWM2 13PWM1 13PWM0 13BRM2 13BRM1 13BRM0  
PWM13 Data Register  
(13PWM)  
0
14PWM4  
0
0
PWM3  
0
0
0
0
0
0
0
14PWM2 14PWM1 14PWM0 14BRM2 14BRM1 14BRM0  
PWM14 Data Register  
(14PWM)  
0
0
0
0
0
0
15PWM4 15PWM3 15PWM2 15PWM1 15PWM0 15BRM2 15BRM1 15BRM0  
PWM15 Data Register  
(15PWM)  
0
0
0
0
0
0
0
0
PWM8E  
0
PWM15E PWM14E PWM13E PWM12E PWM11E PWM10E PWM9E  
PWM Control Register 2  
(PWMCR2)  
0
0
0
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 9 of 12)  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Memory Map  
47  
Me m ory Ma p  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Unimplemented Write:  
Reset:  
$005A  
Read:  
$005B  
$005C  
$005D  
$005E  
$005F  
Unimplemented Write:  
Reset:  
Read:  
Unimplemented Write:  
Reset:  
Read: COCO  
Write:  
AIEN  
ADCO  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
ADC Status and Control  
Register (ADSCR)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
0
0
1
1
1
1
1
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
ADC Data Register  
(ADR)  
Unaffected after Reset  
0
0
0
0
0
0
0
0
ADIV2  
0
ADIV1  
0
ADIV0  
0
ADC Input Clock Register  
(ADICLK)  
0
0
Read:  
Write:  
Reset:  
SBSW  
Note  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
SIM Break Status Register  
(SBSR)  
$FE00  
Note: Writing a logic 0 clears SBSW.  
Read:  
Write:  
POR:  
Read:  
POR  
PIN  
COP  
ILOP  
ILAD  
0
0
0
SIM Reset Status Register  
$FE01  
(SRSR)  
1
R
0
0
R
0
0
R
0
0
R
0
0
0
0
R
0
0
R
0
R
R
$FE02  
Reserved Write:  
Reset:  
0
0
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 10 of 12)  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
48  
Memory Map  
Memory Map  
Input/Output (I/O) Section  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
BCFE  
R
R
R
R
R
R
R
SIM Break Flag Control  
Register (SBFCR)  
$FE03  
0
IF6  
R
0
IF5  
R
0
IF4  
R
0
IF3  
R
0
IF2  
R
IF1  
R
0
R
0
R
Interrupt Status Register 1  
(INT1)  
$FE04  
$FE05  
$FE06  
$FE07  
$FE08  
$FE09  
$FE0A  
$FE0B  
$FE0C  
0
0
0
0
0
0
0
0
IF10  
R
IF9  
R
IF8  
R
IF7  
R
Interrupt Status Register 2  
(INT2)  
R
0
R
0
R
0
R
0
0
0
0
0
R
R
R
R
R
R
R
R
0
Reserved Write:  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
Read:  
HVEN  
MASS  
ERASE  
PGM  
FLASH Control Register  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
(FLCR)  
0
0
0
0
0
0
0
0
0
BPR7  
BPR6  
BPR5  
BPR4  
BPR3  
BPR2  
BPR1  
FLASH Block Protect  
Register (FLBPR)  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
Reserved Write:  
Reset:  
0
0
0
0
0
0
0
0
Read:  
R
R
R
R
R
R
R
R
Reserved Write:  
Reset:  
0
0
0
0
0
0
0
0
Read:  
R
R
R
R
R
R
R
R
Reserved Write:  
Reset:  
0
0
0
0
0
0
0
0
Read:  
Bit15  
0
Bit14  
Bit13  
Bit12  
0
Bit11  
Bit10  
Bit9  
0
Bit8  
0
Break Address High  
Write:  
Register (BRKH)  
Reset:  
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 11 of 12)  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Memory Map  
49  
Me m ory Ma p  
Addr.  
Register Name  
Bit 7  
Bit7  
0
6
Bit6  
0
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Break Address low  
Register (BRKL)  
$FE0D  
0
0
0
0
0
0
0
0
0
0
0
0
BRKE  
0
BRKA  
0
Break Status and Control  
Register (BRKSCR)  
$FE0E  
$FFFF  
0
0
0
0
0
0
Read:  
Write:  
Reset:  
Low byte of reset vector  
COP Control Register  
(COPCTL)  
Writing clears COP counter (any value)  
Unaffected by reset  
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 12 of 12)  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
50  
Memory Map  
Memory Map  
Input/Output (I/O) Section  
.
Table 2-1. Vector Addresses  
Vector Priority Vector Address  
Lowest  
Vector  
$FFE6  
$FFE7  
$FFE8  
$FFE9  
$FFEA  
$FFEB  
$FFEC  
$FFED  
$FFEE  
$FFEF  
$FFF0  
$FFF1  
$FFF2  
$FFF3  
$FFF4  
$FFF5  
$FFF6  
$FFF7  
$FFF8  
$FFF9  
$FFFA  
$FFFB  
$FFFC  
$FFFD  
$FFFE  
$FFFF  
Reserved  
Reserved  
IF10  
IF9  
IF8  
IF7  
IF6  
IF5  
IF4  
IF3  
IF2  
IF1  
ADC Interrupt Vector (High)  
ADC Interrupt Vector (Low)  
MMIIC Vector (High)  
MMIIC Vector (Low)  
Sync Processor Vector (High)  
Sync Processor Vector (Low)  
TIM Overflow Vector (High)  
TIM Overflow Vector (Low)  
TIM Channel 1 Vector (High)  
TIM Channel 1 Vector (Low)  
TIM Channel 0 Vector (High)  
TIM Channel 0 Vector (Low)  
Reserved  
Reserved  
DDC12AB Vector (High)  
DDC12AB Vector (Low)  
USB Vector (High)  
USB Vector (Low)  
IRQ Vector (High)  
IRQ Vector (Low)  
SWI Vector (High)  
SWI Vector (Low)  
Reset Vector (High)  
Highest  
Reset Vector (Low)  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Memory Map  
51  
Me m ory Ma p  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
52  
Memory Map  
Te c hnic a l Da ta — MC68HC908BD48  
Se c tion 3. Ra nd om -Ac c e ss Me m ory (RAM)  
3.1 Conte nts  
3.2  
3.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
3.2 Introd uc tion  
This section describes the 1,024 bytes of RAM (random-access  
memory).  
3.3 Func tiona l De sc rip tion  
Addresses $0080 through $047F are RAM locations. The location of the  
stack RAM is programmable. The 16-bit stack pointer allows the stack to  
be anywhere in the 64-Kbyte memory space.  
NOTE: For correct operation, the stack pointer must point only to RAM  
locations.  
Within page zero are 128 bytes of RAM. Because the location of the  
stack RAM is programmable, all page zero RAM locations can be used  
for I/O control and user data or code. When the stack pointer is moved  
from its reset location at $00FF out of page zero, direct addressing mode  
instructions can efficiently access all page zero RAM locations. Page  
zero RAM, therefore, provides ideal locations for frequently accessed  
global variables.  
Before processing an interrupt, the CPU uses five bytes of the stack to  
save the contents of the CPU registers.  
NOTE: For M6805 compatibility, the H register is not stacked.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Random-Access Memory (RAM)  
53  
 
 
Ra nd om -Ac c e ss Me m ory (RAM)  
During a subroutine call, the CPU uses two bytes of the stack to store  
the return address. The stack pointer decrements during pushes and  
increments during pulls.  
NOTE: Be careful when using nested subroutines. The CPU may overwrite data  
in the RAM during a subroutine or during the interrupt stacking  
operation.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
54  
Random-Access Memory (RAM)  
MOTOROLA  
Te c hnic a l Da ta — MC68HC908BD48  
Se c tion 4. FLASH Me m ory  
4.1 Conte nts  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
FLASH Control Register (FLCR) . . . . . . . . . . . . . . . . . . . . . . .56  
FLASH Block Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . .57  
FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . .58  
FLASH Program Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
FLASH Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
FLASH Block Protect Register (FLBPR). . . . . . . . . . . . . . . . . .61  
4.2 Introd uc tion  
This section describes the operation of the embedded FLASH memory.  
The FLASH memory can be read, programmed, and erased from a  
single external supply through the use of the internal charge pump for  
program and erase.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
FLASH Memory  
55  
 
 
FLASH Me m ory  
4.3 Func tiona l De sc rip tion  
The FLASH memory is an array of 48,128 bytes with an additional 26  
bytes of user vectors. An erased bit reads as logic 1 and a programmed  
bit reads as a logic 0. Program and erase operations are facilitated  
through control bits in a memory mapped FLASH control register  
(FLCR). The address ranges for the user memory and vectors are:  
• $4000–$FBFF; user memory  
• $FE07; FLASH control register  
• $FE08; FLASH block protect register  
• $FFE6–$FFFF; these locations are reserved for user-defined  
interrupt and reset vectors  
Programming tools are available from Motorola. Contact your local  
Motorola representative for more information.  
4.4 FLASH Control Re g iste r (FLCR)  
The FLASH control register (FLCR) controls FLASH program and erase  
operations.  
Address:  
$FE07  
Bit 7  
0
6
0
5
0
4
0
3
HVEN  
0
2
MASS  
0
1
ERASE  
0
Bit 0  
PGM  
0
Read:  
Write:  
Reset:  
0
0
0
0
= Unimplemented  
Figure 4-1. FLASH Control Register (FLCR)  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
56  
FLASH Memory  
FLASH Memory  
FLASH Block Erase Operation  
HVEN — High-Voltage Enable Bit  
This read/write bit enables the charge pump to drive high voltages for  
program and erase operations in the array. HVEN can only be set if  
either PGM = 1 or ERASE = 1 and the proper sequence for program  
or erase is followed.  
1 = High voltage enabled to array and charge pump on  
0 = High voltage disabled to array and charge pump off  
MASS — Mass Erase Control Bit  
Setting this read/write bit configures the 48,128 bytes FLASH array  
for mass erase operation.  
1 = Mass Erase operation selected  
0 = Mass Erase operation not selected  
ERASE — Erase Control Bit  
This read/write bit configures the memory for erase operation. ERASE  
is interlocked with the PGM bit such that both bits cannot be equal to  
1 or set to 1 at the same time.  
1 = Erase operation selected  
0 = Erase operation not selected  
PGM — Program Control Bit  
This read/write bit configures the memory for program operation.  
PGM is interlocked with the ERASE bit such that both bits cannot be  
equal to 1 or set to 1 at the same time.  
1 = Program operation selected  
0 = Program operation not selected  
4.5 FLASH Bloc k Era se Op e ra tion  
Use the following procedure to erase a block (512 bytes) of FLASH  
memory:  
1. Set the ERASE bit, and clear the MASS bit in the FLASH control  
register.  
2. Write any data to any FLASH address within the block address  
range desired.  
3. Wait for a time, t  
(min. 5µs)  
nvs  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
FLASH Memory  
57  
FLASH Me m ory  
4. Set the HVEN bit.  
5. Wait for a time, t  
(min. 2ms)  
Erase  
6. Clear the ERASE bit.  
7. Wait for a time, t (min. 5µs)  
nvh  
8. Clear the HVEN bit.  
9. After a time, t (min. 1µs), the memory can be accessed again in  
rcv  
read mode.  
NOTE: Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory. While these operations  
must be performed in the order as shown, but other unrelated operations  
may occur between the steps.  
4.6 FLASH Ma ss Era se Op e ra tion  
Use the following procedure to erase entire FLASH memory:  
1. Set both the ERASE bit, and the MASS bit in the FLASH control  
register.  
2. Write any data to any FLASH address within the FLASH memory  
address range.  
3. Wait for a time, t  
(5µs).  
nvs  
4. Set the HVEN bit.  
5. Wait for a time, t  
(4ms).  
MErase  
6. Clear the ERASE bit.  
7. Wait for a time, t (100µs).  
nvhl  
8. Clear the HVEN bit.  
9. After time, t (1µs) the memory can be accessed again in read  
rcv  
,
mode.  
NOTE: Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory. While these operations  
must be performed in the order as shown, but other unrelated operations  
may occur between the steps.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
58  
FLASH Memory  
MOTOROLA  
FLASH Memory  
FLASH Program Operation  
4.7 FLASH Prog ra m Op e ra tion  
Programming of the FLASH memory is done on a row basis. A row  
consists of 64 consecutive bytes starting from addresses $XX00,  
$XX40, $XX80, and $XXC0. Use this step-by-step procedure to program  
a row of FLASH memory (Figure 4-2 is a flowchart representation):  
NOTE: In order to avoid program disturbs, the row must be erased before any  
byte on that row is programmed.  
1. Set the PGM bit. This configures the memory for program  
operation and enables the latching of address and data for  
programming.  
2. Write any data to any FLASH address within the row address  
range desired.  
3. Wait for a time, t  
(min. 5µs).  
nvs  
4. Set the HVEN bit.  
5. Wait for a time, t  
(min. 10µs).  
pgs  
6. Write data to the FLASH address to be programmed.  
7. Wait for time, t (min. 20µs).  
PROG  
8. Repeat step 6 and 7 until all the bytes within the row are  
programmed.  
9. Clear the PGM bit.  
10. Wait for time, t  
(min. 5µs).  
nvh  
11. Clear the HVEN bit.  
12. After time, t (min 1µs), the memory can be accessed in read  
rcv  
mode again.  
This program sequence is repeated throughout the memory until all data  
is programmed.  
NOTE: Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory. While these operations  
must be performed in the order shown, other unrelated operations may  
occur between the steps. Do not exceed t  
maximum. See 21.15  
PROG  
Memory Characteristics.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
FLASH Memory  
59  
FLASH Me m ory  
1
2
Algorithm for programming  
a row (64 bytes) of FLASH memory  
Set PGM bit  
Write any data to any FLASH address  
within the row address range desired  
3
4
5
Wait for a time, t  
Set HVEN bit  
nvs  
Wait for a time, t  
pgs  
6
7
Write data to the FLASH address  
to be programmed  
Wait for a time, t  
PROG  
Completed  
programming  
this row?  
Y
N
9
Clear PGM bit  
NOTE:  
The time between each FLASH address change (step 7 to step 7), or  
the time between the last FLASH address programmed  
to clearing PGM bit (step 6 to step 9)  
10  
11  
12  
Wait for a time, t  
nvh  
must not exceed the maximum programming  
time, t  
max.  
PROG  
Clear HVEN bit  
This row program algorithm assumes the row/s  
to be programmed are initially erased.  
Wait for a time, t  
rcv  
End of programming  
Figure 4-2. FLASH Programming Flowchart  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
60  
FLASH Memory  
FLASH Memory  
FLASH Block Protection  
4.8 FLASH Bloc k Prote c tion  
Due to the ability of the on-board charge pump to erase and program the  
FLASH memory in the target application, provision is made for protecting  
blocks of memory from unintentional erase or program operations due to  
system malfunction. This protection is done by use of a FLASH Block  
Protect Register (FLBPR). The FLBPR determines the range of the  
FLASH memory which is to be protected. The range of the protected  
area starts from a location defined by FLBPR and ends at the bottom of  
the FLASH memory ($FFFF). When the memory is protected, the HVEN  
bit cannot be set in either ERASE or PROGRAM operations.  
4.9 FLASH Bloc k Prote c t Re g iste r (FLBPR)  
The FLASH block protect register is implemented as an 7-bit I/O register.  
The BPR bit content of the register determines the starting location of the  
protected range within the FLASH memory.  
Address:  
$FE08  
Bit 7  
6
BPR6  
0
5
BPR5  
0
4
BPR4  
0
3
BPR3  
0
2
BPR2  
0
1
BPR1  
0
Bit 0  
0
Read:  
Write:  
Reset:  
BPR7  
0
0
= Unimplemented  
Figure 4-3. FLASH Block Protect Register (FLBPR)  
BPR[7:1] — FLASH Block Protect Bits  
These seven bits represent bits [15:9] of a 16-bit memory address.  
Bits [8:0] are logic 0s.  
The resultant 16-bit address is used for specifying the start address  
of the FLASH memory for block protection. The FLASH is protected  
from this start address to the end of FLASH memory, at $FFFF.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
FLASH Memory  
61  
FLASH Me m ory  
16-bit memory address  
Start address of FLASH block protect  
0
0
0
0
0
0
0
0
0
FLBPR value  
Figure 4-4. FLASH Block Protect Start Address  
Examples of protect FLASH memory:  
BPR[7:0]  
$00–3E  
FLASH Memory Protected Range  
The entire FLASH memory is not protected.  
The entire FLASH memory is protected.  
$4200 (0100 0010 0000 0000) to $FFFF  
$4400 (0100 0100 0000 0000) to $FFFF  
$40  
$42 (0100 0010)  
$44 (0100 0100)  
and so on...  
$F8 (1111 1000)  
$FA (1111 1010)  
Note:  
$F800 (1111 1000 0000 0000) to $FFFF  
$FA00 (1111 1010 0000 0000) to $FFFF  
The user FLASH vectors from $FFE6 to $FFFF are always protected,  
and can only be erased by a FLASH mass erase operation.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
62  
FLASH Memory  
MOTOROLA  
Te c hnic a l Da ta — MC68HC908BD48  
Se c tion 5. Config ura tion Re g iste r (CONFIG)  
5.1 Conte nts  
5.2  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
5.3  
5.3.1  
5.3.2  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
Configuration Register 0. . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
Configuration Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
5.2 Introd uc tion  
This section describes the configuration registers, CONFIG0 and  
CONFIG1. The configuration registers enable or disable these options:  
• Sync Processor HSYNCO output pin  
• Sync Processor VSYNCO output pin  
• Sync Processor SOG input pin  
• Stop mode recovery time (32 OSCXCLK cycles or 4096  
OSCXCLK cycles)  
18  
4
13  
4
• COP timeout period (2 – 2 or 2 – 2 OSCXCLK cycles)  
• STOP instruction  
• Computer operating properly module (COP)  
5.3 Func tiona l De sc rip tion  
The configuration registers are used in the initialization of various  
options. The configuration registers can be written once after each reset.  
All of the configuration register bits are cleared during reset. Since the  
various options affect the operation of the MCU, it is recommended that  
these registers be written immediately after reset. The configuration  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Configuration Register (CONFIG)  
63  
 
 
Cong ura tion Re g iste r (CONFIG)  
registers are located at $001D and $001F. The configuration register  
may be read at anytime.  
5.3.1 Config ura tion Re g iste r 0  
Address:  
$001D  
Bit 7  
6
5
SOGE  
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
HSYNCOE VSYNCOE  
0
0
0
0
0
0
0
= Unimplemented  
Figure 5-1. Configuration Register 0 (CONFIG0)  
HSYNCOE — VSYNCO Enable  
This bit is set to configure the PTE1/HSYNCO pin for HSYNCO output  
function. Reset clears this bit.  
1 = PTE1/HSYNCO pin configured as HSYNCO pin  
0 = PTE1/HSYNCO pin configured as standard I/O pin  
VSYNCOE — VSYNCO Enable  
This bit is set to configure the PTE2/VSYNCO pin for VSYNCO output  
function. Reset clears this bit.  
1 = PTE2/VSYNCO pin configured as VSYNCO pin  
0 = PTE2/VSYNCO pin configured as standard I/O pin  
SOGE — SOG Enable  
This bit is set to configure the PTE0/SOG/TCH0 pin for SOG output  
function. Reset clears this bit.  
1 = PTE0/SOG/TCH0 pin configured as SOG pin  
0 = PTE0/SOG/TCH0 pin configured as standard I/O or TCH0 pin.  
TCH0 function is configured by ELS0B and ELS0A bits in  
TSC0 (bits 3 and 2 in $0010). (See 10.10.4 TIM Channel  
Status and Control Registers (TSC0:TSC1).)  
Technical Data  
MC68HC908BD48 Rev. 1.0  
64  
Configuration Register (CONFIG)  
MOTOROLA  
Configuration Register (CONFIG)  
Functional Description  
5.3.2 Config ura tion Re g iste r 1  
Address:  
$001F  
Bit 7  
0
6
0
5
0
4
0
3
SSREC  
0
2
COPRS  
0
1
STOP  
0
Bit 0  
COPD  
0
Read:  
Write:  
Reset:  
0
0
0
0
= Unimplemented  
Figure 5-2. Configuration Register 1 (CONFIG1)  
SSREC — Short Stop Recovery Bit  
SSREC enables the CPU to exit stop mode with a delay of 32  
OSCXCLK cycles instead of a 4096-OSCXCLK cycle delay.  
1 = Stop mode recovery after 32 OSCXCLK cycles  
0 = Stop mode recovery after 4096 OSCXCLKC cycles  
NOTE: Exiting stop mode by pulling reset will result in the long stop recovery.  
If using an external crystal oscillator, do not set the SSREC bit.  
COPRS — COP Rate Select Bit  
COPRS selects the COP timeout period. Reset clears COPRS. (See  
Section 19. Computer Operating Properly (COP).)  
13  
4
1 = COP timeout period = 2 – 2 CGMXCLK cycles  
18  
4
0 = COP timeout period = 2 – 2 CGMXCLK cycles  
STOP — STOP Instruction Enable Bit  
STOP enables the STOP instruction.  
1 = STOP instruction enabled  
0 = STOP instruction treated as illegal opcode  
COPD — COP Disable Bit  
COPD disables the COP module. (See Section 19. Computer  
Operating Properly (COP).)  
1 = COP module disabled  
0 = COP module enabled  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Configuration Register (CONFIG)  
65  
Cong ura tion Re g iste r (CONFIG)  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
66  
Configuration Register (CONFIG)  
Te c hnic a l Da ta — MC68HC908BD48  
Se c tion 6. Ce ntra l Proc e ssor Unit (CPU)  
6.1 Conte nts  
6.2  
6.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
6.4  
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
6.4.1  
6.4.2  
6.4.3  
6.4.4  
6.4.5  
6.5  
Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
6.6  
6.6.1  
6.6.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
6.7  
6.8  
6.9  
CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .75  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
6.2 Introd uc tion  
The M68HC08 CPU (central processor unit) is an enhanced and fully  
object-code-compatible version of the M68HC05 CPU. The CPU08  
Reference Manual (Motorola document order number CPU08RM/AD)  
contains a description of the CPU instruction set, addressing modes,  
and architecture.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Central Processor Unit (CPU)  
67  
 
Ce ntra l Proc e ssor Unit (CPU)  
6.3 Fe a ture s  
• Object code fully upward-compatible with M68HC05 Family  
• 16-bit stack pointer with stack manipulation instructions  
• 16-bit index register with x-register manipulation instructions  
• 8-MHz CPU internal bus frequency  
• 64-Kbyte program/data memory space  
• 16 addressing modes  
• Memory-to-memory data moves without using accumulator  
• Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions  
• Enhanced binary-coded decimal (BCD) data handling  
• Modular architecture with expandable internal bus definition for  
extension of addressing range beyond 64 Kbytes  
• Low-power stop and wait modes  
6.4 CPU Re g iste rs  
Figure 6-1 shows the five CPU registers. CPU registers are not part of  
the memory map.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
68  
Central Processor Unit (CPU)  
MOTOROLA  
Central Processor Unit (CPU)  
CPU Registers  
7
0
0
0
0
ACCUMULATOR (A)  
15  
15  
15  
H
X
INDEX REGISTER (H:X)  
STACK POINTER (SP)  
PROGRAM COUNTER (PC)  
CONDITION CODE REGISTER (CCR)  
7
0
V
1
1
H
I
N
Z
C
CARRY/BORROW FLAG  
ZERO FLAG  
NEGATIVE FLAG  
INTERRUPT MASK  
HALF-CARRY FLAG  
TWO’S COMPLEMENT OVERFLOW FLAG  
Figure 6-1. CPU Registers  
6.4.1 Ac c um ula tor  
The accumulator is a general-purpose 8-bit register. The CPU uses the  
accumulator to hold operands and the results of arithmetic/logic  
operations.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Unaffected by reset  
Figure 6-2. Accumulator (A)  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Central Processor Unit (CPU)  
69  
Ce ntra l Proc e ssor Unit (CPU)  
6.4.2 Ind e x Re g iste r  
The 16-bit index register allows indexed addressing of a 64-Kbyte  
memory space. H is the upper byte of the index register, and X is the  
lower byte. H:X is the concatenated 16-bit index register.  
In the indexed addressing modes, the CPU uses the contents of the  
index register to determine the conditional address of the operand.  
The index register can serve also as a temporary data storage location.  
Bit  
15  
Bit  
0
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
X
X
X
X
X
X
X
X
X = Indeterminate  
Figure 6-3. Index Register (H:X)  
6.4.3 Sta c k Pointe r  
The stack pointer is a 16-bit register that contains the address of the next  
location on the stack. During a reset, the stack pointer is preset to  
$00FF. The reset stack pointer (RSP) instruction sets the least  
significant byte to $FF and does not affect the most significant byte. The  
stack pointer decrements as data is pushed onto the stack and  
increments as data is pulled from the stack.  
In the stack pointer 8-bit offset and 16-bit offset addressing modes, the  
stack pointer can function as an index register to access data on the  
stack. The CPU uses the contents of the stack pointer to determine the  
conditional address of the operand.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
70  
Central Processor Unit (CPU)  
MOTOROLA  
Central Processor Unit (CPU)  
CPU Registers  
Bit  
15  
Bit  
0
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Figure 6-4. Stack Pointer (SP)  
NOTE: The location of the stack is arbitrary and may be relocated anywhere in  
RAM. Moving the SP out of page 0 ($0000 to $00FF) frees direct  
address (page 0) space. For correct operation, the stack pointer must  
point only to RAM locations.  
6.4.4 Prog ra m Counte r  
The program counter is a 16-bit register that contains the address of the  
next instruction or operand to be fetched.  
Normally, the program counter automatically increments to the next  
sequential memory location every time an instruction or operand is  
fetched. Jump, branch, and interrupt operations load the program  
counter with an address other than that of the next sequential location.  
During reset, the program counter is loaded with the reset vector  
address located at $FFFE and $FFFF. The vector address is the  
address of the first instruction to be executed after exiting the reset state.  
Bit  
15  
Bit  
0
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
Loaded with Vector from $FFFE and $FFFF  
Figure 6-5. Program Counter (PC)  
6.4.5 Cond ition Cod e Re g iste r  
The 8-bit condition code register contains the interrupt mask and five  
flags that indicate the results of the instruction just executed. Bits 6 and  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Central Processor Unit (CPU)  
71  
Ce ntra l Proc e ssor Unit (CPU)  
5 are set permanently to logic 1. The following paragraphs describe the  
functions of the condition code register.  
Bit 7  
6
1
1
5
1
1
4
H
X
3
I
2
N
X
1
Z
X
Bit 0  
Read:  
Write:  
Reset:  
V
C
X
X
1
X = Indeterminate  
Figure 6-6. Condition Code Register (CCR)  
V — Overflow Flag  
The CPU sets the overflow flag when a two's complement overflow  
occurs. The signed branch instructions BGT, BGE, BLE, and BLT use  
the overflow flag.  
1 = Overflow  
0 = No overflow  
H — Half-Carry Flag  
The CPU sets the half-carry flag when a carry occurs between  
accumulator bits 3 and 4 during an add-without-carry (ADD) or add-  
with-carry (ADC) operation. The half-carry flag is required for binary-  
coded decimal (BCD) arithmetic operations. The DAA instruction uses  
the states of the H and C flags to determine the appropriate correction  
factor.  
1 = Carry between bits 3 and 4  
0 = No carry between bits 3 and 4  
Technical Data  
MC68HC908BD48 Rev. 1.0  
72  
Central Processor Unit (CPU)  
MOTOROLA  
Central Processor Unit (CPU)  
CPU Registers  
I — Interrupt Mask  
When the interrupt mask is set, all maskable CPU interrupts are  
disabled. CPU interrupts are enabled when the interrupt mask is  
cleared. When a CPU interrupt occurs, the interrupt mask is set  
automatically after the CPU registers are saved on the stack, but  
before the interrupt vector is fetched.  
1 = Interrupts disabled  
0 = Interrupts enabled  
NOTE: To maintain M6805 Family compatibility, the upper byte of the index  
register (H) is not stacked automatically. If the interrupt service routine  
modifies H, then the user must stack and unstack H using the PSHH and  
PULH instructions.  
After the I bit is cleared, the highest-priority interrupt request is  
serviced first.  
A return-from-interrupt (RTI) instruction pulls the CPU registers from  
the stack and restores the interrupt mask from the stack. After any  
reset, the interrupt mask is set and can be cleared only by the clear  
interrupt mask software instruction (CLI).  
N — Negative flag  
The CPU sets the negative flag when an arithmetic operation, logic  
operation, or data manipulation produces a negative result, setting bit  
7 of the result.  
1 = Negative result  
0 = Non-negative result  
Z — Zero flag  
The CPU sets the zero flag when an arithmetic operation, logic  
operation, or data manipulation produces a result of $00.  
1 = Zero result  
0 = Non-zero result  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Central Processor Unit (CPU)  
73  
Ce ntra l Proc e ssor Unit (CPU)  
C — Carry/Borrow Flag  
The CPU sets the carry/borrow flag when an addition operation  
produces a carry out of bit 7 of the accumulator or when a subtraction  
operation requires a borrow. Some instructions — such as bit test and  
branch, shift, and rotate — also clear or set the carry/borrow flag.  
1 = Carry out of bit 7  
0 = No carry out of bit 7  
6.5 Arithm e tic / Log ic Unit (ALU)  
The ALU performs the arithmetic and logic operations defined by the  
instruction set.  
Refer to the CPU08 Reference Manual (Motorola document order  
number CPU08RM/AD) for a description of the instructions and  
addressing modes and more detail about the architecture of the CPU.  
6.6 Low-Powe r Mod e s  
The WAIT and STOP instructions put the MCU in low power-consumption  
standby modes.  
6.6.1 Wa it Mod e  
The WAIT instruction:  
• Clears the interrupt mask (I bit) in the condition code register,  
enabling interrupts. After exit from wait mode by interrupt, the I bit  
remains clear. After exit by reset, the I bit is set.  
• Disables the CPU clock  
Technical Data  
MC68HC908BD48 Rev. 1.0  
74  
Central Processor Unit (CPU)  
MOTOROLA  
Central Processor Unit (CPU)  
CPU During Break Interrupts  
6.6.2 Stop Mod e  
The STOP instruction:  
• Clears the interrupt mask (I bit) in the condition code register,  
enabling external interrupts. After exit from stop mode by external  
interrupt, the I bit remains clear. After exit by reset, the I bit is set.  
• Disables the CPU clock  
After exiting stop mode, the CPU clock begins running after the oscillator  
stabilization delay.  
6.7 CPU During Bre a k Inte rrup ts  
If a break module is present on the MCU, the CPU starts a break  
interrupt by:  
• Loading the instruction register with the SWI instruction  
• Loading the program counter with $FFFC:$FFFD or with  
$FEFC:$FEFD in monitor mode  
The break interrupt begins after completion of the CPU instruction in  
progress. If the break address register match occurs on the last cycle of  
a CPU instruction, the break interrupt begins immediately.  
A return-from-interrupt instruction (RTI) in the break routine ends the  
break interrupt and returns the MCU to normal operation if the break  
interrupt has been deasserted.  
6.8 Instruc tion Se t Sum m a ry  
6.9 Op c od e Ma p  
See Table 6-2.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Central Processor Unit (CPU)  
75  
Ce ntra l Proc e ssor Unit (CPU)  
Table 6-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Operation  
Form  
Description  
V H  
I N Z C  
ADC #opr  
ADC opr  
ADC opr  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A9  
B9  
C9  
D9  
E9  
F9  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
ADC opr,X  
Add with Carry  
ADC opr,X  
A (A) + (M) + (C)  
↕ ↕ ↕ ↕ ↕  
ADC ,X  
ADC opr,SP  
ADC opr,SP  
SP1  
SP2  
9EE9 ff  
9ED9 ee ff  
ADD #opr  
ADD opr  
ADD opr  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
AB  
BB  
CB  
DB  
EB  
FB  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
ADD opr,X  
Add without Carry  
ADD opr,X  
A (A) + (M)  
↕ ↕ ↕ ↕ ↕  
ADD ,X  
ADD opr,SP  
ADD opr,SP  
SP1  
SP2  
9EEB ff  
9EDB ee ff  
AIS #opr  
AIX #opr  
Add Immediate Value (Signed) to SP  
Add Immediate Value (Signed) to H:X  
SP (SP) + (16 « M)  
H:X (H:X) + (16 « M)  
– IMM  
– IMM  
A7  
AF  
ii  
ii  
2
2
AND #opr  
AND opr  
AND opr  
AND opr,X  
AND opr,X  
AND ,X  
AND opr,SP  
AND opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A4  
B4  
C4  
D4  
E4  
F4  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Logical AND  
A (A) & (M)  
0
↕ ↕ –  
SP1  
SP2  
9EE4 ff  
9ED4 ee ff  
ASL opr  
ASLA  
ASLX  
ASL opr,X  
ASL ,X  
ASL opr,SP  
DIR  
INH  
INH  
IX1  
IX  
38  
48  
58  
68  
78  
dd  
ff  
4
1
1
4
3
5
Arithmetic Shift Left  
(Same as LSL)  
–  
↕ ↕ ↕  
C
0
b7  
b7  
b0  
b0  
SP1  
9E68 ff  
ASR opr  
ASRA  
ASRX  
ASR opr,X  
ASR opr,X  
ASR opr,SP  
DIR  
INH  
INH  
IX1  
IX  
37  
47  
57  
67  
77  
dd  
4
1
1
4
3
5
C
Arithmetic Shift Right  
–  
↕ ↕ ↕  
ff  
SP1  
9E67 ff  
BCC rel  
Branch if Carry Bit Clear  
PC (PC) + 2 + rel ? (C) = 0  
– REL  
DIR (b0)  
24  
rr  
3
11  
13  
15  
17  
19  
1B  
1D  
1F  
dd  
dd  
dd  
dd  
dd  
dd  
dd  
dd  
4
4
4
4
4
4
4
4
DIR (b1)  
DIR (b2)  
DIR (b3)  
DIR (b4)  
DIR (b5)  
DIR (b6)  
DIR (b7)  
BCLR n, opr  
Clear Bit n in M  
Mn 0  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
76  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
Opcode Map  
Table 6-1. Instruction Set Summary (Continued)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H  
I
N Z C  
BCS rel  
Branch if Carry Bit Set (Same as BLO)  
Branch if Equal  
PC (PC) + 2 + rel ? (C) = 1  
PC (PC) + 2 + rel ? (Z) = 1  
– REL  
– REL  
25  
27  
rr  
rr  
3
3
BEQ rel  
BGE opr  
Branch if Greater Than or Equal To  
(Signed Operands)  
PC (PC) + 2 + rel ? (N V) = 0  
– REL  
– REL  
90  
92  
rr  
rr  
3
Branch if Greater Than (Signed  
Operands)  
PC (PC) + 2 + rel ? (Z) | (N V) =  
BGT opr  
3
3
0
BHCC rel  
BHCS rel  
BHI rel  
Branch if Half Carry Bit Clear  
Branch if Half Carry Bit Set  
Branch if Higher  
PC (PC) + 2 + rel ? (H) = 0  
PC (PC) + 2 + rel ? (H) = 1  
PC (PC) + 2 + rel ? (C) | (Z) = 0  
– REL  
– REL  
– REL  
28  
29  
22  
rr  
rr  
rr  
3
3
3
Branch if Higher or Same  
(Same as BCC)  
BHS rel  
PC (PC) + 2 + rel ? (C) = 0  
– REL  
24  
rr  
BIH rel  
BIL rel  
Branch if IRQ Pin High  
Branch if IRQ Pin Low  
PC (PC) + 2 + rel ? IRQ = 1  
PC (PC) + 2 + rel ? IRQ = 0  
– REL  
– REL  
2F  
2E  
rr  
rr  
3
3
BIT #opr  
BIT opr  
BIT opr  
BIT opr,X  
BIT opr,X  
BIT ,X  
BIT opr,SP  
BIT opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A5  
B5  
C5  
D5  
E5  
F5  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Bit Test  
(A) & (M)  
0
↕ ↕ –  
SP1  
SP2  
9EE5 ff  
9ED5 ee ff  
Branch if Less Than or Equal To  
(Signed Operands)  
PC (PC) + 2 + rel ? (Z) | (N V) =  
BLE opr  
– REL  
93  
rr  
3
1
BLO rel  
BLS rel  
BLT opr  
BMC rel  
BMI rel  
BMS rel  
BNE rel  
BPL rel  
BRA rel  
Branch if Lower (Same as BCS)  
Branch if Lower or Same  
PC (PC) + 2 + rel ? (C) = 1  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
25  
23  
91  
2C  
2B  
2D  
26  
2A  
20  
rr  
rr  
rr  
rr  
rr  
rr  
rr  
rr  
rr  
3
3
3
3
3
3
3
3
3
PC (PC) + 2 + rel ? (C) | (Z) = 1  
Branch if Less Than (Signed Operands) PC (PC) + 2 + rel ? (N V) =1  
Branch if Interrupt Mask Clear  
Branch if Minus  
PC (PC) + 2 + rel ? (I) = 0  
PC (PC) + 2 + rel ? (N) = 1  
PC (PC) + 2 + rel ? (I) = 1  
PC (PC) + 2 + rel ? (Z) = 0  
PC (PC) + 2 + rel ? (N) = 0  
PC (PC) + 2 + rel  
Branch if Interrupt Mask Set  
Branch if Not Equal  
Branch if Plus  
Branch Always  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Central Processor Unit (CPU)  
77  
Ce ntra l Proc e ssor Unit (CPU)  
Table 6-1. Instruction Set Summary (Continued)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H  
I
N Z C  
DIR (b0)  
DIR (b1)  
DIR (b2)  
DIR (b3)  
DIR (b4)  
DIR (b5)  
DIR (b6)  
DIR (b7)  
01  
03  
05  
07  
09  
0B  
0D  
0F  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
5
5
5
5
5
5
5
5
BRCLR n,opr,rel Branch if Bit n in M Clear  
PC (PC) + 3 + rel ? (Mn) = 0  
BRN rel  
Branch Never  
PC (PC) + 2  
– REL  
DIR (b0)  
21  
rr  
3
00  
02  
04  
06  
08  
0A  
0C  
0E  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
5
5
5
5
5
5
5
5
DIR (b1)  
DIR (b2)  
DIR (b3)  
DIR (b4)  
DIR (b5)  
DIR (b6)  
DIR (b7)  
BRSET n,opr,rel Branch if Bit n in M Set  
PC (PC) + 3 + rel ? (Mn) = 1  
DIR (b0)  
DIR (b1)  
DIR (b2)  
DIR (b3)  
DIR (b4)  
DIR (b5)  
DIR (b6)  
DIR (b7)  
10  
12  
14  
16  
18  
1A  
1C  
1E  
dd  
dd  
dd  
dd  
dd  
dd  
dd  
dd  
4
4
4
4
4
4
4
4
BSET n,opr  
Set Bit n in M  
Mn 1  
PC (PC) + 2; push (PCL)  
SP (SP) – 1; push (PCH)  
SP (SP) – 1  
BSR rel  
Branch to Subroutine  
– REL  
AD  
rr  
4
PC (PC) + rel  
CBEQ opr,rel  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 3 + rel ? (X) – (M) = $00  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 2 + rel ? (A) – (M) = $00  
PC (PC) + 4 + rel ? (A) – (M) = $00  
DIR  
IMM  
31  
41  
51  
61  
71  
dd rr  
ii rr  
ii rr  
ff rr  
rr  
5
4
4
5
4
6
CBEQA #opr,rel  
CBEQX #opr,rel  
CBEQ opr,X+,rel  
CBEQ X+,rel  
IMM  
IX1+  
Compare and Branch if Equal  
IX+  
SP1  
CBEQ opr,SP,rel  
9E61 ff rr  
CLC  
CLI  
Clear Carry Bit  
C 0  
I 0  
0
0 INH  
– INH  
98  
9A  
1
2
Clear Interrupt Mask  
CLR opr  
CLRA  
CLRX  
CLRH  
CLR opr,X  
CLR ,X  
M $00  
A $00  
X $00  
H $00  
M $00  
M $00  
M $00  
DIR  
INH  
INH  
– INH  
IX1  
IX  
3F  
4F  
5F  
8C  
6F  
7F  
dd  
ff  
3
1
1
1
3
2
4
Clear  
0
0
1
CLR opr,SP  
SP1  
9E6F ff  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
78  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
Opcode Map  
Table 6-1. Instruction Set Summary (Continued)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H  
I
N Z C  
CMP #opr  
CMP opr  
CMP opr  
CMP opr,X  
CMP opr,X  
CMP ,X  
CMP opr,SP  
CMP opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A1  
B1  
C1  
D1  
E1  
F1  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Compare A with M  
(A) – (M)  
–  
↕ ↕ ↕  
SP1  
SP2  
9EE1 ff  
9ED1 ee ff  
COM opr  
COMA  
COMX  
COM opr,X  
COM ,X  
COM opr,SP  
M (M) = $FF – (M)  
A (A) = $FF – (M)  
X (X) = $FF – (M)  
M (M) = $FF – (M)  
M (M) = $FF – (M)  
M (M) = $FF – (M)  
DIR  
INH  
INH  
IX1  
IX  
33  
43  
53  
63  
73  
dd  
ff  
4
1
1
4
3
5
Complement (One’s Complement)  
Compare H:X with M  
0
↕ ↕ 1  
SP1  
9E63 ff  
CPHX #opr  
CPHX opr  
IMM  
DIR  
65  
75  
ii ii+1  
dd  
3
4
(H:X) – (M:M + 1)  
–  
↕ ↕ ↕  
CPX #opr  
CPX opr  
CPX opr  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A3  
B3  
C3  
D3  
E3  
F3  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
CPX ,X  
Compare X with M  
(X) – (M)  
–  
↕ ↕ ↕  
CPX opr,X  
CPX opr,X  
CPX opr,SP  
CPX opr,SP  
SP1  
SP2  
9EE3 ff  
9ED3 ee ff  
DAA  
Decimal Adjust A  
(A)  
U –  
↕ ↕ ↕ INH  
72  
2
10  
A (A) – 1 or M (M) – 1 or X (X) –  
1
5
3
3
5
4
6
DBNZ opr,rel  
DBNZA rel  
DBNZX rel  
DBNZ opr,X,rel  
DBNZ X,rel  
DBNZ opr,SP,rel  
DIR  
INH  
– INH  
IX1  
IX  
SP1  
3B  
4B  
5B  
6B  
7B  
dd rr  
rr  
rr  
ff rr  
rr  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 4 + rel ? (result) 0  
Decrement and Branch if Not Zero  
9E6B ff rr  
DEC opr  
DECA  
DECX  
DEC opr,X  
DEC ,X  
DEC opr,SP  
M (M) – 1  
A (A) – 1  
X (X) – 1  
M (M) – 1  
M (M) – 1  
M (M) – 1  
DIR  
INH  
INH  
IX1  
IX  
3A  
4A  
5A  
6A  
7A  
dd  
ff  
4
1
1
4
3
5
Decrement  
Divide  
–  
↕ ↕ –  
SP1  
9E6A ff  
A (H:A)/(X)  
H Remainder  
DIV  
↕ ↕ INH  
52  
7
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Central Processor Unit (CPU)  
79  
Ce ntra l Proc e ssor Unit (CPU)  
Table 6-1. Instruction Set Summary (Continued)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H  
I
N Z C  
EOR #opr  
EOR opr  
EOR opr  
EOR opr,X  
EOR opr,X  
EOR ,X  
EOR opr,SP  
EOR opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A8  
B8  
C8  
D8  
E8  
F8  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Exclusive OR M with A  
A (A M)  
0
↕ ↕ –  
SP1  
SP2  
9EE8 ff  
9ED8 ee ff  
INC opr  
INCA  
INCX  
INC opr,X  
INC ,X  
INC opr,SP  
M (M) + 1  
A (A) + 1  
X (X) + 1  
M (M) + 1  
M (M) + 1  
M (M) + 1  
DIR  
INH  
INH  
IX1  
IX  
3C  
4C  
5C  
6C  
7C  
dd  
ff  
4
1
1
4
3
5
Increment  
–  
↕ ↕ –  
SP1  
9E6C ff  
JMP opr  
JMP opr  
JMP opr,X  
JMP opr,X  
JMP ,X  
DIR  
EXT  
– IX2  
IX1  
IX  
BC  
CC  
DC  
EC  
FC  
dd  
2
3
4
3
2
hh ll  
ee ff  
ff  
Jump  
PC Jump Address  
JSR opr  
JSR opr  
JSR opr,X  
JSR opr,X  
JSR ,X  
DIR  
EXT  
– IX2  
IX1  
BD  
CD  
DD  
ED  
FD  
dd  
4
5
6
5
4
PC (PC) + n (n = 1, 2, or 3)  
Push (PCL); SP (SP) – 1  
Push (PCH); SP (SP) – 1  
PC Unconditional Address  
hh ll  
ee ff  
ff  
Jump to Subroutine  
IX  
LDA #opr  
LDA opr  
LDA opr  
LDA opr,X  
LDA opr,X  
LDA ,X  
LDA opr,SP  
LDA opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A6  
B6  
C6  
D6  
E6  
F6  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Load A from M  
Load H:X from M  
Load X from M  
A (M)  
H:X ← (M:M + 1)  
X (M)  
0
0
0
↕ ↕ –  
↕ ↕ –  
↕ ↕ –  
SP1  
SP2  
9EE6 ff  
9ED6 ee ff  
LDHX #opr  
LDHX opr  
IMM  
DIR  
45  
55  
ii jj  
dd  
3
4
LDX #opr  
LDX opr  
LDX opr  
LDX opr,X  
LDX opr,X  
LDX ,X  
LDX opr,SP  
LDX opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
AE  
BE  
CE  
DE  
EE  
FE  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
SP1  
SP2  
9EEE ff  
9EDE ee ff  
LSL opr  
LSLA  
LSLX  
LSL opr,X  
LSL ,X  
LSL opr,SP  
DIR  
INH  
INH  
IX1  
IX  
38  
48  
58  
68  
78  
dd  
ff  
4
1
1
4
3
5
Logical Shift Left  
(Same as ASL)  
C
0
–  
↕ ↕ ↕  
b7  
b0  
SP1  
9E68 ff  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
80  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
Opcode Map  
Table 6-1. Instruction Set Summary (Continued)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H  
I
N Z C  
LSR opr  
LSRA  
LSRX  
LSR opr,X  
LSR ,X  
DIR  
INH  
INH  
IX1  
IX  
34  
44  
54  
64  
74  
dd  
ff  
4
1
1
4
3
5
0
C
Logical Shift Right  
–  
0 ↕ ↕  
b7  
b0  
LSR opr,SP  
SP1  
9E64 ff  
MOV opr,opr  
MOV opr,X+  
MOV #opr,opr  
MOV X+,opr  
DD  
4E  
5E  
6E  
7E  
dd dd  
dd  
ii dd  
dd  
5
4
4
4
(M)  
(M)  
Source  
Destination  
DIX+  
IMD  
IX+D  
Move  
0
0
↕ ↕ –  
H:X (H:X) + 1 (IX+D, DIX+)  
X:A (X) × (A)  
MUL  
Unsigned multiply  
0 INH  
42  
5
NEG opr  
NEGA  
NEGX  
NEG opr,X  
NEG ,X  
NEG opr,SP  
DIR  
INH  
INH  
IX1  
IX  
30  
40  
50  
60  
70  
dd  
ff  
4
1
1
4
3
5
M –(M) = $00 – (M)  
A –(A) = $00 – (A)  
X –(X) = $00 – (X)  
M –(M) = $00 – (M)  
M –(M) = $00 – (M)  
Negate (Two’s Complement)  
–  
↕ ↕ ↕  
SP1  
9E60 ff  
NOP  
NSA  
No Operation  
Nibble Swap A  
None  
– INH  
– INH  
9D  
1
3
A (A[3:0]:A[7:4])  
62  
ORA #opr  
ORA opr  
ORA opr  
ORA opr,X  
ORA opr,X  
ORA ,X  
ORA opr,SP  
ORA opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
AA  
BA  
CA  
DA  
EA  
FA  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Inclusive OR A and M  
A (A) | (M)  
0
↕ ↕ –  
SP1  
SP2  
9EEA ff  
9EDA ee ff  
PSHA  
PSHH  
PSHX  
PULA  
PULH  
PULX  
Push A onto Stack  
Push H onto Stack  
Push X onto Stack  
Pull A from Stack  
Pull H from Stack  
Pull X from Stack  
Push (A); SP (SP) – 1  
Push (H); SP (SP) – 1  
Push (X); SP (SP) – 1  
SP (SP + 1); Pull (A)  
SP (SP + 1); Pull (H)  
SP (SP + 1); Pull (X)  
– INH  
– INH  
– INH  
– INH  
– INH  
– INH  
87  
8B  
89  
86  
8A  
88  
2
2
2
2
2
2
ROL opr  
ROLA  
ROLX  
ROL opr,X  
ROL ,X  
ROL opr,SP  
DIR  
INH  
INH  
IX1  
IX  
39  
49  
59  
69  
79  
dd  
ff  
4
1
1
4
3
5
C
Rotate Left through Carry  
–  
↕ ↕ ↕  
b7  
b0  
SP1  
9E69 ff  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Central Processor Unit (CPU)  
81  
Ce ntra l Proc e ssor Unit (CPU)  
Table 6-1. Instruction Set Summary (Continued)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H  
I
N Z C  
ROR opr  
RORA  
RORX  
ROR opr,X  
ROR ,X  
DIR  
INH  
INH  
IX1  
IX  
36  
46  
56  
66  
76  
dd  
ff  
4
1
1
4
3
5
C
Rotate Right through Carry  
–  
↕ ↕ ↕  
b7  
b0  
ROR opr,SP  
SP1  
9E66 ff  
RSP  
Reset Stack Pointer  
Return from Interrupt  
SP $FF  
– INH  
9C  
1
SP (SP) + 1; Pull (CCR)  
SP (SP) + 1; Pull (A)  
SP (SP) + 1; Pull (X)  
SP (SP) + 1; Pull (PCH)  
SP (SP) + 1; Pull (PCL)  
RTI  
↕ ↕ ↕ ↕ ↕ ↕ INH  
80  
81  
7
SP SP + 1; Pull (PCH)  
SP SP + 1; Pull (PCL)  
RTS  
Return from Subroutine  
Subtract with Carry  
– INH  
4
SBC #opr  
SBC opr  
SBC opr  
SBC opr,X  
SBC opr,X  
SBC ,X  
SBC opr,SP  
SBC opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A2  
B2  
C2  
D2  
E2  
F2  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
A (A) – (M) – (C)  
–  
↕ ↕ ↕  
SP1  
SP2  
9EE2 ff  
9ED2 ee ff  
SEC  
SEI  
Set Carry Bit  
C 1  
I 1  
1
1 INH  
– INH  
99  
9B  
1
2
Set Interrupt Mask  
STA opr  
STA opr  
DIR  
EXT  
IX2  
B7  
C7  
D7  
E7  
F7  
dd  
3
4
4
3
2
4
5
hh ll  
ee ff  
ff  
STA opr,X  
STA opr,X  
STA ,X  
STA opr,SP  
STA opr,SP  
Store A in M  
M (A)  
0
↕ ↕ – IX1  
IX  
SP1  
SP2  
9EE7 ff  
9ED7 ee ff  
STHX opr  
STOP  
Store H:X in M  
(M:M + 1) (H:X)  
0
0
↕ ↕ – DIR  
35  
8E  
dd  
4
1
Enable IRQ Pin; Stop Oscillator  
I 0; Stop Oscillator  
– INH  
STX opr  
STX opr  
DIR  
EXT  
IX2  
BF  
CF  
DF  
EF  
FF  
dd  
3
4
4
3
2
4
5
hh ll  
ee ff  
ff  
STX opr,X  
STX opr,X  
STX ,X  
STX opr,SP  
STX opr,SP  
Store X in M  
M (X)  
0
↕ ↕ – IX1  
IX  
SP1  
SP2  
9EEF ff  
9EDF ee ff  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
82  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
Opcode Map  
Table 6-1. Instruction Set Summary (Continued)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H  
I
N Z C  
SUB #opr  
SUB opr  
SUB opr  
SUB opr,X  
SUB opr,X  
SUB ,X  
SUB opr,SP  
SUB opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A0  
B0  
C0  
D0  
E0  
F0  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Subtract  
A (A) – (M)  
–  
↕ ↕ ↕  
SP1  
SP2  
9EE0 ff  
9ED0 ee ff  
PC (PC) + 1; Push (PCL)  
SP (SP) – 1; Push (PCH)  
SP (SP) – 1; Push (X)  
SP (SP) – 1; Push (A)  
SP (SP) – 1; Push (CCR)  
SP (SP) – 1; I 1  
SWI  
Software Interrupt  
1
– INH  
83  
9
PCH Interrupt Vector High Byte  
PCL Interrupt Vector Low Byte  
TAP  
TAX  
TPA  
Transfer A to CCR  
Transfer A to X  
CCR (A)  
X (A)  
↕ ↕ ↕ ↕ ↕ ↕ INH  
84  
97  
85  
2
1
1
– INH  
– INH  
Transfer CCR to A  
A (CCR)  
TST opr  
TSTA  
TSTX  
TST opr,X  
TST ,X  
TST opr,SP  
DIR  
INH  
INH  
IX1  
IX  
3D  
4D  
5D  
6D  
7D  
dd  
ff  
3
1
1
3
2
4
Test for Negative or Zero  
(A) – $00 or (X) – $00 or (M) – $00  
0
↕ ↕ –  
SP1  
9E6D ff  
TSX  
TXA  
TXS  
Transfer SP to H:X  
Transfer X to A  
H:X (SP) + 1  
A (X)  
– INH  
– INH  
– INH  
95  
9F  
94  
2
1
2
Transfer H:X to SP  
(SP) (H:X) – 1  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Central Processor Unit (CPU)  
83  
Ce ntra l Proc e ssor Unit (CPU)  
Table 6-1. Instruction Set Summary (Continued)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H  
Any bit  
opr Operand (one or two bytes)  
PC Program counter  
PCH Program counter high byte  
PCL Program counter low byte  
REL Relative addressing mode  
I N Z C  
A
C
Accumulator  
Carry/borrow bit  
n
CCR Condition code register  
dd Direct address of operand  
dd rr Direct address of operand and relative offset of branch instruction  
DD Direct to direct addressing mode  
DIR Direct addressing mode  
rel  
rr  
Relative program counter offset byte  
Relative program counter offset byte  
DIX+ Direct to indexed with post increment addressing mode  
ee ff High and low bytes of offset in indexed, 16-bit offset addressing  
EXT Extended addressing mode  
SP1 Stack pointer, 8-bit offset addressing mode  
SP2 Stack pointer 16-bit offset addressing mode  
SP Stack pointer  
U
V
X
Z
&
|
ff  
H
H
Offset byte in indexed, 8-bit offset addressing  
Half-carry bit  
Index register high byte  
Undefined  
Overflow bit  
Index register low byte  
Zero bit  
Logical AND  
Logical OR  
Logical EXCLUSIVE OR  
Contents of  
hh ll High and low bytes of operand address in extended addressing  
I
Interrupt mask  
ii  
Immediate operand byte  
IMD Immediate source to direct destination addressing mode  
IMM Immediate addressing mode  
INH Inherent addressing mode  
( )  
IX  
Indexed, no offset addressing mode  
–( ) Negation (two’s complement)  
IX+  
Indexed, no offset, post increment addressing mode  
#
Immediate value  
Sign extend  
Loaded with  
If  
IX+D Indexed with post increment to direct addressing mode  
IX1 Indexed, 8-bit offset addressing mode  
IX1+ Indexed, 8-bit offset, post increment addressing mode  
«
?
IX2  
M
N
Indexed, 16-bit offset addressing mode  
Memory location  
Negative bit  
:
Concatenated with  
Set or cleared  
Not affected  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
84  
Central Processor Unit (CPU)  
Table 6-2. Opcode Map  
Bit Manipulation Branch  
Read-Modify-Write  
Control  
Register/Memory  
DIR  
DIR  
REL  
DIR  
3
INH  
4
INH  
IX1  
SP1  
9E6  
IX  
7
INH  
INH  
IMM  
A
DIR  
B
EXT  
C
IX2  
SP2  
IX1  
E
SP1  
9EE  
IX  
F
MSB  
0
1
2
5
6
8
9
D
9ED  
LSB  
5
4
3
4
1
NEGA  
INH  
1
NEGX  
INH  
4
5
3
7
3
2
3
4
4
5
3
4
2
0
BRSET0 BSET0  
BRA  
NEG  
NEG  
NEG  
NEG  
RTI  
BGE  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
3
DIR  
5
2
DIR  
4
2
2
2
2
2
2
2
2
REL 2 DIR  
1
1
2
IX1 3 SP1 1 IX  
5
1
1
INH  
2
2
2
2
1
1
REL 2 IMM 2 DIR  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
EXT 3 IX2  
4
4
4
4
4
4
4
4
4
4
4
4
SP2 2 IX1  
3
3
3
3
3
3
3
3
3
3
3
3
SP1 1 IX  
3
BRN  
REL 3 DIR  
3
BHI  
REL  
3
BLS  
REL 2 DIR  
3
BCC  
REL 2 DIR  
3
BCS  
REL 2 DIR  
3
BNE  
REL 2 DIR  
3
BEQ  
REL 2 DIR  
3
5
4
4
6
4
4
3
BLT  
2
CMP  
3
CMP  
4
CMP  
EXT 3 IX2  
4
SBC  
EXT 3 IX2  
4
CPX  
EXT 3 IX2  
4
AND  
EXT 3 IX2  
4
BIT  
EXT 3 IX2  
4
LDA  
EXT 3 IX2  
4
STA  
EXT 3 IX2  
4
EOR  
EXT 3 IX2  
4
ADC  
EXT 3 IX2  
4
ORA  
EXT 3 IX2  
4
ADD  
EXT 3 IX2  
3
JMP  
EXT 3 IX2  
5
JSR  
EXT 3 IX2  
4
LDX  
EXT 3 IX2  
4
STX  
EXT 3 IX2  
4
CMP  
5
CMP  
SP2 2 IX1  
5
SBC  
SP2 2 IX1  
5
CPX  
SP2 2 IX1  
5
AND  
SP2 2 IX1  
5
BIT  
SP2 2 IX1  
5
LDA  
SP2 2 IX1  
5
STA  
SP2 2 IX1  
5
EOR  
SP2 2 IX1  
3
CMP  
4
CMP  
SP1 1 IX  
4
SBC  
SP1 1 IX  
4
CPX  
SP1 1 IX  
4
AND  
SP1 1 IX  
4
BIT  
SP1 1 IX  
4
LDA  
SP1 1 IX  
4
STA  
SP1 1 IX  
4
EOR  
SP1 1 IX  
2
CMP  
1
2
BRCLR0 BCLR0  
CBEQ CBEQA CBEQX CBEQ  
CBEQ  
CBEQ  
RTS  
3
DIR  
5
2
DIR  
4
3
1
IMM 3 IMM 3 IX1+  
4
SP1 2 IX+  
INH  
REL 2 IMM 2 DIR  
5
7
3
2
DAA  
3
BGT  
2
SBC  
3
SBC  
4
SBC  
3
SBC  
2
SBC  
BRSET1 BSET1  
MUL  
DIV  
INH  
NSA  
3
DIR  
5
2
DIR  
4
INH  
1
1
2
2
3
2
2
2
2
2
INH  
1
INH  
3
REL 2 IMM 2 DIR  
4
1
1
4
COM  
IX1  
4
LSR  
IX1  
3
CPHX  
IMM  
4
ROR  
IX1  
4
ASR  
IX1  
4
LSL  
IX1  
4
ROL  
IX1  
4
DEC  
IX1  
5
9
3
BLE  
2
CPX  
3
CPX  
4
CPX  
3
CPX  
2
CPX  
3
BRCLR1 BCLR1  
COM  
COMA  
COMX  
COM  
COM  
SWI  
3
DIR  
5
2
DIR  
4
1
INH  
1
INH  
3
3
SP1 1 IX  
1
1
1
1
1
1
1
1
1
1
INH  
REL 2 IMM 2 DIR  
4
LSR  
1
LSRA  
INH  
1
LSRX  
INH  
5
LSR  
SP1 1 IX  
3
LSR  
2
2
2
AND  
IMM 2 DIR  
3
AND  
4
AND  
3
AND  
2
AND  
4
BRSET2 BSET2  
TAP  
TXS  
3
DIR  
5
2
DIR  
4
1
3
1
INH  
INH  
2
2
2
2
2
2
2
2
4
3
4
4
1
2
2
BIT  
3
BIT  
4
BIT  
3
BIT  
2
BIT  
5
BRCLR2 BCLR2  
STHX  
LDHX  
LDHX  
CPHX  
TPA  
TSX  
3
DIR  
5
2
DIR  
4
IMM 2 DIR  
2
DIR  
3
INH  
INH  
IMM 2 DIR  
4
ROR  
1
1
5
2
PULA  
INH  
2
PSHA  
INH  
2
PULX  
INH  
2
PSHX  
INH  
2
PULH  
INH  
2
PSHH  
INH  
1
CLRH  
INH  
2
LDA  
IMM 2 DIR  
2
AIS  
IMM 2 DIR  
2
EOR  
IMM 2 DIR  
2
ADC  
IMM 2 DIR  
2
ORA  
IMM 2 DIR  
2
ADD  
IMM 2 DIR  
3
LDA  
4
LDA  
3
LDA  
2
LDA  
6
BRSET3 BSET3  
RORA  
RORX  
ROR  
SP1 1 IX  
5
ASR  
SP1 1 IX  
5
LSL  
SP1 1 IX  
5
ROL  
SP1 1 IX  
ROR  
3
DIR  
5
2
DIR  
4
1
INH  
1
INH  
3
3
3
3
3
4
3
3
4
ASR  
1
ASRA  
INH  
1
LSLA  
INH  
1
ROLA  
INH  
1
DECA  
INH  
1
ASRX  
INH  
1
LSLX  
INH  
1
ROLX  
INH  
1
DECX  
INH  
3
ASR  
1
3
STA  
4
STA  
3
STA  
2
STA  
7
BRCLR3 BCLR3  
TAX  
3
DIR  
5
2
DIR  
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
INH  
4
LSL  
3
LSL  
1
3
EOR  
4
EOR  
3
EOR  
2
EOR  
8
BRSET4 BSET4 BHCC  
CLC  
3
DIR  
5
2
DIR  
4
2
REL 2 DIR  
3
INH  
4
ROL  
3
ROL  
1
3
ADC  
4
ADC  
5
ADC  
SP2 2 IX1  
5
ORA  
SP2 2 IX1  
5
ADD  
SP2 2 IX1  
3
ADC  
4
ADC  
SP1 1 IX  
4
ORA  
SP1 1 IX  
4
ADD  
SP1 1 IX  
2
ADC  
9
BRCLR4 BCLR4 BHCS  
SEC  
3
DIR  
5
2
DIR  
4
2
2
2
2
2
2
2
REL 2 DIR  
INH  
3
BPL  
REL 2 DIR  
3
BMI  
REL 3 DIR  
3
BMC  
REL 2 DIR  
3
BMS  
REL 2 DIR  
3
BIL  
4
DEC  
5
DEC  
SP1 1 IX  
3
DEC  
2
CLI  
INH  
2
SEI  
INH  
3
ORA  
4
ORA  
3
ORA  
2
ORA  
A
B
C
D
E
F
BRSET5 BSET5  
3
DIR  
5
2
DIR  
4
5
3
3
5
6
4
3
ADD  
4
ADD  
3
ADD  
2
ADD  
BRCLR5 BCLR5  
DBNZ DBNZA DBNZX DBNZ  
DBNZ  
DBNZ  
3
DIR  
5
2
DIR  
4
2
1
1
3
1
INH  
1
2
1
1
2
1
INH  
1
3
2
2
3
2
IX1  
4
INC  
IX1  
3
TST  
IX1  
4
MOV  
IMD  
3
CLR  
IX1  
SP1 2 IX  
4
INC  
5
INC  
SP1 1 IX  
4
TST  
SP1 1 IX  
3
INC  
1
2
JMP  
4
JMP  
3
JMP  
2
BRSET6 BSET6  
INCA  
INCX  
RSP  
JMP  
3
DIR  
5
2
DIR  
4
INH  
1
TSTA  
INH  
5
MOV  
DD  
1
CLRA  
INH  
INH  
1
TSTX  
INH  
4
MOV  
DIX+  
1
CLRX  
INH  
INH  
2
DIR  
4
2
2
IX1  
5
1
1
IX  
3
TST  
2
TST  
1
4
BSR  
REL 2 DIR  
2
LDX  
IMM 2 DIR  
2
AIX  
IMM 2 DIR  
6
JSR  
4
JSR  
IX  
2
LDX  
BRCLR6 BCLR6  
NOP  
JSR  
JSR  
3
DIR  
5
2
DIR  
4
INH  
2
2
2
IX1  
3
4
1
STOP  
INH  
1
WAIT  
INH  
3
LDX  
4
LDX  
5
LDX  
SP2 2 IX1  
5
STX  
SP2 2 IX1  
4
LDX  
SP1 1 IX  
4
STX  
SP1 1 IX  
BRSET7 BSET7  
MOV  
LDX  
*
1
TXA  
INH  
3
DIR  
5
2
DIR  
4
REL  
3
BIH  
2
IX+D  
1
1
4
4
3
3
3
CLR  
4
CLR  
SP1 1 IX  
2
CLR  
3
STX  
4
STX  
3
STX  
2
STX  
BRCLR7 BCLR7  
DIR DIR  
3
2
REL 2 DIR  
3
1
INH Inherent  
REL Relative  
SP1 Stack Pointer, 8-Bit Offset  
SP2 Stack Pointer, 16-Bit Offset  
IX+ Indexed, No Offset with  
Post Increment  
IX1+ Indexed, 1-Byte Offset with  
Post Increment  
MSB  
LSB  
0
High Byte of Opcode in Hexadecimal  
Cycles  
IMM Immediate  
DIR Direct  
IX  
Indexed, No Offset  
IX1 Indexed, 8-Bit Offset  
IX2 Indexed, 16-Bit Offset  
IMD Immediate-Direct  
EXT Extended  
DD Direct-Direct  
IX+D Indexed-Direct DIX+ Direct-Indexed  
*Pre-byte for stack pointer indexed instructions  
5
Low Byte of Opcode in Hexadecimal  
0
BRSET0 Opcode Mnemonic  
DIR Number of Bytes / Addressing Mode  
3
Ce ntra l Proc e ssor Unit (CPU)  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
86  
Central Processor Unit (CPU)  
Te c hnic a l Da ta — MC68HC908BD48  
Se c tion 7. Syste m Inte g ra tion Mod ule (SIM)  
7.1 Conte nts  
7.2  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
7.3  
SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . .91  
Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
Clock Start-Up from POR. . . . . . . . . . . . . . . . . . . . . . . . . . .91  
Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . .91  
7.3.1  
7.3.2  
7.3.3  
7.4  
7.4.1  
7.4.2  
7.4.2.1  
7.4.2.2  
7.4.2.3  
7.4.2.4  
Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . .92  
External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
Active Resets from Internal Sources . . . . . . . . . . . . . . . . . .93  
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
Computer Operating Properly (COP) Reset . . . . . . . . . .95  
Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
Illegal Address Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
7.5  
SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . .96  
SIM Counter During Stop Mode Recovery. . . . . . . . . . . . . .97  
SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . .97  
7.5.1  
7.5.2  
7.5.3  
7.6  
7.6.1  
Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98  
Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . .100  
SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101  
Interrupt Status Registers. . . . . . . . . . . . . . . . . . . . . . . . . .101  
Interrupt Status Register 1. . . . . . . . . . . . . . . . . . . . . . .103  
Interrupt Status Register 2. . . . . . . . . . . . . . . . . . . . . . .103  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104  
Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104  
Status Flag Protection in Break Mode . . . . . . . . . . . . . . . .104  
7.6.1.1  
7.6.1.2  
7.6.2  
7.6.2.1  
7.6.2.2  
7.6.3  
7.6.4  
7.6.5  
7.7  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
System Integration Module (SIM)  
87  
 
Syste m Inte g ra tion Mod ule (SIM)  
7.7.1  
7.7.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106  
7.8  
SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108  
SIM Break Status Register (SBSR) . . . . . . . . . . . . . . . . . .108  
SIM Reset Status Register (SRSR) . . . . . . . . . . . . . . . . . .109  
SIM Break Flag Control Register (SBFCR) . . . . . . . . . . . .110  
7.8.1  
7.8.2  
7.8.3  
7.2 Introd uc tion  
This section describes the system integration module, which supports up  
to 16 external and/or internal interrupts. Together with the CPU, the SIM  
controls all MCU activities. A block diagram of the SIM is shown in  
Figure 7-1. Table 7-1 shows a summary of the SIM I/O registers. The  
SIM is a system state controller that coordinates CPU and exception  
timing. The SIM is responsible for:  
• Bus clock generation and control for CPU and peripherals:  
– Stop/wait/reset/break entry and recovery  
– Internal clock control  
• Master reset control, including power-on reset (POR) and COP  
timeout  
• Interrupt control:  
– Acknowledge timing  
– Arbitration control timing  
– Vector address generation  
• CPU enable/disable timing  
• Modular architecture expandable to 128 interrupt sources  
Technical Data  
MC68HC908BD48 Rev. 1.0  
88  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
Introduction  
MODULE STOP  
MODULE WAIT  
CPU STOP (FROM CPU)  
CPU WAIT (FROM CPU)  
STOP/WAIT  
CONTROL  
SIMOSCEN (TO OSCILLATOR)  
SIM  
COUNTER  
COP CLOCK  
OSCXCLK (FROM OSCILLATOR)  
OSCOUT (FROM OSCILLATOR)  
÷
2
CLOCK  
CONTROL  
CLOCK GENERATORS  
INTERNAL CLOCKS  
LVI (FROM LVI MODULE)  
RESET  
PIN LOGIC  
POR CONTROL  
RESET PIN CONTROL  
MASTER  
RESET  
CONTROL  
ILLEGAL OPCODE (FROM CPU)  
ILLEGAL ADDRESS (FROM ADDRESS  
MAP DECODERS)  
SIM RESET STATUS REGISTER  
COP (FROM COP MODULE)  
RESET  
INTERRUPT SOURCES  
CPU INTERFACE  
INTERRUPT CONTROL  
AND PRIORITY DECODE  
Figure 7-1. SIM Block Diagram  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
System Integration Module (SIM)  
89  
Syste m Inte g ra tion Mod ule (SIM)  
Table 7-1. SIM I/O Register Summary  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
SBSW  
Note  
0
Bit 0  
Read:  
Write:  
Reset:  
Read:  
Write:  
POR:  
R
R
R
R
R
R
R
SIM Break Status Register  
(SBSR)  
$FE00  
0
0
0
0
0
0
0
0
0
POR  
PIN  
COP  
ILOP  
ILAD  
0
SIM Reset Status  
Register (SRSR)  
$FE01  
$FE03  
$FE04  
$FE05  
1
0
0
0
0
0
0
0
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
BCFE  
R
R
R
R
R
R
R
SIM Break Flag Control  
Register (SBFCR)  
0
IF6  
R
0
IF5  
R
0
IF4  
R
0
IF3  
R
0
IF2  
R
IF1  
0
R
0
R
Interrupt Status Register 1  
(INT1)  
R
0
0
0
0
0
0
0
0
IF10  
R
IF9  
IF8  
R
IF7  
R
Interrupt Status Register 2  
(INT2) Write:  
R
0
R
0
R
0
R
0
R
Reset:  
0
0
0
0
Note: Writing a logic 0 clears SBSW.  
= Unimplemented  
R
= Reserved  
Table 7-2 shows the internal signal names used in this section.  
Table 7-2. Signal Name Conventions  
Signal Name  
Description  
OSCXCLK  
Buffered version of OSC1 from the oscillator  
The OSCXCLK frequency divided by two. This signal is again  
divided by two in the SIM to generate the internal bus clocks.  
(Bus clock = OSCXCLK divided by four)  
OSCOUT  
IAB  
IDB  
Internal address bus  
Internal data bus  
PORRST  
IRST  
Signal from the power-on reset module to the SIM  
Internal reset signal  
R/W  
Read/write signal  
Technical Data  
MC68HC908BD48 Rev. 1.0  
90  
System Integration Module (SIM)  
MOTOROLA  
 
System Integration Module (SIM)  
SIM Bus Clock Control and Generation  
7.3 SIM Bus Cloc k Control a nd Ge ne ra tion  
The bus clock generator provides system clock signals for the CPU and  
peripherals on the MCU. The system clocks are generated from an  
incoming clock, OSCOUT, as shown in Figure 7-2.  
From  
SIM  
OSCXCLK  
SIM COUNTER  
OSCOUT  
BUS CLOCK  
÷
2
÷ 2  
GENERATORS  
SIMOSCEN  
OSCILLATOR  
SIM  
OSC1  
OSC2  
Figure 7-2. OSC Clock Signals  
7.3.1 Bus Tim ing  
In user mode, the internal bus frequency is the oscillator frequency  
(OSCXCLK) divided by four.  
7.3.2 Cloc k Sta rt-Up from POR  
When the power-on reset module generates a reset, the clocks to the  
CPU and peripherals are inactive and held in an inactive phase until after  
the 4096 OSCXCLK cycle POR timeout has completed. The RST is  
driven low by the SIM during this entire period. The IBUS clocks start  
upon completion of the timeout.  
7.3.3 Cloc ks in Stop Mod e a nd Wa it Mod e  
Upon exit from stop mode (by an interrupt, break, or reset), the SIM  
allows OSCXCLK to clock the SIM counter. The CPU and peripheral  
clocks do not become active until after the stop delay timeout. This  
timeout is selectable as 4096 or 32 OSCXCLK cycles. (See 7.7.2 Stop  
Mode.)  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
System Integration Module (SIM)  
91  
Syste m Inte g ra tion Mod ule (SIM)  
In wait mode, the CPU clocks are inactive. The SIM also produces two  
sets of clocks for other modules. Refer to the wait mode subsection of  
each module to see if the module is active or inactive in wait mode.  
Some modules can be programmed to be active in wait mode.  
7.4 Re se t a nd Syste m Initia liza tion  
The MCU has the following reset sources:  
• Power-on reset module (POR)  
• External reset pin (RST)  
• Computer operating properly module (COP)  
• Illegal opcode  
• Illegal address  
All of these resets produce the vector $FFFE–FFFF ($FEFE–FEFF in  
monitor mode) and assert the internal reset signal (IRST). IRST causes  
all registers to be returned to their default values and all modules to be  
returned to their reset states.  
An internal reset clears the SIM counter (see 7.5 SIM Counter), but an  
external reset does not. Each of the resets sets a corresponding bit in  
the SIM reset status register (SRSR) (see 7.8 SIM Registers).  
7.4.1 Exte rna l Pin Re se t  
Pulling the asynchronous RST pin low halts all processing. The PIN bit  
of the SIM reset status register (SRSR) is set as long as RST is held low  
for a minimum of 67 OSCXCLK cycles, assuming that the POR was the  
source of the reset (see Table 7-3. PIN Bit Set Timing). Figure 7-3  
shows the relative timing.  
Table 7-3. PIN Bit Set Timing  
Reset Type  
POR  
Number of Cycles Required to Set PIN  
4163 (4096 + 64 + 3)  
All others  
67 (64 + 3)  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
92  
System Integration Module (SIM)  
 
System Integration Module (SIM)  
Reset and System Initialization  
OSCOUT  
RST  
VECT H VECT L  
IAB  
PC  
Figure 7-3. External Reset Timing  
7.4.2 Ac tive Re se ts from Inte rna l Sourc e s  
SIM module in HC08 has the capability to drive the RST pin low when  
internal reset events occur.  
All internal reset sources actively pull the RST pin low for 32 OSCXCLK  
cycles to allow resetting of external peripherals. The internal reset signal  
IRST continues to be asserted for an additional 32 cycles (see Figure 7-  
4. Internal Reset Timing). An internal reset can be caused by an illegal  
address, illegal opcode, COP timeout, or POR (see Figure 7-5. Sources  
of Internal Reset). Note that for POR resets, the SIM cycles through  
4096 OSCXCLK cycles during which the SIM forces the RST pin low.  
The internal reset signal then follows the sequence from the falling edge  
of RST shown in Figure 7-4.  
IRST  
RST PULLED LOW BY MCU  
32 CYCLES  
RST  
32 CYCLES  
OSCXCLK  
IAB  
VECTOR HIGH  
Figure 7-4. Internal Reset Timing  
The COP reset is asynchronous to the bus clock.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
System Integration Module (SIM)  
93  
 
 
Syste m Inte g ra tion Mod ule (SIM)  
ILLEGAL ADDRESS RST  
ILLEGAL OPCODE RST  
COPRST  
INTERNAL  
RESET  
POR  
Figure 7-5. Sources of Internal Reset  
The active reset feature allows the part to issue a reset to peripherals  
and other chips within a system built around the MCU.  
7.4.2.1 Po we r-On Re se t  
When power is first applied to the MCU, the power-on reset module  
(POR) generates a pulse to indicate that power-on has occurred. The  
external reset pin (RST) is held low while the SIM counter counts out  
4096 OSCXCLK cycles. Sixty-four OSCXCLK cycles later, the CPU and  
memories are released from reset to allow the reset vector sequence to  
occur.  
At power-on, the following events occur:  
• A POR pulse is generated.  
• The internal reset signal is asserted.  
• The SIM enables the oscillator to drive OSCXCLK.  
• Internal clocks to the CPU and modules are held inactive for 4096  
OSCXCLK cycles to allow stabilization of the oscillator.  
• The RST pin is driven low during the oscillator stabilization time.  
• The POR bit of the SIM reset status register (SRSR) is set and all  
other bits in the register are cleared.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
94  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
Reset and System Initialization  
OSC1  
PORRST  
4096  
CYCLES  
32  
CYCLES  
32  
CYCLES  
OSCXCLK  
OSCOUT  
RST  
IAB  
$FFFE  
$FFFF  
Figure 7-6. POR Recovery  
7.4.2.2 Co m p ute r Op e ra ting Pro p e rly (COP) Re se t  
An input to the SIM is reserved for the COP reset signal. The overflow of  
the COP counter causes an internal reset and sets the COP bit in the  
SIM reset status register (SRSR). The SIM actively pulls down the RST  
pin for all internal reset sources.  
To prevent a COP module timeout, write any value to location $FFFF.  
Writing to location $FFFF clears the COP counter and bits 12 through 5  
of the SIM counter. The SIM counter output, which occurs at least every  
12  
4
2 – 2 OSCXCLK cycles, drives the COP counter. The COP should be  
serviced as soon as possible out of reset to guarantee the maximum  
amount of time before the first timeout.  
The COP module is disabled if the RST pin or the IRQ is held at V  
TST  
while the MCU is in monitor mode. The COP module can be disabled  
only through combinational logic conditioned with the high voltage signal  
on the RST pin or the IRQ pin. This prevents the COP from becoming  
disabled as a result of external noise. During a break state, V  
RST pin disables the COP module.  
on the  
TST  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
System Integration Module (SIM)  
95  
Syste m Inte g ra tion Mod ule (SIM)  
7.4.2.3 Ille g a l Op c o d e Re se t  
The SIM decodes signals from the CPU to detect illegal instructions. An  
illegal instruction sets the ILOP bit in the SIM reset status register  
(SRSR) and causes a reset.  
If the stop enable bit, STOP, in the configure register 1 (CONFIG1) is  
logic zero, the SIM treats the STOP instruction as an illegal opcode and  
causes an illegal opcode reset. The SIM actively pulls down the RST pin  
for all internal reset sources.  
7.4.2.4 Ille g a l Ad d re ss Re se t  
An opcode fetch from an unmapped address generates an illegal  
address reset. The SIM verifies that the CPU is fetching an opcode prior  
to asserting the ILAD bit in the SIM reset status register (SRSR) and  
resetting the MCU. A data fetch from an unmapped address does not  
generate a reset. The SIM actively pulls down the RST pin for all internal  
reset sources.  
7.5 SIM Counte r  
The SIM counter is used by the power-on reset module (POR) and in  
stop mode recovery to allow the oscillator time to stabilize before  
enabling the internal bus (IBUS) clocks. The SIM counter also serves as  
a prescaler for the computer operating properly module (COP). The SIM  
counter overflow supplies the clock for the COP module. The SIM  
counter is 12 bits long and is clocked by the falling edge of OSCXCLK.  
7.5.1 SIM Counte r During Powe r-On Re se t  
The power-on reset module (POR) detects power applied to the MCU.  
At power-on, the POR circuit asserts the signal PORRST. Once the SIM  
is initialized, it enables the oscillator to drive the bus clock state machine.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
96  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
Exception Control  
7.5.2 SIM Counte r During Stop Mod e Re c ove ry  
The SIM counter also is used for stop mode recovery. The STOP  
instruction clears the SIM counter. After an interrupt, break, or reset, the  
SIM senses the state of the short stop recovery bit, SSREC, in the  
configure register 1 (CONFIG1). If the SSREC bit is a logic one, then the  
stop recovery is reduced from the normal delay of 4096 OSCXCLK  
cycles down to 32 OSCXCLK cycles. This is ideal for applications using  
canned oscillators that do not require long start-up times from stop  
mode. External crystal applications should use the full stop recovery  
time, that is, with SSREC cleared.  
7.5.3 SIM Counte r a nd Re se t Sta te s  
External reset has no effect on the SIM counter (see 7.7.2 Stop Mode).  
The SIM counter is free-running after all reset states (see 7.4.2 Active  
Resets from Internal Sources for counter control and internal reset  
recovery sequences).  
7.6 Exc e p tion Control  
Normally, sequential program execution can be changed in three  
different ways:  
• Interrupts  
– Maskable hardware CPU interrupts  
– Non-maskable software interrupt instruction (SWI)  
• Reset  
• Break interrupts  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
System Integration Module (SIM)  
97  
Syste m Inte g ra tion Mod ule (SIM)  
7.6.1 Inte rrup ts  
An interrupt temporarily changes the sequence of program execution to  
respond to a particular event. Figure 7-9 flow charts the handling of  
system interrupts.  
Interrupts are latched, and arbitration is performed in the SIM at the start  
of interrupt processing. The arbitration result is a constant that the CPU  
uses to determine which vector to fetch. Once an interrupt is latched by  
the SIM, no other interrupt can take precedence, regardless of priority,  
until the latched interrupt is serviced (or the I bit is cleared).  
At the beginning of an interrupt, the CPU saves the CPU register  
contents on the stack and sets the interrupt mask (I bit) to prevent  
additional interrupts. At the end of an interrupt, the RTI instruction  
recovers the CPU register contents from the stack so that normal  
processing can resume. Figure 7-7 shows interrupt entry timing. Figure  
7-8 shows interrupt recovery timing.  
MODULE  
INTERRUPT  
I BIT  
IAB  
DUMMY  
SP  
SP – 1  
SP – 2  
SP – 3  
SP – 4  
VECT H  
VECT L  
START ADDR  
IDB  
R/W  
DUMMY  
PC – 1[7:0] PC – 1[15:8]  
X
A
CCR  
V DATA H  
V DATA L  
OPCODE  
Figure 7-7.Interrupt Entry  
MODULE  
INTERRUPT  
I BIT  
IAB  
SP – 4  
SP – 3  
SP – 2  
SP – 1  
SP  
PC  
PC + 1  
IDB  
R/W  
CCR  
A
X
PC – 1[7:0] PC – 1[15:8] OPCODE  
OPERAND  
Figure 7-8. Interrupt Recovery  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
98  
System Integration Module (SIM)  
 
 
System Integration Module (SIM)  
Exception Control  
FROM RESET  
YES  
BREAK INTERRUPT?  
NO  
YES  
I BIT SET?  
NO  
IRQ  
YES  
YES  
INTERRUPT?  
NO  
USB  
INTERRUPT?  
NO  
STACK CPU REGISTERS.  
SET I BIT.  
LOAD PC WITH INTERRUPT VECTOR.  
(As many interrupts as exist on chip)  
FETCH NEXT  
INSTRUCTION.  
SWI  
YES  
YES  
INSTRUCTION?  
NO  
RTI  
UNSTACK CPU REGISTERS.  
EXECUTE INSTRUCTION.  
INSTRUCTION?  
NO  
Figure 7-9. Interrupt Processing  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
System Integration Module (SIM)  
99  
 
Syste m Inte g ra tion Mod ule (SIM)  
Interrupts are latched, and arbitration is performed in the SIM at the start  
of interrupt processing. The arbitration result is a constant that the CPU  
uses to determine which vector to fetch. Once an interrupt is latched by  
the SIM, no other interrupt may take precedence, regardless of priority,  
until the latched interrupt is serviced (or the I bit is cleared). (See Figure  
7-9. Interrupt Processing.)  
7.6.1.1 Ha rd wa re Inte rrup ts  
A hardware interrupt does not stop the current instruction. Processing of  
a hardware interrupt begins after completion of the current instruction.  
When the current instruction is complete, the SIM checks all pending  
hardware interrupts. If interrupts are not masked (I bit clear in the  
condition code register), and if the corresponding interrupt enable bit is  
set, the SIM proceeds with interrupt processing; otherwise, the next  
instruction is fetched and executed.  
If more than one interrupt is pending at the end of an instruction  
execution, the highest priority interrupt is serviced first. Figure 7-10  
demonstrates what happens when two interrupts are pending. If an  
interrupt is pending upon exit from the original interrupt service routine,  
the pending interrupt is serviced before the LDA instruction is executed.  
CLI  
LDA #$FF  
BACKGROUND ROUTINE  
INT1  
PSHH  
INT1 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
INT2  
PSHH  
INT2 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
Figure 7-10.Interrupt Recognition Example  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
100  
System Integration Module (SIM)  
System Integration Module (SIM)  
Exception Control  
The LDA opcode is pre-fetched by both the INT1 and INT2 RTI  
instructions. However, in the case of the INT1 RTI pre-fetch, this is a  
redundant operation.  
NOTE: To maintain compatibility with the M6805 Family, the H register is not  
pushed on the stack during interrupt entry. If the interrupt service  
routine modifies the H register or uses the indexed addressing mode,  
software should save the H register and then restore it prior to exiting  
the routine.  
7.6.1.2 SWI Instruc tio n  
The SWI instruction is a non-maskable instruction that causes an  
interrupt regardless of the state of the interrupt mask (I bit) in the  
condition code register.  
NOTE: A software interrupt pushes PC onto the stack. A software interrupt  
does not push PC – 1, as a hardware interrupt does.  
7.6.2 Inte rrup t Sta tus Re g iste rs  
The flags in the interrupt status registers identify maskable interrupt  
sources. Table 7-4 summarizes the interrupt sources and the interrupt  
status register flags that they set. The interrupt status registers can be  
useful for debugging.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
System Integration Module (SIM)  
101  
Syste m Inte g ra tion Mod ule (SIM)  
Table 7-4. Interrupt Sources  
INT Register  
1
2
Source  
Flag  
Vector Address  
Mask  
Priority  
Flag  
None  
None  
IF1  
Reset  
None  
None  
None  
None  
0
0
1
$FFFE–$FFFF  
$FFFC–$FFFD  
$FFFA–$FFFB  
SWI Instruction  
IRQ pin  
IRQF  
IMASK  
TBIE  
TBEF  
RBFF  
EOPIF  
RSTIF  
TXD1F  
ALIF  
RBIE  
USB  
EOPIE  
RSTIE  
TXD1IE  
IF2  
IF3  
2
3
$FFF8–$FFF9  
$FFF6–$FFF7  
NAKIF  
RXIF  
DIEN  
DDC12AB  
TXIF  
SCLIF  
SCLIEN  
Reserved  
5
$FFF4–$FFF5  
$FFF2–$FFF3  
$FFF0–$FFF1  
$FFEE–$FFEF  
TIM channel 0  
TIM channel 1  
TIM overflow  
CH0F  
CH1F  
TOF  
CH0IE  
CH1IE  
TOIE  
IF5  
IF6  
IF7  
6
7
VSIF  
VSIE  
Sync processor  
IF8  
8
9
$FFEC–$FFED  
LVSIF  
MMALIF  
MMNAKIF  
MMRXIF  
MMTXIF  
COCO  
LVSIE  
Multi-master IIC  
MMIEN  
IF9  
$FFEA–FFEB  
ADC conversion complete  
Reserved  
AIEN  
IF10  
10  
$FFE8–$FFE9  
$FFE6–$FFE7  
1. The I bit in the condition code register is a global mask for all interrupts sources except the SWI instruction.  
2. 0 = highest priority  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
102  
System Integration Module (SIM)  
System Integration Module (SIM)  
Exception Control  
7.6.2.1 Inte rrup t Sta tus Re g iste r 1  
Address:  
$FE04  
Bit 7  
IF6  
R
6
5
IF4  
R
4
IF3  
R
3
IF2  
R
2
IF1  
R
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
IF5  
R
R
0
R
0
0
0
0
0
0
0
R
= Reserved  
Figure 7-11. Interrupt Status Register 1 (INT1)  
IF6–IF1 — Interrupt Flags 6–1  
These flags indicate the presence of interrupt requests from the  
sources shown in Table 7-4.  
1 = Interrupt request present  
0 = No interrupt request present  
Bit 1and Bit 0 — Always read 0  
7.6.2.2 Inte rrup t Sta tus Re g iste r 2  
Address:  
$FE05  
Bit 7  
0
6
5
0
4
0
3
IF10  
R
2
IF9  
R
1
IF8  
R
Bit 0  
IF7  
R
Read:  
Write:  
Reset:  
0
R
R
R
0
R
0
0
0
0
0
0
0
R
= Reserved  
Figure 7-12. Interrupt Status Register 2 (INT2)  
IF10–IF7 — Interrupt Flags 6–1  
These flags indicate the presence of interrupt requests from the  
sources shown in Table 7-4.  
1 = Interrupt request present  
0 = No interrupt request present  
Bit 7 and Bit 4 — Always read 0  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
System Integration Module (SIM)  
103  
Syste m Inte g ra tion Mod ule (SIM)  
7.6.3 Re se t  
All reset sources always have equal and highest priority and cannot be  
arbitrated.  
7.6.4 Bre a k Inte rrup ts  
The break module can stop normal program flow at a software-  
programmable break point by asserting its break interrupt output (see  
Section 20. Break Module (BRK)). The SIM puts the CPU into the  
break state by forcing it to the SWI vector location. Refer to the break  
interrupt subsection of each module to see how each module is affected  
by the break state.  
7.6.5 Sta tus Fla g Prote c tion in Bre a k Mod e  
The SIM controls whether status flags contained in other modules can  
be cleared during break mode. The user can select whether flags are  
protected from being cleared by properly initializing the break clear flag  
enable bit (BCFE) in the SIM break flag control register (SBFCR).  
Protecting flags in break mode ensures that set flags will not be cleared  
while in break mode. This protection allows registers to be freely read  
and written during break mode without losing status flag information.  
Setting the BCFE bit enables the clearing mechanisms. Once cleared in  
break mode, a flag remains cleared even when break mode is exited.  
Status flags with a two-step clearing mechanism — for example, a read  
of one register followed by the read or write of another — are protected,  
even when the first step is accomplished prior to entering break mode.  
Upon leaving break mode, execution of the second step will clear the  
flag as normal.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
104  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
Low-Power Modes  
7.7 Low-Powe r Mod e s  
Executing the WAIT or STOP instruction puts the MCU in a low-power-  
consumption mode for standby situations. The SIM holds the CPU in a  
non-clocked state. The operation of each of these modes is described  
below. Both STOP and WAIT clear the interrupt mask (I) in the condition  
code register, allowing interrupts to occur.  
7.7.1 Wa it Mod e  
In wait mode, the CPU clocks are inactive while the peripheral clocks  
continue to run. Figure 7-13 shows the timing for wait mode entry.  
A module that is active during wait mode can wake up the CPU with an  
interrupt if the interrupt is enabled. Stacking for the interrupt begins one  
cycle after the WAIT instruction during which the interrupt occurred. In  
wait mode, the CPU clocks are inactive. Refer to the wait mode  
subsection of each module to see if the module is active or inactive in  
wait mode. Some modules can be programmed to be active in wait  
mode.  
Wait mode can also be exited by a reset or break. A break interrupt  
during wait mode sets the SIM break stop/wait bit, SBSW, in the SIM  
break status register (SBSR). If the COP disable bit, COPD, in  
configuration register 1 (CONFIG1) is logic zero, then the computer  
operating properly module (COP) is enabled and remains active in wait  
mode.  
IAB  
IDB  
WAIT ADDR  
WAIT ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
R/W  
NOTE: Previous data can be operand data or the WAIT opcode, depending on the last instruction.  
Figure 7-13. Wait Mode Entry Timing  
Figure 7-14 and Figure 7-15 show the timing for WAIT recovery.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
System Integration Module (SIM)  
105  
 
Syste m Inte g ra tion Mod ule (SIM)  
IAB  
$6E0B  
$A6  
$6E0C  
$00FF  
$00FE  
$00FD  
$00FC  
IDB  
$A6  
$A6  
$01  
$0B  
$6E  
EXITSTOPWAIT  
NOTE: EXITSTOPWAIT = RST pin OR CPU interrupt OR break interrupt  
Figure 7-14. Wait Recovery from Interrupt or Break  
32  
Cycles  
32  
Cycles  
IAB  
IDB  
$6E0B  
$A6  
RST VCT H RST VCT L  
$A6  
$A6  
RST  
OSCXCLK  
Figure 7-15. Wait Recovery from Internal Reset  
7.7.2 Stop Mod e  
In stop mode, the SIM counter is reset and the system clocks are  
disabled. An interrupt request from a module can cause an exit from stop  
mode. Stacking for interrupts begins after the selected stop recovery  
time has elapsed. Reset or break also causes an exit from stop mode.  
The SIM disables the oscillator signals (OSCOUT and OSCXCLK) in  
stop mode, stopping the CPU and peripherals. Stop recovery time is  
selectable using the SSREC bit in configuration register 1 (CONFIG1). If  
SSREC is set, stop recovery is reduced from the normal delay of 4096  
OSCXCLK cycles down to 32. This is ideal for applications using canned  
oscillators that do not require long start-up times from stop mode.  
NOTE: External crystal applications should use the full stop recovery time by  
clearing the SSREC bit.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
106  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
Low-Power Modes  
A break interrupt during stop mode sets the SIM break stop/wait bit  
(SBSW) in the SIM break status register (SBSR).  
The SIM counter is held in reset from the execution of the STOP  
instruction until the beginning of stop recovery. It is then used to time the  
recovery period. Figure 7-16 shows stop mode entry timing.  
CPUSTOP  
IAB  
IDB  
STOP ADDR  
STOP ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
R/W  
NOTE: Previous data can be operand data or the STOP opcode, depending on the last instruction.  
Figure 7-16. Stop Mode Entry Timing  
STOP RECOVERY PERIOD  
OSCXCLK  
INT/BREAK  
IAB  
STOP + 2  
STOP + 2  
SP  
SP – 1  
SP – 2  
SP – 3  
STOP +1  
Figure 7-17. Stop Mode Recovery from Interrupt or Break  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
System Integration Module (SIM)  
107  
 
Syste m Inte g ra tion Mod ule (SIM)  
7.8 SIM Re g iste rs  
The SIM has three memory mapped registers. Table 7-5 shows the  
mapping of these registers.  
Table 7-5. SIM Registers Summary  
Address  
$FE00  
$FE01  
$FE03  
Register  
SBSR  
Access Mode  
User  
SRSR  
User  
SBFCR  
User  
7.8.1 SIM Bre a k Sta tus Re g iste r (SBSR)  
The SIM break status register contains a flag to indicate that a break  
caused an exit from stop or wait mode.  
Address:  
$FE00  
Bit 7  
6
R
0
5
4
3
R
0
2
R
0
1
SBSW  
Note  
0
Bit 0  
R
Read:  
Write:  
Reset:  
R
0
R
R
0
0
0
Note: Writing a logic 0 clears SBSW.  
R
= Reserved  
Figure 7-18. SIM Break Status Register (SBSR)  
SBSW — SIM Break Stop/Wait Bit  
This status bit is useful in applications requiring a return to wait or stop  
mode after exiting from a break interrupt. Clear SBSW by writing a  
logic 0 to it. Reset clears SBSW.  
1 = Stop mode or wait mode was exited by break interrupt  
0 = Stop mode or wait mode was not exited by break interrupt  
Technical Data  
MC68HC908BD48 Rev. 1.0  
108  
System Integration Module (SIM)  
MOTOROLA  
 
System Integration Module (SIM)  
SIM Registers  
SBSW can be read within the break interrupt routine. The user can  
modify the return address on the stack by subtracting one from it. The  
following code is an example.  
;This code works if the H register has been pushed onto the stack in the break  
;service routine software. This code should be executed at the end of the break  
;service routine software.  
HIBYTE  
LOBYTE  
EQU  
EQU  
5
6
;
If not SBSW, do RTI  
BRCLR  
SBSW,SBSR, RETURN  
;See if wait mode or stop mode was exited by  
;break.  
TST  
BNE  
DEC  
DEC  
LOBYTE,SP  
DOLO  
;If RETURNLO is not zero,  
;then just decrement low byte.  
;Else deal with high byte, too.  
;Point to WAIT/STOP opcode.  
;Restore H register.  
HIBYTE,SP  
LOBYTE,SP  
DOLO  
RETURN  
PULH  
RTI  
7.8.2 SIM Re se t Sta tus Re g iste r (SRSR)  
This register contains six flags that show the source of the last reset.  
Clear the SIM reset status register by reading it. A power-on reset sets  
the POR bit and clears all other bits in the register.  
Address:  
$FE01  
Bit 7  
6
5
4
3
2
0
1
0
Bit 0  
0
Read:  
Write:  
POR:  
POR  
PIN  
COP  
ILOP  
ILAD  
1
0
0
0
0
0
0
0
= Unimplemented  
Figure 7-19. SIM Reset Status Register (SRSR)  
POR — Power-On Reset Bit  
1 = Last reset caused by POR circuit  
0 = Read of SRSR  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
System Integration Module (SIM)  
109  
Syste m Inte g ra tion Mod ule (SIM)  
PIN — External Reset Bit  
1 = Last reset caused by external reset pin (RST)  
0 = POR or read of SRSR  
COP — Computer Operating Properly Reset Bit  
1 = Last reset caused by COP counter  
0 = POR or read of SRSR  
ILOP — Illegal Opcode Reset Bit  
1 = Last reset caused by an illegal opcode  
0 = POR or read of SRSR  
ILAD — Illegal Address Reset Bit (opcode fetches only)  
1 = Last reset caused by an opcode fetch from an illegal address  
0 = POR or read of SRSR  
7.8.3 SIM Bre a k Fla g Control Re g iste r (SBFCR)  
The SIM break flag control register contains a bit that enables software  
to clear status bits while the MCU is in a break state.  
Address:  
$FE03  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
0
R
= Reserved  
Figure 7-20. SIM Break Flag Control Register (SBFCR)  
BCFE — Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing  
status registers while the MCU is in a break state. To clear status bits  
during the break state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
Technical Data  
MC68HC908BD48 Rev. 1.0  
110  
System Integration Module (SIM)  
MOTOROLA  
Te c hnic a l Da ta — MC68HC908BD48  
Se c tion 8. Osc illa tor (OSC)  
8.1 Conte nts  
8.2  
8.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111  
Oscillator External Connections . . . . . . . . . . . . . . . . . . . . . . .112  
8.4  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113  
Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . .113  
Crystal Amplifier Output Pin (OSC2) . . . . . . . . . . . . . . . . .113  
Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . .113  
External Clock Source (OSCXCLK) . . . . . . . . . . . . . . . . . .113  
Oscillator Out (OSCOUT). . . . . . . . . . . . . . . . . . . . . . . . . .113  
8.4.1  
8.4.2  
8.4.3  
8.4.4  
8.4.5  
8.5  
8.5.1  
8.5.2  
Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114  
8.6  
Oscillator During Break Mode. . . . . . . . . . . . . . . . . . . . . . . . .114  
8.2 Introd uc tion  
The oscillator circuit is designed for use with crystals or ceramic  
resonators. The oscillator circuit generates the crystal clock signal,  
OSCXCLK, at the frequency of the crystal. This signal is divided by two  
before being passed on to the SIM for bus clock generation. Figure 8-1  
shows the structure of the oscillator. The oscillator requires various  
external components.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Oscillator (OSC)  
111  
 
Osc illa tor (OSC)  
8.3 Osc illa tor Exte rna l Conne c tions  
In its typical configuration, the oscillator requires five external  
components. The crystal oscillator is normally connected in a Pierce  
oscillator configuration, as shown in Figure 8-1. This figure shows only  
the logical representation of the internal components and may not  
represent actual circuitry. The oscillator configuration uses five  
components:  
• Crystal, X  
1
• Fixed capacitor, C  
1
• Tuning capacitor, C (can also be a fixed capacitor)  
2
• Feedback resistor, R  
B
• Series resistor, R (optional)  
S
The series resistor (R ) is included in the diagram to follow strict Pierce  
S
oscillator guidelines and may not be required for all ranges of operation,  
especially with high frequency crystals. Refer to the crystal  
manufacturer’s data for more information.  
From  
SIM  
To SIM  
To SIM  
OSCXCLK  
OSCOUT  
÷ 2  
SIMOSCEN  
MCU  
OSC1  
OSC2  
R *  
S
R
B
*R can be zero (shorted) when used with  
S
higher-frequency crystals. Refer to manufacturer’s data.  
X
1
C
C
2
1
Figure 8-1. Oscillator External Connections  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
112  
Oscillator (OSC)  
 
Oscillator (OSC)  
I/O Signals  
8.4 I/ O Sig na ls  
The following paragraphs describe the oscillator I/O signals.  
8.4.1 Crysta l Am p lifie r Inp ut Pin (OSC1)  
The OSC1 pin is an input to the crystal oscillator amplifier.  
An externally generated clock also can feed the OSC1 pin of the crystal  
oscillator circuit. Connect the external clock to the OSC1 pin and let the  
OSC2 pin float.  
8.4.2 Crysta l Am p lifie r Outp ut Pin (OSC2)  
The OSC2 pin is the output of the crystal oscillator inverting amplifier.  
8.4.3 Osc illa tor Ena b le Sig na l (SIMOSCEN)  
The SIMOSCEN signal comes from the SIM and enables the oscillator.  
8.4.4 Exte rna l Cloc k Sourc e (OSCXCLK)  
OSCXCLK is the crystal oscillator output signal. It runs at the full speed  
of the crystal (fXCLK) and comes directly from the crystal oscillator circuit.  
Figure 8-1 shows only the logical relation of OSCXCLK to OSC1 and  
OSC2 and may not represent the actual circuitry. The duty cycle of  
OSCXCLK is unknown and may depend on the crystal and other  
external factors. Also, the frequency and amplitude of OSCXCLK can be  
unstable at start-up.  
8.4.5 Osc illa tor Out (OSCOUT)  
The clock driven to the SIM is the crystal frequency divided by two. This  
signal is driven to the SIM for generation of the bus clocks used by the  
CPU and other modules on the MCU. OSCOUT will be divided again in  
the SIM and results in the internal bus frequency being one fourth of the  
OSCXCLK frequency.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Oscillator (OSC)  
113  
Osc illa tor (OSC)  
8.5 Low Powe r Mod e s  
The WAIT and STOP instructions put the MCU in low-power-  
consumption standby modes.  
8.5.1 Wa it Mod e  
8.5.2 Stop Mod e  
The WAIT instruction has no effect on the oscillator logic. OSCXCLK  
continues to drive to the SIM module.  
The STOP instruction disables the OSCXCLK output.  
8.6 Osc illa tor During Bre a k Mod e  
The oscillator continues drive OSCXCLK when the chip enters the break  
state.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
114  
Oscillator (OSC)  
Te c hnic a l Da ta — MC68HC908BD48  
Se c tion 9. Monitor ROM (MON)  
9.1 Conte nts  
9.2  
9.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116  
9.4  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116  
Entering Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . .118  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119  
Echoing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120  
Break Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120  
Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121  
Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124  
9.4.1  
9.4.2  
9.4.3  
9.4.4  
9.4.5  
9.4.6  
9.2 Introd uc tion  
This section describes the monitor ROM. The monitor ROM allows  
complete testing of the MCU through a single-wire interface with a host  
computer.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Monitor ROM (MON)  
115  
 
Monitor ROM (MON)  
9.3 Fe a ture s  
Features of the monitor ROM include:  
• Normal user-mode pin functionality  
• One pin dedicated to serial communication between monitor ROM  
and host computer  
• Standard mark/space non-return-to-zero (NRZ) communication  
with host computer  
• 9600 Baud communication with host computer  
• Execution of code in RAM or FLASH  
• FLASH memory programming  
9.4 Func tiona l De sc rip tion  
The monitor ROM receives and executes commands from a host  
computer. Figure 9-1 shows a sample circuit used to enter monitor  
mode and communicate with a host computer via a standard RS-232  
interface.  
Simple monitor commands can access any memory address. In monitor  
mode, the MCU can execute host-computer code in RAM while all MCU  
pins retain normal operating mode functions. All communication  
between the host computer and the MCU is through the PTA0 pin. A  
level-shifting and multiplexing interface is required between PTA0 and  
the host computer. PTA0 is used in a wired-OR configuration and  
requires a pull-up resistor.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
116  
Monitor ROM (MON)  
MOTOROLA  
Monitor ROM (MON)  
Functional Description  
VDD  
68HC908  
10 k  
RST  
0.1 µF  
V
TST  
10  
IRQ  
1
20  
MC145407  
+
+
+
+
10  
10  
µ
F
F
10  
10  
µ
F
F
3
4
18  
17  
OSC1  
OSC2  
X1  
9.83 MHz  
VDD  
20 pF  
10 M  
µ
µ
2
19  
20 pF  
DB-25  
2
V
V
SS  
5
6
16  
15  
SS1  
3
7
VDD  
VDD  
0.1 µF  
VDD  
1
2
6
4
14  
3
MC74HC125  
VDD  
10 k  
5
PTA0  
PTC3  
VDD  
10 k  
VDD  
10 k  
7
PTC0  
PTC1  
A
NOTES:  
(See  
NOTES)  
Position A — Bus clock = OSCXCLK  
Position B — Bus clock = OSCXCLK  
÷
÷
4
2
B
Figure 9-1. Monitor Mode Circuit  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Monitor ROM (MON)  
117  
Monitor ROM (MON)  
9.4.1 Ente ring Monitor Mod e  
Table 9-1 shows the pin conditions for entering monitor mode.  
Table 9-1. Mode Selection  
Bus  
Frequency  
Mode  
OSCOUT  
OSCXCLK  
----------------------------  
4
OSCXCLK  
----------------------------  
2
V
V
1
1
0
0
1
1
1
0
Monitor  
Monitor  
TST  
OSCXCLK  
----------------------------  
2
OSCXCLK  
TST  
NOTE: Holding the PTC3 pin low when entering monitor mode causes a bypass  
of a divide-by-two stage at the oscillator. The OSCOUT frequency is  
equal to the OSCXCLK frequency, and the OSC1 input directly  
generates internal bus clocks. In this case, the OSC1 signal must have  
a 50% duty cycle at maximum bus frequency.  
Enter monitor mode with the pin configuration shown above by pulling  
RST low and then high. The rising edge of RST latches monitor mode.  
Once monitor mode is latched, the values on the specified pins can  
change.  
Once out of reset, the MCU monitor mode firmware then sends a break  
signal (10 consecutive logic zeros) to the host computer, indicating that  
it is ready to receive a command. The break signal also provides a timing  
reference to allow the host to determine the necessary baud rate.  
Monitor mode uses different vectors for reset and SWI. The alternate  
vectors are in the $FE page instead of the $FF page and allow code  
execution from the internal monitor firmware instead of user code.  
When the host computer has completed downloading code into the MCU  
RAM, This code can be executed by driving PTA0 low while asserting  
RST low and then high. The internal monitor ROM firmware will interpret  
the low on PTA0 as an indication to jump to RAM, and execution control  
will then continue from RAM. Execution of an SWI from the downloaded  
code will return program control to the internal monitor ROM firmware.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
118  
Monitor ROM (MON)  
MOTOROLA  
 
Monitor ROM (MON)  
Functional Description  
Alternatively, the host can send a RUN command, which executes an  
RTI, and this can be used to send control to the address on the stack  
pointer.  
The COP module is disabled in monitor mode as long as V  
is applied  
TST  
to the IRQ or the RST pin. (See Section 7. System Integration Module  
(SIM) for more information on modes of operation.)  
Table 9-2 is a summary of the differences between user mode and  
monitor mode.  
Table 9-2. Mode Differences  
Functions  
Reset  
Vector  
High  
Reset  
Vector  
Low  
SWI  
Vector  
High  
SWI  
Vector  
Low  
Modes  
COP  
User  
Enabled  
$FFFE  
$FEFE  
$FFFF  
$FEFF  
$FFFC  
$FEFC  
$FFFD  
$FEFD  
(1)  
Disabled  
Monitor  
Notes:  
1. If the high voltage (V  
) is removed from the IRQ pin, the SIM asserts its COP enable  
TST  
output. The COP is a mask option enabled or disabled by the COPD bit in the configuration  
register.  
9.4.2 Da ta Form a t  
Communication with the monitor ROM is in standard non-return-to-zero  
(NRZ) mark/space data format. (See Figure 9-2 and Figure 9-3.)  
NEXT  
START  
BIT  
START  
BIT  
STOP  
BIT  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
Figure 9-2. Monitor Data Format  
NEXT  
START  
BIT  
START  
BIT  
STOP  
BIT  
$A5  
BIT 0  
BIT 1  
BIT 1  
BIT 2  
BIT 2  
BIT 3  
BIT 3  
BIT 4  
BIT 4  
BIT 5  
BIT 5  
BIT 6  
BIT 6  
BIT 7  
BIT 7  
STOP  
BIT  
START  
BIT  
BREAK  
BIT 0  
Figure 9-3. Sample Monitor Waveforms  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Monitor ROM (MON)  
119  
 
 
Monitor ROM (MON)  
The data transmit and receive rate can be anywhere from 4800 baud to  
28.8 kbaud. Transmit and receive baud rates must be identical.  
9.4.3 Ec hoing  
As shown in Figure 9-4, the monitor ROM immediately echoes each  
received byte back to the PTA0 pin for error checking.  
SENT TO  
MONITOR  
READ  
READ  
ADDR. HIGH ADDR. HIGH ADDR. LOW ADDR. LOW  
DATA  
ECHO  
RESULT  
Figure 9-4. Read Transaction  
Any result of a command appears after the echo of the last byte of the  
command.  
9.4.4 Bre a k Sig na l  
A start bit followed by nine low bits is a break signal (see Figure 9-5).  
When the monitor receives a break signal, it drives the PTA0 pin high for  
the duration of two bits before echoing the break signal.  
MISSING STOP BIT  
TWO-STOP-BIT DELAY BEFORE ZERO ECHO  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
Figure 9-5. Break Transaction  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
120  
Monitor ROM (MON)  
 
 
Monitor ROM (MON)  
Functional Description  
9.4.5 Com m a nd s  
The monitor ROM uses the following commands:  
• READ (read memory)  
• WRITE (write memory)  
• IREAD (indexed read)  
• IWRITE (indexed write)  
• READSP (read stack pointer)  
• RUN (run user program)  
Table 9-3. READ (Read Memory) Command  
Description Read byte from memory  
Operand Specifies 2-byte address in high byte:low byte order  
Data  
Returned  
Returns contents of specified address  
Opcode $4A  
Command Sequence  
SENT TO  
MONITOR  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
READ  
READ  
DATA  
ECHO  
RETURN  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Monitor ROM (MON)  
121  
Monitor ROM (MON)  
Table 9-4. WRITE (Write Memory) Command  
Description Write byte to memory  
Specifics 2-byte address in high byte:low byte order; low byte  
followed by data byte  
Operand  
Data  
Returned  
None  
Opcode  
$49  
Command Sequence  
SENT TO  
MONITOR  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
DATA  
DATA  
WRITE  
ECHO  
WRITE  
Table 9-5. IREAD (Indexed Read) Command  
Description Read Next 2 Bytes in Memory from Last Address Accessed  
Operand  
Specifies 2-byte address in high byte:low byte order  
Returns contents of next two addresses  
Data  
Returned  
Opcode  
$1A  
Command Sequence  
SENT TO  
MONITOR  
IREAD  
IREAD  
DATA  
DATA  
ECHO  
RETURN  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
122  
Monitor ROM (MON)  
Monitor ROM (MON)  
Functional Description  
Table 9-6. IWRITE (Indexed Write) Command  
Description Write to last address accessed + 1  
Operand  
Specifies single data byte  
Data  
None  
$19  
Returned  
Opcode  
Command Sequence  
SENT TO  
MONITOR  
DATA  
DATA  
IWRITE  
IWRITE  
ECHO  
A sequence of IREAD or IWRITE commands can sequentially access a  
block of memory over the full 64-kbyte memory map.  
Table 9-7. READSP (Read Stack Pointer) Command  
Description Reads stack pointer  
Operand  
None  
Data  
Returned  
Returns stack pointer in high byte:low byte order  
Opcode  
$0C  
Command Sequence  
SENT TO  
MONITOR  
SP  
HIGH  
SP  
LOW  
READSP  
READSP  
ECHO  
RETURN  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Monitor ROM (MON)  
123  
Monitor ROM (MON)  
Table 9-8. RUN (Run User Program) Command  
Description Executes RTI instruction  
Operand  
None  
None  
$28  
Data  
Returned  
Opcode  
Command Sequence  
SENT TO  
MONITOR  
RUN  
RUN  
ECHO  
9.4.6 Ba ud Ra te  
The communication baud rate is controlled by crystal frequency and the  
state of the PTC3 pin upon entry into monitor mode. When PTC3 is high,  
the divide by ratio is 1024. If the PTC3 pin is at logic zero upon entry into  
monitor mode, the divide by ratio is 512.  
Table 9-9. Monitor Baud Rate Selection  
Crystal Frequency  
19.66 MHz  
PTC3 Pin  
Baud Rate  
19200 bps  
9600 bps  
4800 bps  
0
0
1
9.83 MHz  
9.83 MHz  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
124  
Monitor ROM (MON)  
Te c hnic a l Da ta — MC68HC908BD48  
Se c tion 10. Tim e r Inte rfa c e Mod ule (TIM)  
10.1 Conte nts  
10.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126  
10.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126  
10.4 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126  
10.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127  
10.5.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . .129  
10.5.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129  
10.5.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129  
10.5.3.1  
10.5.3.2  
Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . .130  
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .131  
10.5.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . .131  
10.5.4.1  
10.5.4.2  
10.5.4.3  
Unbuffered PWM Signal Generation . . . . . . . . . . . . . . .132  
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . .133  
PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134  
10.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135  
10.7 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135  
10.8 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .136  
10.9 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136  
10.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137  
10.10.1 TIM Status and Control Register (TSC) . . . . . . . . . . . . . . .137  
10.10.2 TIM Counter Registers (TCNTH:TCNTL). . . . . . . . . . . . . .139  
10.10.3 TIM Counter Modulo Registers (TMODH:TMODL) . . . . . .140  
10.10.4 TIM Channel Status and Control Registers (TSC0:TSC1).141  
10.10.5 TIM Channel Registers (TCH0H/L:TCH1H/L) . . . . . . . . . .145  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Timer Interface Module (TIM)  
125  
Tim e r Inte rfa c e Mod ule (TIM)  
10.2 Introd uc tion  
This section describes the timer interface module (TIM2, Version B). The  
TIM is a two-channel timer that provides a timing reference with input  
capture, output compare, and pulse-width-modulation functions. Figure  
10-1 is a block diagram of the TIM.  
10.3 Fe a ture s  
Features of the TIM include the following:  
• Two Input Capture/Output Compare Channels  
– Rising-Edge, Falling-Edge, or Any-Edge Input Capture Trigger  
– Set, Clear, or Toggle Output Compare Action  
• Buffered and Unbuffered Pulse Width Modulation (PWM) Signal  
Generation  
• Programmable TIM Clock Input  
– Seven-Frequency Internal Bus Clock Prescaler Selection  
• Free-Running or Modulo Up-Count Operation  
• Toggle Any Channel Pin on Overflow  
• TIM Counter Stop and Reset Bits  
• Modular Architecture Expandable to Eight Channels  
NOTE: TCH1 (timer channel 1) is not bonded to an external pin on this MCU.  
Therefore, any references to the timer TCH1 pin in the following text  
should be interpreted as not available — but the internal status and  
control registers are still available.  
10.4 Pin Na m e Conve ntions  
The TIM share one I/O pin with one port E I/O pin. The full name of the  
TIM I/O pin is listed in Table 10-1. The generic pin name appear in the  
text that follows.  
Table 10-1. Pin Name Conventions  
TIM Generic Pin Names:  
Full TIM Pin Names:  
TCH0  
TCH1  
PTE0/SOG/TCH0  
Not Available  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
126  
Timer Interface Module (TIM)  
 
Timer Interface Module (TIM)  
Functional Description  
10.5 Func tiona l De sc rip tion  
Figure 10-1 shows the structure of the TIM. The central component of  
the TIM is the 16-bit TIM counter that can operate as a free-running  
counter or a modulo up-counter. The TIM counter provides the timing  
reference for the input capture and output compare functions. The TIM  
counter modulo registers, TMODH:TMODL, control the modulo value of  
the TIM counter. Software can read the TIM counter value at any time  
without affecting the counting sequence.  
The two TIM channels are programmable independently as input  
capture or output compare channels.  
PRESCALER SELECT  
INTERNAL  
BUS CLOCK  
PRESCALER  
TSTOP  
TRST  
PS2  
PS1  
PS0  
16-BIT COUNTER  
TOF  
INTERRUPT  
LOGIC  
TOIE  
16-BIT COMPARATOR  
TMODH:TMODL  
TOV0  
ELS0B  
ELS0A  
PORT  
LOGIC  
CHANNEL 0  
16-BIT COMPARATOR  
TCH0H:TCH0L  
CH0MAX  
TCH0  
CH0F  
INTERRUPT  
LOGIC  
16-BIT LATCH  
MS0A  
CH0IE  
MS0B  
CH1F  
TOV1  
ELS1B  
ELS1A  
PORT  
LOGIC  
CHANNEL 1  
16-BIT COMPARATOR  
TCH1H:TCH1L  
CH1MAX  
TCH1  
(Not available)  
INTERRUPT  
LOGIC  
16-BIT LATCH  
MS1A  
CH1IE  
Figure 10-1. TIM Block Diagram  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Timer Interface Module (TIM)  
127  
 
Tim e r Inte rfa c e Mod ule (TIM)  
Table 10-2.TIM I/O Register Summary  
Addr.  
Register Name  
Bit 7  
TOF  
0
6
5
4
0
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
TIM Status and Control  
Register  
TOIE  
TSTOP  
PS2  
PS1  
PS0  
$000A  
TRST  
0
(TSC)  
0
0
1
0
0
0
0
Bit15  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
Bit8  
TIM Counter Register High  
(TCNTH)  
$000C  
$000D  
$000E  
$000F  
$0010  
$0011  
$0012  
$0013  
0
0
0
0
0
0
0
0
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
TIM Counter Register Low  
(TCNTL)  
0
Bit15  
1
0
Bit14  
1
0
Bit13  
1
0
Bit12  
1
0
Bit11  
1
0
Bit10  
1
0
Bit9  
1
0
Bit8  
1
TIM Counter Modulo  
Register High  
(TMODH)  
TIM Counter Modulo  
Register Low  
(TMODL)  
Bit7  
1
Bit6  
1
Bit5  
1
Bit4  
1
Bit3  
1
Bit2  
1
Bit1  
1
Bit0  
1
Read: CH0F  
TIM Channel 0  
Status/Control Register  
(TSC0)  
CH0MAX  
0
CH0IE  
0
MS0B  
0
MS0A  
0
ELS0B  
0
ELS0A  
0
TOV0  
0
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
0
TIM Channel 0  
Register High  
(TCH0H)  
Bit15  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
Bit8  
Indeterminate after reset  
TIM Channel 0  
Register Low  
(TCH0L)  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Indeterminate after reset  
Read: CH1F  
0
0
TIM Channel 1  
Status/Control Register  
(TSC1)  
CH1MAX  
0
CH1IE  
0
MS1A  
0
ELS1B  
0
ELS1A  
0
TOV1  
0
Write:  
0
0
Reset:  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
128  
Timer Interface Module (TIM)  
Timer Interface Module (TIM)  
Functional Description  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
TIM Channel 1  
Register High  
(TCH1H)  
Bit15  
Bit7  
Bit14  
Bit6  
Bit13  
Bit5  
Bit12  
Bit11  
Bit10  
Bit2  
Bit9  
Bit1  
Bit8  
Bit0  
$0014  
$0015  
Indeterminate after reset  
TIM Channel 1  
Register Low  
(TCH1L)  
Bit4  
Bit3  
Indeterminate after reset  
= Unimplemented  
10.5.1 TIM Counte r Pre sc a le r  
The TIM clock source can be one of the seven prescaler outputs. The  
prescaler generates seven clock rates from the internal bus clock. The  
prescaler select bits, PS[2:0], in the TIM status and control register  
(TSC) select the TIM clock source.  
10.5.2 Inp ut Ca p ture  
With the input capture function, the TIM can capture the time at which an  
external event occurs. When an active edge occurs on the pin of an input  
capture channel, the TIM latches the contents of the TIM counter into the  
TIM channel registers, TCHxH:TCHxL. The polarity of the active edge is  
programmable. Input captures can generate TIM CPU interrupt  
requests.  
10.5.3 Outp ut Com p a re  
With the output compare function, the TIM can generate a periodic pulse  
with a programmable polarity, duration, and frequency. When the  
counter reaches the value in the registers of an output compare channel,  
the TIM can set, clear, or toggle the channel pin. Output compares can  
generate TIM CPU interrupt requests.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Timer Interface Module (TIM)  
129  
 
Tim e r Inte rfa c e Mod ule (TIM)  
10.5.3.1 Unb uffe re d Outp ut Co m p a re  
Any output compare channel can generate unbuffered output compare  
pulses as described in 10.5.3 Output Compare. The pulses are  
unbuffered because changing the output compare value requires writing  
the new value over the old value currently in the TIM channel registers.  
An unsynchronized write to the TIM channel registers to change an  
output compare value could cause incorrect operation for up to two  
counter overflow periods. For example, writing a new value before the  
counter reaches the old value but after the counter reaches the new  
value prevents any compare during that counter overflow period. Also,  
using a TIM overflow interrupt routine to write a new, smaller output  
compare value may cause the compare to be missed. The TIM may pass  
the new value before it is written.  
Use the following methods to synchronize unbuffered changes in the  
output compare value on channel x:  
• When changing to a smaller value, enable channel x output  
compare interrupts and write the new value in the output compare  
interrupt routine. The output compare interrupt occurs at the end  
of the current output compare pulse. The interrupt routine has until  
the end of the counter overflow period to write the new value.  
• When changing to a larger output compare value, enable  
channel x TIM overflow interrupts and write the new value in the  
TIM overflow interrupt routine. The TIM overflow interrupt occurs  
at the end of the current counter overflow period. Writing a larger  
value in an output compare interrupt routine (at the end of the  
current pulse) could cause two output compares to occur in the  
same counter overflow period.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
130  
Timer Interface Module (TIM)  
MOTOROLA  
Timer Interface Module (TIM)  
Functional Description  
10.5.3.2 Buffe re d Outp ut Co m p a re  
Channels 0 and 1 can be linked to form a buffered output compare  
channel whose output appears on the TCH0 pin. The TIM channel  
registers of the linked pair alternately control the output.  
Setting the MS0B bit in TIM channel 0 status and control register (TSC0)  
links channel 0 and channel 1. The output compare value in the TIM  
channel 0 registers initially controls the output on the TCH0 pin. Writing  
to the TIM channel 1 registers enables the TIM channel 1 registers to  
synchronously control the output after the TIM overflows. At each  
subsequent overflow, the TIM channel registers (0 or 1) that control the  
output are the ones written to last. TSC0 controls and monitors the  
buffered output compare function, and TIM channel 1 status and control  
register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin,  
TCH1, is available as a general-purpose I/O pin.  
NOTE: In buffered output compare operation, do not write new output compare  
values to the currently active channel registers. Writing to the active  
channel registers is the same as generating unbuffered output  
compares.  
10.5.4 Pulse Wid th Mod ula tion (PWM)  
By using the toggle-on-overflow feature with an output compare channel,  
the TIM can generate a PWM signal. The value in the TIM counter  
modulo registers determines the period of the PWM signal. The channel  
pin toggles when the counter reaches the value in the TIM counter  
modulo registers. The time between overflows is the period of the PWM  
signal.  
As Figure 10-2 shows, the output compare value in the TIM channel  
registers determines the pulse width of the PWM signal. The time  
between overflow and output compare is the pulse width. Program the  
TIM to clear the channel pin on output compare if the state of the PWM  
pulse is logic one. Program the TIM to set the pin if the state of the PWM  
pulse is logic zero.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Timer Interface Module (TIM)  
131  
 
Tim e r Inte rfa c e Mod ule (TIM)  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
PULSE  
WIDTH  
PTDx/TCHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
Figure 10-2. PWM Period and Pulse Width  
The value in the TIM counter modulo registers and the selected  
prescaler output determines the frequency of the PWM output. The  
frequency of an 8-bit PWM signal is variable in 256 increments. Writing  
$00FF (255) to the TIM counter modulo registers produces a PWM  
period of 256 times the internal bus clock period if the prescaler select  
value is 000 (see 10.10.1 TIM Status and Control Register (TSC)).  
The value in the TIM channel registers determines the pulse width of the  
PWM output. The pulse width of an 8-bit PWM signal is variable in 256  
increments. Writing $0080 (128) to the TIM channel registers produces  
a duty cycle of 128/256 or 50%.  
10.5.4.1 Unb uffe re d PWM Sig na l Ge ne ra tio n  
Any output compare channel can generate unbuffered PWM pulses as  
described in 10.5.4 Pulse Width Modulation (PWM). The pulses are  
unbuffered because changing the pulse width requires writing the new  
pulse width value over the old value currently in the TIM channel  
registers.  
An unsynchronized write to the TIM channel registers to change a pulse  
width value could cause incorrect operation for up to two PWM periods.  
For example, writing a new value before the counter reaches the old  
value but after the counter reaches the new value prevents any compare  
during that PWM period. Also, using a TIM overflow interrupt routine to  
Technical Data  
MC68HC908BD48 Rev. 1.0  
132  
Timer Interface Module (TIM)  
MOTOROLA  
Timer Interface Module (TIM)  
Functional Description  
write a new, smaller pulse width value may cause the compare to be  
missed. The TIM may pass the new value before it is written.  
Use the following methods to synchronize unbuffered changes in the  
PWM pulse width on channel x:  
• When changing to a shorter pulse width, enable channel x output  
compare interrupts and write the new value in the output compare  
interrupt routine. The output compare interrupt occurs at the end  
of the current pulse. The interrupt routine has until the end of the  
PWM period to write the new value.  
• When changing to a longer pulse width, enable channel x TIM  
overflow interrupts and write the new value in the TIM overflow  
interrupt routine. The TIM overflow interrupt occurs at the end of  
the current PWM period. Writing a larger value in an output  
compare interrupt routine (at the end of the current pulse) could  
cause two output compares to occur in the same PWM period.  
NOTE: In PWM signal generation, do not program the PWM channel to toggle  
on output compare. Toggling on output compare prevents reliable 0%  
duty cycle generation and removes the ability of the channel to self-  
correct in the event of software error or noise. Toggling on output  
compare also can cause incorrect PWM signal generation when  
changing the PWM pulse width to a new, much larger value.  
10.5.4.2 Buffe re d PWM Sig na l Ge ne ra tio n  
Channels 0 and 1 can be linked to form a buffered PWM channel whose  
output appears on the TCH0 pin. The TIM channel registers of the linked  
pair alternately control the pulse width of the output.  
Setting the MS0B bit in TIM channel 0 status and control register (TSC0)  
links channel 0 and channel 1. The TIM channel 0 registers initially  
control the pulse width on the TCH0 pin. Writing to the TIM channel 1  
registers enables the TIM channel 1 registers to synchronously control  
the pulse width at the beginning of the next PWM period. At each  
subsequent overflow, the TIM channel registers (0 or 1) that control the  
pulse width are the ones written to last. TSC0 controls and monitors the  
buffered PWM function, and TIM channel 1 status and control register  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Timer Interface Module (TIM)  
133  
Tim e r Inte rfa c e Mod ule (TIM)  
(TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1,  
is available as a general-purpose I/O pin.  
NOTE: In buffered PWM signal generation, do not write new pulse width values  
to the currently active channel registers. Writing to the active channel  
registers is the same as generating unbuffered PWM signals.  
10.5.4.3 PWM Initia liza tio n  
To ensure correct operation when generating unbuffered or buffered  
PWM signals, use the following initialization procedure:  
1. In the TIM status and control register (TSC):  
a. Stop the TIM counter by setting the TIM stop bit, TSTOP.  
b. Reset the TIM counter by setting the TIM reset bit, TRST.  
2. In the TIM counter modulo registers (TMODH:TMODL), write the  
value for the required PWM period.  
3. In the TIM channel x registers (TCHxH:TCHxL), write the value for  
the required pulse width.  
4. In TIM channel x status and control register (TSCx):  
a. Write 0:1 (for unbuffered output compare or PWM signals) or  
1:0 (for buffered output compare or PWM signals) to the mode  
select bits, MSxB:MSxA. (See Table 10-4.)  
b. Write 1 to the toggle-on-overflow bit, TOVx.  
c. Write 1:0 (to clear output on compare) or 1:1 (to set output on  
compare) to the edge/level select bits, ELSxB:ELSxA. The  
output action on compare must force the output to the  
complement of the pulse width level. (See Table 10-4.)  
NOTE: In PWM signal generation, do not program the PWM channel to toggle  
on output compare. Toggling on output compare prevents reliable 0%  
duty cycle generation and removes the ability of the channel to self-  
correct in the event of software error or noise. Toggling on output  
compare can also cause incorrect PWM signal generation when  
changing the PWM pulse width to a new, much larger value.  
5. In the TIM status control register (TSC), clear the TIM stop bit,  
TSTOP.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
134  
Timer Interface Module (TIM)  
MOTOROLA  
Timer Interface Module (TIM)  
Interrupts  
Setting MS0B links channels 0 and 1 and configures them for buffered  
PWM operation. The TIM channel 0 registers (TCH0H:TCH0L) initially  
control the buffered PWM output. TIM status control register 0 (TSCR0)  
controls and monitors the PWM signal from the linked channels. MS0B  
takes priority over MS0A.  
Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIM  
overflows. Subsequent output compares try to force the output to a state  
it is already in and have no effect. The result is a 0% duty cycle output.  
Setting the channel x maximum duty cycle bit (CHxMAX) and clearing  
the TOVx bit generates a 100% duty cycle output. See 10.10.4 TIM  
Channel Status and Control Registers (TSC0:TSC1).  
10.6 Inte rrup ts  
The following TIM sources can generate interrupt requests:  
• TIM overflow flag (TOF) — The TOF bit is set when the TIM  
counter value rolls over to $0000 after matching the value in the  
TIM counter modulo registers. The TIM overflow interrupt enable  
bit, TOIE, enables TIM overflow CPU interrupt requests. TOF and  
TOIE are in the TIM status and control register.  
• TIM channel flags (CH1F:CH0F) — The CHxF bit is set when an  
input capture or output compare occurs on channel x. Channel x  
TIM CPU interrupt requests are controlled by the channel x  
interrupt enable bit, CHxIE. Channel x TIM CPU interrupt requests  
are enabled when CHxIE=1. CHxF and CHxIE are in the TIM  
channel x status and control register.  
10.7 Wa it Mod e  
The WAIT instruction puts the MCU in low-power-consumption standby  
mode.  
The TIM remains active after the execution of a WAIT instruction. In wait  
mode the TIM registers are not accessible by the CPU. Any enabled  
CPU interrupt request from the TIM can bring the MCU out of wait mode.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Timer Interface Module (TIM)  
135  
Tim e r Inte rfa c e Mod ule (TIM)  
If TIM functions are not required during wait mode, reduce power  
consumption by stopping the TIM before executing the WAIT instruction.  
10.8 TIM During Bre a k Inte rrup ts  
A break interrupt stops the TIM counter.  
The system integration module (SIM) controls whether status bits in  
other modules can be cleared during the break state. The BCFE bit in  
the break flag control register (BFCR) enables software to clear status  
bits during the break state. (See 8.8.3 Break Flag Control Register  
(BFCR).)  
To allow software to clear status bits during a break interrupt, write a  
logic one to the BCFE bit. If a status bit is cleared during the break state,  
it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a logic zero to the  
BCFE bit. With BCFE at logic zero (its default state), software can read  
and write I/O registers during the break state without affecting status  
bits. Some status bits have a two-step read/write clearing procedure. If  
software does the first step on such a bit before the break, the bit cannot  
change during the break state as long as BCFE is at logic zero. After the  
break, doing the second step clears the status bit.  
10.9 I/ O Sig na ls  
Port E shares one of its pins with the TIM. The TIM channel I/O pin is  
PTE0/SOG/TCH0.  
TCH0 pin is programmable independently as an input capture pin or an  
output compare pin. It also can be configured as a buffered output  
compare or buffered PWM pin.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
136  
Timer Interface Module (TIM)  
MOTOROLA  
Timer Interface Module (TIM)  
I/O Registers  
10.10 I/ O Re g iste rs  
The following I/O registers control and monitor operation of the TIM:  
• TIM status and control register (TSC)  
• TIM control registers (TCNTH:TCNTL)  
• TIM counter modulo registers (TMODH:TMODL)  
• TIM channel status and control registers (TSC0 and TSC1)  
• TIM channel registers (TCH0H:TCH0L and TCH1H:TCH1L)  
10.10.1 TIM Sta tus a nd Control Re g iste r (TSC)  
The TIM status and control register does the following:  
• Enables TIM overflow interrupts  
• Flags TIM overflows  
• Stops the TIM counter  
• Resets the TIM counter  
• Prescales the TIM counter clock  
Address:  
$000A  
Bit 7  
TOF  
0
6
TOIE  
0
5
TSTOP  
1
4
0
3
0
2
PS2  
0
1
PS1  
0
Bit 0  
PS0  
0
Read:  
Write:  
Reset:  
TRST  
0
0
0
= Unimplemented  
Figure 10-3. TIM Status and Control Register (TSC)  
TOF — TIM Overflow Flag Bit  
This read/write flag is set when the TIM counter resets to $0000 after  
reaching the modulo value programmed in the TIM counter modulo  
registers. Clear TOF by reading the TIM status and control register  
when TOF is set and then writing a logic zero to TOF. If another TIM  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Timer Interface Module (TIM)  
137  
Tim e r Inte rfa c e Mod ule (TIM)  
overflow occurs before the clearing sequence is complete, then  
writing logic zero to TOF has no effect. Therefore, a TOF interrupt  
request cannot be lost due to inadvertent clearing of TOF. Reset  
clears the TOF bit. Writing a logic one to TOF has no effect.  
1 = TIM counter has reached modulo value  
0 = TIM counter has not reached modulo value  
TOIE — TIM Overflow Interrupt Enable Bit  
This read/write bit enables TIM overflow interrupts when the TOF bit  
becomes set. Reset clears the TOIE bit.  
1 = TIM overflow interrupts enabled  
0 = TIM overflow interrupts disabled  
TSTOP — TIM Stop Bit  
This read/write bit stops the TIM counter. Counting resumes when  
TSTOP is cleared. Reset sets the TSTOP bit, stopping the TIM  
counter until software clears the TSTOP bit.  
1 = TIM counter stopped  
0 = TIM counter active  
NOTE: Do not set the TSTOP bit before entering wait mode if the TIM is required  
to exit wait mode.  
TRST — TIM Reset Bit  
Setting this write-only bit resets the TIM counter and the TIM  
prescaler. Setting TRST has no effect on any other registers.  
Counting resumes from $0000. TRST is cleared automatically after  
the TIM counter is reset and always reads as logic zero. Reset clears  
the TRST bit.  
1 = Prescaler and TIM counter cleared  
0 = No effect  
NOTE: Setting the TSTOP and TRST bits simultaneously stops the TIM counter  
at a value of $0000.  
PS[2:0] — Prescaler Select Bits  
These read/write bits select either the TCLK pin or one of the seven  
prescaler outputs as the input to the TIM counter as Table 10-3  
shows. Reset clears the PS[2:0] bits.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
138  
Timer Interface Module (TIM)  
MOTOROLA  
Timer Interface Module (TIM)  
I/O Registers  
Table 10-3. Prescaler Selection  
PS2  
0
PS1  
0
PS0  
0
TIM Clock Source  
Internal Bus Clock ÷ 1  
Internal Bus Clock ÷ 2  
Internal Bus Clock ÷ 4  
Internal Bus Clock ÷ 8  
Internal Bus Clock ÷ 16  
Internal Bus Clock ÷ 32  
Internal Bus Clock ÷ 64  
Not available  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
10.10.2 TIM Counte r Re g iste rs (TCNTH:TCNTL)  
The two read-only TIM counter registers contain the high and low bytes  
of the value in the TIM counter. Reading the high byte (TCNTH) latches  
the contents of the low byte (TCNTL) into a buffer. Subsequent reads of  
TCNTH do not affect the latched TCNTL value until TCNTL is read.  
Reset clears the TIM counter registers. Setting the TIM reset bit (TRST)  
also clears the TIM counter registers.  
NOTE: If you read TCNTH during a break interrupt, be sure to unlatch TCNTL  
by reading TCNTL before exiting the break interrupt. Otherwise, TCNTL  
retains the value latched during the break.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Timer Interface Module (TIM)  
139  
Tim e r Inte rfa c e Mod ule (TIM)  
Address:  
$000C  
Bit 7  
TCNTH  
6
5
4
3
2
1
Bit 0  
Bit8  
Read:  
Write:  
Reset:  
Bit15  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
0
0
0
0
0
0
0
0
Address:  
$000D  
Bit 7  
TCNTL  
6
5
4
3
2
1
Bit 0  
Bit0  
Read:  
Write:  
Reset:  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 10-4. TIM Counter Registers (TCNTH:TCNTL)  
10.10.3 TIM Counte r Mod ulo Re g iste rs (TMODH:TMODL)  
The read/write TIM modulo registers contain the modulo value for the  
TIM counter. When the TIM counter reaches the modulo value, the  
overflow flag (TOF) becomes set, and the TIM counter resumes counting  
from $0000 at the next clock. Writing to the high byte (TMODH) inhibits  
the TOF bit and overflow interrupts until the low byte (TMODL) is written.  
Reset sets the TIM counter modulo registers.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
140  
Timer Interface Module (TIM)  
MOTOROLA  
Timer Interface Module (TIM)  
I/O Registers  
Address:  
$000E  
Bit 7  
TMODH  
6
5
Bit13  
1
4
Bit12  
1
3
Bit11  
1
2
Bit10  
1
1
Bit9  
1
Bit 0  
Bit8  
1
Read:  
Write:  
Reset:  
Bit15  
1
Bit14  
1
Address:  
$000F  
Bit 7  
TMODL  
6
5
Bit5  
1
4
Bit4  
1
3
Bit3  
1
2
Bit2  
1
1
Bit1  
1
Bit 0  
Bit0  
1
Read:  
Write:  
Reset:  
Bit7  
1
Bit6  
1
Figure 10-5. TIM Counter Modulo Registers (TMODH:TMODL)  
NOTE: Reset the TIM counter before writing to the TIM counter modulo registers.  
10.10.4 TIM Cha nne l Sta tus a nd Control Re g iste rs (TSC0:TSC1)  
Each of the TIM channel status and control registers does the following:  
• Flags input captures and output compares  
• Enables input capture and output compare interrupts  
• Selects input capture, output compare, or PWM operation  
• Selects high, low, or toggling output on output compare  
• Selects rising edge, falling edge, or any edge as the active input  
capture trigger  
• Selects output toggling on TIM overflow  
• Selects 100% PWM duty cycle  
• Selects buffered or unbuffered output compare/PWM operation  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Timer Interface Module (TIM)  
141  
Tim e r Inte rfa c e Mod ule (TIM)  
Address:  
$0010  
Bit 7  
CH0F  
0
TSC0  
6
5
MS0B  
0
4
MS0A  
0
3
ELS0B  
0
2
ELS0A  
0
1
TOV0  
0
Bit 0  
CH0MAX  
0
Read:  
Write:  
Reset:  
CH0IE  
0
0
Address:  
$0013  
Bit 7  
CH1F  
0
TSC1  
6
5
0
4
MS1A  
0
3
ELS1B  
0
2
ELS1A  
0
1
TOV1  
0
Bit 0  
CH1MAX  
0
Read:  
Write:  
Reset:  
CH1IE  
0
0
0
= Unimplemented  
Figure 10-6. TIM Channel Status and Control Registers (TSC0:TSC1)  
CHxF — Channel x Flag Bit  
When channel x is an input capture channel, this read/write bit is set  
when an active edge occurs on the channel x pin. When channel x is  
an output compare channel, CHxF is set when the value in the TIM  
counter registers matches the value in the TIM channel x registers.  
When TIM CPU interrupt requests are enabled (CHxIE=1), clear  
CHxF by reading the TIM channel x status and control register with  
CHxF set and then writing a logic zero to CHxF. If another interrupt  
request occurs before the clearing sequence is complete, then writing  
logic zero to CHxF has no effect. Therefore, an interrupt request  
cannot be lost due to inadvertent clearing of CHxF.  
Reset clears the CHxF bit. Writing a logic one to CHxF has no effect.  
1 = Input capture or output compare on channel x  
0 = No input capture or output compare on channel x  
CHxIE — Channel x Interrupt Enable Bit  
This read/write bit enables TIM CPU interrupt service requests on  
channel x. Reset clears the CHxIE bit.  
1 = Channel x CPU interrupt requests enabled  
0 = Channel x CPU interrupt requests disabled  
Technical Data  
MC68HC908BD48 Rev. 1.0  
142  
Timer Interface Module (TIM)  
MOTOROLA  
Timer Interface Module (TIM)  
I/O Registers  
MSxB — Mode Select Bit B  
This read/write bit selects buffered output compare/PWM operation.  
MSxB exists only in the TIM channel 0 status and control register.  
Setting MS0B disables the channel 1 status and control register and  
reverts TCH1 to general-purpose I/O.  
Reset clears the MSxB bit.  
1 = Buffered output compare/PWM operation enabled  
0 = Buffered output compare/PWM operation disabled  
MSxA — Mode Select Bit A  
When ELSxB:A 00, this read/write bit selects either input capture  
operation or unbuffered output compare/PWM operation.  
See Table 10-4.  
1 = Unbuffered output compare/PWM operation  
0 = Input capture operation  
When ELSxB:A = 00, this read/write bit selects the initial output level  
of the TCHx pin. (See Table 10-4.). Reset clears the MSxA bit.  
1 = Initial output level low  
0 = Initial output level high  
NOTE: Before changing a channel function by writing to the MSxB or MSxA bit,  
set the TSTOP and TRST bits in the TIM status and control register  
(TSC).  
ELSxB and ELSxA — Edge/Level Select Bits  
When channel x is an input capture channel, these read/write bits  
control the active edge-sensing logic on channel x.  
When channel x is an output compare channel, ELSxB and ELSxA  
control the channel x output behavior when an output compare  
occurs.  
When ELSxB and ELSxA are both clear, channel x is not connected  
to an I/O port , and pin TCHx is available as a general-purpose port  
I/O pin. Table 10-4 shows how ELSxB and ELSxA work. Reset clears  
the ELSxB and ELSxA bits.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Timer Interface Module (TIM)  
143  
Tim e r Inte rfa c e Mod ule (TIM)  
Table 10-4. Mode, Edge, and Level Selection  
MSxB MSxA ELSxB ELSxA  
Mode  
Configuration  
Pin under Port Control;  
Initial Output Level High  
X
X
0
1
0
0
0
0
Output  
Preset  
Pin under Port Control;  
Initial Output Level Low  
0
0
0
0
0
0
1
1
0
0
0
1
1
1
X
X
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
Capture on Rising Edge Only  
Capture on Falling Edge Only  
Capture on Rising or Falling Edge  
Toggle Output on Compare  
Input  
Capture  
Output  
Compare Clear Output on Compare  
or PWM  
Set Output on Compare  
Buffered  
Output  
Compareor  
Buffered  
PWM  
Toggle Output on Compare  
Clear Output on Compare  
1
X
1
1
Set Output on Compare  
NOTE: Before enabling a TIM channel register for input capture operation, make  
sure that the PTDx/TCHx pin is stable for at least two bus clocks.  
TOVx — Toggle-On-Overflow Bit  
When channel x is an output compare channel, this read/write bit  
controls the behavior of the channel x output when the TIM counter  
overflows. When channel x is an input capture channel, TOVx has no  
effect. Reset clears the TOVx bit.  
1 = Channel x pin toggles on TIM counter overflow.  
0 = Channel x pin does not toggle on TIM counter overflow.  
NOTE: When TOVx is set, a TIM counter overflow takes precedence over a  
channel x output compare if both occur at the same time.  
CHxMAX — Channel x Maximum Duty Cycle Bit  
When the TOVx bit is at logic zero, setting the CHxMAX bit forces the  
duty cycle of buffered and unbuffered PWM signals to 100%. As  
Figure 10-7 shows, the CHxMAX bit takes effect in the cycle after it  
is set or cleared. The output stays at the 100% duty cycle level until  
the cycle after CHxMAX is cleared.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
144  
Timer Interface Module (TIM)  
MOTOROLA  
Timer Interface Module (TIM)  
I/O Registers  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
OUTPUT  
PTDx/TCHx  
CHxMAX  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
COMPARE  
Figure 10-7. CHxMAX Latency  
10.10.5 TIM Cha nne l Re g iste rs (TCH0H/ L:TCH1H/ L)  
These read/write registers contain the captured TIM counter value of the  
input capture function or the output compare value of the output  
compare function. The state of the TIM channel registers after reset is  
unknown.  
In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the  
TIM channel x registers (TCHxH) inhibits input captures until the low  
byte (TCHxL) is read.  
In output compare mode (MSxB:MSxA 0:0), writing to the high byte of  
the TIM channel x registers (TCHxH) inhibits output compares until the  
low byte (TCHxL) is written.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Timer Interface Module (TIM)  
145  
Tim e r Inte rfa c e Mod ule (TIM)  
Address:  
$0011  
Bit 7  
TCH0H  
6
5
4
3
2
1
Bit 0  
Bit8  
Read:  
Write:  
Reset:  
Bit15  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
Indeterminate after reset  
Address:  
$0012  
Bit 7  
TCH0L  
6
5
4
3
2
1
Bit 0  
Bit0  
Read:  
Write:  
Reset:  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Indeterminate after reset  
Address:  
$0014  
Bit 7  
TCH1H  
6
5
4
3
2
1
Bit 0  
Bit8  
Read:  
Write:  
Reset:  
Bit15  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
Indeterminate after reset  
Address:  
$0015  
Bit 7  
TCH1L  
6
5
4
3
2
1
Bit 0  
Bit0  
Read:  
Write:  
Reset:  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Indeterminate after reset  
Figure 10-8. TIM Channel Registers (TCH0H/L:TCH1H/L)  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
146  
Timer Interface Module (TIM)  
Te c hnic a l Da ta — MC68HC908BD48  
Se c tion 11. Pulse Wid th Mod ula tor (PWM)  
11.1 Conte nts  
11.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
11.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
11.4 PWM Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149  
11.4.1 PWM Data Registers 0 to 15 (0PWM–15PWM). . . . . . . . .150  
11.4.2 PWM Control Registers 1 and 2 (PWMCR1:PWMCR2) . .151  
11.2 Introd uc tion  
Sixteen 8-bits PWM channels are available on the MC68HC908BD48.  
Channels 0 to 7 are shared with port-B I/O pins under the control of the  
PWM control register 1. Channels 8 to 15 are shared with port-A I/O pins  
under the control of the PWM control register 2.  
11.3 Func tiona l De sc rip tion  
Each 8-bit PWM channel is composed of an 8-bit register which contains  
a 5-bit PWM in MSB portion and a 3-bit binary rate multiplier (BRM) in  
LSB portion. There are 16 PWM data registers as shown in Table 11-1.  
The value programmed in the 5-bit PWM portion will determine the pulse  
length of the output. The clock to the 5-bit PWM portion is the system  
clock, the repetition rate of the output is hence 187.5KHz at 6MHz clock.  
The 3-bit BRM will generate a number of narrow pulses which are  
equally distributed among an 8-PWM-cycle frame. The number of pulses  
generated is equal to the number programmed in the 3-bit BRM portion.  
Examples of the waveforms are shown in Figure 11-3.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Pulse Width Modulator (PWM)  
147  
 
 
Pulse Wid th Mod ula tor (PWM)  
Combining the 5-bit PWM together with the 3-bit BRM, the average duty  
cycle at the output will be (M+N/8)/32, where M is the content of the 5-bit  
PWM portion, and N is the content of the 3-bit BRM portion. Using this  
mechanism, a true 8-bit resolution PWM type DAC with reasonably high  
repetition rate can be obtained.  
The value of each PWM Data Register is continuously compared with  
the content of an internal counter to determine the state of each PWM  
channel output pin. Double buffering is not used in this PWM design.  
Table 11-1. PWM I/O Register Summary  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
PWM0 Data Register  
(0PWM)  
$0020  
0PWM4  
0PWM3  
0PWM2  
0PWM1  
0PWM0  
0BRM2  
0BRM1  
0BRM0  
PWM1 Data Register  
(1PWM)  
$0021  
$0022  
$0023  
$0024  
$0025  
$0026  
$0027  
1PWM4  
2PWM4  
3PWM4  
4PWM4  
5PWM4  
6PWM4  
7PWM4  
1PWM3  
2PWM3  
3PWM3  
4PWM3  
5PWM3  
6PWM3  
7PWM3  
1PWM2  
2PWM2  
3PWM2  
4PWM2  
5PWM2  
6PWM2  
7PWM2  
1PWM1  
2PWM1  
3PWM1  
4PWM1  
5PWM1  
6PWM1  
7PWM1  
1PWM0  
2PWM0  
3PWM0  
4PWM0  
5PWM0  
6PWM0  
7PWM0  
1BRM2  
2BRM2  
3BRM2  
4BRM2  
5BRM2  
6BRM2  
7BRM2  
1BRM1  
2BRM1  
3BRM1  
4BRM1  
5BRM1  
6BRM1  
7BRM1  
1BRM0  
2BRM0  
3BRM0  
4BRM0  
5BRM0  
6BRM0  
7BRM0  
PWM2 Data Register  
(2PWM)  
PWM3 Data Register  
(3PWM)  
PWM4 Data Register  
(4PWM)  
PWM5 Data Register  
(5PWM)  
PWM6 Data Register  
(6PWM)  
PWM7 Data Register  
(7PWM)  
PWM Control Read:  
Register 1  
(PWMCR1)  
$0028  
PWM7E  
0
PWM6E  
0
PWM5E  
0
PWM4E  
0
PWM3E  
0
PWM2E  
0
PWM1E  
0
PWM0E  
0
Write:  
Reset:  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
148  
Pulse Width Modulator (PWM)  
Pulse Width Modulator (PWM)  
PWM Registers  
Table 11-1. PWM I/O Register Summary  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
PWM8 Data Register  
(8PWM)  
$0051  
$0052  
$0053  
$0054  
$0055  
$0056  
$0057  
$0058  
8PWM4  
9PWM4  
8PWM3  
9PWM3  
8PWM2  
9PWM2  
8PWM1  
9PWM1  
8PWM0  
9PWM0  
8BRM2  
9BRM2  
8BRM1  
9BRM1  
8BRM0  
9BRM0  
PWM9 Data Register  
(9PWM)  
PWM10 Data Register  
(10PWM)  
10PWM4 10PWM3 10PWM2 10PWM1 10PWM0 10BRM2 10BRM1 10BRM0  
11PWM4 11PWM3 11PWM2 11PWM1 11PWM0 11BRM2 11BRM1 11BRM0  
12PWM4 12PWM3 12PWM2 12PWM1 12PWM0 12BRM2 12BRM1 12BRM0  
13PWM4 13PWM3 13PWM2 13PWM1 13PWM0 13BRM2 13BRM1 13BRM0  
PWM11 Data Register  
(11PWM)  
PWM12 Data Register  
(12PWM)  
PWM13 Data Register  
(13PWM)  
PWM14 Data Register  
(14PWM)  
14PWM4  
PWM3  
14PWM2 14PWM1 14PWM0 14BRM2 14BRM1 14BRM0  
PWM15 Data Register  
(15PWM)  
15PWM4 15PWM3 15PWM2 15PWM1 15PWM0 15BRM2 15BRM1 15BRM0  
PWM Control Read:  
Register 2  
(PWMCR2)  
$0059  
PWM15E PWM14E PWM13E PWM12E PWM11E PWM10E PWM9E  
PWM8E  
0
Write:  
Reset:  
0
0
0
0
0
0
0
11.4 PWM Re g iste rs  
The PWM module uses of 18 registers for data and control functions.  
• 16 PWM data registers ($0020–$0027 and $0051–$0058)  
• 2 PWM control registers ($0028 and $0059)  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Pulse Width Modulator (PWM)  
149  
Pulse Wid th Mod ula tor (PWM)  
11.4.1 PWM Da ta Re g iste rs 0 to 15 (0PWM–15PWM)  
Address:  
$0020–$0027 and $0051–$0058  
Bit 7  
xPWM4  
0
6
xPWM3  
0
5
xPWM2  
0
4
xPWM1  
0
3
xPWM0  
0
2
xBRM2  
0
1
xBRM1  
0
Bit 0  
xBRM0  
0
Read:  
Write:  
Reset:  
Figure 11-1. PWM Data Registers 0 to 15 (0PWM–15PWM)  
The output waveform of the 16 PWM channels are each configured by  
an 8-bit register, which contains a 5-bit PWM in MSB portion and a 3-bit  
binary rate multiplier (BRM) in LSB portion  
xPWM4–xPWM0 — PWM Bits  
The value programmed in the 5-bit PWM portion will determine the pulse  
length of the output. The clock to the 5-bit PWM portion is the system  
clock (CPU clock), the repetition rate of the output is hence f ÷ 32.  
OP  
Examples of PWM output waveforms are shown in Figure 11-3.  
xBRM2–xBRM0 — Binary Rate Multiplier Bits  
The 3-bit BRM will generate a number of narrow pulses which are  
equally distributed among an 8-PWM-cycle frame. The number of pulses  
generated is equal to the number programmed in the 3-bit BRM portion.  
Examples of PWM output waveforms are shown in Figure 11-3.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
150  
Pulse Width Modulator (PWM)  
MOTOROLA  
Pulse Width Modulator (PWM)  
PWM Registers  
11.4.2 PWM Control Re g iste rs 1 a nd 2 (PWMCR1:PWMCR2)  
PWM Control Read:  
$0028  
$0059  
Register 1  
(PWMCR1)  
PWM7E  
PWM6E  
PWM5E  
PWM4E  
PWM3E  
PWM2E  
PWM1E  
PWM0E  
Write:  
PWM Control Read:  
Register 2  
(PWMCR2)  
PWM15E PWM14E PWM13E PWM12E PWM11E PWM10E PWM9E  
PWM8E  
0
Write:  
Reset:  
0
0
0
0
0
0
0
Figure 11-2. PWM Control Register 1 and 2 (PWMCR1:PWMCR2)  
PWM15E–PWM0E — PWM Output Enable  
Setting a bit to 1 will enable the corresponding PWM channel to use  
as PWM output. A zero configures the corresponding PWM pin as a  
standard I/O port pin. Reset clears these bits.  
1 = Port pin configured as PWM output  
0 = Port pin configured as standard I/O port pin.  
Table 11-2. PWM Channels and Port I/O pins  
PWM  
Channel  
Control  
Bit  
PWM  
Channel  
Control  
Bit  
Port Pin  
Port Pin  
PTB0  
PTB1  
PTB2  
PTB3  
PTB4  
PTB5  
PTB6  
PTB7  
PWM0  
PWM1  
PWM2  
PWM3  
PWM4  
PWM5  
PWM6  
PWM7  
PWM0E  
PWM1E  
PWM2E  
PWM3E  
PWM4E  
PWM5E  
PWM6E  
PWM7E  
PTA0  
PTA1  
PTA2  
PTA3  
PTA4  
PTA5  
PTA6  
PTA7  
PWM8  
PWM9  
PWM8E  
PWM9E  
PWM10  
PWM11  
PWM12  
PWM13  
PWM14  
PWM15  
PWM10E  
PWM11E  
PWM12E  
PWM13E  
PWM14E  
PWM15E  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Pulse Width Modulator (PWM)  
151  
 
Pulse Wid th Mod ula tor (PWM)  
1 PWM cycle = 32T  
M=$00  
T
M=$01  
31T  
16T  
16T  
M=$0F  
31T  
M=$1F  
Pulse inserted at end of PWM cycle  
depends on setting of N.  
T
T=1 CPU clock period (0.167µs if CPU clock=6MHz)  
M = value set in 5-bit PWM (bit3-bit7)  
N = value set in 3-bit BRM (bit0-bit2)  
PWM cycles where pulses are Number of inserted pulses  
N
inserted in a 8-cycle frame  
in a 8-cycle frame  
xx1  
x1x  
1xx  
4
1
2
4
2, 6  
1, 3, 5, 7  
Figure 11-3. 8-Bit PWM Output Waveforms  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
152  
Pulse Width Modulator (PWM)  
Te c hnic a l Da ta — MC68HC908BD48  
Se c tion 12. Ana log -to-Dig ita l Conve rte r (ADC)  
12.1 Conte nts  
12.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153  
12.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154  
12.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154  
12.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155  
12.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156  
12.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156  
12.4.4 Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . .156  
12.4.5 Accuracy and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . .157  
12.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157  
12.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157  
12.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157  
12.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157  
12.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157  
12.7.1 ADC Voltage In (ADCVIN) . . . . . . . . . . . . . . . . . . . . . . . . .158  
12.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158  
12.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . .158  
12.8.2 ADC Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160  
12.8.3 ADC Input Clock Register . . . . . . . . . . . . . . . . . . . . . . . . .161  
12.2 Introd uc tion  
This section describes the analog-to-digital converter (ADC). The ADC  
is an 8-bit 6-channels analog-to-digital converter.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Analog-to-Digital Converter (ADC)  
153  
 
Ana log -to-Dig ita l Conve rte r (ADC)  
12.3 Fe a ture s  
Features of the ADC module include:  
• 6 Channels ADC with Multiplexed Input  
• Linear Successive Approximation  
• 8-Bit Resolution  
• Single or Continuous Conversion  
• Conversion Complete Flag or Conversion Complete Interrupt  
• Selectable ADC Clock  
Table 12-1. ADC Register Summary  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
COCO  
ADC Status and Control  
$005D  
AIEN  
ADCO  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
Register Write:  
(ADSCR)  
Reset:  
0
0
0
1
1
1
1
1
Read:  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
$005E  
$005F  
ADC Data Register  
Write:  
Reset:  
Read:  
(ADR)  
Indeterminate after Reset  
0
0
0
0
0
0
0
0
ADC Input Clock  
ADIV2  
0
ADIV1  
0
ADIV0  
0
Register Write:  
(ADICLK)  
Reset:  
0
0
= Unimplemented  
12.4 Func tiona l De sc rip tion  
Four ADC channels are available for sampling external sources at pins  
PTC5–PTC0. An analog multiplexer allows the single ADC converter to  
select one of the 6 ADC channels as ADC voltage input (ADCVIN).  
ADCVIN is converted by the successive approximation register-based  
counters. The ADC resolution is 8 bits. When the conversion is  
completed, ADC puts the result in the ADC data register and sets a flag  
or generates an interrupt. Figure 12-1 shows a block diagram of the  
ADC.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
154  
Analog-to-Digital Converter (ADC)  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
Functional Description  
INTERNAL  
DATA BUS  
READ DDRC  
WRITE DDRC  
DISABLE  
DDRCx  
PTCx  
RESET  
WRITE PTC  
READ PTC  
PTCx/ADCx  
DISABLE  
ADC CHANNEL x  
ADC DATA REGISTER  
ADC VOLTAGE IN  
ADCVIN  
CONVERSION  
COMPLETE  
CHANNEL  
SELECT  
(1 OF 6 CHANNELS)  
INTERRUPT  
LOGIC  
ADCH[4:0]  
ADC  
ADC CLOCK  
AIEN  
COCO  
CLOCK  
GENERATOR  
BUS CLOCK  
ADIV[2:0]  
ADICLK  
Figure 12-1. ADC Block Diagram  
12.4.1 ADC Port I/ O Pins  
PTC5–PTC0 are general-purpose I/O pins that are shared with the ADC  
channels. The channel select bits (ADC status control register, $005D),  
define which ADC channel/port pin will be used as the input signal. The  
ADC overrides the port I/O logic by forcing that pin as input to the ADC.  
The remaining ADC channels/port pins are controlled by the port I/O  
logic and can be used as general-purpose I/O. Writes to the port register  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Analog-to-Digital Converter (ADC)  
155  
Ana log -to-Dig ita l Conve rte r (ADC)  
or DDR will not have any affect on the port pin that is selected by the  
ADC. Read of a port pin which is in use by the ADC will return an  
unknown state if the corresponding DDR bit is at logic 0. If the DDR bit  
is at logic 1, the value in the port data latch is read.  
12.4.2 Volta g e Conve rsion  
When the input voltage to the ADC equals ------ V , the ADC converts the  
2
3
DD  
signal to $FF (full scale). If the input voltage equals V , the ADC  
SS  
2
3
converts it to $00. Input voltage between ------ V and V are a  
DD  
SS  
straight-line linear conversion. All other input voltages will result in $FF  
2
3
if greater than ------ V and $00 if less than V .  
DD  
SS  
NOTE: Input voltage should not exceed the analog supply voltages.  
12.4.3 Conve rsion Tim e  
Twelve ADC internal clocks are required to perform one conversion. The  
ADC starts a conversion on the first rising edge of the ADC internal clock  
immediately following a write to the ADSCR. If the ADC internal clock is  
selected to run at 1MHz, then one conversion will take 12µs to complete.  
With a 1MHz ADC internal clock the maximum sample rate is 83.3kHz.  
12 ADC Clock Cycles  
Conversion Time =  
ADC Clock Frequency  
Number of Bus Cycles = Conversion Time × Bus Frequency  
12.4.4 Continuous Conve rsion  
In the continuous conversion mode, the ADC continuously converts the  
selected channel filling the ADC data register with new data after each  
conversion. Data from the previous conversion will be overwritten  
whether that data has been read or not. Conversions will continue until  
the ADCO bit is cleared. The COCO bit (ADC status control register,  
$005D) is set after each conversion and can be cleared by writing the  
ADC status and control register or reading of the ADC data register.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
156  
Analog-to-Digital Converter (ADC)  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
Interrupts  
12.4.5 Ac c ura c y a nd Pre c ision  
The conversion process is monotonic and has no missing codes.  
12.5 Inte rrup ts  
When the AIEN bit is set, the ADC module is capable of generating a  
CPU interrupt after each ADC conversion. A CPU interrupt is generated  
if the COCO bit is at logic 0. The COCO bit is not used as a conversion  
complete flag when interrupts are enabled.  
12.6 Low-Powe r Mod e s  
The following subsections describe the low-power modes.  
12.6.1 Wa it Mod e  
The ADC continues normal operation during wait mode. Any enabled  
CPU interrupt request from the ADC can bring the MCU out of wait  
mode. If the ADC is not required to bring the MCU out of wait mode,  
power down the ADC by setting the ADCH[4:0] bits in the ADC status  
and control register to logic 1’s before executing the WAIT instruction.  
12.6.2 Stop Mod e  
The ADC module is inactive after the execution of a STOP instruction.  
Any pending conversion is aborted. ADC conversions resume when the  
MCU exits stop mode. Allow one conversion cycle to stabilize the analog  
circuitry before attempting a new ADC conversion after exiting stop  
mode.  
12.7 I/ O Sig na ls  
The ADC module has 6 channels that are shared with I/O port C.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Analog-to-Digital Converter (ADC)  
157  
Ana log -to-Dig ita l Conve rte r (ADC)  
12.7.1 ADC Volta g e In (ADCVIN)  
ADCVIN is the input voltage signal from one of the 6 ADC channels to  
the ADC module.  
12.8 I/ O Re g iste rs  
Three I/O registers control and monitor ADC operation:  
• ADC status and control register (ADSCR, $005D)  
• ADC data register (ADR, $005E)  
• ADC clock register (ADICLK, $005F)  
12.8.1 ADC Sta tus a nd Control Re g iste r  
The following paragraphs describe the function of the ADC status and  
control register.  
Address:  
$005D  
Bit 7  
6
AIEN  
0
5
ADCO  
0
4
ADCH4  
1
3
ADCH3  
1
2
ADCH2  
1
1
ADCH1  
1
Bit 0  
ADCH0  
1
Read:  
Write:  
Reset:  
COCO  
0
= Unimplemented  
Figure 12-2. ADC Status and Control Register (ADSCR)  
COCO — Conversions Complete Bit  
When the AIEN bit is a logic 0, the COCO is a read-only bit which is  
set each time a conversion is completed. This bit is cleared whenever  
the ADC status and control register is written or whenever the ADC  
data register is read. Reset clears this bit.  
1 = conversion completed (AIEN = 0)  
0 = conversion not completed (AIEN = 0)  
When the AIEN bit is a logic 1 (CPU interrupt enabled), the COCO is  
a read-only bit, and will always be logic 0 when read.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
158  
Analog-to-Digital Converter (ADC)  
MOTOROLA  
 
Analog-to-Digital Converter (ADC)  
I/O Registers  
AIEN — ADC Interrupt Enable Bit  
When this bit is set, an interrupt is generated at the end of an ADC  
conversion. The interrupt signal is cleared when the data register is  
read or the status/control register is written. Reset clears the AIEN bit.  
1 = ADC interrupt enabled  
0 = ADC interrupt disabled  
ADCO — ADC Continuous Conversion Bit  
When set, the ADC will convert samples continuously and update the  
ADR register at the end of each conversion. Only one conversion is  
allowed when this bit is cleared. Reset clears the ADCO bit.  
1 = Continuous ADC conversion  
0 = One ADC conversion  
ADCH[4:0] — ADC Channel Select Bits  
ADCH[4:0] form a 5-bit field which is used to select one of the ADC  
channels. The five channel select bits are detailed in the following  
table. Care should be taken when using a port pin as both an analog  
and a digital input simultaneously to prevent switching noise from  
corrupting the analog signal. (See Table 12-2.)  
The ADC subsystem is turned off when the channel select bits are all  
set to one. This feature allows for reduced power consumption for the  
MCU when the ADC is not used. Reset sets all of these bits to a  
logic 1.  
NOTE: Recovery from the disabled state requires one conversion cycle to  
stabilize.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Analog-to-Digital Converter (ADC)  
159  
Ana log -to-Dig ita l Conve rte r (ADC)  
Table 12-2. MUX Channel Select  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
ADC Channel  
Input Select  
0
0
0
0
0
0
0
0
:
0
0
0
0
1
1
1
:
0
0
1
1
0
0
1
:
0
1
0
1
0
1
0
:
ADC0  
ADC1  
ADC2  
ADC3  
ADC4  
ADC5  
PTC0  
PTC1  
PTC2  
PTC3  
PTC4  
PTC5  
0
0
0
0
0
0
Unused  
(see Note 1)  
:
1
1
1
1
1
1
1
0
0
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0
1
1
Reserved  
Unused  
1
1
V
V
(see Note 2)  
(see Note 2)  
DDA  
SSA  
1
1
ADC power off  
NOTES:  
1. If any unused channels are selected, the resulting ADC conversion will be unknown.  
2. The voltage levels supplied from internal reference nodes as specified in the table are used to verify the  
operation of the ADC converter both in production test and for user applications.  
12.8.2 ADC Da ta Re g iste r  
One 8-bit result register is provided. This register is updated each time  
an ADC conversion completes.  
Address:  
$005E  
Bit 7  
6
5
4
3
2
1
Bit 0  
AD0  
Read:  
Write:  
Reset:  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
Indeterminate after Reset  
= Unimplemented  
Figure 12-3. ADC Data Register (ADR)  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
160  
Analog-to-Digital Converter (ADC)  
Analog-to-Digital Converter (ADC)  
I/O Registers  
12.8.3 ADC Inp ut Cloc k Re g iste r  
This register selects the clock frequency for the ADC.  
Address:  
$005F  
Bit 7  
6
ADIV1  
0
5
ADIV0  
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
ADIV2  
0
0
0
0
0
0
= Unimplemented  
Figure 12-4. ADC Input Clock Register (ADICLK)  
ADIV2:ADIV0 — ADC Clock Prescaler Bits  
ADIV2, ADIV1, and ADIV0 form a 3-bit field which selects the divide  
ratio used by the ADC to generate the internal ADC clock. Table 12-3  
shows the available clock configurations. The ADC clock should be  
set to approximately 1MHz. With an internal bus frequency of 6MHz,  
set ADIV[2:0] = 010, for a divide by four ADC clock rate.  
Table 12-3. ADC Clock Divide Ratio  
ADIV2  
ADIV1  
ADIV0  
ADC Clock Rate  
Internal bus clock ÷ 1  
Internal bus clock ÷ 2  
Internal bus clock ÷ 4  
Internal bus clock ÷ 8  
Internal bus clock ÷ 16  
0
0
0
1
1
X
0
1
0
1
X
0
0
0
1
X = don’t care  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Analog-to-Digital Converter (ADC)  
161  
Ana log -to-Dig ita l Conve rte r (ADC)  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
162  
Analog-to-Digital Converter (ADC)  
Te c hnic a l Da ta — MC68HC908BD48  
Se c tion 13. Unive rsa l Se ria l Bus Mod ule (USB)  
13.1 Conte nts  
13.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163  
13.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164  
13.4 I/O Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164  
13.5 Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165  
13.5.1 USB Address Register (UADR) . . . . . . . . . . . . . . . . . . . . .166  
13.5.2 USB Interrupt Register (UINTR). . . . . . . . . . . . . . . . . . . . .166  
13.5.3 USB Interrupt Register 1 (UIR1). . . . . . . . . . . . . . . . . . . . .169  
13.5.4 USB Control Register 0 (UCR0). . . . . . . . . . . . . . . . . . . . .171  
13.5.5 USB Control Register 1 (UCR1). . . . . . . . . . . . . . . . . . . . .172  
13.5.6 USB Control Register 2 (UCR2). . . . . . . . . . . . . . . . . . . . .174  
13.5.7 USB Status Register (USR) . . . . . . . . . . . . . . . . . . . . . . . .175  
13.5.8 USB Endpoint 0 Data Registers 0 to 7  
(UD0R0–UD0R7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177  
13.5.9 USB Endpoint 1/2 Data Registers 0 to 7  
(UD1R0–UD1R7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177  
13.2 Introd uc tion  
This USB module is designed to serve as a low-speed (LS) USB device  
per the Universal Serial Bus Specification Rev 1.0.  
Three types of USB data transfers are supported: control, interrupt, and  
bulk (transmit only). Endpoint 0 functions as a receive/transmit control  
endpoint. Endpoints 1 and 2 can function as interrupt or bulk, but only in  
transmit direction.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Universal Serial Bus Module (USB)  
163  
 
Unive rsa l Se ria l Bus Mod ule (USB)  
13.3 Fe a ture s  
Features of the USB (universal serial bus) module include the following:  
• Integrated 3.3-volt regulator with 3.3-volt output pin  
• Integrated USB transceiver supporting low-speed functions  
• USB data control logic  
– Packet decoding/generation  
– CRC (cyclic redundancy check) generation and checking  
– NRZI (non-return-to zero inserted) encoding/decoding  
– Bit-stuffing  
• USB reset support  
• Control endpoint 0 and interrupt endpoints 1 and 2  
• Two 8-byte transmit buffers  
• One 8-byte receive buffer  
• Suspend and resume operations  
– Remote wakeup support  
• USB generated interrupts  
– Transaction interrupt driven  
– Resume interrupt  
– End-of-pack (EOP) interrupt  
• STALL, NAK, and ACK handshake generation  
13.4 I/ O Pins  
The USB module uses two I/O pins, shared with standard port I/O pins.  
The full name of the USB I/O pins are listed in Table 13-1. The generic  
pin name appear in the text that follows.  
Table 13-1. Pin Name Conventions  
USB  
Pin Selected for  
USB Function By:  
Full MCU Pin Names:  
Generic Pin Names:  
D+  
D–  
PTD0/D+  
PTD1/D–  
USBD+E bit in PDCR ($0049)  
USBD–E bit in PDCR ($0049)  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
164  
Universal Serial Bus Module (USB)  
 
Universal Serial Bus Module (USB)  
Registers  
Table 13-2. USB I/O Register Summary  
Addr.  
Register Name  
Bit 7  
6
5
4
3
UADD3  
0
2
UADD2  
0
1
UADD1  
0
Bit 0  
UADD0  
0
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
USBEN  
UADD6  
UADD5  
UADD4  
USB Address Register  
(UADR)  
$0029  
0
0
0
0
TBEF  
RBFF  
EOPIF  
RSTIF  
TBIE  
0
RBIE  
0
EOPIE  
0
RSTIE  
0
USB Interrupt Register  
(UINTR)  
$002A  
$002B  
$002C  
$002D  
$002E  
$002F  
0
T0SEQ  
0
0
0
0
STALL0  
TX0E  
RX0E  
TP0SIZ3 TP0SIZ2 TP0SIZ1 TP0SIZ0  
USB Control Register 0  
(UCR0)  
0
0
0
0
0
0
0
0
Read: RSEQ  
Write:  
SETUP  
TX1ST  
RPSIZ3  
RPSIZ2  
RPSIZ1  
RPSIZ0  
USB Status Register  
(USR)  
Indeterminate after reset  
PULLEN SUSPND ENABLE2 ENABLE1 STALL2  
Reset:  
Read:  
Write:  
Reset:  
0
0
0
STALL1  
USB Control Register 2  
(UCR2)  
0
0
0
0
0
0
0
Read: TXD1F  
RESUMF  
0
RESUMFR  
0
0
TBEFR  
0
0
RBFFR  
0
0
TXD1FR  
0
0
EOPFR  
0
USB Interrupt Register 1  
TXD1IE  
(UIR1) Write:  
Reset:  
0
T1SEQ  
0
0
ENDADD  
0
0
TX1E  
0
Read:  
Write:  
Reset:  
FRESUM TP1SIZ3 TP1SIZ2 TP1SIZ1 TP1SIZ0  
USB Control Register 1  
(UCR1)  
0
0
0
0
0
Read: UE0RDx7 UE0RDx6 UE0RDx5 UE0RDx4 UE0RDx3 UE0RDx2 UE0RDx1 UE0RDx0  
$0030  
to  
USB Endpoint 0 Data  
Register 0–7 Write: UE0TDx7 UE0TDx6 UE0TDx5 UE0TDx4 UE0TDx3 UE0TDx2 UE0TDx1 UE0TDx0  
$0037  
(UD0R0–UD0R7)  
Reset:  
Read:  
Indeterminate after reset  
$0038  
to  
$003F  
USB Endpoint 1/2 Data  
Register 0–7 Write: UE1TDx7 UE1TDx6 UE1TDx5 UE1TDx4 UE1TDx3 UE1TDx2 UE1TDx1 UE1TDx0  
(UD1R0–UD1R7)  
Indeterminate after reset  
Reset:  
13.5 Re g iste rs  
There are seven control/status registers and 24 data buffers in the USB  
module. These registers are discussed in the following paragraphs.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Universal Serial Bus Module (USB)  
165  
Unive rsa l Se ria l Bus Mod ule (USB)  
13.5.1 USB Ad d re ss Re g iste r (UADR)  
Address:  
$0029  
Bit 7  
6
UADD6  
0
5
UADD5  
0
4
UADD4  
0
3
UADD3  
0
2
UADD2  
0
1
UADD1  
0
Bit 0  
UADD0  
0
Read:  
Write:  
Reset:  
USBEN  
0
Figure 13-1. USB Address Register (UADR)  
USBEN — USB Enable  
This read/write bit enables/disables the USB module. When USBEN  
bit is clear, USB will not respond to any tokens, but still can detect  
USB reset signal, or EOP signals, and non-IDLE state if in Suspend  
Mode. Reset clears this bit. After USB reset, software will set this bit  
to enable USB.  
1 = USB module enabled  
0 = USB module disabled  
UADD[6:0] — USB Address  
These bits specify the USB address of the device. Reset clears these  
bits to $00, the default address.  
13.5.2 USB Inte rrup t Re g iste r (UINTR)  
Address:  
$002A  
Bit 7  
6
5
4
3
TBIE  
0
2
RBIE  
0
1
EORIE  
0
Bit 0  
RSTIE  
0
Read:  
Write:  
Reset:  
TBEF  
RBFF  
EOPIF  
RSTIF  
0
0
0
0
= Unimplemented  
Figure 13-2. USB Interrupt Register (UINTR)  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
166  
Universal Serial Bus Module (USB)  
Universal Serial Bus Module (USB)  
Registers  
TBEF — Transmit Buffer Empty Flag  
This flag is set after the data stored in endpoint 0 transmit buffer has  
been sent and ACK handshake packet is received. Software must  
clear this flag by writing a logic "1" to TBEFR bit after the data is ready  
in the transmit buffer. This enables the next data packet transmission  
when endpoint 0 transmit is enabled (TX0E = 1). TBEF generates an  
interrupt request to the CPU if the TBIE bit is also set. Reset clears  
this bit.  
1 = Transmit on endpoint 0 has occurred  
0 = Transmit on endpoint 0 has not occurred  
RBFF — Receive Buffer Full Flag  
This flag is set when the module has received one data packet and  
replied with ACK handshake packet. Software must clear this flag by  
writing "1" to RBFFR bit after all the received data have been read to  
enable the next data packet reception. RBFF generates an interrupt  
request to the CPU if the RBIE bit is also set. Reset clears this bit.  
1 = Receive on endpoint 0 has occurred  
0 = Receive on endpoint 0 has not occurred  
EOPIF — End Of Packet Interrupt Flag  
This flag is set when a valid EOP signal transition is detected on the  
D+ and D– lines. This flag can be cleared by writing "1" to EOPIFR bit.  
EOPIF generates an interrupt request to the CPU if the EOPIE bit is  
also set. Reset clears this bit.  
1 = End-of-packet sequence has been detected  
0 = End-of-packet sequence has not been detected  
RSTIF — Reset Interrupt Flag  
The flag is set when a valid reset signal state is detected on the D+  
and D– lines. This flag can be cleared by writing "1" to RSTIFR bit.  
RSTIF generates an interrupt request to the CPU if the RSTIE bit is  
also set. Reset clears this bit.  
1 = USB reset condition has been detected  
0 = USB reset condition has not been detected  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Universal Serial Bus Module (USB)  
167  
Unive rsa l Se ria l Bus Mod ule (USB)  
TBIE — Transmit Buffer Interrupt Enable  
When this bit is set, the TBEF flag is enabled to generate an interrupt  
request to the CPU. When TBIE is cleared, the TBEF flag is prevented  
from generating an interrupt request to the CPU. Reset clears this bit.  
1 = TBEF bit set will generate interrupt request to CPU  
0 = TBEF bit set does not generate interrupt request to CPU  
RBIE — Receive Buffer Interrupt Enable  
When this bit is set, the RBFF flag is enabled to generate an interrupt  
request to the CPU. When RBIE is cleared, the RBFF flag is  
prevented from generating an interrupt request to the CPU. Reset  
clears this bit.  
1 = RBFF bit set will generate interrupt request to CPU  
0 = RBFF bit set does not generate interrupt request to CPU  
EOPIE — End Of Packet Interrupt Enable  
When this bit is set, the EOPIF flag is enabled to generate an interrupt  
request to the CPU. When EOPIE is cleared, the EOPIF flag is  
prevented from generating an interrupt request to the CPU. Reset  
clears this bit.  
1 = EOPIF bit set will generate interrupt request to CPU  
0 = EOPIF bit set does not generate interrupt request to CPU  
RSTIE — Reset Interrupt Enable  
When this bit is set, the RSTIF flag is enabled to generate an interrupt  
request to the CPU. When RSTIE is cleared, the RSTIF flag is  
prevented from generating an interrupt request to the CPU. Reset  
clears this bit.  
1 = RSTIF bit set will generate interrupt request to CPU  
0 = RSTIF bit set does not generate interrupt request to CPU  
NOTE: Since there are more than one interrupt flags in the register, it is possible  
that program use Read-Modify-Write instruction to clear one flag, will  
occasionally clear the other flags which was just set after Read cycle of  
Read-Modify-Write operation.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
168  
Universal Serial Bus Module (USB)  
MOTOROLA  
Universal Serial Bus Module (USB)  
Registers  
13.5.3 USB Inte rrup t Re g iste r 1 (UIR1)  
Address:  
$002E  
Bit 7  
6
TXD1IE  
0
5
4
3
2
1
Bit 0  
Read: TXD1F  
RESUMF  
0
RESUMFR  
0
0
TBEFR  
0
0
RBFFR  
0
0
TXD1FR  
0
0
EOPFR  
0
Write:  
0
0
0
0
Reset:  
Figure 13-3. USB Interrupt Register 1 (UIR1)  
TXD1F — Endpoint 1/2 Data Buffer Transmit Flag  
The flag is set after the data stored in endpoint 1/2 transmit buffer has  
been sent and ACK handshake packet from host is received.  
Software must clear this flag by writing a logic 1 to TXD1FR bit after  
the data is ready in the transmit buffer to enable the next data packet  
transmission when TX1E is enabled. Reset clears this bit.  
1 = Transmit on endpoint 1/2 has occurred  
0 = Transmit on endpoint 1/2 has not occurred  
TXD1IE — Transmit Buffer Interrupt Enable  
When this bit is set, the TXD1F flag is enabled to generate an interrupt  
request to the CPU. When TXD1IE is cleared, the TXD1F flag is  
prevented from generating an interrupt request to the CPU. Reset  
clears this bit.  
1 = TXD1F bit set will generate interrupt request to CPU  
0 = TXD1F bit set does not generate interrupt request to CPU  
RESUMF — Resume Flag  
This flag is set if the transaction from idle state to non-idle state is  
detected while in suspend mode (SUSPND = 1). An interrupt will be  
generated to wake up CPU to indicate a resume signalling from host  
and software will clear SUSPND bit and exit from suspend mode.  
USB reset signals cannot be detected while in suspend mode until  
SUSPND bit is cleared. The RESUMF interrupt service routine is  
generated by SE0 to wake up the USB module. This bit can be  
cleared by writing "1" to RESUMFR bit. Reset clears this bit.  
1 = USB bus activity detected while in suspend mode  
0 = If in suspend mode, no USB bus activity has been detected  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Universal Serial Bus Module (USB)  
169  
Unive rsa l Se ria l Bus Mod ule (USB)  
RESUMFR — Resume Flag Clear  
Writing a logic "1" to this bit clears the RESUMF flag. Writing a "0" has  
no effect. Reset clears this bit.  
1 = Writing 1 clears RESUMFR  
0 = No effect  
TBEFR — Transmit Buffer Empty Flag Clear  
Writing a logic "1" to this bit clears the TBEF flag. Writing a "0" has no  
effect. Reset clears this bit.  
1 = Writing 1 clears TBEF  
0 = No effect  
RBFFR — Receive Buffer Full Flag Clear  
Writing a logic "1" to this bit clears the RBFF flag. Writing a "0" has no  
effect. Reset clears this bit.  
1 = Writing 1 clears RBFF  
0 = No effect  
TXD1FR — Endpoint 1 and 2 Data Buffer Transmit Flag Clear  
Writing a logic "1" to this bit clears the TXD1F flag. Writing a "0" has  
no effect. Reset clears this bit.  
1 = Writing 1 clears TXD1F  
0 = No effect  
EOPIFR — End Of Packet Interrupt Flag Clear  
Writing a logic "1" to this bit clears the EOPIF flag. Writing a "0" has  
no effect. Reset clears this bit.  
1 = Writing 1 clears EOPIF  
0 = No effect  
Technical Data  
MC68HC908BD48 Rev. 1.0  
170  
Universal Serial Bus Module (USB)  
MOTOROLA  
Universal Serial Bus Module (USB)  
Registers  
13.5.4 USB Control Re g iste r 0 (UCR0)  
Address:  
$002B  
Bit 7  
6
STALL0  
0
5
TX0E  
0
4
RX0E  
0
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
T0SEQ  
0
TP0SIZ3 TP0SIZ2 TP0SIZ1 TP0SIZ0  
0
0
0
0
Figure 13-4. USB Control Register 0 (UCR0)  
T0SEQ — Endpoint 0 Data Packet PID Select  
This bit will determine the transmit data packet PID of endpoint 0.  
When it is "0", the DATA0 PID (b0011) will be sent. When it is "1", the  
DATA1 PID (b1011) will be sent. Reset clears this bit.  
1 = DATA1 PID will be sent on endpoint 0  
0 = DATA0 PID will be sent on endpoint 0  
STALL0 — Endpoint 0 STALL Handshake  
This bit is set to generate the STALL handshake packet as next IN or  
OUT transactions handshake packet from endpoint 0. The USB  
hardware clears the STALL0 bit when a SETUP packet is received.  
Reset clears this bit.  
1 = Send STALL handshake on endpoint 0  
0 = Do not send STALL handshake on endpoint 0  
TX0E — Endpoint 0 Transmit Enable  
This bit is set to enable data packet transmission from endpoint 0.  
Software should set this bit when data is ready for data packet  
transmission. It must be cleared when no more data needs to be  
transmitted. If TX0E is "0" or TXD0F is "1", a NAK handshake will be  
returned for the next IN token. Reset clears this bit.  
1 = Data is ready to be sent on endpoint 0  
0 = Data is not ready; respond with ACK  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Universal Serial Bus Module (USB)  
171  
Unive rsa l Se ria l Bus Mod ule (USB)  
RX0E — Endpoint 0 Receive Enable  
This bit is set to enable data packet reception from endpoint 0.  
Software should set this bit when it is ready for data packet reception.  
It must be cleared when data cannot be received. If RX0E "0" or RBFF  
is "1", a NAK handshake will be returned for the next OUT token.  
Reset clears this bit.  
1 = Data is read to be received on endpoint 0  
0 = Not ready for data; respond with NAK  
TP0SIZ[3:0] — Endpoint 0 Transmit Data Size  
The TP0SIZ[3:0] is used to store the number of transmit data bytes  
from endpoint 0. The default size of transmit data is "0" after reset.  
13.5.5 USB Control Re g iste r 1 (UCR1)  
Address:  
$002F  
Bit 7  
T1SEQ  
0
6
ENDADD  
0
5
TX1E  
0
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
FRESUM TP1SIZ3 TP1SIZ2 TP1SIZ1 TP1SIZ0  
0
0
0
0
0
Figure 13-5. USB Control Register 1 (UCR1)  
T1SEQ — Endpoint 1/2 Data Packet PID Select  
This bit will determine the transmit data packet PID of endpoint 1/2.  
When it is "0", the DATA0 PID (b0011) will be sent. When it is "1", the  
DATA1 PID (b1011) will be sent. Reset clears this bit.  
1 = DATA1 PID will be sent on endpoint 1/2  
0 = DATA0 PID will be sent on endpoint 1/2  
ENDADD — Endpoint Address Select  
This bit specifies the which endpoint (1 or 2) uses the eight data  
registers, UD1R0–UD1R7, for data transmit buffers. Clearing this bit  
selects endpoint 1 to use the data registers. Setting this bit selects  
endpoint 2 to use the data registers.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
172  
Universal Serial Bus Module (USB)  
MOTOROLA  
Universal Serial Bus Module (USB)  
Registers  
If all the conditions for a successful endpoint 2 USB response to a  
host’s IN token are satisfied (TXD1F = 0, TX1E = 1, STALL2 = 0,  
ENABLE2 = 1), but endpoint 1 is selected (ENDADD = 0), the module  
will respond with an NAK handshake packet. Reset clears this bit.  
1 = The transmit buffer is used for endpoint 2  
0 = The transmit buffer is used for endpoint 1  
TX1E — Endpoint 1/2 Transmit Enable  
This bit is set to enable data packet transmission from endpoint 1/2.  
Software should set this bit when data is ready for data packet  
transmission. It must be cleared when no more data needs to be  
transmitted. If TX1E is "0" or TXD1F is "1", a NAK handshake will be  
returned for the next IN token. Reset clears this bit.  
1 = Data is ready to be sent on endpoint 1/2  
0 = Data is not ready; respond with ACK  
FRESUM — Force Resume  
This bit is set to force a resume state on USB bus lines until software  
clears this bit. Before setting the FRESUM bit, the SUSPND bit must  
to be cleared in order to drive the USB bus lines. Setting the FRESUM  
bit will not cause RESUMF to be set. Reset clears this bit.  
1 = Resume state forced on USB bus; only if SUSPND is cleared  
0 = No effect  
TP1SIZ[3:0] — Endpoint 1/2 Transmit Data Size  
The TP1SIZ[3:0] is used to store the number of transmit data bytes  
from endpoint 1/2. The default size of transmit data is "0" after reset.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Universal Serial Bus Module (USB)  
173  
Unive rsa l Se ria l Bus Mod ule (USB)  
13.5.6 USB Control Re g iste r 2 (UCR2)  
Address:  
$002D  
Bit 7  
0
6
5
4
3
2
1
Bit 0  
STALL1  
0
Read:  
0
TX1STR  
0
PULLEN SUSPND ENABLE2 ENABLE1 STALL2  
Write: RSTIFR  
Reset:  
0
0
0
0
0
0
Figure 13-6. USB Control Register 2 (UCR2)  
RSTIFR — Reset Interrupt Flag Clear  
Writing a logic "1" to this bit clears the RSTIFR flag. Writing a "0" has  
no effect. Reset clears this bit.  
1 = Writing 1 clears RSTIFR  
0 = No effect  
TX1STR — TX1ST Clear  
Writing a logic "1" to this bit clears the TX1STR flag. Writing a "0" has  
no effect. Reset clears this bit.  
1 = Writing 1 clears TX1STR  
0 = No effect  
PULLEN — Pullup Enable on D–  
This bit is set to enable the internal 1.5kpullup resister connected  
between the USB D– line and 3.3V. Reset clears this bit.  
1 = Enable 1.5kpullup resistor between D– and 3.3V  
0 = Disable 1.5kpullup resistor between D– and 3.3V  
SUSPND — USB Suspend  
If the 3ms constant idle state is detected on the USB bus, user  
software should set this bit to allow the USB module to enter suspend  
mode. In the suspend mode, the clock to USB module will be stopped,  
and other unnecessary analog circuitry will be powered down. When  
a resume is detected (RESUMF = 1), user software must clear  
SUSPND in the interrupt service routine.  
1 = Enable USB suspend mode  
0 = Disable USB suspend mode  
Technical Data  
MC68HC908BD48 Rev. 1.0  
174  
Universal Serial Bus Module (USB)  
MOTOROLA  
Universal Serial Bus Module (USB)  
Registers  
ENABLE2 — Endpoint 2 Enable  
This bit is set to enable endpoint 2 to respond to addressed IN packet  
tokens. Reset clears this bit.  
1 = Endpoint 2 enabled; and responds to IN tokens  
0 = Endpoint 2 disabled  
ENABLE1 — Endpoint 1 Enable  
This bit is set to enable endpoint 1 to respond to addressed IN packet  
tokens. Reset clears this bit.  
1 = Endpoint 1 enabled; and responds to IN tokens  
0 = Endpoint 1 disabled  
STALL2 — Endpoint 2 STALL Handshake  
This bit is set to generate the STALL handshake packet as next IN  
transaction handshake packet from endpoint 2. Reset clears this bit.  
1 = Send STALL handshake on endpoint 2  
0 = Do not send STALL handshake on endpoint 2  
STALL1 — Endpoint 1 STALL Handshake  
This bit is set to generate the STALL handshake packet as next IN  
transaction handshake packet from endpoint 1. Reset clears this bit.  
1 = Send STALL handshake on endpoint 1  
0 = Do not send STALL handshake on endpoint 1  
13.5.7 USB Sta tus Re g iste r (USR)  
Address:  
$002C  
Bit 7  
6
5
4
0
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
RSEQ  
SETUP  
TX1ST  
RPSIZ3  
RPSIZ2  
RPSIZ1  
RPSIZ0  
Indeterminate after reset  
= Unimplemented  
Figure 13-7. USB Status Register (USR)  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Universal Serial Bus Module (USB)  
175  
Unive rsa l Se ria l Bus Mod ule (USB)  
RSEQ — Received Data Sequence  
This bit indicates the type of data packet of the last received data  
packet on endpoint 0. RSEQ = 0 indicates the last received data  
packet is type DATA0. RSEQ = 1 indicates the last received data  
packet is type DATA1.  
1 = Last token received on endpoint 0 is a DATA1 token  
0 = Last token received on endpoint 0 is a DATA0 token  
SETUP — SETUP Token  
This bit is set when the received token packet for endpoint 0 is a  
SETUP token (PID = b1101).  
1 = Last token received on endpoint 0 is a SETUP token  
0 = Last token received on endpoint 0 is not a SETUP token  
TX1ST — Transmit First Flag  
This bit is set if the endpoint 0 transmit buffer empty flag (TBEF) is set  
when the control logic is setting the endpoint 0 receive buffer full flag  
(RBFF). This happens when TBEF is still set at the end of an  
endpoint 0 reception.  
1 = IN transaction occurred before SETUP or OUT  
0 = IN transaction occurred after SETUP or OUT  
RPSIZ[3:0] — Received Data Size  
The RPSIZ[3:0] indicates the number of received data bytes in a data  
packet. Reset will not affect these bits  
Technical Data  
MC68HC908BD48 Rev. 1.0  
176  
Universal Serial Bus Module (USB)  
MOTOROLA  
Universal Serial Bus Module (USB)  
Registers  
13.5.8 USB End p oint 0 Da ta Re g iste rs 0 to 7 (UD0R0–UD0R7)  
Address:  
$0030–$0037  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read: UE0RDx7 UE0RDx6 UE0RDx5 UE0RDx4 UE0RDx3 UE0RDx2 UE0RDx1 UE0RDx0  
Write: UE0TDx7 UE0TDx6 UE0TDx5 UE0TDx4 UE0TDx3 UE0TDx2 UE0TDx1 UE0TDx0  
Reset:  
Indeterminate after reset  
Figure 13-8. USB Endpoint 0 Data Registers 0 to 7 (UD0R0–UD0R7)  
UE0RDx[7:0] — Endpoint 0 Receive Data Buffers  
These eight 8-bit buffers are serially loaded with OUT token or  
SETUP token data received over the USB’s D+ and D– lines. These  
buffers are for endpoint 0.  
UE0TDx[7:0] — Endpoint 0 Transmit Data Buffers  
These eight 8-bit buffers are loaded by user software with data to be  
sent on the USB bus on the next IN token directed at endpoint 0.  
13.5.9 USB End p oint 1/ 2 Da ta Re g iste rs 0 to 7 (UD1R0–UD1R7)  
Address:  
$0038–$003F  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write: UE1TDx7 UE1TDx6 UE1TDx5 UE1TDx4 UE1TDx UE1TDx2 UE1TDx1 UE1TDx0  
Reset: Indeterminate after reset  
Figure 13-9. USB Endpoint 1 Data Registers 0 to 7 (UD1R0–UD1R7)  
UE1TDx[7:0] — Endpoint 1/2 Transmit Data Buffers  
These eight 8-bit buffers are loaded by user software with data to be  
sent on the USB bus on the next IN token directed at endpoint 1 or  
endpoint 2. The ENDADD bit in the USB control register 1 determines  
either endpoint 1 or endpoint 2 uses these buffers.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Universal Serial Bus Module (USB)  
177  
Unive rsa l Se ria l Bus Mod ule (USB)  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
178  
Universal Serial Bus Module (USB)  
Te c hnic a l Da ta — MC68HC908BD48  
Se c tion 14. Multi-Ma ste r IIC Inte rfa c e (MMIIC)  
14.1 Conte nts  
14.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179  
14.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180  
14.4 I/O Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180  
14.5 Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181  
14.5.1 Multi-Master IIC Address Register (MMADR) . . . . . . . . . .182  
14.5.2 Multi-Master IIC Control Register (MMCR) . . . . . . . . . . . .183  
14.5.3 Multi-Master IIC Master Control Register (MIMCR) . . . . . .184  
14.5.4 Multi-Master IIC Status Register (MMSR) . . . . . . . . . . . . .186  
14.5.5 Multi-Master IIC Data Transmit Register (MMDTR) . . . . . .188  
14.5.6 Multi-Master IIC Data Receive Register (MMDRR) . . . . . .189  
14.6 Programming Considerations . . . . . . . . . . . . . . . . . . . . . . . . .190  
14.2 Introd uc tion  
This Multi-master IIC (MMIIC) Interface is designed for internal serial  
communication between the MCU and other IIC devices. A hardware  
circuit generates "start" and "stop" signal, while byte by byte data  
transfer is interrupt driven by the software algorithm. Therefore, it can  
greatly help the software in dealing with other devices to have higher  
system efficiency in a typical digital monitor system.  
This module not only can be applied in internal communications, but can  
also be used as a typical command reception serial bus for factory setup  
and alignment purposes. It also provides the flexibility of hooking  
additional devices to an existing system for future expansion without  
adding extra hardware.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Multi-Master IIC Interface (MMIIC)  
179  
 
Multi-Ma ste r IIC Inte rfa c e (MMIIC)  
This Multi-master IIC module uses the IICSCL clock line and the IICSDA  
data line to communicate with external DDC host or IIC interface. These  
two pins are shared with port pins PTD5 and PTD6 respectively. The  
outputs of IICSDA and IICSCL pins are open-drain type — no clamping  
diode is connected between the pin and internal V . The maximum  
DD  
data rate typically is 750k-bps. The maximum communication length and  
the number of devices that can be connected are limited by a maximum  
bus capacitance of 400pF.  
14.3 Fe a ture s  
• Compatibility with multi-master IIC bus standard  
• Software controllable acknowledge bit generation  
• Interrupt driven byte by byte data transfer  
• Calling address identification interrupt  
• Auto detection of R/W bit and switching of transmit or receive  
mode  
• Detection of START, repeated START, and STOP signals  
• Auto generation of START and STOP condition in master mode  
• Arbitration loss detection and No-ACK awareness in master mode  
• 8 selectable baud rate master clocks  
• Automatic recognition of the received acknowledge bit  
14.4 I/ O Pins  
The MMIIC module uses two I/O pins, shared with standard port I/O pins.  
The full name of the MMIIC I/O pins are listed in Table 14-1. The generic  
pin name appear in the text that follows.  
Table 14-1. Pin Name Conventions  
MMIIC  
Generic Pin Names:  
Pin Selected for  
IIC Function By:  
Full MCU Pin Names:  
SDA  
SCL  
PTD6/IICSDA  
PTD5/IICSCL  
IICDATE bit in PDCR ($0049)  
IICSCLE bit in PDCR ($0049)  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
180  
Multi-Master IIC Interface (MMIIC)  
 
Multi-Master IIC Interface (MMIIC)  
Registers  
Table 14-2. MMIIC I/O Register Summary  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
MMBR0  
0
Read:  
Multi-Master IIC  
MMNAKIF  
MMALIF  
MMBB  
0
MMAST  
0
MMRW  
MMBR2  
0
MMBR1  
0
$004A Master Control Register Write:  
(MIMCR)  
Reset:  
0
MMAD7  
1
0
MMAD6  
0
0
Read:  
Multi-Master IIC  
Address Register Write:  
MMEXTAD  
MMAD5  
MMAD4  
MMAD3  
MMAD2  
MMAD1  
$004B  
$004C  
$004D  
(MMADR)  
Reset:  
1
0
0
0
0
MMTXAK  
0
0
0
0
0
0
0
Read:  
Multi-Master IIC  
Control Register Write:  
MMEN  
0
MMIEN  
0
(MMCR)  
Reset:  
0
0
0
0
0
0
Read: MMRXIF MMTXIF MMATCH MMSRW MMRXAK  
MMTXBE MMRXBF  
Multi-Master IIC  
Status Register Write:  
0
0
0
0
(MMSR)  
Reset:  
0
0
1
0
1
0
Read:  
Multi-Master IIC  
MMTD7  
1
MMTD6  
MMTD5  
MMTD4  
MMTD3  
MMTD2  
MMTD1  
MMTD0  
$004E Data Transmit Register Write:  
(MMDTR)  
Reset:  
1
1
1
1
1
1
1
Read: MMRD7  
Write:  
MMRD6  
MMRD5  
MMRD4  
MMRD3  
MMRD2  
MMRD1  
MMRD0  
Multi-Master IIC  
Data Receive Register  
(MMDRR)  
$004F  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
14.5 Re g iste rs  
Six registers are associated with the Multi-master IIC module, they  
outlined in the following sections.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Multi-Master IIC Interface (MMIIC)  
181  
Multi-Ma ste r IIC Inte rfa c e (MMIIC)  
14.5.1 Multi-Ma ste r IIC Ad d re ss Re g iste r (MMADR)  
Address:  
$004B  
Bit 7  
6
MMAD6  
0
5
MMAD5  
1
4
MMAD4  
0
3
MMAD3  
0
2
MMAD2  
0
1
MMAD1  
0
Bit 0  
MMEXTAD  
0
Read:  
Write:  
Reset:  
MMAD7  
1
Figure 14-1. Multi-Master IIC Address Register (MMADR)  
MMAD[7:1] — Multi-Master Address  
These 7 bits can be the MMIIC interface’s own specific slave address  
in slave mode or the calling address when in master mode. Reset sets  
a default value of $A0.  
MMEXTAD — Multi-Master Expanded Address  
This bit is set to expand the calling address of the MMIIC in slave  
mode. When set, the MMIIC will acknowledge the general call  
address $00 and the matched 4-bit MSB address, MMAD[7:4].  
For example, when MMAD[7:1] = $A1 and MMEXTAD = 1, the MMIIC  
calling address is $A0, and it will acknowledge calling addresses $00  
and $A0 to $AF.  
Reset clears this bit.  
1 = MMIIC calling address is $MMAD[7:4]0  
MMIIC respond address is $00, and $MMAD[7:4]0 to  
$MMAD[7:4]F  
0 = MMIIC address id $MMAD[7:1]  
Technical Data  
MC68HC908BD48 Rev. 1.0  
182  
Multi-Master IIC Interface (MMIIC)  
MOTOROLA  
Multi-Master IIC Interface (MMIIC)  
Registers  
14.5.2 Multi-Ma ste r IIC Control Re g iste r (MMCR)  
Address:  
$004C  
Bit 7  
6
MMIEN  
0
5
0
4
0
3
MMTXAK  
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
MMEN  
0
0
0
0
0
0
= Unimplemented  
Figure 14-2. Multi-Master IIC Control Register (MMCR)  
MMEN — Multi-Master IIC Enable  
This bit is set to enable the Multi-master IIC module. When  
MMEN = 0, module is disabled and all flags will restore to its power-  
on default states. Reset clears this bit.  
1 = MMIIC module enabled  
0 = MMIIC module disabled  
MMIEN — Multi-Master IIC Interrupt Enable  
When this bit is set, the MMTXIF, MMRXIF, MMALIF, and MMNAKIF  
flags are enabled to generate an interrupt request to the CPU. When  
MMIEN is cleared, the these flags are prevented from generating an  
interrupt request. Reset clears this bit.  
1 = MMTXIF, MMRXIF, MMALIF, and/or MMNAKIF bit set will  
generate interrupt request to CPU  
0 = MMTXIF, MMRXIF, MMALIF, and/or MMNAKIF bit set will not  
generate interrupt request to CPU  
MMTXAK — Transmit Acknowledge Enable  
This bit is set to disable the MMIIC from sending out an acknowledge  
signal to the bus at the 9th clock bit after receiving 8 data bits. When  
MMTXAK is cleared, an acknowledge signal will be sent at the 9th  
clock bit. Reset clears this bit.  
1 = MMIIC does not send acknowledge signals at 9th clock bit  
0 = MMIIC sends acknowledge signal at 9th clock bit  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Multi-Master IIC Interface (MMIIC)  
183  
Multi-Ma ste r IIC Inte rfa c e (MMIIC)  
14.5.3 Multi-Ma ste r IIC Ma ste r Control Re g iste r (MIMCR)  
Address:  
$004A  
Bit 7  
6
MMNAKIF  
0
5
MMBB  
0
4
MMAST  
0
3
MMRW  
0
2
MMBR2  
0
1
MMBR1  
0
Bit 0  
MMBR0  
0
Read:  
Write:  
Reset:  
MMALIF  
0
Figure 14-3. Multi-Master IIC Master Control Register (MIMCR)  
MMALIF — Multi-Master Arbitration Lost Interrupt Flag  
The flag is set when software attempt to set MMAST but the MMBB  
has been set by detecting the start condition on the lines or when the  
MMIIC is transmitting a "1" to SDA line but detected a "0" from SDA  
line in master mode – an arbitration loss. This bit generates an  
interrupt request to the CPU if the MMIEN bit in MMCR is also set.  
This bit is cleared by writing "0" to it or by reset.  
1 = Lost arbitration in master mode  
0 = No arbitration lost  
MMNAKIF — No Acknowledge Interrupt Flag  
The flag is only set in master mode (MMAST = 1) when there is no  
acknowledge bit detected after one data byte or calling address is  
transferred. This flag also clears MMAST. MMNAKIF generates an  
interrupt request to CPU if the MMIEN bit in MMCR is also set. This  
bit is cleared by writing "0" to it or by reset.  
1 = No acknowledge bit detected  
0 = Acknowledge bit detected  
MMBB — Bus Busy Flag  
This flag is set after a start condition is detected (bus busy), and is  
cleared when a stop condition (bus idle) is detected or the MMIIC is  
disabled. Reset clears this bit.  
1 = Start condition detected  
0 = Stop condition detected or MMIIC is disabled  
Technical Data  
MC68HC908BD48 Rev. 1.0  
184  
Multi-Master IIC Interface (MMIIC)  
MOTOROLA  
Multi-Master IIC Interface (MMIIC)  
Registers  
MMAST — Master Control Bit  
This bit is set to initiate a master mode transfer. In master mode, the  
module generates a start condition to the SDA and SCL lines,  
followed by sending the calling address stored in MMADR.  
When the MMAST bit is cleared by MMNAKIF set (no acknowledge)  
or by software, the module generates the stop condition to the lines  
after the current byte is transmitted.  
If an arbitration loss occurs (MMALIF = 1), the module reverts to slave  
mode by clearing MMAST, and releasing SDA and SCL lines  
immediately.  
This bit is cleared by writing "0" to it or by reset.  
1 = Master mode operation  
0 = Slave mode operation  
MMRW — Master Read/Write  
This bit will be transmitted out as bit 0 of the calling address when the  
module sets the MMAST bit to enter master mode. The MMRW bit  
determines the transfer direction of the data bytes that follows. When  
it is "1", the module is in master receive mode. When it is "0", the  
module is in master transmit mode. Reset clears this bit.  
1 = Master mode receive  
0 = Master mode transmit  
MMBR2–MMBR0 — Baud Rate Select  
These three bits select one of eight clock rates as the master clock  
when the module is in master mode.  
Since this master clock is derived the CPU bus clock, the user  
program should not execute the WAIT instruction when the MMIIC  
module in master mode. This will cause the SDA and SCL lines to  
hang, as the WAIT instruction places the MCU in WAIT mode, with  
CPU clock is halted. These bits are cleared upon reset. (See Table  
14-3 . Baud Rate Select.)  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Multi-Master IIC Interface (MMIIC)  
185  
Multi-Ma ste r IIC Inte rfa c e (MMIIC)  
Table 14-3. Baud Rate Select  
MMBR2  
MMBR1  
MMBR0  
Baud Rate  
750k  
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
375k  
0
187.5k  
93.75k  
46.875k  
23.437k  
11.719k  
5.859k  
0
1
1
1
1
NOTE:  
CPU bus clock is external clock ÷ 4 = 6MHz  
14.5.4 Multi-Ma ste r IIC Sta tus Re g iste r (MMSR)  
Address:  
$004D  
Bit 7  
6
5
4
3
2
0
1
Bit 0  
Read: MMRXIF MMTXIF MMATCH MMSRW MMRXAK  
MMTXBE MMRXBF  
Write:  
0
0
0
0
Reset:  
0
0
1
0
1
0
= Unimplemented  
Figure 14-4. Multi-Master IIC Status Register (MMSR)  
MMRXIF — Multi-Master IIC Receive Interrupt Flag  
This flag is set after the data receive register (MMDRR) is loaded with  
a new received data. Once the MMDRR is loaded with received data,  
no more received data can be loaded to the MMDRR register until the  
CPU reads the data from the MMDRR to clear MMRXBF flag.  
MMRXIF generates an interrupt request to CPU if the MMIEN bit in  
MMCR is also set. This bit is cleared by writing "0" to it or by reset; or  
when the MMEN = 0.  
1 = New data in data receive register (MMDRR)  
0 = No data received  
Technical Data  
MC68HC908BD48 Rev. 1.0  
186  
Multi-Master IIC Interface (MMIIC)  
MOTOROLA  
Multi-Master IIC Interface (MMIIC)  
Registers  
MMTXIF — Multi-Master Transmit Interrupt Flag  
This flag is set when data in the data transmit register (MMDTR) is  
downloaded to the output circuit, and that new data can be written to  
the MMDTR. MMTXIF generates an interrupt request to CPU if the  
MMIEN bit in MMCR is also set. This bit is cleared by writing "0" to it  
or when the MMEN = 0.  
1 = Data transfer completed  
0 = Data transfer in progress  
MMATCH — Multi-Master Address Match  
This flag is set when the received data in the data receive register  
(MMDRR) is an calling address which matches with the address or its  
extended addresses (MMEXTAD=1) specified in the MMADR  
register.  
1 = Received address matches MMADR  
0 = Received address does not match  
MMSRW — Multi-Master Slave Read/Write  
This bit indicates the data direction when the module is in slave mode.  
It is updated after the calling address is received from a master  
device. MMSRW = 1 when the calling master is reading data from the  
module (slave transmit mode). MMSRW = 0 when the master is  
writing data to the module (receive mode).  
1 = Slave mode transmit  
0 = Slave mode receive  
MMRXAK — Multi-Master Receive Acknowledge  
When this bit is cleared, it indicates an acknowledge signal has been  
received after the completion of 8 data bits transmission on the bus.  
When MMRXAK is set, it indicates no acknowledge signal has been  
detected at the 9th clock; the module will release the SDA line for the  
master to generate "stop" or "repeated start" condition. Reset sets this  
bit.  
1 = No acknowledge signal received at 9th clock bit  
0 = Acknowledge signal received at 9th clock bit  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Multi-Master IIC Interface (MMIIC)  
187  
Multi-Ma ste r IIC Inte rfa c e (MMIIC)  
MMTXBE — Multi-Master Transmit Buffer Empty  
This flag indicates the status of the data transmit register (MMDTR).  
When the CPU writes the data to the MMDTR, the MMTXBE flag will  
be cleared. MMTXBE is set when MMDTR is emptied by a transfer of  
its data to the output circuit. Reset sets this bit.  
1 = Data transmit register empty  
0 = Data transmit register full  
MMRXBF — Multi-Master Receive Buffer Full  
This flag indicates the status of the data receive register (MMDRR).  
When the CPU reads the data from the MMDRR, the MMRXBF flag  
will be cleared. MMRXBF is set when MMDRR is full by a transfer of  
data from the input circuit to the MMDRR. Reset clears this bit.  
1 = Data receive register full  
0 = Data receive register empty  
14.5.5 Multi-Ma ste r IIC Da ta Tra nsm it Re g iste r (MMDTR)  
Address:  
$004E  
Bit 7  
6
MMTD6  
1
5
MMTD5  
1
4
MMTD4  
1
3
MMTD3  
1
2
MMTD2  
1
1
MMTD1  
1
Bit 0  
MMTD0  
1
Read:  
Write:  
Reset:  
MMTD7  
1
Figure 14-5. Multi-Master IIC Data Transmit Register (MMDTR)  
When the MMIIC module is enabled, MMEN = 1, data written into this  
register depends on whether module is in master or slave mode.  
In slave mode, the data in MMDTR will be transferred to the output circuit  
when:  
• the module detects a matched calling address (MMATCH = 1),  
with the calling master requesting data (MMSRW = 1); or  
• the previous data in the output circuit has be transmitted and the  
receiving master returns an acknowledge bit, indicated by a  
received acknowledge bit (MMRXAK = 0).  
Technical Data  
MC68HC908BD48 Rev. 1.0  
188  
Multi-Master IIC Interface (MMIIC)  
MOTOROLA  
Multi-Master IIC Interface (MMIIC)  
Registers  
If the calling master does not return an acknowledge bit (MMRXAK = 1),  
the module will release the SDA line for master to generate a "stop" or  
"repeated start" condition. The data in the MMDTR will not be transferred  
to the output circuit until the next calling from a master. The transmit  
buffer empty flag remains cleared (MMTXBE = 0).  
In master mode, the data in MMDTR will be transferred to the output  
circuit when:  
• the module receives an acknowledge bit (MMRXAK = 0), after  
setting master transmit mode (MMRW = 0), and the calling  
address has been transmitted; or  
• the previous data in the output circuit has be transmitted and the  
receiving slave returns an acknowledge bit, indicated by a  
received acknowledge bit (MMRXAK = 0).  
If the slave does not return an acknowledge bit (MMRXAK = 1), the  
master will generate a "stop" or "repeated start" condition. The data in  
the MMDTR will not be transferred to the output circuit. The transmit  
buffer empty flag remains cleared (MMTXBE = 0).  
The sequence of events for slave transmit and master transmit are  
illustrated in Figure 14-7.  
14.5.6 Multi-Ma ste r IIC Da ta Re c e ive Re g iste r (MMDRR)  
Address:  
$004F  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read: MMRD7  
Write:  
MMRD6  
MMRD5  
MMRD4  
MMRD3  
MMRD2  
MMRD1  
MMRD0  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 14-6. Multi-Master IIC Data Receive Register (MMDRR)  
When the MMIIC module is enabled, MMEN = 1, data in this read-only  
register depends on whether module is in master or slave mode.  
In slave mode, the data in MMDRR is:  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Multi-Master IIC Interface (MMIIC)  
189  
Multi-Ma ste r IIC Inte rfa c e (MMIIC)  
• the calling address from the master when the address match flag  
is set (MMATCH = 1); or  
• the last data received when MMATCH = 0.  
In master mode, the data in the MMDRR is:  
• the last data received.  
When the MMDRR is read by the CPU, the receive buffer full flag is  
cleared (MMRXBF = 0), and the next received data is loaded to the  
MMDRR. Each time when new data is loaded to the MMDRR, the  
MMRXIF interrupt flag is set, indicating that new data is available in  
MMDRR.  
The sequence of events for slave receive and master receive are  
illustrated in Figure 14-7.  
14.6 Prog ra m m ing Consid e ra tions  
When the MMIIC module detects an arbitration loss in master mode, it  
will release both SDA and SCL lines immediately. But if there are no  
further STOP conditions detected, the module will hang up. Therefore, it  
is recommended to have time-out software to recover from such ill  
condition. The software can start the time-out counter by looking at the  
MMBB (Bus Busy) flag in the MIMCR and reset the counter on the  
completion of one byte transmission. If a time-out occur, software can  
clear the MMEN bit (disable MMIIC module) to release the bus, and  
hence clearing the MMBB flag. This is the only way to clear the MMBB  
flag by software if the module hangs up due to a no STOP condition  
received. The MMIIC can resume operation again by setting the MMEN  
bit.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
190  
Multi-Master IIC Interface (MMIIC)  
MOTOROLA  
Multi-Master IIC Interface (MMIIC)  
Programming Considerations  
(a) Master Transmit Mode  
TX Data1  
START  
Address  
0
ACK  
ACK  
TX DataN  
NAK  
STOP  
MMTXBE=0  
MMTXBE=1  
MMTXIF=1  
MMTXBE=1  
MMTXIF=1  
MMNAKIF=1  
MMAST=0  
MMTXBE=0  
MMTXBE=1  
MMTXIF=1  
MMDTR  
MMRW=0  
MMAST=1  
Data2  
MMDTR  
Data3  
MMDTR  
DataN+2  
Data1  
MMDTR  
(b) Master Receive Mode  
RX Data1  
START  
Address  
1
ACK  
ACK  
RX DataN  
NAK  
STOP  
MMRXBF=0  
MMRW=1  
MMNAKIF=1  
MMAST=0  
Data1  
MMRXIF=1  
MMRXBF=1  
MMDRR  
DataN MMDRR  
MMRXIF=1  
MMRXBF=1  
MMAST=1  
MMTXBE=0  
(dummy data  
MMDTR)  
(c) Slave Transmit Mode  
TX Data1  
START  
Address  
1
ACK  
ACK  
TX DataN  
NAK  
STOP  
MMTXBE=1  
MMRXBF=0  
MMRXIF=1  
MMRXBF=1  
MMATCH=1  
MMSRW=1  
MMNAKIF=1  
MMTXBE=0  
MMTXBE=1  
MMTXIF=1  
Data2 MMDTR  
MMTXBE=1  
MMTXIF=1  
MMDTR  
DataN+2  
Data1  
MMDTR  
(d) Slave Receive Mode  
RX Data1  
START  
Address  
0
ACK  
ACK  
RX DataN  
NAK  
STOP  
Data1  
MMRXIF=1  
MMRXBF=1  
MMDRR  
DataN MMDRR  
MMTXBE=0  
MMRXBF=0  
MMRXIF=1  
MMRXBF=1  
MMATCH=1  
MMSRW=0  
MMRXIF=1  
MMRXBF=1  
KEY: shaded data packets indicate a transmit by the MCU’s MMIIC module  
Figure 14-7. Data Transfer Sequences for Master/Slave Transmit/Receive Modes  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Multi-Master IIC Interface (MMIIC)  
191  
Multi-Ma ste r IIC Inte rfa c e (MMIIC)  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
192  
Multi-Master IIC Interface (MMIIC)  
Te c hnic a l Da ta — MC68HC908BD48  
Se c tion 15. DDC12AB Inte rfa c e  
15.1 Conte nts  
15.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193  
15.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194  
15.4 I/O Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194  
15.5 DDC Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196  
15.6 Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196  
15.6.1 DDC Address Register (DADR) . . . . . . . . . . . . . . . . . . . . .196  
15.6.2 DDC2 Address Register (D2ADR) . . . . . . . . . . . . . . . . . . .197  
15.6.3 DDC Control Register (DCR) . . . . . . . . . . . . . . . . . . . . . . .198  
15.6.4 DDC Master Control Register (DMCR) . . . . . . . . . . . . . . .199  
15.6.5 DDC Status Register (DSR). . . . . . . . . . . . . . . . . . . . . . . .202  
15.6.6 DDC Data Transmit Register (DDTR) . . . . . . . . . . . . . . . .204  
15.6.7 DDC Data Receive Register (DDRR). . . . . . . . . . . . . . . . .205  
15.7 Programming Considerations . . . . . . . . . . . . . . . . . . . . . . . . .206  
15.2 Introd uc tion  
This DDC12AB Interface module is used by the digital monitor to show  
its identification information to the video controller. It contains DDC1  
hardware and a two-wire, bidirectional serial bus which is fully  
compatible with multi-master IIC bus protocol to support DDC2AB  
interface.  
This module not only can be applied in internal communications, but can  
also be used as a typical command reception serial bus for factory setup  
and alignment purposes. It also provides the flexibility of hooking  
additional devices to an existing system for future expansion without  
adding extra hardware.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
DDC12AB Interface  
193  
 
DDC12AB Inte rfa c e  
This DDC12AB module uses the DDCSCL clock line and the DDCSDA  
data line to communicate with external DDC host or IIC interface. These  
two pins are shared with port pins PTD3 and PTD2 respectively. The  
outputs of DDCSDA and DDCSCL pins are open-drain type — no  
clamping diode is connected between the pin and internal V . The  
DD  
maximum data rate typically is 100k-bps. The maximum communication  
length and the number of devices that can be connected are limited by  
a maximum bus capacitance of 400pF.  
15.3 Fe a ture s  
• DDC1 hardware  
• Compatibility with multi-master IIC bus standard  
• Software controllable acknowledge bit generation  
• Interrupt driven byte by byte data transfer  
• Calling address identification interrupt  
• Auto detection of R/W bit and switching of transmit or receive  
mode  
• Detection of START, repeated START, and STOP signals  
• Auto generation of START and STOP condition in master mode  
• Arbitration loss detection and No-ACK awareness in master mode  
• 8 selectable baud rate master clocks  
• Automatic recognition of the received acknowledge bit  
15.4 I/ O Pins  
The DDC12AB module uses two I/O pins, shared with standard port I/O  
pins. The full name of the DDC12AB I/O pins are listed in Table 15-1.  
The generic pin name appear in the text that follows.  
Table 15-1. Pin Name Conventions  
DDC12AB  
Generic Pin Names:  
Pin Selected for  
DDC Function By:  
Full MCU Pin Names:  
SDA  
SCL  
PTD2/DDCSDA  
PTD3/DDCSCL  
DDCDATE bit in PDCR ($0049)  
DDCSCLE bit in PDCR ($0049)  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
194  
DDC12AB Interface  
DDC12AB Interface  
I/O Pins  
Table 15-2. DDC I/O Register Summary  
Addr.  
Register Name  
Bit 7  
ALIF  
0
6
NAKIF  
0
5
4
3
MRW  
0
2
BR2  
0
1
BR1  
0
Bit 0  
BR0  
0
Read:  
DDC Master Control  
BB  
MAST  
0
$0016  
Register Write:  
(DMCR)  
Reset:  
0
Read:  
EXTAD  
DAD7  
1
DAD6  
0
DAD5  
DAD4  
DAD3  
0
DAD2  
0
DAD1  
0
DDC Address Register  
$0017  
$0018  
$0019  
Write:  
Reset:  
Read:  
(DADR)  
1
0
0
0
0
0
DDC  
DEN  
DIEN  
TXAK  
SCLIEN DDC1EN  
Control Register Write:  
(DCR)  
Reset:  
0
RXIF  
0
0
TXIF  
0
0
0
0
0
0
0
Read:  
DDC  
Status Register Write:  
MATCH  
SRW  
RXAK  
SCLIF  
TXBE  
RXBF  
0
0
(DSR)  
Reset:  
0
0
0
0
1
1
0
Read:  
DDC  
DTD7  
DTD6  
DTD5  
DTD4  
DTD3  
DTD2  
DTD1  
DTD0  
$001A Data Transmit Register Write:  
(DDTR)  
Reset:  
1
1
1
1
1
1
1
1
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
DRD7  
DRD6  
DRD5  
DRD4  
DRD3  
DRD2  
DRD1  
DRD0  
DDC  
Data Receive Register  
(DDRR)  
$001B  
$001C  
0
D2AD7  
0
0
D2AD6  
0
0
D2AD5  
0
0
D2AD4  
0
0
D2AD3  
0
0
D2AD2  
0
0
D2AD1  
0
0
0
DDC2 Address Register  
(D2ADR)  
0
= Unimplemented  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
DDC12AB Interface  
195  
DDC12AB Inte rfa c e  
15.5 DDC Protoc ols  
In DDC1 protocol communication, the module is in transmit mode. The  
data written to the transmit register is continuously clocked out to the  
SDA line by the rising edge of the Vsync input signal. During DDC1  
communication, a falling transition on the SCL line can be detected to  
generate an interrupt to the CPU for mode switching.  
In DDC2AB protocol communication, the module can be either in  
transmit mode or in receive mode, controlled by the calling master.  
In DDC2 protocol communication, the module will act as a standard IIC  
module, able to act as a master or a slave device.  
15.6 Re g iste rs  
Seven registers are associated with the DDC module, they outlined in  
the following sections.  
15.6.1 DDC Ad d re ss Re g iste r (DADR)  
Address:  
$0017  
Bit 7  
6
DAD6  
0
5
DAD5  
1
4
DAD4  
0
3
DAD3  
0
2
DAD2  
0
1
DAD1  
0
Bit 0  
EXTAD  
0
Read:  
Write:  
Reset:  
DAD7  
1
Figure 15-1. DDC Address Register (DADR)  
DAD[7:1] — DDC Address  
These 7 bits can be the DDC2 interface’s own specific slave address  
in slave mode or the calling address when in master mode. Reset sets  
a default value of $A0.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
196  
DDC12AB Interface  
MOTOROLA  
DDC12AB Interface  
Registers  
EXTAD — DDC Expanded Address  
This bit is set to expand the calling address of the DDC in slave mode.  
When set, the DDC will acknowledge the general call address $00  
and the matched 4-bit MSB address, DAD[7:4].  
For example, when DAD[7:1] = $A1 and EXTAD = 1, the DDC calling  
address is $A0, and it will acknowledge calling addresses $00 and  
$A0 to $AF.  
Reset clears this bit.  
1 = DDC calling address is $DAD[7:4]0  
DDC respond address is $00, and $DAD[7:4]0 to $DAD[7:4]F  
0 = DDC address id $DAD[7:1]  
15.6.2 DDC2 Ad d re ss Re g iste r (D2ADR)  
Address:  
$001C  
Bit 7  
6
D2AD6  
0
5
D2AD5  
0
4
D2AD4  
0
3
D2AD3  
0
2
D2AD2  
0
1
D2AD1  
0
Bit 0  
0
Read:  
Write:  
Reset:  
D2AD7  
0
0
Figure 15-2. DDC2 Address Register (D2ADR)  
D2AD[7:1] — DDC2 Address  
These 7 bits represent the second slave address for the DDC2BI  
protocol. D2AD[7:1] should be set to the same value as DAD[7:1] in  
DADR if user application do not use DDC2BI. Reset clears all bits this  
register.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
DDC12AB Interface  
197  
DDC12AB Inte rfa c e  
15.6.3 DDC Control Re g iste r (DCR)  
Address:  
$0018  
Bit 7  
6
DIEN  
0
5
0
4
0
3
TXAK  
0
2
1
Bit 0  
0
Read:  
Write:  
Reset:  
DEN  
0
SCLIEN DDC1EN  
0
0
0
0
0
= Unimplemented  
Figure 15-3. DDC Control Register (DCR)  
DEN — DDC Enable  
This bit is set to enable the DDC module. When DEN = 0, module is  
disabled and all flags will restore to its power-on default states. Reset  
clears this bit.  
1 = DDC module enabled  
0 = DDC module disabled  
DIEN — DDC Interrupt Enable  
When this bit is set, the TXIF, RXIF, ALIF, and NAKIF flags are  
enabled to generate an interrupt request to the CPU. When DIEN is  
cleared, the these flags are prevented from generating an interrupt  
request. Reset clears this bit.  
1 = TXIF, RXIF, ALIF, and/or NAKIF bit set will generate interrupt  
request to CPU  
0 = TXIF, RXIF, ALIF, and/or NAKIF bit set will not generate  
interrupt request to CPU  
TXAK — Transmit Acknowledge Enable  
This bit is set to disable the DDC from sending out an acknowledge  
signal to the bus at the 9th clock bit after receiving 8 data bits. When  
TXAK is cleared, an acknowledge signal will be sent at the 9th clock  
bit. Reset clears this bit.  
1 = DDC does not send acknowledge signals at 9th clock bit  
0 = DDC sends acknowledge signal at 9th clock bit  
Technical Data  
MC68HC908BD48 Rev. 1.0  
198  
DDC12AB Interface  
MOTOROLA  
DDC12AB Interface  
Registers  
SCLIEN — SCL Interrupt Enable  
When this bit is set, the SCLIF flag is enabled to generate an interrupt  
request to the CPU. When SCLIEN is cleared, SCLIF is prevented  
from generating an interrupt request. Reset clears this bit.  
1 = SCLIF bit set will generate interrupt request to CPU  
0 = SCLIF bit set will not generate interrupt request to CPU  
DDC1EN — DDC1 Protocol Enable  
This bit is set to enable DDC1 protocol. The DDC1 protocol will use  
the Vsync input (from sync processor) as the master clock input to the  
DDC module. Vsync rising-edge will continuously clock out the data  
to the output circuit. No calling address comparison is performed. The  
SRW bit in DDC status register (DSR) will always read as "1". Reset  
clears this bit.  
1 = DDC1 protocol enabled  
0 = DDC1 protocol disabled  
15.6.4 DDC Ma ste r Control Re g iste r (DMCR)  
Address:  
$0016  
Bit 7  
6
NAKIF  
0
5
BB  
0
4
MAST  
0
3
MRW  
0
2
BR2  
0
1
BR1  
0
Bit 0  
BR0  
0
Read:  
Write:  
Reset:  
ALIF  
0
Figure 15-4. DDC Master Control Register (DMCR)  
ALIF — DDC Arbitration Lost Interrupt Flag  
The flag is set when software attempt to set MAST but the BB has  
been set by detecting the start condition on the lines or when the DDC  
is transmitting a "1" to SDA line but detected a "0" from SDA line in  
master mode – an arbitration loss. This bit generates an interrupt  
request to the CPU if the DIEN bit in DCR is also set. This bit is  
cleared by writing "0" to it or by reset.  
1 = Lost arbitration in master mode  
0 = No arbitration lost  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
DDC12AB Interface  
199  
DDC12AB Inte rfa c e  
NAKIF — No Acknowledge Interrupt Flag  
The flag is only set in master mode (MAST = 1) when there is no  
acknowledge bit detected after one data byte or calling address is  
transferred. This flag also clears MAST. NAKIF generates an interrupt  
request to CPU if the DIEN bit in DCR is also set. This bit is cleared  
by writing "0" to it or by reset.  
1 = No acknowledge bit detected  
0 = Acknowledge bit detected  
BB — Bus Busy Flag  
This flag is set after a start condition is detected (bus busy), and is  
cleared when a stop condition (bus idle) is detected or the DDC is  
disabled. Reset clears this bit.  
1 = Start condition detected  
0 = Stop condition detected or DDC is disabled  
MAST — Master Control Bit  
This bit is set to initiate a master mode transfer. In master mode, the  
module generates a start condition to the SDA and SCL lines,  
followed by sending the calling address stored in DADR.  
When the MAST bit is cleared by NAKIF set (no acknowledge) or by  
software, the module generates the stop condition to the lines after  
the current byte is transmitted.  
If an arbitration loss occurs (ALIF = 1), the module reverts to slave  
mode by clearing MAST, and releasing SDA and SCL lines  
immediately.  
This bit is cleared by writing "0" to it or by reset.  
1 = Master mode operation  
0 = Slave mode operation  
MRW — Master Read/Write  
This bit will be transmitted out as bit 0 of the calling address when the  
module sets the MAST bit to enter master mode. The MRW bit  
determines the transfer direction of the data bytes that follows. When  
it is "1", the module is in master receive mode. When it is "0", the  
module is in master transmit mode. Reset clears this bit.  
1 = Master mode receive  
0 = Master mode transmit  
Technical Data  
MC68HC908BD48 Rev. 1.0  
200  
DDC12AB Interface  
MOTOROLA  
DDC12AB Interface  
Registers  
BR2–BR0 — Baud Rate Select  
These three bits select one of eight clock rates as the master clock  
when the module is in master mode.  
Since this master clock is derived the CPU bus clock, the user  
program should not execute the WAIT instruction when the DDC  
module in master mode. This will cause the SDA and SCL lines to  
hang, as the WAIT instruction places the MCU in WAIT mode, with  
CPU clock is halted. These bits are cleared upon reset. (See Table  
15-3 . Baud Rate Select.)  
Table 15-3. Baud Rate Select  
BR2  
BR1  
0
BR0  
0
Baud Rate  
100k  
0
0
0
1
50k  
0
1
0
25k  
0
1
1
12.5k  
6.25k  
3.125k  
1.56k  
0.78k  
1
0
0
1
0
1
1
1
1
0
1
1
NOTE:  
CPU bus clock is external clock ÷ 4 = 6MHz  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
DDC12AB Interface  
201  
 
DDC12AB Inte rfa c e  
15.6.5 DDC Sta tus Re g iste r (DSR)  
Address:  
$0019  
Bit 7  
RXIF  
0
6
TXIF  
0
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
MATCH  
SRW  
RXAK  
SCLIF  
TXBE  
RXBF  
0
0
0
0
0
0
1
1
0
= Unimplemented  
Figure 15-5. DDC Status Register (DSR)  
RXIF — DDC Receive Interrupt Flag  
This flag is set after the data receive register (DDRR) is loaded with a  
new received data. Once the DDRR is loaded with received data, no  
more received data can be loaded to the DDRR register until the CPU  
reads the data from the DDRR to clear RXBF flag. RXIF generates an  
interrupt request to CPU if the DIEN bit in DCR is also set. This bit is  
cleared by writing "0" to it or by reset; or when the DEN = 0.  
1 = New data in data receive register (DDRR)  
0 = No data received  
TXIF — DDC Transmit Interrupt Flag  
This flag is set when data in the data transmit register (DDTR) is  
downloaded to the output circuit, and that new data can be written to  
the DDTR. TXIF generates an interrupt request to CPU if the DIEN bit  
in DCR is also set. This bit is cleared by writing "0" to it or when the  
DEN = 0.  
1 = Data transfer completed  
0 = Data transfer in progress  
MATCH — DDC Address Match  
This flag is set when the received data in the data receive register  
(DDRR) is an calling address which matches with the address or its  
extended addresses (EXTAD=1) specified in the DADR register.  
1 = Received address matches DADR  
0 = Received address does not match  
Technical Data  
MC68HC908BD48 Rev. 1.0  
202  
DDC12AB Interface  
MOTOROLA  
DDC12AB Interface  
Registers  
SRW — DDC Slave Read/Write  
This bit indicates the data direction when the module is in slave mode.  
It is updated after the calling address is received from a master  
device. SRW = 1 when the calling master is reading data from the  
module (slave transmit mode). SRW = 0 when the master is writing  
data to the module (receive mode).  
1 = Slave mode transmit  
0 = Slave mode receive  
RXAK — DDC Receive Acknowledge  
When this bit is cleared, it indicates an acknowledge signal has been  
received after the completion of 8 data bits transmission on the bus.  
When RXAK is set, it indicates no acknowledge signal has been  
detected at the 9th clock; the module will release the SDA line for the  
master to generate "stop" or "repeated start" condition. Reset sets this  
bit.  
1 = No acknowledge signal received at 9th clock bit  
0 = Acknowledge signal received at 9th clock bit  
SCLIF — SCL Interrupt Flag  
This flag is set when a falling edge is detected on the SCL line, only if  
DDC1EN bit is set. SCLIF generates an interrupt request to CPU if the  
SCLIEN bit in DCR is also set. SCLIF is cleared by writing "0" to it or  
when the DCC1EN = 0, or DEN = 0. Reset clears this bit.  
1 = Falling edge detected on SCL line  
0 = No falling edge detected on SCL line  
TXBE — DDC Transmit Buffer Empty  
This flag indicates the status of the data transmit register (DDTR).  
When the CPU writes the data to the DDTR, the TXBE flag will be  
cleared. TXBE is set when DDTR is emptied by a transfer of its data  
to the output circuit. Reset sets this bit.  
1 = Data transmit register empty  
0 = Data transmit register full  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
DDC12AB Interface  
203  
DDC12AB Inte rfa c e  
RXBF — DDC Receive Buffer Full  
This flag indicates the status of the data receive register (DDRR).  
When the CPU reads the data from the DDRR, the RXBF flag will be  
cleared. RXBF is set when DDRR is full by a transfer of data from the  
input circuit to the DDRR. Reset clears this bit.  
1 = Data receive register full  
0 = Data receive register empty  
15.6.6 DDC Da ta Tra nsm it Re g iste r (DDTR)  
Address:  
$001A  
Bit 7  
6
DTD6  
1
5
DTD5  
1
4
DTD4  
1
3
DTD3  
1
2
DTD2  
1
1
DTD1  
1
Bit 0  
DTD0  
1
Read:  
Write:  
Reset:  
DTD7  
1
Figure 15-6. DDC Data Transmit Register (DDTR)  
When the DDC module is enabled, DEN = 1, data written into this  
register depends on whether module is in master or slave mode.  
In slave mode, the data in DDTR will be transferred to the output circuit  
when:  
• the module detects a matched calling address (MATCH = 1), with  
the calling master requesting data (SRW = 1); or  
• the previous data in the output circuit has be transmitted and the  
receiving master returns an acknowledge bit, indicated by a  
received acknowledge bit (RXAK = 0).  
If the calling master does not return an acknowledge bit (RXAK = 1), the  
module will release the SDA line for master to generate a "stop" or  
"repeated start" condition. The data in the DDTR will not be transferred  
to the output circuit until the next calling from a master. The transmit  
buffer empty flag remains cleared (TXBE = 0).  
In master mode, the data in DDTR will be transferred to the output circuit  
when:  
Technical Data  
MC68HC908BD48 Rev. 1.0  
204  
DDC12AB Interface  
MOTOROLA  
DDC12AB Interface  
Registers  
• the module receives an acknowledge bit (RXAK = 0), after  
setting master transmit mode (MRW = 0), and the calling address  
has been transmitted; or  
• the previous data in the output circuit has be transmitted and the  
receiving slave returns an acknowledge bit, indicated by a  
received acknowledge bit (RXAK = 0).  
If the slave does not return an acknowledge bit (RXAK = 1), the master  
will generate a "stop" or "repeated start" condition. The data in the DDTR  
will not be transferred to the output circuit. The transmit buffer empty flag  
remains cleared (TXBE = 0).  
The sequence of events for slave transmit and master transmit are  
illustrated in Figure 15-8.  
15.6.7 DDC Da ta Re c e ive Re g iste r (DDRR)  
Address:  
$001B  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
DRD7  
DRD6  
DRD5  
DRD4  
DRD3  
DRD2  
DRD1  
DRD0  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 15-7. DDC Data Receive Register (DDRR)  
When the DDC module is enabled, DEN = 1, data in this read-only  
register depends on whether module is in master or slave mode.  
In slave mode, the data in DDRR is:  
• the calling address from the master when the address match flag  
is set (MATCH = 1); or  
• the last data received when MATCH = 0.  
In master mode, the data in the DDRR is:  
• the last data received.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
DDC12AB Interface  
205  
DDC12AB Inte rfa c e  
When the DDRR is read by the CPU, the receive buffer full flag is cleared  
(RXBF = 0), and the next received data is loaded to the DDRR. Each  
time when new data is loaded to the DDRR, the RXIF interrupt flag is set,  
indicating that new data is available in DDRR.  
The sequence of events for slave receive and master receive are  
illustrated in Figure 15-8.  
15.7 Prog ra m m ing Consid e ra tions  
When the DDC module detects an arbitration loss in master mode, it will  
release both SDA and SCL lines immediately. But if there are no further  
STOP conditions detected, the module will hang up. Therefore, it is  
recommended to have time-out software to recover from such ill  
condition. The software can start the time-out counter by looking at the  
BB (Bus Busy) flag in the DMCR and reset the counter on the completion  
of one byte transmission. If a time-out occur, software can clear the DEN  
bit (disable DDC module) to release the bus, and hence clearing the BB  
flag. This is the only way to clear the BB flag by software if the module  
hangs up due to a no STOP condition received. The DDC can resume  
operation again by setting the DEN bit.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
206  
DDC12AB Interface  
MOTOROLA  
DDC12AB Interface  
Programming Considerations  
(a) Master Transmit Mode  
TX Data1  
START  
Address  
0
ACK  
ACK  
TX DataN  
DataN+2  
NAK  
STOP  
TXBE=0  
MRW=0  
MAST=1  
TXBE=1  
TXIF=1  
Data2  
TXBE=1  
TXIF=1  
Data3 DDTR  
NAKIF=1  
TXBE=1  
TXIF=1  
MAST=0  
TXBE=0  
DDTR  
DDTR  
Data1  
DDTR  
(b) Master Receive Mode  
RX Data1  
START  
Address  
1
ACK  
ACK  
RX DataN  
NAK  
STOP  
RXBF=0  
MRW=1  
NAKIF=1  
MAST=0  
Data1  
RXIF=1  
RXBF=1  
DDRR  
DataN DDRR  
RXIF=1  
RXBF=1  
MAST=1  
TXBE=0  
(dummy data  
DDTR)  
(c) Slave Transmit Mode  
TX Data1  
START  
Address  
1
ACK  
ACK  
TX DataN  
DataN+2  
NAK  
STOP  
TXBE=1  
RXBF=0  
RXIF=1  
RXBF=1  
MATCH=1  
SRW=1  
NAKIF=1  
TXBE=0  
TXBE=1  
TXIF=1  
Data2  
TXBE=1  
TXIF=1  
DDTR  
DDTR  
Data1  
DDTR  
(d) Slave Receive Mode  
RX Data1  
START  
Address  
0
ACK  
ACK  
RX DataN  
NAK  
STOP  
Data1  
RXIF=1  
RXBF=1  
DDRR  
DataN DDRR  
TXBE=0  
RXBF=0  
RXIF=1  
RXBF=1  
MATCH=1  
SRW=0  
RXIF=1  
RXBF=1  
KEY: shaded data packets indicate a transmit by the MCU’s DDC module  
Figure 15-8. Data Transfer Sequences for Master/Slave Transmit/Receive Modes  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
DDC12AB Interface  
207  
DDC12AB Inte rfa c e  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
208  
DDC12AB Interface  
Te c hnic a l Da ta — MC68HC908BD48  
Se c tion 16. Sync Proc e ssor  
16.1 Conte nts  
16.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209  
16.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211  
16.4 I/O Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211  
16.5 Functional Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213  
16.5.1 Polarity Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .214  
16.5.1.1  
16.5.1.2  
16.5.1.3  
Hsync Polarity Detection . . . . . . . . . . . . . . . . . . . . . . . .214  
Vsync Polarity Detection . . . . . . . . . . . . . . . . . . . . . . . .214  
Composite Sync Polarity Detection . . . . . . . . . . . . . . . .214  
16.5.2 Sync Signal Counters. . . . . . . . . . . . . . . . . . . . . . . . . . . . .215  
16.5.3 Polarity Controlled HSYNCO and VSYNCO Outputs. . . . .215  
16.5.4 Clamp Pulse Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216  
16.5.5 Low Vertical Frequency Detect . . . . . . . . . . . . . . . . . . . . .217  
16.6 Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .217  
16.6.1 Sync Processor Control & Status Register (SPCSR). . . . .217  
16.6.2 Sync Processor Input/Output Control Register (SPIOCR) .219  
16.6.3 Vertical Frequency Registers (VFRs). . . . . . . . . . . . . . . . .221  
16.6.4 Hsync Frequency Registers (HFRs). . . . . . . . . . . . . . . . . .223  
16.6.5 Sync Processor Control Register 1 (SPCR1). . . . . . . . . . .225  
16.6.6 H&V Sync Output Control Register (HVOCR) . . . . . . . . . .226  
16.7 System Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227  
16.2 Introd uc tion  
The Sync Processor is designed to detect and process sync signals  
inside a digital monitor system — from separated Hsync and Vsync  
inputs, or from composite sync inputs such as Sync-On-Green (SOG).  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Sync Processor  
209  
 
Sync Proc e ssor  
After detection and the necessary polarity correction and/or sync  
separation, the corrected sync signals are sent out. The MCU can also  
send commands to other monitor circuitry, such as for the geometry  
correction and OSD, using the DDC12AB and/or the IIC communication  
channels.  
The block diagram of the Sync Processor is shown in Figure 16-1.  
NOTE: All quoted timings in this section assume an internal bus frequency of  
6MHz.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
210  
Sync Processor  
MOTOROLA  
Sync Processor  
Features  
16.3 Fe a ture s  
Features of the Sync Processor include the following:  
• Polarity detector  
• Horizontal frequency counter  
• Vertical frequency counter  
• Low vertical frequency indicator (40.7Hz)  
• Polarity controlled HSYNCO and VSYNCO outputs:  
– From separate Hsync and Vsync  
– From composite sync on HSYNC or SOG input pin  
– From internal selectable free running Hsync and Vsync pulses  
• CLAMP pulse output to the external pre-amp chip  
• Internal schmitt trigger on HSYNC, VSYNC, and SOG input pins  
to improve noise immunity  
16.4 I/ O Pins  
The Sync Processor uses six I/O pins, with four pins shared with  
standard port I/O pins. The full name of the Sync Processor I/O pins are  
listed in Table 16-1. The generic pin name appear in the text that  
follows.  
Table 16-1. Pin Name Conventions  
Sync Processor  
Generic Pin Names:  
Pin Selected for  
Sync Processor Function By:  
Full MCU Pin Names:  
HSYNC  
HSYNC  
VSYNC  
VSYNC  
SOG  
PTE0/SOG/TCH0  
PTE1/HSYNCO  
PTE2/VSYNCO  
PTD4/CLAMP  
SOGE bit in CONFIG1 ($001D)  
HSYNCOE bit in CONFIG 1 ($001D)  
VSYNCOE bit in CONFIG 1 ($001D)  
CLAMPE bit in PDCR ($0049)  
HSYNCO  
VSYNCO  
CLAMP  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Sync Processor  
211  
 
Sync Proc e ssor  
Table 16-2. Sync Processor I/O Register Summary  
Addr.  
Register Name  
Bit 7  
6
5
VSIF  
0
4
3
2
1
Bit 0  
Read:  
VPOL  
HPOL  
Sync Processor Control  
$0040  
VSIE  
VEDGE  
COMP  
VINVO  
HINVO  
and Status Register Write:  
(SPCSR)  
Reset:  
0
0
0
0
0
0
0
0
0
Read:  
VOF  
0
VF12  
VF11  
VF10  
VF9  
VF8  
Vertical Frequency High  
$0041  
$0042  
$0043  
$0044  
$0045  
$0046  
$0047  
Register Write:  
CPW1  
0
CPW0  
0
(VFHR)  
Reset:  
0
0
0
0
0
0
Read:  
VF7  
VF6  
VF5  
VF4  
VF3  
VF2  
VF1  
VF0  
Vertical Frequency Low  
Register Write:  
(VFLR)  
Reset:  
0
0
0
0
0
0
0
0
Read:  
HFH7  
HFH6  
HFH5  
HFH4  
HFH3  
HFH2  
HFH1  
HFH0  
Hsync Frequency High  
Register Write:  
(HFHR)  
Reset:  
0
0
0
0
0
0
0
0
0
0
Read: HOVER  
HFL4  
HFL3  
HFL2  
HFL1  
HFL0  
Hsync Frequency Low  
Register Write:  
(HFLR)  
Reset:  
0
0
0
0
R
0
0
0
BPOR  
0
0
SOUT  
0
Read: VSYNCS HSYNCS  
Sync Processor I/O  
CLAMPOE  
COINV  
0
SOGSEL  
Control Register Write:  
(SPIOCR)  
Reset:  
0
0
0
0
0
R
0
Read:  
LVSIF  
Sync Processor Control  
LVSIE  
HPS1  
HPS0  
R
ATPOL  
0
FSHF  
0
Register 1 Write:  
0
0
0
(SPCR1)  
Reset:  
0
R
0
0
0
0
0
0
0
Read:  
H&V Sync Output  
HVOCR2 HVOCR1 HVOCR0  
Control Register Write:  
(HVOCR)  
Reset:  
0
0
0
0
0
0
0
= Unimplemented  
R
= Reserved  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
212  
Sync Processor  
Sync Processor  
Functional Blocks  
16.5 Func tiona l Bloc ks  
EXTRACTED  
VSYNC  
SVF  
VINVO  
1
A
VSYNCO  
1
A
B
B
S
VSYNC  
S
SOUT  
COMP  
VSIF  
POLARITY DETECT  
VPOL  
VSIE  
EDGE DETECT  
ONE SHOT  
VEDGE  
VOF  
VFLR  
VFHR  
INTERNAL (6MHz)  
BUS CLOCK  
(125kHz)  
13-BIT COUNTER  
$C00 DETECT  
OVERFLOW DETECT  
÷ 48  
TO INTERRUPT  
LOGIC  
LVSIF  
LVSIE  
ONE SHOT  
HFLR  
HFHR  
HOVER  
CLK32/32.768  
1
HSYNC  
SOG  
A
13-BIT COUNTER  
OVERFLOW DETECT  
B
S
SOGSEL  
1
POLARITY DETECT  
VPOL  
A
B
HPOL  
S
COMP  
EXTRACTED VSYNC  
VSYNC EXTRACTOR  
BPOR  
CLAMP  
PULSE GENERATOR  
SVF  
CLAMP  
COINV  
B
H/V SYNC  
2µs  
SHF  
1
PULSE GENERATOR  
A
S
SOUT  
HSYNCO  
HVOCR[2:0]  
HINVO  
Figure 16-1. Sync Processor Block Diagram  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Sync Processor  
213  
Sync Proc e ssor  
16.5.1 Pola rity De te c tion  
16.5.1.1 Hsync Po la rity De te c tio n  
The Hsync polarity detection circuit measures the length of high and low  
period of the HSYNC input. If the length of high is longer than L and the  
length of low is shorter than S, the HPOL bit will be "0", indicating a  
negative polarity HSYNC input. If the length of low is longer than L and  
the length of high is shorter than S, the HPOL bit will be "1", indicating a  
positive polarity HSYNC input. The table below shows three possible  
cases for HSYNC polarity detection — the conditions are selected by the  
HPS[1:0] bits in the Sync Processor Control Register 1 (SPCR1).  
Polarity Detection Pulse Width  
Long is greater than (L) Short is less than (S)  
7µs 6µs  
SPCR1 ($0046)  
HPS1 HPS0  
0
0
3.5µs  
14µs  
3µs  
1
0
X
1
12µs  
16.5.1.2 Vsync Po la rity De te c tio n  
The Vsync polarity detection circuit performs a similar function as for  
Hsync. If the length of high is longer than 4ms and the length of low is  
shorter than 2ms, the VPOL bit will be "0", indicating a negative polarity  
VSYNC input. If the length of low is longer than 4ms and the length of  
high is shorter than 2ms, the VPOL bit will be "1", indicating a positive  
polarity VSYNC input.  
16.5.1.3 Co m p o site Sync Po la rity De te c tio n  
When a composite sync signal is the input (COMP = 1 for composite  
sync processing), the HPOL bit = VPOL bit, and the polarity is detected  
using the VSYNC polarity detection criteria described in section  
16.5.1.2.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
214  
Sync Processor  
MOTOROLA  
Sync Processor  
Functional Blocks  
16.5.2 Sync Sig na l Counte rs  
There are two counters: a 13-bit horizontal frequency counter to count  
the number of horizontal sync pulses within a 32ms or 8ms period; and  
a 13-bit vertical frequency counter to count the number of system clock  
cycles between two vertical sync pulses. These two data can be read by  
the CPU to check the signal frequencies and to determine the video  
mode.  
The 13-bit vertical frequency register encompasses vertical frequency  
range from approximately 15Hz to 128kHz. Due to the asynchronous  
timing between the incoming VSYNC signal and internal system clock,  
there will be ±1 count error on reading the Vertical Frequency  
Registers (VFRs) for the same vertical frequency.  
The horizontal counter counts the pulses on HSYNC pin input, and is  
uploaded to the Hsync Frequency Registers (HFRs) every 32.768ms  
or 8.192ms.  
16.5.3 Pola rity Controlle d HSYNCO a nd VSYNCO Outp uts  
The processed sync signals are output on HSYNCO and VSYNCO when  
the corresponding bits in Configuration Register 0 ($001D) are set. The  
signal to these output pins depend on SOUT and COMP bits (see Table  
16-3), with polarity controlled by ATPOL, HINVO, and VINVO bits as  
shown in Table 16-4.  
Table 16-3. Sync Output Control  
Sync Outputs:  
VSYNCO and HSYNCO  
SOUT  
COMP  
1
0
X
0
Free-running pulse with negative polarity  
Sync outputs follow sync inputs VSYNC and HSYNC  
respectively, with polarity correction shown in Table 16-4.  
HSYNCO follows the composite sync input and VSYNCO  
is the extracted Vsync (3 to 14µs delay to composite input),  
with polarity correction shown in Table 16-4.  
0
1
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Sync Processor  
215  
 
Sync Proc e ssor  
Table 16-4. Sync Output Polarity  
VINVO  
Sync Outputs:  
VSYNCO/HSYNCO  
ATPOL  
SOUT  
or  
HINVO  
X
0
0
1
1
1
0
0
0
0
X
0
1
0
1
Free-running pulse with negative polarity  
Same polarity as sync input  
Inverted polarity of sync input  
Negative polarity sync output  
Positive polarity sync output  
When the SOUT bit is set, the HSYNCO output is a free-running pulse  
with 2µs width. Both HSYNCO and VSYNCO outputs are negative  
polarity, with frequencies selected by the H & V Sync Output Control  
Register (HVOCR).  
16.5.4 Cla m p Pulse Outp ut  
When the CLAMPOE bit in SPIOCR is set to "1", a clamp signal is output  
on the CLAMP pin. This clamp pulse is triggered either on the leading  
edge or the trailing edge of HSYNC, controlled by BPOR bit, with the  
polarity controlled by the COINV bit. See Figure 16-2 . Clamp Pulse  
Output Timing.  
HSYNC  
(HPOL = 1)  
CLAMP  
(BPOR = 0)  
Pulse width = 0.33~2.1µs  
CLAMP  
(BPOR = 1)  
Pulse width = 0.33~2.1µs  
HSYNC  
(HPOL = 0)  
CLAMP  
(BPOR = 0)  
Pulse width = 0.33~2.1µs  
CLAMP  
(BPOR = 1)  
Pulse width = 0.33~2.1µs  
Figure 16-2. Clamp Pulse Output Timing  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
216  
Sync Processor  
 
Sync Processor  
Registers  
16.5.5 Low Ve rtic a l Fre q ue nc y De te c t  
Logic monitors the value of the Vsync Frequency Register (VFR), and  
sets the low vertical frequency flag (LVSIF) when the value of VFR is  
higher than $C00 (frequency below 40.7Hz). LVSIF bit can generate an  
interrupt request to the CPU when the LVSIE bit is set and I-bit in the  
Condition Code Register is "0". The LVSIF bit can help the system to  
detect video off mode fast.  
16.6 Re g iste rs  
Eight registers are associated with the Sync Processor, they outlined in  
the following sections.  
16.6.1 Sync Proc e ssor Control & Sta tus Re g iste r (SPCSR)  
Address:  
$0040  
Bit 7  
6
VEDGE  
0
5
VSIF  
0
4
COMP  
0
3
VINVO  
0
2
HINVO  
0
1
Bit 0  
Read:  
Write:  
Reset:  
VPOL  
HPOL  
VSIE  
0
0
0
0
= Unimplemented  
Figure 16-3. Sync Processor Control & Status Register (SPCSR)  
VSIE — VSync Interrupt Enable  
When this bit is set, the VSIF flag is enabled to generate an interrupt  
request to the CPU. When VSIE is cleared, the VSIF flag is prevented  
from generating an interrupt request to the CPU. Reset clears this bit.  
1 = VSIF bit set will generate interrupt request to CPU  
0 = VSIF bit set does not generate interrupt request to CPU  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Sync Processor  
217  
Sync Proc e ssor  
VEDGE — VSync Interrupt Edge Select  
This bit specifies the triggering edge of Vsync interrupt. When it is "0",  
the rising edge of internal Vsync signal which is either from the  
VSYNC pin or extracted from the composite input signal will set VSIF  
flag. When it is "1", the falling edge of internal Vsync signal will set  
VSIF flag. Reset clears this bit.  
1 = VSIF bit will be set by rising edge of Vsync  
0 = VSIF bit will be set by falling edge of Vsync  
VSIF — VSync Interrupt Flag  
This flag is only set by the specified edge of the internal Vsync signal,  
which is either from the VSYNC input pin or extracted from the  
composite sync input signal. The triggering edge is specified by the  
VEDGE bit. VSIF generates an interrupt request to the CPU if the  
VSIE bit is also set. This bit is cleared by writing a "0" to it or by a reset.  
1 = A valid edge is detected on the Vsync  
0 = No valid Vsync is detected  
COMP — Composite Sync Input Enable  
This bit is set to enable the separator circuit which extracts the Vsync  
pulse from the composite sync input on HSYNC or SOG pin (select by  
SOGSEL bit). The extracted Vsync signal is used as it were from the  
VSYNC input. Reset clears this bit.  
1 = Composite Sync Input Enabled  
0 = Composite Sync Input Disabled  
VINVO — VSYNCO Signal Polarity  
This bit, together with the ATPOL bit in SPCR1 controls the output  
polarity of the VSYNCO signal (see Table 16-5).  
HINVO — HSYNCO Signal Polarity  
This bit, together with the ATPOL bit in SPCR1 controls the output  
polarity of the HSYNCO signal (see Table 16-5).  
Technical Data  
MC68HC908BD48 Rev. 1.0  
218  
Sync Processor  
MOTOROLA  
Sync Processor  
Registers  
Table 16-5. ATPOL, VINVO, and HINVO setting  
Sync Outputs:  
VSYNCO/HSYNCO  
ATPOL  
VINVO / HINVO  
0
0
1
1
0
1
0
1
Same polarity as sync input  
Inverted polarity of sync input  
Negative polarity sync output  
Positive polarity sync output  
VPOL — Vsync Input Polarity  
This bit indicates the polarity of the VSYNC input, or the extracted  
Vsync from a composite sync input (COMP=1). Reset clears this bit.  
1 = Vsync is positive polarity  
0 = Vsync is negative polarity  
HPOL — Hsync Input Polarity  
This bit indicates the polarity of the HSYNC input. This bit equals the  
VPOL bit when the COMP bit is set. Reset clears this bit.  
1 = Hsync is positive polarity  
0 = Hsync is negative polarity  
16.6.2 Sync Proc e ssor Inp ut/ Outp ut Control Re g iste r (SPIOCR)  
Address:  
$0045  
Bit 7  
6
5
COINV  
0
4
R
0
3
2
1
BPOR  
0
Bit 0  
SOUT  
0
Read: VSYNCS HSYNCS  
Write:  
CLAMPOE  
SOGSEL  
Reset:  
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 16-4. Sync Processor Input/Output Control Register (SPIOCR)  
VSYNCS — VSYNC Input State  
This read-only bit reflects the logical state of the VSYNC input.  
HSYNCS — HSYNC Input State  
This read-only bit reflects the logical state of the HSYNC input.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Sync Processor  
219  
Sync Proc e ssor  
COINV — Clamp Output Invert  
This bit is set to invert the clamp pulse output to negative. Reset  
clears this bit.  
1 = clamp output is set for negative pulses  
0 = clamp output is set for positive pulses  
SOGSEL — SOG Select  
This bit selects either the HSYNC pin or SOG pin as the composite  
sync signal input pin. Reset clears this bit.  
1 = SOG pin is used as the composite sync input  
0 = HSYNC pin is used as the composite sync input  
CLAMPOE — Clamp Output Enable  
This bit is set to enable the clamp pulse output circuitry. Reset clears  
this bit.  
1 = Clamp pulse circuit enabled  
0 = Clamp pulse circuit disabled  
BPOR — Back Porch  
This bit defines the triggering edge of the clamp pulse output relative  
to the HSYNC input. Reset clears this bit.  
1 = Clamp pulse is generated on the trailing edge of HSYNC  
0 = Clamp pulse is generated on the leading edge of HSYNC  
SOUT — Sync Output Enable  
This bit will select the output signals for the VSYNCO and HSYNCO  
pins. Reset clears this bit.  
1 = VSYNCO and HSYNCO outputs are internally generated  
free-running sync pulses with frequencies determined by  
HVCOR[2:0] bits in HVCOR.  
0 = VSYNCO and HSYNCO outputs are processed VSYNC and  
HSYNC inputs respectively  
Technical Data  
MC68HC908BD48 Rev. 1.0  
220  
Sync Processor  
MOTOROLA  
Sync Processor  
Registers  
16.6.3 Ve rtic a l Fre q ue nc y Re g iste rs (VFRs)  
This register pair contains the 13-bit vertical frequency count value, an  
overflow bit, and the clamp pulse width selection bits.  
Address:  
$0041  
Bit 7  
6
5
4
3
2
1
Bit 0  
VF8  
Read:  
Write:  
Reset:  
VOF  
0
CPW1  
0
0
CPW0  
0
VF12  
VF11  
VF10  
VF9  
0
0
0
0
0
0
Figure 16-5. Vertical Frequency High Register  
Address:  
$0042  
Bit 7  
VF7  
6
5
4
3
2
1
Bit 0  
VF0  
Read:  
Write:  
Reset:  
VF6  
VF5  
VF4  
VF3  
VF2  
VF1  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 16-6. Vertical Frequency Low Register  
VF[12:0] — Vertical Frame Frequency\  
This read-only 13-bit contains information of the vertical frame  
frequency. An internal 13-bit counter counts the number of 8µs  
periods between two Vsync pulses. The most significant 5 bits of the  
counted value is transferred to the high byte register, and the least  
significant 8 bits is transferred to an intermediate buffer. When the  
high byte register is read, the 8-bit counted value stored in the  
intermediate buffer will be uploaded to the low byte register.  
Therefore, user program must read the high byte register first, then  
low byte register in order to get the complete counted value of one  
vertical frame. If the counter overflows, the overflow flag, VOF, will be  
set, indicating the counter value stored in the VFRs is meaningless.  
The data corresponds to the period of one vertical frame. This register  
can be read to determine if the frame frequency is valid, and to  
determine the video mode.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Sync Processor  
221  
Sync Proc e ssor  
The frame frequency is calculated by:  
1
Vertical Frame Frequency = --------------------------------------------------  
VFR ± 1 × 48 × tCYC  
1
= -------------------------------------  
VFR ± 1 × 8µs  
for internal bus clock of 6 MHz  
Table 16-6 shows examples for the Vertical Frequency Register, all VFR  
numbers are in hexadecimal.  
Table 16-6. Sample Vertical Frame Frequencies  
VFR  
Max Freq.  
186.20 Hz  
130.34 Hz  
130.21 Hz  
130.07 Hz  
100.08 Hz  
100.00 Hz  
99.92 Hz  
70.07 Hz  
70.03 Hz  
69.99 Hz  
Min Freq.  
185.70 Hz  
130.07 Hz  
129.94 Hz  
129.80 Hz  
99.92 Hz  
99.84 Hz  
99.76 Hz  
69.99 Hz  
69.95 Hz  
69.91 Hz  
VFR  
Max Freq.  
65.10 Hz  
60.04 Hz  
60.01 Hz  
59.98 Hz  
50.02 Hz  
50.00 Hz  
49.98 Hz  
15.266 Hz  
15.264 Hz  
15.262 Hz  
Min Freq.  
65.00 Hz  
59.98 Hz  
59.95 Hz  
59.92 Hz  
49.98 Hz  
49.96 Hz  
49.94 Hz  
15.262 Hz  
15.260 Hz  
15.258 Hz  
$02A0  
$03C0  
$03C1  
$03C2  
$04E2  
$04E3  
$04E4  
$06F9  
$06FA  
$06FB  
$0780  
$0823  
$0824  
$0825  
$09C4  
$09C5  
$09C6  
$1FFD  
$1FFE  
$1FFF  
VOF — Vertical Frequency Counter Overflow  
This read-only bit is set when an overflow has occurred on the 13-bit  
vertical frequency counter. Reset clears this bit, and will be updated  
every vertical frame.  
An overflow occurs when the period of Vsync frame exceeds  
64.768ms (a vertical frame frequency lower than 15.258Hz).  
1 = A vertical frequency counter overflow has occurred  
0 = No vertical frequency counter overflow has occurred  
Technical Data  
MC68HC908BD48 Rev. 1.0  
222  
Sync Processor  
MOTOROLA  
 
Sync Processor  
Registers  
CPW[1:0] — Clamp Pulse Width  
The CPW1 and CPW0 bits are used to select the output clamp pulse  
width. Reset clears these bits, selecting a default clamp pulse width  
between 0.33µs and 0.375µs. These bits always read as Zeros.  
Table 16-7. Clamp Pulse Width  
CPW1  
CPW0  
Clamp Pulse Width  
0.33µs to 0.375µs  
0.5µs to 0.542µs  
0.75µs to 0.792µs  
2µs to 2.042µs  
0
0
1
1
0
1
0
1
16.6.4 Hsync Fre q ue nc y Re g iste rs (HFRs)  
This register pair contains the 13-bit Hsync frequency count value and  
an overflow bit.  
Address:  
$0043  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
HFH7  
HFH6  
HFH5  
HFH4  
HFH3  
HFH2  
HFH1  
HFH0  
0
0
0
0
0
0
0
0
Figure 16-7. Hsync Frequency High Register  
Address:  
$0044  
Bit 7  
6
0
5
0
4
3
2
1
Bit 0  
Read: HOVER  
Write:  
HFL4  
HFL3  
HFL2  
HFL1  
HFL0  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 16-8. Hsync Frequency Low Register  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Sync Processor  
223  
Sync Proc e ssor  
HFH[7:0], HFL[4:0] — Horizontal Line Frequency  
This read-only 13-bit contains the number of horizontal lines in a  
32ms window. An internal 13-bit counter counts the Hsync pulses  
within a 32ms window in every 32.768ms period. If the FSHF bit in  
SPCR1 is set, only the most 11-bits (HFH[7:0] & HFL[4:2]) will be  
updated by the counter. Thus, providing a Hsync pulse count in a 8ms  
window in every 8.192ms.  
The most significant 8 bits of counted value is transferred to the high  
byte register, and the least significant 5 bits is transferred to an  
intermediate buffer. When the high byte register is read, the 5-bit  
counted value stored in the intermediate buffer will be uploaded to the  
low byte register. Therefore, user the program must read the high byte  
register first then low byte register in order to get the complete  
counted value of Hsync pulses. If the counter overflows, the overflow  
flag, HOVER, will be set, indicating the number of Hsync pulses in  
13  
32ms are more than 8191 (2 –1), i.e. a Hsync frequency greater  
than 256kHz.  
For the 32ms window, the HFHR and HFLR are such that the  
frequency step unit in the 5-bit of HFLR is 0.03125kHz, and the step  
unit in the 8-bit HFHR is 1kHz. Therefore, the Hsync frequency can  
be easily calculated by:  
Hsync Frequency = [HFH + (HFL × 0.03125)]kHz  
where: HFH is the value of HFH[7:0]  
HFL is the value of HFL[4:0]  
HOVER — Hsync Frequency Counter Overflow  
This read-only bit is set when an overflow has occurred on the 13-bit  
Hsync frequency counter. Reset clears this bit, and will be updated  
every count period.  
An overflow occurs when the number Hsync pulses exceed 8191, a  
Hsync frequency greater than 256kHz.  
1 = A Hsync frequency counter overflow has occurred  
0 = No Hsync frequency counter overflow has occurred  
Technical Data  
MC68HC908BD48 Rev. 1.0  
224  
Sync Processor  
MOTOROLA  
Sync Processor  
Registers  
16.6.5 Sync Proc e ssor Control Re g iste r 1 (SPCR1)  
Address:  
$0046  
Bit 7  
6
LVSIF  
0
5
HPS1  
0
4
HPS0  
0
3
2
1
ATPOL  
0
Bit 0  
FSHF  
0
Read:  
Write:  
Reset:  
LVSIE  
0
R
R
0
0
0
= Unimplemented  
R
= Reserved  
Figure 16-9. Sync Processor Control Register 1 (SPCR1)  
LVSIE — Low VSync Interrupt Enable  
When this bit is set, the LVSIF flag is enabled to generate an interrupt  
request to the CPU. When LVSIE is cleared, the LVSIF flag is  
prevented from generating an interrupt request to the CPU. Reset  
clears this bit.  
1 = Low Vsync interrupt enabled  
0 = Low Vsync interrupt disabled  
LVSIF — Low VSync Interrupt Flag  
This read-only bit is set when the value of VFR is higher than $C00  
(vertical frame frequency below 40.7Hz). LVSIF generates an  
interrupt request to the CPU if the LVSIE is also set. This bit is cleared  
by writing a "0" to it or reset.  
1 = Vertical frequency is below 40.7Hz  
0 = Vertical frequency is higher than 40.7Hz  
HPS[1:0] — HSYNC input Detection Pulse Width  
These two bits control the detection pulse width of HSYNC input.  
Reset clears these two bits, setting a default middle frequency of  
HSYNC input.  
Table 16-8. HSYNC Polarity Detection Pulse Width  
HPS1  
HPS0  
Polarity Detection Pulse Width  
Long > 7µs and Short < 6µs  
Long > 3.5µs and Short < 3µs  
Long > 14µs and Short < 12µs  
0
1
0
0
X
1
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Sync Processor  
225  
Sync Proc e ssor  
ATPOL — Auto Polarity  
This bit, together with the VINVO or HINVO bits in SPCSR controls  
the output polarity of the VSYNCO or HSYNCO signals respectively.  
Reset clears this bit (see Table 16-9).  
Table 16-9. ATPOL, VINVO, and HINVO setting  
Sync Outputs:  
ATPOL  
VINVO / HINVO  
VSYNCO/HSYNCO  
Same polarity as sync input  
Inverted polarity of sync input  
Negative polarity sync output  
Positive polarity sync output  
0
0
1
1
0
1
0
1
FSHF — Fast Horizontal Frequency Count  
This bit is set to shorten the measurement cycle of the horizontal  
frequency. If it is set, only HFH[7:0] and HFL[4:2] will be updated by  
the Hsync counter, providing a count in a 8ms window in every  
8.192ms, with HFL[1:0] reading as zeros. Therefore, user can  
determine the horizontal frequency change within 8.192ms to protect  
critical circuitry. Reset clears this bit.  
1 = Number of Hsync pulses is counted in an 8ms window  
0 = Number of Hsync pulses is counted in a 32ms window  
16.6.6 H&V Sync Outp ut Control Re g iste r (HVOCR)  
Address:  
$0047  
Bit 7  
6
0
5
0
4
0
3
0
2
1
Bit 0  
Read:  
Write:  
Reset:  
R
0
HVOCR2 HVOCR1 HVOCR0  
0
0
0
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 16-10. H&V Sync Output Control Register (HVOCR)  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
226  
Sync Processor  
 
Sync Processor  
System Operation  
HVOCR[2:0] — H&V Output Select Bits  
These three bits select the frequencies of the internal generated  
free-running sync pulses for output to HSYNCO and VSYNCO pins,  
when the SOUT bit is set in the SPIOCR. Reset clears these bits,  
setting a default horizontal frequency of 31.25kHz and a vertical  
frequency of 60Hz, a video mode of 640×480.  
Table 16-10. Free-Running HSYNC and VSYNC Options  
HSYNCO  
Pulse width  
VSYNCO  
Pulse width  
HVOCR  
Video Mode  
Frequency  
31.25kHz  
43.48kHz  
48.78kHz  
54.05kHz  
60.61kHz  
80.00kHz  
90.91kHz  
105.26kHz  
Frequency  
59.98 Hz  
84.92 Hz  
60.00 Hz  
84.98 Hz  
75.01 Hz  
74.98 Hz  
84.96 Hz  
85.02 Hz  
000  
001  
010  
011  
100  
101  
110  
111  
Negative 2µs  
Negative 2µs  
Negative 2µs  
Negative 2µs  
Negative 2µs  
Negative 2µs  
Negative 2µs  
Negative 2µs  
Negative 192µs  
Negative 138µs  
Negative 123µs  
Negative 111µs  
Negative 99µs  
Negative 75µs  
Negative 66µs  
Negative 57µs  
640 × 480  
640 × 480  
1024 × 768  
800 × 600  
1024 × 768  
1280 × 1024  
1280 × 1024  
1600 × 1200  
16.7 Syste m Op e ra tion  
This Sync Processor is designed to assist in determining the video mode  
of incoming HSYNC and VSYNC of various frequencies and polarities,  
and DPMS modes. In the DPMS standard, a no sync pulses definition  
can be detected when the value of the Hsync Frequency Register (the  
number of Hsync pulses) is less than one or when the VOF bit is set.  
Since the Hsync Frequency Register is updated repeatedly in every  
32.768ms, and a valid Vsync must have a frequency greater than  
40.7Hz, a valid Vsync pulse will arrive within the 32.768ms window.  
Therefore, the user should read the Hsync Frequency Register every  
32.768ms to determine the presence of Hsync and/or Vsync pulses.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Sync Processor  
227  
Sync Proc e ssor  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
228  
Sync Processor  
Te c hnic a l Da ta — MC68HC908BD48  
Se c tion 17. Inp ut/ Outp ut (I/ O) Ports  
17.1 Conte nts  
17.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229  
17.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233  
17.3.1 Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233  
17.3.2 Data Direction Register A . . . . . . . . . . . . . . . . . . . . . . . . .234  
17.3.3 Port A Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235  
17.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236  
17.4.1 Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236  
17.4.2 Data Direction Register B . . . . . . . . . . . . . . . . . . . . . . . . .237  
17.4.3 Port B Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238  
17.5 Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239  
17.5.1 Port C Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239  
17.5.2 Data Direction Register C . . . . . . . . . . . . . . . . . . . . . . . . .240  
17.5.3 Port C Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241  
17.6 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .242  
17.6.1 Port D Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .242  
17.6.2 Data Direction Register D. . . . . . . . . . . . . . . . . . . . . . . . . .243  
17.6.3 Port D Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .245  
17.7 Port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .247  
17.7.1 Port E Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .247  
17.7.2 Data Direction Register E. . . . . . . . . . . . . . . . . . . . . . . . . .248  
17.7.3 Port E Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250  
17.2 Introd uc tion  
Thirty-two (32) bidirectional input-output (I/O) pins form four parallel  
ports. All I/O pins are programmable as inputs or outputs.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Input/Output (I/O) Ports  
229  
 
Inp ut/ Outp ut (I/ O) Ports  
NOTE: Connect any unused I/O pins to an appropriate logic level, either V or  
DD  
V . Although the I/O ports do not require termination for proper  
SS  
operation, termination reduces excess current consumption and the  
possibility of electrostatic damage.  
Table 17-1. I/O Port Register Summary  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
PTA7  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
Port A Data Register  
(PTA)  
$0000  
Unaffected by reset  
PTB7  
0
PTB6  
0
PTB5  
PTC5  
PTD5  
PTB4  
PTB3  
PTB2  
PTC2  
PTD2  
PTB1  
PTC1  
PTD1  
PTB0  
PTC0  
PTD0  
Port B Data Register  
(PTB)  
$0001  
$0002  
$0003  
$0004  
$0005  
$0006  
Unaffected by reset  
PTC4  
PTC3  
Port C Data Register  
(PTC)  
Unaffected by reset  
0
PTD6  
PTD4  
PTD3  
Port D Data Register  
(PTD)  
Unaffected by reset  
DDRA7  
0
DDRA6  
0
DDRA5  
DDRA4  
DDRA3  
DDRA2  
DDRA1  
DDRA0  
Data Direction Register A  
(DDRA)  
0
DDRB5  
0
0
DDRB4  
0
0
DDRB3  
0
0
DDRB2  
0
0
DDRB1  
0
0
DDRB0  
0
DDRB7  
DDRB6  
Data Direction Register B  
(DDRB)  
0
0
0
0
DDRC5  
0
DDRC4  
0
DDRC3  
0
DDRC2  
0
DDRC1  
0
DDRC0  
0
Data Direction Register C  
(DDRC)  
0
0
= Unimplemented  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
230  
Input/Output (I/O) Ports  
Input/Output (I/O) Ports  
Introduction  
Table 17-1. I/O Port Register Summary (Continued)  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
DDRD2  
0
1
DDRD1  
0
Bit 0  
DDRD0  
0
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
DDRD6  
DDRD5  
DDRD4  
DDRD3  
Data Direction Register D  
(DDRD)  
$0007  
0
0
0
0
0
0
0
0
0
0
PTE2  
PTE1  
PTE0  
Port E Data Register  
(PTE)  
$0008  
$0009  
$001D  
$0028  
$0049  
$0059  
Unaffected by reset  
0
0
0
0
0
0
0
DDRE2  
DDRE1  
DDRE0  
Data Direction Register E  
(DDRE)  
0
SOGE  
0
0
0
0
0
0
0
0
0
0
0
HSYNCOE VSYNCOE  
Configuration Register 0  
(CONFIG0)  
0
0
PWM6E  
0
0
PWM4E  
0
0
PWM3E  
0
0
PWM2E  
0
0
PWM1E  
0
0
PWM0E  
0
PWM7E  
PWM5E  
0
PWM Control Register 1  
(PWMCR1)  
0
0
DDCSCLE DDCDATE  
IICDATE IICSCLE CLAMPE  
USBD–E USBD+E  
Port D Configuration  
Register (PDCR)  
0
0
0
0
0
0
0
0
PWM8E  
0
PWM15E PWM14E PWM13E PWM12E PWM11E PWM10E PWM9E  
PWM Control Register 2  
(PWMCR2)  
0
0
0
0
0
0
0
= Unimplemented  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Input/Output (I/O) Ports  
231  
Inp ut/ Outp ut (I/ O) Ports  
Table 17-2. Port Control Register Bits Summary  
Module Control  
Register  
Port  
Bit  
DDR  
Pin  
Module  
Control Bit  
PWM8E  
PWM9E  
PWM10E  
PWM11E  
PWM12E  
PWM13E  
PWM14E  
PWM15E  
PWM0E  
PWM1E  
PWM2E  
PWM3E  
PWM4E  
PWM5E  
PWM6E  
PWM7E  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
0
1
2
3
4
5
6
0
1
2
DDRA0  
DDRA1  
DDRA2  
DDRA3  
DDRA4  
DDRA5  
DDRA6  
DDRA7  
DDRB0  
DDRB1  
DDRB2  
DDRB3  
DDRB4  
DDRB5  
DDRB6  
DDRB7  
DDRC0  
DDRC1  
DDRC2  
DDRC3  
DDRC4  
DDRC5  
DDRD0  
DDRD1  
DDRD2  
DDRD3  
DDRD4  
DDRD5  
DDRD6  
DDRE0  
DDRE1  
DDRE2  
PTA0/PWM8  
PTA1/PWM9  
PTA2/PWM10  
PTA3/PWM11  
PTA4/PWM12  
PTA5/PWM13  
PTA6/PWM14  
PTA7/PWM15  
PTB0/PWM0  
PTB1/PWM1  
PTB2/PWM2  
PTB3/PWM3  
PTB4/PWM4  
PTB5/PWM5  
PTB6/PWM6  
PTB7/PWM7  
PTC0/ADC0  
PTC1/ADC1  
PTC2/ADC2  
PTC3/ADC3/  
PTC4/ADC4  
PTC5/ADC5  
PTD0/D+  
PWMCR2  
$0059  
A
PWM  
PWMCR1  
$0028  
B
PWM  
ADSCR  
$005D  
C
ADC  
USB  
ADCH[4:0]  
D+E  
D–E  
PTD1/D–  
DDCDATE  
DDCSCLE  
CLAMPE  
IICSCLE  
IICDATE  
SOGE  
PTD2/DDCSDA  
PTD3/DDCSCL  
PTD4/CLAMP  
PTD5/IICSCL  
PTD6/IICSDA  
PTE0/SOG/TCH0  
PTE1/HSYNCO  
PTE2/VSYNCO  
DDC12AB  
SYNC  
PDCR  
$0049  
D
E
MMIIC  
SYNC/TIM  
SYNC  
CONFIG0  
$001D  
HSYNCOE  
VSYNCOE  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
232  
Input/Output (I/O) Ports  
Input/Output (I/O) Ports  
Port A  
17.3 Port A  
Port A is an 8-bit special-function port that shares all eight of its pins with  
the pulse width modulator (PWM).  
17.3.1 Port A Da ta Re g iste r  
The port A data register (PTA) contains a data latch for each of the eight  
port A pins.  
Address:  
$0000  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTA7  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
Unaffected by reset  
PWM12 PWM11  
Alternate  
Function:  
PWM15  
PWM14  
PWM13  
PWM10  
PWM9  
PWM8  
Figure 17-1. Port A Data Register (PTA)  
PTA7–PTA0 — Port A Data Bits  
These read/write bits are software programmable. Data direction of  
each port A pin is under the control of the corresponding bit in data  
direction register A. Reset has no effect on port A data.  
PWM15–PWM8 — PWM Outputs 15–8  
The PWM output enable bits PWM15E–PWM8E, in PWM control  
register 2 (PWMCR2) enable port A pins as PWM output pins. (See  
17.3.3 Port A Options.)  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Input/Output (I/O) Ports  
233  
Inp ut/ Outp ut (I/ O) Ports  
17.3.2 Da ta Dire c tion Re g iste r A  
Data direction register A (DDRA) determines whether each port A pin is  
an input or an output. Writing a logic 1 to a DDRA bit enables the output  
buffer for the corresponding port A pin; a logic 0 disables the output  
buffer.  
Address:  
$0004  
Bit 7  
6
DDRA6  
0
5
DDRA5  
0
4
DDRA4  
0
3
DDRA3  
0
2
DDRA2  
0
1
DDRA1  
0
Bit 0  
DDRA0  
0
Read:  
Write:  
Reset:  
DDRA7  
0
Figure 17-2. Data Direction Register A (DDRA)  
DDRA7–DDRA0 — Data Direction Register A Bits  
These read/write bits control port A data direction. Reset clears  
DDRA7–DDRA0, configuring all port A pins as inputs.  
1 = Corresponding port A pin configured as output  
0 = Corresponding port A pin configured as input  
NOTE: Avoid glitches on port A pins by writing to the port A data register before  
changing data direction register A bits from 0 to 1.  
Figure 17-3 shows the port A I/O logic.  
READ DDRA ($0004)  
WRITE DDRA ($0004)  
DDRAx  
RESET  
WRITE PTA ($0000)  
PTAx  
PTAx  
READ PTA ($0000)  
Figure 17-3. Port A I/O Circuit  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
234  
Input/Output (I/O) Ports  
 
Input/Output (I/O) Ports  
Port A  
When bit DDRAx is a logic 1, reading address $0000 reads the PTAx  
data latch. When bit DDRAx is a logic 0, reading address $0000 reads  
the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 17-3 summarizes  
the operation of the port A pins.  
Table 17-3. Port A Pin Functions  
Accesses  
Accesses to PTA  
to DDRA  
PTAPUE Bit  
DDRA Bit PTA Bit  
I/O Pin Mode  
Read/Write  
Read  
Pin  
Write  
(1)  
(2)  
(3)  
0
X
0
1
X
Input, Hi-Z  
DDRA7–DDRA0  
DDRA7–DDRA0  
PTA7–PTA0  
X
Output  
PTA7–PTA0  
PTA7–PTA0  
NOTES:  
1. X = Don’t care  
2. Hi-Z = High impedance  
3. Writing affects data register, but does not affect input.  
17.3.3 Port A Op tions  
The PWM control register 2 (PWMCR2) selects the port A pins for PWM  
function or as standard I/O function. See 11.4.2 PWM Control  
Registers 1 and 2 (PWMCR1:PWMCR2).  
Address:  
$0059  
Bit 7  
6
5
4
3
2
1
Bit 0  
PWM8E  
0
Read:  
Write:  
Reset:  
PWM15E PWM14E PWM13E PWM12E PWM11E PWM10E PWM9E  
0
0
0
0
0
0
0
Figure 17-4. PWM Control Register 1 (PWMCR1)  
PWM15E–PWM8E — PWM Output Enable 15–8  
Setting a bit to "1" will configure the corresponding PTAx/PWMx pin  
for PWM output function. Reset clears these bits.  
1 = PTAx/PWMx pin configured as PWMx output pin  
0 = PTAx/PWMx pin configured as standard I/O pin  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Input/Output (I/O) Ports  
235  
 
Inp ut/ Outp ut (I/ O) Ports  
17.4 Port B  
Port B is an 8-bit special-function port that shares all eight of its pins with  
the pulse width modulator (PWM).  
NOTE: Port pins PTB7–PTB2 are not available in a 28-pin dual in-line package.  
17.4.1 Port B Da ta Re g iste r  
The port B data register (PTB) contains a data latch for each of the eight  
port pins.  
Address:  
$0001  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTB7  
PTB6  
PTB5  
PTB4  
PTB3  
PTB2  
PTB1  
PTB0  
Unaffected by reset  
PWM4 PWM3  
Alternate  
Function:  
PWM7  
PWM6  
PWM5  
PWM2  
PWM1  
PWM0  
Figure 17-5. Port B Data Register (PTB)  
PTB7–PTB0 — Port B Data Bits  
These read/write bits are software-programmable. Data direction of  
each port B pin is under the control of the corresponding bit in data  
direction register B. Reset has no effect on port B data.  
PWM7–PWM0 — PWM Outputs 7–0  
The PWM output enable bits PWM7E–PWM0E, in PWM control  
register 1 (PWMCR1) enable port B pins as PWM output pins. (See  
17.4.3 Port B Options.)  
Technical Data  
MC68HC908BD48 Rev. 1.0  
236  
Input/Output (I/O) Ports  
MOTOROLA  
Input/Output (I/O) Ports  
Port B  
17.4.2 Da ta Dire c tion Re g iste r B  
Data direction register B (DDRB) determines whether each port B pin is  
an input or an output. Writing a logic 1 to a DDRB bit enables the output  
buffer for the corresponding port B pin; a logic 0 disables the output  
buffer.  
Address:  
$0005  
Bit 7  
6
DDRB6  
0
5
DDRB5  
0
4
DDRB4  
0
3
DDRB3  
0
2
DDRB2  
0
1
DDRB1  
0
Bit 0  
DDRB0  
0
Read:  
Write:  
Reset:  
DDRB7  
0
Figure 17-6. Data Direction Register B (DDRB)  
DDRB7–DDRB0 — Data Direction Register B Bits  
These read/write bits control port B data direction. Reset clears  
DDRB7–DDRB0], configuring all port B pins as inputs.  
1 = Corresponding port B pin configured as output  
0 = Corresponding port B pin configured as input  
NOTE: Avoid glitches on port B pins by writing to the port B data register before  
changing data direction register B bits from 0 to 1.  
NOTE: For those devices packaged in a 28-pin dual in-line package, set  
DDRB7–DDRB2 to a 1 to configure PTB7–PTB2 as outputs.  
Figure 17-7 shows the port B I/O logic.  
READ DDRB ($0005)  
WRITE DDRB ($0005)  
DDRBx  
RESET  
WRITE PTB ($0001)  
PTBx  
PTBx  
READ PTB ($0001)  
Figure 17-7. Port B I/O Circuit  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Input/Output (I/O) Ports  
237  
 
Inp ut/ Outp ut (I/ O) Ports  
When bit DDRBx is a logic 1, reading address $0001 reads the PTBx  
data latch. When bit DDRBx is a logic 0, reading address $0001 reads  
the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 17-4 summarizes  
the operation of the port B pins.  
Table 17-4. Port B Pin Functions  
Accesses  
to DDRB  
Accesses to PTB  
DDRB Bit  
PTB Bit  
I/O Pin Mode  
Read/Write  
Read  
Pin  
Write  
(1)  
(2)  
(3)  
0
1
X
Input, Hi-Z  
Output  
DDRB7–DDRB0  
DDRB7–DDRB0  
PTB7–PTB0  
X
PTB7–PTB0  
PTB7–PTB0  
Notes:  
1. X = Don’t care  
2. Hi-Z = High impedance  
3. Writing affects data register, but does not affect input.  
17.4.3 Port B Op tions  
The PWM control register 1 (PWMCR1) selects the port B pins for PWM  
function or as standard I/O function. See 11.4.2 PWM Control  
Registers 1 and 2 (PWMCR1:PWMCR2).  
Address:  
$0028  
Bit 7  
6
PWM6E  
0
5
PWM5E  
0
4
PWM4E  
0
3
PWM3E  
0
2
PWM2E  
0
1
PWM1E  
0
Bit 0  
PWM0E  
0
Read:  
Write:  
Reset:  
PWM7E  
0
Figure 17-8. PWM Control Register 1 (PWMCR1)  
PWM7E–PWM0E — PWM Output Enable 7–0  
Setting a bit to "1" will configure the corresponding PTBx/PWMx pin  
for PWM output function. Reset clears these bits.  
1 = PTBx/PWMx pin configured as PWMx output pin  
0 = PTBx/PWMx pin configured as standard I/O pin  
Technical Data  
MC68HC908BD48 Rev. 1.0  
238  
Input/Output (I/O) Ports  
MOTOROLA  
 
Input/Output (I/O) Ports  
Port C  
17.5 Port C  
Port C is an 6-bit special-function port that shares all six of its pins with  
the analog-to-digital converter (ADC) module.  
NOTE: Port pin PTC5 is not available in a 28-pin dual in-line package.  
17.5.1 Port C Da ta Re g iste r  
The port C data register (PTC) contains a data latch for each of the  
seven port C pins.  
NOTE: Bit 5 of PTC are not available in a 28-pin dual in-line package.  
Address:  
$0002  
Bit 7  
0
6
0
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTC5  
PTC4  
PTC3  
PTC2  
PTC1  
PTC0  
Unaffected by reset  
ADC4 ADC3  
Alternate  
Function:  
ADC5  
ADC2  
ADC1  
ADC0  
= Unimplemented  
Figure 17-9. Port C Data Register (PTC)  
PTC5–PTC0 — Port C Data Bits  
These read/write bits are software-programmable. Data direction of  
each port C pin is under the control of the corresponding bit in data  
direction register C. Reset has no effect on port C data.  
ADC5–ADC0 — Analog-to-Digital Input Bits  
ADC5–ADC0 are pins used for the input channels to the analog-to-  
digital converter module. The channel select bits in the ADC Status  
and Control Register define which port C pin will be used as an ADC  
input and overrides any control from the port I/O logic by forcing that  
pin as the input to the analog circuitry.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Input/Output (I/O) Ports  
239  
Inp ut/ Outp ut (I/ O) Ports  
NOTE: Care must be taken when reading port C while applying analog voltages  
to ADC5–ADC0 pins. If the appropriate ADC channel is not enabled,  
excessive current drain may occur if analog voltages are applied to the  
PTCx/ADCx pin, while PTC is read as a digital input. Those ports not  
selected as analog input channels are considered digital I/O ports.  
17.5.2 Da ta Dire c tion Re g iste r C  
Data direction register C (DDRC) determines whether each port C pin is  
an input or an output. Writing a logic 1 to a DDRC bit enables the output  
buffer for the corresponding port C pin; a logic 0 disables the output  
buffer.  
Address:  
$0006  
Bit 7  
0
6
DDRC6  
0
5
DDRC5  
0
4
DDRC4  
0
3
DDRC3  
0
2
DDRC2  
0
1
DDRC1  
0
Bit 0  
DDRC0  
0
Read:  
Write:  
Reset:  
0
= Unimplemented  
Figure 17-10. Data Direction Register C (DDRC)  
DDRC6–DDRC0 — Data Direction Register C Bits  
These read/write bits control port C data direction. Reset clears  
DDRC6–DDRC0, configuring all port C pins as inputs.  
1 = Corresponding port C pin configured as output  
0 = Corresponding port C pin configured as input  
NOTE: Avoid glitches on port C pins by writing to the port C data register before  
changing data direction register C bits from 0 to 1.  
Figure 17-11 shows the port C I/O logic.  
NOTE: For those devices packaged in a 28-pin dual in-line package, set DDRC5  
to a 1 to configure PTC5 as output.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
240  
Input/Output (I/O) Ports  
MOTOROLA  
Input/Output (I/O) Ports  
Port C  
READ DDRC ($0006)  
WRITE DDRC ($0006)  
DDRCx  
PTCx  
RESET  
WRITE PTC ($0002)  
READ PTC ($0002)  
PTCx  
Figure 17-11. Port C I/O Circuit  
When bit DDRCx is a logic 1, reading address $0002 reads the PTCx  
data latch. When bit DDRCx is a logic 0, reading address $0002 reads  
the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 17-5 summarizes  
the operation of the port C pins.  
Table 17-5. Port C Pin Functions  
Accesses to DDRC  
Read/Write  
Accesses to PTC  
PTCPUE Bit DDRC Bit PTC Bit I/O Pin Mode  
Read  
Write  
(2)  
(3)  
0
X
0
1
X
X
Input, Hi-Z  
Output  
DDRC6–DDRC0  
DDRC6–DDRC0  
Pin  
PTC6–PTC0  
PTC6–PTC0  
PTC6–PTC0  
Notes:  
1. X = Don’t care  
2. Hi-Z = High impedance  
3. Writing affects data register, but does not affect input.  
17.5.3 Port C Op tions  
The ADCH4–ADCH0 bits in the ADC Status and Control Register  
(ADSCR) defines which PTCx/ADCx pin is used as an ADC input and  
overrides any control from the port I/O logic by forcing that pin as the  
input to the analog circuitry. See 12.8.1 ADC Status and Control  
Register.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Input/Output (I/O) Ports  
241  
 
Inp ut/ Outp ut (I/ O) Ports  
17.6 Port D  
Port D is an 7-bit special-function port that shares two of its pins with the  
multi-master IIC (MMIIC) module, one of its pins with the sync processor,  
two of its pins with the DDC12AB module, and two of its pins with the  
USB module.  
NOTE: Port pins PTD6–PTD4 and PTD1–PTD0 are not available in a 28-pin  
dual in-line package. PTD1–PTD0 are 3.3V pins.  
17.6.1 Port D Da ta Re g iste r  
The port D data register (PTD) contains a data latch for each of the eight  
port D pins.  
Address:  
$0003  
Bit 7  
0
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTD6  
PTD5  
PTD4  
PTD3  
PTD2  
PTD1  
PTD0  
Unaffected by reset  
CLAMP DDCSCL DDCSDA  
Alternate  
Function:  
IICSDA  
IICSCL  
D–  
D+  
= Unimplemented  
Figure 17-12. Port D Data Register (PTD)  
PTD6–PTD0 — Port D Data Bits  
These read/write bits are software-programmable. Data direction of  
each port D pin is under the control of the corresponding bit in data  
direction register D. Reset has no effect on port D data.  
IICSDA, IICSCL — Multi-master IIC Data and Clock pins  
The PTD6/IICSDA and PTD5/IICSCL pins are multi-master IIC data  
and clock pins. When the IICDATE and IICSCLE bits in the port D  
configuration register (PDCR) is clear, the PTD6/IICSDA and  
PTD5/IICSCL pins are available for general-purpose I/O. See 17.6.3  
Port D Options.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
242  
Input/Output (I/O) Ports  
MOTOROLA  
Input/Output (I/O) Ports  
Port D  
CLAMP — Sync Processor Clamp pulse output pin  
The PTD4/CLAMP pin is the sync processor clamp pulse output pin.  
When the CLAMPE bit in the port D configuration register (PDCR) is  
clear, the PTD4/CLAMP pin is available for general-purpose I/O. See  
17.6.3 Port D Options.  
DDCSCL, DDCSDA — DDC12AB Data and Clock pins  
The PTD3/DDCSCL and PTD2/DDCSDA pins are DDC12AB clock  
and data pins respectively. When the DDCSCLE and DDCDATE bits  
in the port D configuration register (PDCR) is clear, the  
PTD3/DDCSCL and PTD2/DDCSDA pins are available for general-  
purpose I/O. See 17.6.3 Port D Options.  
D–, D+ — USB I/O pins  
The PTD1/D– and PTD0/D+ pins are the USB port pins. When the  
USBD–E and USBD+E bits in the port D configuration register (PDCR)  
is clear, the PTD1/D– and PTD0/D+ pins are available for general-  
purpose I/O. See 17.6.3 Port D Options.  
17.6.2 Da ta Dire c tion Re g iste r D  
Data direction register D (DDRD) determines whether each port D pin is  
an input or an output. Writing a logic 1 to a DDRD bit enables the output  
buffer for the corresponding port D pin; a logic 0 disables the output  
buffer.  
Address:  
$0007  
Bit 7  
0
6
DDRD6  
0
5
DDRD5  
0
4
DDRD4  
0
3
DDRD3  
0
2
DDRD2  
0
1
DDRD1  
0
Bit 0  
DDRD0  
0
Read:  
Write:  
Reset:  
0
Figure 17-13. Data Direction Register D (DDRD)  
DDRD6–DDRD0 — Data Direction Register D Bits  
These read/write bits control port D data direction. Reset clears  
DDRD6–DDRD0, configuring all port D pins as inputs.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Input/Output (I/O) Ports  
243  
Inp ut/ Outp ut (I/ O) Ports  
1 = Corresponding port D pin configured as output  
0 = Corresponding port D pin configured as input  
NOTE: Avoid glitches on port D pins by writing to the port D data register before  
changing data direction register D bits from 0 to 1.  
NOTE: For those devices packaged in a 28-pin dual in-line package, set  
DDRD6, 5, 4, 1 and 0 to a 1 to configure PTD6, 5, 4, 1 and 0 as outputs.  
Figure 17-14 shows the port D I/O logic.  
READ DDRD ($0007)  
WRITE DDRD ($0007)  
DDRDx  
RESET  
WRITE PTD ($0003)  
PTDx  
PTDx  
READ PTD ($0003)  
Figure 17-14. Port D I/O Circuit  
When bit DDRDx is a logic 1, reading address $0003 reads the PTDx  
data latch. When bit DDRDx is a logic 0, reading address $0003 reads  
the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 17-6 summarizes  
the operation of the port D pins.  
Table 17-6. Port D Pin Functions  
Accesses to DDRD  
Read/Write  
Accesses to PTD  
PTDPUE Bit DDRD Bit PTD Bit I/O Pin Mode  
Read  
Write  
(2)  
(3)  
0
X
0
1
X
X
Input, Hi-Z  
Output  
DDRD7–DDRD0  
DDRD7–DDRD0  
Pin  
PTD7–PTD0  
PTD7–PTD0  
PTD7–PTD0  
Notes:  
1. X = Don’t care  
2. Hi-Z = High impedance  
3. Writing affects data register, but does not affect input.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
244  
Input/Output (I/O) Ports  
 
 
Input/Output (I/O) Ports  
Port D  
17.6.3 Port D Op tions  
The port D configuration register (PDCR) selects the port D pins for  
module function or as standard I/O function.  
Address:  
$0049  
Bit 7  
0
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
DDCSCLE DDCDATE  
IICDATE IICSCLE CLAMPE  
USBD–E USBD+E  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 17-15. Port D Configuration Register (PDCR)  
IICDATE — MMIIC Data Pin Enable  
This bit is set to configure the PTD6/IICSDA pin for IICSDA function.  
Reset clears this bit.  
1 = PTD6/IICSDA pin configured as IICSDA pin  
0 = PTD6/IICSDA pin configured as standard I/O pin  
IICSCLE — MMIIC Clock Pin Enable  
This bit is set to configure the PTD5/IICSCL pin for IICSCL function.  
Reset clears this bit.  
1 = PTD5/IICSCL pin configured as IICSCL pin  
0 = PTD5/IICSCL pin configured as standard I/O pin  
CLAMP — CLAMP Pin Enable  
This bit is set to configure the PTD4/CLAMP pin for sync processor  
clamp pulse output. Reset clears this bit.  
1 = PTD4/CLAMP pin configured as CLAMP pin  
0 = PTD4/CLAMP pin configured as standard I/O pin  
DDCSCLE — DDC Clock Pin Enable  
This bit is set to configure the PTD3/DDCSCL pin for DDCSCL  
function. Reset clears this bit.  
1 = PTD3/DDCSCL pin configured as DDCSCL pin  
0 = PTD3/DDCSCL pin configured as standard I/O port  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Input/Output (I/O) Ports  
245  
Inp ut/ Outp ut (I/ O) Ports  
DDCDATE — DDC Data Pin Enable  
This bit is set to configure the PTD2/DDCSDA pin for DDCSDA  
function. Reset clears this bit.  
1 = PTD2/DDCSDA pin configured as DDCSDA pin  
0 = PTD2/DDCSDA pin configured as standard I/O port  
USBD–E — USB D– Pin Enable  
This bit is set to configure the PTD1/D– pin for D– function. Reset  
clears this bit.  
1 = PTD1/D– pin configured as D– pin  
0 = PTD1/D– pin configured as standard I/O port  
USBD+E — USB D+ Pin Enable  
This bit is set to configure the PTD0/D+ pin for D+ function. Reset  
clears this bit.  
1 = PTD0/D+ pin configured as D+ pin  
0 = PTD0/D+ pin configured as standard I/O port  
Technical Data  
MC68HC908BD48 Rev. 1.0  
246  
Input/Output (I/O) Ports  
MOTOROLA  
Input/Output (I/O) Ports  
Port E  
17.7 Port E  
Port E is a 3-bit special-function port that shares all of its pins with the  
sync processor.  
NOTE: Port pin PTE0 is not available in a 28-pin dual in-line package.  
17.7.1 Port E Da ta Re g iste r  
The port E data register contains a data latch for each of the two port E  
pins.  
Address:  
$0008  
Bit 7  
0
6
0
5
0
4
0
3
0
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTE2  
PTE1  
PTE0  
Unaffected by reset  
Alternate  
Function:  
SOG or  
TCH0  
VSYNCO HSYNCO  
= Unimplemented  
Figure 17-16. Port E Data Register (PTE)  
PTE2 and PTE0 — Port E Data Bits  
PTE2–PTE0 are read/write, software programmable bits. Data  
direction of each port E pin is under the control of the corresponding  
bit in data direction register E.  
VSYNCO — Vsync Output  
The PTE2/VSYNCO pin is the Vsync output from the sync processor.  
When the VSYNCOE is clear, the PTE2/VSYNCO pin is available for  
general-purpose I/O. See 17.7.3 Port E Options.  
HSYNC — Hsync Output  
The PTE1/HSYNCO pin is the Hsync output from the sync processor.  
When the HSYNCOE is clear, the PTE1/HSYNCO pin is available for  
general-purpose I/O. See 17.7.3 Port E Options.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Input/Output (I/O) Ports  
247  
Inp ut/ Outp ut (I/ O) Ports  
SOG/TCH0 — SOG Output or TCH0 Input  
The PTE0/SOG/TCH0 pin is the SOG input for the sync processor or  
the input capture of the TIM channel 0. See 17.7.3 Port E Options.  
17.7.2 Da ta Dire c tion Re g iste r E  
Data direction register E (DDRE) determines whether each port E pin is  
an input or an output. Writing a logic 1 to a DDRE bit enables the output  
buffer for the corresponding port E pin; a logic 0 disables the output  
buffer.  
Address:  
$000C  
Bit 7  
0
6
0
5
0
4
0
3
0
2
DDRE2  
0
1
DDRE1  
0
Bit 0  
DDRE0  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
= Unimplemented  
Figure 17-17. Data Direction Register E (DDRE)  
DDRE2–DDRE0 — Data Direction Register E Bits  
These read/write bits control port E data direction. Reset clears  
DDRE2–DDRE0, configuring all port E pins as inputs.  
1 = Corresponding port E pin configured as output  
0 = Corresponding port E pin configured as input  
NOTE: Avoid glitches on port E pins by writing to the port E data register before  
changing data direction register E bits from 0 to 1.  
NOTE: For those devices packaged in a 28-pin dual in-line package, set DDRE0  
to a 1 to configure PTE0 as an output.  
Figure 17-18 shows the port E I/O logic.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
248  
Input/Output (I/O) Ports  
MOTOROLA  
Input/Output (I/O) Ports  
Port E  
READ DDRE ($0009)  
WRITE DDRE ($0009)  
DDREx  
PTEx  
RESET  
WRITE PTE ($0008)  
READ PTE ($0008)  
PTEx  
Figure 17-18. Port E I/O Circuit  
When bit DDREx is a logic 1, reading address $0008 reads the PTEx  
data latch. When bit DDREx is a logic 0, reading address $0008 reads  
the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 17-7 summarizes  
the operation of the port E pins.  
Table 17-7. Port E Pin Functions  
Accesses to DDRE  
Read/Write  
Accesses to PTE  
DDRE Bit  
PTE Bit  
I/O Pin Mode  
Read  
Write  
(1)  
(2)  
(3)  
0
1
X
Input, Hi-Z  
DDRE1–DDRE0  
DDRE1–DDRE0]  
Pin  
PTE1–PTE0  
X
Output  
PTE1–PTE0  
PTE1–PTE0  
Notes:  
1. X = Don’t care  
2. Hi-Z = High impedance  
3. Writing affects data register, but does not affect input.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Input/Output (I/O) Ports  
249  
 
Inp ut/ Outp ut (I/ O) Ports  
17.7.3 Port E Op tions  
The configuration register 0 (CONFIG0) selects the port E pins for  
module function or as standard I/O function.  
Address:  
$001D  
Bit 7  
6
5
SOGE  
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
HSYNCOE VSYNCOE  
0
0
0
0
0
0
0
= Unimplemented  
Figure 17-19. Configuration Register 0 (CONFIG0)  
HSYNCOE — VSYNCO Enable  
This bit is set to configure the PTE1/HSYNCO pin for HSYNCO output  
function. Reset clears this bit.  
1 = PTE1/HSYNCO pin configured as HSYNCO pin  
0 = PTE1/HSYNCO pin configured as standard I/O pin  
VSYNCOE — VSYNCO Enable  
This bit is set to configure the PTE2/VSYNCO pin for VSYNCO output  
function. Reset clears this bit.  
1 = PTE2/VSYNCO pin configured as VSYNCO pin  
0 = PTE2/VSYNCO pin configured as standard I/O pin  
SOGE — SOG Enable  
This bit is set to configure the PTE0/SOG/TCH0 pin for SOG output  
function. Reset clears this bit.  
1 = PTE0/SOG/TCH0 pin configured as SOG pin  
0 = PTE0/SOG/TCH0 pin configured as standard I/O or TCH0 pin.  
TCH0 function is configured by ELS0B and ELS0A bits in  
TSC0 (bits 3 and 2 in $0010).  
Technical Data  
MC68HC908BD48 Rev. 1.0  
250  
Input/Output (I/O) Ports  
MOTOROLA  
Te c hnic a l Da ta — MC68HC908BD48  
Se c tion 18. Exte rna l Inte rrup t (IRQ)  
18.1 Conte nts  
18.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251  
18.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251  
18.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252  
18.5 IRQ Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .254  
18.6 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . .255  
18.7 IRQ Status and Control Register . . . . . . . . . . . . . . . . . . . . . .255  
18.2 Introd uc tion  
18.3 Fe a ture s  
The IRQ (external interrupt) module provides a maskable interrupt input.  
Features of the IRQ module include:  
• A dedicated external interrupt pin (IRQ)  
• IRQ interrupt control bits  
• Hysteresis buffer  
• Programmable edge-only or edge and level interrupt sensitivity  
• Automatic interrupt acknowledge  
• Internal pullup resistor  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
External Interrupt (IRQ)  
251  
 
 
Exte rna l Inte rrup t (IRQ)  
18.4 Func tiona l De sc rip tion  
A logic 0 applied to the external interrupt pin can latch a CPU interrupt  
request. Figure 18-1 shows the structure of the IRQ module.  
Interrupt signals on the IRQ pin are latched into the IRQ latch. An  
interrupt latch remains set until one of the following actions occurs:  
• Vector fetch — A vector fetch automatically generates an interrupt  
acknowledge signal that clears the latch that caused the vector  
fetch.  
• Software clear — Software can clear an interrupt latch by writing  
to the appropriate acknowledge bit in the interrupt status and  
control register (INTSCR). Writing a logic 1 to the ACK bit clears  
the IRQ latch.  
• Reset — A reset automatically clears the interrupt latch.  
The external interrupt pin is falling-edge-triggered and is software-  
configurable to be either falling-edge or falling-edge and low-level-  
triggered. The MODE bit in the INTSCR controls the triggering sensitivity  
of the IRQ pin.  
When an interrupt pin is edge-triggered only, the interrupt remains set  
until a vector fetch, software clear, or reset occurs.  
When an interrupt pin is both falling-edge and low-level-triggered, the  
interrupt remains set until both of the following occur:  
• Vector fetch or software clear  
• Return of the interrupt pin to logic 1  
The vector fetch or software clear may occur before or after the interrupt  
pin returns to logic 1. As long as the pin is low, the interrupt request  
remains pending. A reset will clear the latch and the MODE control bit,  
thereby clearing the interrupt even if the pin stays low.  
When set, the IMASK bit in the INTSCR mask all external interrupt  
requests. A latched interrupt request is not presented to the interrupt  
priority logic unless the IMASK bit is clear.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
252  
External Interrupt (IRQ)  
MOTOROLA  
External Interrupt (IRQ)  
Functional Description  
NOTE: The interrupt mask (I) in the condition code register (CCR) masks all  
interrupt requests, including external interrupt requests.  
ACK  
RESET  
TO CPU FOR  
VECTOR  
BIL/BIH  
FETCH  
INSTRUCTIONS  
DECODER  
V
DD  
INTERNAL  
PULLUP  
DEVICE  
V
DD  
IRQF  
CLR  
D
Q
SYNCHRO-  
NIZER  
IRQ  
INTERRUPT  
REQUEST  
IRQ  
CK  
IRQ  
FF  
IMASK  
MODE  
TO MODE  
SELECT  
LOGIC  
HIGH  
VOLTAGE  
DETECT  
Figure 18-1. IRQ Module Block Diagram  
Table 18-1. IRQ I/O Register Summary  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
0
1
IMASK  
0
Bit 0  
Read:  
Write:  
Reset:  
0
0
0
0
IRQF  
MODE  
0
IRQ Status and Control  
Register (INTSCR)  
$001E  
ACK  
0
0
0
0
0
0
= Unimplemented  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
External Interrupt (IRQ)  
253  
Exte rna l Inte rrup t (IRQ)  
18.5 IRQ Pin  
A logic 0 on the IRQ pin can latch an interrupt request into the IRQ latch.  
A vector fetch, software clear, or reset clears the IRQ latch.  
If the MODE bit is set, the IRQ pin is both falling-edge-sensitive and low-  
level-sensitive. With MODE set, both of the following actions must occur  
to clear IRQ:  
• Vector fetch or software clear — A vector fetch generates an  
interrupt acknowledge signal to clear the latch. Software may  
generate the interrupt acknowledge signal by writing a logic 1 to  
the ACK bit in the interrupt status and control register (INTSCR).  
The ACK bit is useful in applications that poll the IRQ pin and  
require software to clear the IRQ latch. Writing to the ACK bit prior  
to leaving an interrupt service routine can also prevent spurious  
interrupts due to noise. Setting ACK does not affect subsequent  
transitions on the IRQ pin. A falling edge that occurs after writing  
to the ACK bit another interrupt request. If the IRQ mask bit,  
IMASK, is clear, the CPU loads the program counter with the  
vector address at locations $FFFA and $FFFB.  
• Return of the IRQ pin to logic 1 — As long as the IRQ pin is at logic  
0, IRQ remains active.  
The vector fetch or software clear and the return of the IRQ pin to logic  
1 may occur in any order. The interrupt request remains pending as long  
as the IRQ pin is at logic 0. A reset will clear the latch and the MODE  
control bit, thereby clearing the interrupt even if the pin stays low.  
If the MODE bit is clear, the IRQ pin is falling-edge-sensitive only. With  
MODE clear, a vector fetch or software clear immediately clears the IRQ  
latch.  
The IRQF bit in the INTSCR register can be used to check for pending  
interrupts. The IRQF bit is not affected by the IMASK bit, which makes it  
useful in applications where polling is preferred.  
Use the BIH or BIL instruction to read the logic level on the IRQ pin.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
254  
External Interrupt (IRQ)  
MOTOROLA  
External Interrupt (IRQ)  
IRQ Module During Break Interrupts  
NOTE: When using the level-sensitive interrupt trigger, avoid false interrupts by  
masking interrupt requests in the interrupt routine.  
18.6 IRQ Mod ule During Bre a k Inte rrup ts  
The BCFE bit in the SIM break flag control register (SBFCR) enables  
software to clear the latch during the break state. See Section 20. Break  
Module (BRK).  
To allow software to clear the IRQ latch during a break interrupt, write a  
logic 1 to the BCFE bit. If a latch is cleared during the break state, it  
remains cleared when the MCU exits the break state.  
To protect CPU interrupt flags during the break state, write a logic 0 to  
the BCFE bit. With BCFE at logic 0 (its default state), writing to the ACK  
bit in the IRQ status and control register during the break state has no  
effect on the IRQ interrupt flags.  
18.7 IRQ Sta tus a nd Control Re g iste r  
The IRQ status and control register (INTSCR) controls and monitors  
operation of the IRQ module. The INTSCR:  
• Shows the state of the IRQ flag  
• Clears the IRQ latch  
• Masks IRQ interrupt request  
• Controls triggering sensitivity of the IRQ interrupt pin  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
External Interrupt (IRQ)  
255  
Exte rna l Inte rrup t (IRQ)  
Address:  
$001E  
Bit 7  
6
0
5
0
4
0
3
2
0
1
IMASK  
0
Bit 0  
MODE  
0
Read:  
Write:  
Reset:  
IRQF  
ACK  
0
0
0
= Unimplemented  
Figure 18-2. IRQ Status and Control Register (INTSCR)  
IRQF — IRQ Flag Bit  
This read-only status bit is high when the IRQ interrupt is pending.  
1 = IRQ interrupt pending  
0 = IRQ interrupt not pending  
ACK — IRQ Interrupt Request Acknowledge Bit  
Writing a logic 1 to this write-only bit clears the IRQ latch. ACK always  
reads as logic 0. Reset clears ACK.  
IMASK — IRQ Interrupt Mask Bit  
Writing a logic 1 to this read/write bit disables IRQ interrupt requests.  
Reset clears IMASK.  
1 = IRQ interrupt requests disabled  
0 = IRQ interrupt requests enabled  
MODE — IRQ Edge/Level Select Bit  
This read/write bit controls the triggering sensitivity of the IRQ pin.  
Reset clears MODE.  
1 = IRQ interrupt requests on falling edges and low levels  
0 = IRQ interrupt requests on falling edges only  
Technical Data  
MC68HC908BD48 Rev. 1.0  
256  
External Interrupt (IRQ)  
MOTOROLA  
Te c hnic a l Da ta — MC68HC908BD48  
Se c tion 19. Com p ute r Op e ra ting Prop e rly (COP)  
19.1 Conte nts  
19.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257  
19.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .258  
19.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .259  
19.4.1 OSCXCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .259  
19.4.2 STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .259  
19.4.3 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .259  
19.4.4 Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .259  
19.4.5 Internal Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .260  
19.4.6 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .260  
19.4.7 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . .260  
19.4.8 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . .260  
19.5 COP Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .261  
19.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .261  
19.7 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .261  
19.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .261  
19.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .262  
19.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .262  
19.9 COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . .262  
19.2 Introd uc tion  
The computer operating properly (COP) module contains a free-running  
counter that generates a reset if allowed to overflow. The COP module  
helps software recover from runaway code. Prevent a COP reset by  
clearing the COP counter periodically. The COP module can be disabled  
through the COPD bit in the CONFIG register.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Computer Operating Properly (COP)  
257  
 
Com p ute r Op e ra ting Prop e rly (COP)  
19.3 Func tiona l De sc rip tion  
Figure 19-1 shows the structure of the COP module.  
RESET CIRCUIT  
12-BIT COP PRESCALER  
OSCXCLK  
RESET STATUS REGISTER  
STOP INSTRUCTION  
INTERNAL RESET SOURCES  
RESET VECTOR FETCH  
COPCTL WRITE  
COP CLOCK  
COP MODULE  
6-BIT COP COUNTER  
COPEN (FROM SIM)  
COP DISABLE  
(COPD FROM CONFIG1)  
RESET  
CLEAR  
COP COUNTER  
COPCTL WRITE  
COP RATE SEL  
(COPRS FROM CONFIG1)  
Figure 19-1. COP Block Diagram  
The COP counter is a free-running 6-bit counter preceded by a 12-bit  
prescaler counter. If not cleared by software, the COP counter overflows  
18  
4
13  
4
and generates an asynchronous reset after 2 – 2 or 2 – 2  
OSCXCLK cycles, depending on the state of the COP rate select bit,  
18  
4
COPRS, in configuration register 1. With a 2 – 2 OSCXCLK cycle  
overflow option, a 6MHz crystal gives a COP timeout period of  
43.688ms. Writing any value to location $FFFF before an overflow  
occurs prevents a COP reset by clearing the COP counter and stages  
12 through 5 of the prescaler.  
NOTE: Service the COP immediately after reset and before entering or after  
exiting stop mode to guarantee the maximum time before the first COP  
counter overflow.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
258  
Computer Operating Properly (COP)  
MOTOROLA  
 
Computer Operating Properly (COP)  
I/O Signals  
A COP reset pulls the RST pin low for 32 OSCXCLK cycles and sets the  
COP bit in the SIM reset status register (SRSR).  
In monitor mode, the COP is disabled if the RST pin or the IRQ1 is held  
at V  
. During the break state, V  
on the RST pin disables the COP.  
TST  
TST  
NOTE: Place COP clearing instructions in the main program and not in an  
interrupt subroutine. Such an interrupt subroutine could keep the COP  
from generating a reset even while the main program is not working  
properly.  
19.4 I/ O Sig na ls  
The following paragraphs describe the signals shown in Figure 19-1.  
19.4.1 OSCXCLK  
OSCXCLK is the crystal oscillator output signal. OSCXCLK frequency is  
equal to the crystal frequency.  
19.4.2 STOP Instruc tion  
The STOP instruction clears the COP prescaler.  
19.4.3 COPCTL Write  
Writing any value to the COP control register (COPCTL) (see 19.5 COP  
Control Register) clears the COP counter and clears bits 12 through 5  
of the prescaler. Reading the COP control register returns the low byte  
of the reset vector.  
19.4.4 Powe r-On Re se t  
The power-on reset (POR) circuit clears the COP prescaler 4096  
OSCXCLK cycles after power-up.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Computer Operating Properly (COP)  
259  
Com p ute r Op e ra ting Prop e rly (COP)  
19.4.5 Inte rna l Re se t  
An internal reset clears the COP prescaler and the COP counter.  
19.4.6 Re se t Ve c tor Fe tc h  
A reset vector fetch occurs when the vector address appears on the data  
bus. A reset vector fetch clears the COP prescaler.  
19.4.7 COPD (COP Disa b le )  
The COPD signal reflects the state of the COP disable bit (COPD) in the  
configuration register 1 (see Figure 19-2).  
19.4.8 COPRS (COP Ra te Se le c t)  
The COPRS signal reflects the state of the COP rate select bit (COPRS)  
in the configuration register 1(see Figure 19-2).  
Address:  
$001F  
Bit 7  
0
6
0
5
0
4
0
3
SSREC  
0
2
COPRS  
0
1
STOP  
0
Bit 0  
COPD  
0
Read:  
Write:  
Reset:  
0
0
0
0
= Unimplemented  
Figure 19-2. Configuration Register 1 (CONFIG1)  
COPRS — COP Rate Select Bit  
COPRS selects the COP timeout period. Reset clears COPRS.  
13  
4
1 = COP timeout period = 2 – 2 OSCXCLK cycles  
18  
4
0 = COP timeout period = 2 – 2 OSCXCLK cycles  
COPD — COP Disable Bit  
COPD disables the COP module.  
1 = COP module disabled  
0 = COP module enabled  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
260  
Computer Operating Properly (COP)  
 
Computer Operating Properly (COP)  
COP Control Register  
19.5 COP Control Re g iste r  
The COP control register is located at address $FFFF and overlaps the  
reset vector. Writing any value to $FFFF clears the COP counter and  
starts a new timeout period. Reading location $FFFF returns the low  
byte of the reset vector.  
Address:  
$FFFF  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Low byte of reset vector  
Clear COP counter  
Unaffected by reset  
Figure 19-3. COP Control Register (COPCTL)  
19.6 Inte rrup ts  
The COP does not generate CPU interrupt requests.  
19.7 Monitor Mod e  
When monitor mode is entered with V  
on the IRQ pin, the COP is  
TST  
disabled as long as V  
remains on the IRQ pin or the RST pin. When  
TST  
monitor mode is entered by having blank reset vectors and not having  
on the IRQ pin, the COP is automatically disabled until a POR  
V
TST  
occurs.  
19.8 Low-Powe r Mod e s  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Computer Operating Properly (COP)  
261  
Com p ute r Op e ra ting Prop e rly (COP)  
19.8.1 Wa it Mod e  
The COP remains active during wait mode. To prevent a COP reset  
during wait mode, periodically clear the COP counter in a CPU interrupt  
routine.  
19.8.2 Stop Mod e  
Stop mode turns off the OSCXCLK input to the COP and clears the COP  
prescaler. Service the COP immediately before entering or after exiting  
stop mode to ensure a full COP timeout period after entering or exiting  
stop mode.  
To prevent inadvertently turning off the COP with a STOP instruction, a  
configuration option is available that disables the STOP instruction.  
When the STOP bit in the configuration register has the STOP  
instruction is disabled, execution of a STOP instruction results in an  
illegal opcode reset.  
19.9 COP Mod ule During Bre a k Mod e  
The COP is disabled during a break interrupt when V  
is present on  
TST  
the RST pin.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
262  
Computer Operating Properly (COP)  
Te c hnic a l Da ta — MC68HC908BD48  
Se c tion 20. Bre a k Mod ule (BRK)  
20.1 Conte nts  
20.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .263  
20.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .264  
20.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .264  
20.4.1 Flag Protection During Break Interrupts. . . . . . . . . . . . . . .266  
20.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .266  
20.4.3 TIM During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . .266  
20.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .266  
20.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266  
20.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266  
20.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267  
20.6 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267  
20.6.1 Break Status and Control Register. . . . . . . . . . . . . . . . . . .267  
20.6.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . .268  
20.6.3 SIM Break Status Register. . . . . . . . . . . . . . . . . . . . . . . . .268  
20.6.4 SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . .270  
20.2 Introd uc tion  
This section describes the break module. The break module can  
generate a break interrupt that stops normal program flow at a defined  
address to enter a background program.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Break Module (BRK)  
263  
 
Bre a k Mod ule (BRK)  
20.3 Fe a ture s  
Features of the break module include:  
• Accessible input/output (I/O) registers during the break interrupt  
• CPU-generated break interrupts  
• Software-generated break interrupts  
• COP disabling during break interrupts  
20.4 Func tiona l De sc rip tion  
When the internal address bus matches the value written in the break  
address registers, the break module issues a breakpoint signal to the  
CPU. The CPU then loads the instruction register with a software  
interrupt instruction (SWI) after completion of the current CPU  
instruction. The program counter vectors to $FFFC and $FFFD ($FEFC  
and $FEFD in monitor mode).  
The following events can cause a break interrupt to occur:  
• A CPU-generated address (the address in the program counter)  
matches the contents of the break address registers.  
• Software writes a logic 1 to the BRKA bit in the break status and  
control register.  
When a CPU-generated address matches the contents of the break  
address registers, the break interrupt begins after the CPU completes its  
current instruction. A return-from-interrupt instruction (RTI) in the break  
routine ends the break interrupt and returns the MCU to normal  
operation. Figure 20-1 shows the structure of the break module.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
264  
Break Module (BRK)  
MOTOROLA  
Break Module (BRK)  
Functional Description  
IAB15–IAB8  
BREAK ADDRESS REGISTER HIGH  
8-BIT COMPARATOR  
IAB15–IAB0  
CONTROL  
BREAK  
8-BIT COMPARATOR  
BREAK ADDRESS REGISTER LOW  
IAB7–IAB0  
Figure 20-1. Break Module Block Diagram  
Table 20-1. Break Module I/O Register Summary  
Addr.  
Register Name  
Bit 7  
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
SBSW  
Note  
0
Bit 0  
R
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
R
0
SIM Break Status Register  
(SBSR)  
$FE00  
0
BCFE  
0
R
R
R
R
R
R
R
SIM Break Flag Control  
Register (SBFCR)  
$FE03  
$FE0C  
$FE0D  
$FE0E  
Bit 15  
0
14  
13  
0
12  
0
11  
0
10  
0
9
0
1
Bit 8  
0
Break Address Register  
High (BRKH)  
0
Bit 7  
0
6
5
4
3
2
Bit 0  
Break Address Register  
Low (BRKL)  
0
BRKA  
0
0
0
0
0
0
0
0
0
0
0
0
0
BRKE  
0
Break Status and Control  
Register (BRKSCR)  
0
0
0
0
0
0
Note: Writing a logic 0 clears SBSW.  
= Unimplemented  
R
= Reserved  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Break Module (BRK)  
265  
Bre a k Mod ule (BRK)  
20.4.1 Fla g Prote c tion During Bre a k Inte rrup ts  
The BCFE bit in the SIM break flag control register (SBFCR) enables  
software to clear status bits during the break state.  
20.4.2 CPU During Bre a k Inte rrup ts  
The CPU starts a break interrupt by:  
• Loading the instruction register with the SWI instruction  
• Loading the program counter with $FFFC and $FFFD ($FEFC and  
$FEFD in monitor mode)  
The break interrupt begins after completion of the CPU instruction in  
progress. If the break address register match occurs on the last cycle of  
a CPU instruction, the break interrupt begins immediately.  
20.4.3 TIM During Bre a k Inte rrup ts  
A break interrupt stops the timer counters.  
20.4.4 COP During Bre a k Inte rrup ts  
The COP is disabled during a break interrupt when V  
the RST pin.  
is present on  
TST  
20.5 Low-Powe r Mod e s  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes.  
20.5.1 Wa it Mod e  
If enabled, the break module is active in wait mode. In the break routine,  
the user can subtract one from the return address on the stack if SBSW  
is set (see Section 7. System Integration Module (SIM)). Clear the  
SBSW bit by writing logic 0 to it.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
266  
Break Module (BRK)  
MOTOROLA  
Break Module (BRK)  
Break Module Registers  
20.5.2 Stop Mod e  
A break interrupt causes exit from stop mode and sets the SBSW bit in  
the break status register.  
20.6 Bre a k Mod ule Re g iste rs  
These registers control and monitor operation of the break module:  
• Break status and control register (BRKSCR)  
• Break address register high (BRKH)  
• Break address register low (BRKL)  
• SIM Break status register (SBSR)  
• SIM Break flag control register (SBFCR)  
20.6.1 Bre a k Sta tus a nd Control Re g iste r  
The break status and control register (BRKSCR) contains break module  
enable and status bits.  
Address: $FE0E  
Bit 7  
BRKE  
0
6
BRKA  
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
0
= Unimplemented  
Figure 20-2. Break Status and Control Register (BRKSCR)  
BRKE — Break Enable Bit  
This read/write bit enables breaks on break address register matches.  
Clear BRKE by writing a logic 0 to bit 7. Reset clears the BRKE bit.  
1 = Breaks enabled on 16-bit address match  
0 = Breaks disabled on 16-bit address match  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Break Module (BRK)  
267  
Bre a k Mod ule (BRK)  
BRKA — Break Active Bit  
This read/write status and control bit is set when a break address  
match occurs. Writing a logic 1 to BRKA generates a break interrupt.  
Clear BRKA by writing a logic 0 to it before exiting the break routine.  
Reset clears the BRKA bit.  
1 = (When read) Break address match  
0 = (When read) No break address match  
20.6.2 Bre a k Ad d re ss Re g iste rs  
The break address registers (BRKH and BRKL) contain the high and low  
bytes of the desired breakpoint address. Reset clears the break address  
registers.  
Address: $FE0C  
Bit 7  
Bit 15  
0
6
14  
0
5
13  
0
4
12  
0
3
11  
0
2
10  
0
1
9
0
Bit 0  
Bit 8  
0
Read:  
Write:  
Reset:  
Figure 20-3. Break Address Register High (BRKH)  
Address: $FE0D  
Bit 7  
6
6
0
5
5
0
4
4
0
3
3
0
2
2
0
1
1
0
Bit 0  
Bit 0  
0
Read:  
Bit 7  
Write:  
Reset:  
0
Figure 20-4. Break Address Register Low (BRKL)  
20.6.3 SIM Bre a k Sta tus Re g iste r  
The SIM break status register (SBSR) contains a flag to indicate that a  
break caused an exit from wait mode. The flag is useful in applications  
requiring a return to wait mode after exiting from a break interrupt.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
268  
Break Module (BRK)  
MOTOROLA  
Break Module (BRK)  
Break Module Registers  
Address:  
$FE00  
Bit 7  
6
R
0
5
4
3
R
0
2
R
0
1
SBSW  
Note  
0
Bit 0  
R
Read:  
Write:  
Reset:  
R
0
R
R
0
0
0
Note: Writing a logic 0 clears SBSW.  
R
= Reserved  
Figure 20-5. SIM Break Status Register (SBSR)  
SBSW — SIM Break Stop/Wait Bit  
This status bit is useful in applications requiring a return to wait or stop  
mode after exiting from a break interrupt. Clear SBSW by writing a  
logic 0 to it. Reset clears SBSW.  
1 = Stop mode or wait mode was exited by break interrupt  
0 = Stop mode or wait mode was not exited by break interrupt  
SBSW can be read within the break interrupt routine. The user can  
modify the return address on the stack by subtracting one from it. The  
following code is an example.  
;This code works if the H register has been pushed onto the stack in the break  
;service routine software. This code should be executed at the end of the break  
;service routine software.  
HIBYTE  
LOBYTE  
EQU  
EQU  
5
6
;
If not SBSW, do RTI  
BRCLR  
SBSW,SBSR, RETURN  
;See if wait mode or stop mode was exited by  
;break.  
TST  
BNE  
DEC  
DEC  
LOBYTE,SP  
DOLO  
;If RETURNLO is not zero,  
;then just decrement low byte.  
;Else deal with high byte, too.  
;Point to WAIT/STOP opcode.  
;Restore H register.  
HIBYTE,SP  
LOBYTE,SP  
DOLO  
RETURN  
PULH  
RTI  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Break Module (BRK)  
269  
Bre a k Mod ule (BRK)  
20.6.4 SIM Bre a k Fla g Control Re g iste r  
The SIM break flag control register (SBFCR) contains a bit that enables  
software to clear status bits while the MCU is in a break state.  
Address:  
$FE03  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
0
R
= Reserved  
Figure 20-6. SIM Break Flag Control Register (SBFCR)  
BCFE — Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing  
status registers while the MCU is in a break state. To clear status bits  
during the break state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
Technical Data  
MC68HC908BD48 Rev. 1.0  
270  
Break Module (BRK)  
MOTOROLA  
Te c hnic a l Da ta — MC68HC908BD48  
Se c tion 21. Ele c tric a l Sp e c ific a tions  
21.1 Conte nts  
21.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271  
21.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . .272  
21.4 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . .273  
21.5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .273  
21.6 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . .274  
21.7 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .275  
21.8 Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .275  
21.9 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .276  
21.10 USB DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . .277  
21.11 USB Low Speed Source Electrical Characteristics. . . . . . . . .278  
21.12 Timer Interface Module Characteristics . . . . . . . . . . . . . . . . .278  
21.13 DDC12AB/MMIIC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . .279  
21.13.1 DDC12AB/MMIIC Interface Input Signal Timing . . . . . . . .279  
21.13.2 DDC12AB/MMIIC Interface Output Signal Timing . . . . . . .279  
21.14 Sync Processor Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .280  
21.15 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .281  
21.2 Introd uc tion  
This section contains electrical and timing specifications.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Electrical Specifications  
271  
 
Ele c tric a l Sp e c ific a tions  
21.3 Ab solute Ma xim um Ra ting s  
Maximum ratings are the extreme limits to which the MCU can be  
exposed without permanently damaging it.  
NOTE: This device is not guaranteed to operate properly at the maximum  
ratings. Refer to 21.6 DC Electrical Characteristics for guaranteed  
operating conditions.  
Characteristic  
Supply Voltage  
Symbol  
Value  
Unit  
V
V
–0.3 to +5.5  
DD  
Input Voltage  
V
V
–0.3 to V +0.3  
V
IN  
SS  
DD  
Maximum Current Per Pin  
I
±25  
mA  
Excluding V and V  
DD  
SS  
Storage Temperature  
T
–55 to +150  
100  
°C  
mA  
mA  
STG  
Maximum Current Out of V  
I
SS  
MVSS  
MVDD  
Maximum Current Into V  
I
100  
DD  
NOTE:  
1. Voltages referenced to V  
.
SS  
NOTE: This device contains circuitry to protect the inputs against damage due  
to high static voltages or electric fields; however, it is advised that  
normal precautions be taken to avoid application of any voltage higher  
than maximum-rated voltages to this high-impedance circuit. For  
proper operation, it is recommended that V and V  
be constrained  
IN  
OUT  
to the range V (V or V  
) V . Reliability of operation is  
DD  
SS  
IN  
OUT  
enhanced if unused inputs are connected to an appropriate logic  
voltage level (for example, either V or V .)  
SS  
DD  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
272  
Electrical Specifications  
Electrical Specifications  
Functional Operating Range  
21.4 Func tiona l Op e ra ting Ra ng e  
Characteristic  
Symbol  
Value  
0 to 85  
Unit  
°C  
Operating Temperature Range  
Operating Voltage Range  
T
A
V
4.5 to 5.5  
V
DD  
21.5 The rm a l Cha ra c te ristic s  
Characteristic  
Thermal Resistance  
Symbol  
Value  
Unit  
QFP (44 Pins)  
SDIP (42 Pins)  
PDIP (28 Pins)  
95  
60  
70  
θJA  
°
C/W  
I/O Pin Power Dissipation  
P
User Determined  
W
W
I/O  
P = (I × V ) + P =  
I/O  
(1)  
D
DD  
DD  
Power Dissipation  
P
D
K/(T + 273 °C)  
J
P × (T + 273 °C)  
(2)  
D
A
Constant  
K
W/°C  
2
+ P × θJA  
D
Average Junction Temperature  
Maximum Junction Temperature  
NOTES:  
T
T + (P × θJA)  
°
°
C
C
J
A
D
T
100  
JM  
1. Power dissipation is a function of temperature.  
2. K is a constant unique to the device. K can be determined for a known T and measured  
A
P
With this value of K, P and T can be determined for any value of T .  
D.  
D J A  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Electrical Specifications  
273  
Ele c tric a l Sp e c ific a tions  
21.6 DC Ele c tric a l Cha ra c te ristic s  
(2)  
Characteristic  
Symbol  
Min  
– 0.8  
Max  
Unit  
Typ  
Output High Voltage  
V
V
V
DD  
OH  
(I  
= –2.0mA) All I/O Pins  
LOAD  
Output Low Voltage  
(I = 1.6mA) All I/O Pins  
V
0.4  
V
V
V
OL  
LOAD  
Input High Voltage  
All ports, IRQ, RST, OSC1  
V
0.7 × V  
V
DD  
IH  
DD  
Input Low Voltage  
V
V
0.2 × V  
DD  
IL  
SS  
All ports, IRQ, RST, OSC1  
V
Supply Current  
DD  
Run, USB active  
10  
8
4
15  
12  
8
mA  
mA  
mA  
mA  
(3)  
Run, USB suspended  
I
DD  
(4)  
Wait  
Stop  
(5)  
0°C to 85°C  
2
5
I/O Ports Hi-Z Leakage Current  
Input Current  
I
±10  
±1  
µA  
µA  
IL  
I
IN  
Capacitance  
Ports (as Input or Output)  
C
C
12  
8
OUT  
pF  
IN  
(6)  
POR ReArm Voltage  
V
R
0
100  
9
mV  
V/ms  
V
POR  
POR  
(7)  
POR Rise Time Ramp Rate  
0.035  
V + 2.5  
DD  
Monitor Mode Entry Voltage  
V
TST  
Pull-up Resistor  
RST, IRQ  
R
20  
45  
65  
kΩ  
PU  
Low-Voltage Inhibit, trip falling voltage  
Low-Voltage Inhibit, trip rising voltage  
Low-Voltage Inhibit Reset/Recover Hysteresis  
NOTES:  
V
3.5  
3.5  
3.8  
4.0  
4.5  
4.5  
V
V
TRIPF  
V
TRIPR  
V
200  
mV  
HYS  
1. V = 5.0 Vdc ± 10%, V = 0 Vdc, T = T to T , unless otherwise noted.  
DD  
SS  
A
L
H
2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.  
3. Run (operating) I measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on  
DD  
all outputs. C = 15 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run I . Measured with all modules  
L
DD  
enabled.  
4. Wait I measured using external square wave clock source (f  
= 24MHz); all inputs 0.2 V from rail; no dc loads; less than 100  
OSCXCLK  
DD  
pF on all outputs. C = 15pF on OSC2; USB in suspend mode, 15 KΩ ± 5% termination resistors on D+ and D– pins; all ports config-  
L
ured as inputs; OSC2 capacitance linearly affects wait I  
.
DD  
5. STOP I measured with USB in suspend mode, OSC1 grounded, 1.5 KΩ ± 1% pull-up resistor on D+ pin and 15 KΩ ± 1% pull-down  
DD  
resistors on D+ and D– pins, no port pins sourcing current.  
6. Maximum is highest voltage that POR is guaranteed.  
7. If minimum V  
is not reached before the internal POR reset is released, RST must be driven low externally until minimum V is  
DD  
DD  
reached.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
274  
Electrical Specifications  
MOTOROLA  
Electrical Specifications  
Control Timing  
21.7 Control Tim ing  
Characteristic  
Symbol  
Min  
Max  
6
Unit  
MHz  
ns  
(2)  
Internal Operating Frequency  
f
OP  
IRL  
(3)  
RST Input Pulse Width Low  
NOTES:  
t
50  
1. V = 4.5 to 5.5 Vdc, V = 0 Vdc; timing shown with respect to 20% V and 70% V , unless otherwise noted.  
DD  
SS  
DD  
DD  
2. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this  
information.  
3. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset.  
21.8 Osc illa tor Cha ra c te ristic s  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
(1)  
fOSCXCLK  
24  
MHz  
Crystal Frequency  
External Clock  
Reference Frequency  
fOSCXCLK  
dc  
24  
MHz  
pF  
(1), (2)  
(3)  
Crystal Load Capacitance  
Crystal Fixed Capacitance  
C
C
C
15  
2 × C  
2 × C  
10  
L
1
2
B
S
(3)  
(3)  
L
L
Crystal Tuning Capacitance  
Feedback Bias Resistor  
R
R
MΩ  
(3), (4)  
Series Resistor  
NOTES:  
1. The sync processor module is designed to function at f  
cations.  
= 24MHz. The values given here are oscillator specifi-  
OSCXCLK  
2. No more than 10% duty cycle deviation from 50%  
3. Consult crystal vendor data sheet  
4. Not Required for high frequency crystals  
MC68HC908BD48 Rev. 1.0  
Technical Data  
MOTOROLA  
Electrical Specifications  
275  
Ele c tric a l Sp e c ific a tions  
21.9 ADC Cha ra c te ristic s  
(1)  
Symbol  
Min  
Max  
Unit  
Comments  
Characteristic  
4.5  
5.5  
V
(V  
(V  
Supply voltage  
Input voltages  
V
DDAD  
DD  
DD  
min)  
max)  
2
V
0
V
------ V  
ADIN  
DD  
3
B
Resolution  
8
8
Bits  
LSB  
AD  
Absolute accuracy  
A
± 2  
Includes quantization  
AD  
(V = 0 V, V = 5 V ± 10%)  
SS  
DD  
t
= 1/f  
, tested  
AIC  
ADIC  
f
ADC internal clock  
Conversion range  
0.375  
6
MHz  
V
ADIC  
only at 1.5 MHz  
2
3
R
V
------ V  
AD  
SS  
DD  
t
t
t
cycles  
Power-up time  
16  
12  
ADPU  
AIC  
AIC  
t
cycles  
Conversion time  
13  
ADC  
t
AIC  
(2)  
t
Sample time  
4
ADS  
cycles  
Hex  
Hex  
pF  
(3)  
Z
Zero input reading  
00  
FD  
02  
FF  
8
ADI  
(3)  
F
Full-scale reading  
ADI  
C
Input capacitance  
Not tested  
ADI  
(4)  
Input leakage  
± 1  
µA  
Port C  
NOTES:  
1. V = 5.0 Vdc ± 10%, V = 0 Vdc, T = T to T , unless otherwise noted.  
DD  
SS  
A
L
H
2. Source impedances greater than 10 kadversely affect internal RC charging time during input sampling.  
3. Zero-input/full-scale reading requires sufficient decoupling measures for accurate conversions.  
4. The external system error caused by input leakage current is approximately equal to the product of R source and input  
current.  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
276  
Electrical Specifications  
Electrical Specifications  
USB DC Electrical Characteristics  
3.5  
3.4  
3.3  
3.2  
3.1  
3
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2
V
= 5V @ 25°C, ADC Clock = 1.5MHz  
DD  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
Offset is typically 22mV  
0
Steps  
Figure 21-1. ADC Input Voltage vs. Step Readings  
21.10 USB DC Ele c tric a l Cha ra c te ristic s  
Characteristic  
Hi-Z State Data Line Leakage  
Differential Input Sensitivity  
Differential Common Mode Range  
Single Ended Receiver Threshold  
Static Output Low  
Symbol  
Conditions  
Min  
–10  
0.2  
Typ  
Max  
Unit  
µA  
V
I
0V<V <3.3V  
+10  
LO  
IN  
V
|(D+)–(D–)|  
DI  
V
Includes V range  
0.8  
2.5  
2.0  
0.3  
3.6  
3.6  
V
CM  
DI  
V
V
0.8  
V
SE  
R of 1.5k to 3.6V  
V
OL  
L
Static Output High  
V
R of 15k to GND  
2.8  
3.0  
V
OH  
L
(2), (3)  
Regulator Supply Voltage  
V
I = 4 mA  
3.3  
V
REGOUT  
L
NOTES:  
1. V = 5.0 Vdc ± 10%, V = 0 Vdc, T = T to T , unless otherwise noted.  
DD  
SS  
A
L
H
2. Transceiver pullup resistor of 1.5KΩ ± 5% between VDD3 and D– and 15KΩ ± 5% to ground termination resistors on  
D+ and D–.  
3. No external current draw besides the USB required external resistors should be connected to the VDD3 pin.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Electrical Specifications  
277  
Ele c tric a l Sp e c ific a tions  
21.11 USB Low Sp e e d Sourc e Ele c tric a l Cha ra c te ristic s  
Conditions  
Characteristic  
Transition time:  
Symbol  
Min  
Typ  
Max  
Unit  
(Notes 1,2,3)  
Notes 4, 5, 8  
Rise Time  
T
C =50pF  
75  
75  
300  
R
L
C =350pF  
ns  
L
Fall Time  
T
C =50pF  
F
L
C =350pF  
300  
L
Rise/Fall Time Matching  
T
T /T  
F
80  
120  
2.0  
%
V
RFM  
R
Output Signal Crossover Voltage  
V
1.3  
CRS  
1.4775  
676.8  
1.500  
666.0  
1.5225  
656.8  
Mbs  
ns  
Low Speed Data Rate  
T
1.5Mbs±1.5%  
DRATE  
Source Differential Driver Jitter  
To Next Transition  
For Paired Transitions  
C =350pF  
Notes 6, 7  
L
T
–25  
–10  
25  
10  
ns  
ns  
UDJ1  
T
UDJ2  
Receiver Data Jitter Tolerance  
To Next Transition  
For Paired Transitions  
C =350pF  
L
T
T
–75  
–45  
75  
45  
ns  
ns  
DJR1  
DJR2  
Note 7  
Note 7  
Note 7  
Source EOP Width  
TEOPT  
TDEOP  
1.25  
–40  
1.50  
100  
µs  
Differential to EOP Transition  
Skew  
ns  
Receiver EOP Width  
Must Reject as EOP  
Must Accept  
T
T
Note 7  
330  
675  
ns  
ns  
EOPR1  
EOPR2  
NOTES:  
1. All voltages measured from local ground, unless otherwise specified.  
2. All timings use a capacitive load of 50pF, unless otherwise specified.  
3. Low speed timings have a 1.5kpull-up to 2.8V on the D– data line.  
4. Measured from 10% to 90% of the data signal.  
5. The rising and falling edges should be smoothly transitioning (monotonic).  
6. Timing differences between the differential data signals.  
7. Measured at crossover point of differential data signals.  
8. Capacitive loading includes 50pF of tester capacitance.  
21.12 Tim e r Inte rfa c e Mod ule Cha ra c te ristic s  
Characteristic  
Input Capture Pulse Width  
Symbol  
Min  
125  
(1/f ) + 5  
Max  
Unit  
ns  
t
t
TIH, TIL  
Input Clock Pulse Width  
t
t
ns  
TCH, TCL  
OP  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
278  
Electrical Specifications  
Electrical Specifications  
DDC12AB/MMIIC Timing  
21.13 DDC12AB/ MMIIC Tim ing  
SDA  
SCL  
t
t
t
t
t
t
t
HD.STA  
LOW  
HIGH  
SU.DAT  
HD.DAT  
SU.STA  
SU.STO  
21.13.1 DDC12AB/ MMIIC Inte rfa c e Inp ut Sig na l Tim ing  
Characteristic  
START condition hold time  
Symbol  
Min  
Max  
Unit  
t
t
2
4
HD.STA  
CYC  
t
t
Clock low period  
Clock high period  
Data set-up time  
Data hold time  
LOW  
CYC  
t
t
4
HIGH  
CYC  
t
t
250  
0
ns  
ns  
SU.DAT  
HD.DAT  
START condition set-up time  
(for repeated START condition only)  
t
t
2
2
SU.STA  
CYC  
t
t
STOP condition set-up time  
NOTES:  
SU.STO  
CYC  
1. V = 5.0 Vdc ± 10%, V = 0 Vdc; timing shown with respect to 20% V and 70% V , unless otherwise noted.  
DD  
SS  
DD  
DD  
21.13.2 DDC12AB/ MMIIC Inte rfa c e Outp ut Sig na l Tim ing  
Characteristic  
Symbol  
Min  
Max  
1
Unit  
µs  
(2)  
t
SDA/SCL rise time  
SDA/SCL fall time  
Data set-up time  
R
t
300  
ns  
F
t
t
LOW  
ns  
SU.DAT  
t
Data hold time  
NOTES:  
0
ns  
HD.DAT  
1. V = 5.0 Vdc ± 10%, V = 0 Vdc; timing shown with respect to 20% V and 70% V , unless otherwise noted.  
DD  
SS  
DD  
DD  
2. With 200pF loading on the SDA/SCL pins.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Electrical Specifications  
279  
Ele c tric a l Sp e c ific a tions  
21.14 Sync Proc e ssor Tim ing  
Characteristic  
VSYNC input sync pulse  
Symbol  
Min  
8
Max  
2048  
6
Unit  
µs  
t
VI.SP  
t
HSYNC input sync pulse  
0.1  
30  
30  
µs  
HI.SP  
t
VSYNC to VSYNCO delay (8pF loading)  
40  
µs  
VVd  
t
HSYNC to HSYNCO delay (8pF loading)  
NOTES:  
40  
µs  
HHd  
1. V = 5.0 Vdc ± 10%, V = 0 Vdc; timing shown with respect to 20% V and 70% V , unless otherwise noted.  
DD  
SS  
DD  
DD  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
280  
Electrical Specifications  
Electrical Specifications  
Memory Characteristics  
21.15 Me m ory Cha ra c te ristic s  
Characteristic  
RAM data retention voltage  
Symbol  
Min  
2
Max  
Unit  
V
V
RDR  
FLASH program bus clock frequency  
FLASH read bus clock frequency  
1
MHz  
Hz  
(1)  
32k  
8.4M  
f
Read  
(2)  
FLASH page erase time  
2
ms  
t
Erase  
(3)  
FLASH mass erase time  
4
5
40  
ms  
µs  
µs  
µs  
µs  
µs  
µs  
t
MErase  
t
FLASH PGM/ERASE to HVEN set up time  
FLASH high-voltage hold time  
FLASH high-voltage hold time (mass erase)  
FLASH program hold time  
nvs  
t
5
nvh  
t
100  
10  
20  
1
nvhl  
t
pgs  
t
FLASH program time  
PROG  
(4)  
FLASH return to read time  
t
rcv  
(5)  
FLASH cumulative program hv period  
4
ms  
t
HV  
(6)  
FLASH row erase endurance  
10k  
10k  
10  
Cycles  
Cycles  
Years  
(7)  
FLASH row program endurance  
(8)  
FLASH data retention time  
Notes:  
1. f  
is defined as the frequency range for which the FLASH memory can be read.  
Read  
2. If the page erase time is longer than t  
the FLASH memory.  
(Min), there is no erase-disturb, but it reduces the endurance of  
Erase  
3. If the mass erase time is longer than t  
the FLASH memory.  
(Min), there is no erase-disturb, but it reduces the endurance of  
MErase  
4. t is defined as the time it needs before the FLASH can be read after turning off the high voltage charge  
rcv  
pump, by clearing HVEN to logic 0.  
5. t is defined as the cumulative high voltage programming time to the same row before next erase.  
HV  
t
must satisfy this condition: t  
+ t  
+ t  
+ (tPROG × 64) t max.  
HV  
nvs  
nvh  
pgs HV  
6. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at  
least this many erase / program cycles.  
7. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at  
least this many erase / program cycles.  
8. The FLASH is guaranteed to retain data over the entire operating temperature range for at least the minimum  
time specified.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Electrical Specifications  
281  
Ele c tric a l Sp e c ific a tions  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
282  
Electrical Specifications  
Te c hnic a l Da ta — MC68HC908BD48  
Se c tion 22. Me c ha nic a l Sp e c ific a tions  
22.1 Conte nts  
22.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .283  
22.3 28-Pin Plastic Dual In-Line Package (PDIP). . . . . . . . . . . . . .284  
22.4 42-Pin Shrink Dual in-Line Package (SDIP) . . . . . . . . . . . . . .284  
22.5 44-Pin Plastic Quad Flat Pack (QFP) . . . . . . . . . . . . . . . . . . .285  
22.2 Introd uc tion  
This section gives the dimensions for:  
• 28-pin plastic dual in-line package (case 710-02)  
• 42-pin shrink dual in-line package (case 858-01)  
• 44-pin plastic quad flat pack (case 824E-02)  
The following figures show the latest package drawings at the time of  
this publication. To make sure that you have the latest package  
specifications, contact one of the following:  
• Local Motorola Sales Office  
• Motorola Mfax  
– Phone 602-244-6609  
– EMAIL rmfax0@email.sps.mot.com  
• Worldwide Web (wwweb) at http://motorola.com/sps  
Follow Mfax or Worldwide Web on-line instructions to retrieve the current  
mechanical specifications.  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Mechanical Specifications  
283  
 
Me c ha nic a l Sp e c ific a tions  
22.3 28-Pin Pla stic Dua l In-Line Pa c ka g e (PDIP)  
NOTES:  
1. POSITIONAL TOLERANCE OF LEADS (D), SHALL  
BE WITHIN 0.25 (0.010) AT MAXIMUM MATERIAL  
CONDITION, IN RELATION TO SEATING PLANE  
AND EACH OTHER.  
2. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
28  
1
15  
14  
3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.  
B
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
F
MIN  
36.45  
13.72  
3.94  
0.36  
1.02  
MAX  
37.21  
14.22  
5.08  
0.56  
1.52  
MIN  
MAX  
1.465  
0.560  
0.200  
0.022  
0.060  
1.435  
0.540  
0.155  
0.014  
0.040  
L
C
A
N
G
H
J
K
L
2.54 BSC  
0.100 BSC  
1.65  
0.20  
2.92  
2.16  
0.38  
3.43  
0.065  
0.008  
0.115  
0.085  
0.015  
0.135  
J
G
H
F
M
K
15.24 BSC  
0.600 BSC  
D
SEATING  
PLANE  
M
N
0°  
0.51  
15°  
1.02  
0°  
0.020  
15°  
0.040  
Figure 22-1. 28-Pin PDIP (Case 710)  
22.4 42-Pin Shrink Dua l in-Line Pa c ka g e (SDIP)  
NOTES:  
–A–  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
FLASH. MAXIMUM MOLD FLASH 0.25 (0.010).  
42  
1
22  
21  
–B–  
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
F
MIN  
MAX  
1.465  
0.560  
0.200  
0.022  
0.046  
MIN  
36.45  
13.72  
3.94  
0.36  
0.81  
MAX  
37.21  
14.22  
5.08  
0.56  
1.17  
L
1.435  
0.540  
0.155  
0.014  
0.032  
H
C
K
G
H
J
K
L
0.070 BSC  
0.300 BSC  
1.778 BSC  
7.62 BSC  
0.008  
0.115  
0.015  
0.135  
0.20  
2.92  
0.38  
3.43  
–T–  
SEATING  
PLANE  
0.600 BSC  
15.24 BSC  
N
G
M
N
0°  
0.020  
15°  
0.040  
0 °  
0.51  
15°  
1.02  
M
F
J 42 PL  
0.25 (0.010)  
D 42 PL  
M
S
T
B
M
S
0.25 (0.010)  
T A  
Figure 22-2. 42-Pin SDIP (Case 858)  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
284  
Mechanical Specifications  
Mechanical Specifications  
44-Pin Plastic Quad Flat Pack (QFP)  
22.5 44-Pin Pla stic Qua d Fla t Pa c k (QFP)  
S
M
S
S
S
S
0.20 (0.008)  
T
L-M  
N
N
-L-, -M-, -N-  
A
M
0.20 (0.008)  
H L-M  
PIN 1  
IDENT  
0.05 (0.002) L-M  
J1  
J1  
G
44  
34  
33  
1
VIEW Y  
3 PL  
-L-  
-M-  
F
PLATING  
BASE METAL  
J
B1  
VIEW Y  
D
M
S
S
N
0.20 (0.008)  
T
L-M  
11  
23  
G
40X  
12  
22  
SECTION J1-J1  
44 PL  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
-N-  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLANE -H- IS LOCATED AT BOTTOM OF  
LEAD AND IS COINCIDENT WITH THE LEAD WHERE  
THE LEAD EXITS THE PLASTIC BODY AT THE  
BOTTOM OF THE PARTING LINE.  
4. DATUMS -L-, -M- AND -N- TO BE DETERMINED AT  
DATUM PLANE -H-.  
5. DIMENSIONS S AND V TO BE DETERMINED AT  
SEATING PLANE -T-.  
M
VIEW P  
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS 0.25  
(0.010) PER SIDE. DIMENSIONS A AND B DO  
INCLUDE MOLD MISMATCH AND ARE DETERMINED  
AT DATUM PLANE -H-.  
E
DATUM  
PLANE  
C
-H-  
7. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. DAMBAR PROTRUSION SHALL NOT  
CAUSE THE D DIMENSION TO EXCEED 0.530  
(0.021).  
0.01 (0.004)  
W
-T-  
Y
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
MIN  
9.90  
9.90  
2.00  
0.30  
2.00  
0.30  
MAX  
10.10  
10.10  
2.21  
MIN  
MAX  
0.398  
0.398  
0.087  
0.390  
0.390  
0.079  
q1  
0.45 0.0118 0.0177  
2.10  
0.40  
E
F
0.079  
0.012  
0.083  
0.016  
R
R1  
G
0.80 BSC  
0.031 BSC  
J
K
M
0.13  
0.65  
0.23  
0.95  
10  
0.005  
0.026  
0.009  
0.037  
10°  
DATUM  
PLANE  
-H-  
R
R2  
5
°
°
5
°
S
V
W
Y
A1  
B1  
C1  
R1  
R2  
q1  
q2  
12.95  
12.95  
0.000  
13.45  
13.45  
0.210  
0.510  
0.510  
0.000  
10  
0.018 REF  
0.005  
0.063 REF  
0.005  
0.005  
0.530  
0.530  
0.008  
K
5
°
5
°
10  
°
°
q2  
A1  
0.450 REF  
0.130  
1.600 REF  
0.130  
0.170  
0.007  
C1  
0.300  
0.300  
0.012  
0.012  
10°  
0.130  
VIEW P  
5
0
°
°
10  
°
5
0
°
°
7
°
7°  
Figure 22-3. 44-Pin QFP (Case 824E)  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Mechanical Specifications  
285  
Me c ha nic a l Sp e c ific a tions  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
286  
Mechanical Specifications  
Te c hnic a l Da ta — MC68HC908BD48  
Se c tion 23. Ord e ring Inform a tion  
23.1 Conte nts  
23.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .287  
23.3 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .287  
23.2 Introd uc tion  
This section contains ordering numbers for the MC68HC908BD48.  
23.3 MC Ord e r Num b e rs  
Table 23-1. MC Order Numbers  
Operating  
temperature range  
MC order number(1)  
MC68HC908BD48IB  
0 °C to +85 °C  
MC68HC908BD48IFB  
0 °C to +85 °C  
Notes:  
1. P = Plastic dual in-line package  
B = Shrink dual in-line package  
FB = Plastic quad flat pack  
I = Operating temperature range: 0 °C to +85 °C  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
Technical Data  
Ordering Information  
287  
 
 
Ord e ring Inform a tion  
Technical Data  
MC68HC908BD48 Rev. 1.0  
MOTOROLA  
288  
Ordering Information  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the  
suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for  
each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not  
designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or  
for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use  
Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or  
death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1-800-441-2447 or 1-303-675-2140  
JAPAN: Nippon Motorola Ltd. SPD, Strategic Planning Office 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan. 03-5487-8488  
TM  
Mfax , Motorola Fax Back System: RMFAX0@email.sps.mot.com; http://sps.motorola.com/mfax/; TOUCHTONE 1-602-244-6609;  
US and Canada ONLY 1-800-774-1848  
HOME PAGE: http://motorola.com/sps/  
Mfax is a trademark of Motorola, Inc.  
© Motorola, Inc., 2000  
This datasheet has been download from:  
www.datasheetcatalog.com  
Datasheets for electronics components.  

相关型号:

MC68HC908BD48IB

HCMOS Microcontroller Unit
MOTOROLA

MC68HC908BD48IB

To provide the most up-to-date information, the revision of our
FREESCALE

MC68HC908BD48IFB

HCMOS Microcontroller Unit
MOTOROLA

MC68HC908BD48IFB

To provide the most up-to-date information, the revision of our
FREESCALE

MC68HC908EY16

Microcontrollers
MOTOROLA

MC68HC908EY16

M68HC08 Microcontrollers
FREESCALE

MC68HC908EY16A

M68HC08 Microcontrollers
FREESCALE

MC68HC908EY16CFA

Microcontrollers
MOTOROLA

MC68HC908EY16CFA

M68HC08 Microcontrollers
FREESCALE

MC68HC908EY16CFAE

M68HC08 Microcontrollers
FREESCALE

MC68HC908EY16CFAE

8-BIT, FLASH, 8MHz, MICROCONTROLLER, PQFP32, LEAD FREE, PLASTIC, QFP-32
NXP

MC68HC908EY16KFA

M68HC08 Microcontrollers
FREESCALE