MC68HC908GZ16CFA [MOTOROLA]

8-BIT, FLASH, 8MHz, MICROCONTROLLER, PQFP48, LQFP-48;
MC68HC908GZ16CFA
型号: MC68HC908GZ16CFA
厂家: MOTOROLA    MOTOROLA
描述:

8-BIT, FLASH, 8MHz, MICROCONTROLLER, PQFP48, LQFP-48

时钟 微控制器 外围集成电路
文件: 总350页 (文件大小:4517K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC68HC908GZ16  
Data Sheet  
M68HC08  
Microcontrollers  
MC68HC908GZ16/D  
Rev. 0  
2/2003  
MOTOROLA.COM/SEMICONDUCTORS  
MC68HC908GZ16  
Data Sheet  
To provide the most up-to-date information, the revision of our documents on the  
World Wide Web will be the most current. Your printed copy may be an earlier  
revision. To verify you have the latest information available, refer to:  
http://motorola.com/semiconductors  
The following revision history table summarizes changes contained in this  
document. For your convenience, the page number designators have been linked  
to the appropriate location.  
Motorola and the Stylized M Logo are registered trademarks of Motorola, Inc.  
DigitalDNA is a trademark of Motorola, Inc.  
This product incorporates SuperFlash® technology licensed from SST.  
© Motorola, Inc., 2003  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
3
Revision History  
Revision History  
Revision  
Level  
Page  
Number(s)  
Date  
Description  
February,  
2003  
N/A  
Initial release  
N/A  
Data Sheet  
4
MC68HC908GZ16  
MOTOROLA  
Revision History  
Data Sheet — MC68HC908GZ16  
List of Sections  
Section 1. General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Section 2. Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Section 3. Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Section 4. Resets and Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
Section 5. Analog-to-Digital Converter (ADC) . . . . . . . . . . . . . . . . . . .65  
Section 6. Break Module (BRK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
Section 7. Clock Generator Module (CGM). . . . . . . . . . . . . . . . . . . . . .83  
Section 8. Configuration Register (CONFIG) . . . . . . . . . . . . . . . . . . .103  
Section 9. Computer Operating Properly (COP) Module. . . . . . . . . .107  
Section 10. Central Processor Unit (CPU) . . . . . . . . . . . . . . . . . . . . .111  
Section 11. FLASH Memory (FLASH) . . . . . . . . . . . . . . . . . . . . . . . . .125  
Section 12. External Interrupt (IRQ) . . . . . . . . . . . . . . . . . . . . . . . . . .135  
Section 13. Keyboard Interrupt Module (KBI) . . . . . . . . . . . . . . . . . .139  
Section 14. Low-Voltage Inhibit (LVI) . . . . . . . . . . . . . . . . . . . . . . . . .145  
Section 15. Monitor ROM (MON) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149  
Section 16. MSCAN08 Controller (MSCAN08) . . . . . . . . . . . . . . . . . .161  
Section 17. Input/Output (I/O) Ports . . . . . . . . . . . . . . . . . . . . . . . . . .199  
Section 18. Random-Access Memory (RAM) . . . . . . . . . . . . . . . . . . .215  
Section 19. Enhanced Serial Communications  
Interface (ESCI) Module . . . . . . . . . . . . . . . . . . . . . . . . .217  
Section 20. System Integration Module (SIM) . . . . . . . . . . . . . . . . . .253  
Section 21. Serial Peripheral Interface (SPI) Module. . . . . . . . . . . . .273  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
List of Sections  
5
List of Sections  
Section 22. Timebase Module (TBM). . . . . . . . . . . . . . . . . . . . . . . . . .297  
Section 23. Timer Interface Module (TIM). . . . . . . . . . . . . . . . . . . . . .303  
Section 24. Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . .321  
Section 25. Ordering Information  
and Mechanical Specifications . . . . . . . . . . . . . . . . . . .337  
Data Sheet  
6
MC68HC908GZ16  
List of Sections  
MOTOROLA  
Data Sheet — MC68HC908GZ16  
Table of Contents  
Section 1. General Description  
1.1  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
1.2  
1.2.1  
1.2.2  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Standard Features of the MC68HC908GZ16 . . . . . . . . . . . . . . . . . . 21  
Features of the CPU08. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
1.3  
1.4  
MCU Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
1.5  
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Power Supply Pins (VDD and VSS) . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Oscillator Pins (OSC1 and OSC2) . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
External Reset Pin (RST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
External Interrupt Pin (IRQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
CGM Power Supply Pins (VDDA and VSSA) . . . . . . . . . . . . . . . . . . . 27  
External Filter Capacitor Pin (VCGMXFC). . . . . . . . . . . . . . . . . . . . . . 27  
ADC Power Supply/Reference Pins  
1.5.1  
1.5.2  
1.5.3  
1.5.4  
1.5.5  
1.5.6  
1.5.7  
(VDDAD/VREFH and VSSAD/VREFL). . . . . . . . . . . . . . . . . . . . . . . . 27  
Port A Input/Output (I/O) Pins (PTA7/KBD7–PTA0/KBD0). . . . . . . . 27  
Port B I/O Pins (PTB7/AD7–PTB0/AD0). . . . . . . . . . . . . . . . . . . . . . 27  
Port C I/O Pins (PTC6–PTC0/CANTX). . . . . . . . . . . . . . . . . . . . . . . 28  
Port D I/O Pins (PTD7/T2CH1–PTD0/SS) . . . . . . . . . . . . . . . . . . . . 28  
Port E I/O Pins (PTE5–PTE2, PTE1/RxD, and PTE0/TxD) . . . . . . . 28  
1.5.8  
1.5.9  
1.5.10  
1.5.11  
1.5.12  
Section 2. Memory Map  
2.1  
2.2  
2.3  
2.4  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Input/Output (I/O) Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Section 3. Low-Power Modes  
3.1  
3.1.1  
3.1.2  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
3.2  
3.2.1  
3.2.2  
Analog-to-Digital Converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Table of Contents  
7
Table of Contents  
3.3  
3.3.1  
3.3.2  
Break Module (BRK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
3.4  
3.4.1  
3.4.2  
Central Processor Unit (CPU). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
3.5  
3.5.1  
3.5.2  
Clock Generator Module (CGM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
3.6  
3.6.1  
3.6.2  
Computer Operating Properly Module (COP). . . . . . . . . . . . . . . . . . . . . 43  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
3.7  
3.7.1  
3.7.2  
External Interrupt Module (IRQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
3.8  
3.8.1  
3.8.2  
Keyboard Interrupt Module (KBI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
3.9  
3.9.1  
3.9.2  
Low-Voltage Inhibit Module (LVI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
3.10 Enhanced Serial Communications Interface Module (ESCI) . . . . . . . . . 44  
3.10.1  
3.10.2  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
3.11 Serial Peripheral Interface Module (SPI) . . . . . . . . . . . . . . . . . . . . . . . . 45  
3.11.1  
3.11.2  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
3.12 Timer Interface Module (TIM1 and TIM2). . . . . . . . . . . . . . . . . . . . . . . . 45  
3.12.1  
3.12.2  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
3.13 Timebase Module (TBM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
3.13.1  
3.13.2  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
3.14 Motorola Scalable Controller Area Network Module (MSCAN) . . . . . . . 46  
3.14.1  
3.14.2  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
3.15 Exiting Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
3.16 Exiting Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Data Sheet  
8
MC68HC908GZ16  
Table of Contents  
MOTOROLA  
Table of Contents  
Section 4. Resets and Interrupts  
4.1  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
4.2  
4.2.1  
4.2.2  
4.2.3  
4.2.3.1  
4.2.3.2  
4.2.3.3  
4.2.3.4  
4.2.3.5  
4.2.4  
Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
External Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Power-On Reset (POR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Computer Operating Properly (COP) Reset . . . . . . . . . . . . . . . . . 50  
Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Illegal Opcode Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
System Integration Module (SIM) Reset Status Register . . . . . . . . . 51  
4.3  
4.3.1  
4.3.2  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Software Interrupt (SWI) Instruction . . . . . . . . . . . . . . . . . . . . . . . 54  
Break Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
IRQ Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Clock Generator (CGM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Timer Interface Module 1 (TIM1). . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Timer Interface Module 2 (TIM2). . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Serial Peripheral Interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Serial Communications Interface (SCI). . . . . . . . . . . . . . . . . . . . . 58  
KBD0–KBD7 Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
4.3.2.1  
4.3.2.2  
4.3.2.3  
4.3.2.4  
4.3.2.5  
4.3.2.6  
4.3.2.7  
4.3.2.8  
4.3.2.9  
4.3.2.10  
4.3.2.11  
4.3.2.12  
Analog-to-Digital Converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . 59  
Timebase Module (TBM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Motorola Scalable Controller Area Network  
Module (MSCAN). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Interrupt Status Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Interrupt Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Interrupt Status Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
4.3.3  
4.3.3.1  
4.3.3.2  
4.3.3.3  
Section 5. Analog-to-Digital Converter (ADC)  
5.1  
5.2  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
5.3  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
ADC Port I/O Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Conversion Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Accuracy and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Result Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
5.3.1  
5.3.2  
5.3.3  
5.3.4  
5.3.5  
5.3.6  
5.4  
Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Table of Contents  
9
Table of Contents  
5.5  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
5.6  
5.6.1  
5.6.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
5.7  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
ADC Analog Power Pin (VDDAD). . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
ADC Analog Ground Pin (VSSAD) . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
ADC Voltage Reference High Pin (VREFH) . . . . . . . . . . . . . . . . . . . . 70  
ADC Voltage Reference Low Pin (VREFL) . . . . . . . . . . . . . . . . . . . . 70  
ADC Voltage In (VADIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
5.7.1  
5.7.2  
5.7.3  
5.7.4  
5.7.5  
5.8  
5.8.1  
5.8.2  
5.8.2.1  
5.8.2.2  
5.8.2.3  
5.8.2.4  
5.8.3  
I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
ADC Status and Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
ADC Data Register High and Data Register Low . . . . . . . . . . . . . . . 73  
Left Justified Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Right Justified Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Left Justified Signed Data Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Eight Bit Truncation Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
ADC Clock Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Section 6. Break Module (BRK)  
6.1  
6.2  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
6.3  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Flag Protection During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . 79  
TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
6.3.1  
6.3.2  
6.3.3  
6.4  
Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Break Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Break Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
6.4.1  
6.4.2  
6.4.3  
6.4.4  
6.5  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Section 7. Clock Generator Module (CGM)  
7.1  
7.2  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
7.3  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Crystal Oscillator Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Phase-Locked Loop Circuit (PLL). . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
PLL Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Acquisition and Tracking Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Manual and Automatic PLL Bandwidth Modes. . . . . . . . . . . . . . . . . 86  
Programming the PLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
7.3.1  
7.3.2  
7.3.3  
7.3.4  
7.3.5  
7.3.6  
Data Sheet  
10  
MC68HC908GZ16  
Table of Contents  
MOTOROLA  
Table of Contents  
7.3.7  
7.3.8  
7.3.9  
Special Programming Exceptions. . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Base Clock Selector Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
CGM External Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
7.4  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Crystal Amplifier Input Pin (OSC1) . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Crystal Amplifier Output Pin (OSC2) . . . . . . . . . . . . . . . . . . . . . . . . 92  
External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . . . . . . . . . 92  
PLL Analog Power Pin (VDDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
PLL Analog Ground Pin (VSSA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . . . . . . . . . 92  
Oscillator Stop Mode Enable Bit (OSCSTOPENB). . . . . . . . . . . . . . 92  
Crystal Output Frequency Signal (CGMXCLK). . . . . . . . . . . . . . . . . 93  
CGM Base Clock Output (CGMOUT). . . . . . . . . . . . . . . . . . . . . . . . 93  
CGM CPU Interrupt (CGMINT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
7.4.1  
7.4.2  
7.4.3  
7.4.4  
7.4.5  
7.4.6  
7.4.7  
7.4.8  
7.4.9  
7.4.10  
7.5  
CGM Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
PLL Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
PLL Bandwidth Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
PLL Multiplier Select Register High . . . . . . . . . . . . . . . . . . . . . . . . . 97  
PLL Multiplier Select Register Low. . . . . . . . . . . . . . . . . . . . . . . . . . 98  
PLL VCO Range Select Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
7.5.1  
7.5.2  
7.5.3  
7.5.4  
7.5.5  
7.6  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
7.7  
Special Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
CGM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
7.7.1  
7.7.2  
7.7.3  
7.8  
Acquisition/Lock Time Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Acquisition/Lock Time Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Parametric Influences on Reaction Time . . . . . . . . . . . . . . . . . . . . 101  
Choosing a Filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
7.8.1  
7.8.2  
7.8.3  
Section 8. Configuration Register (CONFIG)  
8.1  
8.2  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Section 9. Computer Operating Properly (COP) Module  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
9.1  
9.2  
9.3  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
CGMXCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
9.3.1  
9.3.2  
9.3.3  
9.3.4  
9.3.5  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Table of Contents  
11  
Table of Contents  
9.3.6  
9.3.7  
9.3.8  
Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
COPD (COP Disable) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
9.4  
9.5  
9.6  
COP Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
9.7  
9.7.1  
9.7.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
9.8  
COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Section 10. Central Processor Unit (CPU)  
10.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
10.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
10.3 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
10.3.1  
10.3.2  
10.3.3  
10.3.4  
10.3.5  
Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Index Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Condition Code Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
10.4 Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
10.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
10.5.1  
10.5.2  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
10.6 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
10.7 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
10.8 Opcode Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Section 11. FLASH Memory (FLASH)  
11.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
11.2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
11.3 FLASH Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
11.4 FLASH Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
11.5 FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
11.6 FLASH Program/Read Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
11.7 FLASH Block Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
11.7.1  
FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
11.8 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
11.9 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
Data Sheet  
12  
MC68HC908GZ16  
Table of Contents  
MOTOROLA  
Table of Contents  
Section 12. External Interrupt (IRQ)  
12.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
12.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
12.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
12.4 IRQ Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
12.5 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
12.6 IRQ Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Section 13. Keyboard Interrupt Module (KBI)  
13.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
13.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
13.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
13.4 Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
13.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
13.5.1  
13.5.2  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
13.6 Keyboard Module During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . 142  
13.7 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
13.7.1  
13.7.2  
Keyboard Status and Control Register . . . . . . . . . . . . . . . . . . . . . . 143  
Keyboard Interrupt Enable Register . . . . . . . . . . . . . . . . . . . . . . . . 144  
Section 14. Low-Voltage Inhibit (LVI)  
14.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
14.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
14.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
14.3.1  
14.3.2  
14.3.3  
14.3.4  
Polled LVI Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Forced Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Voltage Hysteresis Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
LVI Trip Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
14.4 LVI Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
14.5 LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
14.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
14.6.1  
14.6.2  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Section 15. Monitor ROM (MON)  
15.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
15.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Table of Contents  
13  
Table of Contents  
15.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
15.3.1  
15.3.2  
15.3.3  
15.3.4  
15.3.5  
15.3.6  
15.3.7  
Normal Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Forced Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Monitor Vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Baud Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
15.4 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
Section 16. MSCAN08 Controller (MSCAN08)  
16.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
16.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
16.3 External Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
16.4 Message Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
16.4.1  
16.4.2  
16.4.3  
Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
Receive Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
Transmit Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
16.5 Identifier Acceptance Filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
16.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
16.6.1  
16.6.2  
Interrupt Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
Interrupt Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
16.7 Protocol Violation Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
16.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
16.8.1  
16.8.2  
16.8.3  
16.8.4  
16.8.5  
MSCAN08 Sleep Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
MSCAN08 Soft Reset Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
MSCAN08 Power-Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
CPU Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
Programmable Wakeup Function . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
16.9 Timer Link. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
16.10 Clock System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
16.11 Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
16.12 Programmer’s Model of Message Storage. . . . . . . . . . . . . . . . . . . . . . 179  
16.12.1  
16.12.2  
16.12.3  
16.12.4  
16.12.5  
Message Buffer Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
Identifier Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
Data Length Register (DLR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
Data Segment Registers (DSRn) . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
Transmit Buffer Priority Registers. . . . . . . . . . . . . . . . . . . . . . . . . . 182  
16.13 Programmer’s Model of Control Registers . . . . . . . . . . . . . . . . . . . . . . 183  
16.13.1  
16.13.2  
16.13.3  
MSCAN08 Module Control Register 0 . . . . . . . . . . . . . . . . . . . . . . 184  
MSCAN08 Module Control Register 1 . . . . . . . . . . . . . . . . . . . . . . 186  
MSCAN08 Bus Timing Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . 187  
Data Sheet  
14  
MC68HC908GZ16  
Table of Contents  
MOTOROLA  
Table of Contents  
16.13.4  
16.13.5  
16.13.6  
16.13.7  
16.13.8  
16.13.9  
MSCAN08 Bus Timing Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . 188  
MSCAN08 Receiver Flag Register (CRFLG) . . . . . . . . . . . . . . . . . 189  
MSCAN08 Receiver Interrupt Enable Register . . . . . . . . . . . . . . . 191  
MSCAN08 Transmitter Flag Register . . . . . . . . . . . . . . . . . . . . . . . 192  
MSCAN08 Transmitter Control Register. . . . . . . . . . . . . . . . . . . . . 193  
MSCAN08 Identifier Acceptance Control Register . . . . . . . . . . . . . 194  
16.13.10 MSCAN08 Receive Error Counter . . . . . . . . . . . . . . . . . . . . . . . . . 195  
16.13.11 MSCAN08 Transmit Error Counter. . . . . . . . . . . . . . . . . . . . . . . . . 195  
16.13.12 MSCAN08 Identifier Acceptance Registers . . . . . . . . . . . . . . . . . . 196  
16.13.13 MSCAN08 Identifier Mask Registers (CIDMR0–CIDMR3) . . . . . . . 197  
Section 17. Input/Output (I/O) Ports  
17.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
17.2 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
17.2.1  
17.2.2  
17.2.3  
Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
Data Direction Register A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
Port A Input Pullup Enable Register . . . . . . . . . . . . . . . . . . . . . . . . 203  
17.3 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
17.3.1  
17.3.2  
Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
Data Direction Register B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
17.4 Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206  
17.4.1  
17.4.2  
17.4.3  
Port C Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206  
Data Direction Register C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
Port C Input Pullup Enable Register. . . . . . . . . . . . . . . . . . . . . . . . 208  
17.5 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208  
17.5.1  
17.5.2  
17.5.3  
Port D Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209  
Data Direction Register D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
Port D Input Pullup Enable Register. . . . . . . . . . . . . . . . . . . . . . . . 211  
17.6 Port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
17.6.1  
17.6.2  
Port E Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
Data Direction Register E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213  
Section 18. Random-Access Memory (RAM)  
18.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215  
18.2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215  
Section 19. Enhanced Serial Communications  
Interface (ESCI) Module  
19.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
19.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
19.3 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218  
19.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218  
19.4.1  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Table of Contents  
15  
Table of Contents  
19.4.2  
Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
Character Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
Break Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223  
Idle Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
Inversion of Transmitted Output . . . . . . . . . . . . . . . . . . . . . . . . . 224  
Transmitter Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
Character Reception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
Data Sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
Framing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228  
Baud Rate Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228  
Receiver Wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230  
Receiver Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231  
Error Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231  
19.4.2.1  
19.4.2.2  
19.4.2.3  
19.4.2.4  
19.4.2.5  
19.4.2.6  
19.4.3  
19.4.3.1  
19.4.3.2  
19.4.3.3  
19.4.3.4  
19.4.3.5  
19.4.3.6  
19.4.3.7  
19.4.3.8  
19.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231  
19.5.1  
19.5.2  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232  
19.6 ESCI During Break Module Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . 232  
19.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232  
19.7.1  
19.7.2  
PTE0/TxD (Transmit Data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232  
PTE1/RxD (Receive Data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232  
19.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233  
19.8.1  
19.8.2  
19.8.3  
19.8.4  
19.8.5  
19.8.6  
19.8.7  
19.8.8  
ESCI Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233  
ESCI Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235  
ESCI Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237  
ESCI Status Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238  
ESCI Status Register 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241  
ESCI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242  
ESCI Baud Rate Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242  
ESCI Prescaler Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244  
19.9 ESCI Arbiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248  
19.9.1  
19.9.2  
19.9.3  
19.9.4  
ESCI Arbiter Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248  
ESCI Arbiter Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249  
Bit Time Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249  
Arbitration Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251  
Section 20. System Integration Module (SIM)  
20.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253  
20.2 SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . . . . . . . . 255  
20.2.1  
20.2.2  
20.2.3  
Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255  
Clock Startup from POR or LVI Reset . . . . . . . . . . . . . . . . . . . . . . 255  
Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . . . . . . . 256  
Data Sheet  
16  
MC68HC908GZ16  
Table of Contents  
MOTOROLA  
Table of Contents  
20.3 Reset and System Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256  
20.3.1  
20.3.2  
External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257  
Active Resets from Internal Sources . . . . . . . . . . . . . . . . . . . . . . . 257  
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258  
Computer Operating Properly (COP) Reset . . . . . . . . . . . . . . . . 259  
Illegal Opcode Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259  
Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259  
Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . . . . . . . 260  
Monitor Mode Entry Module Reset (MODRST). . . . . . . . . . . . . . 260  
20.3.2.1  
20.3.2.2  
20.3.2.3  
20.3.2.4  
20.3.2.5  
20.3.2.6  
20.4 SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260  
20.4.1  
20.4.2  
20.4.3  
SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . . . . . . . 260  
SIM Counter During Stop Mode Recovery . . . . . . . . . . . . . . . . . . . 260  
SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . . . . . . . 260  
20.5 Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261  
20.5.1  
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261  
Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263  
SWI Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264  
Interrupt Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266  
Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266  
Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . . . . . . . 266  
20.5.1.1  
20.5.1.2  
20.5.1.3  
20.5.2  
20.5.3  
20.5.4  
20.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266  
20.6.1  
20.6.2  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268  
20.7 SIM Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269  
20.7.1  
20.7.2  
20.7.3  
Break Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269  
SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270  
Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271  
Section 21. Serial Peripheral Interface (SPI) Module  
21.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273  
21.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273  
21.3 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274  
21.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274  
21.4.1  
21.4.2  
Master Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276  
Slave Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276  
21.5 Transmission Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277  
21.5.1  
21.5.2  
21.5.3  
21.5.4  
Clock Phase and Polarity Controls . . . . . . . . . . . . . . . . . . . . . . . . . 277  
Transmission Format When CPHA = 0. . . . . . . . . . . . . . . . . . . . . . 278  
Transmission Format When CPHA = 1. . . . . . . . . . . . . . . . . . . . . . 279  
Transmission Initiation Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . 280  
21.6 Queuing Transmission Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Table of Contents  
17  
Table of Contents  
21.7 Error Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282  
21.7.1  
21.7.2  
Overflow Error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282  
Mode Fault Error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283  
21.8 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285  
21.9 Resetting the SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287  
21.10 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287  
21.10.1  
21.10.2  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288  
21.11 SPI During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288  
21.12 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288  
21.12.1  
21.12.2  
21.12.3  
21.12.4  
21.12.5  
MISO (Master In/Slave Out) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289  
MOSI (Master Out/Slave In) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289  
SPSCK (Serial Clock). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289  
SS (Slave Select) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289  
CGND (Clock Ground) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291  
21.13 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291  
21.13.1  
21.13.2  
21.13.3  
SPI Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291  
SPI Status and Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . 292  
SPI Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295  
Section 22. Timebase Module (TBM)  
22.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297  
22.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297  
22.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297  
22.4 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298  
22.5 TBM Interrupt Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299  
22.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299  
22.6.1  
22.6.2  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300  
22.7 Timebase Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300  
Section 23. Timer Interface Module (TIM)  
23.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303  
23.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304  
23.3 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304  
23.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304  
23.4.1  
23.4.2  
23.4.3  
23.4.3.1  
23.4.3.2  
TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307  
Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307  
Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307  
Unbuffered Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . 307  
Buffered Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308  
Data Sheet  
18  
MC68HC908GZ16  
Table of Contents  
MOTOROLA  
Table of Contents  
23.4.4  
Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . . . . . . . 308  
Unbuffered PWM Signal Generation. . . . . . . . . . . . . . . . . . . . . . 309  
Buffered PWM Signal Generation. . . . . . . . . . . . . . . . . . . . . . . . 310  
PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310  
23.4.4.1  
23.4.4.2  
23.4.4.3  
23.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311  
23.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311  
23.6.1  
23.6.2  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312  
23.7 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312  
23.8 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312  
23.9 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313  
23.9.1  
23.9.2  
23.9.3  
23.9.4  
23.9.5  
TIM Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . 313  
TIM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315  
TIM Counter Modulo Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 315  
TIM Channel Status and Control Registers . . . . . . . . . . . . . . . . . . 316  
TIM Channel Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319  
Section 24. Electrical Specifications  
24.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321  
24.2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321  
24.3 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322  
24.4 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322  
24.5 5-Vdc Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323  
24.6 3.3-Vdc Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325  
24.7 5.0-Volt Control Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327  
24.8 3.3-Volt Control Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327  
24.9 Clock Generation Module Characteristics . . . . . . . . . . . . . . . . . . . . . . 328  
24.9.1  
24.9.2  
CGM Component Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . 328  
CGM Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328  
24.10 5.0-Volt ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329  
24.11 3.3-Volt ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330  
24.12 5.0-Volt SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331  
24.13 3.3-Volt SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332  
24.14 Timer Interface Module Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 335  
24.15 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Table of Contents  
19  
Table of Contents  
Section 25. Ordering Information  
and Mechanical Specifications  
25.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337  
25.2 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337  
25.3 32-Pin Low-Profile Quad Flat Pack (LQFP) . . . . . . . . . . . . . . . . . . . . . 338  
25.4 48-Pin Low-Profile Quad Flat Pack (LQFP) . . . . . . . . . . . . . . . . . . . . . 339  
Data Sheet  
20  
MC68HC908GZ16  
Table of Contents  
MOTOROLA  
Data Sheet — MC68HC908GZ16  
Section 1. General Description  
1.1 Introduction  
The MC68HC908GZ16 is a member of the low-cost, high-performance M68HC08  
Family of 8-bit microcontroller units (MCUs). All MCUs in the family use the  
enhanced M68HC08 central processor unit (CPU08) and are available with a  
variety of modules, memory sizes and types, and package types.  
1.2 Features  
For convenience, features have been organized to reflect:  
Standard features of the MC68HC908GZ16  
Features of the CPU08  
1.2.1 Standard Features of the MC68HC908GZ16  
Features of the MC68HC908GZ16 include:  
High-performance M68HC08 architecture optimized for  
C-compilers  
Fully upward-compatible object code with M6805, M146805, and M68HC05  
Families  
8-MHz internal bus frequency  
Clock generation module supporting 1-MHz to 8-MHz crystals  
MSCAN08 (Motorola scalable controller area network) controller  
(implementing 2.0b protocol as defined in BOSCH specification dated  
September 1991)  
FLASH program memory security(1)  
On-chip programming firmware for use with host personal computer which  
does not require high voltage for entry  
In-system programming (ISP)  
System protection features:  
Optional computer operating properly (COP) reset  
Low-voltage detection with optional reset and selectable trip points for  
3.3-V and 5.0-V operation  
Illegal opcode detection with reset  
Illegal address detection with reset  
1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or  
copying the FLASH difficult for unauthorized users.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
21  
General Description  
General Description  
Low-power design; fully static with stop and wait modes  
Standard low-power modes of operation:  
Wait mode  
Stop mode  
Master reset pin and power-on reset (POR)  
16 Kbytes of on-chip FLASH memory  
1 Kbyte of on-chip random-access memory (RAM)  
406 bytes of FLASH programming routines read-only memory (ROM)  
Serial peripheral interface (SPI) module  
Enhanced serial communications interface (ESCI) module  
Fine adjust baud rate prescalers for precise control of baud rate  
Arbiter module:  
Measurement of received bit timings for baud rate recovery without use  
of external timer  
Bitwise arbitration for arbitrated UART communications  
LIN specific enhanced features:  
Generation of LIN 1.2 break symbols without extra software steps on  
each message  
Break detection filtering to prevent false interrupts  
Two 16-bit, 2-channel timer interface modules (TIM1 and TIM2) with  
selectable input capture, output compare, and pulse-width modulation  
(PWM) capability on each channel  
8-channel, 10-bit successive approximation analog-to-digital converter  
(ADC)  
BREAK (BRK) module to allow single breakpoint setting during  
in-circuit debugging  
Internal pullups on IRQ and RST to reduce customer system cost  
Up to 37 general-purpose input/output (I/O) pins, including:  
28 shared-function I/O pins  
Up to nine dedicated I/O pins, depending on package choice  
Selectable pullups on inputs only on ports A, C, and D. Selection is on an  
individual port bit basis. During output mode, pullups are disengaged.  
High current 10-mA sink/source capability on all port pins  
Higher current 20-mA sink/source capability on PTC0–PTC4  
Timebase module (TBM) with clock prescaler circuitry for eight user  
selectable periodic real-time interrupts with optional active clock source  
during stop mode for periodic wakeup from stop using an external crystal  
User selection of having the oscillator enabled or disabled during stop mode  
8-bit keyboard wakeup port  
2 mA maximum current injection on all port pins to maintain input protection  
Data Sheet  
22  
MC68HC908GZ16  
General Description  
MOTOROLA  
General Description  
MCU Block Diagram  
Available packages:  
32-pin quad flat pack (LQFP)  
48-pin quad flat pack (LQFP)  
Specific features of the MC68HC908GZ16 in 32-pin LQFP are:  
Port A is only 4 bits: PTA0–PTA3; 4-pin keyboard interrupt (KBI) module  
Port B is only 6 bits: PTB0–PTB5; 6-channel ADC module  
Port C is only 2 bits: PTC0–PTC1; shared with MSCAN08 module  
Port D is only 7 bits: PTD0–PTD6; shared with SPI, TIM1, and TIM2  
modules  
Port E is only 2 bits: PTE0–PTE1; shared with ESCI module  
Specific features of the MC68HC908GZ16 in 48-pin LQFP are:  
Port A is 8 bits: PTA0–PTA7; 8-pin KBI module  
Port B is 8 bits: PTB0–PTB7; 8-channel ADC module  
Port C is only 7 bits: PTC0–PTC6; shared with MSCAN08 module  
Port D is 8 bits: PTD0–PTD7; shared with SPI, TIM1, and TIM2 modules  
Port E is only 6 bits: PTE0–PTE5; shared with ESCI module  
1.2.2 Features of the CPU08  
Features of the CPU08 include:  
Enhanced HC05 programming model  
Extensive loop control functions  
16 addressing modes (eight more than the HC05)  
16-bit index register and stack pointer  
Memory-to-memory data transfers  
Fast 8 × 8 multiply instruction  
Fast 16/8 divide instruction  
Binary-coded decimal (BCD) instructions  
Optimization for controller applications  
Efficient C language support  
1.3 MCU Block Diagram  
Figure 1-1 shows the structure of the MC68HC908GZ16.  
1.4 Pin Assignments  
Figure 1-2 and Figure 1-3 illustrate the pin assignments for the 32-pin LQFP and  
48-pin LQFP respectively.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
General Description  
23  
INTERNAL BUS  
M68HC08 CPU  
PTA7/KBD7–PTA0/KBD0(1)  
PROGRAMMABLE TIMEBASE  
MODULE  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
PTB7/AD7  
PTB6/AD6  
PTB5/AD5  
PTB4/AD4  
PTB3/AD3  
PTB2/AD2  
PTB1/AD1  
PTB0/AD0  
SINGLE BREAKPOINT  
BREAK MODULE  
CONTROL AND STATUS REGISTERS — 64 BYTES  
USER FLASH — 15,872 BYTES  
DUAL VOLTAGE  
LOW-VOLTAGE INHIBIT  
MODULE  
USER RAM — 1024 BYTES  
8-BIT KEYBOARD  
INTERRUPT MODULE  
MONITOR ROM — 350 BYTES  
PTC6(1)  
PTC5(1)  
PTC4(1), (2)  
PTC3(1), (2)  
PTC2(1), (2)  
2-CHANNEL TIMER  
INTERFACE MODULE 1  
FLASH PROGRAMMING ROUTINES ROM — 406 BYTES  
2-CHANNEL TIMER  
INTERFACE MODULE 2  
USER FLASH VECTOR SPACE — 44 BYTES  
CLOCK GENERATOR MODULE  
(1), (2)  
PTC1/CANRX  
(1), (2)  
ENHANCED SERIAL  
COMUNICATIONS  
INTERFACE MODULE  
PTC0/CANTX  
OSC1  
1–8 MHz OSCILLATOR  
PTD7/T2CH1(1)  
PTD6/T2CH0(1)  
PTD5/T1CH1(1)  
PTD4/T1CH0(1)  
PTD3/SPSCK(1)  
PTD2/MOSI(1)  
PTD1/MISO(1)  
PTD0/SS(1)  
OSC2  
PHASE LOCKED LOOP  
CGMXFC  
COMPUTER OPERATING  
PROPERLY MODULE  
SERIAL PERIPHERAL  
INTERFACE MODULE  
SYSTEM INTEGRATION  
MODULE  
RST(3)  
SINGLE EXTERNAL  
IRQ(3)  
INTERRUPT MODULE  
MONITOR MODULE  
PTE5–PTE2  
PTE1/RxD  
PTE0/TxD  
VDDAD/VREFH  
DATA BUS SWITCH  
MODULE  
10-BIT ANALOG-TO-DIGITAL  
CONVERTER MODULE  
VDDAD/VREFL  
MEMORY MAP  
MODULE  
POWER-ON RESET  
MODULE  
SECURITY  
MODULE  
CONFIGURATION  
REGISTER 1–2  
MODULE  
VDD  
VSS  
POWER  
VDDA  
MONITOR MODE ENTRY  
MODULE  
VSSA  
MSCAN08 MODULE  
1. Ports are software configurable with pullup device if input port.  
2. Higher current drive port pins  
3. Pin contains integrated pullup device  
Figure 1-1. MCU Block Diagram  
General Description  
Pin Assignments  
RST  
PTE0/TxD  
PTE1/RxD  
IRQ  
1
PTA2/KBD2  
24  
23  
2
3
4
5
6
7
8
PTA1/KBD1  
PTA0/KBD0  
VSSAD/VREFL  
VDDAD/VREFH  
PTB5/AD5  
22  
21  
20  
19  
18  
17  
PTD0/SS  
PTD1/MISO  
PTD2/MOSI  
PTD3/SPSCK  
PTB4/AD4  
PTB3/AD3  
Figure 1-2. 32-Pin LQFP Pin Assignments  
PTA2/KBD2  
36  
RST  
PTE0/TxD  
PTE1/RxD  
PTE2  
1
PTA1/KBD1  
PTA0/KBD0  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
2
3
4
5
6
7
8
9
PTC6  
PTC5  
PTE3  
VSSAD/VREFL  
VDDAD/VREFH  
PTB7/AD7  
PTE4  
PTE5  
IRQ  
PTD0/SS  
PTD1/MISO  
PTD2/MOSI  
PTB6/AD6  
PTB5/AD5  
PTB4/AD4  
PTB3/AD3  
10  
11  
25  
PTD3/SPSCK  
12  
Figure 1-3. 48-Pin LQFP Pin Assignments  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
25  
General Description  
General Description  
1.5 Pin Functions  
Descriptions of the pin functions are provided here.  
1.5.1 Power Supply Pins (VDD and VSS  
)
VDD and VSS are the power supply and ground pins. The MCU operates from a  
single power supply.  
Fast signal transitions on MCU pins place high, short-duration current demands on  
the power supply. To prevent noise problems, take special care to provide power  
supply bypassing at the MCU as Figure 1-4 shows. Place the C1 bypass capacitor  
as close to the MCU as possible. Use a high-frequency-response ceramic  
capacitor for C1. C2 is an optional bulk current bypass capacitor for use in  
applications that require the port pins to source high current levels.  
MCU  
VDD  
VSS  
C1  
0.1 µF  
+
C2  
VDD  
Note: Component values shown represent typical applications.  
Figure 1-4. Power Supply Bypassing  
1.5.2 Oscillator Pins (OSC1 and OSC2)  
OSC1 and OSC2 are the connections for an external crystal, resonator, or clock  
circuit. See Section 7. Clock Generator Module (CGM).  
1.5.3 External Reset Pin (RST)  
A logic 0 on the RST pin forces the MCU to a known startup state. RST is  
bidirectional, allowing a reset of the entire system. It is driven low when any internal  
reset source is asserted. This pin contains an internal pullup resistor. See  
Section 20. System Integration Module (SIM).  
Data Sheet  
26  
MC68HC908GZ16  
General Description  
MOTOROLA  
General Description  
Pin Functions  
1.5.4 External Interrupt Pin (IRQ)  
IRQ is an asynchronous external interrupt pin. This pin contains an internal pullup  
resistor. See Section 12. External Interrupt (IRQ).  
1.5.5 CGM Power Supply Pins (VDDA and VSSA  
)
VDDA and VSSA are the power supply pins for the analog portion of the clock  
generator module (CGM). Decoupling of these pins should be as per the digital  
supply. See Section 7. Clock Generator Module (CGM).  
1.5.6 External Filter Capacitor Pin (VCGMXFC  
)
CGMXFC is an external filter capacitor connection for the CGM. See Section 7.  
Clock Generator Module (CGM).  
1.5.7 ADC Power Supply/Reference Pins (VDDAD/VREFH and VSSAD/VREFL  
)
VDDAD and VSSAD are the power supply pins to the analog-to-digital converter  
(ADC). VREFH and VREFL are the reference voltage pins for the ADC. VREFH is the  
high reference supply for the ADC, and by default the VDDAD/VREFH pin should be  
externally filtered and connected to the same voltage potential as VDD. VREFL is the  
low reference supply for the ADC, and by default the VSSAD/VREFL pin should be  
connected to the same voltage potential as VSS. See Section 5. Analog-to-Digital  
Converter (ADC).  
1.5.8 Port A Input/Output (I/O) Pins (PTA7/KBD7–PTA0/KBD0)  
PTA7–PTA0 are general-purpose, bidirectional I/O port pins. Any or all of the port  
A pins can be programmed to serve as keyboard interrupt pins. PTA7–PTA4 are  
only available on the 48-pin LQFP package. See Section 17. Input/Output (I/O)  
Ports and Section 13. Keyboard Interrupt Module (KBI).  
These port pins also have selectable pullups when configured for input mode. The  
pullups are disengaged when configured for output mode. The pullups are  
selectable on an individual port bit basis.  
1.5.9 Port B I/O Pins (PTB7/AD7–PTB0/AD0)  
PTB7–PTB0 are general-purpose, bidirectional I/O port pins that can also be used  
for analog-to-digital converter (ADC) inputs. PTB7–PTB4 are only available on the  
48-pin LQFP package. See Section 17. Input/Output (I/O) Ports and Section 5.  
Analog-to-Digital Converter (ADC).  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
General Description  
27  
General Description  
1.5.10 Port C I/O Pins (PTC6–PTC0/CANTX)  
PTC6 and PTC5 are general-purpose, bidirectional I/O port pins. PTC4–PTC0 are  
general-purpose, bidirectional I/O port pins that contain higher current sink/source  
capability. PTC6–PTC2 are only available on the 48-pin LQFP package. See  
Section 17. Input/Output (I/O) Ports.  
PTC1 and PTC0 can be programmed to be MSCAN08 pins.  
These port pins also have selectable pullups when configured for input mode. The  
pullups are disengaged when configured for output mode. The pullups are  
selectable on an individual port bit basis.  
1.5.11 Port D I/O Pins (PTD7/T2CH1–PTD0/SS)  
PTD7–PTD0 are special-function, bidirectional I/O port pins. PTD3–PTD0 can be  
programmed to be serial peripheral interface (SPI) pins, while PTD7–PTD4 can be  
individually programmed to be timer interface module (TIM1 and TIM2) pins. PTD7  
is only available on the 48-pin LQFP package. See Section 23. Timer Interface  
Module (TIM), Section 21. Serial Peripheral Interface (SPI) Module, and  
Section 17. Input/Output (I/O) Ports.  
These port pins also have selectable pullups when configured for input mode. The  
pullups are disengaged when configured for output mode. The pullups are  
selectable on an individual port bit basis.  
1.5.12 Port E I/O Pins (PTE5–PTE2, PTE1/RxD, and PTE0/TxD)  
PTE5–PTE0 are general-purpose, bidirectional I/O port pins. PTE1 and PTE0  
can also be programmed to be enhanced serial communications interface  
(ESCI) pins. PTE5–PTE2 are only available on the 48-pin LQFP package.  
See Section 19. Enhanced Serial Communications Interface (ESCI) Module  
and Section 17. Input/Output (I/O) Ports.  
NOTE:  
Any unused inputs and I/O ports should be tied to an appropriate logic level (either  
VDD or VSS). Although the I/O ports of the MC68HC908GZ16 do not require  
termination, termination is recommended to reduce the possibility of static damage.  
Data Sheet  
28  
MC68HC908GZ16  
General Description  
MOTOROLA  
Data Sheet — MC68HC908GZ16  
Section 2. Memory Map  
2.1 Introduction  
The CPU08 can address 64 Kbytes of memory space. The memory map, shown in  
Figure 2-1, includes:  
15,872 bytes of user FLASH memory  
1024 bytes of random-access memory (RAM)  
406 bytes of FLASH programming routines read-only memory (ROM)  
44 bytes of user-defined vectors  
350 bytes of monitor ROM  
2.2 Unimplemented Memory Locations  
Accessing an unimplemented location can cause an illegal address reset. In the  
memory map (Figure 2-1) and in register figures in this document, unimplemented  
locations are shaded.  
2.3 Reserved Memory Locations  
Accessing a reserved location can have unpredictable effects on microcontroller  
(MCU) operation. In the Figure 2-1 and in register figures in this document,  
reserved locations are marked with the word Reserved or with the  
letter R.  
2.4 Input/Output (I/O) Section  
Most of the control, status, and data registers are in the zero page area of  
$0000–$003F. Additional I/O registers have these addresses:  
$FE00; break status register, SBSR  
$FE01; SIM reset status register, SRSR  
$FE02; break auxiliary register, BRKAR  
$FE03; break flag control register, BFCR  
$FE04; interrupt status register 1, INT1  
$FE05; interrupt status register 2, INT2  
$FE06; interrupt status register 3, INT3  
$FE07; reserved  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
29  
Memory Map  
Memory Map  
$FE08; FLASH control register, FLCR  
$FE09; break address register high, BRKH  
$FE0A; break address register low, BRKL  
$FE0B; break status and control register, BRKSCR  
$FE0C; LVI status register, LVISR  
$FF7E; FLASH block protect register, FLBPR  
Data registers are shown in Figure 2-2. Table 2-1 is a list of vector locations.  
$0000  
I/O REGISTERS  
64 BYTES  
$003F  
$0040  
RAM  
1024 BYTES  
$043F  
$0440  
UNIMPLEMENTED  
192 BYTES  
$04FF  
$0500  
MSCAN08 CONTROL AND MESSAGE BUFFER  
128 BYTES  
$057F  
$0580  
UNIMPLEMENTED  
5760 BYTES  
$1BFF  
$1C00  
FLASH PROGRAMMING ROUTINES ROM  
406 BYTES  
$1D95  
$1D96  
UNIMPLEMENTED  
41,578 BYTES  
$BFFF  
$C000  
FLASH MEMORY  
15,872 BYTES  
$FDFF  
$FE00  
BREAK STATUS REGISTER (BSR)  
Figure 2-1. Memory Map  
Data Sheet  
30  
MC68HC908GZ16  
MOTOROLA  
Memory Map  
Memory Map  
Input/Output (I/O) Section  
$FE01  
$FE02  
$FE03  
$FE04  
$FE05  
$FE06  
$FE07  
$FE08  
$FE09  
$FE0A  
$FE0B  
$FE0C  
$FE0D  
SIM RESET STATUS REGISTER (SRSR)  
BREAK AUXILIARY REGISTER (BRKAR)  
BREAK FLAG CONTROL REGISTER (BFCR)  
INTERRUPT STATUS REGISTER 1 (INT1)  
INTERRUPT STATUS REGISTER 2 (INT2)  
INTERRUPT STATUS REGISTER 3 (INT3)  
RESERVED  
FLASH CONTROL REGISTER (FLCR)  
BREAK ADDRESS REGISTER HIGH (BRKH)  
BREAK ADDRESS REGISTER LOW (BRKL)  
BREAK STATUS AND CONTROL REGISTER (BRKSCR)  
LVI STATUS REGISTER (LVISR)  
UNIMPLEMENTED  
3 BYTES  
$FE0F  
$FE10  
UNIMPLEMENTED  
16 BYTES  
RESERVED FOR COMPATIBILITY WITH MONITOR CODE  
FOR A-FAMILY PART  
$FE1F  
$FE20  
MONITOR ROM  
350 BYTES  
$FF7D  
$FF7E  
$FF7F  
FLASH BLOCK PROTECT REGISTER (FLBPR)  
UNIMPLEMENTED  
85 BYTES  
$FFD3  
$FFD4  
FLASH VECTORS  
44 BYTES  
$FFFF(1)  
1. $FFF6–$FFFD used for eight security bytes  
Figure 2-1. Memory Map (Continued)  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
31  
Memory Map  
Memory Map  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Port A Data Register  
(PTA) Write:  
PTA7  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
$0000  
See page 202.  
Reset:  
Read:  
Unaffected by reset  
PTB4 PTB3  
Unaffected by reset  
PTC4 PTC3  
Unaffected by reset  
PTD4 PTD3  
Unaffected by reset  
Port B Data Register  
PTB7  
1
PTB6  
PTC6  
PTD6  
PTB5  
PTC5  
PTD5  
PTB2  
PTC2  
PTD2  
PTB1  
PTC1  
PTD1  
PTB0  
PTC0  
PTD0  
$0001  
$0002  
$0003  
$0004  
$0005  
$0006  
$0007  
$0008  
$0009  
$000A  
$000B  
(PTB) Write:  
See page 204.  
Reset:  
Read:  
Port C Data Register  
(PTC) Write:  
See page 206.  
Reset:  
Read:  
Port D Data Register  
PTD7  
(PTD) Write:  
See page 209.  
Reset:  
Read:  
Data Direction Register A  
DDRA7  
0
DDRA6  
0
DDRA5  
DDRA4  
DDRA3  
DDRA2  
DDRA1  
DDRA0  
(DDRA) Write:  
See page 202.  
Reset:  
Read:  
0
DDRB5  
0
0
DDRB4  
0
0
DDRB3  
0
0
DDRB2  
0
0
DDRB1  
0
0
DDRB0  
0
Data Direction Register B  
DDRB7  
DDRB6  
0
(DDRB) Write:  
See page 205.  
Reset:  
Read:  
0
0
Data Direction Register C  
DDRC6  
0
DDRC5  
0
DDRC4  
0
DDRC3  
0
DDRC2  
0
DDRC1  
0
DDRC0  
0
(DDRC) Write:  
See page 207.  
Reset:  
Read:  
0
Data Direction Register D  
DDRD7  
DDRD6  
DDRD5  
0
DDRD4  
0
DDRD3  
0
DDRD2  
0
DDRD1  
0
DDRD0  
0
(DDRD) Write:  
See page 210.  
Reset:  
Read:  
0
0
0
0
Port E Data Register  
PTE5  
PTE4  
PTE3  
PTE2  
PTE1  
PTE0  
(PTE) Write:  
See page 212.  
Reset:  
Read:  
Unaffected by reset  
ESCI Prescaler Register  
PS2  
0
PS1  
PS0  
0
PSSB4  
PSSB3  
PSSB2  
PSSB1  
PSSB0  
(SCPSC) Write:  
See page 244.  
Reset:  
Read:  
0
0
ACLK  
0
0
0
0
0
ALOST  
AFIN  
ARUN  
AOVFL  
ARD8  
ESCI Arbiter Control  
AM1  
0
AM0  
0
Register (SCIACTL) Write:  
See page 248.  
Reset:  
0
ARD6  
0
0
ARD3  
0
0
ARD2  
0
0
ARD1  
0
0
ARD0  
0
Read:  
ESCI Arbiter Data  
Register (SCIADAT) Write:  
ARD7  
0
ARD5  
0
ARD4  
0
See page 249.  
Reset:  
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 1 of 8)  
Data Sheet  
32  
MC68HC908GZ16  
MOTOROLA  
Memory Map  
Memory Map  
Input/Output (I/O) Section  
Addr.  
Register Name  
Bit 7  
6
5
DDRE5  
0
4
DDRE4  
0
3
DDRE3  
0
2
DDRE2  
0
1
DDRE1  
0
Bit 0  
DDRE0  
0
Read:  
0
0
Data Direction Register E  
$000C  
(DDRE) Write:  
See page 213.  
Reset:  
Read:  
0
0
Port A Input Pullup Enable  
PTAPUE7 PTAPUE6 PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0  
$000D  
$000E  
$000F  
$0010  
$0011  
$0012  
$0013  
$0014  
$0015  
$0016  
$0017  
Register (PTAPUE) Write:  
See page 204.  
Reset:  
0
0
0
0
0
0
0
0
0
Read:  
Port C Input Pullup Enable  
PTCPUE6 PTCPUE5 PTCPUE4 PTCPUE3 PTCPUE2 PTCPUE1 PTCPUE0  
Register (PTCPUE) Write:  
See page 208.  
Reset:  
0
0
0
0
0
0
0
0
Read:  
Port D Input Pullup Enable  
PTDPUE7 PTDPUE6 PTDPUE5 PTDPUE4 PTDPUE3 PTDPUE2 PTDPUE1 PTDPUE0  
Register (PTDPUE) Write:  
See page 211.  
Reset:  
0
0
0
0
0
0
0
SPE  
0
0
Read:  
SPRIE  
R
0
SPMSTR  
CPOL  
CPHA  
SPWOM  
0
SPTIE  
0
SPI Control Register (SPCR)  
See page 291.  
Write:  
Reset:  
Read:  
0
1
0
1
SPRF  
OVRF  
MODF  
SPTE  
SPI Status and Control  
ERRIE  
MODFEN  
SPR1  
SPR0  
Register (SPSCR) Write:  
See page 293.  
Reset:  
0
0
0
0
1
0
0
0
Read:  
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SPI Data Register  
(SPDR) Write:  
See page 295.  
Reset:  
Unaffected by reset  
Read:  
ESCI Control Register 1  
LOOPS  
0
ENSCI  
TXINV  
M
0
WAKE  
0
ILTY  
0
PEN  
0
PTY  
0
(SCC1) Write:  
See page 233.  
Reset:  
0
TCIE  
0
0
Read:  
ESCI Control Register 2  
SCTIE  
SCRIE  
ILIE  
0
TE  
RE  
0
RWU  
0
SBK  
0
(SCC2) Write:  
See page 235.  
Reset:  
0
0
0
Read:  
R8  
ESCI Control Register 3  
T8  
R
R
ORIE  
NEIE  
FEIE  
PEIE  
(SCC3) Write:  
See page 237.  
Reset:  
U
0
0
0
0
0
0
0
Read:  
SCTE  
TC  
SCRF  
IDLE  
OR  
NF  
FE  
PE  
ESCI Status Register 1  
(SCS1) Write:  
See page 239.  
Reset:  
1
0
1
0
0
0
0
0
0
0
0
Read:  
BKF  
RPF  
ESCI Status Register 2  
(SCS2) Write:  
See page 241.  
Reset:  
0
0
0
0
0
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 8)  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
33  
Memory Map  
Memory Map  
Addr.  
Register Name  
Bit 7  
R7  
6
5
4
3
2
1
Bit 0  
R0  
Read:  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
ESCI Data Register  
(SCDR) Write:  
$0018  
T7  
T0  
See page 242.  
Reset:  
Read:  
Unaffected by reset  
ESCI Baud Rate Register  
LINT  
LINR  
SCP1  
SCP0  
R
SCR2  
SCR1  
0
SCR0  
0
$0019  
$001A  
(SCBR) Write:  
See page 242.  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
Keyboard Status Read:  
and Control Register  
KEYF  
IMASKK  
MODEK  
Write:  
ACKK  
(INTKBSCR)  
See page 143.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
Keyboard Interrupt Enable  
KBIE7  
KBIE6  
0
KBIE5  
0
KBIE4  
0
KBIE3  
KBIE2  
0
KBIE1  
KBIE0  
$001B  
$001C  
$001D  
Register (INTKBIER) Write:  
See page 144.  
Reset:  
0
0
0
0
TBON  
0
0
Read:  
TBIF  
Timebase Module Control  
TBR2  
TBR1  
TBR0  
TBIE  
R
Register (TBCR) Write:  
See page 300.  
Reset:  
TACK  
0
0
0
0
0
0
0
0
0
0
0
0
MODE  
0
Read:  
IRQF  
IRQ Status and Control  
Register (INTSCR) Write:  
IMASK  
0
ACK  
0
See page 138.  
Reset:  
0
0
0
0
0
0
0
0
0
Configuration Register 2 Read:  
(CONFIG2)(1)  
OSCENIN-  
STOP  
MSCANEN TMCLKSEL  
SCIBDSRC  
Write:  
See page 104.  
Reset:  
$001E  
$001F  
0
0
0
0
0
0
0
1
Read:  
LVI5OR3  
(Note 1)  
Configuration Register 1  
COPRS  
0
LVISTOP LVIRSTD LVIPWRD  
SSREC  
0
STOP  
0
COPD  
0
(CONFIG1)(1) Write:  
See page 104.  
Reset:  
0
0
0
0
1. One-time writable register after each reset, except LVI5OR3 bit. LVI5OR3 bit is only reset via POR (power-on reset).  
Read:  
TOF  
0
0
TRST  
0
0
Timer 1 Status and Control  
TOIE  
TSTOP  
PS2  
PS1  
PS0  
$0020  
$0021  
$0022  
Register (T1SC) Write:  
See page 313.  
Reset:  
0
0
1
0
0
0
9
0
Read:  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
Timer 1 Counter  
Register High (T1CNTH) Write:  
See page 315.  
Reset:  
0
0
6
0
5
0
4
0
3
0
2
0
1
0
Read:  
Bit 7  
Bit 0  
Timer 1 Counter  
Register Low (T1CNTL) Write:  
See page 315.  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 8)  
Data Sheet  
34  
MC68HC908GZ16  
MOTOROLA  
Memory Map  
Memory Map  
Input/Output (I/O) Section  
Addr.  
Register Name  
Bit 7  
Bit 15  
1
6
5
4
3
2
1
Bit 0  
Read:  
Timer 1 Counter Modulo  
Register High (T1MODH) Write:  
14  
13  
12  
11  
10  
9
Bit 8  
$0023  
See page 315.  
Reset:  
1
1
1
1
1
1
1
Bit 0  
1
Read:  
Timer 1 Counter Modulo  
Register Low (T1MODL) Write:  
Bit 7  
6
1
5
1
4
1
3
2
1
$0024  
$0025  
$0026  
$0027  
$0028  
$0029  
$002A  
$002B  
$002C  
$002D  
$002E  
See page 316.  
Reset:  
1
CH0F  
0
1
ELS0B  
0
1
ELS0A  
0
1
TOV0  
0
Read:  
Timer 1 Channel 0 Status and  
Control Register (T1SC0) Write:  
CH0IE  
0
MS0B  
0
MS0A  
0
CH0MAX  
0
See page 316.  
Reset:  
0
Read:  
Timer 1 Channel 0  
Register High (T1CH0H) Write:  
Bit 15  
Bit 7  
14  
13  
12  
11  
10  
9
Bit 8  
See page 319.  
Reset:  
Indeterminate after reset  
Read:  
Timer 1 Channel 0  
Register Low (T1CH0L) Write:  
6
5
0
4
3
2
1
Bit 0  
See page 319.  
Reset:  
Indeterminate after reset  
Read:  
CH1F  
Timer 1 Channel 1 Status and  
Control Register (T1SC1) Write:  
CH1IE  
MS1A  
0
ELS1B  
ELS1A  
TOV1  
CH1MAX  
0
0
See page 316.  
Reset:  
0
0
0
0
0
9
0
Read:  
Timer 1 Channel 1  
Register High (T1CH1H) Write:  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
See page 320.  
Reset:  
Indeterminate after reset  
Read:  
Timer 1 Channel 1  
Register Low (T1CH1L) Write:  
Bit 7  
6
5
4
3
2
1
Bit 0  
PS0  
See page 320.  
Reset:  
Indeterminate after reset  
Read:  
TOF  
0
0
TRST  
0
0
Timer 2 Status and Control  
TOIE  
TSTOP  
PS2  
PS1  
Register (T2SC) Write:  
See page 313.  
Reset:  
0
0
1
0
0
0
9
0
Read:  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
Timer 2 Counter  
Register High (T2CNTH) Write:  
See page 315.  
Reset:  
0
0
6
0
5
0
4
0
3
0
2
0
1
0
Read:  
Bit 7  
Bit 0  
Timer 2 Counter  
Register Low (T2CNTL) Write:  
See page 315.  
Reset:  
0
Bit 15  
1
0
14  
1
0
13  
1
0
12  
1
0
11  
1
0
10  
1
0
9
1
0
Bit 8  
1
Read:  
Timer 2 Counter Modulo  
Register High (T2MODH) Write:  
See page 315.  
Reset:  
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 8)  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
35  
Memory Map  
Memory Map  
Addr.  
Register Name  
Timer 2 Counter Modulo  
Register Low (T2MODL) Write:  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 0  
1
Read:  
Bit 7  
6
1
5
1
4
1
3
2
1
$002F  
See page 316.  
Reset:  
1
CH0F  
0
1
ELS0B  
0
1
ELS0A  
0
1
TOV0  
0
Read:  
Timer 2 Channel 0 Status and  
Control Register (T2SC0) Write:  
CH0IE  
0
MS0B  
0
MS0A  
0
CH0MAX  
0
$0030  
$0031  
$0032  
$0033  
$0034  
$0035  
$0036  
$0037  
$0038  
$0039  
$003A  
See page 316.  
Reset:  
0
Read:  
Timer 2 Channel 0  
Register High (T2CH0H) Write:  
Bit 15  
Bit 7  
14  
13  
12  
11  
10  
9
Bit 8  
See page 319.  
Reset:  
Indeterminate after reset  
Read:  
Timer 2 Channel 0  
Register Low (T2CH0L) Write:  
6
5
0
4
3
2
1
Bit 0  
See page 319.  
Reset:  
Indeterminate after reset  
Read:  
CH1F  
Timer 2 Channel 1 Status and  
Control Register (T2SC1) Write:  
CH1IE  
MS1A  
0
ELS1B  
ELS1A  
TOV1  
CH1MAX  
0
0
See page 316.  
Reset:  
0
0
0
0
0
9
0
Read:  
Timer 2 Channel 1  
Register High (T2CH1H) Write:  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
See page 320.  
Reset:  
Indeterminate after reset  
Read:  
Timer 2 Channel 1  
Register Low (T2CH1L) Write:  
Bit 7  
6
5
4
3
2
1
Bit 0  
See page 320.  
Reset:  
Indeterminate after reset  
Read:  
PLLF  
PLL Control Register  
PLLIE  
0
PLLON  
1
BCS  
R
R
VPR1  
VPR0  
(PCTL) Write:  
See page 94.  
Reset:  
0
0
0
0
0
0
0
0
0
0
Read:  
LOCK  
PLL Bandwidth Control  
AUTO  
ACQ  
R
0
Register (PBWC) Write:  
See page 96.  
Reset:  
0
0
0
0
0
0
0
0
0
MUL11  
0
0
MUL10  
0
0
MUL9  
0
Read:  
PLL Multiplier Select High  
MUL8  
0
Register (PMSH) Write:  
See page 97.  
Reset:  
0
MUL7  
0
0
MUL6  
0
0
MUL5  
0
0
MUL4  
0
Read:  
PLL Multiplier Select Low  
MUL3  
U
MUL2  
U
MUL1  
U
MUL0  
U
Register (PMSL) Write:  
See page 98.  
Reset:  
Read:  
PLL VCO Select Range  
VRS7  
0
VRS6  
1
VRS5  
0
VRS4  
0
VRS3  
0
VRS2  
0
VRS1  
0
VRS0  
0
Register (PMRS) Write:  
See page 98.  
Reset:  
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 8)  
Data Sheet  
36  
MC68HC908GZ16  
MOTOROLA  
Memory Map  
Memory Map  
Input/Output (I/O) Section  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
0
0
0
0
R
0
R
0
R
0
R
1
$003B  
Reserved Write:  
Reset:  
0
0
0
0
Read:  
ADC Status and Control  
Register (ADSCR) Write:  
COCO  
AIEN  
ADCO  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
$003C  
$003D  
$003E  
$003F  
See page 71.  
Reset:  
0
0
0
0
0
0
1
0
1
0
1
0
1
1
Read:  
AD9  
AD8  
ADC Data High Register  
(ADRH) Write:  
See page 73.  
Reset:  
Unaffected by reset  
AD4 A3  
Read:  
AD7  
AD6  
AD5  
AD2  
AD1  
AD0  
ADC Data Low Register  
(ADRL) Write:  
See page 73.  
Reset:  
Unaffected by reset  
Read:  
0
0
ADC Clock Register  
ADIV2  
0
ADIV1  
0
ADIV0  
0
ADICLK  
0
MODE1  
0
MODE0  
1
R
0
(ADCLK) Write:  
See page 75.  
Reset:  
$0500  
$0508  
MSCAN08 Control Registers  
See page 183.  
MSCAN08 control registers (9 bytes)  
Refer to 16.13 Programmer’s Model of Control Registers  
$0509  
Reserved  
Reserved (5 bytes)  
$050D  
$050E  
$050F  
MSCAN08  
Error Counters  
MSCAN08 error counters (2 bytes)  
$0510  
$0517  
MSCAN08  
Identifier Filter  
See page 183.  
MSCAN08 control registers (9 bytes)  
Refer to 16.13 Programmer’s Model of Control Registers  
$0518  
Reserved  
Reserved (40 bytes)  
$053F  
$0540  
$054F  
MSCAN08  
Receive Buffer  
See page 179.  
MSC08 receive buffer  
Refer to 16.12 Programmer’s Model of Message Storage  
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 6 of 8)  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
37  
Memory Map  
Memory Map  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
$0550  
$055F  
MSCAN08 Transmit Buffer 0  
See page 179.  
MSC08 transmitter buffer 0  
Refer to 16.12 Programmer’s Model of Message Storage  
$0560  
$056F  
MSCAN08 Transmit Buffer 1  
See page 179.  
MSC08 transmitter buffer 1  
Refer to 16.12 Programmer’s Model of Message Storage  
$0570  
$057F  
MSCAN08 Transmit Buffer 2  
See page 179.  
MSC08 transmitter buffer 2  
Refer to 16.12 Programmer’s Model of Message Storage  
Read:  
Write:  
Reset:  
SBSW  
(Note 2)  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Break Status Register (BSR)  
See page 81.  
$FE00  
2. Writing a logic 0 clears SBSW.  
Read:  
POR  
PIN  
COP  
ILOP  
ILAD  
MODRST  
LVI  
0
SIM Reset Status Register  
(SRSR) Write:  
$FE01  
$FE02  
$FE03  
$FE04  
$FE05  
$FE06  
$FE07  
See page 270.  
POR:  
Read:  
1
R
0
R
0
0
R
0
0
R
0
0
R
0
0
R
0
0
R
0
0
R
0
Reserved Write:  
Reset:  
0
Read:  
Break Flag Control  
Register (BFCR) Write:  
BCFE  
R
R
R
R
R
R
R
See page 82.  
Reset:  
0
IF6  
R
0
IF5  
R
0
IF4  
R
0
IF3  
R
0
IF2  
R
0
IF1  
R
0
0
0
0
Read:  
Interrupt Status Register 1  
(INT1) Write:  
R
R
See page 62.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
IF14  
R
IF13  
R
IF12  
R
IF11  
R
IF10  
R
IF9  
R
IF8  
R
IF7  
R
Interrupt Status Register 2  
(INT2) Write:  
See page 62.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
0
IF20  
R
IF19  
R
IF18  
R
IF17  
R
IF16  
R
IF15  
R
Interrupt Status Register 3  
(INT3) Write:  
R
R
See page 63.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Reserved Write:  
Reset:  
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 7 of 8)  
Data Sheet  
38  
MC68HC908GZ16  
MOTOROLA  
Memory Map  
Memory Map  
Input/Output (I/O) Section  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
PGM  
0
Read:  
0
0
0
0
FLASH Control Register  
HVEN  
MASS  
ERASE  
$FE08  
(FLCR) Write:  
See page 126.  
Reset:  
Read:  
0
Bit 15  
0
0
0
13  
0
0
12  
0
0
11  
0
0
10  
0
0
9
0
1
Break Address Register High  
14  
Bit 8  
0
$FE09  
$FE0A  
$FE0B  
$FE0C  
$FF7E  
(BRKH) Write:  
See page 81.  
Reset:  
Read:  
0
Break Address Register Low  
Bit 7  
0
6
0
5
4
3
2
Bit 0  
(BRKL) Write:  
See page 81.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
0
0
0
Break Status and Control  
BRKE  
BRKA  
Register (BRKSCR) Write:  
See page 80.  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Read: LVIOUT  
Write:  
LVI Status Register (LVISR)  
See page 147.  
Reset:  
0
0
0
0
0
0
0
0
Read:  
FLASH Block Protect  
Register (FLBPR)(3) Write:  
BPR7  
BPR6  
BPR5  
BPR4  
BPR3  
BPR2  
BPR1  
BPR0  
See page 131.  
Reset:  
Unaffected by reset  
3. Non-volatile FLASH register  
Read:  
Low byte of reset vector  
COP Control Register  
$FFFF  
(COPCTL) Write:  
See page 109.  
Writing clears COP counter (any value)  
Unaffected by reset  
Reset:  
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 8 of 8)  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
39  
Memory Map  
Memory Map  
.
Table 2-1. Vector Addresses  
Vector Priority  
Vector  
Address  
$FFD4  
$FFD5  
$FFD6  
$FFD7  
$FFD8  
$FFD9  
$FFDA  
$FFDB  
$FFDC  
$FFDD  
$FFDE  
$FFDF  
$FFE0  
$FFE1  
$FFE2  
$FFE3  
$FFE4  
$FFE5  
$FFE6  
$FFE7  
$FFE8  
$FFE9  
$FFEA  
$FFEB  
$FFEC  
$FFED  
$FFEE  
$FFEF  
$FFF0  
$FFF1  
$FFF2  
$FFF3  
$FFF4  
$FFF5  
$FFF6  
$FFF7  
$FFF8  
$FFF9  
$FFFA  
$FFFB  
$FFFC  
$FFFD  
$FFFE  
$FFFF  
Vector  
MSCAN08 Transmit Vector (High)  
MSCAN08 Transmit Vector (Low)  
MSCAN08 Receive Vector (High)  
MSCAN08 Receive Vector (Low)  
MSCAN08 Error Vector (High)  
MSCAN08 Error Vector (Low)  
MSCAN08 Wakeup Vector (High)  
MSCAN08 Wakeup Vector (Low)  
Timebase Vector (High)  
Lowest  
IF20  
IF19  
IF18  
IF17  
IF16  
IF15  
IF14  
IF13  
IF12  
IF11  
IF10  
IF9  
Timebase Vector (Low)  
ADC Conversion Complete Vector (High)  
ADC Conversion Complete Vector (Low)  
Keyboard Vector (High)  
Keyboard Vector (Low)  
ESCI Transmit Vector (High)  
ESCI Transmit Vector (Low)  
ESCI Receive Vector (High)  
ESCI Receive Vector (Low)  
ESCI Error Vector (High)  
ESCI Error Vector (Low)  
SPI Transmit Vector (High)  
SPI Transmit Vector (Low)  
SPI Receive Vector (High)  
SPI Receive Vector (Low)  
TIM2 Overflow Vector (High)  
TIM2 Overflow Vector (Low)  
TIM2 Channel 1 Vector (High)  
TIM2 Channel 1 Vector (Low)  
TIM2 Channel 0 Vector (High)  
TIM2 Channel 0 Vector (Low)  
TIM1 Overflow Vector (High)  
TIM1 Overflow Vector (Low)  
TIM1 Channel 1 Vector (High)  
TIM1 Channel 1 Vector (Low)  
TIM1 Channel 0 Vector (High)  
TIM1 Channel 0 Vector (Low)  
PLL Vector (High)  
IF8  
IF7  
IF6  
IF5  
IF4  
IF3  
IF2  
PLL Vector (Low)  
IRQ Vector (High)  
IF1  
IRQ Vector (Low)  
SWI Vector (High)  
SWI Vector (Low)  
Reset Vector (High)  
Highest  
Reset Vector (Low)  
Data Sheet  
40  
MC68HC908GZ16  
MOTOROLA  
Memory Map  
Data Sheet — MC68HC908GZ16  
Section 3. Low-Power Modes  
3.1 Introduction  
The microcontroller (MCU) may enter two low-power modes: wait mode and stop  
mode. They are common to all HC08 MCUs and are entered through instruction  
execution. This section describes how each module acts in the low-power modes.  
3.1.1 Wait Mode  
The WAIT instruction puts the MCU in a low-power standby mode in which the  
central processor unit (CPU) clock is disabled but the bus clock continues to run.  
Power consumption can be further reduced by disabling the low-voltage inhibit  
(LVI) module through bits in the CONFIG1 register. See Section 8. Configuration  
Register (CONFIG).  
3.1.2 Stop Mode  
Stop mode is entered when a STOP instruction is executed. The CPU clock is  
disabled and the bus clock is disabled if the OSCENINSTOP bit in the CONFIG2  
register is at a logic 0. See Section 8. Configuration Register (CONFIG).  
3.2 Analog-to-Digital Converter (ADC)  
3.2.1 Wait Mode  
The analog-to-digital converter (ADC) continues normal operation during wait  
mode. Any enabled CPU interrupt request from the ADC can bring the MCU out of  
wait mode. If the ADC is not required to bring the MCU out of wait mode, power  
down the ADC by setting ADCH4–ADCH0 bits in the ADC status and control  
register before executing the WAIT instruction.  
3.2.2 Stop Mode  
The ADC module is inactive after the execution of a STOP instruction. Any pending  
conversion is aborted. ADC conversions resume when the MCU exits stop mode  
after an external interrupt. Allow one conversion cycle to stabilize the analog  
circuitry.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Low-Power Modes  
41  
Low-Power Modes  
3.3 Break Module (BRK)  
3.3.1 Wait Mode  
If enabled, the break (BRK) module is active in wait mode. In the break routine, the  
user can subtract one from the return address on the stack if the SBSW bit in the  
break status register is set.  
3.3.2 Stop Mode  
The break module is inactive in stop mode. The STOP instruction does not affect  
break module register states.  
3.4 Central Processor Unit (CPU)  
3.4.1 Wait Mode  
The WAIT instruction:  
Clears the interrupt mask (I bit) in the condition code register, enabling  
interrupts. After exit from wait mode by interrupt, the I bit remains clear. After  
exit by reset, the I bit is set.  
Disables the CPU clock  
3.4.2 Stop Mode  
The STOP instruction:  
Clears the interrupt mask (I bit) in the condition code register, enabling  
external interrupts. After exit from stop mode by external interrupt, the I bit  
remains clear. After exit by reset, the I bit is set.  
Disables the CPU clock  
After exiting stop mode, the CPU clock begins running after the oscillator  
stabilization delay.  
3.5 Clock Generator Module (CGM)  
3.5.1 Wait Mode  
The clock generator module (CGM) remains active in wait mode. Before entering  
wait mode, software can disengage and turn off the PLL by clearing the BCS and  
PLLON bits in the PLL control register (PCTL). Less power-sensitive applications  
can disengage the PLL without turning it off. Applications that require the PLL to  
wake the MCU from wait mode also can deselect the PLL output without turning off  
the PLL.  
Data Sheet  
42  
MC68HC908GZ16  
Low-Power Modes  
MOTOROLA  
Low-Power Modes  
Computer Operating Properly Module (COP)  
3.5.2 Stop Mode  
If the OSCSTOPEN bit in the CONFIG register is cleared (default), then the STOP  
instruction disables the CGM (oscillator and phase-locked loop) and holds low all  
CGM outputs (CGMXCLK, CGMOUT, and CGMINT).  
If the STOP instruction is executed with the VCO clock, CGMVCLK, divided by two  
driving CGMOUT, the PLL automatically clears the BCS bit in the PLL control  
register (PCTL), thereby selecting the crystal clock, CGMXCLK, divided by two as  
the source of CGMOUT. When the MCU recovers from STOP, the crystal clock  
divided by two drives CGMOUT and BCS remains clear.  
If the OSCSTOPEN bit in the CONFIG register is set, then the phase locked loop  
is shut off, but the oscillator will continue to operate in stop mode.  
3.6 Computer Operating Properly Module (COP)  
3.6.1 Wait Mode  
The COP remains active during wait mode. If COP is enabled, a reset will occur at  
COP timeout.  
3.6.2 Stop Mode  
Stop mode turns off the COPCLK input to the COP and clears the COP prescaler.  
Service the COP immediately before entering or after exiting stop mode to ensure  
a full COP timeout period after entering or exiting stop mode.  
The STOP bit in the CONFIG1 register enables the STOP instruction. To prevent  
inadvertently turning off the COP with a STOP instruction, disable the STOP  
instruction by clearing the STOP bit.  
3.7 External Interrupt Module (IRQ)  
3.7.1 Wait Mode  
The external interrupt (IRQ) module remains active in wait mode. Clearing the  
IMASK1 bit in the IRQ status and control register enables IRQ CPU interrupt  
requests to bring the MCU out of wait mode.  
3.7.2 Stop Mode  
The IRQ module remains active in stop mode. Clearing the IMASK1 bit in the IRQ  
status and control register enables IRQ CPU interrupt requests to bring the MCU  
out of stop mode.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Low-Power Modes  
43  
Low-Power Modes  
3.8 Keyboard Interrupt Module (KBI)  
3.8.1 Wait Mode  
The keyboard interrupt (KBI) module remains active in wait mode. Clearing the  
IMASKK bit in the keyboard status and control register enables keyboard interrupt  
requests to bring the MCU out of wait mode.  
3.8.2 Stop Mode  
The keyboard module remains active in stop mode. Clearing the IMASKK bit in the  
keyboard status and control register enables keyboard interrupt requests to bring  
the MCU out of stop mode.  
3.9 Low-Voltage Inhibit Module (LVI)  
3.9.1 Wait Mode  
If enabled, the low-voltage inhibit (LVI) module remains active in wait mode. If  
enabled to generate resets, the LVI module can generate a reset and bring the  
MCU out of wait mode.  
3.9.2 Stop Mode  
If enabled, the LVI module remains active in stop mode. If enabled to generate  
resets, the LVI module can generate a reset and bring the MCU out of stop mode.  
3.10 Enhanced Serial Communications Interface Module (ESCI)  
3.10.1 Wait Mode  
The enhanced serial communications interface (ESCI), or SCI module for short,  
module remains active in wait mode. Any enabled CPU interrupt request from the  
SCI module can bring the MCU out of wait mode.  
If SCI module functions are not required during wait mode, reduce power  
consumption by disabling the module before executing the WAIT instruction.  
3.10.2 Stop Mode  
The SCI module is inactive in stop mode. The STOP instruction does not affect SCI  
register states. SCI module operation resumes after the MCU exits stop mode.  
Because the internal clock is inactive during stop mode, entering stop mode during  
an SCI transmission or reception results in invalid data.  
Data Sheet  
44  
MC68HC908GZ16  
Low-Power Modes  
MOTOROLA  
Low-Power Modes  
Serial Peripheral Interface Module (SPI)  
3.11 Serial Peripheral Interface Module (SPI)  
3.11.1 Wait Mode  
The serial peripheral interface (SPI) module remains active in wait mode. Any  
enabled CPU interrupt request from the SPI module can bring the MCU out of wait  
mode.  
If SPI module functions are not required during wait mode, reduce power  
consumption by disabling the SPI module before executing the WAIT instruction.  
3.11.2 Stop Mode  
The SPI module is inactive in stop mode. The STOP instruction does not affect SPI  
register states. SPI operation resumes after an external interrupt. If stop mode is  
exited by reset, any transfer in progress is aborted, and the SPI is reset.  
3.12 Timer Interface Module (TIM1 and TIM2)  
3.12.1 Wait Mode  
The timer interface modules (TIM) remain active in wait mode. Any enabled CPU  
interrupt request from the TIM can bring the MCU out of wait mode.  
If TIM functions are not required during wait mode, reduce power consumption by  
stopping the TIM before executing the WAIT instruction.  
3.12.2 Stop Mode  
The TIM is inactive in stop mode. The STOP instruction does not affect register  
states or the state of the TIM counter. TIM operation resumes when the MCU exits  
stop mode after an external interrupt.  
3.13 Timebase Module (TBM)  
3.13.1 Wait Mode  
The timebase module (TBM) remains active after execution of the WAIT  
instruction. In wait mode, the timebase register is not accessible by the CPU.  
If the timebase functions are not required during wait mode, reduce the power  
consumption by stopping the timebase before enabling the WAIT instruction.  
3.13.2 Stop Mode  
The timebase module may remain active after execution of the STOP instruction if  
the oscillator has been enabled to operate during stop mode through the  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Low-Power Modes  
45  
Low-Power Modes  
OSCENINSTOP bit in the CONFIG2 register. The timebase module can be used  
in this mode to generate a periodic wakeup from stop mode.  
If the oscillator has not been enabled to operate in stop mode, the timebase module  
will not be active during stop mode. In stop mode, the timebase register is not  
accessible by the CPU.  
If the timebase functions are not required during stop mode, reduce the power  
consumption by stopping the timebase before enabling the STOP instruction.  
3.14 Motorola Scalable Controller Area Network Module (MSCAN)  
3.14.1 Wait Mode  
The Motorola scalable controller area network (MSCAN) module remains active  
after execution of the WAIT instruction. In wait mode, the MSCAN08 registers are  
not accessible by the CPU.  
If the MSCAN08 functions are not required during wait mode, reduce the power  
consumption by disabling the MSCAN08 module before enabling the WAIT  
instruction.  
3.14.2 Stop Mode  
The MSCAN08 module is inactive in stop mode. The STOP instruction does not  
affect MSCAN08 register states.  
Because the internal clock is inactive during stop mode, entering stop mode during  
an MSCAN08 transmission or reception results in invalid data.  
3.15 Exiting Wait Mode  
These events restart the CPU clock and load the program counter with the reset  
vector or with an interrupt vector:  
External reset — A logic 0 on the RST pin resets the MCU and loads the  
program counter with the contents of locations $FFFE and $FFFF.  
External interrupt — A high-to-low transition on an external interrupt pin  
(IRQ pin) loads the program counter with the contents of locations: $FFFA  
and $FFFB; IRQ pin.  
Break interrupt — In emulation mode, a break interrupt loads the program  
counter with the contents of $FFFC and $FFFD.  
Computer operating properly (COP) module reset — A timeout of the COP  
counter resets the MCU and loads the program counter with the contents of  
$FFFE and $FFFF.  
Data Sheet  
46  
MC68HC908GZ16  
Low-Power Modes  
MOTOROLA  
Low-Power Modes  
Exiting Wait Mode  
Low-voltage inhibit (LVI) module reset — A power supply voltage below the  
VTRIPF voltage resets the MCU and loads the program counter with the  
contents of locations $FFFE and $FFFF.  
Clock generator module (CGM) interrupt — A CPU interrupt request from  
the ICG loads the program counter with the contents of $FFF8 and $FFF9.  
Keyboard interrupt (KBI) module — A CPU interrupt request from the KBI  
module loads the program counter with the contents of $FFE0 and $FFE1.  
Timer 1 interface (TIM1) module interrupt — A CPU interrupt request from  
the TIM1 loads the program counter with the contents of:  
$FFF2 and $FFF3; TIM1 overflow  
$FFF4 and $FFF5; TIM1 channel 1  
$FFF6 and $FFF7; TIM1 channel 0  
Timer 2 interface (TIM2) module interrupt — A CPU interrupt request from  
the TIM2 loads the program counter with the contents of:  
$FFEC and $FFED; TIM2 overflow  
$FFEE and $FFEF; TIM2 channel 1  
$FFF0 and $FFF1; TIM2 channel 0  
Serial peripheral interface (SPI) module interrupt — A CPU interrupt request  
from the SPI loads the program counter with the contents of:  
$FFE8 and $FFE9; SPI transmitter  
$FFEA and $FFEB; SPI receiver  
Serial communications interface (SCI) module interrupt — A CPU interrupt  
request from the SCI loads the program counter with the contents of:  
$FFE2 and $FFE3; SCI transmitter  
$FFE4 and $FFE5; SCI receiver  
$FFE6 and $FFE7; SCI receiver error  
Analog-to-digital converter (ADC) module interrupt — A CPU interrupt  
request from the ADC loads the program counter with the contents of:  
$FFDE and $FFDF; ADC conversion complete.  
Timebase module (TBM) interrupt — A CPU interrupt request from the TBM  
loads the program counter with the contents of: $FFDC and $FFDD; TBM  
interrupt.  
Motorola scalable controller area network (MSCAN) module interrupt — A  
CPU interrupt request from the MSCAN08 loads the program counter with  
the contents of:  
$FFD4 and $FFD5; MSCAN08 transmitter  
$FFD6 and $FFD7; MSCAN08 receiver  
$FFD8 and $FFD9; MSCAN08 error  
$FFDA and $FFDB; MSCAN08 wakeup  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
47  
Low-Power Modes  
Low-Power Modes  
3.16 Exiting Stop Mode  
These events restart the system clocks and load the program counter with the reset  
vector or with an interrupt vector:  
External reset — A logic 0 on the RST pin resets the MCU and loads the  
program counter with the contents of locations $FFFE and $FFFF.  
External interrupt — A high-to-low transition on an external interrupt pin  
loads the program counter with the contents of locations:  
$FFFA and $FFFB; IRQ pin  
$FFE0 and $FFE1; keyboard interrupt pins  
Low-voltage inhibit (LVI) reset — A power supply voltage below the LVITRIPF  
voltage resets the MCU and loads the program counter with the contents of  
locations $FFFE and $FFFF.  
Timebase module (TBM) interrupt — A TBM interrupt loads the program  
counter with the contents of locations $FFDC and $FFDD when the  
timebase counter has rolled over. This allows the TBM to generate a  
periodic wakeup from stop mode.  
MSCAN08 interrupt — MSCAN08 bus activity can wake the MCU from CPU  
stop. However, until the oscillator starts up and synchronization is achieved  
the MSCAN08 will not respond to incoming data.  
Upon exit from stop mode, the system clocks begin running after an oscillator  
stabilization delay. A 12-bit stop recovery counter inhibits the system clocks for  
4096 CGMXCLK cycles after the reset or external interrupt.  
The short stop recovery bit, SSREC, in the CONFIG1 register controls the oscillator  
stabilization delay during stop recovery. Setting SSREC reduces stop recovery  
time from 4096 CGMXCLK cycles to 32 CGMXCLK cycles.  
NOTE:  
Use the full stop recovery time (SSREC = 0) in applications that use an external  
crystal.  
Data Sheet  
48  
MC68HC908GZ16  
Low-Power Modes  
MOTOROLA  
Data Sheet — MC68HC908GZ16  
Section 4. Resets and Interrupts  
4.1 Introduction  
Resets and interrupts are responses to exceptional events during program  
execution. A reset re-initializes the microcontroller (MCU) to its startup condition.  
An interrupt vectors the program counter to a service routine.  
4.2 Resets  
4.2.1 Effects  
A reset immediately returns the MCU to a known startup condition and begins  
program execution from a user-defined memory location.  
A reset:  
Immediately stops the operation of the instruction being executed  
Initializes certain control and status bits  
Loads the program counter with a user-defined reset vector address from  
locations $FFFE and $FFFF  
Selects CGMXCLK divided by four as the bus clock  
4.2.2 External Reset  
4.2.3 Internal Reset  
A logic 0 applied to the RST pin for a time, tRL, generates an external reset. An  
external reset sets the PIN bit in the system integration module (SIM) reset status  
register.  
Sources:  
Power-on reset (POR)  
Computer operating properly (COP)  
Low-power reset circuits  
Illegal opcode  
Illegal address  
All internal reset sources pull the RST pin low for 32 CGMXCLK cycles to allow  
resetting of external devices. The MCU is held in reset for an additional 32  
CGMXCLK cycles after releasing the RST pin.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
49  
Resets and Interrupts  
Resets and Interrupts  
4.2.3.1 Power-On Reset (POR)  
A power-on reset (POR) is an internal reset caused by a positive transition on the  
VDD pin. VDD at the POR must go below VPOR to reset the MCU. This distinguishes  
between a reset and a POR. The POR is not a brown-out detector, low-voltage  
detector, or glitch detector.  
A power-on reset:  
Holds the clocks to the central processor unit (CPU) and modules inactive  
for an oscillator stabilization delay of 4096 CGMXCLK cycles  
Drives the RST pin low during the oscillator stabilization delay  
Releases the RST pin 32 CGMXCLK cycles after the oscillator stabilization  
delay  
Releases the CPU to begin the reset vector sequence 64 CGMXCLK cycles  
after the oscillator stabilization delay  
Sets the POR and LVI bits in the SIM reset status register and clears all  
other bits in the register  
OSC1  
PORRST(1)  
4096  
CYCLES  
32  
CYCLES  
CGMXCLK  
CGMOUT  
RST PIN  
1. PORRST is an internally generated power-on reset pulse.  
Figure 4-1. Power-On Reset Recovery  
4.2.3.2 Computer Operating Properly (COP) Reset  
A computer operating properly (COP) reset is an internal reset caused by an  
overflow of the COP counter. A COP reset sets the COP bit in the SIM reset status  
register.  
To clear the COP counter and prevent a COP reset, write any value to the COP  
control register at location $FFFF.  
Data Sheet  
50  
MC68HC908GZ16  
Resets and Interrupts  
MOTOROLA  
Resets and Interrupts  
Resets  
4.2.3.3 Low-Voltage Inhibit (LVI) Reset  
A low-voltage inhibit (LVI) reset is an internal reset caused by a drop in the power  
supply voltage to the LVITRIPF voltage.  
An LVI reset:  
Holds the clocks to the CPU and modules inactive for an oscillator  
stabilization delay of 4096 CGMXCLK cycles after the power supply voltage  
rises to the LVITRIPR voltage  
Drives the RST pin low for as long as VDD is below the LVITRIPR voltage and  
during the oscillator stabilization delay  
Releases the RST pin 32 CGMXCLK cycles after the oscillator stabilization  
delay  
Releases the CPU to begin the reset vector sequence 64 CGMXCLK cycles  
after the oscillator stabilization delay  
Sets the LVI bit in the SIM reset status register  
4.2.3.4 Illegal Opcode Reset  
An illegal opcode reset is an internal reset caused by an opcode that is not in the  
instruction set. An illegal opcode reset sets the ILOP bit in the SIM reset status  
register.  
If the stop enable bit, STOP, in the mask option register is a logic 0, the STOP  
instruction causes an illegal opcode reset.  
4.2.3.5 Illegal Address Reset  
An illegal address reset is an internal reset caused by opcode fetch from an  
unmapped address. An illegal address reset sets the ILAD bit in the SIM reset  
status register.  
A data fetch from an unmapped address does not generate a reset.  
4.2.4 System Integration Module (SIM) Reset Status Register  
This read-only register contains flags to show reset sources. All flag bits are  
automatically cleared following a read of the register. Reset service can read the  
SIM reset status register to clear the register after power-on reset and to determine  
the source of any subsequent reset.  
The register is initialized on power-up as shown with the POR bit set and all other  
bits cleared. During a POR or any other internal reset, the RST pin is pulled low.  
After the pin is released, it will be sampled 32 CGMXCLK cycles later. If the pin is  
not above a VIH at that time, then the PIN bit in the SRSR may be set in addition to  
whatever other bits are set.  
NOTE:  
Only a read of the SIM reset status register clears all reset flags. After multiple  
resets from different sources without reading the register, multiple flags remain set.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Resets and Interrupts  
51  
Resets and Interrupts  
Address:  
$FE01  
Bit 7  
6
5
4
3
2
1
Bit 0  
0
Read:  
Write:  
POR:  
POR  
PIN  
COP  
ILOP  
ILAD  
MODRST  
LVI  
1
0
0
0
0
0
0
0
= Unimplemented  
Figure 4-2. SIM Reset Status Register (SRSR)  
POR — Power-On Reset Flag  
1 = Power-on reset since last read of SRSR  
0 = Read of SRSR since last power-on reset  
PIN — External Reset Flag  
1 = External reset via RST pin since last read of SRSR  
0 = POR or read of SRSR since last external reset  
COP — Computer Operating Properly Reset Bit  
1 = Last reset caused by timeout of COP counter  
0 = POR or read of SRSR since any reset  
ILOP — Illegal Opcode Reset Bit  
1 = Last reset caused by an illegal opcode  
0 = POR or read of SRSR since any reset  
ILAD — Illegal Address Reset Bit  
1 = Last reset caused by an opcode fetch from an illegal address  
0 = POR or read of SRSR since any reset  
MODRST — Monitor Mode Entry Module Reset Bit  
1 = Last reset caused by forced monitor mode entry.  
0 = POR or read of SRSR since any reset  
LVI — Low-Voltage Inhibit Reset Bit  
1 = Last reset caused by low-power supply voltage  
0 = POR or read of SRSR since any reset  
Data Sheet  
52  
MC68HC908GZ16  
MOTOROLA  
Resets and Interrupts  
Resets and Interrupts  
Interrupts  
4.3 Interrupts  
4.3.1 Effects  
An interrupt temporarily changes the sequence of program execution to respond to  
a particular event. An interrupt does not stop the operation of the instruction being  
executed, but begins when the current instruction completes its operation.  
An interrupt:  
Saves the CPU registers on the stack. At the end of the interrupt, the RTI  
instruction recovers the CPU registers from the stack so that normal  
processing can resume.  
Sets the interrupt mask (I bit) to prevent additional interrupts. Once an  
interrupt is latched, no other interrupt can take precedence, regardless of its  
priority.  
Loads the program counter with a user-defined vector address  
CONDITION CODE REGISTER  
ACCUMULATOR  
5
4
3
2
1
1
2
3
4
5
INDEX REGISTER (LOW BYTE)(1)  
PROGRAM COUNTER (HIGH BYTE)  
PROGRAM COUNTER (LOW BYTE)  
STACKING  
ORDER  
UNSTACKING  
ORDER  
$00FF DEFAULT ADDRESS ON RESET  
1. High byte of index register is not stacked.  
Figure 4-3. Interrupt Stacking Order  
After every instruction, the CPU checks all pending interrupts if the I bit is not set.  
If more than one interrupt is pending when an instruction is done, the highest  
priority interrupt is serviced first. In the example shown in Figure 4-4, if an interrupt  
is pending upon exit from the interrupt service routine, the pending interrupt is  
serviced before the LDA instruction is executed.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Resets and Interrupts  
53  
Resets and Interrupts  
CLI  
BACKGROUND  
ROUTINE  
LDA #$FF  
INT1  
PSHH  
INT1 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
INT2  
PSHH  
INT2 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
Figure 4-4. Interrupt Recognition Example  
The LDA opcode is prefetched by both the INT1 and INT2 RTI instructions.  
However, in the case of the INT1 RTI prefetch, this is a redundant operation.  
NOTE:  
To maintain compatibility with the M6805 Family, the H register is not pushed on  
the stack during interrupt entry. If the interrupt service routine modifies the H  
register or uses the indexed addressing mode, save the H register and then restore  
it prior to exiting the routine.  
See Figure 4-5 for a flowchart depicting interrupt processing.  
4.3.2 Sources  
The sources in Table 4-1 can generate CPU interrupt requests.  
4.3.2.1 Software Interrupt (SWI) Instruction  
The software interrupt (SWI) instruction causes a non-maskable interrupt.  
NOTE:  
A software interrupt pushes PC onto the stack. An SWI does not push PC – 1, as  
a hardware interrupt does.  
4.3.2.2 Break Interrupt  
The break module causes the CPU to execute an SWI instruction at a  
software-programmable break point.  
Data Sheet  
54  
MC68HC908GZ16  
Resets and Interrupts  
MOTOROLA  
Resets and Interrupts  
Interrupts  
FROM RESET  
YES  
BREAK  
INTERRUPT  
?
NO  
YES  
I BIT SET?  
NO  
YES  
YES  
IRQ  
INTERRUPT  
?
NO  
CGM  
INTERRUPT  
?
NO  
OTHER  
INTERRUPTS  
?
YES  
NO  
STACK CPU REGISTERS  
SET I BIT  
LOAD PC WITH INTERRUPT VECTOR  
FETCH NEXT  
INSTRUCTION  
SWI  
INSTRUCTION  
?
YES  
YES  
NO  
RTI  
INSTRUCTION  
?
UNSTACK CPU REGISTERS  
EXECUTE INSTRUCTION  
NO  
Figure 4-5. Interrupt Processing  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
55  
Resets and Interrupts  
Resets and Interrupts  
Table 4-1. Interrupt Sources  
INT Register  
Vector  
Address  
Mask(1)  
Priority(2)  
Source  
Flag  
Flag  
Reset  
None  
None  
IRQF  
None  
None  
None  
0
0
1
$FFFE$FFFF  
$FFFC$FFFD  
SWI instruction  
IRQ pin  
None  
IF1  
IMASK1  
$FFFA$FFFB  
$FFF8–$FFF9  
$FFF6–$FFF7  
$FFF4–$FFF5  
$FFF2–$FFF3  
$FFF0–$FFF1  
$FFEE–$FFEF  
$FFEC–$FFED  
CGM change in lock  
TIM1 channel 0  
PLLF  
CH0F  
CH1F  
TOF  
PLLIE  
CH0IE  
CH1IE  
TOIE  
IF2  
IF3  
IF4  
IF5  
IF6  
IF7  
IF8  
2
3
4
5
6
7
8
TIM1 channel 1  
TIM1 overflow  
TIM2 channel 0  
CH0F  
CH1F  
TOF  
CH0IE  
CH1IE  
TOIE  
TIM2 channel 1  
TIM2 overflow  
SPI receiver full  
SPI overflow  
SPRF  
OVRF  
MODF  
SPTE  
OR  
SPRIE  
ERRIE  
ERRIE  
SPTIE  
ORIE  
IF9  
9
$FFEA–$FFEB  
$FFE8–$FFE9  
SPI mode fault  
SPI transmitter empty  
SCI receiver overrun  
SCI noise flag  
IF10  
10  
NF  
NEIE  
IF11  
11  
$FFE6–$FFE7  
SCI framing error  
SCI parity error  
FE  
FEIE  
PE  
PEIE  
SCI receiver full  
SCI input idle  
SCRF  
IDLE  
SCTE  
TC  
SCRIE  
ILIE  
IF12  
IF13  
12  
13  
$FFE4–$FFE5  
$FFE2–$FFE3  
SCI transmitter empty  
SCI transmission complete  
Keyboard pin  
SCTIE  
TCIE  
KEYF  
COCO  
TBIF  
WUPIF  
IMASKK  
AIEN  
IF14  
IF15  
IF16  
IF17  
14  
15  
16  
17  
$FFE0–$FFE1  
$FFDE–$FFDF  
$FFDC–$FFDD  
$FFDA–$FFDB  
ADC conversion complete  
Timebase  
TBIE  
MSCAN08 receiver wakeup  
WUPIE  
RWRNIF  
TWRNIF  
RERIF  
TERRIF  
BOFFIF  
OVRIF  
RWRNIE  
TWRNIE  
RERRIE  
TERRIE  
BOFFIE  
OVRIE  
MSCAN08 error  
IF18  
18  
$FFD8–$FFD9  
MSCAN08 receiver  
RXF  
RXFIE  
IF19  
IF20  
19  
20  
$FFD6–$FFD7  
$FFD4–$FFD5  
TXE2  
TXE1  
TXE0  
TXEIE2  
TXEIE1  
TXEIE0  
MSCAN08 transmitter  
1. The I bit in the condition code register is a global mask for all interrupt sources except the SWI instruction.  
2. 0 = highest priority  
Data Sheet  
56  
MC68HC908GZ16  
MOTOROLA  
Resets and Interrupts  
Resets and Interrupts  
Interrupts  
4.3.2.3 IRQ Pin  
A logic 0 on the IRQ pin latches an external interrupt request.  
4.3.2.4 Clock Generator (CGM)  
The CGM can generate a CPU interrupt request every time the phase-locked loop  
circuit (PLL) enters or leaves the locked state. When the LOCK bit changes state,  
the PLL flag (PLLF) is set. The PLL interrupt enable bit (PLLIE) enables PLLF CPU  
interrupt requests. LOCK is in the PLL bandwidth control register. PLLF is in the  
PLL control register.  
4.3.2.5 Timer Interface Module 1 (TIM1)  
TIM1 CPU interrupt sources:  
TIM1 overflow flag (TOF) — The TOF bit is set when the TIM1 counter value  
rolls over to $0000 after matching the value in the TIM1 counter modulo  
registers. The TIM1 overflow interrupt enable bit, TOIE, enables TIM1  
overflow CPU interrupt requests. TOF and TOIE are in the TIM1 status and  
control register.  
TIM1 channel flags (CH1F–CH0F) — The CHxF bit is set when an input  
capture or output compare occurs on channel x. The channel x interrupt  
enable bit, CHxIE, enables channel x TIM1 CPU interrupt requests. CHxF  
and CHxIE are in the TIM1 channel x status and control register.  
4.3.2.6 Timer Interface Module 2 (TIM2)  
TIM2 CPU interrupt sources:  
TIM2 overflow flag (TOF) — The TOF bit is set when the TIM2 counter value  
rolls over to $0000 after matching the value in the TIM2 counter modulo  
registers. The TIM2 overflow interrupt enable bit, TOIE, enables TIM2  
overflow CPU interrupt requests. TOF and TOIE are in the TIM2 status and  
control register.  
TIM2 channel flags (CH1F–CH0F) — The CHxF bit is set when an input  
capture or output compare occurs on channel x. The channel x interrupt  
enable bit, CHxIE, enables channel x TIM2 CPU interrupt requests. CHxF  
and CHxIE are in the TIM2 channel x status and control register.  
4.3.2.7 Serial Peripheral Interface (SPI)  
SPI CPU interrupt sources:  
SPI receiver full bit (SPRF) — The SPRF bit is set every time a byte  
transfers from the shift register to the receive data register. The SPI receiver  
interrupt enable bit, SPRIE, enables SPRF CPU interrupt requests. SPRF is  
in the SPI status and control register and SPRIE is in the SPI control  
register.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Resets and Interrupts  
57  
Resets and Interrupts  
SPI transmitter empty (SPTE) — The SPTE bit is set every time a byte  
transfers from the transmit data register to the shift register. The SPI  
transmit interrupt enable bit, SPTIE, enables SPTE CPU interrupt requests.  
SPTE is in the SPI status and control register and SPTIE is in the SPI control  
register.  
Mode fault bit (MODF) — The MODF bit is set in a slave SPI if the SS pin  
goes high during a transmission with the mode fault enable bit (MODFEN)  
set. In a master SPI, the MODF bit is set if the SS pin goes low at any time  
with the MODFEN bit set. The error interrupt enable bit, ERRIE, enables  
MODF CPU interrupt requests. MODF, MODFEN, and ERRIE are in the SPI  
status and control register.  
Overflow bit (OVRF) — The OVRF bit is set if software does not read the  
byte in the receive data register before the next full byte enters the shift  
register. The error interrupt enable bit, ERRIE, enables OVRF CPU interrupt  
requests. OVRF and ERRIE are in the SPI status and control register.  
4.3.2.8 Serial Communications Interface (SCI)  
SCI CPU interrupt sources:  
SCI transmitter empty bit (SCTE) — SCTE is set when the SCI data register  
transfers a character to the transmit shift register. The SCI transmit interrupt  
enable bit, SCTIE, enables transmitter CPU interrupt requests. SCTE is in  
SCI status register 1. SCTIE is in SCI control register 2.  
Transmission complete bit (TC) — TC is set when the transmit shift register  
and the SCI data register are empty and no break or idle character has been  
generated. The transmission complete interrupt enable bit, TCIE, enables  
transmitter CPU interrupt requests. TC is in SCI status register 1. TCIE is in  
SCI control register 2.  
SCI receiver full bit (SCRF) — SCRF is set when the receive shift register  
transfers a character to the SCI data register. The SCI receive interrupt  
enable bit, SCRIE, enables receiver CPU interrupts. SCRF is in SCI status  
register 1. SCRIE is in SCI control register 2.  
Idle input bit (IDLE) — IDLE is set when 10 or 11 consecutive logic 1s shift  
in from the RxD pin. The idle line interrupt enable bit, ILIE, enables IDLE  
CPU interrupt requests. IDLE is in SCI status register 1. ILIE is in SCI control  
register 2.  
Receiver overrun bit (OR) — OR is set when the receive shift register shifts  
in a new character before the previous character was read from the SCI data  
register. The overrun interrupt enable bit, ORIE, enables OR to generate  
SCI error CPU interrupt requests. OR is in SCI status register 1. ORIE is in  
SCI control register 3.  
Data Sheet  
58  
MC68HC908GZ16  
Resets and Interrupts  
MOTOROLA  
Resets and Interrupts  
Interrupts  
Noise flag (NF) — NF is set when the SCI detects noise on incoming data  
or break characters, including start, data, and stop bits. The noise error  
interrupt enable bit, NEIE, enables NF to generate SCI error CPU interrupt  
requests. NF is in SCI status register 1. NEIE is in SCI control register 3.  
Framing error bit (FE) — FE is set when a logic 0 occurs where the receiver  
expects a stop bit. The framing error interrupt enable bit, FEIE, enables FE  
to generate SCI error CPU interrupt requests. FE is in SCI status register 1.  
FEIE is in SCI control register 3.  
Parity error bit (PE) — PE is set when the SCI detects a parity error in  
incoming data. The parity error interrupt enable bit, PEIE, enables PE to  
generate SCI error CPU interrupt requests. PE is in SCI status register 1.  
PEIE is in SCI control register 3.  
4.3.2.9 KBD0–KBD7 Pins  
A logic 0 on a keyboard interrupt pin latches an external interrupt request.  
4.3.2.10 Analog-to-Digital Converter (ADC)  
When the AIEN bit is set, the ADC module is capable of generating a CPU interrupt  
after each ADC conversion. The COCO bit is not used as a conversion complete  
flag when interrupts are enabled.  
4.3.2.11 Timebase Module (TBM)  
The timebase module can interrupt the CPU on a regular basis with a rate defined  
by TBR2–TBR0. When the timebase counter chain rolls over, the TBIF flag is set.  
If the TBIE bit is set, enabling the timebase interrupt, the counter chain overflow will  
generate a CPU interrupt request.  
Interrupts must be acknowledged by writing a logic 1 to the TACK bit.  
4.3.2.12 Motorola Scalable Controller Area Network Module (MSCAN)  
MSCAN08 interrupt sources:  
MSCAN08 transmitter empty bits (TXE0–TXE2) — The TXEx bit is set when  
the corresponding MSCAN08 data buffer is empty. The MSCAN08 transmit  
interrupt enable bits, TXEIE0–TXEIE2, enables transmitter CPU interrupt  
requests. TXEx is in MSCAN08 transmitter flag register. TXEIEx is in  
MSCAN08 transmitter control register.  
MSCAN08 receiver full bit (RXF) — The RXF bit is set when the a MSCAN08  
message has been successfully received and loaded into the foreground  
receive buffer. The MSCAN08 receive interrupt enable bit, RXFIE, enables  
receiver CPU interrupt requests. RXF is in MSCAN08 receiver flag register.  
RXFIE is in MSCAN08 receiver interrupt enable register.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Resets and Interrupts  
59  
Resets and Interrupts  
MSCAN08 wakeup bit (WUPIF) — WUPIF is set when activity on the CAN  
bus occurred during the MSCAN08 internal sleep mode. The wakeup  
interrupt enable bit, WUPIE, enables MSCAN08 wakeup CPU interrupt  
requests. WUPIF is in MSCAN08 receiver flag register. WUPIE is in  
MSCAN08 receiver interrupt enable register.  
Overrun bit (OVRIF) — OVRIF is set when both the foreground and the  
background receive message buffers are filled with correctly received  
messages and a further message is being received from the bus. The  
overrun interrupt enable bit, OVRIE, enables OVRIF to generate MSCAN08  
error CPU interrupt requests. OVRIF is in MSCAN08 receiver flag register.  
OVRIE is in MSCAN08 receiver interrupt enable register.  
Receiver Warning bit (RWRNIF) — RWRNIF is set when the receive error  
counter has reached the CPU warning limit of 96. The receiver warning  
interrupt enable bit, RWRNIE, enables RWRNIF to generate MSCAN08  
error CPU interrupt requests. RWRNIF is in MSCAN08 receiver flag register.  
RWRNIE is in MSCAN08 receiver interrupt enable register.  
Transmitter Warning bit (TWRNIF) — TWRNIF is set when the transmit error  
counter has reached the CPU warning limit of 96. The transmitter warning  
interrupt enable bit, TWRNIF, enables TWRNIF to generate MSCAN08 error  
CPU interrupt requests. TWRNIF is in MSCAN08 receiver flag register.  
TWRNIE is in MSCAN08 receiver interrupt enable register.  
Receiver Error Passive bit (RERRIF) — RERRIF is set when the receive  
error counter has exceeded the error passive limit of 127 and the MSCAN08  
has gone to error passive state. The receiver error passive interrupt enable  
bit, RERRIE, enables RERRIF to generate MSCAN08 error CPU interrupt  
requests. RERRIF is in MSCAN08 receiver flag register. RERRIE is in  
MSCAN08 receiver interrupt enable register.  
Transmitter Error Passive bit (TERRIF) — TERRIF is set when the transmit  
error counter has exceeded the error passive limit of 127 and the MSCAN08  
has gone to error passive state. The transmit error passive interrupt enable  
bit, TERRIE, enables TERRIF to generate MSCAN08 error CPU interrupt  
requests. TERRIF is in MSCAN08 receiver flag register. TERRIE is in  
MSCAN08 receiver interrupt enable register.  
Bus Off bit (BOFFIF) — BOFFIF is set when the transmit error counter has  
exceeded 255 and MSCAN08 has gone to bus off state. The bus off interrupt  
enable bit, BOFFIE, enables BOFFIF to generate MSCAN08 error CPU  
interrupt requests. BOFFIF is in MSCAN08 receiver flag register. BOFFIE is  
in MSCAN08 receiver interrupt enable register.  
Data Sheet  
60  
MC68HC908GZ16  
Resets and Interrupts  
MOTOROLA  
Resets and Interrupts  
Interrupts  
4.3.3 Interrupt Status Registers  
The flags in the interrupt status registers identify maskable interrupt sources.  
Table 4-2 summarizes the interrupt sources and the interrupt status register flags  
that they set. The interrupt status registers can be useful for debugging.  
Table 4-2. Interrupt Source Flags  
Interrupt  
Source  
Interrupt Status  
Register Flag  
Reset  
SWI instruction  
IRQ pin  
IF1  
CGM change of lock  
TIM1 channel 0  
TIM1 channel 1  
TIM1 overflow  
TIM2 channel 0  
TIM2 channel 1  
TIM2 overflow  
SPI receive  
IF2  
IF3  
IF4  
IF5  
IF6  
IF7  
IF8  
IF9  
SPI transmit  
IF10  
IF11  
IF12  
IF13  
IF14  
IF15  
IF16  
IF17  
IF18  
IF19  
IF20  
SCI error  
SCI receive  
SCI transmit  
Keyboard  
ADC conversion complete  
Timebase  
MSCAN08 wakeup  
MSCAN08 error  
MSCAN08 receive  
MSCAN08 transmit  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
61  
Resets and Interrupts  
Resets and Interrupts  
4.3.3.1 Interrupt Status Register 1  
Address:  
$FE04  
Bit 7  
IF6  
R
6
5
IF4  
R
4
IF3  
R
3
IF2  
R
2
IF1  
R
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
IF5  
R
R
0
R
0
0
0
0
0
0
0
R
= Reserved  
Figure 4-6. Interrupt Status Register 1 (INT1)  
IF6–IF1 — Interrupt Flags 6–1  
These flags indicate the presence of interrupt requests from the sources shown  
in Table 4-2.  
1 = Interrupt request present  
0 = No interrupt request present  
Bit 1 and Bit 0 — Always read 0  
4.3.3.2 Interrupt Status Register 2  
Address:  
$FE05  
Bit 7  
IF14  
R
6
5
IF12  
R
4
IF11  
R
3
IF10  
R
2
IF9  
R
1
IF8  
R
Bit 0  
IF7  
R
Read:  
Write:  
Reset:  
IF13  
R
0
0
0
0
0
0
0
0
R
= Reserved  
Figure 4-7. Interrupt Status Register 2 (INT2)  
IF14–IF7 — Interrupt Flags 14–7  
These flags indicate the presence of interrupt requests from the sources shown  
in Table 4-2.  
1 = Interrupt request present  
0 = No interrupt request present  
Data Sheet  
62  
MC68HC908GZ16  
Resets and Interrupts  
MOTOROLA  
Resets and Interrupts  
Interrupts  
4.3.3.3 Interrupt Status Register 3  
Address:  
$FE06  
Bit 7  
0
6
5
IF20  
R
4
IF19  
R
3
IF18  
R
2
IF17  
R
1
IF16  
R
Bit 0  
IF15  
R
Read:  
Write:  
Reset:  
0
R
R
0
0
0
0
0
0
0
0
R
= Reserved  
Figure 4-8. Interrupt Status Register 3 (INT3)  
IF20–IF15 — Interrupt Flags 20–15  
This flag indicates the presence of an interrupt request from the source shown  
in Table 4-2.  
1 = Interrupt request present  
0 = No interrupt request present  
Bits 7–6 — Always read 0  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Resets and Interrupts  
63  
Resets and Interrupts  
Data Sheet  
64  
MC68HC908GZ16  
MOTOROLA  
Resets and Interrupts  
Data Sheet — MC68HC908GZ16  
Section 5. Analog-to-Digital Converter (ADC)  
5.1 Introduction  
This section describes the 10-bit analog-to-digital converter (ADC).  
Features of the ADC module include:  
5.2 Features  
Eight channels with multiplexed input  
Linear successive approximation with monotonicity  
10-bit resolution  
Single or continuous conversion  
Conversion complete flag or conversion complete interrupt  
Selectable ADC clock  
Left or right justified result  
Left justified sign data mode  
5.3 Functional Description  
The ADC provides eight pins for sampling external sources at pins  
PTB7/AD7–PTB0/AD0. An analog multiplexer allows the single ADC converter to  
select one of eight ADC channels as ADC voltage in (VADIN). VADIN is converted  
by the successive approximation register-based analog-to-digital converter. When  
the conversion is completed, ADC places the result in the ADC data register and  
sets a flag or generates an interrupt. See Figure 5-1.  
5.3.1 ADC Port I/O Pins  
PTB7/AD7–PTB0/AD0 are general-purpose I/O (input/output) pins that share with  
the ADC channels. The channel select bits define which ADC channel/port pin will  
be used as the input signal. The ADC overrides the port I/O logic by forcing that pin  
as input to the ADC. The remaining ADC channels/port pins are controlled by the  
port I/O logic and can be used as general-purpose I/O. Writes to the port register  
or data direction register (DDR) will not have any affect on the port pin that is  
selected by the ADC. Read of a port pin in use by the ADC will return a logic 0.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Analog-to-Digital Converter (ADC)  
65  
Analog-to-Digital Converter (ADC)  
INTERNAL  
DATA BUS  
READ DDRBx  
WRITE DDRBx  
DISABLE  
DDRBx  
PTBx  
RESET  
WRITE PTBx  
READ PTBx  
PTBx  
ADC CHANNEL x  
DISABLE  
ADC DATA REGISTER  
ADC  
VOLTAGE IN  
(VADIN  
CONVERSION  
COMPLETE  
ADCH4–ADCH0  
)
CHANNEL  
SELECT  
INTERRUPT  
LOGIC  
ADC  
ADC CLOCK  
AIEN COCO  
CGMXCLK  
CLOCK  
GENERATOR  
BUS CLOCK  
ADIV2–ADIV0 ADICLK  
Figure 5-1. ADC Block Diagram  
5.3.2 Voltage Conversion  
When the input voltage to the ADC equals VREFH, the ADC converts the signal to  
$3FF (full scale). If the input voltage equals VREFL, the ADC converts it to $000.  
Input voltages between VREFH and VREFL are a straight-line linear conversion.  
NOTE:  
The ADC input voltage must always be greater than VSSAD and less than VDDAD.  
Connect the VDDAD pin to the same voltage potential as the VDD pin, and connect  
the VSSAD pin to the same voltage potential as the VSS pin.  
The VDDAD pin should be routed carefully for maximum noise immunity.  
Data Sheet  
66  
MC68HC908GZ16  
Analog-to-Digital Converter (ADC)  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
Functional Description  
5.3.3 Conversion Time  
Conversion starts after a write to the ADC status and control register (ADSCR).  
One conversion will take between 16 and 17 ADC clock cycles. The ADIVx and  
ADICLK bits should be set to provide a 1-MHz ADC clock frequency.  
16 to 17 ADC cycles  
Conversion time =  
ADC frequency  
Number of bus cycles = conversion time × bus frequency  
5.3.4 Conversion  
In continuous conversion mode, the ADC data register will be filled with new data  
after each conversion. Data from the previous conversion will be overwritten  
whether that data has been read or not. Conversions will continue until the ADCO  
bit is cleared. The COCO bit is set after each conversion and will stay set until the  
next read of the ADC data register.  
In single conversion mode, conversion begins with a write to the ADSCR. Only one  
conversion occurs between writes to the ADSCR.  
When a conversion is in process and the ADCSCR is written, the current  
conversion data should be discarded to prevent an incorrect reading.  
5.3.5 Accuracy and Precision  
The conversion process is monotonic and has no missing codes.  
5.3.6 Result Justification  
The conversion result may be formatted in four different ways:  
1. Left justified  
2. Right justified  
3. Left Justified sign data mode  
4. 8-bit truncation mode  
All four of these modes are controlled using MODE0 and MODE1 bits located in  
the ADC clock register (ADCLK).  
Left justification will place the eight most significant bits (MSB) in the corresponding  
ADC data register high, ADRH. This may be useful if the result is to be treated as  
an 8-bit result where the two least significant bits (LSB), located in the ADC data  
register low, ADRL, can be ignored. However, ADRL must be read after ADRH or  
else the interlocking will prevent all new conversions from being stored.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Analog-to-Digital Converter (ADC)  
67  
Analog-to-Digital Converter (ADC)  
Right justification will place only the two MSBs in the corresponding ADC data  
register high, ADRH, and the eight LSBs in ADC data register low, ADRL. This  
mode of operation typically is used when a 10-bit unsigned result is desired.  
Left justified sign data mode is similar to left justified mode with one exception. The  
MSB of the 10-bit result, AD9 located in ADRH, is complemented. This mode of  
operation is useful when a result, represented as a signed magnitude from  
mid-scale, is needed. Finally, 8-bit truncation mode will place the eight MSBs in the  
ADC data register low, ADRL. The two LSBs are dropped. This mode of operation  
is used when compatibility with 8-bit ADC designs are required. No interlocking  
between ADRH and ADRL is present.  
NOTE:  
Quantization error is affected when only the most significant eight bits are used as  
a result. See Figure 5-2.  
8-BIT 10-BIT  
RESULT RESULT  
IDEAL 8-BIT CHARACTERISTIC  
WITH QUANTIZATION = 1/2  
10-BIT TRUNCATED  
TO 8-BIT RESULT  
003  
00B  
00A  
009  
IDEAL 10-BIT CHARACTERISTIC  
WITH QUANTIZATION = 1/2  
002  
001  
000  
008  
007  
006  
005  
004  
003  
002  
001  
000  
WHEN TRUNCATION IS USED,  
ERROR FROM IDEAL 8-BIT = 3/8 LSB  
DUE TO NON-IDEAL QUANTIZATION.  
INPUT VOLTAGE  
1/2  
2 1/2  
4 1/2  
6 1/2  
8 1/2  
REPRESENTED AS 10-BIT  
9 1/2  
INPUT VOLTAGE  
1 1/2  
3 1/2  
5 1/2  
7 1/2  
1/2  
1 1/2  
2 1/2  
REPRESENTED AS 8-BIT  
Figure 5-2. Bit Truncation Mode Error  
Data Sheet  
68  
MC68HC908GZ16  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
Analog-to-Digital Converter (ADC)  
Monotonicity  
5.4 Monotonicity  
5.5 Interrupts  
The conversion process is monotonic and has no missing codes.  
When the AIEN bit is set, the ADC module is capable of generating CPU interrupts  
after each ADC conversion. A CPU interrupt is generated if the COCO bit is at  
logic 0. The COCO bit is not used as a conversion complete flag when interrupts  
are enabled.  
5.6 Low-Power Modes  
The WAIT and STOP instruction can put the MCU in low power- consumption  
standby modes.  
5.6.1 Wait Mode  
The ADC continues normal operation during wait mode. Any enabled CPU interrupt  
request from the ADC can bring the MCU out of wait mode. If the ADC is not  
required to bring the MCU out of wait mode, power down the ADC by setting  
ADCH4–ADCH0 bits in the ADC status and control register before executing the  
WAIT instruction.  
5.6.2 Stop Mode  
5.7 I/O Signals  
The ADC module is inactive after the execution of a STOP instruction. Any pending  
conversion is aborted. ADC conversions resume when the MCU exits stop mode  
after an external interrupt. Allow one conversion cycle to stabilize the analog  
circuitry.  
The ADC module has eight pins shared with port B, PTB7/AD7–PTB0/AD0.  
5.7.1 ADC Analog Power Pin (VDDAD  
)
The ADC analog portion uses VDDAD as its power pin. Connect the VDDAD pin to  
the same voltage potential as VDD. External filtering may be necessary to ensure  
clean VDDAD for good results.  
NOTE:  
For maximum noise immunity, route VDDAD carefully and place bypass capacitors  
as close as possible to the package.  
VDDAD and VREFH are double-bonded on the MC68HC908GZ16.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Analog-to-Digital Converter (ADC)  
69  
Analog-to-Digital Converter (ADC)  
5.7.2 ADC Analog Ground Pin (VSSAD  
)
The ADC analog portion uses VSSAD as its ground pin. Connect the VSSAD pin to  
the same voltage potential as VSS.  
NOTE:  
Route VSSAD cleanly to avoid any offset errors.  
VSSAD and VREFL are double-bonded on the MC68HC908GZ16.  
5.7.3 ADC Voltage Reference High Pin (VREFH  
)
The ADC analog portion uses VREFH as its upper voltage reference pin. By default,  
connect the VREFH pin to the same voltage potential as VDD. External filtering is  
often necessary to ensure a clean VREFH for good results. Any noise present on  
this pin will be reflected and possibly magnified in A/D conversion values.  
NOTE:  
For maximum noise immunity, route VREFH carefully and place bypass capacitors  
as close as possible to the package. Routing VREFH close and parallel to VREFL  
may improve common mode noise rejection.  
VDDAD and VREFH are double-bonded on the MC68HC908GZ16.  
5.7.4 ADC Voltage Reference Low Pin (VREFL  
)
The ADC analog portion uses VREFL as its lower voltage reference pin. By default,  
connect the VREFH pin to the same voltage potential as VSS. External filtering is  
often necessary to ensure a clean VREFL for good results. Any noise present on this  
pin will be reflected and possibly magnified in A/D conversion values.  
NOTE:  
For maximum noise immunity, route VREFL carefully and, if not connected to VSS,  
place bypass capacitors as close as possible to the package. Routing VREFH close  
and parallel to VREFL may improve common mode noise rejection.  
VSSAD and VREFL are double-bonded on the MC68HC908GZ16.  
5.7.5 ADC Voltage In (VADIN  
)
VADIN is the input voltage signal from one of the eight ADC channels to the ADC  
module.  
Data Sheet  
70  
MC68HC908GZ16  
Analog-to-Digital Converter (ADC)  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
I/O Registers  
5.8 I/O Registers  
These I/O registers control and monitor ADC operation:  
ADC status and control register (ADSCR)  
ADC data register (ADRH and ADRL)  
ADC clock register (ADCLK)  
5.8.1 ADC Status and Control Register  
Function of the ADC status and control register (ADSCR) is described here.  
Address:  
$003C  
Bit 7  
6
AIEN  
0
5
ADCO  
0
4
ADCH4  
1
3
ADCH3  
1
2
ADCH2  
1
1
ADCH1  
1
Bit 0  
ADCH0  
1
Read:  
Write:  
Reset:  
COCO  
0
Figure 5-3. ADC Status and Control Register (ADSCR)  
COCO — Conversions Complete Bit  
In non-interrupt mode (AIEN = 0), COCO is a read-only bit that is set at the end  
of each conversion. COCO will stay set until cleared by a read of the ADC data  
register. Reset clears this bit.  
In interrupt mode (AIEN = 1), COCO is a read-only bit that is not set at the end  
of a conversion. It always reads as a logic 0.  
1 = Conversion completed (AIEN = 0)  
0 = Conversion not completed (AIEN = 0) or CPU interrupt enabled  
(AIEN = 1)  
AIEN — ADC Interrupt Enable Bit  
When this bit is set, an interrupt is generated at the end of an ADC conversion.  
The interrupt signal is cleared when the data register is read or the status/control  
register is written. Reset clears the AIEN bit.  
1 = ADC interrupt enabled  
0 = ADC interrupt disabled  
ADCO — ADC Continuous Conversion Bit  
When set, the ADC will convert samples continuously and update the ADR  
register at the end of each conversion. Only one conversion is completed  
between writes to the ADSCR when this bit is cleared. Reset clears the ADCO  
bit.  
1 = Continuous ADC conversion  
0 = One ADC conversion  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Analog-to-Digital Converter (ADC)  
71  
Analog-to-Digital Converter (ADC)  
ADCH4–ADCH0 — ADC Channel Select Bits  
ADCH4–ADCH0 form a 5-bit field which is used to select one of 16 ADC  
channels. Only eight channels, AD7–AD0, are available on this MCU. The  
channels are detailed in Table 5-1. Care should be taken when using a port pin  
as both an analog and digital input simultaneously to prevent switching noise  
from corrupting the analog signal. See Table 5-1.  
The ADC subsystem is turned off when the channel select bits are all set to 1.  
This feature allows for reduced power consumption for the MCU when the ADC  
is not being used.  
NOTE:  
Recovery from the disabled state requires one conversion cycle to stabilize.  
The voltage levels supplied from internal reference nodes, as specified in  
Table 5-1, are used to verify the operation of the ADC converter both in production  
test and for user applications.  
Table 5-1. Mux Channel Select(1)  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
Input Select  
PTB0/AD0  
PTB1/AD1  
PTB2/AD2  
PTB3/AD3  
PTB4/AD4  
PTB5/AD5  
PTB6/AD6  
PTB7/AD7  
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
0
1
0
1
0
1
0
0
1
Unused  
VREFH  
VREFL  
1
1
1
1
1
1
1
1
0
1
ADC power off  
1. If any unused channels are selected, the resulting ADC conversion will be unknown or re-  
served.  
Data Sheet  
72  
MC68HC908GZ16  
Analog-to-Digital Converter (ADC)  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
I/O Registers  
5.8.2 ADC Data Register High and Data Register Low  
5.8.2.1 Left Justified Mode  
In left justified mode, the ADRH register holds the eight MSBs of the  
10-bit result. The only difference from left justified mode is that the AD9 is  
complemented. The ADRL register holds the two LSBs of the 10-bit result. All other  
bits read as 0. ADRH and ADRL are updated each time an ADC single channel  
conversion completes. Reading ADRH latches the contents of ADRL until ADRL is  
read. All subsequent results will be lost until the ADRH and ADRL reads are  
completed.  
Address:  
$003D  
Bit 7  
ADRH  
Bit 0  
6
5
4
3
2
1
Read:  
Write:  
AD9  
AD8  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
Reset:  
Address:  
Read:  
Unaffected by reset  
$003E  
AD1  
ADRL  
0
AD0  
0
0
0
0
0
Write:  
Reset:  
Unaffected by reset  
= Unimplemented  
Figure 5-4. ADC Data Register High (ADRH) and Low (ADRL)  
5.8.2.2 Right Justified Mode  
In right justified mode, the ADRH register holds the two MSBs of the  
10-bit result. All other bits read as 0. The ADRL register holds the eight LSBs of the  
10-bit result. ADRH and ADRL are updated each time an ADC single channel  
conversion completes. Reading ADRH latches the contents of ADRL until ADRL is  
read. All subsequent results will be lost until the ADRH and ADRL reads are  
completed.  
Address:  
$003D  
Bit 7  
0
ADRH  
Bit 0  
6
0
5
0
4
0
3
0
2
0
1
Read:  
Write:  
AD9  
AD8  
Reset:  
Address:  
Read:  
Unaffected by reset  
$003E  
AD7  
ADRL  
AD0  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
Write:  
Reset:  
Unaffected by reset  
= Unimplemented  
Figure 5-5. ADC Data Register High (ADRH) and Low (ADRL)  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
73  
Analog-to-Digital Converter (ADC)  
Analog-to-Digital Converter (ADC)  
5.8.2.3 Left Justified Signed Data Mode  
In left justified signed data mode, the ADRH register holds the eight MSBs of the  
10-bit result. The only difference from left justified mode is that the AD9 is  
complemented. The ADRL register holds the two LSBs of the 10-bit result. All other  
bits read as 0. ADRH and ADRL are updated each time an ADC single channel  
conversion completes. Reading ADRH latches the contents of ADRL until ADRL is  
read. All subsequent results will be lost until the ADRH and ADRL reads are  
completed.  
Address:  
$003D  
Bit 7  
6
5
4
3
2
1
Bit 0  
AD2  
Read:  
Write:  
AD9  
AD8  
AD7  
AD6  
AD5  
AD4  
AD3  
Reset:  
Address:  
Read:  
Unaffected by reset  
$003E  
AD1  
AD0  
0
0
0
0
0
0
Write:  
Reset:  
Unaffected by reset  
= Unimplemented  
Figure 5-6. ADC Data Register High (ADRH) and Low (ADRL)  
5.8.2.4 Eight Bit Truncation Mode  
In 8-bit truncation mode, the ADRL register holds the eight MSBs of the 10-bit  
result. The ADRH register is unused and reads as 0. The ADRL register is updated  
each time an ADC single channel conversion completes. In 8-bit mode, the ADRL  
register contains no interlocking with ADRH.  
Address:  
$003D  
Bit 7  
0
ADRH  
Bit 0  
0
6
0
5
0
4
0
3
0
2
0
1
0
Read:  
Write:  
Reset:  
Address:  
Read:  
Unaffected by reset  
$003E  
AD9  
ADRL  
AD2  
AD8  
AD7  
AD6  
AD5  
AD4  
AD3  
Write:  
Reset:  
Unaffected by reset  
= Unimplemented  
Figure 5-7. ADC Data Register High (ADRH) and Low (ADRL)  
Data Sheet  
74  
MC68HC908GZ16  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
Analog-to-Digital Converter (ADC)  
I/O Registers  
5.8.3 ADC Clock Register  
The ADC clock register (ADCLK) selects the clock frequency for the ADC.  
Address:  
$003F  
Bit 7  
6
ADIV1  
0
5
ADIV0  
0
4
3
2
MODE0  
1
1
R
0
Bit 0  
0
Read:  
Write:  
Reset:  
ADIV2  
0
ADICLK  
MODE1  
0
0
0
= Unimplemented  
R
= Reserved  
Figure 5-8. ADC Clock Register (ADCLK)  
ADIV2–ADIV0 — ADC Clock Prescaler Bits  
ADIV2–ADIV0 form a 3-bit field which selects the divide ratio used by the ADC  
to generate the internal ADC clock. Table 5-2 shows the available clock  
configurations. The ADC clock should be set to approximately 1 MHz.  
Table 5-2. ADC Clock Divide Ratio  
ADIV2  
ADIV1  
ADIV0  
ADC Clock Rate  
ADC input clock ÷ 1  
ADC input clock ÷ 2  
ADC input clock ÷ 4  
ADC input clock ÷ 8  
ADC input clock ÷ 16  
0
0
0
0
1
0
0
1
1
0
1
0
1
X(1)  
X(1)  
1. X = Don’t care  
ADICLK — ADC Input Clock Select Bit  
ADICLK selects either the bus clock or the oscillator output clock (CGMXCLK)  
as the input clock source to generate the internal ADC clock. Reset selects  
CGMXCLK as the ADC clock source.  
1 = Internal bus clock  
0 = Oscillator output clock (CGMXCLK)  
The ADC requires a clock rate of approximately 1 MHz for correct operation. If the  
selected clock source is not fast enough, the ADC will generate incorrect  
conversions. See 24.10 5.0-Volt ADC Characteristics.  
f
CGMXCLK or bus frequency  
ADIV[2:0]  
fADIC  
=
1 MHz  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
75  
Analog-to-Digital Converter (ADC)  
Analog-to-Digital Converter (ADC)  
MODE1 and MODE0 — Modes of Result Justification Bits  
MODE1 and MODE0 select among four modes of operation. The manner in  
which the ADC conversion results will be placed in the ADC data registers is  
controlled by these modes of operation. Reset returns right-justified mode.  
00 = 8-bit truncation mode  
01 = Right justified mode  
10 = Left justified mode  
11 = Left justified signed data mode  
Data Sheet  
76  
MC68HC908GZ16  
Analog-to-Digital Converter (ADC)  
MOTOROLA  
Data Sheet — MC68HC908GZ16  
Section 6. Break Module (BRK)  
6.1 Introduction  
This section describes the break module. The break module can generate a break  
interrupt that stops normal program flow at a defined address to enter a  
background program.  
6.2 Features  
Features of the break module include:  
Accessible input/output (I/O) registers during the break Interrupt  
Central processor unit (CPU) generated break interrupts  
Software-generated break interrupts  
Computer operating properly (COP) disabling during break interrupts  
6.3 Functional Description  
When the internal address bus matches the value written in the break address  
registers, the break module issues a breakpoint signal (BKPT) to the system  
integration module (SIM). The SIM then causes the CPU to load the instruction  
register with a software interrupt instruction (SWI). The program counter vectors to  
$FFFC and $FFFD ($FEFC and $FEFD in monitor mode).  
The following events can cause a break interrupt to occur:  
A CPU generated address (the address in the program counter) matches  
the contents of the break address registers.  
Software writes a logic 1 to the BRKA bit in the break status and control  
register.  
When a CPU generated address matches the contents of the break address  
registers, the break interrupt is generated. A return-from-interrupt instruction (RTI)  
in the break routine ends the break interrupt and returns the microcontroller unit  
(MCU) to normal operation.  
Figure 6-1 shows the structure of the break module.  
Figure 6-2 provides a summary of the I/O registers.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Break Module (BRK)  
77  
Break Module (BRK)  
ADDRESS BUS[15:8]  
BREAK ADDRESS REGISTER HIGH  
8-BIT COMPARATOR  
ADDRESS BUS[15:0]  
CONTROL  
BKPT  
(TO SIM)  
8-BIT COMPARATOR  
BREAK ADDRESS REGISTER LOW  
ADDRESS BUS[7:0]  
Figure 6-1. Break Module Block Diagram  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
R
SBSW  
Note(1)  
0
Break Status Register  
R
R
R
R
R
R
$FE00  
(BSR) Write:  
See page 81.  
Reset:  
Read:  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
$FE02  
$FE03  
$FE09  
$FE0A  
$FE0B  
Reserved Write:  
Reset:  
Read:  
Break Flag Control  
Register (BFCR) Write:  
BCFE  
0
R
R
R
R
R
R
R
See page 82.  
Reset:  
Read:  
Break Address High  
Register (BRKH) Write:  
Bit15  
0
Bit14  
0
Bit13  
0
Bit12  
0
Bit11  
0
Bit10  
0
Bit9  
0
Bit8  
0
See page 81.  
Reset:  
Read:  
Break Address Low  
Register (BRKL) Write:  
Bit 7  
0
Bit 6  
0
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
See page 81.  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
Read:  
Break Status and Control  
Register (BRKSCR) Write:  
BRKE  
0
BRKA  
See page 80.  
Reset:  
0
0
0
0
0
0
0
1. Writing a logic 0 clears SBSW.  
= Unimplemented  
R
= Reserved  
Figure 6-2. Break I/O Register Summary  
Data Sheet  
78  
MC68HC908GZ16  
MOTOROLA  
Break Module (BRK)  
Break Module (BRK)  
Functional Description  
When the internal address bus matches the value written in the break address  
registers or when software writes a logic 1 to the BRKA bit in the break status and  
control register, the CPU starts a break interrupt by:  
Loading the instruction register with the SWI instruction  
Loading the program counter with $FFFC and $FFFD ($FEFC and $FEFD  
in monitor mode)  
The break interrupt timing is:  
When a break address is placed at the address of the instruction opcode,  
the instruction is not executed until after completion of the break interrupt  
routine.  
When a break address is placed at an address of an instruction operand, the  
instruction is executed before the break interrupt.  
When software writes a logic 1 to the BRKA bit, the break interrupt occurs  
just before the next instruction is executed.  
By updating a break address and clearing the BRKA bit in a break interrupt routine,  
a break interrupt can be generated continuously.  
CAUTION:  
A break address should be placed at the address of the instruction opcode. When  
software does not change the break address and clears the BRKA bit in the first  
break interrupt routine, the next break interrupt will not be generated after exiting  
the interrupt routine even when the internal address bus matches the value written  
in the break address registers.  
6.3.1 Flag Protection During Break Interrupts  
The system integration module (SIM) controls whether or not module status bits  
can be cleared during the break state. The BCFE bit in the break flag control  
register (BFCR) enables software to clear status bits during the break state. See  
20.7.3 Break Flag Control Register and the Break Interrupts subsection for  
each module.  
6.3.2 TIM During Break Interrupts  
A break interrupt stops the timer counter.  
6.3.3 COP During Break Interrupts  
The COP is disabled during a break interrupt when VTST is present on the RST pin.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Break Module (BRK)  
79  
Break Module (BRK)  
6.4 Break Module Registers  
These registers control and monitor operation of the break module:  
Break status and control register (BRKSCR)  
Break address register high (BRKH)  
Break address register low (BRKL)  
Break status register (BSR)  
Break flag control register (BFCR)  
6.4.1 Break Status and Control Register  
The break status and control register (BRKSCR) contains break module enable  
and status bits.  
$FE0B  
Bit 7  
Address:  
6
BRKA  
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
BRKE  
0
0
0
0
0
0
0
= Unimplemented  
Figure 6-3. Break Status and Control Register (BRKSCR)  
BRKE — Break Enable Bit  
This read/write bit enables breaks on break address register matches. Clear  
BRKE by writing a logic 0 to bit 7. Reset clears the BRKE bit.  
1 = Breaks enabled on 16-bit address match  
0 = Breaks disabled  
BRKA — Break Active Bit  
This read/write status and control bit is set when a break address match occurs.  
Writing a logic 1 to BRKA generates a break interrupt. Clear BRKA by writing a  
logic 0 to it before exiting the break routine. Reset clears the BRKA bit.  
1 = Break address match  
0 = No break address match  
Data Sheet  
80  
MC68HC908GZ16  
Break Module (BRK)  
MOTOROLA  
Break Module (BRK)  
Break Module Registers  
6.4.2 Break Address Registers  
The break address registers (BRKH and BRKL) contain the high and low bytes of  
the desired breakpoint address. Reset clears the break address registers.  
$FE09  
Address:  
Bit 7  
6
Bit 14  
0
5
Bit 13  
0
4
Bit 12  
0
3
Bit 11  
0
2
Bit 10  
0
1
Bit 9  
0
Bit 0  
Bit 8  
0
Read:  
Write:  
Reset:  
Bit 15  
0
Figure 6-4. Break Address Register High (BRKH)  
$FE0A  
Address:  
Bit 7  
Bit 7  
0
6
Bit 6  
0
5
Bit 5  
0
4
Bit 4  
0
3
Bit 3  
0
2
Bit 2  
0
1
Bit 1  
0
Bit 0  
Bit 0  
0
Read:  
Write:  
Reset:  
Figure 6-5. Break Address Register Low (BRKL)  
6.4.3 Break Status Register  
The break status register (BSR) contains a flag to indicate that a break caused an  
exit from wait mode. This register is only used in emulation mode.  
Address: $FE00  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
SBSW  
Note(1)  
0
R
R
R
R
R
R
R
= Reserved  
1. Writing a logic 0 clears SBSW.  
Figure 6-6. Break Status Register (BSR)  
SBSW — SIM Break Stop/Wait  
SBSW can be read within the break state SWI routine. The user can modify the  
return address on the stack by subtracting one from it.  
1 = Wait mode was exited by break interrupt  
0 = Wait mode was not exited by break interrupt  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Break Module (BRK)  
81  
Break Module (BRK)  
6.4.4 Break Flag Control Register  
The break control register (BFCR) contains a bit that enables software to clear  
status bits while the MCU is in a break state.  
$FE03  
Address:  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
0
= Reserved  
R
Figure 6-7. Break Flag Control Register (BFCR)  
BCFE — Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing status  
registers while the MCU is in a break state. To clear status bits during the break  
state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
6.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power- consumption standby  
modes. If enabled, the break module will remain enabled in wait and stop modes.  
However, since the internal address bus does not increment in these modes, a  
break interrupt will never be triggered.  
Data Sheet  
82  
MC68HC908GZ16  
Break Module (BRK)  
MOTOROLA  
Data Sheet — MC68HC908GZ16  
Section 7. Clock Generator Module (CGM)  
7.1 Introduction  
This section describes the clock generator module. The CGM generates the crystal  
clock signal, CGMXCLK, which operates at the frequency of the crystal. The CGM  
also generates the base clock signal, CGMOUT, which is based on either the  
crystal clock divided by two or the phase-locked loop (PLL) clock, CGMVCLK,  
divided by two. In user mode, CGMOUT is the clock from which the SIM derives  
the system clocks, including the bus clock, which is at a frequency of CGMOUT/2.  
The PLL is a fully functional frequency generator designed for use with crystals or  
ceramic resonators. The PLL can generate a maximum bus frequency of 8 MHz  
using a 1-8MHz crystal or external clock source.  
7.2 Features  
Features of the CGM include:  
Phase-locked loop with output frequency in integer multiples of an integer  
dividend of the crystal reference  
High-frequency crystal operation with low-power operation and high-output  
frequency resolution  
Programmable hardware voltage-controlled oscillator (VCO) for low-jitter  
operation  
Automatic bandwidth control mode for low-jitter operation  
Automatic frequency lock detector  
CPU interrupt on entry or exit from locked condition  
Configuration register bit to allow oscillator operation during stop mode  
7.3 Functional Description  
The CGM consists of three major submodules:  
Crystal oscillator circuit — The crystal oscillator circuit generates the  
constant crystal frequency clock, CGMXCLK.  
Phase-locked loop (PLL) — The PLL generates the programmable VCO  
frequency clock, CGMVCLK.  
Base clock selector circuit — This software-controlled circuit selects either  
CGMXCLK divided by two or the VCO clock, CGMVCLK, divided by two as  
the base clock, CGMOUT. The SIM derives the system clocks from either  
CGMOUT or CGMXCLK.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Clock Generator Module (CGM)  
83  
Clock Generator Module (CGM)  
Figure 7-1 shows the structure of the CGM.  
OSCILLATOR (OSC)  
OSC2  
CGMXCLK  
(TO: SIM, TIMTB15A, ADC)  
OSC1  
SIMOSCEN (FROM SIM)  
OSCSTOPENB  
(FROM CONFIG)  
PHASE-LOCKED LOOP (PLL)  
CGMRCLK  
CGMOUT  
(TO SIM)  
A
B
CLOCK  
SELECT  
CIRCUIT  
÷
2
BCS  
S*  
SIMDIV2  
*WHEN S = 1,  
CGMOUT = B  
VDDA  
CGMXFC  
VSSA  
(FROM SIM)  
VPR1–VPR0  
VRS7–VRS0  
VOLTAGE  
CONTROLLED  
OSCILLATOR  
PHASE  
DETECTOR  
LOOP  
FILTER  
CGMVCLK  
PLL ANALOG  
CGMINT  
(TO SIM)  
AUTOMATIC  
MODE  
CONTROL  
LOCK  
DETECTOR  
INTERRUPT  
CONTROL  
LOCK  
AUTO  
ACQ  
PLLIE  
PLLF  
MUL11–MUL0  
CGMVDV  
FREQUENCY  
DIVIDER  
Figure 7-1. CGM Block Diagram  
Data Sheet  
84  
MC68HC908GZ16  
MOTOROLA  
Clock Generator Module (CGM)  
Clock Generator Module (CGM)  
Functional Description  
7.3.1 Crystal Oscillator Circuit  
The crystal oscillator circuit consists of an inverting amplifier and an external  
crystal. The OSC1 pin is the input to the amplifier and the OSC2 pin is the output.  
The SIMOSCEN signal from the system integration module (SIM) or the  
OSCSTOPENB bit in the CONFIG register enable the crystal oscillator circuit.  
The CGMXCLK signal is the output of the crystal oscillator circuit and runs at a rate  
equal to the crystal frequency. CGMXCLK is then buffered to produce CGMRCLK,  
the PLL reference clock.  
CGMXCLK can be used by other modules which require precise timing for  
operation. The duty cycle of CGMXCLK is not guaranteed to be 50% and depends  
on external factors, including the crystal and related external components. An  
externally generated clock also can feed the OSC1 pin of the crystal oscillator  
circuit. Connect the external clock to the OSC1 pin and let the OSC2 pin float.  
7.3.2 Phase-Locked Loop Circuit (PLL)  
The PLL is a frequency generator that can operate in either acquisition mode or  
tracking mode, depending on the accuracy of the output frequency. The PLL can  
change between acquisition and tracking modes either automatically or manually.  
7.3.3 PLL Circuits  
The PLL consists of these circuits:  
Voltage-controlled oscillator (VCO)  
Modulo VCO frequency divider  
Phase detector  
Loop filter  
Lock detector  
The operating range of the VCO is programmable for a wide range of frequencies  
and for maximum immunity to external noise, including supply and CGMXFC noise.  
The VCO frequency is bound to a range from roughly one-half to twice the  
center-of-range frequency, fVRS. Modulating the voltage on the CGMXFC pin  
changes the frequency within this range. By design, fVRS is equal to the nominal  
center-of-range frequency, fNOM, (71.4 kHz) times a linear factor, L, and a  
power-of-two factor, E, or (L × 2E)fNOM  
.
CGMRCLK is the PLL reference clock, a buffered version of CGMXCLK.  
CGMRCLK runs at a frequency, fRCLK. The VCO’s output clock, CGMVCLK,  
running at a frequency, fVCLK, is fed back through a programmable modulo divider.  
The modulo divider reduces the VCO clock by a factor, N. The dividers output is  
the VCO feedback clock, CGMVDV, running at a frequency, fVDV = fVCLK/(N). (For  
more information, see 7.3.6 Programming the PLL.)  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Clock Generator Module (CGM)  
85  
Clock Generator Module (CGM)  
The phase detector then compares the VCO feedback clock, CGMVDV, with the  
final reference clock, CGMRDV. A correction pulse is generated based on the  
phase difference between the two signals. The loop filter then slightly alters the DC  
voltage on the external capacitor connected to CGMXFC based on the width and  
direction of the correction pulse. The filter can make fast or slow corrections  
depending on its mode, described in 7.3.4 Acquisition and Tracking Modes. The  
value of the external capacitor and the reference frequency determines the speed  
of the corrections and the stability of the PLL.  
The lock detector compares the frequencies of the VCO feedback clock, CGMVDV,  
and the reference clock, CGMRCLK. Therefore, the speed of the lock detector is  
directly proportional to the reference frequency, fRCLK. The circuit determines the  
mode of the PLL and the lock condition based on this comparison.  
7.3.4 Acquisition and Tracking Modes  
The PLL filter is manually or automatically configurable into one of two operating  
modes:  
Acquisition mode — In acquisition mode, the filter can make large frequency  
corrections to the VCO. This mode is used at PLL start up or when the PLL  
has suffered a severe noise hit and the VCO frequency is far off the desired  
frequency. When in acquisition mode, the ACQ bit is clear in the PLL  
bandwidth control register. (See 7.5.2 PLL Bandwidth Control Register.)  
Tracking mode — In tracking mode, the filter makes only small corrections  
to the frequency of the VCO. PLL jitter is much lower in tracking mode, but  
the response to noise is also slower. The PLL enters tracking mode when  
the VCO frequency is nearly correct, such as when the PLL is selected as  
the base clock source. (See 7.3.8 Base Clock Selector Circuit.) The PLL  
is automatically in tracking mode when not in acquisition mode or when the  
ACQ bit is set.  
7.3.5 Manual and Automatic PLL Bandwidth Modes  
The PLL can change the bandwidth or operational mode of the loop filter manually  
or automatically. Automatic mode is recommended for most users.  
In automatic bandwidth control mode (AUTO = 1), the lock detector automatically  
switches between acquisition and tracking modes. Automatic bandwidth control  
mode also is used to determine when the VCO clock, CGMVCLK, is safe to use as  
the source for the base clock, CGMOUT. (See 7.5.2 PLL Bandwidth Control  
Register.) If PLL interrupts are enabled, the software can wait for a PLL interrupt  
request and then check the LOCK bit. If interrupts are disabled, software can poll  
the LOCK bit continuously (for example, during PLL start up) or at periodic  
intervals. In either case, when the LOCK bit is set, the VCO clock is safe to use as  
the source for the base clock. (See 7.3.8 Base Clock Selector Circuit.) If the VCO  
is selected as the source for the base clock and the LOCK bit is clear, the PLL has  
suffered a severe noise hit and the software must take appropriate action,  
Data Sheet  
86  
MC68HC908GZ16  
Clock Generator Module (CGM)  
MOTOROLA  
Clock Generator Module (CGM)  
Functional Description  
depending on the application. (See 7.6 Interrupts for information and precautions  
on using interrupts.)  
The following conditions apply when the PLL is in automatic bandwidth control  
mode:  
The ACQ bit (See 7.5.2 PLL Bandwidth Control Register.) is a read-only  
indicator of the mode of the filter. (See 7.3.4 Acquisition and Tracking  
Modes.)  
The ACQ bit is set when the VCO frequency is within a certain tolerance and  
is cleared when the VCO frequency is out of a certain tolerance. (See 7.8  
Acquisition/Lock Time Specifications for more information.)  
The LOCK bit is a read-only indicator of the locked state of the PLL.  
The LOCK bit is set when the VCO frequency is within a certain tolerance  
and is cleared when the VCO frequency is out of a certain tolerance. (See  
7.8 Acquisition/Lock Time Specifications for more information.)  
CPU interrupts can occur if enabled (PLLIE = 1) when the PLL’s lock  
condition changes, toggling the LOCK bit. (See 7.5.1 PLL Control  
Register.)  
The PLL also may operate in manual mode (AUTO = 0). Manual mode is used by  
systems that do not require an indicator of the lock condition for proper operation.  
Such systems typically operate well below fBUSMAX  
.
The following conditions apply when in manual mode:  
ACQ is a writable control bit that controls the mode of the filter. Before  
turning on the PLL in manual mode, the ACQ bit must be clear.  
Before entering tracking mode (ACQ = 1), software must wait a given time,  
tACQ (See 7.8 Acquisition/Lock Time Specifications.), after turning on the  
PLL by setting PLLON in the PLL control register (PCTL).  
Software must wait a given time, tAL, after entering tracking mode before  
selecting the PLL as the clock source to CGMOUT (BCS = 1).  
The LOCK bit is disabled.  
CPU interrupts from the CGM are disabled.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Clock Generator Module (CGM)  
87  
Clock Generator Module (CGM)  
7.3.6 Programming the PLL  
Use the following procedure to program the PLL. For reference, the variables used  
and their meaning are shown in Table 7-1.  
Table 7-1. Variable Definitions  
Variable  
Definition  
Desired bus clock frequency  
fBUSDES  
fVCLKDES  
fRCLK  
fVCLK  
fBUS  
Desired VCO clock frequency  
Chosen reference crystal frequency  
Calculated VCO clock frequency  
Calculated bus clock frequency  
Nominal VCO center frequency  
Programmed VCO center frequency  
fNOM  
fVRS  
NOTE:  
The round function in the following equations means that the real number should  
be rounded to the nearest integer number.  
1. Choose the desired bus frequency, fBUSDES  
.
2. Calculate the desired VCO frequency (four times the desired bus  
frequency).  
fVCLKDES = 4 x fBUSDES  
3. Choose a practical PLL (crystal) reference frequency, fRCLK. Typically, the  
reference crystal is 1–8 MHz.  
Frequency errors to the PLL are corrected at a rate of fRCLK  
.
For stability and lock time reduction, this rate must be as fast as possible.  
The VCO frequency must be an integer multiple of this rate. The relationship  
between the VCO frequency, fVCLK, and the reference frequency, fRCLK, is:  
fVCLK = (N) (fRCLK)  
N, the range multiplier, must be an integer.  
In cases where desired bus frequency has some tolerance, choose fRCLK to  
a value determined either by other module requirements (such as modules  
which are clocked by CGMXCLK), cost requirements, or ideally, as high as  
the specified range allows. See Section 24. Electrical Specifications.  
After choosing N, the actual bus frequency can be determined using  
equation in 2 above.  
4. Select a VCO frequency multiplier, N.  
f
VCLKDES  
-------------------------  
N = round  
f
RCLK  
Data Sheet  
88  
MC68HC908GZ16  
MOTOROLA  
Clock Generator Module (CGM)  
Clock Generator Module (CGM)  
Functional Description  
5. Calculate and verify the adequacy of the VCO and bus frequencies fVCLK  
and fBUS  
.
f
= (N) × f  
= (f  
VCLK  
RCLK  
f
) ⁄ 4  
VCLK  
BUS  
6. Select the VCO’s power-of-two range multiplier E, according to Table 7-2.  
Table 7-2. Power-of-Two Range Selectors  
Frequency Range  
E
0
1
0 < fVCLK 8 MHz  
8 MHz< fVCLK 16 MHz  
16 MHz< fVCLK 32 MHz  
2(1)  
1. Do not program E to a value of 3.  
7. Select a VCO linear range multiplier, L, where fNOM = 71.4 kHz  
fVCLK  
L = Round  
2E x fNOM  
8. Calculate and verify the adequacy of the VCO programmed center-of-range  
frequency, fVRS. The center-of-range frequency is the midpoint between the  
minimum and maximum frequencies attainable by the PLL.  
f
VRS = (L x 2E) fNOM  
9. For proper operation,  
E
f
× 2  
NOM  
--------------------------  
f
f  
VCLK  
VRS  
2
10. Verify the choice of N, E, and L by comparing fVCLK to fVRS and fVCLKDES  
For proper operation, fVCLK must be within the application’s tolerance of  
.
f
VCLKDES, and fVRS must be as close as possible to fVCLK.  
NOTE:  
Exceeding the recommended maximum bus frequency or VCO frequency can  
crash the MCU.  
11. Program the PLL registers accordingly:  
a. In the VPR bits of the PLL control register (PCTL), program the binary  
equivalent of E.  
b. In the PLL multiplier select register low (PMSL) and the PLL multiplier  
select register high (PMSH), program the binary equivalent of N. If  
using a 1–8 MHz reference, the PMSL register must be reprogrammed  
from the reset value before enabling the pll.  
c. In the PLL VCO range select register (PMRS), program the binary  
coded equivalent of L.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Clock Generator Module (CGM)  
89  
Clock Generator Module (CGM)  
Table 7-3 provides numeric examples (register values are in hexadecimal  
notation):  
Table 7-3. Numeric Example  
fBUS  
fRCLK  
N
E
0
0
0
1
1
1
2
2
2
L
500 kHz  
1.25 MHz  
2.0 MHz  
2.5 MHz  
3.0 MHz  
4.0 MHz  
5.0 MHz  
7.0 MHz  
8.0 MHz  
1 MHz  
1 MHz  
1 MHz  
1 MHz  
1 MHz  
1 MHz  
1 MHz  
1 MHz  
1 MHz  
002  
005  
008  
00A  
00C  
010  
014  
01C  
020  
1B  
45  
70  
45  
53  
70  
46  
62  
70  
7.3.7 Special Programming Exceptions  
The programming method described in 7.3.6 Programming the PLL does not  
account for two possible exceptions. A value of 0 for N or L is meaningless when  
used in the equations given. To account for these exceptions:  
A 0 value for N is interpreted exactly the same as a value of 1.  
A 0 value for L disables the PLL and prevents its selection as the source for  
the base clock.  
See 7.3.8 Base Clock Selector Circuit.  
7.3.8 Base Clock Selector Circuit  
This circuit is used to select either the crystal clock, CGMXCLK, or the VCO clock,  
CGMVCLK, as the source of the base clock, CGMOUT. The two input clocks go  
through a transition control circuit that waits up to three CGMXCLK cycles and  
three CGMVCLK cycles to change from one clock source to the other. During this  
time, CGMOUT is held in stasis. The output of the transition control circuit is then  
divided by two to correct the duty cycle. Therefore, the bus clock frequency, which  
is one-half of the base clock frequency, is one-fourth the frequency of the selected  
clock (CGMXCLK or CGMVCLK).  
The BCS bit in the PLL control register (PCTL) selects which clock drives  
CGMOUT. The VCO clock cannot be selected as the base clock source if the PLL  
is not turned on. The PLL cannot be turned off if the VCO clock is selected. The  
PLL cannot be turned on or off simultaneously with the selection or deselection of  
the VCO clock. The VCO clock also cannot be selected as the base clock source  
if the factor L is programmed to a 0. This value would set up a condition  
inconsistent with the operation of the PLL, so that the PLL would be disabled and  
the crystal clock would be forced as the source of the base clock.  
Data Sheet  
90  
MC68HC908GZ16  
Clock Generator Module (CGM)  
MOTOROLA  
Clock Generator Module (CGM)  
Functional Description  
7.3.9 CGM External Connections  
In its typical configuration, the CGM requires external components. Five of these  
are for the crystal oscillator and two or four are for the PLL.  
The crystal oscillator is normally connected in a Pierce oscillator configuration, as  
shown in Figure 7-2. Figure 7-2 shows only the logical representation of the  
internal components and may not represent actual circuitry. The oscillator  
configuration uses five components:  
Crystal, X1  
Fixed capacitor, C1  
Tuning capacitor, C2 (can also be a fixed capacitor)  
Feedback resistor, RB  
Series resistor, RS  
The series resistor (RS) is included in the diagram to follow strict Pierce oscillator  
guidelines. Refer to the crystal manufacturer’s data for more information regarding  
values for C1 and C2.  
Figure 7-2 also shows the external components for the PLL:  
Bypass capacitor, CBYP  
Filter network  
Routing should be done with great care to minimize signal cross talk and noise.  
SIMOSCEN  
OSCSTOPENB  
(FROM CONFIG)  
CGMXCLK  
CGMXFC  
VSSA  
OSC1  
OSC2  
VDDA  
VDD  
RB  
RF1  
CBYP  
0.1 µF  
CF2  
RS  
CF1  
3 Component Filter  
X1  
C1  
C2  
Note: Filter network in box can be replaced with a single capacitor, but will degrade stability.  
Figure 7-2. CGM External Connections  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
91  
Clock Generator Module (CGM)  
Clock Generator Module (CGM)  
7.4 I/O Signals  
The following paragraphs describe the CGM I/O signals.  
7.4.1 Crystal Amplifier Input Pin (OSC1)  
The OSC1 pin is an input to the crystal oscillator amplifier.  
7.4.2 Crystal Amplifier Output Pin (OSC2)  
The OSC2 pin is the output of the crystal oscillator inverting amplifier.  
7.4.3 External Filter Capacitor Pin (CGMXFC)  
The CGMXFC pin is required by the loop filter to filter out phase corrections. An  
external filter network is connected to this pin. (See Figure 7-2.)  
NOTE:  
To prevent noise problems, the filter network should be placed as close to the  
CGMXFC pin as possible, with minimum routing distances and no routing of other  
signals across the network.  
7.4.4 PLL Analog Power Pin (VDDA  
)
VDDA is a power pin used by the analog portions of the PLL. Connect the VDDA pin  
to the same voltage potential as the VDD pin.  
NOTE:  
Route VDDA carefully for maximum noise immunity and place bypass capacitors as  
close as possible to the package.  
7.4.5 PLL Analog Ground Pin (VSSA  
)
VSSA is a ground pin used by the analog portions of the PLL. Connect the VSSA pin  
to the same voltage potential as the VSS pin.  
NOTE:  
Route VSSA carefully for maximum noise immunity and place bypass capacitors as  
close as possible to the package.  
7.4.6 Oscillator Enable Signal (SIMOSCEN)  
The SIMOSCEN signal comes from the system integration module (SIM) and  
enables the oscillator and PLL.  
7.4.7 Oscillator Stop Mode Enable Bit (OSCSTOPENB)  
OSCSTOPENB is a bit in the CONFIG register that enables the oscillator to  
continue operating during stop mode. If this bit is set, the Oscillator continues  
running during stop mode. If this bit is not set (default), the oscillator is controlled  
by the SIMOSCEN signal which will disable the oscillator during stop mode.  
Data Sheet  
92  
MC68HC908GZ16  
Clock Generator Module (CGM)  
MOTOROLA  
Clock Generator Module (CGM)  
CGM Registers  
7.4.8 Crystal Output Frequency Signal (CGMXCLK)  
CGMXCLK is the crystal oscillator output signal. It runs at the full speed of the  
crystal (fXCLK) and comes directly from the crystal oscillator circuit. Figure 7-2  
shows only the logical relation of CGMXCLK to OSC1 and OSC2 and may not  
represent the actual circuitry. The duty cycle of CGMXCLK is unknown and may  
depend on the crystal and other external factors. Also, the frequency and amplitude  
of CGMXCLK can be unstable at start up.  
7.4.9 CGM Base Clock Output (CGMOUT)  
CGMOUT is the clock output of the CGM. This signal goes to the SIM, which  
generates the MCU clocks. CGMOUT is a 50 percent duty cycle clock running at  
twice the bus frequency. CGMOUT is software programmable to be either the  
oscillator output, CGMXCLK, divided by two or the VCO clock, CGMVCLK, divided  
by two.  
7.4.10 CGM CPU Interrupt (CGMINT)  
CGMINT is the interrupt signal generated by the PLL lock detector.  
7.5 CGM Registers  
These registers control and monitor operation of the CGM:  
PLL control register (PCTL)  
(See 7.5.1 PLL Control Register.)  
PLL bandwidth control register (PBWC)  
(See 7.5.2 PLL Bandwidth Control Register.)  
PLL multiplier select register high (PMSH)  
(See 7.5.3 PLL Multiplier Select Register High.)  
PLL multiplier select register low (PMSL)  
(See 7.5.4 PLL Multiplier Select Register Low.)  
PLL VCO range select register (PMRS)  
(See 7.5.5 PLL VCO Range Select Register.)  
Figure 7-3 is a summary of the CGM registers.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
93  
Clock Generator Module (CGM)  
Clock Generator Module (CGM)  
Addr.  
Register Name  
Bit 7  
PLLIE  
0
6
5
PLLON  
1
4
3
2
1
Bit 0  
Read:  
PLLF  
PLL Control Register  
BCS  
R
R
VPR1  
VPR0  
$0036  
(PCTL) Write:  
See page 94.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
0
LOCK  
PLL Bandwidth Control Reg-  
AUTO  
ACQ  
R
$0037  
$0038  
ister (PBWC) Write:  
See page 96.  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
Read:  
PLL Multiplier Select High  
MUL11  
MUL10  
MUL9  
MUL8  
Register (PMSH) Write:  
See page 97.  
Reset:  
0
0
0
0
0
MUL3  
0
0
0
0
Read:  
PLL Multiplier Select Low  
MUL7  
0
MUL6  
1
MUL5  
0
MUL4  
0
MUL2  
MUL1  
MUL0  
$0039  
Register (PMSL) Write:  
See page 98.  
Reset:  
0
0
0
Read:  
PLL VCO Select Range  
VRS7  
VRS6  
VRS5  
VRS4  
VRS3  
0
VRS2  
VRS1  
VRS0  
$003A  
$003B  
NOTES:  
Register (PMRS) Write:  
See page 98.  
Reset:  
0
0
1
0
0
0
0
0
0
R
0
0
R
0
0
R
1
Read:  
Reserved Register Write:  
Reset:  
R
0
0
0
0
0
= Unimplemented  
R
= Reserved  
1. When AUTO = 0, PLLIE is forced clear and is read-only.  
2. When AUTO = 0, PLLF and LOCK read as clear.  
3. When AUTO = 1, ACQ is read-only.  
4. When PLLON = 0 or VRS7:VRS0 = $0, BCS is forced clear and is read-only.  
5. When PLLON = 1, the PLL programming register is read-only.  
6. When BCS = 1, PLLON is forced set and is read-only.  
Figure 7-3. CGM I/O Register Summary  
7.5.1 PLL Control Register  
The PLL control register (PCTL) contains the interrupt enable and flag bits, the  
on/off switch, the base clock selector bit, and the VCO power-of-two range selector  
bits.  
Address:  
$0036  
Bit 7  
6
5
PLLON  
1
4
BCS  
0
3
2
1
VPR1  
0
Bit 0  
VPR0  
0
Read:  
Write:  
Reset:  
PLLF  
PLLIE  
0
R
R
0
0
0
= Unimplemented  
R
= Reserved  
Figure 7-4. PLL Control Register (PCTL)  
Data Sheet  
94  
MC68HC908GZ16  
MOTOROLA  
Clock Generator Module (CGM)  
Clock Generator Module (CGM)  
CGM Registers  
PLLIE — PLL Interrupt Enable Bit  
This read/write bit enables the PLL to generate an interrupt request when the  
LOCK bit toggles, setting the PLL flag, PLLF. When the AUTO bit in the PLL  
bandwidth control register (PBWC) is clear, PLLIE cannot be written and reads  
as logic 0. Reset clears the PLLIE bit.  
1 = PLL interrupts enabled  
0 = PLL interrupts disabled  
PLLF — PLL Interrupt Flag Bit  
This read-only bit is set whenever the LOCK bit toggles. PLLF generates an  
interrupt request if the PLLIE bit also is set. PLLF always reads as logic 0 when  
the AUTO bit in the PLL bandwidth control register (PBWC) is clear. Clear the  
PLLF bit by reading the PLL control register. Reset clears the PLLF bit.  
1 = Change in lock condition  
0 = No change in lock condition  
NOTE:  
Do not inadvertently clear the PLLF bit. Any read or read-modify-write operation on  
the PLL control register clears the PLLF bit.  
PLLON — PLL On Bit  
This read/write bit activates the PLL and enables the VCO clock, CGMVCLK.  
PLLON cannot be cleared if the VCO clock is driving the base clock, CGMOUT  
(BCS = 1). (See 7.3.8 Base Clock Selector Circuit.) Reset sets this bit so that  
the loop can stabilize as the MCU is powering up.  
1 = PLL on  
0 = PLL off  
BCS — Base Clock Select Bit  
This read/write bit selects either the crystal oscillator output, CGMXCLK, or the  
VCO clock, CGMVCLK, as the source of the CGM output, CGMOUT. CGMOUT  
frequency is one-half the frequency of the selected clock. BCS cannot be set  
while the PLLON bit is clear. After toggling BCS, it may take up to three  
CGMXCLK and three CGMVCLK cycles to complete the transition from one  
source clock to the other. During the transition, CGMOUT is held in stasis. (See  
7.3.8 Base Clock Selector Circuit.) Reset clears the BCS bit.  
1 = CGMVCLK divided by two drives CGMOUT  
0 = CGMXCLK divided by two drives CGMOUT  
NOTE:  
PLLON and BCS have built-in protection that prevents the base clock selector  
circuit from selecting the VCO clock as the source of the base clock if the PLL is  
off. Therefore, PLLON cannot be cleared when BCS is set, and BCS cannot be set  
when PLLON is clear. If the PLL is off (PLLON = 0), selecting CGMVCLK requires  
two writes to the PLL control register. (See 7.3.8 Base Clock Selector Circuit.).  
VPR1 and VPR0 — VCO Power-of-Two Range Select Bits  
These read/write bits control the VCO’s hardware power-of-two range multiplier  
E that, in conjunction with L controls the hardware center-of-range frequency,  
f
VRS. VPR1:VPR0 cannot be written when the PLLON bit is set. Reset clears  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Clock Generator Module (CGM)  
95  
Clock Generator Module (CGM)  
these bits. (See 7.3.3 PLL Circuits, 7.3.6 Programming the PLL, and 7.5.5  
PLL VCO Range Select Register.)  
Table 7-4. VPR1 and VPR0 Programming  
VCO Power-of-Two  
Range Multiplier  
VPR1 and VPR0  
E
00  
01  
10  
0
1
1
2
4
2(1)  
1. Do not program E to a value of 3.  
NOTE:  
Verify that the value of the VPR1 and VPR0 bits in the PCTL register are  
appropriate for the given reference and VCO clock frequencies before enabling the  
PLL. See 7.3.6 Programming the PLL for detailed instructions on selecting the  
proper value for these control bits.  
7.5.2 PLL Bandwidth Control Register  
The PLL bandwidth control register (PBWC):  
Selects automatic or manual (software-controlled) bandwidth control mode  
Indicates when the PLL is locked  
In automatic bandwidth control mode, indicates when the PLL is in  
acquisition or tracking mode  
In manual operation, forces the PLL into acquisition or tracking mode  
Address:  
$0037  
Bit 7  
6
5
ACQ  
0
4
0
3
0
2
0
1
0
Bit 0  
R
Read:  
Write:  
Reset:  
LOCK  
AUTO  
0
0
0
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 7-5. PLL Bandwidth Control Register (PBWC)  
AUTO — Automatic Bandwidth Control Bit  
This read/write bit selects automatic or manual bandwidth control. When  
initializing the PLL for manual operation (AUTO = 0), clear the ACQ bit before  
turning on the PLL. Reset clears the AUTO bit.  
1 = Automatic bandwidth control  
0 = Manual bandwidth control  
LOCK — Lock Indicator Bit  
When the AUTO bit is set, LOCK is a read-only bit that becomes set when the  
VCO clock, CGMVCLK, is locked (running at the programmed frequency).  
Data Sheet  
96  
MC68HC908GZ16  
Clock Generator Module (CGM)  
MOTOROLA  
Clock Generator Module (CGM)  
CGM Registers  
When the AUTO bit is clear, LOCK reads as logic 0 and has no meaning. The  
write one function of this bit is reserved for test, so this bit must always be  
written a 0. Reset clears the LOCK bit.  
1 = VCO frequency correct or locked  
0 = VCO frequency incorrect or unlocked  
ACQ — Acquisition Mode Bit  
When the AUTO bit is set, ACQ is a read-only bit that indicates whether the PLL  
is in acquisition mode or tracking mode. When the AUTO bit is clear, ACQ is a  
read/write bit that controls whether the PLL is in acquisition or tracking mode.  
In automatic bandwidth control mode (AUTO = 1), the last-written value from  
manual operation is stored in a temporary location and is recovered when  
manual operation resumes. Reset clears this bit, enabling acquisition mode.  
1 = Tracking mode  
0 = Acquisition mode  
7.5.3 PLL Multiplier Select Register High  
The PLL multiplier select register high (PMSH) contains the programming  
information for the high byte of the modulo feedback divider.  
Address:  
$0038  
Bit 7  
0
6
0
5
0
4
0
3
MUL11  
0
2
MUL10  
0
1
MUL9  
0
Bit 0  
MUL8  
0
Read:  
Write:  
Reset:  
0
0
0
0
= Unimplemented  
Figure 7-6. PLL Multiplier Select Register High (PMSH)  
MUL11–MUL8 — Multiplier Select Bits  
These read/write bits control the high byte of the modulo feedback divider that  
selects the VCO frequency multiplier N. (See 7.3.3 PLL Circuits and 7.3.6  
Programming the PLL.) A value of $0000 in the multiplier select registers  
configures the modulo feedback divider the same as a value of $0001. Reset  
initializes the registers to $0040 for a default multiply value of 64.  
NOTE:  
The multiplier select bits have built-in protection such that they cannot be written  
when the PLL is on (PLLON = 1).  
PMSH[7:4] — Unimplemented Bits  
These bits have no function and always read as logic 0s.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Clock Generator Module (CGM)  
97  
Clock Generator Module (CGM)  
7.5.4 PLL Multiplier Select Register Low  
The PLL multiplier select register low (PMSL) contains the programming  
information for the low byte of the modulo feedback divider.  
Address:  
$0038  
Bit 7  
6
MUL6  
1
5
MUL5  
0
4
MUL4  
0
3
MUL3  
0
2
MUL2  
0
1
MUL1  
0
Bit 0  
MUL0  
0
Read:  
Write:  
Reset:  
MUL7  
0
Figure 7-7. PLL Multiplier Select Register Low (PMSL)  
NOTE:  
For applications using 1–8 MHz reference frequencies this register must be  
reprogrammed before enabling the PLL. The reset value of this register will cause  
applications using 1–8 MHz reference frequencies to become unstable if the PLL  
is enabled without programming an appropriate value. The programmed value  
must not allow the VCO clock to exceed 32 MHz. See 7.3.6 Programming the PLL  
for detailed instructions on choosing the proper value for PMSL.  
MUL7–MUL0 — Multiplier Select Bits  
These read/write bits control the low byte of the modulo feedback divider that  
selects the VCO frequency multiplier, N. (See 7.3.3 PLL Circuits and  
7.3.6 Programming the PLL.) MUL7–MUL0 cannot be written when the  
PLLON bit in the PCTL is set. A value of $0000 in the multiplier select registers  
configures the modulo feedback divider the same as a value of $0001. Reset  
initializes the register to $40 for a default multiply value of 64.  
NOTE:  
The multiplier select bits have built-in protection such that they cannot be written  
when the PLL is on (PLLON = 1).  
7.5.5 PLL VCO Range Select Register  
NOTE: PMRS may be called PVRS on other HC08 derivatives.  
The PLL VCO range select register (PMRS) contains the programming information  
required for the hardware configuration of the VCO.  
Address:  
$003A  
Bit 7  
6
VRS6  
1
5
VRS5  
0
4
VRS4  
0
3
VRS3  
0
2
VRS2  
0
1
VRS1  
0
Bit 0  
VRS0  
0
Read:  
Write:  
Reset:  
VRS7  
0
Figure 7-8. PLL VCO Range Select Register (PMRS)  
NOTE:  
Verify that the value of the PMRS register is appropriate for the given reference and  
VCO clock frequencies before enabling the PLL. See 7.3.6 Programming the PLL  
for detailed instructions on selecting the proper value for these control bits.  
Data Sheet  
98  
MC68HC908GZ16  
Clock Generator Module (CGM)  
MOTOROLA  
Clock Generator Module (CGM)  
Interrupts  
VRS7–VRS0 — VCO Range Select Bits  
These read/write bits control the hardware center-of-range linear multiplier L  
which, in conjunction with E (See 7.3.3 PLL Circuits, 7.3.6 Programming the  
PLL, and 7.5.1 PLL Control Register.), controls the hardware center-of-range  
frequency, fVRS. VRS7–VRS0 cannot be written when the PLLON bit in the  
PCTL is set. (See 7.3.7 Special Programming Exceptions.) A value of $00 in  
the VCO range select register disables the PLL and clears the BCS bit in the  
PLL control register (PCTL). (See 7.3.8 Base Clock Selector Circuit and  
7.3.7 Special Programming Exceptions.). Reset initializes the register to $40  
for a default range multiply value of 64.  
NOTE:  
The VCO range select bits have built-in protection such that they cannot be written  
when the PLL is on (PLLON = 1) and such that the VCO clock cannot be selected  
as the source of the base clock (BCS = 1) if the VCO range select bits are all clear.  
The PLL VCO range select register must be programmed correctly. Incorrect  
programming can result in failure of the PLL to achieve lock.  
7.6 Interrupts  
When the AUTO bit is set in the PLL bandwidth control register (PBWC), the PLL  
can generate a CPU interrupt request every time the LOCK bit changes state. The  
PLLIE bit in the PLL control register (PCTL) enables CPU interrupts from the PLL.  
PLLF, the interrupt flag in the PCTL, becomes set whether interrupts are enabled  
or not. When the AUTO bit is clear, CPU interrupts from the PLL are disabled and  
PLLF reads as logic 0.  
Software should read the LOCK bit after a PLL interrupt request to see if the  
request was due to an entry into lock or an exit from lock. When the PLL enters  
lock, the VCO clock, CGMVCLK, divided by two can be selected as the CGMOUT  
source by setting BCS in the PCTL. When the PLL exits lock, the VCO clock  
frequency is corrupt, and appropriate precautions should be taken. If the  
application is not frequency sensitive, interrupts should be disabled to prevent PLL  
interrupt service routines from impeding software performance or from exceeding  
stack limitations.  
NOTE:  
Software can select the CGMVCLK divided by two as the CGMOUT source even  
if the PLL is not locked (LOCK = 0). Therefore, software should make sure the PLL  
is locked before setting the BCS bit.  
7.7 Special Modes  
7.7.1 Wait Mode  
The WAIT instruction puts the MCU in low power-consumption standby modes.  
The WAIT instruction does not affect the CGM. Before entering wait mode,  
software can disengage and turn off the PLL by clearing the BCS and PLLON bits  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Clock Generator Module (CGM)  
99  
Clock Generator Module (CGM)  
in the PLL control register (PCTL) to save power. Less power-sensitive  
applications can disengage the PLL without turning it off, so that the PLL clock is  
immediately available at WAIT exit. This would be the case also when the PLL is  
to wake the MCU from wait mode, such as when the PLL is first enabled and  
waiting for LOCK or LOCK is lost.  
7.7.2 Stop Mode  
If the OSCSTOPENB bit in the CONFIG register is cleared (default), then the  
STOP instruction disables the CGM (oscillator and phase locked loop) and holds  
low all CGM outputs (CGMXCLK, CGMOUT, and CGMINT).  
If the OSCSTOPENB bit in the CONFIG register is set, then the phase locked loop  
is shut off but the oscillator will continue to operate in stop mode.  
7.7.3 CGM During Break Interrupts  
The system integration module (SIM) controls whether status bits in other modules  
can be cleared during the break state. The BCFE bit in the SIM break flag control  
register (SBFCR) enables software to clear status bits during the break state. (See  
20.7.3 Break Flag Control Register.)  
To allow software to clear status bits during a break interrupt, write a logic 1 to the  
BCFE bit. If a status bit is cleared during the break state, it remains cleared when  
the MCU exits the break state.  
To protect the PLLF bit during the break state, write a logic 0 to the BCFE bit. With  
BCFE at logic 0 (its default state), software can read and  
write the PLL control register during the break state without affecting the PLLF bit.  
7.8 Acquisition/Lock Time Specifications  
The acquisition and lock times of the PLL are, in many applications, the most  
critical PLL design parameters. Proper design and use of the PLL ensures the  
highest stability and lowest acquisition/lock times.  
7.8.1 Acquisition/Lock Time Definitions  
Typical control systems refer to the acquisition time or lock time as the reaction  
time, within specified tolerances, of the system to a step input. In a PLL, the step  
input occurs when the PLL is turned on or when it suffers a noise hit. The tolerance  
is usually specified as a percent of the step input or when the output settles to the  
desired value plus or minus a percent of the frequency change. Therefore, the  
reaction time is constant in this definition, regardless of the size of the step input.  
For example, consider a system with a 5 percent acquisition time tolerance. If a  
command instructs the system to change from 0 Hz to 1 MHz, the acquisition time  
is the time taken for the frequency to reach 1 MHz ±50 kHz. Fifty kHz = 5% of the  
1-MHz step input. If the system is operating at 1 MHz and suffers a –100-kHz noise  
Data Sheet  
100  
MC68HC908GZ16  
Clock Generator Module (CGM)  
MOTOROLA  
Clock Generator Module (CGM)  
Acquisition/Lock Time Specifications  
hit, the acquisition time is the time taken to return from 900 kHz to 1 MHz ±5 kHz.  
Five kHz = 5% of the 100-kHz step input.  
Other systems refer to acquisition and lock times as the time the system takes to  
reduce the error between the actual output and the desired output to within  
specified tolerances. Therefore, the acquisition or lock time varies according to the  
original error in the output. Minor errors may not even be registered. Typical PLL  
applications prefer to use this definition because the system requires the output  
frequency to be within a certain tolerance of the desired frequency regardless of  
the size of the initial error.  
7.8.2 Parametric Influences on Reaction Time  
Acquisition and lock times are designed to be as short as possible while still  
providing the highest possible stability. These reaction times are not constant,  
however. Many factors directly and indirectly affect the acquisition time.  
The most critical parameter which affects the reaction times of the PLL is the  
reference frequency, fRCLK. This frequency is the input to the phase detector  
and controls how often the PLL makes corrections. For stability, the corrections  
must be small compared to the desired frequency, so several corrections are  
required to reduce the frequency error. Therefore, the slower the reference the  
longer it takes to make these corrections. This parameter is under user control via  
the choice of crystal frequency fXCLK. (See 7.3.3 PLL Circuits and 7.3.6  
Programming the PLL.)  
Another critical parameter is the external filter network. The PLL modifies the  
voltage on the VCO by adding or subtracting charge from capacitors in this  
network. Therefore, the rate at which the voltage changes for a given frequency  
error (thus change in charge) is proportional to the capacitance. The size of the  
capacitor also is related to the stability of the PLL. If the capacitor is too small, the  
PLL cannot make small enough adjustments to the voltage and the system cannot  
lock. If the capacitor is too large, the PLL may not be able to adjust the voltage in  
a reasonable time. (See 7.8.3 Choosing a Filter.)  
Also important is the operating voltage potential applied to VDDA. The power supply  
potential alters the characteristics of the PLL. A fixed value is best. Variable  
supplies, such as batteries, are acceptable if they vary within a known range at very  
slow speeds. Noise on the power supply is not acceptable, because it causes small  
frequency errors which continually change the acquisition time of the PLL.  
Temperature and processing also can affect acquisition time because the electrical  
characteristics of the PLL change. The part operates as specified as long as these  
influences stay within the specified limits. External factors, however, can cause  
drastic changes in the operation of the PLL. These factors include noise injected  
into the PLL through the filter capacitor, filter capacitor leakage, stray impedances  
on the circuit board, and even humidity or circuit board contamination.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Clock Generator Module (CGM)  
101  
Clock Generator Module (CGM)  
7.8.3 Choosing a Filter  
As described in 7.8.2 Parametric Influences on Reaction Time, the external filter  
network is critical to the stability and reaction time of the PLL. The PLL is also  
dependent on reference frequency and supply voltage.  
Figure 7-9 shows two types of filter circuits. In low-cost applications, where stability  
and reaction time of the PLL are not critical, the three component filter network  
shown in Figure 7-9 (B) can be replaced by a single capacitor, CF, as shown in  
shown in Figure 7-9 (A). Refer to Table 7-5 for recommended filter components at  
various reference frequencies. For reference frequencies between the values  
listed in the table, extrapolate to the nearest common capacitor value. In general,  
a slightly larger capacitor provides more stability at the expense of increased lock  
time.  
CGMXFC  
CGMXFC  
RF1  
CF2  
CF  
CF1  
VSSA  
VSSA  
(A)  
(B)  
Figure 7-9. PLL Filter  
Table 7-5. Example Filter Component Values  
fRCLK  
CF1  
CF2  
RF1  
CF  
1 MHz  
2 MHz  
3 MHz  
4 MHz  
5 MHz  
6 MHz  
7 MHz  
8 MHz  
8.2 nF  
4.7 nF  
3.3 nF  
2.2 nF  
1.8 nF  
1.5 nF  
1.2 nF  
1 nF  
820 pF  
470 pF  
330 pF  
220 pF  
180 pF  
150 pF  
120 pF  
100 pF  
2k  
2k  
2k  
2k  
2k  
2k  
2k  
2k  
18 nF  
6.8 nF  
5.6 nF  
4.7 nF  
3.9 nF  
3.3 nF  
2.7 nF  
2.2 nF  
Data Sheet  
102  
MC68HC908GZ16  
MOTOROLA  
Clock Generator Module (CGM)  
Data Sheet — MC68HC908GZ16  
Section 8. Configuration Register (CONFIG)  
8.1 Introduction  
This section describes the configuration registers, CONFIG1 and CONFIG2. The  
configuration registers enable or disable these options:  
Stop mode recovery time (32 CGMXCLK cycles or 4096 CGMXCLK cycles)  
COP timeout period (218 – 24 or 213 – 24 COPCLK cycles)  
STOP instruction  
Computer operating properly module (COP)  
Low-voltage inhibit (LVI) module control and voltage trip point selection  
Enable/disable the oscillator (OSC) during stop mode  
Enable/disable an extra divide by 128 prescaler in timebase module  
Enable for Motorola scalable controller area network (MSCAN)  
8.2 Functional Description  
The configuration registers are used in the initialization of various options. The  
configuration registers can be written once after each reset. All of the configuration  
register bits are cleared during reset. Since the various options affect the operation  
of the microcontroller unit (MCU), it is recommended that these registers be written  
immediately after reset. The configuration registers are located at $001E and  
$001F and may be read at anytime.  
NOTE:  
On a FLASH device, the options except LVI5OR3 are one-time writable by the user  
after each reset. The LVI5OR3 bit is one-time writable by the user only after each  
POR (power-on reset). The CONFIG registers are not in the FLASH memory but  
are special registers containing one-time writable latches after each reset. Upon a  
reset, the CONFIG registers default to predetermined settings as shown in  
Figure 8-1 and Figure 8-2.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Configuration Register (CONFIG)  
103  
Configuration Register (CONFIG)  
Address:  
$001E  
Bit 7  
6
0
5
0
4
0
3
2
1
Bit 0  
SCIBDSRC  
1
Read:  
Write:  
Reset:  
0
OSCEN-IN-  
STOP  
MSCAN-EN TMCLKSEL  
See note  
0
0
0
0
0
0
Note: MSCANEN is only reset via POR (power-on reset).  
= Unimplemented  
Figure 8-1. Configuration Register 2 (CONFIG2)  
Address:  
$001F  
Bit 7  
6
5
4
3
2
SSREC  
0
1
STOP  
0
Bit 0  
COPD  
0
Read:  
Write:  
Reset:  
COPRS  
0
LVISTOP LVIRSTD LVIPWRD LVI5OR3  
See note  
0
0
0
Note: LVI5OR3 bit is only reset via POR (power-on reset).  
Figure 8-2. Configuration Register 1 (CONFIG1)  
MSCANEN— MSCAN08 Enable Bit  
Setting the MSCANEN enables the MSCAN08 module and allows the MSCAN08  
to use the PTC0/PTC1 pins. See Section 16. MSCAN08 Controller  
(MSCAN08) for a more detailed description of the MSCAN08 operation.  
1 = Enables MSCAN08 module  
0 = Disables the MSCAN08 module  
NOTE:  
The MSCANEN bit is cleared by a power-on reset (POR) only. Other resets will  
leave this bit unaffected.  
TMCLKSEL— Timebase Clock Select Bit  
TMCLKSEL enables an extra divide-by-128 prescaler in the timebase module.  
Setting this bit enables the extra prescaler and clearing this bit disables it. See  
Section 7. Clock Generator Module (CGM) for a more detailed description of  
the external clock operation.  
1 = Enables extra divide-by-128 prescaler in timebase module  
0 = Disables extra divide-by-128 prescaler in timebase module  
OSCENINSTOP — Oscillator Enable In Stop Mode Bit  
OSCENINSTOP, when set, will enable the oscillator to continue to generate  
clocks in stop mode. See Section 7. Clock Generator Module (CGM). This  
function is used to keep the timebase running while the reset of the MCU stops.  
See Section 22. Timebase Module (TBM). When clear, oscillator will cease to  
generate clocks while in stop mode. The default state for this option is clear,  
disabling the oscillator in stop mode.  
1 = Oscillator enabled to operate during stop mode  
0 = Oscillator disabled during stop mode (default)  
Data Sheet  
104  
MC68HC908GZ16  
Configuration Register (CONFIG)  
MOTOROLA  
Configuration Register (CONFIG)  
Functional Description  
SCIBDSRC — SCI Baud Rate Clock Source Bit  
SCIBDSRC controls the clock source used for the serial communications  
interface (SCI). The setting of this bit affects the frequency at which the SCI  
operates.See Section 19. Enhanced Serial Communications Interface  
(ESCI) Module.  
1 = Internal data bus clock used as clock source for SCI (default)  
0 = External oscillator used as clock source for SCI  
COPRS — COP Rate Select Bit  
COPD selects the COP timeout period. Reset clears COPRS. See Section 9.  
Computer Operating Properly (COP) Module  
1 = COP timeout period = 213 – 24 COPCLK cycles  
0 = COP timeout period = 218 – 24 COPCLK cycles  
LVISTOP — LVI Enable in Stop Mode Bit  
When the LVIPWRD bit is clear, setting the LVISTOP bit enables the LVI to  
operate during stop mode. Reset clears LVISTOP.  
1 = LVI enabled during stop mode  
0 = LVI disabled during stop mode  
LVIRSTD — LVI Reset Disable Bit  
LVIRSTD disables the reset signal from the LVI module. See Section 14.  
Low-Voltage Inhibit (LVI).  
1 = LVI module resets disabled  
0 = LVI module resets enabled  
LVIPWRD — LVI Power Disable Bit  
LVIPWRD disables the LVI module. See Section 14. Low-Voltage Inhibit  
(LVI).  
1 = LVI module power disabled  
0 = LVI module power enabled  
LVI5OR3 — LVI 5-V or 3-V Operating Mode Bit  
LVI5OR3 selects the voltage operating mode of the LVI module (see Section  
14. Low-Voltage Inhibit (LVI)). The voltage mode selected for the LVI should  
match the operating VDD (see Section 24. Electrical Specifications) for the  
LVI’s voltage trip points for each of the modes.  
1 = LVI operates in 5-V mode  
0 = LVI operates in 3-V mode  
NOTE:  
NOTE:  
The LVI5OR3 bit is cleared by a power-on reset (POR) only. Other resets will leave  
this bit unaffected.  
SSREC — Short Stop Recovery Bit  
SSREC enables the CPU to exit stop mode with a delay of 32 CGMXCLK cycles  
instead of a 4096-CGMXCLK cycle delay.  
1 = Stop mode recovery after 32 CGMXCLK cycles  
0 = Stop mode recovery after 4096 CGMXCLCK cycles  
Exiting stop mode by an LVI reset will result in the long stop recovery.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Configuration Register (CONFIG)  
105  
Configuration Register (CONFIG)  
If the system clock source selected is the internal oscillator or the external  
crystal and the OSCENINSTOP configuration bit is not set, the oscillator will be  
disabled during stop mode. The short stop recovery does not provide enough  
time for oscillator stabilization and for this reason the SSREC bit should not be  
set.  
When using the LVI during normal operation but disabling during stop mode, the  
LVI will have an enable time of tEN. The system stabilization time for power-on  
reset and long stop recovery (both 4096 CGMXCLK cycles) gives a delay longer  
than the LVI enable time for these startup scenarios. There is no period where  
the MCU is not protected from a low-power condition. However, when using the  
short stop recovery configuration option, the 32-CGMXCLK delay must be  
greater than the LVI’s turn on time to avoid a period in startup where the LVI is  
not protecting the MCU.  
STOP — STOP Instruction Enable Bit  
STOP enables the STOP instruction.  
1 = STOP instruction enabled  
0 = STOP instruction treated as illegal opcode  
COPD — COP Disable Bit  
COPD disables the COP module. See Section 9. Computer Operating  
Properly (COP) Module.  
1 = COP module disabled  
0 = COP module enabled  
Data Sheet  
106  
MC68HC908GZ16  
Configuration Register (CONFIG)  
MOTOROLA  
Data Sheet — MC68HC908GZ16  
Section 9. Computer Operating Properly (COP) Module  
9.1 Introduction  
The computer operating properly (COP) module contains a free-running counter  
that generates a reset if allowed to overflow. The COP module helps software  
recover from runaway code. Prevent a COP reset by clearing the COP counter  
periodically. The COP module can be disabled through the COPD bit in the  
CONFIG register.  
9.2 Functional Description  
Figure 9-1 shows the structure of the COP module.  
CGMXCLK  
RESET CIRCUIT  
12-BIT COP PRESCALER  
RESET STATUS REGISTER  
STOP INSTRUCTION  
INTERNAL RESET SOURCES  
RESET VECTOR FETCH  
COPCTL WRITE  
COP CLOCK  
COP MODULE  
6-BIT COP COUNTER  
COPEN (FROM SIM)  
COP DISABLE  
(FROM CONFIG)  
RESET  
CLEAR  
COP COUNTER  
COPCTL WRITE  
COP RATE SEL  
(FROM CONFIG)  
Figure 9-1. COP Block Diagram  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
107  
Computer Operating Properly (COP) Module  
Computer Operating Properly (COP) Module  
The COP counter is a free-running 6-bit counter preceded by a 12-bit prescaler  
counter. If not cleared by software, the COP counter overflows and generates an  
asynchronous reset after 218 – 24 or 213 – 24 CGMXCLK cycles, depending on the  
state of the COP rate select bit, COPRS, in the configuration register. With a  
2
13 – 24 CGMXCLK cycle overflow option, a 4.9152-MHz crystal gives a COP  
timeout period of 53.3 ms. Writing any value to location $FFFF before an overflow  
occurs prevents a COP reset by clearing the COP counter and stages 12–5 of the  
prescaler.  
NOTE:  
NOTE:  
Service the COP immediately after reset and before entering or after exiting stop  
mode to guarantee the maximum time before the first COP counter overflow.  
A COP reset pulls the RST pin low for 32 CGMXCLK cycles and sets the COP bit  
in the reset status register (RSR).  
In monitor mode, the COP is disabled if the RST pin or the IRQ1 is held at VTST  
During the break state, VTST on the RST pin disables the COP.  
.
Place COP clearing instructions in the main program and not in an interrupt  
subroutine. Such an interrupt subroutine could keep the COP from generating a  
reset even while the main program is not working properly.  
9.3 I/O Signals  
9.3.1 CGMXCLK  
The following paragraphs describe the signals shown in Figure 9-1.  
CGMXCLK is the crystal oscillator output signal. CGMXCLK frequency is equal to  
the crystal frequency.  
9.3.2 STOP Instruction  
The STOP instruction clears the COP prescaler.  
9.3.3 COPCTL Write  
Writing any value to the COP control register (COPCTL) clears the COP counter  
and clears bits 12–5 of the prescaler. Reading the COP control register returns the  
low byte of the reset vector. See 9.4 COP Control Register.  
9.3.4 Power-On Reset  
The power-on reset (POR) circuit clears the COP prescaler 4096 CGMXCLK  
cycles after power-up.  
Data Sheet  
108  
MC68HC908GZ16  
MOTOROLA  
Computer Operating Properly (COP) Module  
Computer Operating Properly (COP) Module  
COP Control Register  
9.3.5 Internal Reset  
An internal reset clears the COP prescaler and the COP counter.  
9.3.6 Reset Vector Fetch  
A reset vector fetch occurs when the vector address appears on the data bus. A  
reset vector fetch clears the COP prescaler.  
9.3.7 COPD (COP Disable)  
The COPD signal reflects the state of the COP disable bit (COPD) in the  
configuration register. See Section 8. Configuration Register (CONFIG).  
9.3.8 COPRS (COP Rate Select)  
The COPRS signal reflects the state of the COP rate select bit (COPRS) in the  
configuration register. See Section 8. Configuration Register (CONFIG).  
9.4 COP Control Register  
The COP control register (COPCTL) is located at address $FFFF and overlaps the  
reset vector. Writing any value to $FFFF clears the COP counter and starts a new  
timeout period. Reading location $FFFF returns the low byte of the reset vector.  
Address: $FFFF  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Low byte of reset vector  
Clear COP counter  
Unaffected by reset  
Figure 9-2. COP Control Register (COPCTL)  
9.5 Interrupts  
The COP does not generate central processor unit (CPU) interrupt requests.  
9.6 Monitor Mode  
When monitor mode is entered with VTST on the IRQ pin, the COP is disabled as  
long as VTST remains on the IRQ pin or the RST pin. When monitor mode is  
entered by having blank reset vectors and not having VTST on the IRQ pin, the COP  
is automatically disabled until a POR occurs.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Computer Operating Properly (COP) Module  
109  
Computer Operating Properly (COP) Module  
9.7 Low-Power Modes  
The WAIT and STOP instructions put the microcontroller unit (MCU) in low  
power-consumption standby modes.  
9.7.1 Wait Mode  
9.7.2 Stop Mode  
The COP remains active during wait mode. If COP is enabled, a reset will occur at  
COP timeout.  
Stop mode turns off the CGMXCLK input to the COP and clears the COP prescaler.  
Service the COP immediately before entering or after exiting stop mode to ensure  
a full COP timeout period after entering or exiting stop mode.  
To prevent inadvertently turning off the COP with a STOP instruction, a  
configuration option is available that disables the STOP instruction. When the  
STOP bit in the configuration register has the STOP instruction disabled, execution  
of a STOP instruction results in an illegal opcode reset.  
9.8 COP Module During Break Mode  
The COP is disabled during a break interrupt when VTST is present on the RST pin.  
Data Sheet  
110  
MC68HC908GZ16  
MOTOROLA  
Computer Operating Properly (COP) Module  
Data Sheet — MC68HC908GZ16  
Section 10. Central Processor Unit (CPU)  
10.1 Introduction  
The M68HC08 CPU (central processor unit) is an enhanced and fully  
object-code-compatible version of the M68HC05 CPU. The CPU08 Reference  
Manual (Motorola document order number CPU08RM/AD) contains a description  
of the CPU instruction set, addressing modes, and architecture.  
10.2 Features  
Features of the CPU include:  
Object code fully upward-compatible with M68HC05 Family  
16-bit stack pointer with stack manipulation instructions  
16-bit index register with x-register manipulation instructions  
8-MHz CPU internal bus frequency  
64-Kbyte program/data memory space  
16 addressing modes  
Memory-to-memory data moves without using accumulator  
Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions  
Enhanced binary-coded decimal (BCD) data handling  
Modular architecture with expandable internal bus definition for extension of  
addressing range beyond 64 Kbytes  
Low-power stop and wait modes  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Central Processor Unit (CPU)  
111  
Central Processor Unit (CPU)  
10.3 CPU Registers  
Figure 10-1 shows the five CPU registers. CPU registers are not part of the  
memory map.  
7
0
0
0
0
ACCUMULATOR (A)  
15  
15  
15  
H
X
INDEX REGISTER (H:X)  
STACK POINTER (SP)  
PROGRAM COUNTER (PC)  
CONDITION CODE REGISTER (CCR)  
7
0
V
1
1
H
I
N
Z
C
CARRY/BORROW FLAG  
ZERO FLAG  
NEGATIVE FLAG  
INTERRUPT MASK  
HALF-CARRY FLAG  
TWO’S COMPLEMENT OVERFLOW FLAG  
Figure 10-1. CPU Registers  
10.3.1 Accumulator  
The accumulator is a general-purpose 8-bit register. The CPU uses the  
accumulator to hold operands and the results of arithmetic/logic operations.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Unaffected by reset  
Figure 10-2. Accumulator (A)  
Data Sheet  
112  
MC68HC908GZ16  
MOTOROLA  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
CPU Registers  
10.3.2 Index Register  
The 16-bit index register allows indexed addressing of a 64-Kbyte memory space.  
H is the upper byte of the index register, and X is the lower byte. H:X is the  
concatenated 16-bit index register.  
In the indexed addressing modes, the CPU uses the contents of the index register  
to determine the conditional address of the operand.  
The index register can serve also as a temporary data storage location.  
Bit  
15 14 13 12 11 10  
Bit  
0
9
0
8
0
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
0
0
0
0
0
0
X
X
X
X
X
X
X
X
X = Indeterminate  
Figure 10-3. Index Register (H:X)  
10.3.3 Stack Pointer  
The stack pointer is a 16-bit register that contains the address of the next location  
on the stack. During a reset, the stack pointer is preset to $00FF. The reset stack  
pointer (RSP) instruction sets the least significant byte to $FF and does not affect  
the most significant byte. The stack pointer decrements as data is pushed onto the  
stack and increments as data is pulled from the stack.  
In the stack pointer 8-bit offset and 16-bit offset addressing modes, the stack  
pointer can function as an index register to access data on the stack. The CPU  
uses the contents of the stack pointer to determine the conditional address of the  
operand.  
Bit  
15 14 13 12 11 10  
Bit  
0
9
0
8
0
7
1
6
1
5
1
4
1
3
1
2
1
1
1
Read:  
Write:  
Reset:  
0
0
0
0
0
0
1
Figure 10-4. Stack Pointer (SP)  
The location of the stack is arbitrary and may be relocated anywhere in  
NOTE:  
random-access memory (RAM). Moving the SP out of page 0 ($0000 to $00FF)  
frees direct address (page 0) space. For correct operation, the stack pointer must  
point only to RAM locations.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Central Processor Unit (CPU)  
113  
Central Processor Unit (CPU)  
10.3.4 Program Counter  
The program counter is a 16-bit register that contains the address of the next  
instruction or operand to be fetched.  
Normally, the program counter automatically increments to the next sequential  
memory location every time an instruction or operand is fetched. Jump, branch,  
and interrupt operations load the program counter with an address other than that  
of the next sequential location.  
During reset, the program counter is loaded with the reset vector address located  
at $FFFE and $FFFF. The vector address is the address of the first instruction to  
be executed after exiting the reset state.  
Bit  
15 14 13 12 11 10  
Bit  
0
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
Loaded with vector from $FFFE and $FFFF  
Figure 10-5. Program Counter (PC)  
10.3.5 Condition Code Register  
The 8-bit condition code register contains the interrupt mask and five flags that  
indicate the results of the instruction just executed. Bits 6 and 5 are set  
permanently to logic 1. The following paragraphs describe the functions of the  
condition code register.  
Bit 7  
V
6
1
1
5
1
1
4
H
X
3
I
2
N
X
1
Z
X
Bit 0  
C
Read:  
Write:  
Reset:  
X
1
X
X = Indeterminate  
Figure 10-6. Condition Code Register (CCR)  
V — Overflow Flag  
The CPU sets the overflow flag when a two's complement overflow occurs. The  
signed branch instructions BGT, BGE, BLE, and BLT use the overflow flag.  
1 = Overflow  
0 = No overflow  
Data Sheet  
114  
MC68HC908GZ16  
Central Processor Unit (CPU)  
MOTOROLA  
Central Processor Unit (CPU)  
CPU Registers  
H — Half-Carry Flag  
The CPU sets the half-carry flag when a carry occurs between accumulator bits  
3 and 4 during an add-without-carry (ADD) or add-with-carry (ADC) operation.  
The half-carry flag is required for binary-coded decimal (BCD) arithmetic  
operations. The DAA instruction uses the states of the H and C flags to  
determine the appropriate correction factor.  
1 = Carry between bits 3 and 4  
0 = No carry between bits 3 and 4  
I — Interrupt Mask  
When the interrupt mask is set, all maskable CPU interrupts are disabled. CPU  
interrupts are enabled when the interrupt mask is cleared. When a CPU  
interrupt occurs, the interrupt mask is set  
automatically after the CPU registers are saved on the stack, but before the  
interrupt vector is fetched.  
1 = Interrupts disabled  
0 = Interrupts enabled  
NOTE:  
To maintain M6805 Family compatibility, the upper byte of the index register (H) is  
not stacked automatically. If the interrupt service routine modifies H, then the user  
must stack and unstack H using the PSHH and PULH instructions.  
After the I bit is cleared, the highest-priority interrupt request is serviced first.  
A return-from-interrupt (RTI) instruction pulls the CPU registers from the stack  
and restores the interrupt mask from the stack. After any reset, the interrupt  
mask is set and can be cleared only by the clear interrupt mask software  
instruction (CLI).  
N — Negative flag  
The CPU sets the negative flag when an arithmetic operation, logic operation,  
or data manipulation produces a negative result, setting bit 7 of the result.  
1 = Negative result  
0 = Non-negative result  
Z — Zero flag  
The CPU sets the zero flag when an arithmetic operation, logic operation, or  
data manipulation produces a result of $00.  
1 = Zero result  
0 = Non-zero result  
C — Carry/Borrow Flag  
The CPU sets the carry/borrow flag when an addition operation produces a  
carry out of bit 7 of the accumulator or when a subtraction operation requires a  
borrow. Some instructions — such as bit test and branch, shift, and rotate —  
also clear or set the carry/borrow flag.  
1 = Carry out of bit 7  
0 = No carry out of bit 7  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Central Processor Unit (CPU)  
115  
Central Processor Unit (CPU)  
10.4 Arithmetic/Logic Unit (ALU)  
The ALU performs the arithmetic and logic operations defined by the instruction  
set.  
Refer to the CPU08 Reference Manual (Motorola document order number  
CPU08RM/AD) for a description of the instructions and addressing modes and  
more detail about the architecture of the CPU.  
10.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby  
modes.  
10.5.1 Wait Mode  
The WAIT instruction:  
Clears the interrupt mask (I bit) in the condition code register, enabling  
interrupts. After exit from wait mode by interrupt, the I bit remains clear. After  
exit by reset, the I bit is set.  
Disables the CPU clock  
10.5.2 Stop Mode  
The STOP instruction:  
Clears the interrupt mask (I bit) in the condition code register, enabling  
external interrupts. After exit from stop mode by external interrupt, the I bit  
remains clear. After exit by reset, the I bit is set.  
Disables the CPU clock  
After exiting stop mode, the CPU clock begins running after the oscillator  
stabilization delay.  
10.6 CPU During Break Interrupts  
If a break module is present on the MCU, the CPU starts a break interrupt by:  
Loading the instruction register with the SWI instruction  
Loading the program counter with $FFFC:$FFFD or with $FEFC:$FEFD in  
monitor mode  
The break interrupt begins after completion of the CPU instruction in progress. If  
the break address register match occurs on the last cycle of a CPU instruction, the  
break interrupt begins immediately.  
A return-from-interrupt instruction (RTI) in the break routine ends the break  
interrupt and returns the MCU to normal operation if the break interrupt has been  
deasserted.  
Data Sheet  
116  
MC68HC908GZ16  
Central Processor Unit (CPU)  
MOTOROLA  
Central Processor Unit (CPU)  
Instruction Set Summary  
10.7 Instruction Set Summary  
Table 10-1 provides a summary of the M68HC08 instruction set.  
Table 10-1. Instruction Set Summary (Sheet 1 of 7)  
Effect  
Source  
Form  
on CCR  
Operation  
Description  
V H I N Z C  
ADC #opr  
IMM  
DIR  
EXT  
IX2  
A9 ii  
B9 dd  
C9 hh ll  
D9 ee ff  
E9 ff  
2
3
4
4
3
2
4
5
ADC opr  
ADC opr  
ADC opr,X  
ADC opr,X  
ADC ,X  
Add with Carry  
A (A) + (M) + (C)  
IX1  
IX  
SP1  
SP2  
F9  
ADC opr,SP  
ADC opr,SP  
9EE9 ff  
9ED9 ee ff  
ADD #opr  
ADD opr  
ADD opr  
ADD opr,X  
ADD opr,X  
ADD ,X  
ADD opr,SP  
ADD opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
AB ii  
BB dd  
CB hh ll  
DB ee ff  
EB ff  
FB  
9EEB ff  
9EDB ee ff  
2
3
4
4
3
2
4
5
Add without Carry  
A (A) + (M)  
AIS #opr  
AIX #opr  
Add Immediate Value (Signed) to SP  
Add Immediate Value (Signed) to H:X  
– IMM  
– IMM  
A7 ii  
AF ii  
2
2
SP (SP) + (16 « M)  
H:X (H:X) + (16 « M)  
AND #opr  
AND opr  
IMM  
DIR  
EXT  
A4 ii  
B4 dd  
C4 hh ll  
D4 ee ff  
E4 ff  
2
3
4
4
3
2
4
5
AND opr  
AND opr,X  
AND opr,X  
AND ,X  
AND opr,SP  
AND opr,SP  
IX2  
Logical AND  
A (A) & (M)  
0
IX1  
IX  
SP1  
SP2  
F4  
9EE4 ff  
9ED4 ee ff  
ASL opr  
ASLA  
ASLX  
ASL opr,X  
ASL ,X  
ASL opr,SP  
DIR  
INH  
38 dd  
48  
4
1
1
4
3
5
Arithmetic Shift Left  
(Same as LSL)  
INH  
58  
C
0
IX1  
68 ff  
78  
b7  
b7  
b0  
b0  
IX  
SP1  
9E68 ff  
ASR opr  
ASRA  
ASRX  
ASR opr,X  
ASR opr,X  
ASR opr,SP  
DIR  
INH  
37 dd  
47  
4
1
1
4
3
5
INH  
57  
C
Arithmetic Shift Right  
IX1  
67 ff  
77  
IX  
SP1  
9E67 ff  
BCC rel  
Branch if Carry Bit Clear  
PC (PC) + 2 + rel ? (C) = 0  
– REL  
24 rr  
3
DIR (b0) 11 dd  
DIR (b1) 13 dd  
DIR (b2) 15 dd  
DIR (b3) 17 dd  
DIR (b4) 19 dd  
DIR (b5) 1B dd  
DIR (b6) 1D dd  
DIR (b7) 1F dd  
4
4
4
4
4
4
4
4
BCLR n, opr  
Clear Bit n in M  
Mn 0  
BCS rel  
BEQ rel  
Branch if Carry Bit Set (Same as BLO)  
Branch if Equal  
PC (PC) + 2 + rel ? (C) = 1  
PC (PC) + 2 + rel ? (Z) = 1  
– REL  
– REL  
25 rr  
27 rr  
3
3
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
117  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
Table 10-1. Instruction Set Summary (Sheet 2 of 7)  
Effect  
Source  
Form  
on CCR  
Operation  
Description  
V H I N Z C  
Branch if Greater Than or Equal To  
(Signed Operands)  
BGE opr  
– REL  
– REL  
90 rr  
92 rr  
3
PC (PC) + 2 + rel ? (N V) = 0  
Branch if Greater Than (Signed  
Operands)  
BGT opr  
3
3
PC (PC) + 2 + rel ? (Z) | (N V) = 0  
BHCC rel  
BHCS rel  
BHI rel  
Branch if Half Carry Bit Clear  
Branch if Half Carry Bit Set  
Branch if Higher  
PC (PC) + 2 + rel ? (H) = 0  
PC (PC) + 2 + rel ? (H) = 1  
PC (PC) + 2 + rel ? (C) | (Z) = 0  
– REL  
– REL  
– REL  
28 rr  
29 rr  
22 rr  
3
3
3
Branch if Higher or Same  
(Same as BCC)  
BHS rel  
PC (PC) + 2 + rel ? (C) = 0  
– REL  
24 rr  
BIH rel  
BIL rel  
Branch if IRQ Pin High  
Branch if IRQ Pin Low  
PC (PC) + 2 + rel ? IRQ = 1  
PC (PC) + 2 + rel ? IRQ = 0  
– REL  
– REL  
2F rr  
2E rr  
3
3
BIT #opr  
BIT opr  
IMM  
DIR  
EXT  
A5 ii  
B5 dd  
C5 hh ll  
D5 ee ff  
E5 ff  
2
3
4
4
3
2
4
5
BIT opr  
BIT opr,X  
BIT opr,X  
BIT ,X  
BIT opr,SP  
BIT opr,SP  
IX2  
Bit Test  
(A) & (M)  
0
IX1  
IX  
SP1  
SP2  
F5  
9EE5 ff  
9ED5 ee ff  
Branch if Less Than or Equal To  
(Signed Operands)  
BLE opr  
– REL  
93 rr  
3
PC (PC) + 2 + rel ? (Z) | (N V) = 1  
BLO rel  
BLS rel  
BLT opr  
BMC rel  
BMI rel  
BMS rel  
BNE rel  
BPL rel  
BRA rel  
Branch if Lower (Same as BCS)  
Branch if Lower or Same  
Branch if Less Than (Signed Operands)  
Branch if Interrupt Mask Clear  
Branch if Minus  
PC (PC) + 2 + rel ? (C) = 1  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
25 rr  
23 rr  
91 rr  
2C rr  
2B rr  
2D rr  
26 rr  
2A rr  
20 rr  
3
3
3
3
3
3
3
3
3
PC (PC) + 2 + rel ? (C) | (Z) = 1  
PC (PC) + 2 + rel ? (N V) =1  
PC (PC) + 2 + rel ? (I) = 0  
PC (PC) + 2 + rel ? (N) = 1  
PC (PC) + 2 + rel ? (I) = 1  
PC (PC) + 2 + rel ? (Z) = 0  
PC (PC) + 2 + rel ? (N) = 0  
PC (PC) + 2 + rel  
Branch if Interrupt Mask Set  
Branch if Not Equal  
Branch if Plus  
Branch Always  
DIR (b0) 01 dd rr  
DIR (b1) 03 dd rr  
DIR (b2) 05 dd rr  
DIR (b3) 07 dd rr  
DIR (b4) 09 dd rr  
DIR (b5) 0B dd rr  
DIR (b6) 0D dd rr  
DIR (b7) 0F dd rr  
5
5
5
5
5
5
5
5
BRCLR n,opr,rel Branch if Bit n in M Clear  
PC (PC) + 3 + rel ? (Mn) = 0  
PC (PC) + 2  
BRN rel  
Branch Never  
– REL  
21 rr  
3
Data Sheet  
118  
MC68HC908GZ16  
MOTOROLA  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
Instruction Set Summary  
Table 10-1. Instruction Set Summary (Sheet 3 of 7)  
Effect  
Source  
Form  
on CCR  
Operation  
Description  
V H I N Z C  
DIR (b0) 00 dd rr  
DIR (b1) 02 dd rr  
DIR (b2) 04 dd rr  
DIR (b3) 06 dd rr  
DIR (b4) 08 dd rr  
DIR (b5) 0A dd rr  
DIR (b6) 0C dd rr  
DIR (b7) 0E dd rr  
5
5
5
5
5
5
5
5
BRSET n,opr,rel Branch if Bit n in M Set  
PC (PC) + 3 + rel ? (Mn) = 1  
DIR (b0) 10 dd  
DIR (b1) 12 dd  
DIR (b2) 14 dd  
DIR (b3) 16 dd  
DIR (b4) 18 dd  
DIR (b5) 1A dd  
DIR (b6) 1C dd  
DIR (b7) 1E dd  
4
4
4
4
4
4
4
4
BSET n,opr  
BSR rel  
Set Bit n in M  
Mn 1  
PC (PC) + 2; push (PCL)  
SP (SP) – 1; push (PCH)  
SP (SP) – 1  
Branch to Subroutine  
– REL  
AD rr  
4
PC (PC) + rel  
CBEQ opr,rel  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 3 + rel ? (X) – (M) = $00  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 2 + rel ? (A) – (M) = $00  
PC (PC) + 4 + rel ? (A) – (M) = $00  
DIR  
31 dd rr  
41 ii rr  
51 ii rr  
61 ff rr  
71 rr  
5
4
4
5
4
6
CBEQA #opr,rel  
CBEQX #opr,rel  
CBEQ opr,X+,rel  
CBEQ X+,rel  
IMM  
IMM  
Compare and Branch if Equal  
IX1+  
IX+  
CBEQ opr,SP,rel  
SP1  
9E61 ff rr  
CLC  
CLI  
Clear Carry Bit  
C 0  
I 0  
0
0 INH  
– INH  
98  
9A  
1
2
Clear Interrupt Mask  
CLR opr  
CLRA  
M $00  
A $00  
X $00  
H $00  
M $00  
M $00  
M $00  
DIR  
INH  
3F dd  
4F  
3
1
1
1
3
2
4
CLRX  
INH  
5F  
CLRH  
Clear  
0
0
1
– INH  
IX1  
IX  
SP1  
8C  
CLR opr,X  
CLR ,X  
6F ff  
7F  
CLR opr,SP  
9E6F ff  
CMP #opr  
CMP opr  
CMP opr  
CMP opr,X  
CMP opr,X  
CMP ,X  
CMP opr,SP  
CMP opr,SP  
IMM  
DIR  
EXT  
A1 ii  
B1 dd  
C1 hh ll  
D1 ee ff  
E1 ff  
2
3
4
4
3
2
4
5
IX2  
Compare A with M  
(A) – (M)  
IX1  
IX  
F1  
SP1  
SP2  
9EE1 ff  
9ED1 ee ff  
COM opr  
COMA  
M (M) = $FF – (M)  
A (A) = $FF – (M)  
X (X) = $FF – (M)  
M (M) = $FF – (M)  
M (M) = $FF – (M)  
M (M) = $FF – (M)  
DIR  
INH  
33 dd  
43  
4
1
1
4
3
5
COMX  
INH  
53  
Complement (One’s Complement)  
Compare H:X with M  
0
1
COM opr,X  
COM ,X  
COM opr,SP  
IX1  
63 ff  
73  
9E63 ff  
IX  
SP1  
CPHX #opr  
CPHX opr  
IMM  
65 ii ii+1  
75 dd  
3
4
(H:X) – (M:M + 1)  
DIR  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
119  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
Table 10-1. Instruction Set Summary (Sheet 4 of 7)  
Effect  
Source  
Form  
on CCR  
Operation  
Description  
V H I N Z C  
CPX #opr  
IMM  
DIR  
EXT  
IX2  
A3 ii  
B3 dd  
C3 hh ll  
D3 ee ff  
E3 ff  
2
3
4
4
3
2
4
5
CPX opr  
CPX opr  
CPX ,X  
CPX opr,X  
CPX opr,X  
CPX opr,SP  
CPX opr,SP  
Compare X with M  
(X) – (M)  
(A)10  
IX1  
IX  
SP1  
SP2  
F3  
9EE3 ff  
9ED3 ee ff  
DAA  
Decimal Adjust A  
U –  
INH  
72  
2
A (A) – 1 or M (M) – 1 or X (X) – 1  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 4 + rel ? (result) 0  
5
3
3
5
4
6
DBNZ opr,rel  
DBNZA rel  
DBNZX rel  
DBNZ opr,X,rel  
DBNZ X,rel  
DBNZ opr,SP,rel  
DIR  
INH  
3B dd rr  
4B rr  
Decrement and Branch if Not Zero  
– INH  
IX1  
5B rr  
6B ff rr  
7B rr  
IX  
SP1  
9E6B ff rr  
DEC opr  
DECA  
M (M) – 1  
A (A) – 1  
X (X) – 1  
M (M) – 1  
M (M) – 1  
M (M) – 1  
DIR  
INH  
3A dd  
4A  
4
1
1
4
3
5
DECX  
INH  
5A  
Decrement  
Divide  
DEC opr,X  
DEC ,X  
DEC opr,SP  
IX1  
6A ff  
7A  
9E6A ff  
IX  
SP1  
A (H:A)/(X)  
H Remainder  
DIV  
INH  
52  
7
EOR #opr  
EOR opr  
IMM  
DIR  
EXT  
A8 ii  
B8 dd  
C8 hh ll  
D8 ee ff  
E8 ff  
2
3
4
4
3
2
4
5
EOR opr  
EOR opr,X  
EOR opr,X  
EOR ,X  
EOR opr,SP  
EOR opr,SP  
IX2  
Exclusive OR M with A  
0
A (A M)  
IX1  
IX  
SP1  
SP2  
F8  
9EE8 ff  
9ED8 ee ff  
INC opr  
INCA  
INCX  
INC opr,X  
INC ,X  
INC opr,SP  
M (M) + 1  
A (A) + 1  
X (X) + 1  
M (M) + 1  
M (M) + 1  
M (M) + 1  
DIR  
INH  
3C dd  
4C  
4
1
1
4
3
5
INH  
5C  
Increment  
IX1  
6C ff  
7C  
IX  
SP1  
9E6C ff  
JMP opr  
JMP opr  
JMP opr,X  
JMP opr,X  
JMP ,X  
DIR  
EXT  
– IX2  
IX1  
BC dd  
CC hh ll  
DC ee ff  
EC ff  
2
3
4
3
2
Jump  
PC Jump Address  
IX  
FC  
JSR opr  
JSR opr  
JSR opr,X  
JSR opr,X  
JSR ,X  
DIR  
EXT  
– IX2  
IX1  
BD dd  
CD hh ll  
DD ee ff  
ED ff  
4
5
6
5
4
PC (PC) + n (n = 1, 2, or 3)  
Push (PCL); SP (SP) – 1  
Push (PCH); SP (SP) – 1  
PC Unconditional Address  
Jump to Subroutine  
IX  
FD  
LDA #opr  
LDA opr  
IMM  
DIR  
EXT  
A6 ii  
B6 dd  
C6 hh ll  
D6 ee ff  
E6 ff  
2
3
4
4
3
2
4
5
LDA opr  
LDA opr,X  
LDA opr,X  
LDA ,X  
LDA opr,SP  
LDA opr,SP  
IX2  
Load A from M  
A (M)  
0
IX1  
IX  
SP1  
SP2  
F6  
9EE6 ff  
9ED6 ee ff  
Data Sheet  
120  
MC68HC908GZ16  
MOTOROLA  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
Instruction Set Summary  
Table 10-1. Instruction Set Summary (Sheet 5 of 7)  
Effect  
Source  
Form  
on CCR  
Operation  
Description  
V H I N Z C  
LDHX #opr  
LDHX opr  
IMM  
DIR  
45 ii jj  
55 dd  
3
4
Load H:X from M  
H:X ← (M:M + 1)  
0
LDX #opr  
LDX opr  
LDX opr  
LDX opr,X  
LDX opr,X  
LDX ,X  
LDX opr,SP  
LDX opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
AE ii  
BE dd  
CE hh ll  
DE ee ff  
EE ff  
FE  
9EEE ff  
9EDE ee ff  
2
3
4
4
3
2
4
5
Load X from M  
X (M)  
0
LSL opr  
LSLA  
DIR  
INH  
INH  
IX1  
IX  
38 dd  
48  
4
1
1
4
3
5
LSLX  
Logical Shift Left  
(Same as ASL)  
58  
C
0
LSL opr,X  
LSL ,X  
LSL opr,SP  
68 ff  
78  
9E68 ff  
b7  
b7  
b0  
b0  
SP1  
LSR opr  
LSRA  
LSRX  
LSR opr,X  
LSR ,X  
LSR opr,SP  
DIR  
INH  
INH  
IX1  
IX  
34 dd  
44  
4
1
1
4
3
5
54  
0
C
Logical Shift Right  
0
64 ff  
74  
SP1  
9E64 ff  
MOV opr,opr  
MOV opr,X+  
MOV #opr,opr  
MOV X+,opr  
DD  
4E dd dd  
5E dd  
5
4
4
4
(M)Destination (M)Source  
DIX+  
IMD  
IX+D  
Move  
0
0
6E ii dd  
7E dd  
H:X (H:X) + 1 (IX+D, DIX+)  
MUL  
Unsigned multiply  
X:A (X) × (A)  
0 INH  
42  
5
NEG opr  
NEGA  
DIR  
INH  
30 dd  
40  
4
1
1
4
3
5
M –(M) = $00 – (M)  
A –(A) = $00 – (A)  
X –(X) = $00 – (X)  
M –(M) = $00 – (M)  
M –(M) = $00 – (M)  
NEGX  
INH  
50  
Negate (Two’s Complement)  
NEG opr,X  
NEG ,X  
NEG opr,SP  
IX1  
60 ff  
70  
9E60 ff  
IX  
SP1  
NOP  
NSA  
No Operation  
Nibble Swap A  
None  
– INH  
– INH  
9D  
62  
1
3
A (A[3:0]:A[7:4])  
ORA #opr  
ORA opr  
IMM  
DIR  
EXT  
AA ii  
BA dd  
CA hh ll  
DA ee ff  
EA ff  
2
3
4
4
3
2
4
5
ORA opr  
ORA opr,X  
ORA opr,X  
ORA ,X  
ORA opr,SP  
ORA opr,SP  
IX2  
Inclusive OR A and M  
A (A) | (M)  
0
IX1  
IX  
SP1  
SP2  
FA  
9EEA ff  
9EDA ee ff  
PSHA  
PSHH  
PSHX  
PULA  
PULH  
PULX  
Push A onto Stack  
Push H onto Stack  
Push X onto Stack  
Pull A from Stack  
Pull H from Stack  
Pull X from Stack  
Push (A); SP (SP) – 1  
Push (H); SP (SP) – 1  
Push (X); SP (SP) – 1  
SP (SP + 1); Pull (A)  
SP (SP + 1); Pull (H)  
SP (SP + 1); Pull (X)  
– INH  
– INH  
– INH  
– INH  
– INH  
– INH  
87  
8B  
89  
86  
8A  
88  
2
2
2
2
2
2
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
121  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
Table 10-1. Instruction Set Summary (Sheet 6 of 7)  
Effect  
Source  
Form  
on CCR  
Operation  
Description  
V H I N Z C  
ROL opr  
DIR  
INH  
INH  
IX1  
IX  
39 dd  
49  
4
1
1
4
3
5
ROLA  
ROLX  
59  
C
Rotate Left through Carry  
ROL opr,X  
ROL ,X  
69 ff  
79  
9E69 ff  
b7  
b0  
ROL opr,SP  
SP1  
ROR opr  
RORA  
RORX  
ROR opr,X  
ROR ,X  
ROR opr,SP  
DIR  
INH  
INH  
IX1  
IX  
36 dd  
46  
4
1
1
4
3
5
56  
C
Rotate Right through Carry  
66 ff  
76  
b7  
b0  
SP1  
9E66 ff  
RSP  
Reset Stack Pointer  
Return from Interrupt  
SP $FF  
– INH  
9C  
1
SP (SP) + 1; Pull (CCR)  
SP (SP) + 1; Pull (A)  
SP (SP) + 1; Pull (X)  
SP (SP) + 1; Pull (PCH)  
SP (SP) + 1; Pull (PCL)  
RTI  
INH  
80  
7
SP SP + 1; Pull (PCH)  
SP SP + 1; Pull (PCL)  
RTS  
Return from Subroutine  
Subtract with Carry  
– INH  
81  
4
SBC #opr  
SBC opr  
SBC opr  
SBC opr,X  
SBC opr,X  
SBC ,X  
SBC opr,SP  
SBC opr,SP  
IMM  
DIR  
EXT  
A2 ii  
B2 dd  
C2 hh ll  
D2 ee ff  
E2 ff  
2
3
4
4
3
2
4
5
IX2  
A (A) – (M) – (C)  
IX1  
IX  
F2  
SP1  
SP2  
9EE2 ff  
9ED2 ee ff  
SEC  
SEI  
Set Carry Bit  
C 1  
I 1  
1
1 INH  
– INH  
99  
9B  
1
2
Set Interrupt Mask  
STA opr  
DIR  
EXT  
IX2  
B7 dd  
C7 hh ll  
D7 ee ff  
E7 ff  
3
4
4
3
2
4
5
STA opr  
STA opr,X  
STA opr,X  
STA ,X  
STA opr,SP  
STA opr,SP  
Store A in M  
M (A)  
0
– IX1  
IX  
F7  
SP1  
SP2  
9EE7 ff  
9ED7 ee ff  
STHX opr  
Store H:X in M  
(M:M + 1) (H:X)  
0
0
– DIR  
– INH  
35 dd  
8E  
4
1
STOP  
Enable IRQ Pin; Stop Oscillator  
I 0; Stop Oscillator  
STX opr  
DIR  
EXT  
IX2  
BF dd  
CF hh ll  
DF ee ff  
EF ff  
3
4
4
3
2
4
5
STX opr  
STX opr,X  
STX opr,X  
STX ,X  
STX opr,SP  
STX opr,SP  
Store X in M  
M (X)  
0
– IX1  
IX  
FF  
SP1  
SP2  
9EEF ff  
9EDF ee ff  
SUB #opr  
SUB opr  
SUB opr  
SUB opr,X  
SUB opr,X  
SUB ,X  
SUB opr,SP  
SUB opr,SP  
IMM  
DIR  
EXT  
A0 ii  
B0 dd  
C0 hh ll  
D0 ee ff  
E0 ff  
2
3
4
4
3
2
4
5
IX2  
Subtract  
A (A) (M)  
IX1  
IX  
F0  
SP1  
SP2  
9EE0 ff  
9ED0 ee ff  
Data Sheet  
122  
MC68HC908GZ16  
MOTOROLA  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
Opcode Map  
Table 10-1. Instruction Set Summary (Sheet 7 of 7)  
Effect  
Source  
Form  
on CCR  
Operation  
Description  
V H I N Z C  
PC (PC) + 1; Push (PCL)  
SP (SP) – 1; Push (PCH)  
SP (SP) – 1; Push (X)  
SP (SP) – 1; Push (A)  
SWI  
Software Interrupt  
1
– INH  
83  
9
SP (SP) – 1; Push (CCR)  
SP (SP) – 1; I 1  
PCH Interrupt Vector High Byte  
PCL Interrupt Vector Low Byte  
TAP  
TAX  
TPA  
Transfer A to CCR  
Transfer A to X  
CCR (A)  
X (A)  
INH  
– INH  
– INH  
84  
97  
85  
2
1
1
Transfer CCR to A  
A (CCR)  
TST opr  
TSTA  
DIR  
INH  
3D dd  
4D  
3
1
1
3
2
4
TSTX  
INH  
5D  
Test for Negative or Zero  
(A) – $00 or (X) – $00 or (M) – $00  
0
TST opr,X  
TST ,X  
TST opr,SP  
IX1  
6D ff  
7D  
9E6D ff  
IX  
SP1  
TSX  
TXA  
TXS  
Transfer SP to H:X  
Transfer X to A  
H:X (SP) + 1  
A (X)  
– INH  
– INH  
– INH  
95  
9F  
94  
2
1
2
Transfer H:X to SP  
(SP) (H:X) – 1  
A
C
CCR  
dd  
dd rr  
DD  
DIR  
DIX+  
ee ff  
EXT  
ff  
H
H
hh ll  
I
ii  
Accumulator  
Carry/borrow bit  
Condition code register  
Direct address of operand  
Direct address of operand and relative offset of branch instruction  
Direct to direct addressing mode  
n
Any bit  
opr Operand (one or two bytes)  
PC Program counter  
PCH Program counter high byte  
PCL Program counter low byte  
REL Relative addressing mode  
Direct addressing mode  
rel  
rr  
Relative program counter offset byte  
Relative program counter offset byte  
Direct to indexed with post increment addressing mode  
High and low bytes of offset in indexed, 16-bit offset addressing  
Extended addressing mode  
Offset byte in indexed, 8-bit offset addressing  
Half-carry bit  
Index register high byte  
High and low bytes of operand address in extended addressing  
Interrupt mask  
SP1 Stack pointer, 8-bit offset addressing mode  
SP2 Stack pointer 16-bit offset addressing mode  
SP Stack pointer  
U
V
X
Z
&
|
Undefined  
Overflow bit  
Index register low byte  
Zero bit  
Logical AND  
Logical OR  
Immediate operand byte  
Immediate source to direct destination addressing mode  
IMD  
IMM  
INH  
IX  
Immediate addressing mode  
Inherent addressing mode  
Indexed, no offset addressing mode  
Indexed, no offset, post increment addressing mode  
Logical EXCLUSIVE OR  
Contents of  
( )  
–( ) Negation (two’s complement)  
#
IX+  
Immediate value  
IX+D  
IX1  
IX1+  
IX2  
M
Indexed with post increment to direct addressing mode  
Indexed, 8-bit offset addressing mode  
Indexed, 8-bit offset, post increment addressing mode  
Indexed, 16-bit offset addressing mode  
Memory location  
«
?
:
Sign extend  
Loaded with  
If  
Concatenated with  
Set or cleared  
Not affected  
N
Negative bit  
10.8 Opcode Map  
See Table 10-2.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
123  
Central Processor Unit (CPU)  
Table 10-2. Opcode Map  
Bit Manipulation Branch  
Read-Modify-Write  
Control  
Register/Memory  
DIR  
DIR  
REL  
DIR  
3
INH  
4
INH  
IX1  
SP1  
9E6  
IX  
7
INH  
INH  
IMM  
A
DIR  
B
EXT  
C
IX2  
SP2  
IX1  
E
SP1  
9EE  
IX  
F
MSB  
0
1
2
5
6
8
9
D
9ED  
LSB  
5
4
3
4
1
NEGA  
INH  
1
NEGX  
INH  
4
5
3
7
3
2
3
4
4
5
3
4
2
0
BRSET0 BSET0  
BRA  
NEG  
NEG  
NEG  
NEG  
RTI  
INH  
BGE  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
3
DIR  
5
2
DIR  
4
2
2
2
2
2
2
2
2
REL 2 DIR  
3
BRN  
REL 3 DIR  
3
BHI  
REL  
3
BLS  
REL 2 DIR  
3
BCC  
REL 2 DIR  
3
BCS  
REL 2 DIR  
3
BNE  
REL 2 DIR  
3
BEQ  
1
1
2
IX1 3 SP1 1 IX  
5
1
1
2
2
2
2
1
1
REL 2 IMM 2 DIR  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
EXT 3 IX2  
4
CMP  
EXT 3 IX2  
4
SBC  
EXT 3 IX2  
4
CPX  
EXT 3 IX2  
4
AND  
EXT 3 IX2  
4
BIT  
EXT 3 IX2  
4
LDA  
EXT 3 IX2  
4
STA  
EXT 3 IX2  
4
EOR  
EXT 3 IX2  
4
ADC  
EXT 3 IX2  
4
ORA  
EXT 3 IX2  
4
ADD  
EXT 3 IX2  
3
JMP  
EXT 3 IX2  
5
JSR  
4
4
4
4
4
4
4
4
4
4
4
4
SP2 2 IX1  
5
CMP  
SP2 2 IX1  
5
SBC  
SP2 2 IX1  
5
CPX  
SP2 2 IX1  
5
AND  
SP2 2 IX1  
5
BIT  
SP2 2 IX1  
5
LDA  
SP2 2 IX1  
5
STA  
SP2 2 IX1  
5
EOR  
SP2 2 IX1  
5
ADC  
SP2 2 IX1  
5
ORA  
SP2 2 IX1  
5
ADD  
SP2 2 IX1  
3
3
3
3
3
3
3
3
3
3
3
3
SP1 1 IX  
4
CMP  
SP1 1 IX  
4
SBC  
SP1 1 IX  
4
CPX  
SP1 1 IX  
4
AND  
SP1 1 IX  
4
BIT  
SP1 1 IX  
4
LDA  
SP1 1 IX  
4
STA  
SP1 1 IX  
4
EOR  
SP1 1 IX  
4
ADC  
SP1 1 IX  
4
ORA  
SP1 1 IX  
4
ADD  
SP1 1 IX  
5
4
4
6
4
4
2
3
4
3
2
1
2
BRCLR0 BCLR0  
CBEQ CBEQA CBEQX CBEQ  
CBEQ  
CBEQ  
RTS  
BLT  
CMP  
CMP  
CMP  
CMP  
CMP  
3
DIR  
5
2
DIR  
4
3
IMM 3 IMM 3 IX1+  
4
SP1 2 IX+  
INH  
REL 2 IMM 2 DIR  
5
7
3
2
DAA  
3
BGT  
2
SBC  
3
SBC  
4
SBC  
3
SBC  
2
SBC  
BRSET1 BSET1  
MUL  
INH  
DIV  
INH  
NSA  
3
DIR  
5
2
DIR  
4
1
1
1
2
2
3
2
2
2
2
2
INH  
1
INH  
3
REL 2 IMM 2 DIR  
3
4
1
1
4
COM  
IX1  
4
LSR  
IX1  
3
CPHX  
IMM  
4
ROR  
IX1  
4
ASR  
IX1  
4
LSL  
IX1  
4
ROL  
IX1  
4
DEC  
IX1  
5
9
2
CPX  
3
CPX  
4
CPX  
3
CPX  
2
CPX  
3
BRCLR1 BCLR1  
COM  
COMA  
COMX  
COM  
COM  
SWI  
BLE  
3
DIR  
5
2
DIR  
4
1
INH  
1
INH  
3
3
SP1 1 IX  
1
1
1
1
1
1
1
1
1
1
INH  
REL 2 IMM 2 DIR  
4
LSR  
1
LSRA  
INH  
1
LSRX  
INH  
5
LSR  
SP1 1 IX  
3
LSR  
2
2
2
AND  
IMM 2 DIR  
2
BIT  
IMM 2 DIR  
2
LDA  
IMM 2 DIR  
2
AIS  
IMM 2 DIR  
2
EOR  
IMM 2 DIR  
2
ADC  
IMM 2 DIR  
3
AND  
4
AND  
3
AND  
2
AND  
4
BRSET2 BSET2  
TAP  
TXS  
3
DIR  
5
2
DIR  
4
1
3
1
INH  
INH  
2
2
2
2
2
2
2
2
4
3
4
4
1
2
3
BIT  
4
BIT  
3
BIT  
2
BIT  
5
BRCLR2 BCLR2  
STHX  
LDHX  
LDHX  
CPHX  
TPA  
TSX  
3
DIR  
5
2
DIR  
4
IMM 2 DIR  
2
DIR  
3
INH  
INH  
4
ROR  
1
1
5
2
PULA  
INH  
2
PSHA  
INH  
2
PULX  
INH  
2
PSHX  
INH  
2
PULH  
INH  
2
PSHH  
INH  
1
CLRH  
INH  
3
LDA  
4
LDA  
3
LDA  
2
LDA  
6
BRSET3 BSET3  
RORA  
RORX  
ROR  
SP1 1 IX  
5
ASR  
SP1 1 IX  
5
LSL  
SP1 1 IX  
5
ROL  
SP1 1 IX  
5
DEC  
SP1 1 IX  
ROR  
3
DIR  
5
2
DIR  
4
1
INH  
1
INH  
3
3
3
3
3
4
3
3
4
ASR  
1
ASRA  
INH  
1
LSLA  
INH  
1
ROLA  
INH  
1
DECA  
INH  
1
ASRX  
INH  
1
LSLX  
INH  
1
ROLX  
INH  
1
DECX  
INH  
3
ASR  
1
3
STA  
4
STA  
3
STA  
2
STA  
7
BRCLR3 BCLR3  
TAX  
3
DIR  
5
2
DIR  
4
REL 2 DIR  
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
INH  
4
LSL  
3
LSL  
1
CLC  
INH  
1
3
EOR  
4
EOR  
3
EOR  
2
EOR  
8
BRSET4 BSET4 BHCC  
3
DIR  
5
2
DIR  
4
2
REL 2 DIR  
3
4
ROL  
3
ROL  
3
ADC  
4
ADC  
3
ADC  
2
ADC  
9
BRCLR4 BCLR4 BHCS  
SEC  
INH  
2
CLI  
INH  
2
SEI  
INH  
1
RSP  
INH  
3
DIR  
5
2
DIR  
4
2
2
2
2
2
2
2
REL 2 DIR  
3
BPL  
REL 2 DIR  
3
BMI  
REL 3 DIR  
3
BMC  
REL 2 DIR  
3
BMS  
REL 2 DIR  
3
BIL  
4
DEC  
3
DEC  
2
ORA  
IMM 2 DIR  
2
ADD  
IMM 2 DIR  
3
ORA  
4
ORA  
3
ORA  
2
ORA  
A
B
C
D
E
F
BRSET5 BSET5  
3
DIR  
5
2
DIR  
4
5
3
3
5
6
4
3
ADD  
4
ADD  
3
ADD  
2
ADD  
BRCLR5 BCLR5  
DBNZ DBNZA DBNZX DBNZ  
DBNZ  
DBNZ  
3
DIR  
5
2
DIR  
4
2
1
1
3
1
INH  
1
2
1
1
2
1
INH  
1
3
2
2
3
2
IX1  
4
INC  
IX1  
3
TST  
IX1  
4
MOV  
IMD  
3
CLR  
IX1  
SP1 2 IX  
5
4
INC  
3
INC  
IX  
2
TST  
2
JMP  
DIR  
4
JSR  
4
JMP  
3
JMP  
IX1  
5
JSR  
IX1  
3
LDX  
2
BRSET6 BSET6  
INCA  
INCX  
INC  
SP1  
4
TST  
JMP  
3
DIR  
5
2
DIR  
4
INH  
1
TSTA  
INH  
5
MOV  
DD  
1
CLRA  
INH  
INH  
1
TSTX  
INH  
4
MOV  
DIX+  
1
CLRX  
INH  
1
2
2
2
1
1
IX  
3
TST  
1
4
BSR  
REL 2 DIR  
2
LDX  
IMM 2 DIR  
2
AIX  
IMM 2 DIR  
6
JSR  
4
JSR  
IX  
2
LDX  
BRCLR6 BCLR6  
NOP  
3
DIR  
5
2
DIR  
4
SP1 1 IX  
INH  
2
2
2
EXT 3 IX2  
4
LDX  
EXT 3 IX2  
4
STX  
EXT 3 IX2  
4
1
STOP  
INH  
1
WAIT  
INH  
3
LDX  
4
LDX  
5
LDX  
4
LDX  
BRSET7 BSET7  
MOV  
*
1
TXA  
INH  
3
DIR  
5
2
DIR  
4
REL  
3
BIH  
2
IX+D  
1
1
4
4
SP2 2 IX1  
5
3
3
SP1 1 IX  
4
3
CLR  
4
CLR  
SP1 1 IX  
2
CLR  
3
STX  
4
STX  
3
STX  
2
STX  
BRCLR7 BCLR7  
DIR DIR  
STX  
SP2 2 IX1  
STX  
SP1 1 IX  
3
2
REL 2 DIR  
3
1
INH Inherent  
REL Relative  
SP1 Stack Pointer, 8-Bit Offset  
SP2 Stack Pointer, 16-Bit Offset  
IX+ Indexed, No Offset with  
Post Increment  
IX1+ Indexed, 1-Byte Offset with  
Post Increment  
MSB  
LSB  
0
High Byte of Opcode in Hexadecimal  
Cycles  
IMM Immediate  
DIR Direct  
IX  
Indexed, No Offset  
IX1 Indexed, 8-Bit Offset  
IX2 Indexed, 16-Bit Offset  
IMD Immediate-Direct  
EXT Extended  
DD Direct-Direct  
IX+D Indexed-Direct DIX+ Direct-Indexed  
*Pre-byte for stack pointer indexed instructions  
5
Low Byte of Opcode in Hexadecimal  
0
BRSET0 Opcode Mnemonic  
DIR Number of Bytes / Addressing Mode  
3
Data Sheet — MC68HC908GZ16  
Section 11. FLASH Memory (FLASH)  
11.1 Introduction  
This section describes the operation of the embedded FLASH memory. This  
memory can be read, programmed, and erased from a single external supply. The  
program, erase, and read operations are enabled through the use of an internal  
charge pump. It is recommended that the user utilize the FLASH programming  
routines provided in the on-chip ROM, which are described more fully in a separate  
Motorola application note.  
11.2 Functional Description  
The FLASH memory is an array of 15,872 bytes with an additional 44 bytes of user  
vectors and one byte of block protection. An erased bit reads as logic 1 and a  
programmed bit reads as a logic 0. Memory in the FLASH array is organized into  
two rows per page basis. For the 16-K word by 8-bit embedded FLASH memory,  
the page size is 64 bytes per page and the row size is 32 bytes per row. Hence the  
minimum erase page size is 64 bytes and the minimum program row size is 32  
bytes. Program and erase operation operations are facilitated through control bits  
in FLASH control register (FLCR). Details for these operations appear later in this  
section.  
The address ranges for the user memory and vectors are:  
$C000–$FDFF; user memory  
$FE08; FLASH control register  
$FF7E; FLASH block protect register  
$FFD4–$FFFF; these locations are reserved for user-defined interrupt and  
reset vectors  
Programming tools are available from Motorola. Contact your local Motorola  
representative for more information.  
NOTE:  
A security feature prevents viewing of the FLASH contents.(1)  
1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or copy-  
ing the FLASH difficult for unauthorized users.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
FLASH Memory (FLASH)  
125  
FLASH Memory (FLASH)  
11.3 FLASH Control Register  
The FLASH control register (FLCR) controls FLASH program and erase  
operations.  
Address:  
$FE08  
Bit 7  
0
6
0
5
0
4
0
3
HVEN  
0
2
MASS  
0
1
ERASE  
0
Bit 0  
PGM  
0
Read:  
Write:  
Reset:  
0
0
0
0
= Unimplemented  
Figure 11-1. FLASH Control Register (FLCR)  
HVEN — High-Voltage Enable Bit  
This read/write bit enables the charge pump to drive high voltages for program  
and erase operations in the array. HVEN can only be set if either PGM = 1 or  
ERASE = 1 and the proper sequence for program or erase is followed.  
1 = High voltage enabled to array and charge pump on  
0 = High voltage disabled to array and charge pump off  
MASS — Mass Erase Control Bit  
Setting this read/write bit configures the 16-Kbyte FLASH array for mass erase  
operation.  
1 = MASS erase operation selected  
0 = PAGE erase operation selected  
ERASE — Erase Control Bit  
This read/write bit configures the memory for erase operation. ERASE is  
interlocked with the PGM bit such that both bits cannot be equal to 1 or set to 1  
at the same time.  
1 = Erase operation selected  
0 = Erase operation unselected  
PGM — Program Control Bit  
This read/write bit configures the memory for program operation. PGM is  
interlocked with the ERASE bit such that both bits cannot be equal to 1 or set  
to 1 at the same time.  
1 = Program operation selected  
0 = Program operation unselected  
Data Sheet  
126  
MC68HC908GZ16  
FLASH Memory (FLASH)  
MOTOROLA  
FLASH Memory (FLASH)  
FLASH Page Erase Operation  
11.4 FLASH Page Erase Operation  
Use this step-by-step procedure to erase a page (64 bytes) of FLASH memory to  
read as logic 1. A page consists of 64 consecutive bytes starting from addresses  
$XX00, $XX40, $XX80, or $XXC0. The 44-byte user interrupt vectors area also  
forms a page. Any FLASH memory page can be erased alone.  
1. Set the ERASE bit, and clear the MASS bit in the FLASH control register.  
2. Read the FLASH block protect register.  
3. Write any data to any FLASH address within the page address range  
desired.  
4. Wait for a time, tNVS (minimum 10 µs)  
5. Set the HVEN bit.  
6. Wait for a time, tErase (minimum 1 ms or 4 ms)  
7. Clear the ERASE bit.  
8. Wait for a time, tNVH (minimum 5 µs)  
9. Clear the HVEN bit.  
10. After a time, tRCV (typical 1 µs), the memory can be accessed again in read  
mode.  
NOTE:  
Programming and erasing of FLASH locations cannot be performed by code being  
executed from FLASH memory. While these operations must be performed in the  
order shown, other unrelated operations may occur between the steps.  
NOTE:  
NOTE:  
It is highly recommended that interrupts be disabled during program/ erase  
operations.  
In applications that need more than 1000 program/erase cycles, use the 4-ms page  
erase specification to get improved long-term reliability. Any application can use  
this 4-ms page erase specification. However, in applications where a FLASH  
location will be erased and reprogrammed less than 1000 times, and speed is  
important, use the 1-ms page erase specification to get a lower minimum erase  
time.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
FLASH Memory (FLASH)  
127  
FLASH Memory (FLASH)  
11.5 FLASH Mass Erase Operation  
Use this step-by-step procedure to erase entire FLASH memory to read as logic 1:  
1. Set both the ERASE bit, and the MASS bit in the FLASH control register.  
2. Read from the FLASH block protect register.  
3. Write any data to any FLASH address(1) within the FLASH memory address  
range.  
4. Wait for a time, tNVS (minimum 10 µs)  
5. Set the HVEN bit.  
6. Wait for a time, tMErase (minimum 4 ms)  
7. Clear the ERASE and MASS bits.  
8. Wait for a time, tNVHL (minimum 100 µs)  
9. Clear the HVEN bit.  
10. After a time, tRCV (minimum 1 µs), the memory can be accessed again in  
read mode.  
NOTE:  
NOTE:  
Mass erase is disabled whenever any block is protected (FLBPR does not equal  
$FF).  
Programming and erasing of FLASH locations cannot be performed by code being  
executed from FLASH memory. While these operations must be performed in the  
order shown, other unrelated operations may occur between the steps.  
11.6 FLASH Program/Read Operation  
Programming of the FLASH memory is done on a row basis. A row consists of 32  
consecutive bytes starting from addresses $XX00, $XX20, $XX40, $XX60, $XX80,  
$XXA0, $XXC0, and $XXE0.  
During the programming cycle, make sure that all addresses being written to fit  
within one of the ranges specified above. Attempts to program addresses in  
different row ranges in one programming cycle will fail. Use this step-by-step  
procedure to program a row of FLASH memory (Figure 11-2 is a flowchart  
representation).  
NOTE:  
Only bytes which are currently $FF may be programmed.  
1. Set the PGM bit. This configures the memory for program operation and  
enables the latching of address and data for programming.  
2. Read from the FLASH block protect register.  
3. Write any data to any FLASH address within the row address range desired.  
4. Wait for a time, tNVS (minimum 10 µs).  
1. When in monitor mode, with security sequence failed (see 15.4 Security), write to the FLASH block  
protect register instead of any FLASH address.  
Data Sheet  
128  
MC68HC908GZ16  
FLASH Memory (FLASH)  
MOTOROLA  
FLASH Memory (FLASH)  
FLASH Program/Read Operation  
5. Set the HVEN bit.  
6. Wait for a time, tPGS (minimum 5 µs).  
7. Write data to the FLASH address to be programmed.  
8. Wait for a time, tPROG (30–40 µs).  
9. Repeat step 7 and 8 until all the bytes within the row are programmed.  
10. Clear the PGM bit.(1)  
11. Wait for a time, tNVH (minimum 5 µs).  
12. Clear the HVEN bit.  
13. After time, tRCV (minimum 1 µs), the memory can be accessed in read mode  
again.  
This program sequence is repeated throughout the memory until all data is  
programmed.  
NOTE:  
NOTE:  
Programming and erasing of FLASH locations can not be performed by code being  
executed from the same FLASH array.  
While these operations must be performed in the order shown, other unrelated  
operations may occur between the steps. Care must be taken within the FLASH  
array memory space such as the COP control register (COPCTL) at $FFFF.  
NOTE:  
NOTE:  
It is highly recommended that interrupts be disabled during program/ erase  
operations.  
Do not exceed tPROG maximum or tHV maximum. tHV is defined as the cumulative  
high voltage programming time to the same row before next erase. tHV must satisfy  
this condition:  
t
NVS + tNVH + tPGS + (tPROG x 32) tHV maximum  
Refer to 24.15 Memory Characteristics.  
NOTE:  
The time between programming the FLASH address change (step 7 to step 7), or  
the time between the last FLASH programmed to clearing the PGM bit (step 7 to  
step 10) must not exceed the maximum programming time, tPROG maximum.  
CAUTION:  
Be cautious when programming the FLASH array to ensure that non-FLASH  
locations are not used as the address that is written to when selecting either the  
desired row address range in step 3 of the algorithm or the byte to be programmed  
in step 7 of the algorithm. This applies particularly to $FFD4–$FFDF.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
FLASH Memory (FLASH)  
129  
FLASH Memory (FLASH)  
Algorithm for programming  
a row (32 bytes) of FLASH memory  
1
2
3
SET PGM BIT  
READ THE FLASH BLOCK PROTECT REGISTER  
WRITE ANY DATA TO ANY FLASH ADDRESS  
WITHIN THE ROW ADDRESS RANGE DESIRED  
4
5
6
WAIT FOR A TIME, tNVS  
SET HVEN BIT  
WAIT FOR A TIME, tPGS  
7
8
WRITE DATA TO THE FLASH ADDRESS  
TO BE PROGRAMMED  
WAIT FOR A TIME, tPROG  
COMPLETED  
Y
PROGRAMMING  
THIS ROW?  
N
10  
CLEAR PGM BIT  
WAIT FOR A TIME, tNVH  
CLEAR HVEN BIT  
11  
12  
Note:  
The time between each FLASH address change (step 7 to step 7),  
or the time between the last FLASH address programmed  
to clearing PGM bit (step 7 to step 10)  
must not exceed the maximum programming  
time, tPROG max.  
13  
WAIT FOR A TIME, tRCV  
END OF PROGRAMMING  
This row program algorithm assumes the row/s  
to be programmed are initially erased.  
Figure 11-2. FLASH Programming Flowchart  
Data Sheet  
130  
MC68HC908GZ16  
MOTOROLA  
FLASH Memory (FLASH)  
FLASH Memory (FLASH)  
FLASH Block Protection  
11.7 FLASH Block Protection  
Due to the ability of the on-board charge pump to erase and program the FLASH  
memory in the target application, provision is made for protecting a block of  
memory from unintentional erase or program operations due to system  
malfunction. This protection is done by using of a FLASH block protect register  
(FLBPR). The FLBPR determines the range of the FLASH memory which is to be  
protected. The range of the protected area starts from a location defined by FLBPR  
and ends at the bottom of the FLASH memory ($FFFF). When the memory is  
protected, the HVEN bit cannot be set in either ERASE or PROGRAM operations.  
NOTE:  
In performing a program or erase operation, the FLASH block protect register must  
be read after setting the PGM or ERASE bit and before asserting the HVEN bit  
When the FLBPR is program with all 0’s, the entire memory is protected from being  
programmed and erased. When all the bits are erased (all 1’s), the entire memory  
is accessible for program and erase.  
When bits within the FLBPR are programmed, they lock a block of memory,  
address ranges as shown in 11.7.1 FLASH Block Protect Register. Once the  
FLBPR is programmed with a value other than $FF, any erase or program of the  
FLBPR or the protected block of FLASH memory is prohibited. The presence of a  
VTST on the IRQ pin will bypass the block protection so that all of the memory  
included in the block protect register is open for program and erase operations.  
NOTE:  
The FLASH block protect register is not protected with special hardware or  
software. Therefore, if this page is not protected by FLBPR the register is erased  
by either a page or mass erase operation.  
11.7.1 FLASH Block Protect Register  
The FLASH block protect register (FLBPR) is implemented as a byte within the  
FLASH memory, and therefore can only be written during a programming  
sequence of the FLASH memory. The value in this register determines the starting  
location of the protected range within the FLASH memory.  
Address:  
$FF7E  
Bit 7  
6
BPR6  
U
5
BPR5  
U
4
BPR4  
U
3
BPR3  
U
2
BPR2  
U
1
BPR1  
U
Bit 0  
BPR0  
U
Read:  
Write:  
Reset:  
BPR7  
U
U = Unaffected by reset. Initial value from factory is 1.  
Write to this register is by a programming sequence to the FLASH memory.  
Figure 11-3. FLASH Block Protect Register (FLBPR)  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
131  
FLASH Memory (FLASH)  
FLASH Memory (FLASH)  
BPR[7:0] — FLASH Block Protect Bits  
These eight bits represent bits [13:6] of a 16-bit memory address.  
Bit-15 and Bit-14 are logic 1s and bits [5:0] are logic 0s.  
The resultant 16-bit address is used for specifying the start address of the  
FLASH memory for block protection. The FLASH is protected from this start  
address to the end of FLASH memory, at $FFFF. With this mechanism, the  
protect start address can be $XX00, $XX40, $XX80, and $XXC0 (64 bytes page  
boundaries) within the FLASH memory.  
16-BIT MEMORY ADDRESS  
START ADDRESS OF FLASH  
BLOCK PROTECT  
0
0
0
0
0
0
FLBPR VALUE  
1
1
Figure 11-4. FLASH Block Protect Start Address  
Table 11-1. Examples of Protect Address Ranges  
BPR[7:0]  
$00  
Addresses of Protect Range  
The entire FLASH memory is protected.  
$C040 (1100 0000 0100 0000) — $FFFF  
$C080 (1100 0000 1000 0000) — $FFFF  
$C0C0 (1100 0000 1100 0000) — $FFFF  
$C100 (1100 0001 0000 0000) — $FFFF  
and so on...  
$01 (0000 0001)  
$02 (0000 0010)  
$03 (0000 0011)  
$04 (0000 0100)  
$FC (1111 1100)  
$FD (1111 1101)  
$FF00 (1111 1111 0000 0000) — FFFF  
$FF40 (1111 1111 0100 0000) — $FFFF  
FLBPR and vectors are protected  
$FF80 (1111 1111 1000 0000) — FFFF  
$FE (1111 1110)  
Vectors are protected  
$FF  
The entire FLASH memory is not protected.  
11.8 Wait Mode  
Putting the MCU into wait mode while the FLASH is in read mode does not affect  
the operation of the FLASH memory directly, but there will not be any memory  
activity since the CPU is inactive.  
The WAIT instruction should not be executed while performing a program or erase  
operation on the FLASH, otherwise the operation will discontinue, and the FLASH  
will be on standby mode.  
Data Sheet  
132  
MC68HC908GZ16  
FLASH Memory (FLASH)  
MOTOROLA  
FLASH Memory (FLASH)  
Stop Mode  
11.9 Stop Mode  
Putting the MCU into stop mode while the FLASH is in read mode does not affect  
the operation of the FLASH memory directly, but there will not be any memory  
activity since the CPU is inactive.  
The STOP instruction should not be executed while performing a program or erase  
operation on the FLASH, otherwise the operation will discontinue, and the FLASH  
will be on standby mode  
NOTE:  
Standby mode is the power saving mode of the FLASH module in which all internal  
control signals to the FLASH are inactive and the current consumption of the  
FLASH is at a minimum.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
FLASH Memory (FLASH)  
133  
FLASH Memory (FLASH)  
Data Sheet  
134  
MC68HC908GZ16  
MOTOROLA  
FLASH Memory (FLASH)  
Data Sheet — MC68HC908GZ16  
Section 12. External Interrupt (IRQ)  
12.1 Introduction  
The IRQ (external interrupt) module provides a maskable interrupt input.  
Features of the IRQ module include:  
12.2 Features  
A dedicated external interrupt pin (IRQ)  
IRQ interrupt control bits  
Hysteresis buffer  
Programmable edge-only or edge and level interrupt sensitivity  
Automatic interrupt acknowledge  
Internal pullup resistor  
12.3 Functional Description  
A logic 0 applied to the external interrupt pin can latch a central processor unit  
(CPU) interrupt request. Figure 12-1 shows the structure of the IRQ module.  
Interrupt signals on the IRQ pin are latched into the IRQ latch. An interrupt latch  
remains set until one of the following actions occurs:  
Vector fetch — A vector fetch automatically generates an interrupt  
acknowledge signal that clears the latch that caused the vector fetch.  
Software clear — Software can clear an interrupt latch by writing to the  
appropriate acknowledge bit in the interrupt status and control register  
(INTSCR). Writing a logic 1 to the ACK bit clears the IRQ latch.  
Reset — A reset automatically clears the interrupt latch.  
The external interrupt pin is falling-edge triggered and is software-configurable to  
be either falling-edge or falling-edge and low-level triggered. The MODE bit in the  
INTSCR controls the triggering sensitivity of the IRQ pin.  
When an interrupt pin is edge-triggered only, the interrupt remains set until a vector  
fetch, software clear, or reset occurs.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
External Interrupt (IRQ)  
135  
External Interrupt (IRQ)  
RESET  
ACK  
TO CPU FOR  
BIL/BIH  
INSTRUCTIONS  
VECTOR  
FETCH  
DECODER  
VDD  
INTERNAL  
PULLUP  
DEVICE  
VDD  
IRQF  
CLR  
D
Q
IRQ  
INTERRUPT  
REQUEST  
SYNCHRONIZER  
CK  
IRQ  
IMASK  
MODE  
TO MODE  
SELECT  
LOGIC  
HIGH  
VOLTAGE  
DETECT  
Figure 12-1. IRQ Module Block Diagram  
When an interrupt pin is both falling-edge and low-level triggered, the interrupt  
remains set until both of these events occur:  
Vector fetch or software clear  
Return of the interrupt pin to logic 1  
The vector fetch or software clear may occur before or after the interrupt pin returns  
to logic 1. As long as the pin is low, the interrupt request remains pending. A reset  
will clear the latch and the MODE control bit, thereby clearing the interrupt even if  
the pin stays low.  
When set, the IMASK bit in the INTSCR mask all external interrupt requests. A  
latched interrupt request is not presented to the interrupt priority logic unless the  
IMASK bit is clear.  
NOTE:  
The interrupt mask (I) in the condition code register (CCR) masks all interrupt  
requests, including external interrupt requests.  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
0
1
IMASK  
0
Bit 0  
MODE  
0
Read:  
0
0
0
0
IRQF  
IRQ Status and Control Reg-  
$001D  
ister (INTSCR) Write:  
See page 138.  
Reset:  
ACK  
0
0
0
0
0
0
= Unimplemented  
Figure 12-2. IRQ I/O Register Summary  
Data Sheet  
136  
MC68HC908GZ16  
MOTOROLA  
External Interrupt (IRQ)  
External Interrupt (IRQ)  
IRQ Pin  
12.4 IRQ Pin  
A logic 0 on the IRQ pin can latch an interrupt request into the IRQ latch. A vector  
fetch, software clear, or reset clears the IRQ latch.  
If the MODE bit is set, the IRQ pin is both falling-edge-sensitive and  
low-level-sensitive. With MODE set, both of the following actions must occur to  
clear IRQ:  
Vector fetch or software clear — A vector fetch generates an interrupt  
acknowledge signal to clear the latch. Software may generate the interrupt  
acknowledge signal by writing a logic 1 to the ACK bit in the interrupt status  
and control register (INTSCR). The ACK bit is useful in applications that poll  
the IRQ pin and require software to clear the IRQ latch. Writing to the ACK  
bit prior to leaving an interrupt service routine can also prevent spurious  
interrupts due to noise. Setting ACK does not affect subsequent transitions  
on the IRQ pin. A falling edge that occurs after writing to the ACK bit another  
interrupt request. If the IRQ mask bit, IMASK, is clear, the CPU loads the  
program counter with the vector address at locations $FFFA and $FFFB.  
Return of the IRQ pin to logic 1 — As long as the IRQ pin is at logic 0, IRQ  
remains active.  
The vector fetch or software clear and the return of the IRQ pin to logic 1 may occur  
in any order. The interrupt request remains pending as long as the IRQ pin is at  
logic 0. A reset will clear the latch and the MODE control bit, thereby clearing the  
interrupt even if the pin stays low.  
If the MODE bit is clear, the IRQ pin is falling-edge-sensitive only. With MODE  
clear, a vector fetch or software clear immediately clears the IRQ latch.  
The IRQF bit in the INTSCR register can be used to check for pending interrupts.  
The IRQF bit is not affected by the IMASK bit, which makes it useful in applications  
where polling is preferred.  
Use the BIH or BIL instruction to read the logic level on the IRQ pin.  
NOTE:  
When using the level-sensitive interrupt trigger, avoid false interrupts by masking  
interrupt requests in the interrupt routine.  
12.5 IRQ Module During Break Interrupts  
The BCFE bit in the SIM break flag control register (SBFCR) enables software to  
clear the latch during the break state. See Section 6. Break Module (BRK).  
To allow software to clear the IRQ latch during a break interrupt, write a logic 1 to  
the BCFE bit. If a latch is cleared during the break state, it remains cleared when  
the MCU exits the break state.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
External Interrupt (IRQ)  
137  
External Interrupt (IRQ)  
To protect CPU interrupt flags during the break state, write a logic 0 to the BCFE  
bit. With BCFE at logic 0 (its default state), writing to the ACK bit in the IRQ status  
and control register during the break state has no effect on the IRQ interrupt flags.  
12.6 IRQ Status and Control Register  
The IRQ status and control register (INTSCR) controls and monitors operation of  
the IRQ module. The INTSCR:  
Shows the state of the IRQ flag  
Clears the IRQ latch  
Masks IRQ interrupt request  
Controls triggering sensitivity of the IRQ interrupt pin  
Address:  
$001D  
Bit 7  
6
5
0
4
0
3
2
0
1
IMASK  
0
Bit 0  
MODE  
0
Read:  
Write:  
Reset:  
IRQF  
ACK  
0
0
0
0
= Unimplemented  
Figure 12-3. IRQ Status and Control Register (INTSCR)  
IRQF — IRQ Flag Bit  
This read-only status bit is high when the IRQ interrupt is pending.  
1 = IRQ interrupt pending  
0 = IRQ interrupt not pending  
ACK — IRQ Interrupt Request Acknowledge Bit  
Writing a logic 1 to this write-only bit clears the IRQ latch. ACK always reads as  
logic 0. Reset clears ACK.  
IMASK — IRQ Interrupt Mask Bit  
Writing a logic 1 to this read/write bit disables IRQ interrupt requests. Reset  
clears IMASK.  
1 = IRQ interrupt requests disabled  
0 = IRQ interrupt requests enabled  
MODE — IRQ Edge/Level Select Bit  
This read/write bit controls the triggering sensitivity of the IRQ pin. Reset clears  
MODE.  
1 = IRQ interrupt requests on falling edges and low levels  
0 = IRQ interrupt requests on falling edges only  
Data Sheet  
138  
MC68HC908GZ16  
External Interrupt (IRQ)  
MOTOROLA  
Data Sheet — MC68HC908GZ16  
Section 13. Keyboard Interrupt Module (KBI)  
13.1 Introduction  
The keyboard interrupt module (KBI) provides eight independently maskable  
external interrupts which are accessible via PTA0–PTA7. When a port pin is  
enabled for keyboard interrupt function, an internal pullup device is also enabled  
on the pin.  
13.2 Features  
Features include:  
Eight keyboard interrupt pins with separate keyboard interrupt enable bits  
and one keyboard interrupt mask  
Hysteresis buffers  
Programmable edge-only or edge- and level- interrupt sensitivity  
Exit from low-power modes  
I/O (input/output) port bit(s) software configurable with pullup device(s) if  
configured as input port bit(s)  
13.3 Functional Description  
Writing to the KBIE7–KBIE0 bits in the keyboard interrupt enable register  
independently enables or disables each port A pin as a keyboard interrupt pin.  
Enabling a keyboard interrupt pin also enables its internal pullup device. A logic 0  
applied to an enabled keyboard interrupt pin latches a keyboard interrupt request.  
A keyboard interrupt is latched when one or more keyboard pins goes low after all  
were high. The MODEK bit in the keyboard status and control register controls the  
triggering mode of the keyboard interrupt.  
If the keyboard interrupt is edge-sensitive only, a falling edge on a keyboard  
pin does not latch an interrupt request if another keyboard pin is already low.  
To prevent losing an interrupt request on one pin because another pin is still  
low, software can disable the latter pin while it is low.  
If the keyboard interrupt is falling edge- and low-level sensitive, an interrupt  
request is present as long as any keyboard interrupt pin is low and the pin  
is keyboard interrupt enabled.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Keyboard Interrupt Module (KBI)  
139  
Keyboard Interrupt Module (KBI)  
INTERNAL BUS  
VECTOR FETCH  
DECODER  
ACKK  
RESET  
KBD0  
VDD  
KEYF  
CLR  
.
TO PULLUP ENABLE  
D
Q
SYNCHRONIZER  
.
CK  
KB0IE  
.
KEYBOARD  
INTERRUPT  
REQUEST  
IMASKK  
KBD7  
MODEK  
TO PULLUP ENABLE  
KB7IE  
Figure 13-1. Keyboard Module Block Diagram  
Addr.  
Register Name  
Keyboard Status  
Bit 7  
6
5
4
3
2
1
IMASKK  
0
Bit 0  
MODEK  
0
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
0
0
0
KEYF  
0
and Control Register  
(INTKBSCR)  
See page 143.  
$001A  
ACKK  
0
0
KBIE7  
0
0
KBIE6  
0
0
KBIE5  
0
0
KBIE4  
0
0
KBIE3  
0
Keyboard Interrupt Enable  
Register  
(INTKBIER)  
KBIE2  
0
KBIE1  
0
KBIE0  
0
$001B  
See page 144.  
= Unimplemented  
Figure 13-2. I/O Register Summary  
If the MODEK bit is set, the keyboard interrupt pins are both falling edge- and  
low-level sensitive, and both of the following actions must occur to clear a keyboard  
interrupt request:  
Vector fetch or software clear — A vector fetch generates an interrupt  
acknowledge signal to clear the interrupt request. Software may generate  
the interrupt acknowledge signal by writing a logic 1 to the ACKK bit in the  
keyboard status and control register (INTKBSCR). The ACKK bit is useful in  
applications that poll the keyboard interrupt pins and require software to  
clear the keyboard interrupt request. Writing to the ACKK bit prior to leaving  
an interrupt service routine can also prevent spurious interrupts due to  
Data Sheet  
140  
MC68HC908GZ16  
Keyboard Interrupt Module (KBI)  
MOTOROLA  
Keyboard Interrupt Module (KBI)  
Keyboard Initialization  
noise. Setting ACKK does not affect subsequent transitions on the keyboard  
interrupt pins. A falling edge that occurs after writing to the ACKK bit latches  
another interrupt request. If the keyboard interrupt mask bit, IMASKK, is  
clear, the CPU loads the program counter with the vector address at  
locations $FFE0 and $FFE1.  
Return of all enabled keyboard interrupt pins to logic 1 — As long as any  
enabled keyboard interrupt pin is at logic 0, the keyboard interrupt remains  
set.  
The vector fetch or software clear and the return of all enabled keyboard interrupt  
pins to logic 1 may occur in any order.  
If the MODEK bit is clear, the keyboard interrupt pin is falling-edge-sensitive only.  
With MODEK clear, a vector fetch or software clear immediately clears the  
keyboard interrupt request.  
Reset clears the keyboard interrupt request and the MODEK bit, clearing the  
interrupt request even if a keyboard interrupt pin stays at logic 0.  
The keyboard flag bit (KEYF) in the keyboard status and control register can be  
used to see if a pending interrupt exists. The KEYF bit is not affected by the  
keyboard interrupt mask bit (IMASKK) which makes it useful in applications where  
polling is preferred.  
To determine the logic level on a keyboard interrupt pin, use the data direction  
register to configure the pin as an input and read the data register.  
NOTE:  
Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding keyboard  
interrupt pin to be an input, overriding the data direction register. However, the data  
direction register bit must be a logic 0 for software to read the pin.  
13.4 Keyboard Initialization  
When a keyboard interrupt pin is enabled, it takes time for the internal pullup to  
reach a logic 1. Therefore, a false interrupt can occur as soon as the pin is enabled.  
To prevent a false interrupt on keyboard initialization:  
1. Mask keyboard interrupts by setting the IMASKK bit in the keyboard status  
and control register.  
2. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard  
interrupt enable register.  
3. Write to the ACKK bit in the keyboard status and control register to clear any  
false interrupts.  
4. Clear the IMASKK bit.  
An interrupt signal on an edge-triggered pin can be acknowledged immediately  
after enabling the pin. An interrupt signal on an edge- and level-triggered interrupt  
pin must be acknowledged after a delay that depends on the external load.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Keyboard Interrupt Module (KBI)  
141  
Keyboard Interrupt Module (KBI)  
Another way to avoid a false interrupt:  
1. Configure the keyboard pins as outputs by setting the appropriate DDRA  
bits in data direction register A.  
2. Write logic 1s to the appropriate port A data register bits.  
3. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard  
interrupt enable register.  
13.5 Low-Power Modes  
The WAIT and STOP instructions put the microcontroller unit (MCU) in low  
power-consumption standby modes.  
13.5.1 Wait Mode  
13.5.2 Stop Mode  
The keyboard module remains active in wait mode. Clearing the IMASKK bit in the  
keyboard status and control register enables keyboard interrupt requests to bring  
the MCU out of wait mode.  
The keyboard module remains active in stop mode. Clearing the IMASKK bit in the  
keyboard status and control register enables keyboard interrupt requests to bring  
the MCU out of stop mode.  
13.6 Keyboard Module During Break Interrupts  
The system integration module (SIM) controls whether the keyboard interrupt latch  
can be cleared during the break state. The BCFE bit in the break flag control  
register (BFCR) enables software to clear status bits during the break state.  
To allow software to clear the keyboard interrupt latch during a break interrupt,  
write a logic 1 to the BCFE bit. If a latch is cleared during the break state, it remains  
cleared when the MCU exits the break state.  
To protect the latch during the break state, write a logic 0 to the BCFE bit. With  
BCFE at logic 0 (its default state), writing to the keyboard acknowledge bit (ACKK)  
in the keyboard status and control register during the break state has no effect. See  
13.7.1 Keyboard Status and Control Register.  
13.7 I/O Registers  
These registers control and monitor operation of the keyboard module:  
Keyboard status and control register (INTKBSCR)  
Keyboard interrupt enable register (INTKBIER)  
Data Sheet  
142  
MC68HC908GZ16  
MOTOROLA  
Keyboard Interrupt Module (KBI)  
Keyboard Interrupt Module (KBI)  
I/O Registers  
13.7.1 Keyboard Status and Control Register  
The keyboard status and control register:  
Flags keyboard interrupt requests  
Acknowledges keyboard interrupt requests  
Masks keyboard interrupt requests  
Controls keyboard interrupt triggering sensitivity  
Address: $001A  
Bit 7  
6
0
5
0
4
0
3
2
1
IMASKK  
0
Bit 0  
MODEK  
0
Read:  
Write:  
Reset:  
0
KEYF  
0
ACKK  
0
0
0
0
0
0
= Unimplemented  
Figure 13-3. Keyboard Status and Control Register (INTKBSCR)  
Bits 7–4 — Not used  
These read-only bits always read as logic 0s.  
KEYF — Keyboard Flag Bit  
This read-only bit is set when a keyboard interrupt is pending. Reset clears the  
KEYF bit.  
1 = Keyboard interrupt pending  
0 = No keyboard interrupt pending  
ACKK — Keyboard Acknowledge Bit  
Writing a logic 1 to this write-only bit clears the keyboard interrupt request.  
ACKK always reads as logic 0. Reset clears ACKK.  
IMASKK — Keyboard Interrupt Mask Bit  
Writing a logic 1 to this read/write bit prevents the output of the keyboard  
interrupt mask from generating interrupt requests. Reset clears the IMASKK bit.  
1 = Keyboard interrupt requests masked  
0 = Keyboard interrupt requests not masked  
MODEK — Keyboard Triggering Sensitivity Bit  
This read/write bit controls the triggering sensitivity of the keyboard interrupt  
pins. Reset clears MODEK.  
1 = Keyboard interrupt requests on falling edges and low levels  
0 = Keyboard interrupt requests on falling edges only  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Keyboard Interrupt Module (KBI)  
143  
Keyboard Interrupt Module (KBI)  
13.7.2 Keyboard Interrupt Enable Register  
The keyboard interrupt enable register enables or disables each port A pin to  
operate as a keyboard interrupt pin.  
Address: $001B  
Bit 7  
KBIE7  
0
6
KBIE6  
0
5
KBIE5  
0
4
KBIE4  
0
3
KBIE3  
0
2
KBIE2  
0
1
KBIE1  
0
Bit 0  
KBIE0  
0
Read:  
Write:  
Reset:  
Figure 13-4. Keyboard Interrupt Enable Register (INTKBIER)  
KBIE7–KBIE0 — Keyboard Interrupt Enable Bits  
Each of these read/write bits enables the corresponding keyboard interrupt pin  
to latch interrupt requests. Reset clears the keyboard interrupt enable register.  
1 = PTAx pin enabled as keyboard interrupt pin  
0 = PTAx pin not enabled as keyboard interrupt pin  
Data Sheet  
144  
MC68HC908GZ16  
Keyboard Interrupt Module (KBI)  
MOTOROLA  
Data Sheet — MC68HC908GZ16  
Section 14. Low-Voltage Inhibit (LVI)  
14.1 Introduction  
This section describes the low-voltage inhibit (LVI) module, which monitors the  
voltage on the VDD pin and can force a reset when the VDD voltage falls below the  
LVI trip falling voltage, VTRIPF  
.
14.2 Features  
Features of the LVI module include:  
Programmable LVI reset  
Selectable LVI trip voltage  
Programmable stop mode operation  
14.3 Functional Description  
Figure 14-1 shows the structure of the LVI module. The LVI is enabled out of reset.  
The LVI module contains a bandgap reference circuit and comparator. Clearing the  
LVI power disable bit, LVIPWRD, enables the LVI to monitor VDD voltage. Clearing  
the LVI reset disable bit, LVIRSTD, enables the LVI module to generate a reset  
when VDD falls below a voltage, VTRIPF. Setting the LVI enable in stop mode bit,  
LVISTOP, enables the LVI to operate in stop mode. Setting the LVI 5-V or 3-V trip  
point bit, LVI5OR3, enables the trip point voltage, VTRIPF, to be configured for 5-V  
operation. Clearing the LVI5OR3 bit enables the trip point voltage, VTRIPF, to be  
configured for 3-V operation. The actual trip points are shown in Section 24.  
Electrical Specifications.  
NOTE:  
After a power-on reset (POR) the LVI’s default mode of operation is 3 V. If a 5-V  
system is used, the user must set the LVI5OR3 bit to raise the trip point to 5-V  
operation. Note that this must be done after every power-on reset since the default  
will revert back to 3-V mode after each power-on reset. If the VDD supply is below  
the 5-V mode trip voltage but above the 3-V mode trip voltage when POR is  
released, the part will operate because VTRIPF defaults to 3-V mode after a POR.  
So, in a 5-V system care must be taken to ensure that VDD is above the 5-V mode  
trip voltage after POR is released.  
If the user requires 5-V mode and sets the LVI5OR3 bit after a power-on reset while  
the VDD supply is not above the VTRIPR for 5-V mode, the microcontroller unit  
(MCU) will immediately go into reset. The LVI in this case will hold the part in reset  
until either VDD goes above the rising 5-V trip point, VTRIPR, which will release reset  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Low-Voltage Inhibit (LVI)  
145  
Low-Voltage Inhibit (LVI)  
or VDD decreases to approximately 0 V which will re-trigger the power-on reset and  
reset the trip point to 3-V operation.  
LVISTOP, LVIPWRD, LVI5OR3, and LVIRSTD are in the configuration register  
(CONFIG1). See Figure 8-2. Configuration Register 1 (CONFIG1) for details of  
the LVI’s configuration bits. Once an LVI reset occurs, the MCU remains in reset  
until VDD rises above a voltage, VTRIPR, which causes the MCU to exit reset. See  
20.3.2.5 Low-Voltage Inhibit (LVI) Reset for details of the interaction between the  
SIM and the LVI. The output of the comparator controls the state of the LVIOUT  
flag in the LVI status register (LVISR).  
An LVI reset also drives the RST pin low to provide low-voltage protection to  
external peripheral devices.  
VDD  
STOP INSTRUCTION  
LVISTOP  
FROM CONFIG1  
FROM CONFIG1  
LVIRSTD  
LVIPWRD  
FROM CONFIG  
VDD > LVITrip = 0  
LVI RESET  
LOW VDD  
DETECTOR  
VDD LVITrip = 1  
LVIOUT  
LVI5OR3  
FROM CONFIG1  
Figure 14-1. LVI Module Block Diagram  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read: LVIOUT  
0
0
0
0
0
0
0
LVI Status Register  
$FE0C  
(LVISR) Write:  
See page 147.  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 14-2. LVI I/O Register Summary  
Data Sheet  
146  
MC68HC908GZ16  
MOTOROLA  
Low-Voltage Inhibit (LVI)  
Low-Voltage Inhibit (LVI)  
LVI Status Register  
14.3.1 Polled LVI Operation  
In applications that can operate at VDD levels below the VTRIPF level, software can  
monitor VDD by polling the LVIOUT bit. In the configuration register, the LVIPWRD  
bit must be at logic 0 to enable the LVI module, and the LVIRSTD bit must be at  
logic 1 to disable LVI resets.  
14.3.2 Forced Reset Operation  
In applications that require VDD to remain above the VTRIPF level, enabling LVI  
resets allows the LVI module to reset the MCU when VDD falls below the VTRIPF  
level. In the configuration register, the LVIPWRD and LVIRSTD bits must be at  
logic 0 to enable the LVI module and to enable LVI resets.  
14.3.3 Voltage Hysteresis Protection  
Once the LVI has triggered (by having VDD fall below VTRIPF), the LVI will maintain  
a reset condition until VDD rises above the rising trip point voltage, VTRIPR. This  
prevents a condition in which the MCU is continually entering and exiting reset if  
VDD is approximately equal to VTRIPF. VTRIPR is greater than VTRIPF by the  
hysteresis voltage, VHYS  
.
14.3.4 LVI Trip Selection  
The LVI5OR3 bit in the configuration register selects whether the LVI is configured  
for 5-V or 3-V protection.  
NOTE:  
The microcontroller is guaranteed to operate at a minimum supply voltage. The trip  
point (VTRIPF [5 V] or VTRIPF [3 V]) may be lower than this. See Section 24.  
Electrical Specifications for the actual trip point voltages.  
14.4 LVI Status Register  
The LVI status register (LVISR) indicates if the VDD voltage was detected below  
the VTRIPF level.  
Address: $FE0C  
Bit 7  
6
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read: LVIOUT  
Write:  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 14-3. LVI Status Register (LVISR)  
LVIOUT — LVI Output Bit  
This read-only flag becomes set when the VDD voltage falls below the VTRIPF  
trip voltage (see Table 14-1). Reset clears the LVIOUT bit.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Low-Voltage Inhibit (LVI)  
147  
Low-Voltage Inhibit (LVI)  
Table 14-1. LVIOUT Bit Indication  
VDD  
LVIOUT  
VDD > VTRIPR  
0
VDD < VTRIPF  
1
VTRIPF < VDD < VTRIPR  
Previous value  
14.5 LVI Interrupts  
The LVI module does not generate interrupt requests.  
14.6 Low-Power Modes  
The STOP and WAIT instructions put the MCU in low power-consumption standby  
modes.  
14.6.1 Wait Mode  
14.6.2 Stop Mode  
If enabled, the LVI module remains active in wait mode. If enabled to generate  
resets, the LVI module can generate a reset and bring the MCU out of wait mode.  
If enabled in stop mode (LVISTOP set), the LVI module remains active in stop  
mode. If enabled to generate resets, the LVI module can generate a reset and bring  
the MCU out of stop mode.  
Data Sheet  
148  
MC68HC908GZ16  
Low-Voltage Inhibit (LVI)  
MOTOROLA  
Data Sheet — MC68HC908GZ16  
Section 15. Monitor ROM (MON)  
15.1 Introduction  
This section describes the monitor ROM (MON) and the monitor mode entry  
methods. The monitor ROM allows complete testing of the microcontroller unit  
(MCU) through a single-wire interface with a host computer. Monitor mode entry  
can be achieved without use of the higher test voltage, VTST, as long as vector  
addresses $FFFE and $FFFF are blank, thus reducing the hardware requirements  
for in-circuit programming.  
15.2 Features  
Features of the monitor ROM include:  
Normal user-mode pin functionality  
One pin dedicated to serial communication between monitor read-only  
memory (ROM) and host computer  
Standard mark/space non-return-to-zero (NRZ) communication with host  
computer  
Standard communication baud rate (7200 @ 8-MHz crystal frequency)  
Execution of code in random-access memory (RAM) or FLASH  
FLASH memory security feature(1)  
FLASH memory programming interface  
350 bytes monitor ROM code size ($FE20 to $FF7D)  
Monitor mode entry without high voltage, VTST, if reset vector is blank  
($FFFE and $FFFF contain $FF)  
Normal monitor mode entry if high voltage is applied to IRQ  
15.3 Functional Description  
Figure 15-1 shows a simplified diagram of the monitor mode.  
The monitor ROM receives and executes commands from a host computer.  
Figure 15-2 and Figure 15-3 show example circuits used to enter monitor mode  
and communicate with a host computer via a standard RS-232 interface.  
1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or  
copying the FLASH difficult for unauthorized users.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Monitor ROM (MON)  
149  
Monitor ROM (MON)  
POR RESET  
YES  
NO  
IRQ = VTST  
?
CONDITIONS  
FROM Table 15-1  
PTA0 = 1,  
PTA1 = 0, RESET  
VECTOR BLANK?  
PTA0 = 1, PTA1 = 0,  
PTB0 = 1, AND  
PTB1 = 0?  
NO  
NO  
YES  
YES  
FORCED  
MONITOR MODE  
NORMAL  
USER MODE  
NORMAL  
MONITOR MODE  
INVALID  
USER MODE  
HOST SENDS  
8 SECURITY BYTES  
YES  
IS RESET  
POR?  
NO  
ARE ALL  
SECURITY BYTES  
CORRECT?  
YES  
NO  
ENABLE FLASH  
DISABLE FLASH  
MONITOR MODE ENTRY  
DEBUGGING  
AND FLASH  
PROGRAMMING  
(IF FLASH  
IS ENABLED)  
EXECUTE  
MONITOR CODE  
NO  
YES  
DOES RESET  
OCCUR?  
Figure 15-1. Simplified Monitor Mode Entry Flowchart  
Data Sheet  
150  
MC68HC908GZ16  
MOTOROLA  
Monitor ROM (MON)  
Monitor ROM (MON)  
Functional Description  
MC68HC908GZ16  
VDD  
N.C.  
RST  
VDD  
47 pF  
27 pF  
VDDA  
OSC2  
MAX232  
VDD  
0.1 µF  
10 MΩ  
1
16  
15  
VCC  
C1+  
VDD  
+
+
+
OSC1  
IRQ  
1 µF  
1 µF  
8 MHz  
10 k  
3
4
1 µF  
GND  
C1–  
C2+  
PTB4  
PTB0  
+
10 k  
1 kΩ  
2
6
V+  
V–  
10 k  
10 k  
VDD  
1 µF  
PTB1  
PTA1  
9.1 V  
5
C2–  
1 µF  
+
10 kΩ  
74HC125  
DB9  
5
10  
9
2
7
8
6
PTA0  
VSSA  
VSS  
74HC125  
3
2
4
3
5
1
Figure 15-2. Normal Monitor Mode Circuit  
MC68HC908GZ16  
VDD  
N.C.  
RST  
VDD  
47 pF  
27 pF  
VDDA  
OSC2  
MAX232  
VDD  
0.1 µF  
10 MΩ  
1
16  
15  
VCC  
C1+  
+
+
+
OSC1  
IRQ  
1 µF  
1 µF  
8 MHz  
3
4
1 µF  
GND  
C1–  
C2+  
+
PTB4  
PTB0  
PTB1  
N.C.  
2
6
N.C.  
N.C.  
V+  
V–  
N.C.  
VDD  
1 µF  
5
C2–  
10 k  
1 µF  
+
PTA1  
10 kΩ  
74HC125  
DB9  
5
10  
9
6
2
7
8
PTA0  
VSSA  
VSS  
74HC125  
3
2
4
3
5
1
Figure 15-3. Forced Monitor Mode  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
151  
Monitor ROM (MON)  
Monitor ROM (MON)  
Simple monitor commands can access any memory address. In monitor mode, the  
MCU can execute code downloaded into RAM by a host computer while most MCU  
pins retain normal operating mode functions. All communication between the host  
computer and the MCU is through the PTA0 pin. A level-shifting and multiplexing  
interface is required between PTA0 and the host computer. PTA0 is used in a  
wired-OR configuration and requires a pullup resistor.  
Table 15-1 shows the pin conditions for entering monitor mode. As specified in the  
table, monitor mode may be entered after a power-on reset (POR) and will allow  
communication at 7200 baud provided one of the following sets of conditions is  
met:  
If $FFFE and $FFFF does not contain $FF (programmed state):  
The external clock is 4 MHz (7200 baud)  
PTB4 = low  
IRQ = VTST  
If $FFFE and $FFFF do not contain $FF (programmed state):  
The external clock is 8 MHz (7200 baud)  
PTB4 = high  
IRQ = VTST  
If $FFFE and $FFFF contain $FF (erased state):  
The external clock is 8 MHz (7200 baud)  
IRQ = VDD (this can be implemented through the internal IRQ pullup)  
or VSS  
Enter monitor mode with pin configuration shown in Table 15-1 by pulling RST low  
and then high. The rising edge of RST latches monitor mode. Once monitor mode  
is latched, the values on the specified pins can change.  
Once out of reset, the MCU waits for the host to send eight security bytes (see  
15.4 Security). After the security bytes, the MCU sends a break signal (10  
consecutive logic 0s) to the host, indicating that it is ready to receive a command.  
Data Sheet  
152  
MC68HC908GZ16  
Monitor ROM (MON)  
MOTOROLA  
Table 15-1. Monitor Mode Signal Requirements and Options  
Serial  
Communication  
Mode  
Selection  
Communication  
Speed  
Divider  
Reset  
Vector  
Mode  
IRQ RST  
PLL  
COP  
Comments  
External  
Bus  
Baud  
PTA0  
PTA1 PTB0 PTB1 PTB4  
Clock  
Frequency Rate  
X
GND  
VDD  
X
X
X
X
0
X
1
X
0
X
0
X
X
X
X
X
Reset condition  
VTST  
or  
VTST  
1
1
1
X
OFF Disabled 4 MHz  
OFF Disabled 8 MHz  
OFF Disabled 8 MHz  
2 MHz  
7200  
Normal  
Monitor  
VDD  
VTST  
or  
VTST  
X
0
0
X
1
X
X
0
X
X
1
X
X
2 MHz  
2 MHz  
X
7200  
7200  
X
VDD  
Forced  
Monitor  
$FF  
(blank)  
VDD  
or  
GND  
VDD  
VDD  
Not  
$FF  
User  
or  
VTST  
X
Enabled  
X
or  
GND  
MON08  
Function  
[Pin No.]  
VTST  
[6]  
RST  
[4]  
COM  
[8]  
SSEL MOD0 MOD1 DIV4  
[10] [12] [14] [16]  
OSC1  
[13]  
1. PTA0 must have a pullup resistor to VDD in monitor mode.  
2. Communication speed in the table is an example to obtain a baud rate of 7200. Baud rate using external oscillator is bus frequency / 278.  
3. External clock is an 4.0 MHz or 8.0 MHz crystal on OSC1 and OSC2 or a canned oscillator on OSC1.  
4. X = don’t care  
5. MON08 pin refers to P&E Microcomputer Systems’ MON08-Cyclone 2 by 8-pin connector.  
NC  
NC  
1
3
2
4
GND  
RST  
NC  
5
6
IRQ  
NC  
7
8
PTA0  
PTA1  
PTB0  
PTB1  
PTB4  
NC  
9
10  
12  
14  
16  
NC  
11  
13  
15  
OSC1  
VDD  
Monitor ROM (MON)  
15.3.1 Normal Monitor Mode  
If VTST is applied to IRQ and PTB4 is low upon monitor mode entry, the bus  
frequency is a divide-by-two of the input clock. If PTB4 is high with VTST applied to  
IRQ upon monitor mode entry, the bus frequency will be a divide-by-four of the  
input clock. Holding the PTB4 pin low when entering monitor mode causes a  
bypass of a divide-by-two stage at the oscillator only if VTST is applied to IRQ. In  
this event, the CGMOUT frequency is equal to the CGMXCLK frequency, and the  
OSC1 input directly generates internal bus clocks. In this case, the OSC1 signal  
must have a 50% duty cycle at maximum bus frequency.  
When monitor mode was entered with VTST on IRQ, the computer operating  
properly (COP) is disabled as long as VTST is applied to either IRQ or RST.  
This condition states that as long as VTST is maintained on the IRQ pin after  
entering monitor mode, or if VTST is applied to RST after the initial reset to get into  
monitor mode (when VTST was applied to IRQ), then the COP will be disabled. In  
the latter situation, after VTST is applied to the RST pin, VTST can be removed from  
the IRQ pin in the interest of freeing the IRQ for normal functionality in monitor  
mode.  
15.3.2 Forced Monitor Mode  
If entering monitor mode without high voltage on IRQ, then all port B pin  
requirements and conditions, including the PTB4 frequency divisor selection, are  
not in effect. This is to reduce circuit requirements when performing in-circuit  
programming.  
NOTE:  
If the reset vector is blank and monitor mode is entered, the chip will see an  
additional reset cycle after the initial power-on reset (POR). Once the reset vector  
has been programmed, the traditional method of applying a voltage, VTST, to IRQ  
must be used to enter monitor mode.  
An external oscillator of 8 MHz is required for a baud rate of 7200, as the internal  
bus frequency is automatically set to the external frequency divided by four.  
When the forced monitor mode is entered the COP is always disabled regardless  
of the state of IRQ or RST.  
15.3.3 Monitor Vectors  
In monitor mode, the MCU uses different vectors for reset, SWI (software interrupt),  
and break interrupt than those for user mode. The alternate vectors are in the $FE  
page instead of the $FF page and allow code execution from the internal monitor  
firmware instead of user code.  
Table 15-2 summarizes the differences between user mode and monitor mode.  
Data Sheet  
154  
MC68HC908GZ16  
Monitor ROM (MON)  
MOTOROLA  
Monitor ROM (MON)  
Functional Description  
Table 15-2. Mode Differences  
Functions  
Modes  
Reset  
Reset  
Break  
Break  
SWI  
SWI  
Vector High Vector Low Vector High Vector Low Vector High Vector Low  
User  
$FFFE  
$FEFE  
$FFFF  
$FEFF  
$FFFC  
$FEFC  
$FFFD  
$FEFD  
$FFFC  
$FEFC  
$FFFD  
$FEFD  
Monitor  
15.3.4 Data Format  
Communication with the monitor ROM is in standard non-return-to-zero (NRZ)  
mark/space data format. Transmit and receive baud rates must be identical.  
NEXT  
START  
BIT  
START  
BIT  
BIT 6  
STOP  
BIT  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 7  
Figure 15-4. Monitor Data Format  
15.3.5 Break Signal  
A start bit (logic 0) followed by nine logic 0 bits is a break signal. When the monitor  
receives a break signal, it drives the PTA0 pin high for the duration of two bits and  
then echoes back the break signal.  
MISSING STOP BIT  
APPROXIMATELY 2 BITS DELAY  
BEFORE ZERO ECHO  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
Figure 15-5. Break Transaction  
15.3.6 Baud Rate  
The communication baud rate is controlled by the crystal frequency or external  
clock and the state of the PTB4 pin (when IRQ is set to VTST) upon entry into  
monitor mode. If monitor mode was entered with VDD on IRQ and the reset vector  
blank, then the baud rate is independent of PTB4.  
Table 15-1 also lists external frequencies required to achieve a standard baud rate  
of 7200 bps. The effective baud rate is the bus frequency divided by 278. If using  
a crystal as the clock source, be aware of the upper frequency limit that the internal  
clock module can handle. See 24.7 5.0-Volt Control Timing or 24.6 3.3-Vdc  
Electrical Characteristics for this limit.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Monitor ROM (MON)  
155  
Monitor ROM (MON)  
15.3.7 Commands  
The monitor ROM firmware uses these commands:  
READ (read memory)  
WRITE (write memory)  
IREAD (indexed read)  
IWRITE (indexed write)  
READSP (read stack pointer)  
RUN (run user program)  
The monitor ROM firmware echoes each received byte back to the PTA0 pin for  
error checking. An 11-bit delay at the end of each command allows the host to send  
a break character to cancel the command. A delay of two bit times occurs before  
each echo and before READ, IREAD, or READSP data is returned. The data  
returned by a read command appears after the echo of the last byte of the  
command.  
NOTE:  
Wait one bit time after each echo before sending the next byte.  
FROM  
HOST  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
READ  
READ  
DATA  
4
4
1
1
4
1
3, 2  
4
ECHO  
RETURN  
Notes:  
1 = Echo delay, approximately 2 bit times  
2 = Data return delay, approximately 2 bit times  
3 = Cancel command delay, 11 bit times  
4 = Wait 1 bit time before sending next byte.  
Figure 15-6. Read Transaction  
FROM  
HOST  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
DATA  
DATA  
WRITE  
WRITE  
3
3
1
1
3
1
3
1
2, 3  
ECHO  
Notes:  
1 = Echo delay, approximately 2 bit times  
2 = Cancel command delay, 11 bit times  
3 = Wait 1 bit time before sending next byte.  
Figure 15-7. Write Transaction  
Data Sheet  
156  
MC68HC908GZ16  
MOTOROLA  
Monitor ROM (MON)  
Monitor ROM (MON)  
Functional Description  
A brief description of each monitor mode command is given in Table 15-3 through  
Table 15-8.  
Table 15-3. READ (Read Memory) Command  
Description  
Operand  
Read byte from memory  
2-byte address in high-byte:low-byte order  
Returns contents of specified address  
$4A  
Data Returned  
Opcode  
Command Sequence  
SENT TO MONITOR  
ADDRESS ADDRESS ADDRESS  
HIGH HIGH LOW  
ADDRESS  
LOW  
READ  
READ  
DATA  
ECHO  
RETURN  
Table 15-4. WRITE (Write Memory) Command  
Description  
Operand  
Write byte to memory  
2-byte address in high-byte:low-byte order; low byte followed by data byte  
Data Returned None  
Opcode  
$49  
Command Sequence  
FROM HOST  
ADDRESS ADDRESS ADDRESS ADDRESS  
LOW  
DATA  
DATA  
WRITE  
ECHO  
WRITE  
HIGH  
HIGH  
LOW  
Table 15-5. IREAD (Indexed Read) Command  
Description  
Operand  
Read next 2 bytes in memory from last address accessed  
2-byte address in high byte:low byte order  
Data Returned Returns contents of next two addresses  
Opcode $1A  
Command Sequence  
FROM HOST  
IREAD  
IREAD  
DATA  
DATA  
ECHO  
RETURN  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
157  
Monitor ROM (MON)  
Monitor ROM (MON)  
Table 15-6. IWRITE (Indexed Write) Command  
Description  
Operand  
Write to last address accessed + 1  
Single data byte  
Data Returned None  
Opcode $19  
Command Sequence  
FROM HOST  
DATA  
DATA  
IWRITE  
ECHO  
IWRITE  
A sequence of IREAD or IWRITE commands can access a block of memory  
sequentially over the full 64-Kbyte memory map.  
Table 15-7. READSP (Read Stack Pointer) Command  
Description  
Operand  
Reads stack pointer  
None  
Data Returned Returns incremented stack pointer value (SP + 1) in high-byte:low-byte order  
Opcode  
$0C  
Command Sequence  
FROM HOST  
SP  
HIGH  
SP  
LOW  
READSP  
READSP  
ECHO  
RETURN  
Table 15-8. RUN (Run User Program) Command  
Description  
Operand  
Executes PULH and RTI instructions  
None  
Data Returned None  
Opcode $28  
Command Sequence  
FROM HOST  
RUN  
RUN  
ECHO  
Data Sheet  
158  
MC68HC908GZ16  
MOTOROLA  
Monitor ROM (MON)  
Monitor ROM (MON)  
Security  
The MCU executes the SWI and PSHH instructions when it enters monitor mode.  
The RUN command tells the MCU to execute the PULH and RTI instructions.  
Before sending the RUN command, the host can modify the stacked CPU registers  
to prepare to run the host program. The READSP command returns the  
incremented stack pointer value, SP + 1. The high and low bytes of the program  
counter are at addresses SP + 5 and SP + 6.  
SP  
HIGH BYTE OF INDEX REGISTER  
CONDITION CODE REGISTER  
ACCUMULATOR  
SP + 1  
SP + 2  
SP + 3  
SP + 4  
SP + 5  
SP + 6  
SP + 7  
LOW BYTE OF INDEX REGISTER  
HIGH BYTE OF PROGRAM COUNTER  
LOW BYTE OF PROGRAM COUNTER  
Figure 15-8. Stack Pointer at Monitor Mode Entry  
15.4 Security  
A security feature discourages unauthorized reading of FLASH locations while in  
monitor mode. The host can bypass the security feature at monitor mode entry by  
sending eight security bytes that match the bytes at locations $FFF6–$FFFD.  
Locations $FFF6–$FFFD contain user-defined data.  
NOTE:  
Do not leave locations $FFF6–$FFFD blank. For security reasons, program  
locations $FFF6–$FFFD even if they are not used for vectors.  
During monitor mode entry, the MCU waits after the power-on reset for the host to  
send the eight security bytes on pin PTA0. If the received bytes match those at  
locations $FFF6–$FFFD, the host bypasses the security feature and can read all  
FLASH locations and execute code from FLASH. Security remains bypassed until  
a power-on reset occurs. If the reset was not a power-on reset, security remains  
bypassed and security code entry is not required. See Figure 15-9.  
Upon power-on reset, if the received bytes of the security code do not match the  
data at locations $FFF6–$FFFD, the host fails to bypass the security feature. The  
MCU remains in monitor mode, but reading a FLASH location returns an invalid  
value and trying to execute code from FLASH causes an illegal address reset. After  
receiving the eight security bytes from the host, the MCU transmits a break  
character, signifying that it is ready to receive a command.  
NOTE:  
The MCU does not transmit a break character until after the host sends the eight  
security bytes.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Monitor ROM (MON)  
159  
Monitor ROM (MON)  
VDD  
RST  
4096 + 32 CGMXCLK CYCLES  
FROM HOST  
PA0  
5
1
1
4
1
4
2
1
FROM MCU  
Notes:  
1 = Echo delay, approximately 2 bit times  
2 = Data return delay, approximately 2 bit times  
4 = Wait 1 bit time before sending next byte  
5 = Wait until the monitor ROM runs  
Figure 15-9. Monitor Mode Entry Timing  
To determine whether the security code entered is correct, check to see if bit 6 of  
RAM address $40 is set. If it is, then the correct security code has been entered  
and FLASH can be accessed.  
If the security sequence fails, the device should be reset by a power-on reset and  
brought up in monitor mode to attempt another entry. After failing the security  
sequence, the FLASH module can also be mass erased by executing an erase  
routine that was downloaded into internal RAM. The mass erase operation clears  
the security code locations so that all eight security bytes become $FF (blank).  
Data Sheet  
160  
MC68HC908GZ16  
Monitor ROM (MON)  
MOTOROLA  
Data Sheet — MC68HC908GZ16  
Section 16. MSCAN08 Controller (MSCAN08)  
16.1 Introduction  
The MSCAN08 is the specific implementation of the Motorola scalable controller  
area network (MSCAN) concept targeted for the Motorola M68HC08  
Microcontroller Family.  
The module is a communication controller implementing the CAN 2.0 A/B protocol  
as defined in the BOSCH specification dated September, 1991.  
The CAN protocol was primarily, but not exclusively, designed to be used as a  
vehicle serial data bus, meeting the specific requirements of this field: real-time  
processing, reliable operation in the electromagnetic interference (EMI)  
environment of a vehicle, cost-effectiveness, and required bandwidth.  
MSCAN08 utilizes an advanced buffer arrangement, resulting in a predictable  
real-time behavior, and simplifies the application software.  
16.2 Features  
Basic features of the MSCAN08 are:  
MSCAN08 enable is software controlled by bit (MSCANEN) in configuration  
register (CONFIG2)  
Modular architecture  
Implementation of the CAN Protocol — Version 2.0A/B  
Standard and extended data frames  
0–8 bytes data length.  
Programmable bit rate up to 1 Mbps depending on the actual bit timing  
and the clock jitter of the phase-locked loop (PLL)  
Support for remote frames  
Double-buffered receive storage scheme  
Triple-buffered transmit storage scheme with internal prioritization using a  
“local priority” concept  
Flexible maskable identifier filter supports alternatively one full size  
extended identifier filter or two 16-bit filters or four 8-bit filters  
Programmable wakeup functionality with integrated low-pass filter  
Programmable loop-back mode supports self-test operation  
Separate signalling and interrupt capabilities for all CAN receiver and  
transmitter error states (warning, error passive, bus off)  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
MSCAN08 Controller (MSCAN08)  
161  
MSCAN08 Controller (MSCAN08)  
Programmable MSCAN08 clock source either CPU bus clock or crystal  
oscillator output  
Programmable link to timer interface module 2, channel 0, for time-stamping  
and network synchronization  
Low-power sleep mode  
16.3 External Pins  
The MSCAN08 uses two external pins, one input (CANRX) and one output  
(CANTX). The CANTX output pin represents the logic level on the CAN: 0 is for a  
dominant state, and 1 is for a recessive state.  
A typical CAN system with MSCAN08 is shown in Figure 16-1.  
Each CAN station is connected physically to the CAN bus lines through a  
transceiver chip. The transceiver is capable of driving the large current needed for  
the CAN and has current protection against defected CAN or defected stations.  
CAN STATION 1  
CAN NODE 1  
CAN NODE 2  
CAN NODE N  
MCU  
CAN CONTROLLER  
(MSCAN08)  
CANTX  
CANRX  
TRANSCEIVER  
CAN_L  
CAN_H  
CAN BUS  
Figure 16-1. The CAN System  
Data Sheet  
162  
MC68HC908GZ16  
MOTOROLA  
MSCAN08 Controller (MSCAN08)  
MSCAN08 Controller (MSCAN08)  
Message Storage  
16.4 Message Storage  
MSCAN08 facilitates a sophisticated message storage system which addresses  
the requirements of a broad range of network applications.  
16.4.1 Background  
Modern application layer software is built under two fundamental assumptions:  
1. Any CAN node is able to send out a stream of scheduled messages without  
releasing the bus between two messages. Such nodes will arbitrate for the  
bus right after sending the previous message and will only release the bus  
in case of lost arbitration.  
2. The internal message queue within any CAN node is organized as such that  
the highest priority message will be sent out first if more than one message  
is ready to be sent.  
Above behavior cannot be achieved with a single transmit buffer. That buffer must  
be reloaded right after the previous message has been sent. This loading process  
lasts a definite amount of time and has to be completed within the inter-frame  
sequence (IFS) to be able to send an uninterrupted stream of messages. Even if  
this is feasible for limited CAN bus speeds, it requires that the CPU reacts with  
short latencies to the transmit interrupt.  
A double buffer scheme would de-couple the re-loading of the transmit buffers from  
the actual message being sent and as such reduces the reactiveness requirements  
on the CPU. Problems may arise if the sending of a message would be finished just  
while the CPU re-loads the second buffer. In that case, no buffer would then be  
ready for transmission and the bus would be released.  
At least three transmit buffers are required to meet the first of the above  
requirements under all circumstances. The MSCAN08 has three transmit buffers.  
The second requirement calls for some sort of internal prioritization which the  
MSCAN08 implements with the “local priority” concept described in 16.4.2 Receive  
Structures.  
16.4.2 Receive Structures  
The received messages are stored in a 2-stage input first in first out (FIFO). The  
two message buffers are mapped using a "ping pong" arrangement into a single  
memory area (see Figure 16-2). While the background receive buffer (RxBG) is  
exclusively associated to the MSCAN08, the foreground receive buffer (RxFG) is  
addressable by the central processor unit (CPU08). This scheme simplifies the  
handler software, because only one address area is applicable for the receive  
process.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
MSCAN08 Controller (MSCAN08)  
163  
MSCAN08 Controller (MSCAN08)  
CPU08 I BUS  
MSCAN08  
RxBG  
RxFG  
RXF  
TXE  
Tx0  
Tx1  
Tx2  
PRIO  
TXE  
PRIO  
TXE  
PRIO  
Figure 16-2. User Model for Message Buffer Organization  
Data Sheet  
164  
MC68HC908GZ16  
MOTOROLA  
MSCAN08 Controller (MSCAN08)  
MSCAN08 Controller (MSCAN08)  
Message Storage  
Both buffers have a size of 13 bytes to store the CAN control bits, the identifier  
(standard or extended), and the data content. For details, see 16.12  
Programmer’s Model of Message Storage.  
The receiver full flag (RXF) in the MSCAN08 receiver flag register (CRFLG),  
signals the status of the foreground receive buffer. When the buffer contains a  
correctly received message with matching identifier, this flag is set. See 16.13.5  
MSCAN08 Receiver Flag Register (CRFLG)  
On reception, each message is checked to see if it passes the filter (for details see  
16.5 Identifier Acceptance Filter) and in parallel is written into RxBG. The  
MSCAN08 copies the content of RxBG into RxFG(1), sets the RXF flag, and  
generates a receive interrupt to the CPU(2). The user’s receive handler has to read  
the received message from RxFG and to reset the RXF flag to acknowledge the  
interrupt and to release the foreground buffer. A new message which can follow  
immediately after the IFS field of the CAN frame, is received into RxBG. The  
overwriting of the background buffer is independent of the identifier filter function.  
When the MSCAN08 module is transmitting, the MSCAN08 receives its own  
messages into the background receive buffer, RxBG. It does NOT overwrite RxFG,  
generate a receive interrupt or acknowledge its own messages on the CAN bus.  
The exception to this rule is in loop-back mode (see 16.13.2 MSCAN08 Module  
Control Register 1), where the MSCAN08 treats its own messages exactly like all  
other incoming messages. The MSCAN08 receives its own transmitted messages  
in the event that it loses arbitration. If arbitration is lost, the MSCAN08 must be  
prepared to become the receiver.  
An overrun condition occurs when both the foreground and the background receive  
message buffers are filled with correctly received messages with accepted  
identifiers and another message is correctly received from the bus with an  
accepted identifier. The latter message will be discarded and an error interrupt with  
overrun indication will be generated if enabled. The MSCAN08 is still able to  
transmit messages with both receive message buffers filled, but all incoming  
messages are discarded.  
16.4.3 Transmit Structures  
The MSCAN08 has a triple transmit buffer scheme to allow multiple messages to  
be set up in advance and to achieve an optimized real-time performance. The three  
buffers are arranged as shown in Figure 16-2.  
All three buffers have a 13-byte data structure similar to the outline of the receive  
buffers (see 16.12 Programmer’s Model of Message Storage). An additional  
transmit buffer priority register (TBPR) contains an 8-bit “local priority” field (PRIO)  
(see 16.12.5 Transmit Buffer Priority Registers).  
1. Only if the RXF flag is not set.  
2. The receive interrupt will occur only if not masked. A polling scheme can be applied on RXF also.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
MSCAN08 Controller (MSCAN08)  
165  
MSCAN08 Controller (MSCAN08)  
To transmit a message, the CPU08 has to identify an available transmit buffer  
which is indicated by a set transmit buffer empty (TXE) flag in the MSCAN08  
transmitter flag register (CTFLG) (see 16.13.7 MSCAN08 Transmitter Flag  
Register).  
The CPU08 then stores the identifier, the control bits and the data content into one  
of the transmit buffers. Finally, the buffer has to be flagged ready for transmission  
by clearing the TXE flag.  
The MSCAN08 then will schedule the message for transmission and will signal the  
successful transmission of the buffer by setting the TXE flag. A transmit interrupt is  
generated(1) when TXE is set and can be used to drive the application software to  
re-load the buffer.  
In case more than one buffer is scheduled for transmission when the CAN bus  
becomes available for arbitration, the MSCAN08 uses the local priority setting of  
the three buffers for prioritization. For this purpose, every transmit buffer has an  
8-bit local priority field (PRIO). The application software sets this field when the  
message is set up. The local priority reflects the priority of this particular message  
relative to the set of messages being emitted from this node. The lowest binary  
value of the PRIO field is defined as the highest priority.  
The internal scheduling process takes place whenever the MSCAN08 arbitrates for  
the bus. This is also the case after the occurrence of a transmission error.  
When a high priority message is scheduled by the application software, it may  
become necessary to abort a lower priority message being set up in one of the  
three transmit buffers. As messages that are already under transmission cannot be  
aborted, the user has to request the abort by setting the corresponding abort  
request flag (ABTRQ) in the transmission control register (CTCR). The MSCAN08  
will then grant the request, if possible, by setting the corresponding abort request  
acknowledge (ABTAK) and the TXE flag in order to release the buffer and by  
generating a transmit interrupt. The transmit interrupt handler software can tell from  
the setting of the ABTAK flag whether the message was actually aborted  
(ABTAK = 1) or sent (ABTAK = 0).  
16.5 Identifier Acceptance Filter  
The identifier acceptance registers (CIDAR0–CIDAR3) define the acceptance  
patterns of the standard or extended identifier (ID10–ID0 or ID28–ID0). Any of  
these bits can be marked ‘don’t care’ in the identifier mask registers  
(CIDMR0–CIDMR3).  
1. The transmit interrupt will occur only if not masked. A polling scheme can be applied on TXE also.  
MC68HC908GZ16  
Data Sheet  
166  
MSCAN08 Controller (MSCAN08)  
MOTOROLA  
MSCAN08 Controller (MSCAN08)  
Identifier Acceptance Filter  
A filter hit is indicated to the application on software by a set RXF (receive buffer  
full flag, see 16.13.5 MSCAN08 Receiver Flag Register (CRFLG)) and two bits in  
the identifier acceptance control register (see 16.13.9 MSCAN08 Identifier  
Acceptance Control Register). These identifier hit flags (IDHIT1 and IDHIT0)  
clearly identify the filter section that caused the acceptance. They simplify the  
application software’s task to identify the cause of the receiver interrupt. In case  
that more than one hit occurs (two or more filters match) the lower hit has priority.  
A very flexible programmable generic identifier acceptance filter has been  
introduced to reduce the CPU interrupt loading. The filter is programmable to  
operate in four different modes:  
1. Single identifier acceptance filter, each to be applied to a) the full 29 bits of  
the extended identifier and to the following bits of the CAN frame: RTR, IDE,  
SRR or b) the 11 bits of the standard identifier plus the RTR and IDE bits of  
CAN 2.0A/B messages. This mode implements a single filter for a full length  
CAN 2.0B compliant extended identifier. Figure 16-3 shows how the 32-bit  
filter bank (CIDAR0-3, CIDMR0-3) produces a filter 0 hit.  
2. Two identifier acceptance filters, each to be applied to:  
a. The 14 most significant bits of the extended identifier plus the SRR and  
the IDE bits of CAN2.0B messages, or  
b. The 11 bits of the identifier plus the RTR and IDE bits of CAN 2.0A/B  
messages.  
Figure 16-4 shows how the 32-bit filter bank (CIDAR0–CIDAR3 and  
CIDMR0–CIDMR3) produces filter 0 and 1 hits.  
3. Four identifier acceptance filters, each to be applied to the first eight bits of  
the identifier. This mode implements four independent filters for the first  
eight bits of a CAN 2.0A/B compliant standard identifier. Figure 16-5 shows  
how the 32-bit filter bank (CIDAR0–CIDAR3 and CIDMR0–CIDMR3)  
produces filter 0 to 3 hits.  
4. Closed filter. No CAN message will be copied into the foreground buffer  
RxFG, and the RXF flag will never be set.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
MSCAN08 Controller (MSCAN08)  
167  
MSCAN08 Controller (MSCAN08)  
ID28  
ID10  
IDR0  
IDR0  
ID21 ID20  
ID3 ID2  
IDR1  
ID15 ID14  
IDR2  
ID7 ID6  
IDR3  
RTR  
IDR1 IDE  
AM7  
AC7  
CIDMR0  
CIDAR0  
AM0 AM7  
AC0 AC7  
CIDMR1  
CIDAR1  
AM0 AM7  
AC0 AC7  
CIDMR2  
CIDAR2  
AM0 AM7  
AC0 AC7  
CIDMR3  
CIDAR3  
AM0  
AC0  
ID Accepted (Filter 0 Hit)  
Figure 16-3. Single 32-Bit Maskable Identifier Acceptance Filter  
ID28  
ID10  
IDR0  
IDR0  
ID21 ID20  
ID3 ID2  
IDR1  
ID15 ID14  
IDR2  
ID7 ID6  
IDR3  
RTR  
IDR1 IDE  
AM7  
AC7  
CIDMR0  
CIDAR0  
AM0 AM7  
AC0 AC7  
CIDMR1  
CIDAR1  
AM0  
AC0  
ID ACCEPTED (FILTER 0 HIT)  
AM7  
AC7  
CIDMR2  
AM0 AM7  
AC0 AC7  
CIDMR3  
AM0  
AC0  
CIDAR2  
CIDAR3  
ID ACCEPTED (FILTER 1 HIT)  
Figure 16-4. Dual 16-Bit Maskable Acceptance Filters  
Data Sheet  
168  
MC68HC908GZ16  
MOTOROLA  
MSCAN08 Controller (MSCAN08)  
MSCAN08 Controller (MSCAN08)  
Identifier Acceptance Filter  
ID28  
ID10  
IDR0  
IDR0  
ID21 ID20  
ID3 ID2  
IDR1  
IDR1  
ID15 ID14  
IDE
IDR2  
ID7 ID6  
IDR3  
RTR  
AM7  
AC7  
CIDMR0  
CIDAR0  
AM0  
AC0  
ID ACCEPTED (FILTER 0 HIT)  
AM7  
AC7  
CIDMR1  
CIDAR1  
AM0  
AC0  
ID ACCEPTED (FILTER 1 HIT)  
AM7  
AC7  
CIDMR2  
CIDAR2  
AM0  
AC0  
ID ACCEPTED (FILTER 2 HIT)  
AM7  
AC7  
CIDMR3  
CIDAR3  
AM0  
AC0  
ID ACCEPTED (FILTER 3 HIT)  
Figure 16-5. Quadruple 8-Bit Maskable Acceptance Filters  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
169  
MSCAN08 Controller (MSCAN08)  
MSCAN08 Controller (MSCAN08)  
16.6 Interrupts  
The MSCAN08 supports four interrupt vectors mapped onto eleven different  
interrupt sources, any of which can be individually masked. For details, see 16.13.5  
MSCAN08 Receiver Flag Register (CRFLG) through 16.13.8 MSCAN08  
Transmitter Control Register.  
1. Transmit Interrupt: At least one of the three transmit buffers is empty (not  
scheduled) and can be loaded to schedule a message for transmission. The  
TXE flags of the empty message buffers are set.  
2. Receive Interrupt: A message has been received successfully and loaded  
into the foreground receive buffer. This interrupt will be emitted immediately  
after receiving the EOF symbol. The RXF flag is set.  
3. Wakeup Interrupt: An activity on the CAN bus occurred during MSCAN08  
internal sleep mode or power-down mode (provided SLPAK = WUPIE = 1).  
4. Error Interrupt: An overrun, error, or warning condition occurred. The  
receiver flag register (CRFLG) will indicate one of the following conditions:  
Overrun: An overrun condition as described in 16.4.2 Receive  
Structures, has occurred.  
Receiver Warning: The receive error counter has reached the CPU  
warning limit of 96.  
Transmitter Warning: The transmit error counter has reached the CPU  
warning limit of 96.  
Receiver Error Passive: The receive error counter has exceeded the  
error passive limit of 127 and MSCAN08 has gone to error passive state.  
Transmitter Error Passive: The transmit error counter has exceeded the  
error passive limit of 127 and MSCAN08 has gone to error passive state.  
Bus Off: The transmit error counter has exceeded 255 and MSCAN08  
has gone to bus off state.  
16.6.1 Interrupt Acknowledge  
Interrupts are directly associated with one or more status flags in either the  
MSCAN08 receiver flag register (CRFLG) or the MSCAN08 transmitter flag register  
(CTFLG). Interrupts are pending as long as one of the corresponding flags is set.  
The flags in the above registers must be reset within the interrupt handler in order  
to handshake the interrupt. The flags are reset through writing a ‘1’ to the  
corresponding bit position. A flag cannot be cleared if the respective condition still  
prevails.  
NOTE:  
Bit manipulation instructions (BSET) shall not be used to clear interrupt flags.  
Data Sheet  
170  
MC68HC908GZ16  
MSCAN08 Controller (MSCAN08)  
MOTOROLA  
MSCAN08 Controller (MSCAN08)  
Protocol Violation Protection  
16.6.2 Interrupt Vectors  
The MSCAN08 supports four interrupt vectors as shown in Table 16-1. The vector  
addresses and the relative interrupt priority are dependent on the chip integration  
and to be defined.  
Table 16-1. MSCAN08 Interrupt Vector Addresses  
Local  
Mask  
Global  
Mask  
Function  
Source  
Wakeup  
WUPIF  
RWRNIF  
TWRNIF  
RERRIF  
TERRIF  
BOFFIF  
OVRIF  
RXF  
WUPIE  
RWRNIE  
TWRNIE  
RERRIE  
TERRIE  
BOFFIE  
OVRIE  
Error interrupts  
I bit  
Receive  
Transmit  
RXFIE  
TXE0  
TXEIE0  
TXEIE1  
TXEIE2  
TXE1  
TXE2  
16.7 Protocol Violation Protection  
The MSCAN08 will protect the user from accidentally violating the CAN protocol  
through programming errors. The protection logic implements the following  
features:  
The receive and transmit error counters cannot be written or otherwise  
manipulated.  
All registers which control the configuration of the MSCAN08 can not be  
modified while the MSCAN08 is on-line. The SFTRES bit in the MSCAN08  
module control register (see 16.13.1 MSCAN08 Module Control Register  
0) serves as a lock to protect the following registers:  
MSCAN08 module control register 1 (CMCR1)  
MSCAN08 bus timing register 0 and 1 (CBTR0 and CBTR1)  
MSCAN08 identifier acceptance control register (CIDAC)  
MSCAN08 identifier acceptance registers (CIDAR0–3)  
MSCAN08 identifier mask registers (CIDMR0–3)  
The CANTX pin is forced to recessive when the MSCAN08 is in any of the  
low-power modes.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
MSCAN08 Controller (MSCAN08)  
171  
MSCAN08 Controller (MSCAN08)  
16.8 Low-Power Modes  
In addition to normal mode, the MSCAN08 has three modes with reduced power  
consumption: sleep, soft reset, and power down. In sleep and soft reset mode,  
power consumption is reduced by stopping all clocks except those to access the  
registers. In power-down mode, all clocks are stopped and no power is consumed.  
The WAIT and STOP instructions put the MCU in low-power consumption stand-by  
modes. Table 16-2 summarizes the combinations of MSCAN08 and CPU modes.  
A particular combination of modes is entered for the given settings of the bits  
SLPAK and SFTRES. For all modes, an MSCAN08 wakeup interrupt can occur  
only if SLPAK = WUPIE = 1.  
.
Table 16-2. MSCAN08 versus CPU Operating Modes  
CPU Mode  
MSCAN08 Mode  
STOP  
WAIT or RUN  
SLPAK = X(1)  
SFTRES = X  
Power Down  
Sleep  
SLPAK = 1  
SFTRES = 0  
SLPAK = 0  
SFTRES = 1  
Soft Reset  
SLPAK = 0  
SFTRES = 0  
Normal  
1. ‘X’ means don’t care.  
16.8.1 MSCAN08 Sleep Mode  
The CPU can request the MSCAN08 to enter the low-power mode by asserting  
the SLPRQ bit in the module configuration register (see  
Figure 16-6). The time when the MSCAN08 enters sleep mode depends on its  
activity:  
If it is transmitting, it continues to transmit until there is no more message to  
be transmitted, and then goes into sleep mode  
If it is receiving, it waits for the end of this message and then goes into sleep  
mode  
If it is neither transmitting or receiving, it will immediately go into sleep mode  
NOTE:  
The application software must avoid setting up a transmission (by clearing or more  
TXE flags) and immediately request sleep mode (by setting SLPRQ). It then  
depends on the exact sequence of operations whether MSCAN08 starts  
transmitting or goes into sleep mode directly.  
Data Sheet  
172  
MC68HC908GZ16  
MSCAN08 Controller (MSCAN08)  
MOTOROLA  
MSCAN08 Controller (MSCAN08)  
Low-Power Modes  
During sleep mode, the SLPAK flag is set. The application software should use  
SLPAK as a handshake indication for the request (SLPRQ) to go into sleep mode.  
When in sleep mode, the MSCAN08 stops its internal clocks. However, clocks to  
allow register accesses still run. If the MSCAN08 is in bus-off state, it stops  
counting the 128*11 consecutive recessive bits due to the stopped clocks. The  
CANTX pin stays in recessive state. If RXF = 1, the message can be read and RXF  
can be cleared. Copying of RxGB into RxFG doesn’t take place while in sleep  
mode. It is possible to access the transmit buffers and to clear the TXE flags. No  
message abort takes place while in sleep mode.  
The MSCAN08 leaves sleep mode (wakes-up) when:  
Bus activity occurs, or  
The MCU clears the SLPRQ bit, or  
The MCU sets the SFTRES bit  
MSCAN08 RUNNING  
MCU  
or MSCAN08  
SLPRQ = 0  
SLPAK = 0  
MCU  
MSCAN08 SLEEPING  
SLEEP REQUEST  
SLPRQ = 1  
SLPAK = 1  
SLPRQ = 1  
SLPAK = 0  
MSCAN08  
Figure 16-6. Sleep Request/Acknowledge Cycle  
NOTE:  
The MCU cannot clear the SLPRQ bit before the MSCAN08 is in sleep mode  
(SLPAK=1).  
After wakeup, the MSCAN08 waits for 11 consecutive recessive bits to synchronize  
to the bus. As a consequence, if the MSCAN08 is woken-up by a CAN frame, this  
frame is not received. The receive message buffers (RxFG and RxBG) contain  
messages if they were received before sleep mode was entered. All pending  
actions are executed upon wakeup: copying of RxBG into RxFG, message aborts  
and message transmissions. If the MSCAN08 is still in bus-off state after sleep  
mode was left, it continues counting the 128*11 consecutive recessive bits.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
MSCAN08 Controller (MSCAN08)  
173  
MSCAN08 Controller (MSCAN08)  
16.8.2 MSCAN08 Soft Reset Mode  
In soft reset mode, the MSCAN08 is stopped. Registers can still be accessed. This  
mode is used to initialize the module configuration, bit timing and the CAN  
message filter. See 16.13.1 MSCAN08 Module Control Register 0 for a complete  
description of the soft reset mode.  
When setting the SFTRES bit, the MSCAN08 immediately stops all ongoing  
transmissions and receptions, potentially causing CAN protocol violations.  
NOTE:  
The user is responsible to take care that the MSCAN08 is not active when soft reset  
mode is entered. The recommended procedure is to bring the MSCAN08 into sleep  
mode before the SFTRES bit is set.  
16.8.3 MSCAN08 Power-Down Mode  
The MSCAN08 is in power-down mode when the CPU is in stop mode.  
When entering the power-down mode, the MSCAN08 immediately stops all  
ongoing transmissions and receptions, potentially causing CAN protocol violations.  
NOTE:  
The user is responsible to take care that the MSCAN08 is not active when  
power-down mode is entered. The recommended procedure is to bring the  
MSCAN08 into sleep mode before the STOP instruction is executed.  
To protect the CAN bus system from fatal consequences resulting from violations  
of the above rule, the MSCAN08 drives the CANTX pin into recessive state.  
In power-down mode, no registers can be accessed.  
MSCAN08 bus activity can wake the MCU from CPU stop/MSCAN08 power-down  
mode. However, until the oscillator starts up and synchronization is achieved the  
MSCAN08 will not respond to incoming data.  
16.8.4 CPU Wait Mode  
The MSCAN08 module remains active during CPU wait mode. The MSCAN08 will  
stay synchronized to the CAN bus and generates transmit, receive, and error  
interrupts to the CPU, if enabled. Any such interrupt will bring the MCU out of wait  
mode.  
16.8.5 Programmable Wakeup Function  
The MSCAN08 can be programmed to apply a low-pass filter function to the  
CANRX input line while in internal sleep mode (see information on control bit  
WUPM in 16.13.2 MSCAN08 Module Control Register 1). This feature can be  
used to protect the MSCAN08 from wakeup due to short glitches on the CAN bus  
lines. Such glitches can result from electromagnetic inference within noisy  
environments.  
Data Sheet  
174  
MC68HC908GZ16  
MSCAN08 Controller (MSCAN08)  
MOTOROLA  
MSCAN08 Controller (MSCAN08)  
Timer Link  
16.9 Timer Link  
The MSCAN08 will generate a timer signal whenever a valid frame has been  
received. Because the CAN specification defines a frame to be valid if no errors  
occurred before the EOF field has been transmitted successfully, the timer signal  
will be generated right after the EOF. A pulse of one bit time is generated. As the  
MSCAN08 receiver engine also receives the frames being sent by itself, a timer  
signal also will be generated after a successful transmission.  
The previously described timer signal can be routed into the on-chip 2-channel  
timer interface module 2 (TIM2). This signal is connected to the TIM2 channel 0  
input under the control of the timer link enable (TLNKEN) bit in CMCR0.  
After the timer has been programmed to capture rising edge events, it can be used  
under software control to generate 16-bit time stamps which can be stored with the  
received message.  
16.10 Clock System  
Figure 16-7 shows the structure of the MSCAN08 clock generation circuitry and its  
interaction with the clock generation module (CGM). With this flexible clocking  
scheme the MSCAN08 is able to handle CAN bus rates ranging from 10 kbps up  
to 1 Mbps.  
CGMXCLK  
OSC  
÷ 2  
CGMOUT  
(TO SIM)  
BCS  
PLL  
÷ 2  
CGM  
MSCAN08  
(2 * BUS FREQUENCY)  
÷ 2  
MSCANCLK  
PRESCALER  
(1 ... 64)  
CLKSRC  
Figure 16-7. Clocking Scheme  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
175  
MSCAN08 Controller (MSCAN08)  
MSCAN08 Controller (MSCAN08)  
The clock source bit (CLKSRC) in the MSCAN08 module control register (CMCR1)  
(see 16.13.1 MSCAN08 Module Control Register 0) defines whether the  
MSCAN08 is connected to the output of the crystal oscillator or to the PLL output.  
The clock source has to be chosen such that the tight oscillator tolerance  
requirements (up to 0.4%) of the CAN protocol are met.  
NOTE:  
If the system clock is generated from a PLL, it is recommended to select the crystal  
clock source rather than the system clock source due to jitter considerations,  
especially at faster CAN bus rates.  
A programmable prescaler is used to generate out of the MSCAN08 clock the time  
quanta (Tq) clock. A time quantum is the atomic unit of time handled by the  
MSCAN08.  
fMSCANCLK  
fTq  
=
Presc value  
A bit time is subdivided into three segments(1) (see Figure 16-8):  
SYNC_SEG: This segment has a fixed length of one time quantum. Signal  
edges are expected to happen within this section.  
Time segment 1: This segment includes the PROP_SEG and the  
PHASE_SEG1 of the CAN standard. It can be programmed by setting the  
parameter TSEG1 to consist of 4 to 16 time quanta.  
Time segment 2: This segment represents PHASE_SEG2 of the CAN  
standard. It can be programmed by setting the TSEG2 parameter to be 2 to  
8 time quanta long.  
fTq  
Bit rate =  
No. of time quanta  
The synchronization jump width (SJW) can be programmed in a range of 1 to 4 time  
quanta by setting the SJW parameter.  
The above parameters can be set by programming the bus timing registers,  
CBTR0 and CBTR1. See 16.13.3 MSCAN08 Bus Timing Register 0 and 16.13.4  
MSCAN08 Bus Timing Register 1.  
NOTE:  
It is the user’s responsibility to make sure that the bit timing settings are in  
compliance with the CAN standard,  
Table 16-8 gives an overview on the CAN conforming segment settings and the  
related parameter values.  
1. For further explanation of the underlying concepts please refer to ISO/DIS 11 519-1,  
Section 10.3.  
Data Sheet  
176  
MC68HC908GZ16  
MSCAN08 Controller (MSCAN08)  
MOTOROLA  
MSCAN08 Controller (MSCAN08)  
Clock System  
NRZ SIGNAL  
SYNC  
_SEG  
TIME SEGMENT 1  
(PROP_SEG + PHASE_SEG1)  
TIME SEG. 2  
(PHASE_SEG2)  
1
4 ... 16  
2 ... 8  
8... 25 TIME QUANTA  
= 1 BIT TIME  
SAMPLE POINT  
(SINGLE OR TRIPLE SAMPLING)  
Figure 16-8. Segments Within the Bit Time  
Table 16-3. Time Segment Syntax  
System expects transitions to occur on the bus during this  
period.  
SYNC_SEG  
A node in transmit mode will transfer a new value to the CAN  
bus at this point.  
Transmit point  
Sample point  
A node in receive mode will sample the bus at this point. If the  
three samples per bit option is selected then this point marks  
the position of the third sample.  
Table 16-4. CAN Standard Compliant Bit Time Segment Settings  
Time  
Segment 1  
Time  
Segment 2  
Synchronized  
Jump Width  
TSEG1  
TSEG2  
SJW  
5 .. 10  
4 .. 11  
5 .. 12  
6 .. 13  
7 .. 14  
8 .. 15  
9 .. 16  
4 .. 9  
3 .. 10  
4 .. 11  
5 .. 12  
6 .. 13  
7 .. 14  
8 .. 15  
2
3
4
5
6
7
8
1
2
3
4
5
6
7
1 .. 2  
1 .. 3  
1 .. 4  
1 .. 4  
1 .. 4  
1 .. 4  
1 .. 4  
0 .. 1  
0 .. 2  
0 .. 3  
0 .. 3  
0 .. 3  
0 .. 3  
0 .. 3  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
177  
MSCAN08 Controller (MSCAN08)  
MSCAN08 Controller (MSCAN08)  
16.11 Memory Map  
The MSCAN08 occupies 128 bytes in the CPU08 memory space. The absolute  
mapping is implementation dependent with the base address being a multiple  
of 128.  
$0500  
CONTROL REGISTERS  
9 BYTES  
$0508  
$0509  
RESERVED  
5 BYTES  
$050D  
$050E  
ERROR COUNTERS  
2 BYTES  
$050F  
$0510  
IDENTIFIER FILTER  
8 BYTES  
$0517  
$0518  
RESERVED  
40 BYTES  
$053F  
$0540  
RECEIVE BUFFER  
$054F  
$0550  
TRANSMIT BUFFER 0  
$055F  
$0560  
TRANSMIT BUFFER 1  
$056F  
$0570  
TRANSMIT BUFFER 2  
$057F  
Figure 16-9. MSCAN08 Memory Map  
Data Sheet  
178  
MC68HC908GZ16  
MOTOROLA  
MSCAN08 Controller (MSCAN08)  
MSCAN08 Controller (MSCAN08)  
Programmer’s Model of Message Storage  
16.12 Programmer’s Model of Message Storage  
This section details the organization of the receive and transmit message buffers  
and the associated control registers. For reasons of programmer interface  
simplification, the receive and transmit message buffers have the same outline.  
Each message buffer allocates 16 bytes in the memory map containing a 13-byte  
data structure. An additional transmit buffer priority register (TBPR) is defined for  
the transmit buffers.  
Addr(1)  
Register Name  
$05b0  
$05b1  
$05b2  
$05b3  
$05b4  
$05b5  
$05b6  
$05b7  
$05b8  
$05b9  
$05bA  
$05bB  
$05bC  
$05bD  
$05bE  
$05bF  
IDENTIFIER REGISTER 0  
IDENTIFIER REGISTER 1  
IDENTIFIER REGISTER 2  
IDENTIFIER REGISTER 3  
DATA SEGMENT REGISTER 0  
DATA SEGMENT REGISTER 1  
DATA SEGMENT REGISTER 2  
DATA SEGMENT REGISTER 3  
DATA SEGMENT REGISTER 4  
DATA SEGMENT REGISTER 5  
DATA SEGMENT REGISTER 6  
DATA SEGMENT REGISTER 7  
DATA LENGTH REGISTER  
TRANSMIT BUFFER PRIORITY REGISTER(2)  
UNUSED  
UNUSED  
1. Where b equals the following:  
b=4 for receive buffer  
b=5 for transmit buffer 0  
b=6 for transmit buffer 1  
b=7 for transmit buffer 2  
2. Not applicable for receive buffers  
Figure 16-10. Message Buffer Organization  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
179  
MSCAN08 Controller (MSCAN08)  
MSCAN08 Controller (MSCAN08)  
16.12.1 Message Buffer Outline  
Figure 16-11 shows the common 13-byte data structure of receive and transmit  
buffers for extended identifiers. The mapping of standard identifiers into the IDR  
registers is shown in Figure 16-12. All bits of the 13-byte data structure are  
undefined out of reset.  
NOTE:  
The foreground receive buffer can be read anytime but cannot be written. The  
transmit buffers can be read or written anytime.  
Addr.  
Register  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
$05b0  
IDR0  
ID28  
ID27  
ID26  
ID25  
ID24  
ID23  
ID22  
ID21  
Read:  
Write:  
$05b1  
$05b2  
$05b3  
$05b4  
$05b5  
$05b6  
$05b7  
$05b8  
$05b9  
$05bA  
$05bB  
$05bC  
IDR1  
IDR2  
ID20  
ID14  
ID6  
ID19  
ID13  
ID5  
ID18  
ID12  
ID4  
SRR (=1)  
ID11  
ID3  
IDE (=1)  
ID10  
ID2  
ID17  
ID9  
ID16  
ID8  
ID15  
ID7  
Read:  
Write:  
Read:  
Write:  
IDR3  
ID1  
ID0  
RTR  
DB0  
DB0  
DB0  
DB0  
DB0  
DB0  
DB0  
DB0  
DLC0  
Read:  
Write:  
DSR0  
DSR1  
DSR2  
DSR3  
DSR4  
DSR5  
DSR6  
DSR7  
DLR  
DB7  
DB7  
DB7  
DB7  
DB7  
DB7  
DB7  
DB7  
DB6  
DB6  
DB6  
DB6  
DB6  
DB6  
DB6  
DB6  
DB5  
DB5  
DB5  
DB5  
DB5  
DB5  
DB5  
DB5  
DB4  
DB4  
DB4  
DB4  
DB4  
DB4  
DB4  
DB4  
DB3  
DB3  
DB3  
DB3  
DB3  
DB3  
DB3  
DB3  
DLC3  
DB2  
DB2  
DB2  
DB2  
DB2  
DB2  
DB2  
DB2  
DLC2  
DB1  
DB1  
DB1  
DB1  
DB1  
DB1  
DB1  
DB1  
DLC1  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
= Unimplemented  
Figure 16-11. Receive/Transmit Message Buffer  
Extended Identifier (IDRn)  
Data Sheet  
180  
MC68HC908GZ16  
MOTOROLA  
MSCAN08 Controller (MSCAN08)  
MSCAN08 Controller (MSCAN08)  
Programmer’s Model of Message Storage  
Addr.  
Register  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
$05b0  
IDR0  
IDR1  
IDR2  
IDR3  
ID10  
ID9  
ID8  
ID7  
ID6  
ID5  
ID4  
ID3  
Read:  
Write:  
$05b1  
$05b2  
$05b3  
ID2  
ID1  
ID0  
RTR  
IDE (=0)  
Read:  
Write:  
Read:  
Write:  
= Unimplemented  
Figure 16-12. Standard Identifier Mapping  
16.12.2 Identifier Registers  
The identifiers consist of either 11 bits (ID10–ID0) for the standard, or 29 bits  
(ID28–ID0) for the extended format. ID10/28 is the most significant bit and is  
transmitted first on the bus during the arbitration procedure. The priority of an  
identifier is defined to be highest for the smallest binary number.  
SRR — Substitute Remote Request  
This fixed recessive bit is used only in extended format. It must be set to 1 by  
the user for transmission buffers and will be stored as received on the CAN bus  
for receive buffers.  
IDE — ID Extended  
This flag indicates whether the extended or standard identifier format is applied  
in this buffer. In case of a receive buffer, the flag is set as being received and  
indicates to the CPU how to process the buffer identifier registers. In case of a  
transmit buffer, the flag indicates to the MSCAN08 what type of identifier to  
send.  
1 = Extended format, 29 bits  
0 = Standard format, 11 bits  
RTR — Remote Transmission Request  
This flag reflects the status of the remote transmission request bit in the CAN  
frame. In case of a receive buffer, it indicates the status of the received frame  
and supports the transmission of an answering frame in software. In case of a  
transmit buffer, this flag defines the setting of the RTR bit to be sent.  
1 = Remote frame  
0 = Data frame  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
MSCAN08 Controller (MSCAN08)  
181  
MSCAN08 Controller (MSCAN08)  
16.12.3 Data Length Register (DLR)  
This register keeps the data length field of the CAN frame.  
DLC3–DLC0 — Data Length Code Bits  
The data length code contains the number of bytes (data byte count) of the  
respective message. At transmission of a remote frame, the data length code is  
transmitted as programmed while the number of transmitted bytes is always 0.  
The data byte count ranges from 0 to 8 for a data frame. Table 16-5 shows the  
effect of setting the DLC bits.  
Table 16-5. Data Length Codes  
Data Length Code  
Data Byte  
Count  
DLC3  
DLC2  
DLC1  
DLC0  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
0
1
2
3
4
5
6
7
8
16.12.4 Data Segment Registers (DSRn)  
The eight data segment registers contain the data to be transmitted or received.  
The number of bytes to be transmitted or being received is determined by the data  
length code in the corresponding DLR.  
16.12.5 Transmit Buffer Priority Registers  
Address:  
$05bD  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PRIO7  
PRIO6  
PRIO5  
PRIO4  
PRIO3  
PRIO2  
PRIO1  
PRIO0  
Unaffected by reset  
Figure 16-13. Transmit Buffer Priority Register (TBPR)  
PRIO7–PRIO0 — Local Priority  
This field defines the local priority of the associated message buffer. The local  
priority is used for the internal prioritization process of the MSCAN08 and is  
Data Sheet  
182  
MC68HC908GZ16  
MSCAN08 Controller (MSCAN08)  
MOTOROLA  
MSCAN08 Controller (MSCAN08)  
Programmer’s Model of Control Registers  
defined to be highest for the smallest binary number. The MSCAN08  
implements the following internal prioritization mechanism:  
All transmission buffers with a cleared TXE flag participate in the  
prioritization right before the SOF is sent.  
The transmission buffer with the lowest local priority field wins the  
prioritization.  
In case more than one buffer has the same lowest priority, the message  
buffer with the lower index number wins.  
16.13 Programmer’s Model of Control Registers  
The programmer’s model has been laid out for maximum simplicity and efficiency.  
Figure 16-14 gives an overview on the control register block of the MSCAN08.  
Addr.  
Register  
CMCR0  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
0
0
0
SYNCH  
SLPAK  
$0500  
TLNKEN  
SLPRQ  
SFTRES  
Read:  
0
0
0
0
0
$0501  
$0502  
CMCR1  
CBTR0  
LOOPB  
BRP2  
WUPM  
BRP1  
CLKSRC  
BRP0  
Read:  
Write:  
SJW1  
SAMP  
WUPIF  
SJW0  
BRP5  
BRP4  
BRP3  
Read:  
Write:  
$0503  
$0504  
$0505  
$0506  
$0507  
$0508  
$0509  
$050E  
CBTR1  
CRFLG  
CRIER  
TSEG22  
RWRNIF  
TSEG21  
TWRNIF  
TSEG20  
RERRIF  
TSEG13  
TERRIF  
TSEG12  
BOFFIF  
BOFFIE  
TXE2  
TSEG11  
OVRIF  
OVRIE  
TXE1  
TSEG10  
RXF  
Read:  
Write:  
Read:  
Write:  
WUPIE  
0
RWRNIE  
ABTAK2  
TWRNIE  
ABTAK1  
RERRIE  
ABTAK0  
TERRIE  
0
RXFIE  
TXE0  
Read:  
Write:  
CTFLG  
CTCR  
Read:  
Write:  
0
0
0
0
ABTRQ2  
0
ABTRQ1  
IDAM1  
R
ABTRQ0  
IDAM0  
R
TXEIE2  
0
TXEIE1  
IDHIT1  
TXEIE0  
IDHIT0  
Read:  
Write:  
CIDAC  
Read:  
Write:  
Reserved  
CRXERR  
R
R
R
R
R
R
Read:  
Write:  
RXERR7  
RXERR6  
RXERR5  
RXERR4  
RXERR3  
R
RXERR2  
RXERR1  
RXERR0  
= Unimplemented  
= Reserved  
Figure 16-14. MSCAN08 Control Register Structure  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
183  
MSCAN08 Controller (MSCAN08)  
MSCAN08 Controller (MSCAN08)  
Addr.  
Register  
CTXERR  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
$050F  
TXERR7  
TXERR6  
TXERR5  
TXERR4  
TXERR3  
TXERR2  
TXERR1  
TXERR0  
Read:  
Write:  
$0510  
$0511  
$0512  
$0513  
$0514  
$0515  
$0516  
$0517  
CIDAR0  
CIDAR1  
CIDAR2  
CIDAR3  
CIDMR0  
CIDMR1  
CIDMR2  
CIDMR3  
AC7  
AC7  
AC7  
AC7  
AM7  
AM7  
AM7  
AM7  
AC6  
AC6  
AC6  
AC6  
AM6  
AM6  
AM6  
AM6  
AC5  
AC5  
AC5  
AC5  
AM5  
AM5  
AM5  
AM5  
AC4  
AC4  
AC4  
AC4  
AM4  
AM4  
AM4  
AM4  
AC3  
AC3  
AC3  
AC3  
AM3  
AM3  
AM3  
AC2  
AC2  
AC2  
AC2  
AM2  
AM2  
AM2  
AC1  
AC1  
AC1  
AC1  
AM1  
AM1  
AM1  
AM1  
AC0  
AC0  
AC0  
AC0  
AM0  
AM0  
AM0  
AM0  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
AM3  
R
AM2  
= Unimplemented  
= Reserved  
Figure 16-14. MSCAN08 Control Register Structure (Continued)  
16.13.1 MSCAN08 Module Control Register 0  
Address: $0500  
Bit 7  
0
6
0
5
0
4
3
TLNKEN  
0
2
1
SLPRQ  
0
Bit 0  
SFTRES  
1
Read:  
Write:  
Reset:  
SYNCH  
SLPAK  
0
0
0
0
0
= Unimplemented  
Figure 16-15. Module Control Register 0 (CMCR0)  
SYNCH — Synchronized Status  
This bit indicates whether the MSCAN08 is synchronized to the CAN bus and  
as such can participate in the communication process.  
1 = MSCAN08 synchronized to the CAN bus  
0 = MSCAN08 not synchronized to the CAN bus  
Data Sheet  
184  
MC68HC908GZ16  
MSCAN08 Controller (MSCAN08)  
MOTOROLA  
MSCAN08 Controller (MSCAN08)  
Programmer’s Model of Control Registers  
TLNKEN — Timer Enable  
This flag is used to establish a link between the MSCAN08 and the on-chip timer  
(see 16.9 Timer Link).  
1 = The MSCAN08 timer signal output is connected to the timer input.  
0 = The port is connected to the timer input.  
SLPAK — Sleep Mode Acknowledge  
This flag indicates whether the MSCAN08 is in module internal sleep mode. It  
shall be used as a handshake for the sleep mode request (see 16.8.1  
MSCAN08 Sleep Mode). If the MSCAN08 detects bus activity while in sleep  
mode, it clears the flag.  
1 = Sleep – MSCAN08 in internal sleep mode  
0 = Wakeup – MSCAN08 is not in sleep mode  
SLPRQ — Sleep Request, Go to Internal Sleep Mode  
This flag requests the MSCAN08 to go into an internal power-saving mode (see  
16.8.1 MSCAN08 Sleep Mode).  
1 = Sleep — The MSCAN08 will go into internal sleep mode.  
0 = Wakeup — The MSCAN08 will function normally.  
SFTRES — Soft Reset  
When this bit is set by the CPU, the MSCAN08 immediately enters the soft reset  
state. Any ongoing transmission or reception is aborted and synchronization to  
the bus is lost.  
The following registers enter and stay in their hard reset state:  
CMCR0, CRFLG, CRIER, CTFLG, and CTCR.  
The registers CMCR1, CBTR0, CBTR1, CIDAC, CIDAR0–CIDAR3, and  
CIDMR0–CIDMR3 can only be written by the CPU when the MSCAN08 is in soft  
reset state. The values of the error counters are not affected by soft reset.  
When this bit is cleared by the CPU, the MSCAN08 tries to synchronize to the  
CAN bus. If the MSCAN08 is not in bus-off state, it will be synchronized after 11  
recessive bits on the bus; if the MSCAN08 is in bus-off state, it continues to wait  
for 128 occurrences of 11 recessive bits.  
Clearing SFTRES and writing to other bits in CMCR0 must be in separate  
instructions.  
1 = MSCAN08 in soft reset state  
0 = Normal operation  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
MSCAN08 Controller (MSCAN08)  
185  
MSCAN08 Controller (MSCAN08)  
16.13.2 MSCAN08 Module Control Register 1  
Address:  
$0501  
Bit 7  
0
6
0
5
0
4
0
3
0
2
LOOPB  
0
1
WUPM  
0
Bit 0  
CLKSRC  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
= Unimplemented  
Figure 16-16. Module Control Register (CMCR1)  
LOOPB — Loop Back Self-Test Mode  
When this bit is set, the MSCAN08 performs an internal loop back which can be  
used for self-test operation: the bit stream output of the transmitter is fed back  
to the receiver internally. The CANRX input pin is ignored and the CANTX output  
goes to the recessive state (logic 1). The MSCAN08 behaves as it does  
normally when transmitting and treats its own transmitted message as a  
message received from a remote node. In this state the MSCAN08 ignores the  
bit sent during the ACK slot of the CAN frame Acknowledge field to insure  
proper reception of its own message. Both transmit and receive interrupts are  
generated.  
1 = Activate loop back self-test mode  
0 = Normal operation  
WUPM — Wakeup Mode  
This flag defines whether the integrated low-pass filter is applied to protect the  
MSCAN08 from spurious wakeups (see 16.8.5 Programmable Wakeup  
Function).  
1 = MSCAN08 will wakeup the CPU only in cases of a dominant pulse on the  
bus which has a length of at least twup  
.
0 = MSCAN08 will wakeup the CPU after any recessive-to-dominant edge on  
the CAN bus.  
CLKSRC — Clock Source  
This flag defines which clock source the MSCAN08 module is driven from (see  
16.10 Clock System).  
1 = The MSCAN08 clock source is CGMOUT (see Figure 16-7).  
0 = The MSCAN08 clock source is CGMXCLK/2 (see Figure 16-7).  
NOTE:  
The CMCR1 register can be written only if the SFTRES bit in the MSCAN08  
module control register is set  
Data Sheet  
186  
MC68HC908GZ16  
MSCAN08 Controller (MSCAN08)  
MOTOROLA  
MSCAN08 Controller (MSCAN08)  
Programmer’s Model of Control Registers  
16.13.3 MSCAN08 Bus Timing Register 0  
Address:  
$0502  
Bit 7  
6
SJW0  
0
5
BRP5  
0
4
BRP4  
0
3
BRP3  
0
2
BRP2  
0
1
BRP1  
0
Bit 0  
BRP0  
0
Read:  
Write:  
Reset:  
SJW1  
0
Figure 16-17. Bus Timing Register 0 (CBTR0)  
SJW1 and SJW0 — Synchronization Jump Width  
The synchronization jump width (SJW) defines the maximum number of time  
quanta (Tq) clock cycles by which a bit may be shortened, or lengthened, to  
achieve resynchronization on data transitions on the bus (see Table 16-6).  
Table 16-6. Synchronization Jump Width  
Synchronization  
Jump Width  
SJW1  
SJW0  
1 Tq cycle  
0
0
1
1
0
1
0
1
2 Tq cycle  
3 Tq cycle  
4 Tq cycle  
BRP5–BRP0 — Baud Rate Prescaler  
These bits determine the time quanta (Tq) clock, which is used to build up the  
individual bit timing, according to Table 16-7.  
Table 16-7. Baud Rate Prescaler  
Prescaler  
Value (P)  
BRP5  
BRP4  
BRP3  
BRP2  
BRP1  
BRP0  
0
0
0
0
:
0
0
0
0
:
0
0
0
0
:
0
0
0
0
:
0
0
1
1
:
0
1
0
1
:
1
2
3
4
:
:
:
:
:
:
:
:
1
1
1
1
1
1
64  
NOTE:  
The CBTR0 register can be written only if the SFTRES bit in the MSCAN08 module  
control register is set.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
MSCAN08 Controller (MSCAN08)  
187  
MSCAN08 Controller (MSCAN08)  
16.13.4 MSCAN08 Bus Timing Register 1  
Address:  
$0503  
Bit 7  
6
TSEG22  
0
5
TSEG21  
0
4
TSEG20  
0
3
TSEG13  
0
2
TSEG12  
0
1
TSEG11  
0
Bit 0  
TSEG10  
0
Read:  
Write:  
Reset:  
SAMP  
0
Figure 16-18. Bus Timing Register 1 (CBTR1)  
SAMP — Sampling  
This bit determines the number of serial bus samples to be taken per bit time. If  
set, three samples per bit are taken, the regular one (sample point) and two  
preceding samples, using a majority rule. For higher bit rates, SAMP should be  
cleared, which means that only one sample will be taken per bit.  
1 = Three samples per bit(1)  
0 = One sample per bit  
TSEG22–TSEG10 — Time Segment  
Time segments within the bit time fix the number of clock cycles per bit time and  
the location of the sample point. Time segment 1 (TSEG1) and time segment 2  
(TSEG2) are programmable as shown in Table 16-8.  
The bit time is determined by the oscillator frequency, the baud rate prescaler,  
and the number of time quanta (Tq) clock cycles per bit as shown in Table 16-4).  
Pres value  
Bit time =  
• number of time quanta  
fMSCANCLK  
NOTE:  
The CBTR1 register can only be written if the SFTRES bit in the MSCAN08 module  
control register is set.  
Table 16-8. Time Segment Values  
Time  
Segment 1  
Time  
Segment 2  
TSEG13 TSEG12 TSEG11 TSEG10  
TSEG22 TSEG21 TSEG20  
1 Tq Cycle(1)  
2 Tq Cycles(1)  
1 Tq Cycle(1)  
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
1
2 Tq Cycles  
3Tq Cycles(1)  
4 Tq Cycles  
.
.
.
.
.
.
.
0
.
0
.
1
.
1
.
.
8Tq Cycles  
.
1
1
1
.
.
.
.
.
16 Tq Cycles  
1
1
1
1
1. This setting is not valid. Please refer to Table 16-4 for valid settings.  
1. In this case PHASE_SEG1 must be at least 2 time quanta.  
MSCAN08 Controller (MSCAN08)  
Data Sheet  
188  
MC68HC908GZ16  
MOTOROLA  
MSCAN08 Controller (MSCAN08)  
Programmer’s Model of Control Registers  
16.13.5 MSCAN08 Receiver Flag Register (CRFLG)  
All bits of this register are read and clear only. A flag can be cleared by writing a 1  
to the corresponding bit position. A flag can be cleared only when the condition  
which caused the setting is valid no more. Writing a 0 has no effect on the flag  
setting. Every flag has an associated interrupt enable flag in the CRIER register. A  
hard or soft reset will clear the register.  
Address:  
$0504  
Bit 7  
6
RWRNIF  
0
5
TWRNIF  
0
4
RERRIF  
0
3
TERRIF  
0
2
BOFFIF  
0
1
OVRIF  
0
Bit 0  
RXF  
0
Read:  
Write:  
Reset:  
WUPIF  
0
Figure 16-19. Receiver Flag Register (CRFLG)  
WUPIF — Wakeup Interrupt Flag  
If the MSCAN08 detects bus activity while in sleep mode, it sets the WUPIF flag.  
If not masked, a wakeup interrupt is pending while this flag is set.  
1 = MSCAN08 has detected activity on the bus and requested wakeup.  
0 = No wakeup interrupt has occurred.  
RWRNIF — Receiver Warning Interrupt Flag  
This flag is set when the MSCAN08 goes into warning status due to the receive  
error counter (REC) exceeding 96 and neither one of the error interrupt flags or  
the bus-off interrupt flag is set(1). If not masked, an error interrupt is pending  
while this flag is set.  
1 = MSCAN08 has gone into receiver warning status.  
0 = No receiver warning status has been reached.  
TWRNIF — Transmitter Warning Interrupt Flag  
This flag is set when the MSCAN08 goes into warning status due to the transmit  
error counter (TEC) exceeding 96 and neither one of the error interrupt flags or  
the bus-off interrupt flag is set(2). If not masked, an error interrupt is pending  
while this flag is set.  
1 = MSCAN08 has gone into transmitter warning status.  
0 = No transmitter warning status has been reached.  
RERRIF — Receiver Error Passive Interrupt Flag  
This flag is set when the MSCAN08 goes into error passive status due to the  
receive error counter exceeding 127 and the bus-off interrupt flag is not set(3).  
If not masked, an error interrupt is pending while this flag is set.  
1 = MSCAN08 has gone into receiver error passive status.  
0 = No receiver error passive status has been reached.  
1. Condition to set the flag: RWRNIF = (96 ð REC) & RERRIF & TERRIF & BOFFIF  
2. Condition to set the flag: TWRNIF = (96 ð TEC) & RERRIF & TERRIF & BOFFIF  
3. Condition to set the flag: RERRIF = (127 ð REC ð 255) & BOFFIF  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
MSCAN08 Controller (MSCAN08)  
189  
MSCAN08 Controller (MSCAN08)  
TERRIF — Transmitter Error Passive Interrupt Flag  
This flag is set when the MSCAN08 goes into error passive status due to the  
transmit error counter exceeding 127 and the bus-off interrupt flag is not set(1).  
If not masked, an error interrupt is pending while this flag is set.  
1 = MSCAN08 went into transmit error passive status.  
0 = No transmit error passive status has been reached.  
BOFFIF — Bus-Off Interrupt Flag  
This flag is set when the MSCAN08 goes into bus-off status, due to the transmit  
error counter exceeding 255. It cannot be cleared before the MSCAN08 has  
monitored 128 times 11 consecutive ‘recessive’ bits on the bus. If not masked,  
an error interrupt is pending while this flag is set.  
1 = MSCAN08has gone into bus-off status.  
0 = No bus-off status has been reached.  
OVRIF — Overrun Interrupt Flag  
This flag is set when a data overrun condition occurs. If not masked, an error  
interrupt is pending while this flag is set.  
1 = A data overrun has been detected since last clearing the flag.  
0 = No data overrun has occurred.  
RXF — Receive Buffer Full  
The RXF flag is set by the MSCAN08 when a new message is available in the  
foreground receive buffer. This flag indicates whether the buffer is loaded with  
a correctly received message. After the CPU has read that message from the  
receive buffer the RXF flag must be cleared to release the buffer. A set RXF flag  
prohibits the exchange of the background receive buffer into the foreground  
buffer. If not masked, a receive interrupt is pending while this flag is set.  
1 = The receive buffer is full. A new message is available.  
0 = The receive buffer is released (not full).  
NOTE:  
To ensure data integrity, no registers of the receive buffer shall be read while the  
RXF flag is cleared.  
The CRFLG register is held in the reset state when the SFTRES bit in CMCR0 is  
set.  
1. Condition to set the flag: TERRIF = (128 ð TEC ð 255) & BOFFIF  
Data Sheet  
190  
MC68HC908GZ16  
MOTOROLA  
MSCAN08 Controller (MSCAN08)  
MSCAN08 Controller (MSCAN08)  
Programmer’s Model of Control Registers  
16.13.6 MSCAN08 Receiver Interrupt Enable Register  
Address:  
$0505  
Bit 7  
6
RWRNIE  
0
5
TWRNIE  
0
4
RERRIE  
0
3
TERRIE  
0
2
BOFFIE  
0
1
OVRIE  
0
Bit 0  
RXFIE  
0
Read:  
Write:  
Reset:  
WUPIE  
0
Figure 16-20. Receiver Interrupt Enable Register (CRIER)  
WUPIE — Wakeup Interrupt Enable  
1 = A wakeup event will result in a wakeup interrupt.  
0 = No interrupt will be generated from this event.  
RWRNIE — Receiver Warning Interrupt Enable  
1 = A receiver warning status event will result in an error interrupt.  
0 = No interrupt is generated from this event.  
TWRNIE — Transmitter Warning Interrupt Enable  
1 = A transmitter warning status event will result in an error interrupt.  
0 = No interrupt is generated from this event.  
RERRIE — Receiver Error Passive Interrupt Enable  
1 = A receiver error passive status event will result in an error interrupt.  
0 = No interrupt is generated from this event.  
TERRIE — Transmitter Error Passive Interrupt Enable  
1 = A transmitter error passive status event will result in an error interrupt.  
0 = No interrupt is generated from this event.  
BOFFIE — Bus-Off Interrupt Enable  
1 = A bus-off event will result in an error interrupt.  
0 = No interrupt is generated from this event.  
OVRIE — Overrun Interrupt Enable  
1 = An overrun event will result in an error interrupt.  
0 = No interrupt is generated from this event.  
RXFIE — Receiver Full Interrupt Enable  
1 = A receive buffer full (successful message reception) event will result in a  
receive interrupt.  
0 = No interrupt will be generated from this event.  
NOTE:  
The CRIER register is held in the reset state when the SFTRES bit in CMCR0 is  
set.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
MSCAN08 Controller (MSCAN08)  
191  
MSCAN08 Controller (MSCAN08)  
16.13.7 MSCAN08 Transmitter Flag Register  
The abort acknowledge flags are read only. The transmitter buffer empty flags are  
read and clear only. A flag can be cleared by writing a 1 to the corresponding bit  
position. Writing a 0 has no effect on the flag setting. The transmitter buffer empty  
flags each have an associated interrupt enable bit in the CTCR register. A hard or  
soft reset will resets the register.  
Address:  
$0506  
Bit 7  
0
6
5
4
3
0
2
TXE2  
1
1
TXE1  
1
Bit 0  
TXE0  
1
Read:  
Write:  
Reset:  
ABTAK2  
ABTAK1  
ABTAK0  
0
0
0
0
0
= Unimplemented  
Figure 16-21. Transmitter Flag Register (CTFLG)  
ABTAK2–ABTAK0 — Abort Acknowledge  
This flag acknowledges that a message has been aborted due to a pending  
abort request from the CPU. After a particular message buffer has been flagged  
empty, this flag can be used by the application software to identify whether the  
message has been aborted successfully or has been sent. The ABTAKx flag is  
cleared implicitly whenever the corresponding TXE flag is cleared.  
1 = The message has been aborted.  
0 = The message has not been aborted, thus has been sent out.  
TXE2–TXE0 — Transmitter Empty  
This flag indicates that the associated transmit message buffer is empty, thus  
not scheduled for transmission. The CPU must handshake (clear) the flag after  
a message has been set up in the transmit buffer and is due for transmission.  
The MSCAN08 sets the flag after the message has been sent successfully. The  
flag is also set by the MSCAN08 when the transmission request was  
successfully aborted due to a pending abort request (see 16.12.5 Transmit  
Buffer Priority Registers). If not masked, a receive interrupt is pending while  
this flag is set.  
Clearing a TXEx flag also clears the corresponding ABTAKx flag (ABTAK, see  
above). When a TXEx flag is set, the corresponding ABTRQx bit (ABTRQ) is  
cleared. See 16.13.8 MSCAN08 Transmitter Control Register  
1 = The associated message buffer is empty (not scheduled).  
0 = The associated message buffer is full (loaded with a message due for  
transmission).  
NOTE:  
To ensure data integrity, no registers of the transmit buffers should be written to  
while the associated TXE flag is cleared.  
The CTFLG register is held in the reset state when the SFTRES bit in CMCR0 is  
set.  
Data Sheet  
192  
MC68HC908GZ16  
MSCAN08 Controller (MSCAN08)  
MOTOROLA  
MSCAN08 Controller (MSCAN08)  
Programmer’s Model of Control Registers  
16.13.8 MSCAN08 Transmitter Control Register  
Address:  
$0507  
Bit 7  
0
6
ABTRQ2  
0
5
ABTRQ1  
0
4
ABTRQ0  
0
3
0
2
TXEIE2  
0
1
TXEIE1  
0
Bit 0  
TXEIE0  
0
Read:  
Write:  
Reset:  
0
0
= Unimplemented  
Figure 16-22. Transmitter Control Register (CTCR)  
ABTRQ2–ABTRQ0 — Abort Request  
The CPU sets an ABTRQx bit to request that an already scheduled message  
buffer (TXE = 0) be aborted. The MSCAN08 will grant the request if the  
message has not already started transmission, or if the transmission is not  
successful (lost arbitration or error). When a message is aborted the associated  
TXE and the abort acknowledge flag (ABTAK) (see 16.13.7 MSCAN08  
Transmitter Flag Register) will be set and an TXE interrupt is generated if  
enabled. The CPU cannot reset ABTRQx. ABTRQx is cleared implicitly  
whenever the associated TXE flag is set.  
1 = Abort request pending  
0 = No abort request  
NOTE:  
NOTE:  
The software must not clear one or more of the TXE flags in CTFLG and  
simultaneously set the respective ABTRQ bit(s).  
TXEIE2–TXEIE0 — Transmitter Empty Interrupt Enable  
1 = A transmitter empty (transmit buffer available for transmission) event  
results in a transmitter empty interrupt.  
0 = No interrupt is generated from this event.  
The CTCR register is held in the reset state when the SFTRES bit in CMCR0 is set.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
MSCAN08 Controller (MSCAN08)  
193  
MSCAN08 Controller (MSCAN08)  
16.13.9 MSCAN08 Identifier Acceptance Control Register  
Address:  
$0508  
Bit 7  
0
6
0
5
IDAM1  
0
4
IDAM0  
0
3
0
2
0
1
Bit 0  
Read:  
Write:  
Reset:  
IDHIT1  
IDHIT0  
0
0
0
0
0
0
= Unimplemented  
Figure 16-23. Identifier Acceptance Control Register (CIDAC)  
IDAM1–IDAM0— Identifier Acceptance Mode  
The CPU sets these flags to define the identifier acceptance filter organization  
(see 16.5 Identifier Acceptance Filter). Table 16-9 summarizes the different  
settings. In “filter closed” mode no messages will be accepted so that the  
foreground buffer will never be reloaded.  
Table 16-9. Identifier Acceptance Mode Settings  
IDAM1  
IDAM0  
Identifier Acceptance Mode  
Single 32-bit acceptance filter  
0
0
1
1
0
1
0
1
Two 16-bit acceptance filter  
Four 8-bit acceptance filters  
Filter closed  
IDHIT1–IDHIT0— Identifier Acceptance Hit Indicator  
The MSCAN08 sets these flags to indicate an identifier acceptance hit (see  
16.5 Identifier Acceptance Filter). Table 16-9 summarizes the different  
settings.  
Table 16-10. Identifier Acceptance Hit Indication  
IDHIT1  
IDHIT0  
Identifier Acceptance Hit  
Filter 0 hit  
0
0
1
1
0
1
0
1
Filter 1 hit  
Filter 2 hit  
Filter 3 hit  
The IDHIT indicators are always related to the message in the foreground buffer.  
When a message gets copied from the background to the foreground buffer, the  
indicators are updated as well.  
NOTE:  
The CIDAC register can be written only if the SFTRES bit in the CMCR0 is set.  
Data Sheet  
194  
MC68HC908GZ16  
MSCAN08 Controller (MSCAN08)  
MOTOROLA  
MSCAN08 Controller (MSCAN08)  
Programmer’s Model of Control Registers  
16.13.10 MSCAN08 Receive Error Counter  
Address:  
$050E  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read: RXERR7 RXERR6 RXERR5 RXERR4 RXERR3 RXERR2 RXERR1 RXERR0  
Write:  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 16-24. Receiver Error Counter (CRXERR)  
This read-only register reflects the status of the MSCAN08 receive error counter.  
16.13.11 MSCAN08 Transmit Error Counter  
Address:  
$050F  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read: TXERR7  
Write:  
TXERR6  
TXERR5  
TXERR4  
TXERR3  
TXERR2  
TXERR1  
TXERR0  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 16-25. Transmit Error Counter (CTXERR)  
This read-only register reflects the status of the MSCAN08 transmit error counter.  
NOTE:  
Both error counters may only be read when in sleep or soft reset mode.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
MSCAN08 Controller (MSCAN08)  
195  
MSCAN08 Controller (MSCAN08)  
16.13.12 MSCAN08 Identifier Acceptance Registers  
On reception each message is written into the background receive buffer. The CPU  
is only signalled to read the message, however, if it passes the criteria in the  
identifier acceptance and identifier mask registers (accepted); otherwise, the  
message will be overwritten by the next message (dropped).  
The acceptance registers of the MSCAN08 are applied on the IDR0 to IDR3  
registers of incoming messages in a bit by bit manner.  
For extended identifiers, all four acceptance and mask registers are applied. For  
standard identifiers only the first two (CIDMR0/CIDMR1 and CIDAR0/CIDAR1) are  
applied.  
CIDAR0 Address: $0510  
Bit 7  
6
5
4
3
2
1
Bit 0  
AC0  
Read:  
Write:  
Reset:  
AC7  
AC6  
AC5  
AC4  
AC3  
AC2  
AC1  
Unaffected by reset  
CIDAR1 Address: $050511  
Bit 7  
6
5
4
3
2
1
Bit 0  
AC0  
Read:  
AC7  
AC6  
AC5  
AC4  
AC3  
AC2  
AC1  
Write:  
Reset:  
Unaffected by reset  
CIDAR2 Address: $0512  
Bit 7  
6
5
4
3
2
1
Bit 0  
AC0  
Read:  
AC7  
Write:  
AC6  
AC5  
AC4  
AC3  
AC2  
AC1  
Reset:  
Unaffected by reset  
CIDAR3 Address: $0513  
Bit 7  
6
5
4
3
2
1
Bit 0  
AC0  
Read:  
AC7  
Write:  
AC6  
AC5  
AC4  
AC3  
AC2  
AC1  
Reset:  
Unaffected by reset  
Figure 16-26. Identifier Acceptance Registers  
(CIDAR0–CIDAR3)  
AC7–AC0 — Acceptance Code Bits  
AC7–AC0 comprise a user-defined sequence of bits with which the  
corresponding bits of the related identifier register (IDRn) of the receive  
message buffer are compared. The result of this comparison is then masked  
with the corresponding identifier mask register.  
NOTE:  
The CIDAR0–CIDAR3 registers can be written only if the SFTRES bit in CMCR0 is  
set  
Data Sheet  
196  
MC68HC908GZ16  
MSCAN08 Controller (MSCAN08)  
MOTOROLA  
MSCAN08 Controller (MSCAN08)  
Programmer’s Model of Control Registers  
16.13.13 MSCAN08 Identifier Mask Registers (CIDMR0–CIDMR3)  
The identifier mask registers specify which of the corresponding bits in the identifier  
acceptance register are relevant for acceptance filtering. For standard identifiers it  
is required to program the last three bits (AM2–AM0) in the mask register CIDMR1  
to ‘don’t care’.  
CIDMRO Address: $0514  
Bit 7  
6
5
4
3
2
1
Bit 0  
AM0  
Read:  
Write:  
Reset:  
AM7  
AM6  
AM5  
AM4  
AM3  
AM2  
AM1  
Unaffected by reset  
CIDMR1 Address: $0515  
Bit 7  
6
5
4
3
2
1
Bit 0  
AM0  
Read:  
AM7  
Write:  
AM6  
AM5  
AM4  
AM3  
AM2  
AM1  
Reset:  
Unaffected by reset  
CIDMR2 Address: $0516  
Bit 7  
6
5
4
3
2
1
Bit 0  
AM0  
Read:  
AM7  
Write:  
AM6  
AM5  
AM4  
AM3  
AM2  
AM1  
Reset:  
Unaffected by reset  
CIDMR3 Address: $0517  
Bit 7  
6
5
4
3
2
1
Bit 0  
AM0  
Read:  
AM7  
Write:  
AM6  
AM5  
AM4  
AM3  
AM2  
AM1  
Reset:  
Unaffected by reset  
Figure 16-27. Identifier Mask Registers  
(CIDMR0–CIDMR3)  
AM7–AM0 — Acceptance Mask Bits  
If a particular bit in this register is cleared, this indicates that the corresponding  
bit in the identifier acceptance register must be the same as its identifier bit  
before a match will be detected. The message will be accepted if all such bits  
match. If a bit is set, it indicates that the state of the corresponding bit in the  
identifier acceptance register will not affect whether or not the message is  
accepted.  
1 = Ignore corresponding acceptance code register bit.  
0 = Match corresponding acceptance code register and identifier bits.  
NOTE:  
The CIDMR0–CIDMR3 registers can be written only if the SFTRES bit in the  
CMCR0 is set  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
MSCAN08 Controller (MSCAN08)  
197  
MSCAN08 Controller (MSCAN08)  
Data Sheet  
198  
MC68HC908GZ16  
MOTOROLA  
MSCAN08 Controller (MSCAN08)  
Data Sheet — MC68HC908GZ16  
Section 17. Input/Output (I/O) Ports  
17.1 Introduction  
Bidirectional input-output (I/O) pins form five parallel ports. All I/O pins are  
programmable as inputs or outputs. All individual bits within port A, port C, and port  
D are software configurable with pullup devices if configured as input port bits. The  
pullup devices are automatically and dynamically disabled when a port bit is  
switched to output mode.  
NOTE:  
Connect any unused I/O pins to an appropriate logic level, either VDD or VSS.  
Although the I/O ports do not require termination for proper operation, termination  
reduces excess current consumption and the possibility of electrostatic damage.  
Not all port pins are bonded out in all packages. Care sure be taken to make any  
unbonded port pins an output to reduce them from being floating inputs.  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Port A Data Register  
PTA7  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
$0000  
(PTA) Write:  
See page 202.  
Reset:  
Read:  
Unaffected by reset  
PTB4 PTB3  
Unaffected by reset  
PTC4 PTC3  
Unaffected by reset  
PTD4 PTD3  
Unaffected by reset  
Port B Data Register  
PTB7  
1
PTB6  
PTC6  
PTD6  
PTB5  
PTC5  
PTD5  
PTB2  
PTC2  
PTD2  
PTB1  
PTC1  
PTD1  
PTB0  
PTC0  
PTD0  
$0001  
$0002  
$0003  
$0004  
$0005  
(PTB) Write:  
See page 204.  
Reset:  
Read:  
Port C Data Register  
(PTC) Write:  
See page 206.  
Reset:  
Read:  
Port D Data Register  
PTD7  
(PTD) Write:  
See page 209.  
Reset:  
Read:  
Data Direction Register A  
DDRA7  
DDRA6  
DDRA5  
DDRA4  
DDRA3  
DDRA2  
DDRA1  
DDRA0  
(DDRA) Write:  
See page 202.  
Reset:  
Read:  
0
DDRB7  
0
0
DDRB6  
0
0
DDRB5  
0
0
DDRB4  
0
0
DDRB3  
0
0
DDRB2  
0
0
DDRB1  
0
0
DDRB0  
0
Data Direction Register B  
(DDRB) Write:  
See page 205.  
Reset:  
= Unimplemented  
Figure 17-1. I/O Port Register Summary  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
199  
Input/Output (I/O) Ports  
Input/Output (I/O) Ports  
Addr.  
Register Name  
Bit 7  
6
5
DDRC5  
0
4
DDRC4  
0
3
DDRC3  
0
2
DDRC2  
0
1
DDRC1  
0
Bit 0  
DDRC0  
0
Read:  
0
Data Direction Register C  
DDRC6  
0
$0006  
(DDRC) Write:  
See page 207.  
Reset:  
Read:  
0
Data Direction Register D  
DDRD7  
DDRD6  
DDRD5  
0
DDRD4  
0
DDRD3  
0
DDRD2  
0
DDRD1  
0
DDRD0  
0
$0007  
$0008  
$000C  
$000D  
$000E  
$000F  
(DDRD) Write:  
See page 210.  
Reset:  
Read:  
0
0
0
0
Port E Data Register  
PTE5  
PTE4  
PTE3  
PTE2  
PTE1  
PTE0  
(PTE) Write:  
See page 212.  
Reset:  
Read:  
Unaffected by reset  
0
0
0
0
Data Direction Register E  
DDRE5  
0
DDRE4  
0
DDRE3  
0
DDRE2  
0
DDRE1  
0
DDRE0  
0
(DDRE) Write:  
See page 213.  
Reset:  
Read:  
Port A Input Pullup Enable  
PTAPUE7 PTAPUE6 PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0  
Register (PTAPUE) Write:  
See page 204.  
Reset:  
0
0
0
0
0
0
0
0
0
Read:  
Port C Input Pullup Enable  
PTCPUE6 PTCPUE5 PTCPUE4 PTCPUE3 PTCPUE2 PTCPUE1 PTCPUE0  
Register (PTCPUE) Write:  
See page 208.  
Reset:  
0
0
0
0
0
0
0
0
Read:  
Port D Input Pullup Enable  
PTDPUE7 PTDPUE6 PTDPUE5 PTDPUE4 PTDPUE3 PTDPUE2 PTDPUE1 PTDPUE0  
Register (PTDPUE) Write:  
See page 211.  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 17-1. I/O Port Register Summary (Continued)  
Data Sheet  
200  
MC68HC908GZ16  
MOTOROLA  
Input/Output (I/O) Ports  
Input/Output (I/O) Ports  
Introduction  
Table 17-1. Port Control Register Bits Summary  
Port  
Bit  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
0
1
2
3
4
5
DDR  
Module Control  
KBIE0  
Pin  
DDRA0  
DDRA1  
DDRA2  
DDRA3  
DDRA4  
DDRA5  
DDRA6  
DDRA7  
DDRB0  
DDRB1  
DDRB2  
DDRB3  
DDRB4  
DDRB5  
DDRB6  
DDRB7  
DDRC0  
DDRC1  
DDRC2  
DDRC3  
DDRC4  
DDRC5  
DDRC6  
DDRD0  
DDRD1  
DDRD2  
DDRD3  
DDRD4  
DDRD5  
DDRD6  
DDRD7  
DDRE0  
DDRE1  
DDRE2  
DDRE3  
DDRE4  
DDRE5  
PTA0/KBD0  
PTA1/KBD1  
PTA2/KBD2  
PTA3/KBD3  
PTA4/KBD4  
PTA5/KBD5  
PTA6/KBD6  
PTA7/KBD7  
PTB0/AD0  
PTB1/AD1  
PTB2/AD2  
PTB3/AD3  
PTB4/AD4  
PTB5/AD5  
PTB6/AD6  
PTB7/AD7  
PTC0  
KBIE1  
KBIE2  
KBIE3  
KBIE4  
KBIE5  
KBIE6  
KBIE7  
A
KBD  
B
ADC  
ADCH4–ADCH0  
MSCAN08  
CANEN  
PTC1  
PTC2  
C
PTC3  
PTC4  
PTC5  
PTC6  
PTD0/SS  
PTD1/MISO  
PTD2/MOSI  
PTD3/SPSCK  
PTD4/T1CH0  
PTD5/T1CH1  
PTD6/T2CH0  
PTD7/T2CH1  
PTE0/TxD  
PTE1/RxD  
PTE2  
SPI  
SPE  
D
ELS0B:ELS0A  
ELS1B:ELS1A  
ELS0B:ELS0A  
ELS1B:ELS1A  
TIM1  
TIM2  
SCI  
ENSCI  
E
PTE3  
PTE4  
PTE5  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
201  
Input/Output (I/O) Ports  
Input/Output (I/O) Ports  
17.2 Port A  
Port A is an 8-bit special-function port that shares all eight of its pins with the  
keyboard interrupt (KBI) module. Port A also has software configurable pullup  
devices if configured as an input port.  
17.2.1 Port A Data Register  
The port A data register (PTA) contains a data latch for each of the eight port A  
pins.  
Address:  
$0000  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTA7  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
Unaffected by reset  
KBD4 KBD3  
Alternate  
Function:  
KBD7  
KBD6  
KBD5  
KBD2  
KBD1  
KBD0  
Figure 17-2. Port A Data Register (PTA)  
PTA7–PTA0 — Port A Data Bits  
These read/write bits are software programmable. Data direction of each port A  
pin is under the control of the corresponding bit in data direction register A.  
Reset has no effect on port A data.  
KBD7–KBD0 — Keyboard Inputs  
The keyboard interrupt enable bits, KBIE7–KBIE0, in the keyboard interrupt  
control register (KBICR) enable the port A pins as external interrupt pins. See  
Section 13. Keyboard Interrupt Module (KBI).  
17.2.2 Data Direction Register A  
Data direction register A (DDRA) determines whether each port A pin is an input or  
an output. Writing a logic 1 to a DDRA bit enables the output buffer for the  
corresponding port A pin; a logic 0 disables the output buffer.  
Address:  
$0004  
Bit 7  
6
DDRA6  
0
5
DDRA5  
0
4
DDRA4  
0
3
DDRA3  
0
2
DDRA2  
0
1
DDRA1  
0
Bit 0  
DDRA0  
0
Read:  
Write:  
Reset:  
DDRA7  
0
Figure 17-3. Data Direction Register A (DDRA)  
DDRA7–DDRA0 — Data Direction Register A Bits  
These read/write bits control port A data direction. Reset clears  
DDRA7–DDRA0, configuring all port A pins as inputs.  
1 = Corresponding port A pin configured as output  
0 = Corresponding port A pin configured as input  
Data Sheet  
202  
MC68HC908GZ16  
MOTOROLA  
Input/Output (I/O) Ports  
Input/Output (I/O) Ports  
Port A  
NOTE:  
Avoid glitches on port A pins by writing to the port A data register before changing  
data direction register A bits from 0 to 1.  
Figure 17-4 shows the port A I/O logic.  
READ DDRA ($0004)  
WRITE DDRA ($0004)  
DDRAx  
RESET  
WRITE PTA ($0000)  
PTAx  
PTAx  
VDD  
PTAPUEx  
INTERNAL  
PULLUP  
DEVICE  
READ PTA ($0000)  
Figure 17-4. Port A I/O Circuit  
When bit DDRAx is a logic 1, reading address $0000 reads the PTAx data latch.  
When bit DDRAx is a logic 0, reading address $0000 reads the voltage level on the  
pin. The data latch can always be written, regardless of the state of its data  
direction bit. Table 17-2 summarizes the operation of the port A pins.  
Table 17-2. Port A Pin Functions  
Accesses  
to DDRA  
Accesses  
to PTA  
PTAPUE  
Bit  
DDRA  
Bit  
PTA  
Bit  
I/O Pin  
Mode  
Read/Write  
Read  
Write  
(2)  
X(1)  
X
PTA7–PTA0(3)  
1
0
DDRA7–DDRA0  
Pin  
Input, VDD  
Input, Hi-Z(4)  
Output  
PTA7–PTA0(3)  
PTA7–PTA0  
0
0
1
DDRA7–DDRA0  
DDRA7–DDRA0  
Pin  
X
X
PTA7–PTA0  
1. X = Don’t care  
2. I/O pin pulled up to VDD by internal pullup device  
3. Writing affects data register, but does not affect input.  
4. Hi-Z = High impedance  
17.2.3 Port A Input Pullup Enable Register  
The port A input pullup enable register (PTAPUE) contains a software configurable  
pullup device for each of the eight port A pins. Each bit is individually configurable  
and requires that the data direction register, DDRA, bit be configured as an input.  
Each pullup is automatically and dynamically disabled when a port bit’s DDRA is  
configured for output mode.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Input/Output (I/O) Ports  
203  
Input/Output (I/O) Ports  
Address:  
$000D  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTAPUE7 PTAPUE6 PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0  
0
0
0
0
0
0
0
0
Figure 17-5. Port A Input Pullup Enable Register (PTAPUE)  
PTAPUE7–PTAPUE0 — Port A Input Pullup Enable Bits  
These writable bits are software programmable to enable pullup devices on an  
input port bit.  
1 = Corresponding port A pin configured to have internal pullup  
0 = Corresponding port A pin has internal pullup disconnected  
17.3 Port B  
Port B is an 8-bit special-function port that shares all eight of its pins with the  
analog-to-digital converter (ADC) module.  
17.3.1 Port B Data Register  
The port B data register (PTB) contains a data latch for each of the eight port pins.  
Address:  
$0001  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTB7  
PTB6  
PTB5  
PTB4  
PTB3  
PTB2  
PTB1  
PTB0  
Unaffected by reset  
AD4 AD3  
Alternate  
Function:  
AD7  
AD6  
AD5  
AD2  
AD1  
AD0  
Figure 17-6. Port B Data Register (PTB)  
PTB7–PTB0 — Port B Data Bits  
These read/write bits are software-programmable. Data direction of each port B  
pin is under the control of the corresponding bit in data direction register B.  
Reset has no effect on port B data.  
AD7–AD0 — Analog-to-Digital Input Bits  
AD7–AD0 are pins used for the input channels to the analog-to-digital converter  
module. The channel select bits in the ADC status and control register define  
which port B pin will be used as an ADC input and overrides any control from  
the port I/O logic by forcing that pin as the input to the analog circuitry.  
NOTE:  
Care must be taken when reading port B while applying analog voltages to  
AD7–AD0 pins. If the appropriate ADC channel is not enabled, excessive current  
drain may occur if analog voltages are applied to the PTBx/ADx pin, while PTB is  
read as a digital input. Those ports not selected as analog input channels are  
considered digital I/O ports.  
Data Sheet  
204  
MC68HC908GZ16  
Input/Output (I/O) Ports  
MOTOROLA  
Input/Output (I/O) Ports  
Port B  
17.3.2 Data Direction Register B  
Data direction register B (DDRB) determines whether each port B pin is an input or  
an output. Writing a logic 1 to a DDRB bit enables the output buffer for the  
corresponding port B pin; a logic 0 disables the output buffer.  
Address:  
$0005  
Bit 7  
6
DDRB6  
0
5
DDRB5  
0
4
DDRB4  
0
3
DDRB3  
0
2
DDRB2  
0
1
DDRB1  
0
Bit 0  
DDRB0  
0
Read:  
Write:  
Reset:  
DDRB7  
0
Figure 17-7. Data Direction Register B (DDRB)  
DDRB7–DDRB0 — Data Direction Register B Bits  
These read/write bits control port B data direction. Reset clears  
DDRB7–DDRB0, configuring all port B pins as inputs.  
1 = Corresponding port B pin configured as output  
0 = Corresponding port B pin configured as input  
NOTE:  
Avoid glitches on port B pins by writing to the port B data register before changing  
data direction register B bits from 0 to 1.  
Figure 17-8 shows the port B I/O logic.  
READ DDRB ($0005)  
WRITE DDRB ($0005)  
DDRBx  
RESET  
WRITE PTB ($0001)  
PTBx  
PTBx  
READ PTB ($0001)  
Figure 17-8. Port B I/O Circuit  
When bit DDRBx is a logic 1, reading address $0001 reads the PTBx data latch.  
When bit DDRBx is a logic 0, reading address $0001 reads the voltage level on the  
pin. The data latch can always be written, regardless of the state of its data  
direction bit. Table 17-3 summarizes the operation of the port B pins.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Input/Output (I/O) Ports  
205  
Input/Output (I/O) Ports  
Table 17-3. Port B Pin Functions  
Accesses  
to DDRB  
Accesses  
to PTB  
DDRB  
Bit  
PTB  
Bit  
I/O Pin  
Mode  
Read/Write  
Read  
Pin  
Write  
X(1)  
X
Input, Hi-Z(2)  
Output  
PTB7–PTB0(3)  
PTB7–PTB0  
0
1
DDRB7–DDRB0  
DDRB7–DDRB0  
PTB7–PTB0  
1. X = Don’t care  
2. Hi-Z = High impedance  
3. Writing affects data register, but does not affect input.  
17.4 Port C  
Port C is a 7-bit, general-purpose bidirectional I/O port. Port C also has software  
configurable pullup devices if configured as an input port.  
17.4.1 Port C Data Register  
The port C data register (PTC) contains a data latch for each of the seven port C  
pins.  
NOTE:  
Bit 6 through bit 2 of PTC are not available in the 32-pin LQFP package.  
Address:  
$0002  
Bit 7  
1
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTC6  
PTC5  
PTC4  
PTC3  
PTC2  
PTC1  
PTC0  
Unaffected by reset  
Alternate  
Function:  
CANRX  
CANTX  
= Unimplemented  
Figure 17-9. Port C Data Register (PTC)  
PTC6–PTC0 — Port C Data Bits  
These read/write bits are software-programmable. Data direction of each port C  
pin is under the control of the corresponding bit in data direction register C.  
Reset has no effect on port C data.  
CANRX and CANTX — MSCAN08 Bits  
The CANRX–CANTX pins are the MSCAN08 modules receive and transmit pins.  
The CANEN bit in the MSCAN08 control register determines, whether the  
PTC1/CANRX–PTC0/CANTX pins are MSCAN08 pins or general-purpose I/O  
pins. See Section 16. MSCAN08 Controller (MSCAN08).  
Data Sheet  
206  
MC68HC908GZ16  
Input/Output (I/O) Ports  
MOTOROLA  
Input/Output (I/O) Ports  
Port C  
17.4.2 Data Direction Register C  
Data direction register C (DDRC) determines whether each port C pin is an input  
or an output. Writing a logic 1 to a DDRC bit enables the output buffer for the  
corresponding port C pin; a logic 0 disables the output buffer.  
Address:  
$0006  
Bit 7  
0
6
DDRC6  
0
5
DDRC5  
0
4
DDRC4  
0
3
DDRC3  
0
2
DDRC2  
0
1
DDRC1  
0
Bit 0  
DDRC0  
0
Read:  
Write:  
Reset:  
0
= Unimplemented  
Figure 17-10. Data Direction Register C (DDRC)  
DDRC6–DDRC0 — Data Direction Register C Bits  
These read/write bits control port C data direction. Reset clears  
DDRC6–DDRC0, configuring all port C pins as inputs.  
1 = Corresponding port C pin configured as output  
0 = Corresponding port C pin configured as input  
NOTE:  
Avoid glitches on port C pins by writing to the port C data register before changing  
data direction register C bits from 0 to 1.  
Figure 17-11 shows the port C I/O logic.  
READ DDRC ($0006)  
WRITE DDRC ($0006)  
DDRCx  
RESET  
WRITE PTC ($0002)  
PTCx  
PTCx  
VDD  
PTCPUEx  
INTERNAL  
PULLUP  
DEVICE  
READ PTC ($0002)  
Figure 17-11. Port C I/O Circuit  
When bit DDRCx is a logic 1, reading address $0002 reads the PTCx data latch.  
When bit DDRCx is a logic 0, reading address $0002 reads the voltage level on the  
pin. The data latch can always be written, regardless of the state of its data  
direction bit. Table 17-4 summarizes the operation of the port C pins.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Input/Output (I/O) Ports  
207  
Input/Output (I/O) Ports  
Table 17-4. Port C Pin Functions  
Accesses  
to DDRC  
Accesses  
to PTC  
PTCPUE  
Bit  
DDRC  
Bit  
PTC  
Bit  
I/O Pin  
Mode  
Read/Write  
Read  
Write  
(2)  
X(1)  
X
PTC6–PTC0(3)  
1
0
DDRC6–DDRC0  
Pin  
Input, VDD  
Input, Hi-Z(4)  
Output  
PTC6–PTC0(3)  
PTC6–PTC0  
0
0
1
DDRC6–DDRC0  
DDRC6–DDRC0  
Pin  
X
X
PTC6–PTC0  
1. X = Don’t care  
2. I/O pin pulled up to VDD by internal pullup device.  
3. Writing affects data register, but does not affect input.  
4. Hi-Z = High impedance  
17.4.3 Port C Input Pullup Enable Register  
The port C input pullup enable register (PTCPUE) contains a software configurable  
pullup device for each of the seven port C pins. Each bit is individually configurable  
and requires that the data direction register, DDRC, bit be configured as an input.  
Each pullup is automatically and dynamically disabled when a port bit’s DDRC is  
configured for output mode.  
Address:  
$000E  
Bit 7  
0
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTCPUE6 PTCPUE5 PTCPUE4 PTCPUE3 PTCPUE2 PTCPUE1 PTCPUE0  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 17-12. Port C Input Pullup Enable Register (PTCPUE)  
PTCPUE6–PTCPUE0 — Port C Input Pullup Enable Bits  
These writable bits are software programmable to enable pullup devices on an  
input port bit.  
1 = Corresponding port C pin configured to have internal pullup  
0 = Corresponding port C pin internal pullup disconnected  
17.5 Port D  
Port D is an 8-bit special-function port that shares four of its pins with the serial  
peripheral interface (SPI) module and four of its pins with two timer interface (TIM1  
and TIM2) modules. Port D also has software configurable pullup devices if  
configured as an input port.  
Data Sheet  
208  
MC68HC908GZ16  
Input/Output (I/O) Ports  
MOTOROLA  
Input/Output (I/O) Ports  
Port D  
17.5.1 Port D Data Register  
The port D data register (PTD) contains a data latch for each of the eight port D  
pins.  
Address:  
$0003  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTD7  
PTD6  
PTD5  
PTD4  
PTD3  
PTD2  
PTD1  
PTD0  
Unaffected by reset  
T1CH0 SPSCK  
Alternate  
Function:  
T2CH1  
T2CH0  
T1CH1  
MOSI  
MISO  
SS  
Figure 17-13. Port D Data Register (PTD)  
PTD7–PTD0 — Port D Data Bits  
These read/write bits are software-programmable. Data direction of each port D  
pin is under the control of the corresponding bit in data direction register D.  
Reset has no effect on port D data.  
T2CH1 and T2CH0 — Timer 2 Channel I/O Bits  
The PTD7/T2CH1–PTD6/T2CH0 pins are the TIM2 input capture/output  
compare pins. The edge/level select bits, ELSxB:ELSxA, determine whether the  
PTD7/T2CH1–PTD6/T2CH0 pins are timer channel I/O pins or general-purpose  
I/O pins. See Section 23. Timer Interface Module (TIM).  
T1CH1 and T1CH0 — Timer 1 Channel I/O Bits  
The PTD7/T1CH1–PTD6/T1CH0 pins are the TIM1 input capture/output  
compare pins. The edge/level select bits, ELSxB and ELSxA, determine  
whether the PTD7/T1CH1–PTD6/T1CH0 pins are timer channel I/O pins or  
general-purpose I/O pins. See  
Section 23. Timer Interface Module (TIM).  
SPSCK — SPI Serial Clock  
The PTD3/SPSCK pin is the serial clock input of the SPI module. When the SPE  
bit is clear, the PTD3/SPSCK pin is available for general-purpose I/O.  
MOSI — Master Out/Slave In  
The PTD2/MOSI pin is the master out/slave in terminal of the SPI module. When  
the SPE bit is clear, the PTD2/MOSI pin is available for general-purpose I/O.  
MISO — Master In/Slave Out  
The PTD1/MISO pin is the master in/slave out terminal of the SPI module. When  
the SPI enable bit, SPE, is clear, the SPI module is disabled, and the PTD0/SS  
pin is available for general-purpose I/O.  
Data direction register D (DDRD) does not affect the data direction of port D pins  
that are being used by the SPI module. However, the DDRD bits always  
determine whether reading port D returns the states of the latches or the states  
of the pins. See Table 17-5.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Input/Output (I/O) Ports  
209  
Input/Output (I/O) Ports  
SS — Slave Select  
The PTD0/SS pin is the slave select input of the SPI module. When the SPE bit  
is clear, or when the SPI master bit, SPMSTR, is set, the PTD0/SS pin is  
available for general-purpose I/O. When the SPI is enabled, the DDRB0 bit in  
data direction register B (DDRB) has no effect on the PTD0/SS pin.  
17.5.2 Data Direction Register D  
Data direction register D (DDRD) determines whether each port D pin is an input  
or an output. Writing a logic 1 to a DDRD bit enables the output buffer for the  
corresponding port D pin; a logic 0 disables the output buffer.  
Address:  
$0007  
Bit 7  
6
DDRD6  
0
5
DDRD5  
0
4
DDRD4  
0
3
DDRD3  
0
2
DDRD2  
0
1
DDRD1  
0
Bit 0  
DDRD0  
0
Read:  
Write:  
Reset:  
DDRD7  
0
Figure 17-14. Data Direction Register D (DDRD)  
DDRD7–DDRD0 — Data Direction Register D Bits  
These read/write bits control port D data direction. Reset clears  
DDRD7–DDRD0, configuring all port D pins as inputs.  
1 = Corresponding port D pin configured as output  
0 = Corresponding port D pin configured as input  
NOTE:  
Avoid glitches on port D pins by writing to the port D data register before changing  
data direction register D bits from 0 to 1.  
Figure 17-15 shows the port D I/O logic.  
READ DDRD ($0007)  
WRITE DDRD ($0007)  
DDRDx  
RESET  
WRITE PTD ($0003)  
PTDx  
PTDx  
VDD  
PTDPUEx  
INTERNAL  
PULLUP  
DEVICE  
READ PTD ($0003)  
Figure 17-15. Port D I/O Circuit  
Data Sheet  
210  
MC68HC908GZ16  
MOTOROLA  
Input/Output (I/O) Ports  
Input/Output (I/O) Ports  
Port D  
When bit DDRDx is a logic 1, reading address $0003 reads the PTDx data latch.  
When bit DDRDx is a logic 0, reading address $0003 reads the voltage level on the  
pin. The data latch can always be written, regardless of the state of its data  
direction bit. Table 17-5 summarizes the operation of the port D pins.  
Table 17-5. Port D Pin Functions  
Accesses  
to DDRD  
Accesses  
to PTD  
PTDPUE  
Bit  
DDRD  
Bit  
PTD  
Bit  
I/O Pin  
Mode  
Read/Write  
Read  
Write  
(2)  
X(1)  
X
PTD7–PTD0(3)  
1
0
DDRD7–DDRD0  
Pin  
Input, VDD  
Input, Hi-Z(4)  
Output  
PTD7–PTD0(3)  
PTD7–PTD0  
0
0
1
DDRD7–DDRD0  
DDRD7–DDRD0  
Pin  
X
X
PTD7–PTD0  
1. X = Don’t care  
2. I/O pin pulled up to VDD by internal pullup device.  
3. Writing affects data register, but does not affect input.  
4. Hi-Z = High impedance  
17.5.3 Port D Input Pullup Enable Register  
The port D input pullup enable register (PTDPUE) contains a software configurable  
pullup device for each of the eight port D pins. Each bit is individually configurable  
and requires that the data direction register, DDRD, bit be configured as an input.  
Each pullup is automatically and dynamically disabled when a port bit’s DDRD is  
configured for output mode.  
Address:  
$000F  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTDPUE7 PTDPUE6 PTDPUE5 PTDPUE4 PTDPUE3 PTDPUE2 PTDPUE1 PTDPUE0  
0
0
0
0
0
0
0
0
Figure 17-16. Port D Input Pullup Enable Register (PTDPUE)  
PTDPUE7–PTDPUE0 — Port D Input Pullup Enable Bits  
These writable bits are software programmable to enable pullup devices on an  
input port bit.  
1 = Corresponding port D pin configured to have internal pullup  
0 = Corresponding port D pin has internal pullup disconnected  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Input/Output (I/O) Ports  
211  
Input/Output (I/O) Ports  
17.6 Port E  
Port E is a 6-bit special-function port that shares two of its pins with the enhanced  
serial communications interface (ESCI) module.  
17.6.1 Port E Data Register  
The port E data register contains a data latch for each of the six port E pins.  
Address:  
$0008  
Bit 7  
0
6
0
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTE5  
PTE4  
PTE3  
PTE2  
PTE1  
PTE0  
Unaffected by reset  
Alternate  
Function:  
RxD  
TxD  
= Unimplemented  
Figure 17-17. Port E Data Register (PTE)  
PTE5-PTE0 — Port E Data Bits  
These read/write bits are software-programmable. Data direction of each port E  
pin is under the control of the corresponding bit in data direction register E.  
Reset has no effect on port E data.  
NOTE:  
Data direction register E (DDRE) does not affect the data direction of port E pins  
that are being used by the ESCI module. However, the DDRE bits always  
determine whether reading port E returns the states of the latches or the states of  
the pins. See Table 17-6.  
RxD — SCI Receive Data Input  
The PTE1/RxD pin is the receive data input for the ESCI module.  
When the enable SCI bit, ENSCI, is clear, the ESCI module is disabled, and the  
PTE1/RxD pin is available for general-purpose I/O. See Section 19. Enhanced  
Serial Communications Interface (ESCI) Module.  
TxD — SCI Transmit Data Output  
The PTE0/TxD pin is the transmit data output for the ESCI module. When the  
enable SCI bit, ENSCI, is clear, the ESCI module is disabled, and the PTE0/TxD  
pin is available for general-purpose I/O. See Section 19. Enhanced Serial  
Communications Interface (ESCI) Module.  
Data Sheet  
212  
MC68HC908GZ16  
Input/Output (I/O) Ports  
MOTOROLA  
Input/Output (I/O) Ports  
Port E  
17.6.2 Data Direction Register E  
Data direction register E (DDRE) determines whether each port E pin is an input or  
an output. Writing a logic 1 to a DDRE bit enables the output buffer for the  
corresponding port E pin; a logic 0 disables the output buffer.  
Address:  
$000C  
Bit 7  
0
6
0
5
DDRE5  
0
4
DDRE4  
0
3
DDRE3  
0
2
DDRE2  
0
1
DDRE1  
0
Bit 0  
DDRE0  
0
Read:  
Write:  
Reset:  
0
0
= Unimplemented  
Figure 17-18. Data Direction Register E (DDRE)  
DDRE5–DDRE0 — Data Direction Register E Bits  
These read/write bits control port E data direction. Reset clears  
DDRE5–DDRE0, configuring all port E pins as inputs.  
1 = Corresponding port E pin configured as output  
0 = Corresponding port E pin configured as input  
NOTE:  
Avoid glitches on port E pins by writing to the port E data register before changing  
data direction register E bits from 0 to 1.  
Figure 17-19 shows the port E I/O logic.  
READ DDRE ($000C)  
WRITE DDRE ($000C)  
DDREx  
RESET  
WRITE PTE ($0008)  
PTEx  
PTEx  
READ PTE ($0008)  
Figure 17-19. Port E I/O Circuit  
When bit DDREx is a logic 1, reading address $0008 reads the PTEx data latch.  
When bit DDREx is a logic 0, reading address $0008 reads the voltage level on the  
pin. The data latch can always be written, regardless of the state of its data  
direction bit. Table 17-6 summarizes the operation of the port E pins.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Input/Output (I/O) Ports  
213  
Input/Output (I/O) Ports  
Table 17-6. Port E Pin Functions  
Accesses  
to DDRE  
Accesses  
to PTE  
DDRE  
Bit  
PTE  
Bit  
I/O Pin  
Mode  
Read/Write  
Read  
Pin  
Write  
X(1)  
X
Input, Hi-Z(2)  
Output  
PTE5–PTE0(3)  
PTE5–PTE0  
0
1
DDRE5–DDRE0  
DDRE5–DDRE0  
PTE5–PTE0  
1. X = Don’t care  
2. Hi-Z = High impedance  
3. Writing affects data register, but does not affect input.  
Data Sheet  
214  
MC68HC908GZ16  
MOTOROLA  
Input/Output (I/O) Ports  
Data Sheet — MC68HC908GZ16  
Section 18. Random-Access Memory (RAM)  
18.1 Introduction  
This section describes the 1024 bytes of RAM (random-access memory).  
18.2 Functional Description  
Addresses $0040 through $043F are RAM locations. The location of the stack  
RAM is programmable. The 16-bit stack pointer allows the stack to be anywhere in  
the 64-Kbyte memory space.  
NOTE:  
For correct operation, the stack pointer must point only to RAM locations.  
Within page zero are 192 bytes of RAM. Because the location of the stack RAM is  
programmable, all page zero RAM locations can be used for I/O control and user  
data or code. When the stack pointer is moved from its reset location at $00FF out  
of page zero, direct addressing mode instructions can efficiently access all page  
zero RAM locations. Page zero RAM, therefore, provides ideal locations for  
frequently accessed global variables.  
Before processing an interrupt, the CPU uses five bytes of the stack to save the  
contents of the CPU registers.  
NOTE:  
NOTE:  
For M6805 compatibility, the H register is not stacked.  
During a subroutine call, the CPU uses two bytes of the stack to store the return  
address. The stack pointer decrements during pushes and increments during pulls.  
Be careful when using nested subroutines. The CPU may overwrite data in the  
RAM during a subroutine or during the interrupt stacking operation.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Random-Access Memory (RAM)  
215  
Random-Access Memory (RAM)  
Data Sheet  
216  
MC68HC908GZ16  
MOTOROLA  
Random-Access Memory (RAM)  
Data Sheet — MC68HC908GZ16  
Section 19. Enhanced Serial Communications Interface (ESCI) Module  
19.1 Introduction  
The enhanced serial communications interface (ESCI) module allows  
asynchronous communications with peripheral devices and other microcontroller  
units (MCU).  
19.2 Features  
Features include:  
Full-duplex operation  
Standard mark/space non-return-to-zero (NRZ) format  
Programmable baud rates  
Programmable 8-bit or 9-bit character length  
Fine adjust baud rate prescalers for precise control of baud rate  
Arbiter module:  
Measurement of received bit timings for baud rate recovery without use  
of external timer  
Bitwise arbitration for arbitrated UART communications  
LIN specific enhanced features:  
Generation of LIN 1.2 break symbols without extra software steps on  
each message  
Break detection filtering to prevent false interrupts  
Separately enabled transmitter and receiver  
Separate receiver and transmitter central processor unit (CPU) interrupt  
requests  
Programmable transmitter output polarity  
Two receiver wakeup methods:  
Idle line wakeup  
address mark wakeup  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
217  
Enhanced Serial Communications Interface (ESCI) Module  
Enhanced Serial Communications Interface (ESCI) Module  
Interrupt-driven operation with eight interrupt flags:  
Transmitter empty  
Transmission complete  
Receiver full  
Idle receiver input  
Receiver overrun  
Noise error  
Framing error  
Parity error  
Receiver framing error detection  
Hardware parity checking  
1/16 bit-time noise detection  
19.3 Pin Name Conventions  
The generic names of the ESCI input/output (I/O) pins are:  
RxD (receive data)  
TxD (transmit data)  
ESCI I/O lines are implemented by sharing parallel I/O port pins. The full name of  
an ESCI input or output reflects the name of the shared port pin. Table 19-1 shows  
the full names and the generic names of the ESCI I/O pins. The generic pin names  
appear in the text of this section.  
Table 19-1. Pin Name Conventions  
Generic Pin Names  
Full Pin Names  
RxD  
TxD  
PTE1/RxD  
PTE0/TxD  
19.4 Functional Description  
Figure 19-1 shows the structure of the ESCI module. The ESCI allows full-duplex,  
asynchronous, NRZ serial communication between the MCU and remote devices,  
including other MCUs. The transmitter and receiver of the ESCI operate  
independently, although they use the same baud rate generator. During normal  
operation, the CPU monitors the status of the ESCI, writes the data to be  
transmitted, and processes received data.  
For reference, a summary of the ESCI module input/output registers is provided in  
Figure 19-2.  
Data Sheet  
218  
MC68HC908GZ16  
Enhanced Serial Communications Interface (ESCI) Module  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
Functional Description  
INTERNAL BUS  
ESCI DATA  
REGISTER  
ESCI DATA  
REGISTER  
RxD  
RECEIVE  
SHIFT REGISTER  
TRANSMIT  
SHIFT REGISTER  
RxD  
ARBITER-  
TxD  
SCI_TxD  
TXINV  
LINR  
SCTIE  
TCIE  
SCRIE  
ILIE  
R8  
T8  
TE  
SCTE  
TC  
RE  
RWU  
SBK  
SCRF  
IDLE  
OR  
NF  
FE  
PE  
ORIE  
NEIE  
FEIE  
PEIE  
LOOPS  
ENSCI  
LOOPS  
RECEIVE  
CONTROL  
FLAG  
CONTROL  
TRANSMIT  
CONTROL  
WAKEUP  
CONTROL  
M
BKF  
RPF  
LINT  
ENSCI  
WAKE  
ILTY  
PEN  
PTY  
PRE-  
SCALER  
PRE- BAUD RATE  
SCALER GENERATOR  
÷ 4  
DATA SELECTION  
CONTROL  
÷ 16  
Figure 19-1. ESCI Module Block Diagram  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
219  
Enhanced Serial Communications Interface (ESCI) Module  
Enhanced Serial Communications Interface (ESCI) Module  
Addr.  
Register Name  
Bit 7  
PDS2  
0
6
5
PDS0  
0
4
PSSB4  
0
3
2
1
Bit 0  
Read:  
ESCI Prescaler Register  
PDS1  
PSSB3  
PSSB2  
PSSB1  
PSSB0  
$0009  
(SCPSC) Write:  
See page 244.  
Reset:  
Read:  
0
0
0
0
0
ALOST  
AFIN  
ARUN  
AROVFL  
ARD8  
ESCI Arbiter Control  
AM1  
AM0  
ACLK  
$000A  
$000B  
$0013  
$0014  
$0015  
$0016  
$0017  
$0018  
$0019  
Register (SCIACTL) Write:  
See page 248.  
Reset:  
0
0
0
0
0
0
0
0
Read:  
ESCI Arbiter Data  
Register (SCIADAT) Write:  
ARD7  
ARD6  
ARD5  
ARD4  
ARD3  
ARD2  
ARD1  
ARD0  
See page 249.  
Reset:  
0
0
ENSCI  
0
0
0
M
0
WAKE  
0
0
ILTY  
0
0
PEN  
0
0
PTY  
0
Read:  
ESCI Control Register 1  
LOOPS  
0
TXINV  
(SCC1) Write:  
See page 233.  
Reset:  
0
0
Read:  
ESCI Control Register 2  
SCTIE  
TCIE  
0
SCRIE  
ILIE  
0
TE  
RE  
0
RWU  
0
SBK  
0
(SCC2) Write:  
See page 235.  
Reset:  
0
0
0
Read:  
R8  
ESCI Control Register 3  
T8  
R
R
ORIE  
NEIE  
FEIE  
PEIE  
(SCC3) Write:  
See page 237.  
Reset:  
U
0
0
0
0
0
0
0
Read:  
SCTE  
TC  
SCRF  
IDLE  
OR  
NF  
FE  
PE  
ESCI Status Register 1  
(SCS1) Write:  
See page 239.  
Reset:  
1
0
1
0
0
0
0
0
0
0
0
0
0
0
Read:  
BKF  
RPF  
ESCI Status Register 2  
(SCS2) Write:  
See page 241.  
Reset:  
0
0
0
0
0
0
0
0
Read:  
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
ESCI Data Register (SCDR)  
Write:  
See page 242.  
Reset:  
Unaffected by reset  
Read:  
ESCI Baud Rate Register  
LINT  
0
LINR  
0
SCP1  
0
SCP0  
R
SCR2  
0
SCR1  
0
SCR0  
0
(SCBR) Write:  
See page 242.  
Reset:  
0
0
= Unimplemented  
R
= Reserved  
Figure 19-2. ESCI I/O Register Summary  
Data Sheet  
220  
MC68HC908GZ16  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
Enhanced Serial Communications Interface (ESCI) Module  
Functional Description  
19.4.1 Data Format  
The SCI uses the standard non-return-to-zero mark/space data format illustrated  
in Figure 19-3.  
PARITY  
OR DATA  
BIT  
8-BIT DATA FORMAT  
(BIT M IN SCC1 CLEAR)  
NEXT  
START  
BIT  
START  
BIT  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5 BIT 6  
BIT 7  
STOP  
BIT  
PARITY  
OR DATA  
BIT  
9-BIT DATA FORMAT  
(BIT M IN SCC1 SET)  
NEXT  
START  
BIT  
START  
BIT  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5 BIT 6  
BIT 7  
BIT 8  
STOP  
BIT  
Figure 19-3. SCI Data Formats  
19.4.2 Transmitter  
Figure 19-4 shows the structure of the SCI transmitter and the registers are  
summarized in Figure 19-2.  
19.4.2.1 Character Length  
The transmitter can accommodate either 8-bit or 9-bit data. The state of the M bit  
in ESCI control register 1 (SCC1) determines character length. When transmitting  
9-bit data, bit T8 in ESCI control register 3 (SCC3) is the ninth bit (bit 8).  
19.4.2.2 Character Transmission  
During an ESCI transmission, the transmit shift register shifts a character out to the  
TxD pin. The ESCI data register (SCDR) is the write-only buffer between the  
internal data bus and the transmit shift register.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Enhanced Serial Communications Interface (ESCI) Module  
221  
Enhanced Serial Communications Interface (ESCI) Module  
INTERNAL BUS  
PRE- BAUD  
SCALER DIVIDER  
÷ 16  
÷ 4  
ESCI DATA REGISTER  
SCP1  
SCP0  
SCR1  
SCR2  
SCR0  
11-BIT  
TRANSMIT  
SHIFT REGISTER  
H
8
7
6
5
4
3
2
1
0
L
SCI_TxD  
TXINV  
M
PEN  
PTY  
PARITY  
GENERATION  
T8  
PDS2  
PDS1  
PDS0  
PSSB4  
PSSB3  
PSSB2  
PSSB1  
PSSB0  
TRANSMITTER  
CONTROL LOGIC  
SCTE  
SBK  
SCTE  
LOOPS  
ENSCI  
TE  
SCTIE  
SCTIE  
TC  
TC  
TCIE  
TCIE  
LINT  
Figure 19-4. ESCI Transmitter  
To initiate an ESCI transmission:  
1. Enable the ESCI by writing a logic 1 to the enable ESCI bit (ENSCI) in ESCI  
control register 1 (SCC1).  
2. Enable the transmitter by writing a logic 1 to the transmitter enable bit (TE)  
in ESCI control register 2 (SCC2).  
3. Clear the ESCI transmitter empty bit (SCTE) by first reading ESCI status  
register 1 (SCS1) and then writing to the SCDR. For 9-bit data, also write the  
T8 bit in SCC3.  
4. Repeat step 3 for each subsequent transmission.  
At the start of a transmission, transmitter control logic automatically loads the  
transmit shift register with a preamble of logic 1s. After the preamble shifts out,  
control logic transfers the SCDR data into the transmit shift register. A logic 0 start  
Data Sheet  
222  
MC68HC908GZ16  
Enhanced Serial Communications Interface (ESCI) Module  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
Functional Description  
bit automatically goes into the least significant bit (LSB) position of the transmit shift  
register. A logic 1 stop bit goes into the most significant bit (MSB) position.  
The ESCI transmitter empty bit, SCTE, in SCS1 becomes set when the SCDR  
transfers a byte to the transmit shift register. The SCTE bit indicates that the SCDR  
can accept new data from the internal data bus. If the ESCI transmit interrupt  
enable bit, SCTIE, in SCC2 is also set, the SCTE bit generates a transmitter CPU  
interrupt request.  
When the transmit shift register is not transmitting a character, the TxD pin goes to  
the idle condition, logic 1. If at any time software clears the ENSCI bit in ESCI  
control register 1 (SCC1), the transmitter and receiver relinquish control of the  
port E pins.  
19.4.2.3 Break Characters  
Writing a logic 1 to the send break bit, SBK, in SCC2 loads the transmit shift  
register with a break character. For TXINV = 0 (output not inverted), a transmitted  
break character contains all logic 0s and has no start, stop, or parity bit. Break  
character length depends on the M bit in SCC1 and the LINR bits in SCBR. As long  
as SBK is at logic 1, transmitter logic continuously loads break characters into the  
transmit shift register. After software clears the SBK bit, the shift register finishes  
transmitting the last break character and then transmits at least one logic 1. The  
automatic logic 1 at the end of a break character guarantees the recognition of the  
start bit of the next character.  
When LINR is cleared in SCBR, the ESCI recognizes a break character when a  
start bit is followed by eight or nine logic 0 data bits and a logic 0 where the stop bit  
should be, resulting in a total of 10 or 11 consecutive logic 0 data bits. When LINR  
is set in SCBR, the ESCI recognizes a break character when a start bit is followed  
by 9 or 10 logic 0 data bits and a logic 0 where the stop bit should be, resulting in  
a total of 11 or 12 consecutive logic 0 data bits.  
Receiving a break character has these effects on ESCI registers:  
Sets the framing error bit (FE) in SCS1  
Sets the ESCI receiver full bit (SCRF) in SCS1  
Clears the ESCI data register (SCDR)  
Clears the R8 bit in SCC3  
Sets the break flag bit (BKF) in SCS2  
May set the overrun (OR), noise flag (NF), parity error (PE),  
or reception in progress flag (RPF) bits  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
223  
Enhanced Serial Communications Interface (ESCI) Module  
Enhanced Serial Communications Interface (ESCI) Module  
19.4.2.4 Idle Characters  
For TXINV = 0 (output not inverted), a transmitted idle character contains all logic  
1s and has no start, stop, or parity bit. Idle character length depends on the M bit  
in SCC1. The preamble is a synchronizing idle character that begins every  
transmission.  
If the TE bit is cleared during a transmission, the TxD pin becomes idle after  
completion of the transmission in progress. Clearing and then setting the TE bit  
during a transmission queues an idle character to be sent after the character  
currently being transmitted.  
NOTE:  
When queueing an idle character, return the TE bit to logic 1 before the stop bit of  
the current character shifts out to the TxD pin. Setting TE after the stop bit appears  
on TxD causes data previously written to the SCDR to be lost. A good time to toggle  
the TE bit for a queued idle character is when the SCTE bit becomes set and just  
before writing the next byte to the SCDR.  
19.4.2.5 Inversion of Transmitted Output  
The transmit inversion bit (TXINV) in ESCI control register 1 (SCC1) reverses  
the polarity of transmitted data. All transmitted values including idle, break, start,  
and stop bits, are inverted when TXINV is at logic 1. See 19.8.1 ESCI Control  
Register 1.  
19.4.2.6 Transmitter Interrupts  
These conditions can generate CPU interrupt requests from the ESCI transmitter:  
ESCI transmitter empty (SCTE) — The SCTE bit in SCS1 indicates that the  
SCDR has transferred a character to the transmit shift register. SCTE can  
generate a transmitter CPU interrupt request. Setting the ESCI transmit  
interrupt enable bit, SCTIE, in SCC2 enables the SCTE bit to generate  
transmitter CPU interrupt requests.  
Transmission complete (TC) — The TC bit in SCS1 indicates that the  
transmit shift register and the SCDR are empty and that no break or idle  
character has been generated. The transmission complete interrupt enable  
bit, TCIE, in SCC2 enables the TC bit to generate transmitter CPU interrupt  
requests.  
19.4.3 Receiver  
Figure 19-5 shows the structure of the ESCI receiver. The receiver I/O registers  
are summarized in Figure 19-2.  
Data Sheet  
224  
MC68HC908GZ16  
Enhanced Serial Communications Interface (ESCI) Module  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
Functional Description  
INTERNAL BUS  
LINR  
SCP1  
SCP0  
SCR1  
SCR2  
SCR0  
ESCI DATA REGISTER  
PRE- BAUD  
SCALER DIVIDER  
÷ 4  
÷ 16  
11-BIT  
RECEIVE SHIFT REGISTER  
DATA  
RECOVERY  
H
8
7
6
5
4
3
2
1
0
L
RxD  
ALL ZEROS  
BKF  
RPF  
PDS2  
PDS1  
PDS0  
M
RWU  
PSSB4  
PSSB3  
PSSB2  
PSSB1  
PSSB0  
SCRF  
IDLE  
WAKE  
ILTY  
WAKEUP  
LOGIC  
PEN  
PTY  
R8  
PARITY  
CHECKING  
IDLE  
ILIE  
ILIE  
SCRF  
SCRIE  
SCRIE  
OR  
OR  
ORIE  
ORIE  
NF  
NF  
NEIE  
NEIE  
FE  
FE  
FEIE  
FEIE  
PE  
PE  
PEIE  
PEIE  
Figure 19-5. ESCI Receiver Block Diagram  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
225  
Enhanced Serial Communications Interface (ESCI) Module  
Enhanced Serial Communications Interface (ESCI) Module  
19.4.3.1 Character Length  
The receiver can accommodate either 8-bit or 9-bit data. The state of the M bit in  
ESCI control register 1 (SCC1) determines character length. When receiving 9-bit  
data, bit R8 in ESCI control register 3 (SCC3) is the ninth bit (bit 8). When receiving  
8-bit data, bit R8 is a copy of the eighth bit (bit 7).  
19.4.3.2 Character Reception  
During an ESCI reception, the receive shift register shifts characters in from the  
RxD pin. The ESCI data register (SCDR) is the read-only buffer between the  
internal data bus and the receive shift register.  
After a complete character shifts into the receive shift register, the data portion of  
the character transfers to the SCDR. The ESCI receiver full bit, SCRF, in ESCI  
status register 1 (SCS1) becomes set, indicating that the received byte can be  
read. If the ESCI receive interrupt enable bit, SCRIE, in SCC2 is also set, the SCRF  
bit generates a receiver CPU interrupt request.  
19.4.3.3 Data Sampling  
The receiver samples the RxD pin at the RT clock rate. The RT clock is an internal  
signal with a frequency 16 times the baud rate. To adjust for baud rate mismatch,  
the RT clock is resynchronized at these times (see Figure 19-6):  
After every start bit  
After the receiver detects a data bit change from logic 1 to logic 0 (after the  
majority of data bit samples at RT8, RT9, and RT10 returns a valid logic 1  
and the majority of the next RT8, RT9, and RT10 samples returns a valid  
logic 0)  
To locate the start bit, data recovery logic does an asynchronous search for a  
logic 0 preceded by three logic 1s. When the falling edge of a possible start bit  
occurs, the RT clock begins to count to 16.  
START BIT  
LSB  
RxD  
START BIT  
QUALIFICATION  
START BIT DATA  
VERIFICATION SAMPLING  
SAMPLES  
RT  
CLOCK  
RT CLOCK  
STATE  
RT CLOCK  
RESET  
Figure 19-6. Receiver Data Sampling  
Data Sheet  
226  
MC68HC908GZ16  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
Enhanced Serial Communications Interface (ESCI) Module  
Functional Description  
To verify the start bit and to detect noise, data recovery logic takes samples at RT3,  
RT5, and RT7. Table 19-2 summarizes the results of the start bit verification  
samples.  
Table 19-2. Start Bit Verification  
RT3, RT5, and RT7 Samples  
Start Bit Verification  
Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
Yes  
Yes  
Yes  
No  
0
1
1
0
1
0
0
0
Yes  
No  
No  
No  
If start bit verification is not successful, the RT clock is reset and a new search for  
a start bit begins.  
To determine the value of a data bit and to detect noise, recovery logic takes  
samples at RT8, RT9, and RT10. Table 19-3 summarizes the results of the data  
bit samples.  
Table 19-3. Data Bit Recovery  
RT8, RT9, and RT10 Samples  
Data Bit Determination  
Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
0
0
0
1
0
1
1
1
0
1
1
1
1
1
1
0
NOTE:  
The RT8, RT9, and RT10 samples do not affect start bit verification. If any or all of  
the RT8, RT9, and RT10 start bit samples are logic 1s following a successful start  
bit verification, the noise flag (NF) is set and the receiver assumes that the bit is a  
start bit.  
To verify a stop bit and to detect noise, recovery logic takes samples at RT8, RT9,  
and RT10. Table 19-4 summarizes the results of the stop bit samples.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Enhanced Serial Communications Interface (ESCI) Module  
227  
Enhanced Serial Communications Interface (ESCI) Module  
Table 19-4. Stop Bit Recovery  
RT8, RT9, and RT10 Samples  
Framing Error Flag  
Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
1
1
1
0
1
0
0
0
0
1
1
1
1
1
1
0
19.4.3.4 Framing Errors  
If the data recovery logic does not detect a logic 1 where the stop bit should be in  
an incoming character, it sets the framing error bit, FE, in SCS1. A break character  
also sets the FE bit because a break character has no stop bit. The FE bit is set at  
the same time that the SCRF bit is set.  
19.4.3.5 Baud Rate Tolerance  
A transmitting device may be operating at a baud rate below or above the receiver  
baud rate. Accumulated bit time misalignment can cause one of the three stop bit  
data samples to fall outside the actual stop bit. Then a noise error occurs. If more  
than one of the samples is outside the stop bit, a framing error occurs. In most  
applications, the baud rate tolerance is much more than the degree of  
misalignment that is likely to occur.  
As the receiver samples an incoming character, it resynchronizes the RT clock on  
any valid falling edge within the character. Resynchronization within characters  
corrects misalignments between transmitter bit times and receiver bit times.  
Slow Data Tolerance  
Figure 19-7 shows how much a slow received character can be misaligned  
without causing a noise error or a framing error. The slow stop bit begins at RT8  
instead of RT1 but arrives in time for the stop bit data samples at RT8, RT9, and  
RT10.  
MSB  
STOP  
RECEIVER  
RT CLOCK  
DATA  
SAMPLES  
Figure 19-7. Slow Data  
Data Sheet  
228  
MC68HC908GZ16  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
Enhanced Serial Communications Interface (ESCI) Module  
Functional Description  
For an 8-bit character, data sampling of the stop bit takes the receiver  
9 bit times × 16 RT cycles + 10 RT cycles = 154 RT cycles.  
With the misaligned character shown in Figure 19-7, the receiver counts 154  
RT cycles at the point when the count of the transmitting device is 9 bit  
times × 16 RT cycles + 3 RT cycles = 147 RT cycles.  
The maximum percent difference between the receiver count and the  
transmitter count of a slow 8-bit character with no errors is:  
154 147  
× 100 = 4.54%  
-------------------------  
154  
For a 9-bit character, data sampling of the stop bit takes the receiver  
10 bit times × 16 RT cycles + 10 RT cycles = 170 RT cycles.  
With the misaligned character shown in Figure 19-7, the receiver counts 170  
RT cycles at the point when the count of the transmitting device is 10 bit  
times × 16 RT cycles + 3 RT cycles = 163 RT cycles.  
The maximum percent difference between the receiver count and the  
transmitter count of a slow 9-bit character with no errors is:  
170 163  
× 100 = 4.12%  
-------------------------  
170  
Fast Data Tolerance  
Figure 19-8 shows how much a fast received character can be misaligned  
without causing a noise error or a framing error. The fast stop bit ends at RT10  
instead of RT16 but is still there for the stop bit data samples at RT8, RT9, and  
RT10.  
STOP  
IDLE OR NEXT CHARACTER  
RECEIVER  
RT CLOCK  
DATA  
SAMPLES  
Figure 19-8. Fast Data  
For an 8-bit character, data sampling of the stop bit takes the receiver  
9 bit times × 16 RT cycles + 10 RT cycles = 154 RT cycles.  
With the misaligned character shown in Figure 19-8, the receiver counts 154  
RT cycles at the point when the count of the transmitting device is  
10 bit times × 16 RT cycles = 160 RT cycles.  
The maximum percent difference between the receiver count and the  
transmitter count of a fast 8-bit character with no errors is  
154 160  
× 100 = 3.90%.  
-------------------------  
154  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
229  
Enhanced Serial Communications Interface (ESCI) Module  
Enhanced Serial Communications Interface (ESCI) Module  
For a 9-bit character, data sampling of the stop bit takes the receiver  
10 bit times × 16 RT cycles + 10 RT cycles = 170 RT cycles.  
With the misaligned character shown in Figure 19-8, the receiver counts 170  
RT cycles at the point when the count of the transmitting device is  
11 bit times × 16 RT cycles = 176 RT cycles.  
The maximum percent difference between the receiver count and the  
transmitter count of a fast 9-bit character with no errors is:  
170 176  
× 100 = 3.53%.  
-------------------------  
170  
19.4.3.6 Receiver Wakeup  
So that the MCU can ignore transmissions intended only for other receivers in  
multiple-receiver systems, the receiver can be put into a standby state. Setting the  
receiver wakeup bit, RWU, in SCC2 puts the receiver into a standby state during  
which receiver interrupts are disabled.  
Depending on the state of the WAKE bit in SCC1, either of two conditions on the  
RxD pin can bring the receiver out of the standby state:  
1. Address mark — An address mark is a logic 1 in the MSB position of a  
received character. When the WAKE bit is set, an address mark wakes the  
receiver from the standby state by clearing the RWU bit. The address mark  
also sets the ESCI receiver full bit, SCRF. Software can then compare the  
character containing the address mark to the user-defined address of the  
receiver. If they are the same, the receiver remains awake and processes  
the characters that follow. If they are not the same, software can set the  
RWU bit and put the receiver back into the standby state.  
2. Idle input line condition — When the WAKE bit is clear, an idle character on  
the RxD pin wakes the receiver from the standby state by clearing the RWU  
bit. The idle character that wakes the receiver does not set the receiver idle  
bit, IDLE, or the ESCI receiver full bit, SCRF. The idle line type bit, ILTY,  
determines whether the receiver begins counting logic 1s as idle character  
bits after the start bit or after the stop bit.  
NOTE:  
With the WAKE bit clear, setting the RWU bit after the RxD pin has been idle will  
cause the receiver to wakeup.  
Data Sheet  
230  
MC68HC908GZ16  
Enhanced Serial Communications Interface (ESCI) Module  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
Low-Power Modes  
19.4.3.7 Receiver Interrupts  
These sources can generate CPU interrupt requests from the ESCI receiver:  
ESCI receiver full (SCRF) — The SCRF bit in SCS1 indicates that the  
receive shift register has transferred a character to the SCDR. SCRF can  
generate a receiver CPU interrupt request. Setting the ESCI receive  
interrupt enable bit, SCRIE, in SCC2 enables the SCRF bit to generate  
receiver CPU interrupts.  
Idle input (IDLE) — The IDLE bit in SCS1 indicates that 10 or 11 consecutive  
logic 1s shifted in from the RxD pin. The idle line interrupt enable bit, ILIE,  
in SCC2 enables the IDLE bit to generate CPU interrupt requests.  
19.4.3.8 Error Interrupts  
These receiver error flags in SCS1 can generate CPU interrupt requests:  
Receiver overrun (OR) — The OR bit indicates that the receive shift register  
shifted in a new character before the previous character was read from the  
SCDR. The previous character remains in the SCDR, and the new character  
is lost. The overrun interrupt enable bit, ORIE, in SCC3 enables OR to  
generate ESCI error CPU interrupt requests.  
Noise flag (NF) — The NF bit is set when the ESCI detects noise on  
incoming data or break characters, including start, data, and stop bits. The  
noise error interrupt enable bit, NEIE, in SCC3 enables NF to generate ESCI  
error CPU interrupt requests.  
Framing error (FE) — The FE bit in SCS1 is set when a logic 0 occurs where  
the receiver expects a stop bit. The framing error interrupt enable bit, FEIE,  
in SCC3 enables FE to generate ESCI error CPU interrupt requests.  
Parity error (PE) — The PE bit in SCS1 is set when the ESCI detects a parity  
error in incoming data. The parity error interrupt enable bit, PEIE, in SCC3  
enables PE to generate ESCI error CPU interrupt requests.  
19.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby  
modes.  
19.5.1 Wait Mode  
The ESCI module remains active in wait mode. Any enabled CPU interrupt request  
from the ESCI module can bring the MCU out of wait mode.  
If ESCI module functions are not required during wait mode, reduce power  
consumption by disabling the module before executing the WAIT instruction.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Enhanced Serial Communications Interface (ESCI) Module  
231  
Enhanced Serial Communications Interface (ESCI) Module  
19.5.2 Stop Mode  
The ESCI module is inactive in stop mode. The STOP instruction does not affect  
ESCI register states. ESCI module operation resumes after the MCU exits stop  
mode.  
Because the internal clock is inactive during stop mode, entering stop mode during  
an ESCI transmission or reception results in invalid data.  
19.6 ESCI During Break Module Interrupts  
The BCFE bit in the break flag control register (SBFCR) enables software to clear  
status bits during the break state. See Section 6. Break Module (BRK).  
To allow software to clear status bits during a break interrupt, write a logic 1 to the  
BCFE bit. If a status bit is cleared during the break state, it remains cleared when  
the MCU exits the break state.  
To protect status bits during the break state, write a logic 0 to the BCFE bit. With  
BCFE at logic 0 (its default state), software can read and write I/O registers during  
the break state without affecting status bits. Some status bits have a two-step  
read/write clearing procedure. If software does the first step on such a bit before  
the break, the bit cannot change during the break state as long as BCFE is at logic  
0. After the break, doing the second step clears the status bit.  
19.7 I/O Signals  
Port E shares two of its pins with the ESCI module. The two ESCI I/O pins are:  
PTE0/TxD — transmit data  
PTE1/RxD — receive data  
19.7.1 PTE0/TxD (Transmit Data)  
The PTE0/TxD pin is the serial data output from the ESCI transmitter. The ESCI  
shares the PTE0/TxD pin with port E. When the ESCI is enabled, the PTE0/TxD  
pin is an output regardless of the state of the DDRE0 bit in data direction register  
E (DDRE).  
19.7.2 PTE1/RxD (Receive Data)  
The PTE1/RxD pin is the serial data input to the ESCI receiver. The ESCI shares  
the PTE1/RxD pin with port E. When the ESCI is enabled, the PTE1/RxD pin is an  
input regardless of the state of the DDRE1 bit in data direction register E (DDRE).  
Data Sheet  
232  
MC68HC908GZ16  
Enhanced Serial Communications Interface (ESCI) Module  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
I/O Registers  
19.8 I/O Registers  
These I/O registers control and monitor ESCI operation:  
ESCI control register 1, SCC1  
ESCI control register 2, SCC2  
ESCI control register 3, SCC3  
ESCI status register 1, SCS1  
ESCI status register 2, SCS2  
ESCI data register, SCDR  
ESCI baud rate register, SCBR  
ESCI prescaler register, SCPSC  
ESCI arbiter control register, SCIACTL  
ESCI arbiter data register, SCIADAT  
19.8.1 ESCI Control Register 1  
ESCI control register 1 (SCC1):  
Enables loop mode operation  
Enables the ESCI  
Controls output polarity  
Controls character length  
Controls ESCI wakeup method  
Controls idle character detection  
Enables parity function  
:
Controls parity type  
Address: $0013  
Bit 7  
6
ENSCI  
0
5
TXINV  
0
4
M
0
3
WAKE  
0
2
ILTY  
0
1
Bit 0  
PTY  
0
Read:  
Write:  
Reset:  
LOOPS  
0
PEN  
0
Figure 19-9. ESCI Control Register 1 (SCC1)  
LOOPS — Loop Mode Select Bit  
This read/write bit enables loop mode operation. In loop mode the RxD pin is  
disconnected from the ESCI, and the transmitter output goes into the receiver  
input. Both the transmitter and the receiver must be enabled to use loop mode.  
Reset clears the LOOPS bit.  
1 = Loop mode enabled  
0 = Normal operation enabled  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Enhanced Serial Communications Interface (ESCI) Module  
233  
Enhanced Serial Communications Interface (ESCI) Module  
ENSCI — Enable ESCI Bit  
This read/write bit enables the ESCI and the ESCI baud rate generator. Clearing  
ENSCI sets the SCTE and TC bits in ESCI status register 1 and disables  
transmitter interrupts. Reset clears the ENSCI bit.  
1 = ESCI enabled  
0 = ESCI disabled  
TXINV — Transmit Inversion Bit  
This read/write bit reverses the polarity of transmitted data. Reset clears the  
TXINV bit.  
1 = Transmitter output inverted  
0 = Transmitter output not inverted  
NOTE:  
Setting the TXINV bit inverts all transmitted values including idle, break, start, and  
stop bits.  
M — Mode (Character Length) Bit  
This read/write bit determines whether ESCI characters are eight or nine bits  
long (See Table 19-5).The ninth bit can serve as a receiver wakeup signal or as  
a parity bit. Reset clears the M bit.  
1 = 9-bit ESCI characters  
0 = 8-bit ESCI characters  
Table 19-5. Character Format Selection  
Control Bits  
PEN:PTY  
Character Format  
Start  
Bits  
Data  
Bits  
Stop  
Character  
Length  
M
Parity  
Bits  
0
1
0
0
1
1
0 X  
0 X  
1 0  
1 1  
1 0  
1 1  
1
1
1
1
1
1
8
9
7
7
8
8
None  
None  
Even  
Odd  
1
10 bits  
11 bits  
10 bits  
10 bits  
11 bits  
11 bits  
1
1
1
Even  
Odd  
1
1
WAKE — Wakeup Condition Bit  
This read/write bit determines which condition wakes up the ESCI: a logic 1  
(address mark) in the MSB position of a received character or an idle condition  
on the RxD pin. Reset clears the WAKE bit.  
1 = Address mark wakeup  
0 = Idle line wakeup  
ILTY — Idle Line Type Bit  
This read/write bit determines when the ESCI starts counting logic 1s as idle  
character bits. The counting begins either after the start bit or after the stop bit.  
If the count begins after the start bit, then a string of logic 1s preceding the stop  
Data Sheet  
234  
MC68HC908GZ16  
Enhanced Serial Communications Interface (ESCI) Module  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
I/O Registers  
bit may cause false recognition of an idle character. Beginning the count after  
the stop bit avoids false idle character recognition, but requires properly  
synchronized transmissions. Reset clears the ILTY bit.  
1 = Idle character bit count begins after stop bit  
0 = Idle character bit count begins after start bit  
PEN — Parity Enable Bit  
This read/write bit enables the ESCI parity function (see Table 19-5). When  
enabled, the parity function inserts a parity bit in the MSB position (see  
Table 19-3). Reset clears the PEN bit.  
1 = Parity function enabled  
0 = Parity function disabled  
PTY — Parity Bit  
This read/write bit determines whether the ESCI generates and checks for odd  
parity or even parity (see Table 19-5). Reset clears the PTY bit.  
1 = Odd parity  
0 = Even parity  
NOTE:  
Changing the PTY bit in the middle of a transmission or reception can generate a  
parity error.  
19.8.2 ESCI Control Register 2  
ESCI control register 2 (SCC2):  
Enables these CPU interrupt requests:  
SCTE bit to generate transmitter CPU interrupt requests  
TC bit to generate transmitter CPU interrupt requests  
SCRF bit to generate receiver CPU interrupt requests  
IDLE bit to generate receiver CPU interrupt requests  
Enables the transmitter  
Enables the receiver  
Enables ESCI wakeup  
Transmits ESCI break characters  
Address: $0014  
Bit 7  
6
TCIE  
0
5
SCRIE  
0
4
ILIE  
0
3
TE  
0
2
RE  
0
1
RWU  
0
Bit 0  
SBK  
0
Read:  
Write:  
Reset:  
SCTIE  
0
Figure 19-10. ESCI Control Register 2 (SCC2)  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
235  
Enhanced Serial Communications Interface (ESCI) Module  
Enhanced Serial Communications Interface (ESCI) Module  
SCTIE — ESCI Transmit Interrupt Enable Bit  
This read/write bit enables the SCTE bit to generate ESCI transmitter CPU  
interrupt requests. Setting the SCTIE bit in SCC2 enables the SCTE bit to  
generate CPU interrupt requests. Reset clears the SCTIE bit.  
1 = SCTE enabled to generate CPU interrupt  
0 = SCTE not enabled to generate CPU interrupt  
TCIE — Transmission Complete Interrupt Enable Bit  
This read/write bit enables the TC bit to generate ESCI transmitter CPU  
interrupt requests. Reset clears the TCIE bit.  
1 = TC enabled to generate CPU interrupt requests  
0 = TC not enabled to generate CPU interrupt requests  
SCRIE — ESCI Receive Interrupt Enable Bit  
This read/write bit enables the SCRF bit to generate ESCI receiver CPU  
interrupt requests. Setting the SCRIE bit in SCC2 enables the SCRF bit to  
generate CPU interrupt requests. Reset clears the SCRIE bit.  
1 = SCRF enabled to generate CPU interrupt  
0 = SCRF not enabled to generate CPU interrupt  
ILIE — Idle Line Interrupt Enable Bit  
This read/write bit enables the IDLE bit to generate ESCI receiver CPU interrupt  
requests. Reset clears the ILIE bit.  
1 = IDLE enabled to generate CPU interrupt requests  
0 = IDLE not enabled to generate CPU interrupt requests  
TE — Transmitter Enable Bit  
Setting this read/write bit begins the transmission by sending a preamble of 10  
or 11 logic 1s from the transmit shift register to the TxD pin. If software clears  
the TE bit, the transmitter completes any transmission in progress before the  
TxD returns to the idle condition (logic 1). Clearing and then setting TE during a  
transmission queues an idle character to be sent after the character currently  
being transmitted. Reset clears the TE bit.  
1 = Transmitter enabled  
0 = Transmitter disabled  
NOTE:  
NOTE:  
Writing to the TE bit is not allowed when the enable ESCI bit (ENSCI) is clear.  
ENSCI is in ESCI control register 1.  
RE — Receiver Enable Bit  
Setting this read/write bit enables the receiver. Clearing the RE bit disables the  
receiver but does not affect receiver interrupt flag bits. Reset clears the RE bit.  
1 = Receiver enabled  
0 = Receiver disabled  
Writing to the RE bit is not allowed when the enable ESCI bit (ENSCI) is clear.  
ENSCI is in ESCI control register 1.  
Data Sheet  
236  
MC68HC908GZ16  
Enhanced Serial Communications Interface (ESCI) Module  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
I/O Registers  
RWU — Receiver Wakeup Bit  
This read/write bit puts the receiver in a standby state during which receiver  
interrupts are disabled. The WAKE bit in SCC1 determines whether an idle input  
or an address mark brings the receiver out of the standby state and clears the  
RWU bit. Reset clears the RWU bit.  
1 = Standby state  
0 = Normal operation  
SBK — Send Break Bit  
Setting and then clearing this read/write bit transmits a break character followed  
by a logic 1. The logic 1 after the break character guarantees recognition of a  
valid start bit. If SBK remains set, the transmitter continuously transmits break  
characters with no logic 1s between them. Reset clears the SBK bit.  
1 = Transmit break characters  
0 = No break characters being transmitted  
NOTE:  
Do not toggle the SBK bit immediately after setting the SCTE bit. Toggling SBK  
before the preamble begins causes the ESCI to send a break character instead of  
a preamble.  
19.8.3 ESCI Control Register 3  
ESCI control register 3 (SCC3):  
Stores the ninth ESCI data bit received and the ninth ESCI data bit to be  
transmitted.  
Enables these interrupts:  
Receiver overrun  
Noise error  
Framing error  
Parity error  
Address:  
$0015  
Bit 7  
R8  
6
T8  
0
5
R
0
4
3
2
NEIE  
0
1
FEIE  
0
Bit 0  
PEIE  
0
Read:  
Write:  
Reset:  
R
ORIE  
U
0
0
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 19-11. ESCI Control Register 3 (SCC3)  
R8 — Received Bit 8  
When the ESCI is receiving 9-bit characters, R8 is the read-only ninth bit (bit 8)  
of the received character. R8 is received at the same time that the SCDR  
receives the other 8 bits.  
When the ESCI is receiving 8-bit characters, R8 is a copy of the eighth bit (bit 7).  
Reset has no effect on the R8 bit.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Enhanced Serial Communications Interface (ESCI) Module  
237  
Enhanced Serial Communications Interface (ESCI) Module  
T8 — Transmitted Bit 8  
When the ESCI is transmitting 9-bit characters, T8 is the read/write ninth bit (bit  
8) of the transmitted character. T8 is loaded into the transmit shift register at the  
same time that the SCDR is loaded into the transmit shift register. Reset clears  
the T8 bit.  
ORIE — Receiver Overrun Interrupt Enable Bit  
This read/write bit enables ESCI error CPU interrupt requests generated by the  
receiver overrun bit, OR. Reset clears ORIE.  
1 = ESCI error CPU interrupt requests from OR bit enabled  
0 = ESCI error CPU interrupt requests from OR bit disabled  
NEIE — Receiver Noise Error Interrupt Enable Bit  
This read/write bit enables ESCI error CPU interrupt requests generated by the  
noise error bit, NE. Reset clears NEIE.  
1 = ESCI error CPU interrupt requests from NE bit enabled  
0 = ESCI error CPU interrupt requests from NE bit disabled  
FEIE — Receiver Framing Error Interrupt Enable Bit  
This read/write bit enables ESCI error CPU interrupt requests generated by the  
framing error bit, FE. Reset clears FEIE.  
1 = ESCI error CPU interrupt requests from FE bit enabled  
0 = ESCI error CPU interrupt requests from FE bit disabled  
PEIE — Receiver Parity Error Interrupt Enable Bit  
This read/write bit enables ESCI receiver CPU interrupt requests generated by  
the parity error bit, PE. Reset clears PEIE.  
1 = ESCI error CPU interrupt requests from PE bit enabled  
0 = ESCI error CPU interrupt requests from PE bit disabled  
19.8.4 ESCI Status Register 1  
ESCI status register 1 (SCS1) contains flags to signal these conditions:  
Transfer of SCDR data to transmit shift register complete  
Transmission complete  
Transfer of receive shift register data to SCDR complete  
Receiver input idle  
Receiver overrun  
Noisy data  
Framing error  
Parity error  
Data Sheet  
238  
MC68HC908GZ16  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
Enhanced Serial Communications Interface (ESCI) Module  
I/O Registers  
Address:  
$0016  
Bit 7  
6
5
4
3
2
1
Bit 0  
PE  
Read:  
Write:  
Reset:  
SCTE  
TC  
SCRF  
IDLE  
OR  
NF  
FE  
1
1
0
0
0
0
0
0
= Unimplemented  
Figure 19-12. ESCI Status Register 1 (SCS1)  
SCTE — ESCI Transmitter Empty Bit  
This clearable, read-only bit is set when the SCDR transfers a character to the  
transmit shift register. SCTE can generate an ESCI transmitter CPU interrupt  
request. When the SCTIE bit in SCC2 is set, SCTE generates an ESCI  
transmitter CPU interrupt request. In normal operation, clear the SCTE bit by  
reading SCS1 with SCTE set and then writing to SCDR. Reset sets the SCTE  
bit.  
1 = SCDR data transferred to transmit shift register  
0 = SCDR data not transferred to transmit shift register  
TC — Transmission Complete Bit  
This read-only bit is set when the SCTE bit is set, and no data, preamble, or  
break character is being transmitted. TC generates an ESCI transmitter CPU  
interrupt request if the TCIE bit in SCC2 is also set. TC is cleared automatically  
when data, preamble, or break is queued and ready to be sent. There may be  
up to 1.5 transmitter clocks of latency between queueing data, preamble, and  
break and the transmission actually starting. Reset sets the TC bit.  
1 = No transmission in progress  
0 = Transmission in progress  
SCRF — ESCI Receiver Full Bit  
This clearable, read-only bit is set when the data in the receive shift register  
transfers to the ESCI data register. SCRF can generate an ESCI receiver CPU  
interrupt request. When the SCRIE bit in SCC2 is set the SCRF generates a  
CPU interrupt request. In normal operation, clear the SCRF bit by reading SCS1  
with SCRF set and then reading the SCDR. Reset clears SCRF.  
1 = Received data available in SCDR  
0 = Data not available in SCDR  
IDLE — Receiver Idle Bit  
This clearable, read-only bit is set when 10 or 11 consecutive logic 1s appear  
on the receiver input. IDLE generates an ESCI receiver CPU interrupt request  
if the ILIE bit in SCC2 is also set. Clear the IDLE bit by reading SCS1 with IDLE  
set and then reading the SCDR. After the receiver is enabled, it must receive a  
valid character that sets the SCRF bit before an idle condition can set the IDLE  
bit. Also, after the IDLE bit has been cleared, a valid character must again set  
the SCRF bit before an idle condition can set the IDLE bit. Reset clears the  
IDLE bit.  
1 = Receiver input idle  
0 = Receiver input active (or idle since the IDLE bit was cleared)  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Enhanced Serial Communications Interface (ESCI) Module  
239  
Enhanced Serial Communications Interface (ESCI) Module  
OR — Receiver Overrun Bit  
This clearable, read-only bit is set when software fails to read the SCDR before  
the receive shift register receives the next character. The OR bit generates an  
ESCI error CPU interrupt request if the ORIE bit in SCC3 is also set. The data  
in the shift register is lost, but the data already in the SCDR is not affected. Clear  
the OR bit by reading SCS1 with OR set and then reading the SCDR. Reset  
clears the OR bit.  
1 = Receive shift register full and SCRF = 1  
0 = No receiver overrun  
Software latency may allow an overrun to occur between reads of SCS1 and  
SCDR in the flag-clearing sequence. Figure 19-13 shows the normal  
flag-clearing sequence and an example of an overrun caused by a delayed  
flag-clearing sequence. The delayed read of SCDR does not clear the OR bit  
because OR was not set when SCS1 was read. Byte 2 caused the overrun and  
is lost. The next flag-clearing sequence reads byte 3 in the SCDR instead of  
byte 2.  
In applications that are subject to software latency or in which it is important to  
know which byte is lost due to an overrun, the flag-clearing routine can check  
the OR bit in a second read of SCS1 after reading the data register.  
NORMAL FLAG CLEARING SEQUENCE  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCDR  
BYTE 1  
READ SCDR  
BYTE 2  
READ SCDR  
BYTE 3  
DELAYED FLAG CLEARING SEQUENCE  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 1  
READ SCDR  
BYTE 1  
READ SCDR  
BYTE 3  
Figure 19-13. Flag Clearing Sequence  
Data Sheet  
240  
MC68HC908GZ16  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
Enhanced Serial Communications Interface (ESCI) Module  
I/O Registers  
NF — Receiver Noise Flag Bit  
This clearable, read-only bit is set when the ESCI detects noise on the RxD pin.  
NF generates an NF CPU interrupt request if the NEIE bit in SCC3 is also set.  
Clear the NF bit by reading SCS1 and then reading the SCDR. Reset clears the  
NF bit.  
1 = Noise detected  
0 = No noise detected  
FE — Receiver Framing Error Bit  
This clearable, read-only bit is set when a logic 0 is accepted as the stop bit. FE  
generates an ESCI error CPU interrupt request if the FEIE bit in SCC3 also is  
set. Clear the FE bit by reading SCS1 with FE set and then reading the SCDR.  
Reset clears the FE bit.  
1 = Framing error detected  
0 = No framing error detected  
PE — Receiver Parity Error Bit  
This clearable, read-only bit is set when the ESCI detects a parity error in  
incoming data. PE generates a PE CPU interrupt request if the PEIE bit in SCC3  
is also set. Clear the PE bit by reading SCS1 with PE set and then reading the  
SCDR. Reset clears the PE bit.  
1 = Parity error detected  
0 = No parity error detected  
19.8.5 ESCI Status Register 2  
ESCI status register 2 (SCS2) contains flags to signal these conditions:  
Break character detected  
Incoming data  
Address:  
$0017  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
Bit 0  
RPF  
Read:  
Write:  
Reset:  
BKF  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 19-14. ESCI Status Register 2 (SCS2)  
BKF — Break Flag Bit  
This clearable, read-only bit is set when the ESCI detects a break character on  
the RxD pin. In SCS1, the FE and SCRF bits are also set. In 9-bit character  
transmissions, the R8 bit in SCC3 is cleared. BKF does not generate a CPU  
interrupt request. Clear BKF by reading SCS2 with BKF set and then reading  
the SCDR. Once cleared, BKF can become set again only after logic 1s again  
appear on the RxD pin followed by another break character. Reset clears the  
BKF bit.  
1 = Break character detected  
0 = No break character detected  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Enhanced Serial Communications Interface (ESCI) Module  
241  
Enhanced Serial Communications Interface (ESCI) Module  
RPF — Reception in Progress Flag Bit  
This read-only bit is set when the receiver detects a logic 0 during the RT1 time  
period of the start bit search. RPF does not generate an interrupt request. RPF  
is reset after the receiver detects false start bits (usually from noise or a baud  
rate mismatch), or when the receiver detects an idle character. Polling RPF  
before disabling the ESCI module or entering stop mode can show whether a  
reception is in progress.  
1 = Reception in progress  
0 = No reception in progress  
19.8.6 ESCI Data Register  
The ESCI data register (SCDR) is the buffer between the internal data bus and the  
receive and transmit shift registers. Reset has no effect on data in the ESCI data  
register.  
Address:  
$0018  
Bit 7  
R7  
6
5
4
3
2
1
Bit 0  
R0  
Read:  
Write:  
Reset:  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
T7  
T0  
Unaffected by reset  
Figure 19-15. ESCI Data Register (SCDR)  
R7/T7:R0/T0 — Receive/Transmit Data Bits  
Reading address $0018 accesses the read-only received data bits, R7:R0.  
Writing to address $0018 writes the data to be transmitted, T7:T0. Reset has no  
effect on the ESCI data register.  
NOTE:  
Do not use read-modify-write instructions on the ESCI data register.  
19.8.7 ESCI Baud Rate Register  
The ESCI baud rate register (SCBR) together with the ESCI prescaler register  
selects the baud rate for both the receiver and the transmitter.  
NOTE:  
There are two prescalers available to adjust the baud rate. One in the ESCI baud  
rate register and one in the ESCI prescaler register.  
Address:  
$0019  
Bit 7  
6
LINR  
0
5
SCP1  
0
4
3
2
SCR2  
0
1
SCR1  
0
Bit 0  
SCR0  
0
Read:  
Write:  
Reset:  
LINT  
0
SCP0  
R
0
0
= Unimplemented  
R
= Reserved  
Figure 19-16. ESCI Baud Rate Register (SCBR)  
Data Sheet  
242  
MC68HC908GZ16  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
Enhanced Serial Communications Interface (ESCI) Module  
I/O Registers  
LINT — LIN Break Symbol Transmit Enable  
This read/write bit selects the enhanced ESCI features for master nodes in the  
local interconnect network (LIN) protocol (version 1.2) as shown in Table 19-6.  
Reset clears LINT.  
Table 19-6. ESCI LIN Master Node Control Bits  
LINT  
M
X
0
Functionality  
Normal ESCI functionality  
0
1
1
13-bit generation enabled for LIN transmitter  
14-bit generation enabled for LIN transmitter  
1
NOTE:  
LIN master nodes require significantly tighter timing tolerances than slave nodes.  
Be sure to consult the current LIN specification to ensure that timing requirements  
are met properly. Generally, these timing tolerances require crystals or oscillators  
to be used, rather than internal clocking circuits.  
LINR — LIN Break Symbol Receiver Bits  
This read/write bit selects the enhanced ESCI features for slave nodes in the  
local interconnect network (LIN) protocol as shown in Table 19-7. Reset clears  
LINR.  
Table 19-7. ESCI LIN Slave Node Control Bits  
LINR  
M
X
0
Functionality  
Normal ESCI functionality  
0
1
1
11-bit break detect enabled for LIN receiver  
12-bit break detect enabled for LIN receiver  
1
In LIN (version 1.2) systems, the master node transmits a break character which  
will appear as 11.05–14.95 dominant bits to the slave node. A data character of  
0x00 sent from the master might appear as 7.65–10.35 dominant bit times. This  
is due to the oscillator tolerance requirement that the slave node must be within  
±15% of the master node's oscillator. Since a slave node cannot know if it is  
running faster or slower than the master node (prior to synchronization), the  
LINR bit allows the slave node to differentiate between a 0x00 character of  
10.35 bits and a break character of 11.05 bits. The break symbol length must be  
verified in software in any case, but the LINR bit serves as a filter, preventing  
false detections of break characters that are really 0x00 data characters.  
SCP1 and SCP0 — ESCI Baud Rate Register Prescaler Bits  
These read/write bits select the baud rate register prescaler divisor as shown in  
Table 19-8. Reset clears SCP1 and SCP0.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Enhanced Serial Communications Interface (ESCI) Module  
243  
Enhanced Serial Communications Interface (ESCI) Module  
Table 19-8. ESCI Baud Rate Prescaling  
Baud Rate Register  
Prescaler Divisor (BPD)  
SCP[1:0]  
0 0  
0 1  
1 0  
1 1  
1
3
4
13  
SCR2–SCR0 — ESCI Baud Rate Select Bits  
These read/write bits select the ESCI baud rate divisor as shown in Table 19-9.  
Reset clears SCR2–SCR0.  
Table 19-9. ESCI Baud Rate Selection  
SCR[2:1:0]  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
Baud Rate Divisor (BD)  
1
2
4
8
16  
32  
64  
128  
19.8.8 ESCI Prescaler Register  
The ESCI prescaler register (SCPSC) together with the ESCI baud rate register  
selects the baud rate for both the receiver and the transmitter.  
NOTE:  
There are two prescalers available to adjust the baud rate. One in the ESCI baud  
rate register and one in the ESCI prescaler register.  
Address:  
$0009  
Bit 7  
6
PDS1  
0
5
PDS0  
0
4
PSSB4  
0
3
PSSB3  
0
2
PSSB2  
0
1
PSSB1  
0
Bit 0  
PSSB0  
0
Read:  
Write:  
Reset:  
PDS2  
0
Figure 19-17. ESCI Prescaler Register (SCPSC)  
PDS2–PDS0 — Prescaler Divisor Select Bits  
These read/write bits select the prescaler divisor as shown in  
Table 19-10. Reset clears PDS2–PDS0.  
Data Sheet  
244  
MC68HC908GZ16  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
Enhanced Serial Communications Interface (ESCI) Module  
I/O Registers  
NOTE:  
The setting of ‘000’ will bypass this prescaler. It is not recommended to bypass the  
prescaler while ENSCI is set, because the switching is not glitch free.  
Table 19-10. ESCI Prescaler Division Ratio  
PS[2:1:0]  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
Prescaler Divisor (PD)  
Bypass this prescaler  
2
3
4
5
6
7
8
PSSB4–PSSB0 — Clock Insertion Select Bits  
These read/write bits select the number of clocks inserted in each 32 output  
cycle frame to achieve more timing resolution on the average prescaler  
frequency as shown in Table 19-11. Reset clears PSSB4–PSSB0.  
Use the following formula to calculate the ESCI baud rate:  
f
Bus  
Baud rate = -----------------------------------------------------------------------------------  
64 × BPD × BD × (PD + PDFA)  
where:  
Bus = Bus frequency  
f
BPD = Baud rate register prescaler divisor  
BD = Baud rate divisor  
PD = Prescaler divisor  
PDFA = Prescaler divisor fine adjust  
Table 19-12 shows the ESCI baud rates that can be generated with a 4.9152-MHz  
bus frequency.  
Table 19-11. ESCI Prescaler Divisor Fine Adjust  
PSSB[4:3:2:1:0]  
0 0 0 0 0  
0 0 0 0 1  
0 0 0 1 0  
0 0 0 1 1  
0 0 1 0 0  
0 0 1 0 1  
0 0 1 1 0  
Prescaler Divisor Fine Adjust (PDFA)  
0/32 = 0  
1/32 = 0.03125  
2/32 = 0.0625  
3/32 = 0.09375  
4/32 = 0.125  
5/32 = 0.15625  
6/32 = 0.1875  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
245  
Enhanced Serial Communications Interface (ESCI) Module  
Enhanced Serial Communications Interface (ESCI) Module  
Table 19-11. ESCI Prescaler Divisor Fine Adjust (Continued)  
PSSB[4:3:2:1:0]  
0 0 1 1 1  
0 1 0 0 0  
0 1 0 0 1  
0 1 0 1 0  
0 1 0 1 1  
0 1 1 0 0  
0 1 1 0 1  
0 1 1 1 0  
0 1 1 1 1  
1 0 0 0 0  
1 0 0 0 1  
1 0 0 1 0  
1 0 0 1 1  
1 0 1 0 0  
1 0 1 0 1  
1 0 1 1 0  
1 0 1 1 1  
1 1 0 0 0  
1 1 0 0 1  
1 1 0 1 0  
1 1 0 1 1  
1 1 1 0 0  
1 1 1 0 1  
1 1 1 1 0  
1 1 1 1 1  
Prescaler Divisor Fine Adjust (PDFA)  
7/32 = 0.21875  
8/32 = 0.25  
9/32 = 0.28125  
10/32 = 0.3125  
11/32 = 0.34375  
12/32 = 0.375  
13/32 = 0.40625  
14/32 = 0.4375  
15/32 = 0.46875  
16/32 = 0.5  
17/32 = 0.53125  
18/32 = 0.5625  
19/32 = 0.59375  
20/32 = 0.625  
21/32 = 0.65625  
22/32 = 0.6875  
23/32 = 0.71875  
24/32 = 0.75  
25/32 = 0.78125  
26/32 = 0.8125  
27/32 = 0.84375  
28/32 = 0.875  
29/32 = 0.90625  
30/32 = 0.9375  
31/32 = 0.96875  
Data Sheet  
246  
MC68HC908GZ16  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
Enhanced Serial Communications Interface (ESCI) Module  
I/O Registers  
Table 19-12. ESCI Baud Rate Selection Examples  
Prescaler  
Divisor  
(BPD)  
Baud Rate  
Divisor  
(BD)  
Baud Rate  
(fBus= 4.9152 MHz)  
PS[2:1:0]  
PSSB[4:3:2:1:0]  
SCP[1:0]  
SCR[2:1:0]  
0 0 0  
1 1 1  
1 1 1  
1 1 1  
1 1 1  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
X X X X X  
0 0 0 0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 1  
0 1  
0 1  
0 1  
0 1  
0 1  
0 1  
0 1  
1 0  
1 0  
1 0  
1 0  
1 0  
1 0  
1 0  
1 0  
1 1  
1 1  
1 1  
1 1  
1 1  
1 1  
1 1  
1 1  
1
1
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
1
1
76,800  
9600  
9562.65  
9525.58  
8563.07  
38,400  
19,200  
9600  
4800  
2400  
1200  
600  
0 0 0 0 1  
1
1
0 0 0 1 0  
1
1
1 1 1 1 1  
1
1
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
1
2
1
4
1
8
1
16  
32  
64  
128  
1
1
1
1
3
25,600  
12,800  
6400  
3200  
1600  
800  
3
2
3
4
3
8
3
16  
32  
64  
128  
1
3
3
400  
3
200  
4
19,200  
9600  
4800  
2400  
1200  
600  
4
2
4
4
4
8
4
16  
32  
64  
128  
1
4
4
300  
4
150  
13  
13  
13  
13  
13  
13  
13  
13  
5908  
2954  
1477  
739  
2
4
8
16  
32  
64  
128  
369  
185  
92  
46  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
247  
Enhanced Serial Communications Interface (ESCI) Module  
Enhanced Serial Communications Interface (ESCI) Module  
19.9 ESCI Arbiter  
The ESCI module comprises an arbiter module designed to support software for  
communication tasks as bus arbitration, baud rate recovery and break time  
detection. The arbiter module consists of an 9-bit counter with 1-bit overflow and  
control logic. The CPU can control operation mode via the ESCI arbiter control  
register (SCIACTL).  
19.9.1 ESCI Arbiter Control Register  
Address:  
$000A  
Bit 7  
AM1  
0
6
5
AM0  
0
4
ACLK  
0
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
ALOST  
AFIN  
ARUN  
AROVFL  
ARD8  
0
0
0
0
0
= Unimplemented  
Figure 19-18. ESCI Arbiter Control Register (SCIACTL)  
AM1 and AM0 — Arbiter Mode Select Bits  
These read/write bits select the mode of the arbiter module as shown in  
Table 19-13. Reset clears AM1 and AM0.  
Table 19-13. ESCI Arbiter Selectable Modes  
AM[1:0]  
0 0  
ESCI Arbiter Mode  
Idle / counter reset  
0 1  
Bit time measurement  
Bus arbitration  
1 0  
1 1  
Reserved / do not use  
ALOST — Arbitration Lost Flag  
This read-only bit indicates loss of arbitration. Clear ALOST by writing a logic 0  
to AM1. Reset clears ALOST.  
ACLK — Arbiter Counter Clock Select Bit  
This read/write bit selects the arbiter counter clock source.  
Reset clears ACLK.  
1 = Arbiter counter is clocked with one half of the ESCI input clock generated  
by the ESCI prescaler  
0 = Arbiter counter is clocked with one half of the bus clock  
AFIN— Arbiter Bit Time Measurement Finish Flag  
This read-only bit indicates bit time measurement has finished. Clear AFIN by  
writing any value to SCIACTL. Reset clears AFIN.  
1 = Bit time measurement has finished  
0 = Bit time measurement not yet finished  
Data Sheet  
248  
MC68HC908GZ16  
Enhanced Serial Communications Interface (ESCI) Module  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
ESCI Arbiter  
ARUN— Arbiter Counter Running Flag  
This read-only bit indicates the arbiter counter is running. Reset clears ARUN.  
1 = Arbiter counter running  
0 = Arbiter counter stopped  
AROVFL— Arbiter Counter Overflow Bit  
This read-only bit indicates an arbiter counter overflow. Clear AROVFL by  
writing any value to SCIACTL. Writing logic 0s to AM1 and AM0 resets the  
counter keeps it in this idle state. Reset clears AROVFL.  
1 = Arbiter counter overflow has occurred  
0 = No arbiter counter overflow has occurred  
ARD8— Arbiter Counter MSB  
This read-only bit is the MSB of the 9-bit arbiter counter. Clear ARD8 by writing  
any value to SCIACTL. Reset clears ARD8.  
19.9.2 ESCI Arbiter Data Register  
Address: $000B  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
ARD7  
ARD6  
ARD5  
ARD4  
ARD3  
ARD2  
ARD1  
ARD0  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 19-19. ESCI Arbiter Data Register (SCIADAT)  
ARD7–ARD0 — Arbiter Least Significant Counter Bits  
These read-only bits are the eight LSBs of the 9-bit arbiter counter. Clear  
ARD7–ARD0 by writing any value to SCIACTL. Writing logic 0s to AM1 and AM0  
permanently resets the counter and keeps it in this idle state. Reset clears  
ARD7–ARD0.  
19.9.3 Bit Time Measurement  
Two bit time measurement modes, described here, are available according to the  
state of ACLK.  
1. ACLK = 0 — The counter is clocked with one half of the bus clock. The  
counter is started when a falling edge on the RxD pin is detected. The  
counter will be stopped on the next falling edge. ARUN is set while the  
counter is running, AFIN is set on the second falling edge on RxD (for  
instance, the counter is stopped). This mode is used to recover the received  
baud rate. See Figure 19-20.  
2. ACLK = 1 — The counter is clocked with one half of the ESCI input clock  
generated by the ESCI prescaler. The counter is started when a logic 0 is  
detected on RxD (see Figure 19-21). A logic 0 on RxD on enabling the bit  
time measurement with ACLK = 1 leads to immediate start of the counter  
(see Figure 19-22). The counter will be stopped on the next rising edge of  
RxD. This mode is used to measure the length of a received break.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Enhanced Serial Communications Interface (ESCI) Module  
249  
Enhanced Serial Communications Interface (ESCI) Module  
MEASURED TIME  
RXD  
Figure 19-20. Bit Time Measurement with ACLK = 0  
MEASURED TIME  
RXD  
Figure 19-21. Bit Time Measurement with ACLK = 1, Scenario A  
MEASURED TIME  
RXD  
Figure 19-22. Bit Time Measurement with ACLK = 1, Scenario B  
Data Sheet  
250  
MC68HC908GZ16  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
Enhanced Serial Communications Interface (ESCI) Module  
ESCI Arbiter  
19.9.4 Arbitration Mode  
If AM[1:0] is set to 10, the arbiter module operates in arbitration mode. On every  
rising edge of SCI_TxD (output of the ESCI module, internal chip signal), the  
counter is started. When the counter reaches $38 (ACLK = 0) or $08 (ACLK = 1),  
RxD is statically sensed. If in this case, RxD is sensed low (for example, another  
bus is driving the bus dominant) ALOST is set. As long as ALOST is set, the TxD  
pin is forced to 1, resulting in a seized transmission.  
If SCI_TxD is sensed logic 0 without having sensed a logic 0 before on RxD, the  
counter will be reset, arbitration operation will be restarted after the next rising edge  
of SCI_TxD.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Enhanced Serial Communications Interface (ESCI) Module  
251  
Enhanced Serial Communications Interface (ESCI) Module  
Data Sheet  
MC68HC908GZ16  
MOTOROLA  
252  
Enhanced Serial Communications Interface (ESCI) Module  
Data Sheet — MC68HC908GZ16  
Section 20. System Integration Module (SIM)  
20.1 Introduction  
This section describes the system integration module (SIM). Together with the  
central processor unit (CPU), the SIM controls all microcontroller unit (MCU)  
activities. A block diagram of the SIM is shown in Figure 20-1. Table 20-1 is a  
summary of the SIM input/output (I/O) registers. The SIM is a system state  
controller that coordinates CPU and exception timing.  
The SIM is responsible for:  
Bus clock generation and control for CPU and peripherals:  
Stop/wait/reset/break entry and recovery  
Internal clock control  
Master reset control, including power-on reset (POR) and computer  
operating properly (COP) timeout  
Interrupt control:  
Acknowledge timing  
Arbitration control timing  
Vector address generation  
CPU enable/disable timing  
Modular architecture expandable to 128 interrupt sources  
Table 20-1 shows the internal signal names used in this section.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
253  
System Integration Module (SIM)  
System Integration Module (SIM)  
MODULE STOP  
MODULE WAIT  
CPU STOP (FROM CPU)  
CPU WAIT (FROM CPU)  
STOP/WAIT  
CONTROL  
SIMOSCEN (TO CGM)  
SIM  
COUNTER  
CGMXCLK (FROM CGM)  
CGMOUT (FROM CGM)  
÷ 2  
CLOCK  
CONTROL  
VDD  
CLOCK GENERATORS  
INTERNAL CLOCKS  
INTERNAL  
PULLUP  
DEVICE  
FORCED MONITOR MODE ENTRY  
LVI (FROM LVI MODULE)  
RESET  
PIN LOGIC  
POR CONTROL  
RESET PIN CONTROL  
MASTER  
RESET  
CONTROL  
ILLEGAL OPCODE (FROM CPU)  
ILLEGAL ADDRESS (FROM ADDRESS  
MAP DECODERS)  
SIM RESET STATUS REGISTER  
COP (FROM COP MODULE)  
RESET  
INTERRUPT SOURCES  
CPU INTERFACE  
INTERRUPT CONTROL  
AND PRIORITY DECODE  
Figure 20-1. SIM Block Diagram  
Table 20-1. Signal Name Conventions  
Signal Name  
Description  
CGMXCLK  
CGMVCLK  
Buffered version of OSC1 from clock generator module (CGM)  
PLL output  
PLL-based or OSC1-based clock output from CGM module  
(Bus clock = CGMOUT divided by two)  
CGMOUT  
IAB  
IDB  
Internal address bus  
Internal data bus  
PORRST  
IRST  
Signal from the power-on reset module to the SIM  
Internal reset signal  
R/W  
Read/write signal  
Data Sheet  
254  
MC68HC908GZ16  
MOTOROLA  
System Integration Module (SIM)  
System Integration Module (SIM)  
SIM Bus Clock Control and Generation  
Addr.  
Register Name  
SIM Break Status  
Bit 7  
R
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
Bit 0  
R
Read:  
SBSW  
Note(1)  
0
$FE00  
Register (SBSR) Write:  
See page 269.  
Reset:  
0
0
1. Writing a logic 0 clears SBSW.  
Read:  
POR  
PIN  
COP  
ILOP  
ILAD  
MODRST  
LVI  
0
SIM Reset Status  
Register (SRSR) Write:  
$FE01  
$FE03  
$FE04  
$FE05  
$FE06  
See page 270.  
POR:  
1
0
0
0
0
0
0
0
Read:  
SIM Break Flag Control  
Register (SBFCR) Write:  
BCFE  
R
R
R
R
R
R
R
See page 271.  
Reset:  
0
IF6  
R
Read:  
IF5  
R
IF4  
R
IF3  
R
IF2  
IF1  
R
0
R
0
R
Interrupt Status  
Register 1 (INT1) Write:  
R
See page 265.  
Reset:  
0
0
0
0
0
0
0
0
Read:  
IF14  
R
IF13  
R
IF12  
R
IF11  
R
IF10  
IF9  
R
IF8  
R
IF7  
R
Interrupt Status  
Register 2 (INT2) Write:  
R
See page 265.  
Reset:  
0
0
0
0
0
0
0
0
Read:  
0
0
IF20  
R
IF19  
R
IF18  
IF17  
R
IF16  
R
IF15  
R
Interrupt Status  
Register 3 (INT3) Write:  
R
R
R
See page 265.  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 20-2. SIM I/O Register Summary  
20.2 SIM Bus Clock Control and Generation  
The bus clock generator provides system clock signals for the CPU and peripherals  
on the MCU. The system clocks are generated from an incoming clock, CGMOUT,  
as shown in Figure 20-3. This clock originates from either an external oscillator or  
from the on-chip PLL.  
20.2.1 Bus Timing  
In user mode, the internal bus frequency is either the crystal oscillator output  
(CGMXCLK) divided by four or the PLL output (CGMVCLK) divided by four.  
20.2.2 Clock Startup from POR or LVI Reset  
When the power-on reset module or the low-voltage inhibit module generates a  
reset, the clocks to the CPU and peripherals are inactive and held in an inactive  
phase until after the 4096 CGMXCLK cycle POR timeout has completed. The RST  
pin is driven low by the SIM during this entire period. The IBUS clocks start upon  
completion of the timeout.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
System Integration Module (SIM)  
255  
System Integration Module (SIM)  
OSC2  
OSC1  
OSCILLATOR (OSC)  
CGMXCLK  
TO TBM,TIM1,TIM2, ADC, MSCAN  
SIM  
SIMOSCEN  
IT12  
OSCENINSTOP  
FROM  
CONFIG  
SIM COUNTER  
CGMRCLK  
TO REST  
OF CHIP  
CGMOUT  
BUS CLOCK  
GENERATORS  
IT23  
TO REST  
OF CHIP  
÷ 2  
PHASE-LOCKED LOOP (PLL)  
TO MSCAN  
Figure 20-3. System Clock Signals  
20.2.3 Clocks in Stop Mode and Wait Mode  
Upon exit from stop mode by an interrupt or reset, the SIM allows CGMXCLK to  
clock the SIM counter. The CPU and peripheral clocks do not become active until  
after the stop delay timeout. This timeout is selectable as 4096 or 32 CGMXCLK  
cycles. See 20.6.2 Stop Mode.  
In wait mode, the CPU clocks are inactive. The SIM also produces two sets of  
clocks for other modules. Refer to the wait mode subsection of each module to see  
if the module is active or inactive in wait mode. Some modules can be programmed  
to be active in wait mode.  
20.3 Reset and System Initialization  
The MCU has these reset sources:  
Power-on reset module (POR)  
External reset pin (RST)  
Computer operating properly module (COP)  
Low-voltage inhibit module (LVI)  
Illegal opcode  
Illegal address  
Forced monitor mode entry reset (MODRST)  
Data Sheet  
256  
MC68HC908GZ16  
MOTOROLA  
System Integration Module (SIM)  
System Integration Module (SIM)  
Reset and System Initialization  
All of these resets produce the vector $FFFE:$FFFF ($FEFE:$FEFF in monitor  
mode) and assert the internal reset signal (IRST). IRST causes all registers to be  
returned to their default values and all modules to be returned to their reset states.  
An internal reset clears the SIM counter (see 20.4 SIM Counter), but an external  
reset does not. Each of the resets sets a corresponding bit in the SIM reset status  
register (SRSR). See 20.7 SIM Registers.  
20.3.1 External Pin Reset  
The RST pin circuit includes an internal pullup device. Pulling the asynchronous  
RST pin low halts all processing. The PIN bit of the SIM reset status register  
(SRSR) is set as long as RST is held low for a minimum of 67 CGMXCLK cycles,  
assuming that neither the POR nor the LVI was the source of the reset. See Table  
20-2 for details. Figure 20-4 shows the relative timing.  
Table 20-2. PIN Bit Set Timing  
Reset Type  
POR/LVI  
Number of Cycles Required to Set PIN  
4163 (4096 + 64 + 3)  
All others  
67 (64 + 3)  
CGMOUT  
RST  
IAB  
VECT H VECT L  
PC  
Figure 20-4. External Reset Timing  
20.3.2 Active Resets from Internal Sources  
All internal reset sources actively pull the RST pin low for 32 CGMXCLK cycles to  
allow resetting of external peripherals. The internal reset continues to be asserted  
for an additional 32 cycles at which point the reset vector will be fetched. See  
Figure 20-5. An internal reset can be caused by an illegal address, illegal opcode,  
COP timeout, LVI, or POR. See Figure 20-6.  
NOTE:  
For LVI or POR resets, the SIM cycles through 4096 + 32 CGMXCLK cycles during  
which the SIM forces the RST pin low. The internal reset signal then follows the  
sequence from the falling edge of RST shown in Figure 20-5.  
The COP reset is asynchronous to the bus clock.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
System Integration Module (SIM)  
257  
System Integration Module (SIM)  
RST PULLED LOW BY MCU  
32 CYCLES  
RST  
32 CYCLES  
CGMXCLK  
IAB  
VECTOR HIGH  
Figure 20-5. Internal Reset Timing  
ILLEGAL ADDRESS RST  
ILLEGAL OPCODE RST  
COPRST  
INTERNAL RESET  
LVI  
POR  
MODRST  
Figure 20-6. Sources of Internal Reset  
The active reset feature allows the part to issue a reset to peripherals and other  
chips within a system built around the MCU.  
20.3.2.1 Power-On Reset  
When power is first applied to the MCU, the power-on reset module (POR)  
generates a pulse to indicate that power-on has occurred. The external reset pin  
(RST) is held low while the SIM counter counts out 4096 + 32 CGMXCLK cycles.  
Thirty-two CGMXCLK cycles later, the CPU and memories are released from reset  
to allow the reset vector sequence to occur.  
At power-on, these events occur:  
A POR pulse is generated.  
The internal reset signal is asserted.  
The SIM enables CGMOUT.  
Internal clocks to the CPU and modules are held inactive for 4096  
CGMXCLK cycles to allow stabilization of the oscillator.  
The RST pin is driven low during the oscillator stabilization time.  
The POR bit of the SIM reset status register (SRSR) is set and all other bits  
in the register are cleared.  
Data Sheet  
258  
MC68HC908GZ16  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
Reset and System Initialization  
OSC1  
PORRST  
4096  
CYCLES  
32  
CYCLES  
CGMXCLK  
CGMOUT  
RST  
IAB  
$FFFE  
$FFFF  
Figure 20-7. POR Recovery  
20.3.2.2 Computer Operating Properly (COP) Reset  
An input to the SIM is reserved for the COP reset signal. The overflow of the COP  
counter causes an internal reset and sets the COP bit in the SIM reset status  
register (SRSR). The SIM actively pulls down the RST pin for all internal reset  
sources.  
The COP module is disabled if the RST pin or the IRQ pin is held at VTST while the  
MCU is in monitor mode. The COP module can be disabled only through  
combinational logic conditioned with the high voltage signal on the RST or the IRQ  
pin. This prevents the COP from becoming disabled as a result of external noise.  
During a break state, VTST on the RST pin disables the COP module.  
20.3.2.3 Illegal Opcode Reset  
The SIM decodes signals from the CPU to detect illegal instructions. An illegal  
instruction sets the ILOP bit in the SIM reset status register (SRSR) and causes a  
reset.  
If the stop enable bit, STOP, in the mask option register is logic 0, the SIM treats  
the STOP instruction as an illegal opcode and causes an illegal opcode reset. The  
SIM actively pulls down the RST pin for all internal reset sources.  
20.3.2.4 Illegal Address Reset  
An opcode fetch from an unmapped address generates an illegal address reset.  
The SIM verifies that the CPU is fetching an opcode prior to asserting the ILAD bit  
in the SIM reset status register (SRSR) and resetting the MCU. A data fetch from  
an unmapped address does not generate a reset. The SIM actively pulls down the  
RST pin for all internal reset sources.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
System Integration Module (SIM)  
259  
System Integration Module (SIM)  
20.3.2.5 Low-Voltage Inhibit (LVI) Reset  
The low-voltage inhibit module (LVI) asserts its output to the SIM when the VDD  
voltage falls to the LVITRIPF voltage. The LVI bit in the SIM reset status register  
(SRSR) is set, and the external reset pin (RST) is held low while the SIM counter  
counts out 4096 + 32 CGMXCLK cycles.  
Thirty-two CGMXCLK cycles later, the CPU is released from reset to allow the  
reset vector sequence to occur. The SIM actively pulls down the RST pin for all  
internal reset sources.  
20.3.2.6 Monitor Mode Entry Module Reset (MODRST)  
The monitor mode entry module reset (MODRST) asserts its output to the SIM  
when monitor mode is entered in the condition where the reset vectors are erased  
($FF) (see 15.3.1 Normal Monitor Mode). When MODRST gets asserted, an  
internal reset occurs. The SIM actively pulls down the RST pin for all internal reset  
sources.  
20.4 SIM Counter  
The SIM counter is used by the power-on reset module (POR) and in stop mode  
recovery to allow the oscillator time to stabilize before enabling the internal bus  
(IBUS) clocks. The SIM counter is 13 bits long.  
20.4.1 SIM Counter During Power-On Reset  
The power-on reset module (POR) detects power applied to the MCU. At  
power-on, the POR circuit asserts the signal PORRST. Once the SIM is initialized,  
it enables the clock generation module (CGM) to drive the bus clock state machine.  
20.4.2 SIM Counter During Stop Mode Recovery  
The SIM counter also is used for stop mode recovery. The STOP instruction clears  
the SIM counter. After an interrupt, break, or reset, the SIM senses the state of the  
short stop recovery bit, SSREC, in the mask option register. If the SSREC bit is a  
logic 1, then the stop recovery is reduced from the normal delay of 4096 CGMXCLK  
cycles down to 32 CGMXCLK cycles. This is ideal for applications using canned  
oscillators that do not require long startup times from stop mode. External crystal  
applications should use the full stop recovery time, that is, with SSREC cleared.  
20.4.3 SIM Counter and Reset States  
External reset has no effect on the SIM counter. See 20.6.2 Stop Mode for details.  
The SIM counter is free-running after all reset states. See 20.3.2 Active Resets  
from Internal Sources for counter control and internal reset recovery sequences.  
Data Sheet  
260  
MC68HC908GZ16  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
Exception Control  
20.5 Exception Control  
Normal, sequential program execution can be changed in three different ways:  
Interrupts:  
Maskable hardware CPU interrupts  
Non-maskable software interrupt instruction (SWI)  
Reset  
Break interrupts  
20.5.1 Interrupts  
At the beginning of an interrupt, the CPU saves the CPU register contents on the  
stack and sets the interrupt mask (I bit) to prevent additional interrupts. At the end  
of an interrupt, the RTI instruction recovers the CPU register contents from the  
stack so that normal processing can resume. Figure 20-8 shows interrupt entry  
timing. Figure 20-9 shows interrupt recovery timing.  
MODULE  
INTERRUPT  
I BIT  
IAB  
IDB  
DUMMY  
SP  
SP – 1  
SP – 2  
SP – 3  
SP – 4  
VECT H  
VECT L START ADDR  
DUMMY PC – 1[7:0] PC – 1[15:8]  
X
A
CCR  
V DATA H V DATA L OPCODE  
R/W  
Figure 20-8. Interrupt Entry Timing  
MODULE  
INTERRUPT  
I BIT  
IAB  
SP – 4  
SP – 3  
SP – 2  
SP – 1  
SP  
PC  
PC + 1  
IDB  
CCR  
A
X
PC – 1 [7:0] PC – 1 [15:8] OPCODE OPERAND  
R/W  
Figure 20-9. Interrupt Recovery Timing  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
261  
System Integration Module (SIM)  
System Integration Module (SIM)  
Interrupts are latched, and arbitration is performed in the SIM at the start of  
interrupt processing. The arbitration result is a constant that the CPU uses to  
determine which vector to fetch. Once an interrupt is latched by the SIM, no other  
interrupt can take precedence, regardless of priority, until the latched interrupt is  
serviced (or the I bit is cleared). See Figure 20-10.  
FROM RESET  
BREAK  
INTERRUPT?  
YES  
NO  
YES  
I BIT SET?  
NO  
IRQ  
INTERRUPT?  
YES  
NO  
AS MANY INTERRUPTS  
AS EXIST ON CHIP  
STACK CPU REGISTERS  
SET I BIT  
LOAD PC WITH INTERRUPT VECTOR  
FETCH NEXT  
INSTRUCTION  
SWI  
INSTRUCTION?  
YES  
YES  
NO  
RTI  
INSTRUCTION?  
UNSTACK CPU REGISTERS  
EXECUTE INSTRUCTION  
NO  
Figure 20-10. Interrupt Processing  
Data Sheet  
262  
MC68HC908GZ16  
MOTOROLA  
System Integration Module (SIM)  
System Integration Module (SIM)  
Exception Control  
20.5.1.1 Hardware Interrupts  
A hardware interrupt does not stop the current instruction. Processing of a  
hardware interrupt begins after completion of the current instruction. When the  
current instruction is complete, the SIM checks all pending hardware interrupts. If  
interrupts are not masked (I bit clear in the condition code register) and if the  
corresponding interrupt enable bit is set, the SIM proceeds with interrupt  
processing; otherwise, the next instruction is fetched and executed.  
If more than one interrupt is pending at the end of an instruction execution, the  
highest priority interrupt is serviced first. Figure 20-11 demonstrates what happens  
when two interrupts are pending. If an interrupt is pending upon exit from the  
original interrupt service routine, the pending interrupt is serviced before the LDA  
instruction is executed.  
CLI  
BACKGROUND  
ROUTINE  
LDA #$FF  
INT1  
PSHH  
INT1 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
INT2  
PSHH  
INT2 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
Figure 20-11. Interrupt Recognition Example  
The LDA opcode is prefetched by both the INT1 and INT2 RTI instructions.  
However, in the case of the INT1 RTI prefetch, this is a redundant operation.  
NOTE:  
To maintain compatibility with the M6805 Family, the H register is not pushed on  
the stack during interrupt entry. If the interrupt service routine modifies the H  
register or uses the indexed addressing mode, software should save the H register  
and then restore it prior to exiting the routine.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
System Integration Module (SIM)  
263  
System Integration Module (SIM)  
20.5.1.2 SWI Instruction  
The SWI instruction is a non-maskable instruction that causes an interrupt  
regardless of the state of the interrupt mask (I bit) in the condition code register.  
NOTE:  
A software interrupt pushes PC onto the stack. A software interrupt does not push  
PC – 1, as a hardware interrupt does.  
20.5.1.3 Interrupt Status Registers  
The flags in the interrupt status registers identify maskable interrupt sources. Table  
20-3 summarizes the interrupt sources and the interrupt status register flags that  
they set. The interrupt status registers can be useful for debugging.  
Table 20-3. Interrupt Sources  
Priority  
Highest  
Interrupt Source  
Reset  
Interrupt Status Register Flag  
SWI instruction  
IRQ pin  
I1  
ICG clock monitor  
TIM1 channel 0  
TIM1 channel 1  
TIM1 overflow  
I2  
I3  
I4  
I5  
TIM2 channel 0  
TIM2 channel 1  
TIM2 overflow  
I6  
I7  
I8  
SPI receiver full  
SPI transmitter empty  
SCI receive error  
SCI receive  
I9  
I10  
I11  
I12  
I13  
I14  
I15  
I16  
I17  
I18  
I19  
I20  
SCI transmit  
Keyboard  
ADC conversion complete  
Timebase module  
MSCAN08 wakeup  
MSCAN08 error  
MSCAN08 receive  
MSCAN08 transmit  
Lowest  
Data Sheet  
264  
MC68HC908GZ16  
MOTOROLA  
System Integration Module (SIM)  
System Integration Module (SIM)  
Exception Control  
Interrupt Status  
Register 1  
Address:  
$FE04  
Bit 7  
I6  
6
5
I4  
R
0
4
I3  
R
0
3
I2  
R
0
2
I1  
R
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
I5  
R
R
R
0
R
0
0
0
R
= Reserved  
Figure 20-12. Interrupt Status Register 1 (INT1)  
I6–I1 — Interrupt Flags 1–6  
These flags indicate the presence of interrupt requests from the sources shown  
in Table 20-3.  
1 = Interrupt request present  
0 = No interrupt request present  
Bit 0 and Bit 1 — Always read 0  
Interrupt Status  
Register 2  
Address:  
$FE05  
Bit 7  
I14  
R
6
5
I12  
R
4
I11  
R
3
I10  
R
2
I9  
R
0
1
I8  
R
0
Bit 0  
I7  
Read:  
Write:  
Reset:  
I13  
R
R
0
0
0
0
0
0
R
= Reserved  
Figure 20-13. Interrupt Status Register 2 (INT2)  
I14–I7 — Interrupt Flags 14–7  
These flags indicate the presence of interrupt requests from the sources shown  
in Table 20-3.  
1 = Interrupt request present  
0 = No interrupt request present  
Interrupt Status  
Register 3  
Address:  
$FE06  
Bit 7  
0
6
5
I20  
R
4
I19  
R
3
I18  
R
2
I17  
R
1
I16  
R
Bit 0  
I15  
R
Read:  
Write:  
Reset:  
0
R
R
0
0
0
0
0
0
0
0
R
= Reserved  
Figure 20-14. Interrupt Status Register 3 (INT3)  
Bits 7–6 — Always read 0  
I20–I15 — Interrupt Flags 20–15  
These flags indicate the presence of an interrupt request from the source shown  
in Table 20-3.  
1 = Interrupt request present  
0 = No interrupt request present  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
System Integration Module (SIM)  
265  
System Integration Module (SIM)  
20.5.2 Reset  
All reset sources always have equal and highest priority and cannot be arbitrated.  
20.5.3 Break Interrupts  
The break module can stop normal program flow at a software-programmable  
break point by asserting its break interrupt output (see Section 23. Timer  
Interface Module (TIM)). The SIM puts the CPU into the break state by forcing it  
to the SWI vector location. Refer to the break interrupt subsection of each module  
to see how each module is affected by the break state.  
20.5.4 Status Flag Protection in Break Mode  
The SIM controls whether status flags contained in other modules can be cleared  
during break mode. The user can select whether flags are protected from being  
cleared by properly initializing the break clear flag enable bit (BCFE) in the SIM  
break flag control register (SBFCR).  
Protecting flags in break mode ensures that set flags will not be cleared while in  
break mode. This protection allows registers to be freely read and written during  
break mode without losing status flag information.  
Setting the BCFE bit enables the clearing mechanisms. Once cleared in break  
mode, a flag remains cleared even when break mode is exited. Status flags with a  
2-step clearing mechanism — for example, a read of one register followed by the  
read or write of another — are protected, even when the first step is accomplished  
prior to entering break mode. Upon leaving break mode, execution of the second  
step will clear the flag as normal.  
20.6 Low-Power Modes  
Executing the WAIT or STOP instruction puts the MCU in a low  
power-consumption mode for standby situations. The SIM holds the CPU in a  
non-clocked state. The operation of each of these modes is described in the  
following subsections. Both STOP and WAIT clear the interrupt mask (I) in the  
condition code register, allowing interrupts to occur.  
20.6.1 Wait Mode  
In wait mode, the CPU clocks are inactive while the peripheral clocks continue to  
run. Figure 20-15 shows the timing for wait mode entry.  
A module that is active during wait mode can wakeup the CPU with an interrupt if  
the interrupt is enabled. Stacking for the interrupt begins one cycle after the WAIT  
instruction during which the interrupt occurred. In wait mode, the CPU clocks are  
inactive. Refer to the wait mode subsection of each module to see if the module is  
Data Sheet  
266  
MC68HC908GZ16  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
Low-Power Modes  
active or inactive in wait mode. Some modules can be programmed to be active in  
wait mode.  
Wait mode also can be exited by a reset (or break in emulation mode). A break  
interrupt during wait mode sets the SIM break stop/wait bit, SBSW, in the SIM  
break status register (SBSR). If the COP disable bit, COPD, in the mask option  
register is logic 0, then the computer operating properly module (COP) is enabled  
and remains active in wait mode.  
IAB  
IDB  
WAIT ADDR  
WAIT ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
R/W  
Note: Previous data can be operand data or the WAIT opcode, depending on the  
last instruction.  
Figure 20-15. Wait Mode Entry Timing  
Figure 20-16 and Figure 20-17 show the timing for WAIT recovery.  
IAB  
IDB  
$6E0B  
$A6  
$6E0C  
$00FF  
$00FE  
$00FD  
$00FC  
$A6  
$A6  
$01  
$0B  
$6E  
EXITSTOPWAIT  
Note: EXITSTOPWAIT = RST pin or CPU interrupt  
Figure 20-16. Wait Recovery from Interrupt  
32  
CYCLES  
32  
CYCLES  
IAB  
$6E0B  
$A6  
RSTVCTH RSTVCTL  
IDB $A6  
RST  
$A6  
CGMXCLK  
Figure 20-17. Wait Recovery from Internal Reset  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
267  
System Integration Module (SIM)  
System Integration Module (SIM)  
20.6.2 Stop Mode  
In stop mode, the SIM counter is reset and the system clocks are disabled. An  
interrupt request from a module can cause an exit from stop mode. Stacking for  
interrupts begins after the selected stop recovery time has elapsed. Reset causes  
an exit from stop mode.  
The SIM disables the clock generator module outputs (CGMOUT and CGMXCLK)  
in stop mode, stopping the CPU and peripherals. Stop recovery time is selectable  
using the SSREC bit in the mask option register (MOR). If SSREC is set, stop  
recovery is reduced from the normal delay of 4096 CGMXCLK cycles down to 32.  
This is ideal for applications using canned oscillators that do not require long  
startup times from stop mode.  
NOTE:  
NOTE:  
External crystal applications should use the full stop recovery time by clearing the  
SSREC bit.  
The SIM counter is held in reset from the execution of the STOP instruction until  
the beginning of stop recovery. It is then used to time the recovery period. Figure  
20-18 shows stop mode entry timing. Figure 20-19 shows stop mode recovery time  
from interrupt.  
To minimize stop current, all pins configured as inputs should be driven to a logic 1  
or logic 0.  
CPUSTOP  
IAB  
IDB  
STOP ADDR  
STOP ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
R/W  
Note: Previous data can be operand data or the STOP opcode, depending  
on the last instruction.  
Figure 20-18. Stop Mode Entry Timing  
STOP RECOVERY PERIOD  
CGMXCLK  
INT/BREAK  
IAB  
STOP + 2  
STOP + 2  
SP  
SP – 1  
SP – 2  
SP – 3  
STOP +1  
Figure 20-19. Stop Mode Recovery from Interrupt  
Data Sheet  
268  
MC68HC908GZ16  
MOTOROLA  
System Integration Module (SIM)  
System Integration Module (SIM)  
SIM Registers  
20.7 SIM Registers  
The SIM has three memory-mapped registers. Table 20-4 shows the mapping of  
these registers.  
Table 20-4. SIM Registers  
Address  
$FE00  
$FE01  
$FE03  
Register  
SBSR  
Access Mode  
User  
SRSR  
User  
SBFCR  
User  
20.7.1 Break Status Register  
The break status register (BSR) contains a flag to indicate that a break caused an  
exit from wait mode. This register is only used in emulation mode.  
Address:  
$FE00  
Bit 7  
6
5
R
0
4
R
0
3
R
0
2
R
0
1
Bit 0  
R
Read:  
Write:  
Reset:  
SBSW  
Note(1)  
0
R
R
0
0
0
R
= Reserved  
1. Writing a logic 0 clears SBSW.  
Figure 20-20. Break Status Register (BSR)  
SBSW — SIM Break Stop/Wait  
SBSW can be read within the break state SWI routine. The user can modify the  
return address on the stack by subtracting one from it.  
1 = Wait mode was exited by break interrupt.  
0 = Wait mode was not exited by break interrupt.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
System Integration Module (SIM)  
269  
System Integration Module (SIM)  
20.7.2 SIM Reset Status Register  
This register contains six flags that show the source of the last reset provided all  
previous reset status bits have been cleared. Clear the SIM reset status register by  
reading it. A power-on reset sets the POR bit and clears all other bits in the register.  
Address:  
$FE01  
Bit 7  
6
5
4
3
2
1
Bit 0  
0
Read:  
Write:  
Reset:  
POR  
PIN  
COP  
ILOP  
ILAD  
MODRST  
LVI  
1
0
0
0
0
0
0
0
= Unimplemented  
Figure 20-21. SIM Reset Status Register (SRSR)  
POR — Power-On Reset Bit  
1 = Last reset caused by POR circuit  
0 = Read of SRSR  
PIN — External Reset Bit  
1 = Last reset caused by external reset pin (RST)  
0 = POR or read of SRSR  
COP — Computer Operating Properly Reset Bit  
1 = Last reset caused by COP counter  
0 = POR or read of SRSR  
ILOP — Illegal Opcode Reset Bit  
1 = Last reset caused by an illegal opcode  
0 = POR or read of SRSR  
ILAD — Illegal Address Reset Bit (opcode fetches only)  
1 = Last reset caused by an opcode fetch from an illegal address  
0 = POR or read of SRSR  
MODRST — Monitor Mode Entry Module Reset Bit  
1 = Last reset caused by monitor mode entry when vector locations $FFFE  
and $FFFF are $FF after POR while IRQ = VDD  
0 = POR or read of SRSR  
LVI — Low-Voltage Inhibit Reset Bit  
1 = Last reset caused by the LVI circuit  
0 = POR or read of SRSR  
Data Sheet  
270  
MC68HC908GZ16  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
SIM Registers  
20.7.3 Break Flag Control Register  
The break flag control register (BFCR) contains a bit that enables software to clear  
status bits while the MCU is in a break state.  
Address:  
$FE03  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
0
R
= Reserved  
Figure 20-22. Break Flag Control Register (BFCR)  
BCFE — Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing status  
registers while the MCU is in a break state. To clear status bits during the break  
state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
System Integration Module (SIM)  
271  
System Integration Module (SIM)  
Data Sheet  
272  
MC68HC908GZ16  
MOTOROLA  
System Integration Module (SIM)  
Data Sheet — MC68HC908GZ16  
Section 21. Serial Peripheral Interface (SPI) Module  
21.1 Introduction  
21.2 Features  
This section describes the serial peripheral interface (SPI) module, which allows  
full-duplex, synchronous, serial communications with peripheral devices.  
Features of the SPI module include:  
Full-duplex operation  
Master and slave modes  
Double-buffered operation with separate transmit and receive registers  
Four master mode frequencies (maximum = bus frequency ÷ 2)  
Maximum slave mode frequency = bus frequency  
Serial clock with programmable polarity and phase  
Two separately enabled interrupts:  
SPRF (SPI receiver full)  
SPTE (SPI transmitter empty)  
Mode fault error flag with CPU interrupt capability  
Overflow error flag with CPU interrupt capability  
Programmable wired-OR mode  
I2C (inter-integrated circuit) compatibility  
I/O (input/output) port bit(s) software configurable with pullup device(s) if  
configured as input port bit(s)  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
273  
Serial Peripheral Interface (SPI) Module  
Serial Peripheral Interface (SPI) Module  
21.3 Pin Name Conventions  
The text that follows describes the SPI. The SPI I/O pin names are SS (slave  
select), SPSCK (SPI serial clock), CGND (clock ground), MOSI (master out slave  
in), and MISO (master in/slave out). The SPI shares four I/O pins with four parallel  
I/O ports.  
The full names of the SPI I/O pins are shown in Table 21-1. The generic pin names  
appear in the text that follows.  
Table 21-1. Pin Name Conventions  
SPI Generic  
Pin Names:  
MISO  
MOSI  
SS  
SPSCK  
CGND  
Full SPI  
Pin Names:  
VSS  
SPI  
PTD1/MISO  
PTD2/MOSI  
PTD0/SS  
PTD3/SPSCK  
21.4 Functional Description  
Figure 21-1 summarizes the SPI I/O registers and Figure 21-2 shows the structure  
of the SPI module.  
The SPI module allows full-duplex, synchronous, serial communication between  
the MCU and peripheral devices, including other MCUs. Software can poll the SPI  
status flags or SPI operation can be interrupt driven.  
If a port bit is configured for input, then an internal pullup device may be enabled  
for that port bit. See 17.4.3 Port C Input Pullup Enable Register.  
The following paragraphs describe the operation of the SPI module.  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
SPE  
0
Bit 0  
SPTIE  
0
Read:  
Write:  
Reset:  
Read:  
SPRIE  
R
0
SPMSTR  
CPOL  
CPHA  
SPWOM  
0
SPI Control Register (SPCR)  
See page 291.  
$0010  
0
1
0
1
SPRF  
OVRF  
MODF  
SPTE  
SPI Status and Control  
ERRIE  
MODFEN  
SPR1  
SPR0  
$0011  
$0012  
Register (SPSCR) Write:  
See page 293.  
Reset:  
0
0
0
0
1
0
0
0
Read:  
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SPI Data Register  
(SPDR) Write:  
See page 295.  
Reset:  
Unaffected by reset  
= Unimplemented  
= Reserved  
R
Figure 21-1. SPI I/O Register Summary  
Data Sheet  
274  
MC68HC908GZ16  
MOTOROLA  
Serial Peripheral Interface (SPI) Module  
Serial Peripheral Interface (SPI) Module  
Functional Description  
INTERNAL BUS  
TRANSMIT DATA REGISTER  
SHIFT REGISTER  
CGMOUT ÷ 2  
FROM SIM  
MISO  
MOSI  
7
6
5
4
3
2
1
0
÷ 2  
÷ 8  
÷ 32  
CLOCK  
DIVIDER  
RECEIVE DATA REGISTER  
PIN  
CONTROL  
LOGIC  
÷ 128  
CLOCK  
SELECT  
SPSCK  
SPMSTR  
SPE  
M
CLOCK  
LOGIC  
S
SS  
SPR1  
SPR0  
SPMSTR  
CPHA  
CPOL  
RESERVED  
MODFEN  
ERRIE  
SPTIE  
SPRIE  
DMAS  
SPE  
SPWOM  
TRANSMITTER CPU INTERRUPT REQUEST  
RESERVED  
SPI  
CONTROL  
RECEIVER/ERROR CPU INTERRUPT REQUEST  
SPRF  
SPTE  
OVRF  
MODF  
Figure 21-2. SPI Module Block Diagram  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
275  
Serial Peripheral Interface (SPI) Module  
Serial Peripheral Interface (SPI) Module  
21.4.1 Master Mode  
The SPI operates in master mode when the SPI master bit, SPMSTR, is set.  
NOTE:  
Configure the SPI modules as master or slave before enabling them. Enable the  
master SPI before enabling the slave SPI. Disable the slave SPI before disabling  
the master SPI. See 21.13.1 SPI Control Register.  
Only a master SPI module can initiate transmissions. Software begins the  
transmission from a master SPI module by writing to the transmit data register. If  
the shift register is empty, the byte immediately transfers to the shift register,  
setting the SPI transmitter empty bit, SPTE. The byte begins shifting out on the  
MOSI pin under the control of the serial clock. See Figure 21-3.  
MASTER MCU  
SLAVE MCU  
MISO  
MOSI  
MISO  
MOSI  
SHIFT REGISTER  
SHIFT REGISTER  
SPSCK  
SS  
SPSCK  
SS  
BAUD RATE  
GENERATOR  
VDD  
Figure 21-3. Full-Duplex Master-Slave Connections  
The SPR1 and SPR0 bits control the baud rate generator and determine the speed  
of the shift register. (See 21.13.2 SPI Status and Control Register.) Through the  
SPSCK pin, the baud rate generator of the master also controls the shift register of  
the slave peripheral.  
As the byte shifts out on the MOSI pin of the master, another byte shifts in from the  
slave on the master’s MISO pin. The transmission ends when the receiver full bit,  
SPRF, becomes set. At the same time that SPRF becomes set, the byte from the  
slave transfers to the receive data register. In normal operation, SPRF signals the  
end of a transmission. Software clears SPRF by reading the SPI status and control  
register with SPRF set and then reading the SPI data register. Writing to the SPI  
data register clears the SPTE bit.  
21.4.2 Slave Mode  
The SPI operates in slave mode when the SPMSTR bit is clear. In slave mode, the  
SPSCK pin is the input for the serial clock from the master MCU. Before a data  
transmission occurs, the SS pin of the slave SPI must be at logic 0. SS must remain  
low until the transmission is complete. See 21.7.2 Mode Fault Error.  
In a slave SPI module, data enters the shift register under the control of the serial  
clock from the master SPI module. After a byte enters the shift register of a slave  
Data Sheet  
276  
MC68HC908GZ16  
Serial Peripheral Interface (SPI) Module  
MOTOROLA  
Serial Peripheral Interface (SPI) Module  
Transmission Formats  
SPI, it transfers to the receive data register, and the SPRF bit is set. To prevent an  
overflow condition, slave software then must read the receive data register before  
another full byte enters the shift register.  
The maximum frequency of the SPSCK for an SPI configured as a slave is the bus  
clock speed (which is twice as fast as the fastest master SPSCK clock that can be  
generated). The frequency of the SPSCK for an SPI configured as a slave does not  
have to correspond to any SPI baud rate. The baud rate only controls the speed of  
the SPSCK generated by an SPI configured as a master. Therefore, the frequency  
of the SPSCK for an SPI configured as a slave can be any frequency less than or  
equal to the bus speed.  
When the master SPI starts a transmission, the data in the slave shift register  
begins shifting out on the MISO pin. The slave can load its shift register with a new  
byte for the next transmission by writing to its transmit data register. The slave must  
write to its transmit data register at least one bus cycle before the master starts the  
next transmission. Otherwise, the byte already in the slave shift register shifts out  
on the MISO pin. Data written to the slave shift register during a transmission  
remains in a buffer until the end of the transmission.  
When the clock phase bit (CPHA) is set, the first edge of SPSCK starts a  
transmission. When CPHA is clear, the falling edge of SS starts a transmission.  
See 21.5 Transmission Formats.  
NOTE:  
SPSCK must be in the proper idle state before the slave is enabled to prevent  
SPSCK from appearing as a clock edge.  
21.5 Transmission Formats  
During an SPI transmission, data is simultaneously transmitted (shifted out serially)  
and received (shifted in serially). A serial clock synchronizes shifting and sampling  
on the two serial data lines. A slave select line allows selection of an individual  
slave SPI device; slave devices that are not selected do not interfere with SPI bus  
activities. On a master SPI device, the slave select line can optionally be used to  
indicate multiple-master bus contention.  
21.5.1 Clock Phase and Polarity Controls  
Software can select any of four combinations of serial clock (SPSCK) phase and  
polarity using two bits in the SPI control register (SPCR). The clock polarity is  
specified by the CPOL control bit, which selects an active high or low clock and has  
no significant effect on the transmission format.  
The clock phase (CPHA) control bit selects one of two fundamentally different  
transmission formats. The clock phase and polarity should be identical for the  
master SPI device and the communicating slave device. In some cases, the phase  
and polarity are changed between transmissions to allow a master device to  
communicate with peripheral slaves having different requirements.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Serial Peripheral Interface (SPI) Module  
277  
Serial Peripheral Interface (SPI) Module  
NOTE:  
Before writing to the CPOL bit or the CPHA bit, disable the SPI by clearing the SPI  
enable bit (SPE).  
21.5.2 Transmission Format When CPHA = 0  
Figure 21-4 shows an SPI transmission in which CPHA is logic 0. The figure should  
not be used as a replacement for data sheet parametric information.  
Two waveforms are shown for SPSCK: one for CPOL = 0 and another for  
CPOL = 1. The diagram may be interpreted as a master or slave timing diagram  
since the serial clock (SPSCK), master in/slave out (MISO), and master out/slave  
in (MOSI) pins are directly connected between the master and the slave. The MISO  
signal is the output from the slave, and the MOSI signal is the output from the  
master. The SS line is the slave select input to the slave. The slave SPI drives its  
MISO output only when its slave select input (SS) is at logic 0, so that only the  
selected slave drives to the master. The SS pin of the master is not shown but is  
assumed to be inactive. The SS pin of the master must be high or must be  
reconfigured as general-purpose I/O not affecting the SPI. (See 21.7.2 Mode Fault  
Error.) When CPHA = 0, the first SPSCK edge is the MSB capture strobe.  
Therefore, the slave must begin driving its data before the first SPSCK edge, and  
a falling edge on the SS pin is used to start the slave data transmission. The slave’s  
SS pin must be toggled back to high and then low again between each byte  
transmitted as shown in Figure 21-5.  
SPSCK CYCLE #  
FOR REFERENCE  
1
2
3
4
5
6
7
8
SPSCK; CPOL = 0  
SPSCK; CPOL =1  
MOSI  
FROM MASTER  
MSB  
BIT 6  
BIT 6  
BIT 5  
BIT 5  
BIT 4  
BIT 4  
BIT 3  
BIT 3  
BIT 2  
BIT 2  
BIT 1  
BIT 1  
LSB  
LSB  
MISO  
FROM SLAVE  
MSB  
SS; TO SLAVE  
CAPTURE STROBE  
Figure 21-4. Transmission Format (CPHA = 0)  
MISO/MOSI  
MASTER SS  
BYTE 1  
BYTE 2  
BYTE 3  
SLAVE SS  
CPHA = 0  
SLAVE SS  
CPHA = 1  
Figure 21-5. CPHA/SS Timing  
Data Sheet  
278  
MC68HC908GZ16  
MOTOROLA  
Serial Peripheral Interface (SPI) Module  
Serial Peripheral Interface (SPI) Module  
Transmission Formats  
When CPHA = 0 for a slave, the falling edge of SS indicates the beginning of the  
transmission. This causes the SPI to leave its idle state and begin driving the MISO  
pin with the MSB of its data. Once the transmission begins, no new data is allowed  
into the shift register from the transmit data register. Therefore, the SPI data  
register of the slave must be loaded with transmit data before the falling edge of  
SS. Any data written after the falling edge is stored in the transmit data register and  
transferred to the shift register after the current transmission.  
21.5.3 Transmission Format When CPHA = 1  
Figure 21-6 shows an SPI transmission in which CPHA is logic 1. The figure should  
not be used as a replacement for data sheet parametric information. Two  
waveforms are shown for SPSCK: one for CPOL = 0 and another for CPOL = 1.  
The diagram may be interpreted as a master or slave timing diagram since the  
serial clock (SPSCK), master in/slave out (MISO), and master out/slave in (MOSI)  
pins are directly connected between the master and the slave. The MISO signal is  
the output from the slave, and the MOSI signal is the output from the master. The  
SS line is the slave select input to the slave. The slave SPI drives its MISO output  
only when its slave select input (SS) is at logic 0, so that only the selected slave  
drives to the master. The SS pin of the master is not shown but is assumed to be  
inactive. The SS pin of the master must be high or must be reconfigured as  
general-purpose I/O not affecting the SPI. (See 21.7.2 Mode Fault Error.) When  
CPHA = 1, the master begins driving its MOSI pin on the first SPSCK edge.  
Therefore, the slave uses the first SPSCK edge as a start transmission signal. The  
SS pin can remain low between transmissions. This format may be preferable in  
systems having only one master and only one slave driving the MISO data line.  
When CPHA = 1 for a slave, the first edge of the SPSCK indicates the beginning  
of the transmission. This causes the SPI to leave its idle state and begin driving the  
MISO pin with the MSB of its data. Once the transmission begins, no new data is  
allowed into the shift register from the transmit data register. Therefore, the SPI  
data register of the slave must be loaded with transmit data before the first edge of  
SPSCK. Any data written after the first edge is stored in the transmit data register  
and transferred to the shift register after the current transmission.  
SPSCK CYCLE #  
FOR REFERENCE  
SPSCK; CPOL = 0  
1
2
3
4
5
6
7
8
SPSCK; CPOL =1  
MOSI  
FROM MASTER  
MSB  
MSB  
BIT 6  
BIT 6  
BIT 5  
BIT 5  
BIT 4  
BIT 4  
BIT 3  
BIT 3  
BIT 2  
BIT 2  
BIT 1  
BIT 1  
LSB  
MISO  
FROM SLAVE  
LSB  
SS; TO SLAVE  
CAPTURE STROBE  
Figure 21-6. Transmission Format (CPHA = 1)  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
279  
Serial Peripheral Interface (SPI) Module  
Serial Peripheral Interface (SPI) Module  
21.5.4 Transmission Initiation Latency  
When the SPI is configured as a master (SPMSTR = 1), writing to the SPDR starts  
a transmission. CPHA has no effect on the delay to the start of the transmission,  
but it does affect the initial state of the SPSCK signal. When CPHA = 0, the SPSCK  
signal remains inactive for the first half of the first SPSCK cycle. When CPHA = 1,  
the first SPSCK cycle begins with an edge on the SPSCK line from its inactive to  
its active level. The SPI clock rate (selected by SPR1:SPR0) affects the delay from  
the write to SPDR and the start of the SPI transmission. (See Figure 21-7.)  
WRITE  
TO SPDR  
INITIATION DELAY  
BUS  
CLOCK  
MOSI  
MSB  
BIT 6  
BIT 5  
SPSCK  
CPHA = 1  
SPSCK  
CPHA = 0  
SPSCK CYCLE  
NUMBER  
1
2
3
INITIATION DELAY FROM WRITE SPDR TO TRANSFER BEGIN  
WRITE  
TO SPDR  
BUS  
CLOCK  
SPSCK = INTERNAL CLOCK ÷ 2;  
2 POSSIBLE START POINTS  
EARLIEST  
LATEST  
WRITE  
TO SPDR  
BUS  
CLOCK  
EARLIEST  
WRITE  
TO SPDR  
SPSCK = INTERNAL CLOCK ÷ 8;  
8 POSSIBLE START POINTS  
LATEST  
LATEST  
LATEST  
BUS  
CLOCK  
EARLIEST  
WRITE  
TO SPDR  
SPSCK = INTERNAL CLOCK ÷ 32;  
32 POSSIBLE START POINTS  
BUS  
CLOCK  
EARLIEST  
SPSCK = INTERNAL CLOCK ÷ 128;  
128 POSSIBLE START POINTS  
Figure 21-7. Transmission Start Delay (Master)  
Data Sheet  
280  
MC68HC908GZ16  
MOTOROLA  
Serial Peripheral Interface (SPI) Module  
Serial Peripheral Interface (SPI) Module  
Queuing Transmission Data  
The internal SPI clock in the master is a free-running derivative of the internal MCU  
clock. To conserve power, it is enabled only when both the SPE and SPMSTR bits  
are set. SPSCK edges occur halfway through the low time of the internal MCU  
clock. Since the SPI clock is free-running, it is uncertain where the write to the  
SPDR occurs relative to the slower SPSCK. This uncertainty causes the variation  
in the initiation delay shown in Figure 21-7. This delay is no longer than a single  
SPI bit time. That is, the maximum delay is two MCU bus cycles for DIV2, eight  
MCU bus cycles for DIV8, 32 MCU bus cycles for DIV32, and 128 MCU bus cycles  
for DIV128.  
21.6 Queuing Transmission Data  
The double-buffered transmit data register allows a data byte to be queued and  
transmitted. For an SPI configured as a master, a queued data byte is transmitted  
immediately after the previous transmission has completed. The SPI transmitter  
empty flag (SPTE) indicates when the transmit data buffer is ready to accept new  
data. Write to the transmit data register only when the SPTE bit is high. Figure 21-8  
shows the timing associated with doing back-to-back transmissions with the SPI  
(SPSCK has CPHA: CPOL = 1:0).  
1
3
8
WRITE TO SPDR  
SPTE  
5
10  
2
SPSCK  
CPHA:CPOL = 1:0  
MOSI  
MSB BIT BIT BIT BIT BIT BIT LSB MSB BIT BIT BIT BIT BIT BIT LSB MSB BIT BIT BIT  
3
6
BYTE 1  
5
4
3
2
1
6
BYTE 2  
5
4
2
1
6
BYTE 3  
5
4
4
9
SPRF  
READ SPSCR  
READ SPDR  
6
11  
7
12  
1
2
CPU WRITES BYTE 1 TO SPDR, CLEARING SPTE BIT.  
7
8
CPU READS SPDR, CLEARING SPRF BIT.  
CPU WRITES BYTE 3 TO SPDR, QUEUEING BYTE  
3 AND CLEARING SPTE BIT.  
BYTE 1 TRANSFERS FROM TRANSMIT DATA  
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.  
9
SECOND INCOMING BYTE TRANSFERS FROM SHIFT  
REGISTER TO RECEIVE DATA REGISTER, SETTING  
SPRF BIT.  
CPU WRITES BYTE 2 TO SPDR, QUEUEING BYTE 2  
AND CLEARING SPTE BIT.  
3
4
10  
FIRST INCOMING BYTE TRANSFERS FROM SHIFT  
REGISTER TO RECEIVE DATA REGISTER, SETTING  
SPRF BIT.  
BYTE 3 TRANSFERS FROM TRANSMIT DATA  
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.  
11  
12  
CPU READS SPSCR WITH SPRF BIT SET.  
CPU READS SPDR, CLEARING SPRF BIT.  
5
6
BYTE 2 TRANSFERS FROM TRANSMIT DATA  
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.  
CPU READS SPSCR WITH SPRF BIT SET.  
Figure 21-8. SPRF/SPTE CPU Interrupt Timing  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
281  
Serial Peripheral Interface (SPI) Module  
Serial Peripheral Interface (SPI) Module  
The transmit data buffer allows back-to-back transmissions without the slave  
precisely timing its writes between transmissions as in a system with a single data  
buffer. Also, if no new data is written to the data buffer, the last value contained in  
the shift register is the next data word to be transmitted.  
For an idle master or idle slave that has no data loaded into its transmit buffer, the  
SPTE is set again no more than two bus cycles after the transmit buffer empties  
into the shift register. This allows the user to queue up a 16-bit value to send. For  
an already active slave, the load of the shift register cannot occur until the  
transmission is completed. This implies that a back-to-back write to the transmit  
data register is not possible. The SPTE indicates when the next write can occur.  
21.7 Error Conditions  
The following flags signal SPI error conditions:  
Overflow (OVRF) — Failing to read the SPI data register before the next full  
byte enters the shift register sets the OVRF bit. The new byte does not  
transfer to the receive data register, and the unread byte still can be read.  
OVRF is in the SPI status and control register.  
Mode fault error (MODF) — The MODF bit indicates that the voltage on the  
slave select pin (SS) is inconsistent with the mode of the SPI. MODF is in  
the SPI status and control register.  
21.7.1 Overflow Error  
The overflow flag (OVRF) becomes set if the receive data register still has unread  
data from a previous transmission when the capture strobe of bit 1 of the next  
transmission occurs. The bit 1 capture strobe occurs in the middle of SPSCK  
cycle 7 (see Figure 21-4 and Figure 21-6.) If an overflow occurs, all data received  
after the overflow and before the OVRF bit is cleared does not transfer to the  
receive data register and does not set the SPI receiver full bit (SPRF). The unread  
data that transferred to the receive data register before the overflow occurred can  
still be read. Therefore, an overflow error always indicates the loss of data. Clear  
the overflow flag by reading the SPI status and control register and then reading  
the SPI data register.  
OVRF generates a receiver/error CPU interrupt request if the error interrupt enable  
bit (ERRIE) is also set. The SPRF, MODF, and OVRF interrupts share the same  
CPU interrupt vector (see Figure 21-11.) It is not possible to enable MODF or  
OVRF individually to generate a receiver/error CPU interrupt request. However,  
leaving MODFEN low prevents MODF from being set.  
If the CPU SPRF interrupt is enabled and the OVRF interrupt is not, watch for an  
overflow condition. Figure 21-9 shows how it is possible to miss an overflow. The  
first part of Figure 21-9 shows how it is possible to read the SPSCR and SPDR to  
clear the SPRF without problems. However, as illustrated by the second  
transmission example, the OVRF bit can be set in between the time that SPSCR  
and SPDR are read.  
Data Sheet  
282  
MC68HC908GZ16  
Serial Peripheral Interface (SPI) Module  
MOTOROLA  
Serial Peripheral Interface (SPI) Module  
Error Conditions  
BYTE 1  
1
BYTE 2  
4
BYTE 3  
6
BYTE 4  
8
SPRF  
OVRF  
READ  
SPSCR  
2
5
5
READ  
SPDR  
3
7
1
2
BYTE 1 SETS SPRF BIT.  
CPU READS SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
CPU READS SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
6
7
BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST.  
3
4
CPU READS BYTE 1 IN SPDR,  
CLEARING SPRF BIT.  
CPU READS BYTE 2 IN SPDR, CLEARING SPRF BIT,  
BUT NOT OVRF BIT.  
BYTE 2 SETS SPRF BIT.  
8
BYTE 4 FAILS TO SET SPRF BIT BECAUSE  
OVRF BIT IS NOT CLEARED. BYTE 4 IS LOST.  
Figure 21-9. Missed Read of Overflow Condition  
In this case, an overflow can be missed easily. Since no more SPRF interrupts can  
be generated until this OVRF is serviced, it is not obvious that bytes are being lost  
as more transmissions are completed. To prevent this, either enable the OVRF  
interrupt or do another read of the SPSCR following the read of the SPDR. This  
ensures that the OVRF was not set before the SPRF was cleared and that future  
transmissions can set the SPRF bit. Figure 21-10 illustrates this process.  
Generally, to avoid this second SPSCR read, enable the OVRF to the CPU by  
setting the ERRIE bit.  
21.7.2 Mode Fault Error  
Setting the SPMSTR bit selects master mode and configures the SPSCK and  
MOSI pins as outputs and the MISO pin as an input. Clearing SPMSTR selects  
slave mode and configures the SPSCK and MOSI pins as inputs and the MISO pin  
as an output. The mode fault bit, MODF, becomes set any time the state of the  
slave select pin, SS, is inconsistent with the mode selected by SPMSTR.  
To prevent SPI pin contention and damage to the MCU, a mode fault error occurs if:  
The SS pin of a slave SPI goes high during a transmission  
The SS pin of a master SPI goes low at any time  
For the MODF flag to be set, the mode fault error enable bit (MODFEN) must be  
set. Clearing the MODFEN bit does not clear the MODF flag but does prevent  
MODF from being set again after MODF is cleared.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Serial Peripheral Interface (SPI) Module  
283  
Serial Peripheral Interface (SPI) Module  
BYTE 1  
BYTE 2  
5
BYTE 3  
7
BYTE 4  
11  
SPI RECEIVE  
COMPLETE  
1
SPRF  
OVRF  
READ  
SPSCR  
2
4
6
9
12  
14  
READ  
SPDR  
3
8
10  
13  
1
2
8
9
BYTE 1 SETS SPRF BIT.  
CPU READS BYTE 2 IN SPDR,  
CLEARING SPRF BIT.  
CPU READS SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
CPU READS SPSCR AGAIN  
TO CHECK OVRF BIT.  
3
4
CPU READS BYTE 1 IN SPDR,  
CLEARING SPRF BIT.  
10  
CPU READS BYTE 2 SPDR,  
CLEARING OVRF BIT.  
CPU READS SPSCR AGAIN  
TO CHECK OVRF BIT.  
11  
12  
13  
BYTE 4 SETS SPRF BIT.  
CPU READS SPSCR.  
5
6
BYTE 2 SETS SPRF BIT.  
CPU READS SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
CPU READS BYTE 4 IN SPDR,  
CLEARING SPRF BIT.  
7
BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST.  
14  
CPU READS SPSCR AGAIN  
TO CHECK OVRF BIT.  
Figure 21-10. Clearing SPRF When OVRF Interrupt Is Not Enabled  
MODF generates a receiver/error CPU interrupt request if the error interrupt enable  
bit (ERRIE) is also set. The SPRF, MODF, and OVRF interrupts share the same  
CPU interrupt vector. (See Figure 21-11.) It is not possible to enable MODF or  
OVRF individually to generate a receiver/error CPU interrupt request. However,  
leaving MODFEN low prevents MODF from being set.  
In a master SPI with the mode fault enable bit (MODFEN) set, the mode fault flag  
(MODF) is set if SS goes to logic 0. A mode fault in a master SPI causes the  
following events to occur:  
If ERRIE = 1, the SPI generates an SPI receiver/error CPU interrupt request.  
The SPE bit is cleared.  
The SPTE bit is set.  
The SPI state counter is cleared.  
The data direction register of the shared I/O port regains control of port  
drivers.  
NOTE:  
To prevent bus contention with another master SPI after a mode fault error, clear  
all SPI bits of the data direction register of the shared I/O port before enabling the  
SPI.  
When configured as a slave (SPMSTR = 0), the MODF flag is set if SS goes high  
during a transmission. When CPHA = 0, a transmission begins when SS goes low  
and ends once the incoming SPSCK goes back to its idle level following the shift  
Data Sheet  
284  
MC68HC908GZ16  
Serial Peripheral Interface (SPI) Module  
MOTOROLA  
Serial Peripheral Interface (SPI) Module  
Interrupts  
of the eighth data bit. When CPHA = 1, the transmission begins when the SPSCK  
leaves its idle level and SS is already low. The transmission continues until the  
SPSCK returns to its idle level following the shift of the last data bit. See 21.5  
Transmission Formats.  
NOTE:  
Setting the MODF flag does not clear the SPMSTR bit. The SPMSTR bit has no  
function when SPE = 0. Reading SPMSTR when MODF = 1 shows the difference  
between a MODF occurring when the SPI is a master and when it is a slave.  
When CPHA = 0, a MODF occurs if a slave is selected (SS is at logic 0) and later  
unselected (SS is at logic 1) even if no SPSCK is sent to that slave. This happens  
because SS at logic 0 indicates the start of the transmission (MISO driven out with  
the value of MSB) for CPHA = 0. When CPHA = 1, a slave can be selected and  
then later unselected with no transmission occurring. Therefore, MODF does not  
occur since a transmission was never begun.  
In a slave SPI (MSTR = 0), the MODF bit generates an SPI receiver/error CPU  
interrupt request if the ERRIE bit is set. The MODF bit does not clear the SPE bit  
or reset the SPI in any way. Software can abort the SPI transmission by clearing  
the SPE bit of the slave.  
NOTE:  
A logic 1 voltage on the SS pin of a slave SPI puts the MISO pin in a high  
impedance state. Also, the slave SPI ignores all incoming SPSCK clocks, even if it  
was already in the middle of a transmission.  
To clear the MODF flag, read the SPSCR with the MODF bit set and then write to  
the SPCR register. This entire clearing mechanism must occur with no MODF  
condition existing or else the flag is not cleared.  
21.8 Interrupts  
Four SPI status flags can be enabled to generate CPU interrupt requests. See  
Table 21-2.  
Table 21-2. SPI Interrupts  
Flag  
Request  
SPTE  
Transmitter empty  
SPI transmitter CPU interrupt request  
(DMAS = 0, SPTIE = 1, SPE = 1)  
SPRF  
Receiver full  
SPI receiver CPU interrupt request  
(DMAS = 0, SPRIE = 1)  
OVRF  
Overflow  
SPI receiver/error interrupt request  
(ERRIE = 1)  
MODF  
Mode fault  
SPI receiver/error interrupt request  
(ERRIE = 1)  
Reading the SPI status and control register with SPRF set and then reading the  
receive data register clears SPRF. The clearing mechanism for the SPTE flag is  
always just a write to the transmit data register.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Serial Peripheral Interface (SPI) Module  
285  
Serial Peripheral Interface (SPI) Module  
The SPI transmitter interrupt enable bit (SPTIE) enables the SPTE flag to generate  
transmitter CPU interrupt requests, provided that the SPI is enabled (SPE = 1).  
The SPI receiver interrupt enable bit (SPRIE) enables the SPRF bit to generate  
receiver CPU interrupt requests, regardless of the state of the SPE bit. See Figure  
21-11.  
The error interrupt enable bit (ERRIE) enables both the MODF and OVRF bits to  
generate a receiver/error CPU interrupt request.  
The mode fault enable bit (MODFEN) can prevent the MODF flag from being set  
so that only the OVRF bit is enabled by the ERRIE bit to generate receiver/error  
CPU interrupt requests.  
NOT AVAILABLE  
SPTE  
SPTIE  
SPE  
SPI TRANSMITTER  
CPU INTERRUPT REQUEST  
DMAS  
NOT AVAILABLE  
SPRIE  
SPRF  
SPI RECEIVER/ERROR  
CPU INTERRUPT REQUEST  
ERRIE  
MODF  
OVRF  
Figure 21-11. SPI Interrupt Request Generation  
The following sources in the SPI status and control register can generate CPU  
interrupt requests:  
SPI receiver full bit (SPRF) — The SPRF bit becomes set every time a byte  
transfers from the shift register to the receive data register. If the SPI  
receiver interrupt enable bit, SPRIE, is also set, SPRF generates an SPI  
receiver/error CPU interrupt request.  
SPI transmitter empty (SPTE) — The SPTE bit becomes set every time a  
byte transfers from the transmit data register to the shift register. If the SPI  
transmit interrupt enable bit, SPTIE, is also set, SPTE generates an SPTE  
CPU interrupt request.  
Data Sheet  
286  
MC68HC908GZ16  
Serial Peripheral Interface (SPI) Module  
MOTOROLA  
Serial Peripheral Interface (SPI) Module  
Resetting the SPI  
21.9 Resetting the SPI  
Any system reset completely resets the SPI. Partial resets occur whenever the SPI  
enable bit (SPE) is low. Whenever SPE is low, the following occurs:  
The SPTE flag is set.  
Any transmission currently in progress is aborted.  
The shift register is cleared.  
The SPI state counter is cleared, making it ready for a new complete  
transmission.  
All the SPI port logic is defaulted back to being general-purpose I/O.  
These items are reset only by a system reset:  
All control bits in the SPCR register  
All control bits in the SPSCR register (MODFEN, ERRIE, SPR1, and SPR0)  
The status flags SPRF, OVRF, and MODF  
By not resetting the control bits when SPE is low, the user can clear SPE between  
transmissions without having to set all control bits again when SPE is set back high  
for the next transmission.  
By not resetting the SPRF, OVRF, and MODF flags, the user can still service these  
interrupts after the SPI has been disabled. The user can disable the SPI by writing  
0 to the SPE bit. The SPI can also be disabled by a mode fault occurring in an SPI  
that was configured as a master with the MODFEN bit set.  
21.10 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby  
modes.  
21.10.1 Wait Mode  
The SPI module remains active after the execution of a WAIT instruction. In wait  
mode the SPI module registers are not accessible by the CPU. Any enabled CPU  
interrupt request from the SPI module can bring the MCU out of wait mode.  
If SPI module functions are not required during wait mode, reduce power  
consumption by disabling the SPI module before executing the WAIT instruction.  
To exit wait mode when an overflow condition occurs, enable the OVRF bit to  
generate CPU interrupt requests by setting the error interrupt enable bit (ERRIE).  
See 21.8 Interrupts.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Serial Peripheral Interface (SPI) Module  
287  
Serial Peripheral Interface (SPI) Module  
21.10.2 Stop Mode  
The SPI module is inactive after the execution of a STOP instruction. The STOP  
instruction does not affect register conditions. SPI operation resumes after an  
external interrupt. If stop mode is exited by reset, any transfer in progress is  
aborted, and the SPI is reset.  
21.11 SPI During Break Interrupts  
The system integration module (SIM) controls whether status bits in other modules  
can be cleared during the break state. The BCFE bit in the SIM break flag control  
register (SBFCR) enables software to clear status bits during the break state. See  
Section 20. System Integration Module (SIM).  
To allow software to clear status bits during a break interrupt, write a logic 1 to the  
BCFE bit. If a status bit is cleared during the break state, it remains cleared when  
the MCU exits the break state.  
To protect status bits during the break state, write a logic 0 to the BCFE bit. With  
BCFE at logic 0 (its default state), software can read and write I/O registers during  
the break state without affecting status bits. Some status bits have a 2-step  
read/write clearing procedure. If software does the first step on such a bit before  
the break, the bit cannot change during the break state as long as BCFE is at logic  
0. After the break, doing the second step clears the status bit.  
Since the SPTE bit cannot be cleared during a break with the BCFE bit cleared, a  
write to the transmit data register in break mode does not initiate a transmission nor  
is this data transferred into the shift register. Therefore, a write to the SPDR in  
break mode with the BCFE bit cleared has no effect.  
21.12 I/O Signals  
The SPI module has five I/O pins and shares four of them with a parallel I/O port.  
They are:  
MISO — Data received  
MOSI — Data transmitted  
SPSCK — Serial clock  
SS — Slave select  
CGND — Clock ground (internally connected to VSS  
)
The SPI has limited inter-integrated circuit (I2C) capability (requiring software  
support) as a master in a single-master environment. To communicate with I2C  
peripherals, MOSI becomes an open-drain output when the SPWOM bit in the SPI  
control register is set. In I2C communication, the MOSI and MISO pins are  
connected to a bidirectional pin from the I2C peripheral and through a pullup  
resistor to VDD  
.
Data Sheet  
288  
MC68HC908GZ16  
MOTOROLA  
Serial Peripheral Interface (SPI) Module  
Serial Peripheral Interface (SPI) Module  
I/O Signals  
21.12.1 MISO (Master In/Slave Out)  
MISO is one of the two SPI module pins that transmits serial data. In full duplex  
operation, the MISO pin of the master SPI module is connected to the MISO pin of  
the slave SPI module. The master SPI simultaneously receives data on its MISO  
pin and transmits data from its MOSI pin.  
Slave output data on the MISO pin is enabled only when the SPI is configured as  
a slave. The SPI is configured as a slave when its SPMSTR bit is logic 0 and its SS  
pin is at logic 0. To support a multiple-slave system, a logic 1 on the SS pin puts  
the MISO pin in a high-impedance state.  
When enabled, the SPI controls data direction of the MISO pin regardless of the  
state of the data direction register of the shared I/O port.  
21.12.2 MOSI (Master Out/Slave In)  
MOSI is one of the two SPI module pins that transmits serial data. In full-duplex  
operation, the MOSI pin of the master SPI module is connected to the MOSI pin of  
the slave SPI module. The master SPI simultaneously transmits data from its MOSI  
pin and receives data on its MISO pin.  
When enabled, the SPI controls data direction of the MOSI pin regardless of the  
state of the data direction register of the shared I/O port.  
21.12.3 SPSCK (Serial Clock)  
The serial clock synchronizes data transmission between master and slave  
devices. In a master MCU, the SPSCK pin is the clock output. In a slave MCU, the  
SPSCK pin is the clock input. In full-duplex operation, the master and slave MCUs  
exchange a byte of data in eight serial clock cycles.  
When enabled, the SPI controls data direction of the SPSCK pin regardless of the  
state of the data direction register of the shared I/O port.  
21.12.4 SS (Slave Select)  
The SS pin has various functions depending on the current state of the SPI. For an  
SPI configured as a slave, the SS is used to select a slave. For CPHA = 0, the SS  
is used to define the start of a transmission. (See 21.5 Transmission Formats.)  
Since it is used to indicate the start of a transmission, the SS must be toggled high  
and low between each byte transmitted for the CPHA = 0 format. However, it can  
remain low between transmissions for the CPHA = 1 format. See Figure 21-12.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Serial Peripheral Interface (SPI) Module  
289  
Serial Peripheral Interface (SPI) Module  
MISO/MOSI  
MASTER SS  
BYTE 1  
BYTE 2  
BYTE 3  
SLAVE SS  
CPHA = 0  
SLAVE SS  
CPHA = 1  
Figure 21-12. CPHA/SS Timing  
When an SPI is configured as a slave, the SS pin is always configured as an input.  
It cannot be used as a general-purpose I/O regardless of the state of the MODFEN  
control bit. However, the MODFEN bit can still prevent the state of the SS from  
creating a MODF error. See 21.13.2 SPI Status and Control Register.  
NOTE:  
A logic 1 voltage on the SS pin of a slave SPI puts the MISO pin in a  
high-impedance state. The slave SPI ignores all incoming SPSCK clocks, even if  
it was already in the middle of a transmission.  
When an SPI is configured as a master, the SS input can be used in conjunction  
with the MODF flag to prevent multiple masters from driving MOSI and SPSCK.  
(See 21.7.2 Mode Fault Error.) For the state of the SS pin to set the MODF flag,  
the MODFEN bit in the SPSCK register must be set. If the MODFEN bit is low for  
an SPI master, the SS pin can be used as a general-purpose I/O under the control  
of the data direction register of the shared I/O port. With MODFEN high, it is an  
input-only pin to the SPI regardless of the state of the data direction register of the  
shared I/O port.  
The CPU can always read the state of the SS pin by configuring the appropriate  
pin as an input and reading the port data register.  
See Table 21-3.  
Table 21-3. SPI Configuration  
SPE  
SPMSTR  
MODFEN  
SPI Configuration  
Not enabled  
State of SS Logic  
General-purpose I/O;  
SS ignored by SPI  
X(1))  
0
1
1
1
X
X
0
0
1
1
Slave  
Input-only to SPI  
General-purpose I/O;  
SS ignored by SPI  
Master without MODF  
Master with MODF  
1
Input-only to SPI  
1. X = Don’t care  
Data Sheet  
290  
MC68HC908GZ16  
MOTOROLA  
Serial Peripheral Interface (SPI) Module  
Serial Peripheral Interface (SPI) Module  
I/O Registers  
21.12.5 CGND (Clock Ground)  
CGND is the ground return for the serial clock pin, SPSCK, and the ground for the  
port output buffers. It is internally connected to VSS as shown in Table 21-1.  
21.13 I/O Registers  
Three registers control and monitor SPI operation:  
SPI control register (SPCR)  
SPI status and control register (SPSCR)  
SPI data register (SPDR)  
21.13.1 SPI Control Register  
The SPI control register:  
Enables SPI module interrupt requests  
Configures the SPI module as master or slave  
Selects serial clock polarity and phase  
Configures the SPSCK, MOSI, and MISO pins as open-drain outputs  
Enables the SPI module  
Address: $0010  
Bit 7  
6
5
SPMSTR  
1
4
CPOL  
0
3
CPHA  
1
2
SPWOM  
0
1
SPE  
0
Bit 0  
SPTIE  
0
Read:  
Write:  
Reset:  
SPRIE  
R
0
0
= Reserved  
= Unimplemented  
R
Figure 21-13. SPI Control Register (SPCR)  
SPRIE — SPI Receiver Interrupt Enable Bit  
This read/write bit enables CPU interrupt requests generated by the SPRF bit.  
The SPRF bit is set when a byte transfers from the shift register to the receive  
data register. Reset clears the SPRIE bit.  
1 = SPRF CPU interrupt requests enabled  
0 = SPRF CPU interrupt requests disabled  
SPMSTR — SPI Master Bit  
This read/write bit selects master mode operation or slave mode operation.  
Reset sets the SPMSTR bit.  
1 = Master mode  
0 = Slave mode  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Serial Peripheral Interface (SPI) Module  
291  
Serial Peripheral Interface (SPI) Module  
CPOL — Clock Polarity Bit  
This read/write bit determines the logic state of the SPSCK pin between  
transmissions. (See Figure 21-4 and Figure 21-6.) To transmit data between  
SPI modules, the SPI modules must have identical CPOL values. Reset clears  
the CPOL bit.  
CPHA — Clock Phase Bit  
This read/write bit controls the timing relationship between the serial clock and  
SPI data. (See Figure 21-4 and Figure 21-6.) To transmit data between SPI  
modules, the SPI modules must have identical CPHA values. When CPHA = 0,  
the SS pin of the slave SPI module must be set to logic 1 between bytes. (See  
Figure 21-12.) Reset sets the CPHA bit.  
SPWOM — SPI Wired-OR Mode Bit  
This read/write bit disables the pullup devices on pins SPSCK, MOSI, and MISO  
so that those pins become open-drain outputs.  
1 = Wired-OR SPSCK, MOSI, and MISO pins  
0 = Normal push-pull SPSCK, MOSI, and MISO pins  
SPE — SPI Enable  
This read/write bit enables the SPI module. Clearing SPE causes a partial reset  
of the SPI. (See 21.9 Resetting the SPI.) Reset clears the SPE bit.  
1 = SPI module enabled  
0 = SPI module disabled  
SPTIE— SPI Transmit Interrupt Enable  
This read/write bit enables CPU interrupt requests generated by the SPTE bit.  
SPTE is set when a byte transfers from the transmit data register to the shift  
register. Reset clears the SPTIE bit.  
1 = SPTE CPU interrupt requests enabled  
0 = SPTE CPU interrupt requests disabled  
21.13.2 SPI Status and Control Register  
The SPI status and control register contains flags to signal these conditions:  
Receive data register full  
Failure to clear SPRF bit before next byte is received (overflow error)  
Inconsistent logic level on SS pin (mode fault error)  
Transmit data register empty  
The SPI status and control register also contains bits that perform these functions:  
Enable error interrupts  
Enable mode fault error detection  
Select master SPI baud rate  
Data Sheet  
292  
MC68HC908GZ16  
MOTOROLA  
Serial Peripheral Interface (SPI) Module  
Serial Peripheral Interface (SPI) Module  
I/O Registers  
Address: $0011  
Bit 7  
6
ERRIE  
0
5
4
3
2
MODFEN  
0
1
SPR1  
0
Bit 0  
SPR0  
0
Read:  
Write:  
Reset:  
SPRF  
OVRF  
MODF  
SPTE  
0
0
0
1
= Unimplemented  
Figure 21-14. SPI Status and Control Register (SPSCR)  
SPRF — SPI Receiver Full Bit  
This clearable, read-only flag is set each time a byte transfers from the shift  
register to the receive data register. SPRF generates a CPU interrupt request if  
the SPRIE bit in the SPI control register is set also.  
During an SPRF CPU interrupt, the CPU clears SPRF by reading the SPI status  
and control register with SPRF set and then reading the SPI data register.  
Reset clears the SPRF bit.  
1 = Receive data register full  
0 = Receive data register not full  
ERRIE — Error Interrupt Enable Bit  
This read/write bit enables the MODF and OVRF bits to generate CPU interrupt  
requests. Reset clears the ERRIE bit.  
1 = MODF and OVRF can generate CPU interrupt requests  
0 = MODF and OVRF cannot generate CPU interrupt requests  
OVRF — Overflow Bit  
This clearable, read-only flag is set if software does not read the byte in the  
receive data register before the next full byte enters the shift register. In an  
overflow condition, the byte already in the receive data register is unaffected,  
and the byte that shifted in last is lost. Clear the OVRF bit by reading the SPI  
status and control register with OVRF set and then reading the receive data  
register. Reset clears the OVRF bit.  
1 = Overflow  
0 = No overflow  
MODF — Mode Fault Bit  
This clearable, read-only flag is set in a slave SPI if the SS pin goes high during  
a transmission with the MODFEN bit set. In a master SPI, the MODF flag is set  
if the SS pin goes low at any time with the MODFEN bit set. Clear the MODF bit  
by reading the SPI status and control register (SPSCR) with MODF set and then  
writing to the SPI control register (SPCR). Reset clears the MODF bit.  
1 = SS pin at inappropriate logic level  
0 = SS pin at appropriate logic level  
SPTE — SPI Transmitter Empty Bit  
This clearable, read-only flag is set each time the transmit data register  
transfers a byte into the shift register. SPTE generates an SPTE CPU interrupt  
request or an SPTE DMA service request if the SPTIE bit in the SPI control  
register is set also.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Serial Peripheral Interface (SPI) Module  
293  
Serial Peripheral Interface (SPI) Module  
NOTE:  
Do not write to the SPI data register unless the SPTE bit is high.  
During an SPTE CPU interrupt, the CPU clears the SPTE bit by writing to the  
transmit data register.  
Reset sets the SPTE bit.  
1 = Transmit data register empty  
0 = Transmit data register not empty  
MODFEN — Mode Fault Enable Bit  
This read/write bit, when set to 1, allows the MODF flag to be set. If the MODF  
flag is set, clearing the MODFEN does not clear the MODF flag. If the SPI is  
enabled as a master and the MODFEN bit is low, then the SS pin is available as  
a general-purpose I/O.  
If the MODFEN bit is set, then this pin is not available as a general-purpose I/O.  
When the SPI is enabled as a slave, the SS pin is not available as a  
general-purpose I/O regardless of the value of MODFEN. See 21.12.4 SS  
(Slave Select).  
If the MODFEN bit is low, the level of the SS pin does not affect the operation  
of an enabled SPI configured as a master. For an enabled SPI configured as a  
slave, having MODFEN low only prevents the MODF flag from being set. It does  
not affect any other part of SPI operation. See 21.7.2 Mode Fault Error.  
SPR1 and SPR0 — SPI Baud Rate Select Bits  
In master mode, these read/write bits select one of four baud rates as shown in  
Table 21-4. SPR1 and SPR0 have no effect in slave mode. Reset clears SPR1  
and SPR0.  
Table 21-4. SPI Master Baud Rate Selection  
SPR1 and SPR0  
Baud Rate Divisor (BD)  
00  
01  
10  
11  
2
8
32  
128  
Use this formula to calculate the SPI baud rate:  
CGMOUT  
Baud rate = --------------------------  
2 × BD  
where:  
CGMOUT = base clock output of the clock generator module (CGM)  
BD = baud rate divisor  
Data Sheet  
294  
MC68HC908GZ16  
MOTOROLA  
Serial Peripheral Interface (SPI) Module  
Serial Peripheral Interface (SPI) Module  
I/O Registers  
21.13.3 SPI Data Register  
The SPI data register consists of the read-only receive data register and the  
write-only transmit data register. Writing to the SPI data register writes data into the  
transmit data register. Reading the SPI data register reads data from the receive  
data register. The transmit data and receive data registers are separate registers  
that can contain different values. See Figure 21-2.  
Address: $0012  
Bit 7  
R7  
6
5
4
3
2
1
Bit 0  
R0  
Read:  
Write:  
Reset:  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
T7  
T0  
Unaffected by reset  
Figure 21-15. SPI Data Register (SPDR)  
R7–R0/T7–T0 — Receive/Transmit Data Bits  
NOTE:  
Do not use read-modify-write instructions on the SPI data register since the register  
read is not the same as the register written.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Serial Peripheral Interface (SPI) Module  
295  
Serial Peripheral Interface (SPI) Module  
Data Sheet  
MC68HC908GZ16  
MOTOROLA  
296  
Serial Peripheral Interface (SPI) Module  
Data Sheet — MC68HC908GZ16  
Section 22. Timebase Module (TBM)  
22.1 Introduction  
This section describes the timebase module (TBM). The TBM will generate  
periodic interrupts at user selectable rates using a counter clocked by the external  
clock source. This TBM version uses 15 divider stages, eight of which are user  
selectable. A configuration option bit to select an additional 128 divide of the  
external clock source can be selected. See Section 8. Configuration Register  
(CONFIG)  
22.2 Features  
Features of the TBM module include:  
External clock or an additional divide-by-128 selected by configuration  
option bit as clock source  
Software configurable periodic interrupts with divide-by: 8, 16, 32, 64, 128,  
2048, 8192, and 32768 taps of the selected clock source  
Configurable for operation during stop mode to allow periodic wakeup from  
stop  
22.3 Functional Description  
This module can generate a periodic interrupt by dividing the clock source supplied  
from the clock generator module, CGMXCLK.  
The counter is initialized to all 0s when TBON bit is cleared. The counter, shown in  
Figure 22-1, starts counting when the TBON bit is set. When the counter overflows  
at the tap selected by TBR2–TBR0, the TBIF bit gets set. If the TBIE bit is set, an  
interrupt request is sent to the CPU. The TBIF flag is cleared by writing a 1 to the  
TACK bit. The first time the TBIF flag is set after enabling the timebase module, the  
interrupt is generated at approximately half of the overflow period. Subsequent  
events occur at the exact period.  
The timebase module may remain active after execution of the STOP instruction if  
the crystal oscillator has been enabled to operate during stop mode through the  
OSCENINSTOP bit in the configuration register. The timebase module can be  
used in this mode to generate a periodic wakeup from stop mode.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Timebase Module (TBM)  
297  
Timebase Module (TBM)  
22.4 Interrupts  
The timebase module can periodically interrupt the CPU with a rate defined by the  
selected TBMCLK and the select bits TBR2–TBR0. When the timebase counter  
chain rolls over, the TBIF flag is set. If the TBIE bit is set, enabling the timebase  
interrupt, the counter chain overflow will generate a CPU interrupt request.  
NOTE:  
Interrupts must be acknowledged by writing a logic 1 to the TACK bit.  
TBMCLKSEL  
FROM CONFIG2  
TBMCLK  
0
CGMXCLK  
DIVIDE BY 128  
1
PRESCALER  
FROM CGM MODULE  
TBON  
÷ 2  
÷ 2  
÷ 2 ÷ 2 ÷ 2  
÷ 2  
÷ 2  
TBMINT  
÷ 2 ÷ 2 ÷ 2 ÷ 2  
÷ 2 ÷ 2  
÷ 2 ÷ 2  
TBIF  
TBIE  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
R
Figure 22-1. Timebase Block Diagram  
Data Sheet  
298  
MC68HC908GZ16  
MOTOROLA  
Timebase Module (TBM)  
Timebase Module (TBM)  
TBM Interrupt Rate  
22.5 TBM Interrupt Rate  
The interrupt rate is determined by the equation:  
Divider  
1
t
= -------------------------- = ----------------------  
TBMRATE  
f
f
TBMRATE  
TBMCLK  
where:  
TBMCLK= Frequency supplied from the clock generator (CGM) module  
f
Divider = Divider value as determined by TBR2–TBR0 settings, see Table 22-1  
Table 22-1. Timebase Divider Selection  
Divider Tap  
TBR2  
TBR1  
TBR0  
TMBCLKSEL  
0
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
32,768  
8192  
2048  
128  
64  
4,194,304  
1,048,576  
262144  
16,384  
8192  
32  
4096  
16  
2048  
8
1024  
As an example, a clock source of 4.9152 MHz, with the TMCLKSEL set for  
divide-by-128 and the TBR2–TBR0 set to {011}, the divider tap is1 and the interrupt  
rate calculates to:  
1/(4.9152 x 106/128) = 26 µs  
NOTE:  
Do not change TBR2–TBR0 bits while the timebase is enabled  
(TBON = 1).  
22.6 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power- consumption standby  
modes.  
22.6.1 Wait Mode  
The timebase module remains active after execution of the WAIT instruction. In  
wait mode the timebase register is not accessible by the CPU.  
If the timebase functions are not required during wait mode, reduce the power  
consumption by stopping the timebase before executing the WAIT instruction.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
299  
Timebase Module (TBM)  
Timebase Module (TBM)  
22.6.2 Stop Mode  
The timebase module may remain active after execution of the STOP instruction if  
the internal clock generator has been enabled to operate during stop mode through  
the OSCENINSTOP bit in the configuration register. The timebase module can be  
used in this mode to generate a periodic wakeup from stop mode.  
If the internal clock generator has not been enabled to operate in stop mode, the  
timebase module will not be active during stop mode. In stop mode, the timebase  
register is not accessible by the CPU.  
If the timebase functions are not required during stop mode, reduce power  
consumption by disabling the timebase module before executing the STOP  
instruction.  
22.7 Timebase Control Register  
The timebase has one register, the timebase control register (TBCR), which is  
used to enable the timebase interrupts and set the rate.  
Address: $001C  
Bit 7  
6
TBR2  
0
5
TBR1  
0
4
TBR0  
0
3
2
1
TBON  
0
Bit 0  
Read:  
Write:  
Reset:  
TBIF  
0
TACK  
0
TBIE  
R
0
0
0
= Unimplemented  
R
= Reserved  
Figure 22-2. Timebase Control Register (TBCR)  
TBIF — Timebase Interrupt Flag  
This read-only flag bit is set when the timebase counter has rolled over.  
1 = Timebase interrupt pending  
0 = Timebase interrupt not pending  
TBR2–TBR0 — Timebase Divider Selection Bits  
These read/write bits select the tap in the counter to be used for timebase  
interrupts as shown in Table 22-1.  
NOTE:  
Do not change TBR2–TBR0 bits while the timebase is enabled  
(TBON = 1).  
TACK— Timebase Acknowledge Bit  
The TACK bit is a write-only bit and always reads as 0. Writing a logic 1 to this  
bit clears TBIF, the timebase interrupt flag bit. Writing a logic 0 to this bit has no  
effect.  
1 = Clear timebase interrupt flag  
0 = No effect  
Data Sheet  
300  
MC68HC908GZ16  
Timebase Module (TBM)  
MOTOROLA  
Timebase Module (TBM)  
Timebase Control Register  
TBIE — Timebase Interrupt Enabled Bit  
This read/write bit enables the timebase interrupt when the TBIF bit becomes  
set. Reset clears the TBIE bit.  
1 = Timebase interrupt is enabled.  
0 = Timebase interrupt is disabled.  
TBON — Timebase Enabled Bit  
This read/write bit enables the timebase. Timebase may be turned off to reduce  
power consumption when its function is not necessary. The counter can be  
initialized by clearing and then setting this bit. Reset clears the TBON bit.  
1 = Timebase is enabled.  
0 = Timebase is disabled and the counter initialized to 0s.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Timebase Module (TBM)  
301  
Timebase Module (TBM)  
Data Sheet  
302  
MC68HC908GZ16  
MOTOROLA  
Timebase Module (TBM)  
Data Sheet — MC68HC908GZ16  
Section 23. Timer Interface Module (TIM)  
23.1 Introduction  
This section describes the timer interface (TIM) module. The TIM is a two-channel  
timer that provides a timing reference with input capture, output compare, and  
pulse-width-modulation functions. Figure 23-1 is a block diagram of the TIM.  
This particular MCU has two timer interface modules which are denoted as TIM1  
and TIM2.  
PRESCALER SELECT  
PRESCALER  
INTERNAL  
BUS CLOCK  
TSTOP  
TRST  
PS2  
PS1  
PS0  
16-BIT COUNTER  
TOF  
INTERRUPT  
LOGIC  
TOIE  
16-BIT COMPARATOR  
TMODH:TMODL  
TOV0  
ELS0B  
ELS0A  
PORT  
LOGIC  
CHANNEL 0  
16-BIT COMPARATOR  
TCH0H:TCH0L  
CH0MAX  
T[1,2]CH0  
CH0F  
INTERRUPT  
LOGIC  
16-BIT LATCH  
CH0IE  
MS0A  
MS0B  
CH1F  
TOV1  
ELS1B  
ELS1A  
PORT  
LOGIC  
CHANNEL 1  
16-BIT COMPARATOR  
TCH1H:TCH1L  
CH1MAX  
T[1,2]CH1  
INTERRUPT  
LOGIC  
16-BIT LATCH  
CH1IE  
MS1A  
Figure 23-1. TIM Block Diagram  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
303  
Timer Interface Module (TIM)  
Timer Interface Module (TIM)  
23.2 Features  
Features of the TIM include:  
Two input capture/output compare channels:  
Rising-edge, falling-edge, or any-edge input capture trigger  
Set, clear, or toggle output compare action  
Buffered and unbuffered pulse-width-modulation (PWM) signal generation  
Programmable TIM clock input with 7-frequency internal bus clock prescaler  
selection  
Free-running or modulo up-count operation  
Toggle any channel pin on overflow  
TIM counter stop and reset bits  
23.3 Pin Name Conventions  
The text that follows describes both timers, TIM1 and TIM2. The TIM input/output  
(I/O) pin names are T[1,2]CH0 (timer channel 0) and T[1,2]CH1 (timer channel 1),  
where “1” is used to indicate TIM1 and “2” is used to indicate TIM2. The two TIMs  
share four I/O pins with four port D I/O port pins. The full names of the TIM I/O pins  
are listed in  
Table 23-1. The generic pin names appear in the text that follows.  
Table 23-1. Pin Name Conventions  
TIM Generic Pin Names:  
TIM1  
TIM2  
T[1,2]CH0  
PTD4/T1CH0  
PTD6/T2CH0  
T[1,2]CH1  
PTD5/T1CH1  
PTD7/T2CH1  
Full TIM Pin Names:  
NOTE:  
References to either timer 1 or timer 2 may be made in the following text by omitting  
the timer number. For example, TCH0 may refer generically to T1CH0 and T2CH0,  
and TCH1 may refer to T1CH1 and T2CH1.  
23.4 Functional Description  
Figure 23-1 shows the structure of the TIM. The central component of the TIM is  
the 16-bit TIM counter that can operate as a free-running counter or a modulo  
up-counter. The TIM counter provides the timing reference for the input capture  
and output compare functions. The TIM counter modulo registers,  
TMODH:TMODL, control the modulo value of the TIM counter. Software can read  
the TIM counter value at any time without affecting the counting sequence.  
The two TIM channels (per timer) are programmable independently as input  
capture or output compare channels. If a channel is configured as input capture,  
Data Sheet  
304  
MC68HC908GZ16  
Timer Interface Module (TIM)  
MOTOROLA  
Timer Interface Module (TIM)  
Functional Description  
then an internal pullup device may be enabled for that channel. See 17.5.3 Port D  
Input Pullup Enable Register.  
Figure 23-2 summarizes the timer registers.  
NOTE:  
References to either timer 1 or timer 2 may be made in the following text by omitting  
the timer number. For example, TSC may generically refer to both T1SC and  
T2SC.  
Addr.  
Register Name  
Bit 7  
TOF  
0
6
5
4
0
3
2
1
Bit 0  
Read:  
0
Timer 1 Status and Control  
TOIE  
TSTOP  
PS2  
PS1  
PS0  
$0020  
Register (T1SC) Write:  
See page 313.  
Reset:  
TRST  
0
0
0
1
0
0
0
9
0
Read:  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
Timer 1 Counter  
Register High (T1CNTH) Write:  
$0021  
$0022  
$0023  
$0024  
$0025  
$0026  
$0027  
$0028  
$0029  
See page 315.  
Reset:  
0
0
6
0
5
0
4
0
3
0
2
0
1
0
Read:  
Bit 7  
Bit 0  
Timer 1 Counter  
Register Low (T1CNTL) Write:  
See page 315.  
Reset:  
0
Bit 15  
1
0
0
0
0
0
0
0
Bit 8  
1
Read:  
Timer 1 Counter Modulo  
Register High (T1MODH) Write:  
14  
13  
12  
11  
10  
9
See page 315.  
Reset:  
1
1
1
1
1
1
Read:  
Timer 1 Counter Modulo  
Register Low (T1MODL) Write:  
Bit 7  
6
1
5
1
4
1
3
2
1
Bit 0  
1
See page 316.  
Reset:  
1
CH0F  
0
1
ELS0B  
0
1
ELS0A  
0
1
TOV0  
0
Read:  
Timer 1 Channel 0 Status and  
Control Register (T1SC0) Write:  
CH0IE  
0
MS0B  
0
MS0A  
0
CH0MAX  
0
See page 316.  
Reset:  
0
Read:  
Timer 1 Channel 0  
Register High (T1CH0H) Write:  
Bit 15  
Bit 7  
14  
13  
12  
11  
10  
9
Bit 8  
See page 319.  
Reset:  
Indeterminate after reset  
Read:  
Timer 1 Channel 0  
Register Low (T1CH0L) Write:  
6
5
0
4
3
2
1
Bit 0  
See page 319.  
Reset:  
Indeterminate after reset  
Read:  
CH1F  
Timer 1 Channel 1 Status and  
Control Register (T1SC1) Write:  
CH1IE  
MS1A  
0
ELS1B  
ELS1A  
TOV1  
CH1MAX  
0
0
See page 316.  
Reset:  
0
0
0
0
0
9
0
Read:  
Timer 1 Channel 1  
Register High (T1CH1H) Write:  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
See page 320.  
Reset:  
Indeterminate after reset  
= Unimplemented  
Figure 23-2. TIM I/O Register Summary (Sheet 1 of 2)  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
305  
Timer Interface Module (TIM)  
Timer Interface Module (TIM)  
Addr.  
Register Name  
Timer 1 Channel 1  
Register Low (T1CH1L) Write:  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Bit 7  
6
5
4
3
2
1
Bit 0  
$002A  
See page 320.  
Reset:  
Indeterminate after reset  
Read:  
TOF  
0
0
TRST  
0
0
Timer 2 Status and Control  
TOIE  
TSTOP  
PS2  
PS1  
PS0  
$002B  
$002C  
$002D  
$002E  
$002F  
$0030  
$0031  
$0032  
$0033  
$0034  
$0035  
Register (T2SC) Write:  
See page 313.  
Reset:  
0
0
1
0
0
0
9
0
Read:  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
Timer 2 Counter  
Register High (T2CNTH) Write:  
See page 315.  
Reset:  
0
0
6
0
5
0
4
0
3
0
2
0
1
0
Read:  
Bit 7  
Bit 0  
Timer 2 Counter  
Register Low (T2CNTL) Write:  
See page 315.  
Reset:  
0
Bit 15  
1
0
0
0
0
0
0
0
Bit 8  
1
Read:  
Timer 2 Counter Modulo  
Register High (T2MODH) Write:  
14  
13  
12  
11  
10  
9
See page 315.  
Reset:  
1
1
1
1
1
1
Read:  
Timer 2 Counter Modulo  
Register Low (T2MODL) Write:  
Bit 7  
6
1
5
1
4
1
3
2
1
Bit 0  
1
See page 316.  
Reset:  
1
CH0F  
0
1
ELS0B  
0
1
ELS0A  
0
1
TOV0  
0
Read:  
Timer 2 Channel 0 Status and  
Control Register (T2SC0) Write:  
CH0IE  
0
MS0B  
0
MS0A  
0
CH0MAX  
0
See page 316.  
Reset:  
0
Read:  
Timer 2 Channel 0  
Register High (T2CH0H) Write:  
Bit 15  
Bit 7  
14  
13  
12  
11  
10  
9
Bit 8  
See page 319.  
Reset:  
Indeterminate after reset  
Read:  
Timer 2 Channel 0  
Register Low (T2CH0L) Write:  
6
5
0
4
3
2
1
Bit 0  
See page 319.  
Reset:  
Indeterminate after reset  
Read:  
CH1F  
Timer 2 Channel 1 Status and  
Control Register (T2SC1) Write:  
CH1IE  
MS1A  
0
ELS1B  
ELS1A  
TOV1  
CH1MAX  
0
0
See page 316.  
Reset:  
0
0
0
0
0
9
0
Read:  
Timer 2 Channel 1  
Register High (T2CH1H) Write:  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
See page 320.  
Reset:  
Indeterminate after reset  
Read:  
Timer 2 Channel 1  
Register Low (T2CH1L) Write:  
Bit 7  
6
5
4
3
2
1
Bit 0  
See page 320.  
Reset:  
Indeterminate after reset  
= Unimplemented  
Figure 23-2. TIM I/O Register Summary (Sheet 2 of 2)  
Data Sheet  
306  
MC68HC908GZ16  
MOTOROLA  
Timer Interface Module (TIM)  
Timer Interface Module (TIM)  
Functional Description  
23.4.1 TIM Counter Prescaler  
The TIM clock source can be one of the seven prescaler outputs. The prescaler  
generates seven clock rates from the internal bus clock. The prescaler select bits,  
PS[2:0], in the TIM status and control register select the TIM clock source.  
23.4.2 Input Capture  
With the input capture function, the TIM can capture the time at which an external  
event occurs. When an active edge occurs on the pin of an input capture channel,  
the TIM latches the contents of the TIM counter into the TIM channel registers,  
TCHxH:TCHxL. The polarity of the active edge is programmable. Input captures  
can generate TIM CPU interrupt requests.  
23.4.3 Output Compare  
With the output compare function, the TIM can generate a periodic pulse with a  
programmable polarity, duration, and frequency. When the counter reaches the  
value in the registers of an output compare channel, the TIM can set, clear, or  
toggle the channel pin. Output compares can generate TIM CPU interrupt  
requests.  
23.4.3.1 Unbuffered Output Compare  
Any output compare channel can generate unbuffered output compare pulses as  
described in 23.4.3 Output Compare. The pulses are unbuffered because  
changing the output compare value requires writing the new value over the old  
value currently in the TIM channel registers.  
An unsynchronized write to the TIM channel registers to change an output compare  
value could cause incorrect operation for up to two counter overflow periods. For  
example, writing a new value before the counter reaches the old value but after the  
counter reaches the new value prevents any compare during that counter overflow  
period. Also, using a TIM overflow interrupt routine to write a new, smaller output  
compare value may cause the compare to be missed. The TIM may pass the new  
value before it is written.  
Use the following methods to synchronize unbuffered changes in the output  
compare value on channel x:  
When changing to a smaller value, enable channel x output compare  
interrupts and write the new value in the output compare interrupt routine.  
The output compare interrupt occurs at the end of the current output  
compare pulse. The interrupt routine has until the end of the counter  
overflow period to write the new value.  
When changing to a larger output compare value, enable TIM overflow  
interrupts and write the new value in the TIM overflow interrupt routine. The  
TIM overflow interrupt occurs at the end of the current counter overflow  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Timer Interface Module (TIM)  
307  
Timer Interface Module (TIM)  
period. Writing a larger value in an output compare interrupt routine (at the  
end of the current pulse) could cause two output compares to occur in the  
same counter overflow period.  
23.4.3.2 Buffered Output Compare  
Channels 0 and 1 can be linked to form a buffered output compare channel whose  
output appears on the TCH0 pin. The TIM channel registers of the linked pair  
alternately control the output.  
Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links  
channel 0 and channel 1. The output compare value in the TIM channel 0 registers  
initially controls the output on the TCH0 pin. Writing to the TIM channel 1 registers  
enables the TIM channel 1 registers to synchronously control the output after the  
TIM overflows. At each subsequent overflow, the TIM channel registers (0 or 1) that  
control the output are the ones written to last. TSC0 controls and monitors the  
buffered output compare function, and TIM channel 1 status and control register  
(TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1, is available  
as a general-purpose I/O pin.  
NOTE:  
In buffered output compare operation, do not write new output compare values to  
the currently active channel registers. User software should track the currently  
active channel to prevent writing a new value to the active channel. Writing to the  
active channel registers is the same as generating unbuffered output compares.  
23.4.4 Pulse Width Modulation (PWM)  
By using the toggle-on-overflow feature with an output compare channel, the TIM  
can generate a PWM signal. The value in the TIM counter modulo registers  
determines the period of the PWM signal. The channel pin toggles when the  
counter reaches the value in the TIM counter modulo registers. The time between  
overflows is the period of the PWM signal.  
As Figure 23-3 shows, the output compare value in the TIM channel registers  
determines the pulse width of the PWM signal. The time between overflow and  
output compare is the pulse width. Program the TIM to clear the channel pin on  
output compare if the state of the PWM pulse is logic 1. Program the TIM to set the  
pin if the state of the PWM pulse is logic 0.  
The value in the TIM counter modulo registers and the selected prescaler output  
determines the frequency of the PWM output. The frequency of an 8-bit PWM  
signal is variable in 256 increments. Writing $00FF (255) to the TIM counter  
modulo registers produces a PWM period of 256 times the internal bus clock period  
if the prescaler select value is $000. See 23.9.1 TIM Status and Control Register.  
Data Sheet  
308  
MC68HC908GZ16  
Timer Interface Module (TIM)  
MOTOROLA  
Timer Interface Module (TIM)  
Functional Description  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
PULSE  
WIDTH  
TCHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
Figure 23-3. PWM Period and Pulse Width  
The value in the TIM channel registers determines the pulse width of the PWM  
output. The pulse width of an 8-bit PWM signal is variable in 256 increments.  
Writing $0080 (128) to the TIM channel registers produces a duty cycle of 128/256  
or 50%.  
23.4.4.1 Unbuffered PWM Signal Generation  
Any output compare channel can generate unbuffered PWM pulses as described  
in 23.4.4 Pulse Width Modulation (PWM). The pulses are unbuffered because  
changing the pulse width requires writing the new pulse width value over the old  
value currently in the TIM channel registers.  
An unsynchronized write to the TIM channel registers to change a pulse width  
value could cause incorrect operation for up to two PWM periods. For example,  
writing a new value before the counter reaches the old value but after the counter  
reaches the new value prevents any compare during that PWM period. Also, using  
a TIM overflow interrupt routine to write a new, smaller pulse width value may  
cause the compare to be missed. The TIM may pass the new value before it is  
written.  
Use the following methods to synchronize unbuffered changes in the PWM pulse  
width on channel x:  
When changing to a shorter pulse width, enable channel x output compare  
interrupts and write the new value in the output compare interrupt routine.  
The output compare interrupt occurs at the end of the current pulse. The  
interrupt routine has until the end of the PWM period to write the new value.  
When changing to a longer pulse width, enable TIM overflow interrupts and  
write the new value in the TIM overflow interrupt routine. The TIM overflow  
interrupt occurs at the end of the current PWM period. Writing a larger value  
in an output compare interrupt routine (at the end of the current pulse) could  
cause two output compares to occur in the same PWM period.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Timer Interface Module (TIM)  
309  
Timer Interface Module (TIM)  
NOTE:  
In PWM signal generation, do not program the PWM channel to toggle on output  
compare. Toggling on output compare prevents reliable 0% duty cycle generation  
and removes the ability of the channel to self-correct in the event of software error  
or noise. Toggling on output compare also can cause incorrect PWM signal  
generation when changing the PWM pulse width to a new, much larger value.  
23.4.4.2 Buffered PWM Signal Generation  
Channels 0 and 1 can be linked to form a buffered PWM channel whose output  
appears on the TCH0 pin. The TIM channel registers of the linked pair alternately  
control the pulse width of the output.  
Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links  
channel 0 and channel 1. The TIM channel 0 registers initially control the pulse  
width on the TCH0 pin. Writing to the TIM channel 1 registers enables the TIM  
channel 1 registers to synchronously control the pulse width at the beginning of the  
next PWM period. At each subsequent overflow, the TIM channel registers (0 or 1)  
that control the pulse width are the ones written to last. TSC0 controls and monitors  
the buffered PWM function, and TIM channel 1 status and control register (TSC1)  
is unused. While the MS0B bit is set, the channel 1 pin, TCH1, is available as a  
general-purpose I/O pin.  
NOTE:  
In buffered PWM signal generation, do not write new pulse width values to the  
currently active channel registers. User software should track the currently active  
channel to prevent writing a new value to the active channel. Writing to the active  
channel registers is the same as generating unbuffered PWM signals.  
23.4.4.3 PWM Initialization  
To ensure correct operation when generating unbuffered or buffered PWM signals,  
use the following initialization procedure:  
1. In the TIM status and control register (TSC):  
a. Stop the TIM counter by setting the TIM stop bit, TSTOP.  
b. Reset the TIM counter and prescaler by setting the TIM reset bit,  
TRST.  
2. In the TIM counter modulo registers (TMODH:TMODL), write the value for  
the required PWM period.  
3. In the TIM channel x registers (TCHxH:TCHxL), write the value for the  
required pulse width.  
4. In TIM channel x status and control register (TSCx):  
a. Write 0:1 (for unbuffered output compare or PWM signals) or 1:0 (for  
buffered output compare or PWM signals) to the mode select bits,  
MSxB:MSxA. See Table 23-3.  
b. Write 1 to the toggle-on-overflow bit, TOVx.  
Data Sheet  
310  
MC68HC908GZ16  
Timer Interface Module (TIM)  
MOTOROLA  
Timer Interface Module (TIM)  
Interrupts  
c. Write 1:0 (to clear output on compare) or 1:1 (to set output on compare)  
to the edge/level select bits, ELSxB:ELSxA. The output action on  
compare must force the output to the complement of the pulse width  
level. See Table 23-3.  
NOTE:  
In PWM signal generation, do not program the PWM channel to toggle on output  
compare. Toggling on output compare prevents reliable 0% duty cycle generation  
and removes the ability of the channel to self-correct in the event of software error  
or noise. Toggling on output compare can also cause incorrect PWM signal  
generation when changing the PWM pulse width to a new, much larger value.  
5. In the TIM status control register (TSC), clear the TIM stop bit, TSTOP.  
Setting MS0B links channels 0 and 1 and configures them for buffered PWM  
operation. The TIM channel 0 registers (TCH0H:TCH0L) initially control the  
buffered PWM output. TIM status control register 0 (TSCR0) controls and monitors  
the PWM signal from the linked channels.  
Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIM overflows.  
Subsequent output compares try to force the output to a state it is already in and  
have no effect. The result is a 0% duty cycle output.  
Setting the channel x maximum duty cycle bit (CHxMAX) and setting the TOVx bit  
generates a 100% duty cycle output. See 23.9.4 TIM Channel Status and Control  
Registers.  
23.5 Interrupts  
The following TIM sources can generate interrupt requests:  
TIM overflow flag (TOF) — The TOF bit is set when the TIM counter reaches  
the modulo value programmed in the TIM counter modulo registers. The TIM  
overflow interrupt enable bit, TOIE, enables TIM overflow CPU interrupt  
requests. TOF and TOIE are in the TIM status and control register.  
TIM channel flags (CH1F:CH0F) — The CHxF bit is set when an input  
capture or output compare occurs on channel x. Channel x TIM CPU  
interrupt requests are controlled by the channel x interrupt enable bit,  
CHxIE. Channel x TIM CPU interrupt requests are enabled when CHxIE =  
1. CHxF and CHxIE are in the TIM channel x status and control register.  
23.6 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power- consumption standby  
modes.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Timer Interface Module (TIM)  
311  
Timer Interface Module (TIM)  
23.6.1 Wait Mode  
The TIM remains active after the execution of a WAIT instruction. In wait mode, the  
TIM registers are not accessible by the CPU. Any enabled CPU interrupt request  
from the TIM can bring the MCU out of wait mode.  
If TIM functions are not required during wait mode, reduce power consumption by  
stopping the TIM before executing the WAIT instruction.  
23.6.2 Stop Mode  
The TIM is inactive after the execution of a STOP instruction. The STOP instruction  
does not affect register conditions or the state of the TIM counter. TIM operation  
resumes when the MCU exits stop mode after an external interrupt.  
23.7 TIM During Break Interrupts  
A break interrupt stops the TIM counter.  
The system integration module (SIM) controls whether status bits in other modules  
can be cleared during the break state. The BCFE bit in the SIM break flag control  
register (SBFCR) enables software to clear status bits during the break state. See  
20.7.3 Break Flag Control Register.  
To allow software to clear status bits during a break interrupt, write a logic 1 to the  
BCFE bit. If a status bit is cleared during the break state, it remains cleared when  
the MCU exits the break state.  
To protect status bits during the break state, write a logic 0 to the BCFE bit. With  
BCFE at logic 0 (its default state), software can read and write I/O registers during  
the break state without affecting status bits. Some status bits have a 2-step  
read/write clearing procedure. If software does the first step on such a bit before  
the break, the bit cannot change during the break state as long as BCFE is at logic  
0. After the break, doing the second step clears the status bit.  
23.8 I/O Signals  
Port D shares four of its pins with the TIM. The four TIM channel I/O pins are  
T1CH0, T1CH1, T2CH0, and T2CH1 as described in 23.3 Pin Name  
Conventions.  
Each channel I/O pin is programmable independently as an input capture pin or an  
output compare pin. T1CH0 and T2CH0 can be configured as buffered output  
compare or buffered PWM pins.  
Data Sheet  
312  
MC68HC908GZ16  
Timer Interface Module (TIM)  
MOTOROLA  
Timer Interface Module (TIM)  
I/O Registers  
23.9 I/O Registers  
NOTE:  
References to either timer 1 or timer 2 may be made in the following text by omitting  
the timer number. For example, TSC may generically refer to both T1SC AND  
T2SC.  
These I/O registers control and monitor operation of the TIM:  
TIM status and control register (TSC)  
TIM counter registers (TCNTH:TCNTL)  
TIM counter modulo registers (TMODH:TMODL)  
TIM channel status and control registers (TSC0 and TSC1)  
TIM channel registers (TCH0H:TCH0L, TCH1H:TCH1L)  
23.9.1 TIM Status and Control Register  
The TIM status and control register (TSC):  
Enables TIM overflow interrupts  
Flags TIM overflows  
Stops the TIM counter  
Resets the TIM counter  
Prescales the TIM counter clock  
Address: T1SC, $0020 and T2SC, $002B  
Bit 7  
TOF  
0
6
TOIE  
0
5
TSTOP  
1
4
0
3
0
2
PS2  
0
1
PS1  
0
Bit 0  
PS0  
0
Read:  
Write:  
Reset:  
TRST  
0
0
0
= Unimplemented  
Figure 23-4. TIM Status and Control Register (TSC)  
TOF — TIM Overflow Flag Bit  
This read/write flag is set when the TIM counter reaches the modulo value  
programmed in the TIM counter modulo registers. Clear TOF by reading the TIM  
status and control register when TOF is set and then writing a logic 0 to TOF. If  
another TIM overflow occurs before the clearing sequence is complete, then  
writing logic 0 to TOF has no effect. Therefore, a TOF interrupt request cannot  
be lost due to inadvertent clearing of TOF. Reset clears the TOF bit. Writing a  
logic 1 to TOF has no effect.  
1 = TIM counter has reached modulo value  
0 = TIM counter has not reached modulo value  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Timer Interface Module (TIM)  
313  
Timer Interface Module (TIM)  
TOIE — TIM Overflow Interrupt Enable Bit  
This read/write bit enables TIM overflow interrupts when the TOF bit becomes  
set. Reset clears the TOIE bit.  
1 = TIM overflow interrupts enabled  
0 = TIM overflow interrupts disabled  
TSTOP — TIM Stop Bit  
This read/write bit stops the TIM counter. Counting resumes when TSTOP is  
cleared. Reset sets the TSTOP bit, stopping the TIM counter until software  
clears the TSTOP bit.  
1 = TIM counter stopped  
0 = TIM counter active  
NOTE:  
Do not set the TSTOP bit before entering wait mode if the TIM is required to exit  
wait mode.  
TRST — TIM Reset Bit  
Setting this write-only bit resets the TIM counter and the TIM prescaler. Setting  
TRST has no effect on any other registers. Counting resumes from $0000.  
TRST is cleared automatically after the TIM counter is reset and always reads  
as logic 0. Reset clears the TRST bit.  
1 = Prescaler and TIM counter cleared  
0 = No effect  
NOTE:  
Setting the TSTOP and TRST bits simultaneously stops the TIM counter at a value  
of $0000.  
PS[2:0] — Prescaler Select Bits  
These read/write bits select one of the seven prescaler outputs as the input to  
the TIM counter as Table 23-2 shows. Reset clears the PS[2:0] bits.  
Table 23-2. Prescaler Selection  
PS2  
0
PS1  
0
PS0  
0
TIM Clock Source  
Internal bus clock ÷ 1  
0
0
1
Internal bus clock ÷ 2  
Internal bus clock ÷ 4  
Internal bus clock ÷ 8  
Internal bus clock ÷ 16  
Internal bus clock ÷ 32  
Internal bus clock ÷ 64  
Not available  
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
Data Sheet  
314  
MC68HC908GZ16  
MOTOROLA  
Timer Interface Module (TIM)  
Timer Interface Module (TIM)  
I/O Registers  
23.9.2 TIM Counter Registers  
The two read-only TIM counter registers contain the high and low bytes of the value  
in the TIM counter. Reading the high byte (TCNTH) latches the contents of the low  
byte (TCNTL) into a buffer. Subsequent reads of TCNTH do not affect the latched  
TCNTL value until TCNTL is read. Reset clears the TIM counter registers. Setting  
the TIM reset bit (TRST) also clears the TIM counter registers.  
NOTE:  
If you read TCNTH during a break interrupt, be sure to unlatch TCNTL by reading  
TCNTL before exiting the break interrupt. Otherwise, TCNTL retains the value  
latched during the break.  
Address: T1CNTH, $0021 and T2CNTH, $002C  
Bit 7  
6
5
4
3
2
1
9
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
14  
13  
12  
11  
10  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 23-5. TIM Counter Registers High (TCNTH)  
Address: T1CNTL, $0022 and T2CNTL, $002D  
Bit 7  
Bit 7  
6
6
5
5
4
4
3
3
2
2
1
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 23-6. TIM Counter Registers Low (TCNTL)  
23.9.3 TIM Counter Modulo Registers  
The read/write TIM modulo registers contain the modulo value for the TIM counter.  
When the TIM counter reaches the modulo value, the overflow flag (TOF) becomes  
set, and the TIM counter resumes counting from $0000 at the next timer clock.  
Writing to the high byte (TMODH) inhibits the TOF bit and overflow interrupts until  
the low byte (TMODL) is written. Reset sets the TIM counter modulo registers.  
Address: T1MODH, $0023 and T2MODH, $002E  
Bit 7  
Bit 15  
1
6
14  
1
5
13  
1
4
12  
1
3
11  
1
2
10  
1
1
9
1
Bit 0  
Bit 8  
1
Read:  
Write:  
Reset:  
Figure 23-7. TIM Counter Modulo Register High (TMODH)  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
315  
Timer Interface Module (TIM)  
Timer Interface Module (TIM)  
Address: T1MODL, $0024 and T2MODL, $002F  
Bit 7  
Bit 7  
1
6
6
1
5
5
1
4
4
1
3
3
1
2
2
1
1
1
1
Bit 0  
Bit 0  
1
Read:  
Write:  
Reset:  
Figure 23-8. TIM Counter Modulo Register Low (TMODL)  
Reset the TIM counter before writing to the TIM counter modulo registers.  
NOTE:  
23.9.4 TIM Channel Status and Control Registers  
Each of the TIM channel status and control registers:  
Flags input captures and output compares  
Enables input capture and output compare interrupts  
Selects input capture, output compare, or PWM operation  
Selects high, low, or toggling output on output compare  
Selects rising edge, falling edge, or any edge as the active input capture  
trigger  
Selects output toggling on TIM overflow  
Selects 0% and 100% PWM duty cycle  
Selects buffered or unbuffered output compare/PWM operation  
Address: T1SC0, $0025 and T2SC0, $0030  
Bit 7  
CH0F  
0
6
CH0IE  
0
5
MS0B  
0
4
MS0A  
0
3
ELS0B  
0
2
ELS0A  
0
1
TOV0  
0
Bit 0  
CH0MAX  
0
Read:  
Write:  
Reset:  
0
Figure 23-9. TIM Channel 0 Status and Control Register (TSC0)  
Address: T1SC1, $0028 and T2SC1, $0033  
Bit 7  
CH1F  
0
6
CH1IE  
0
5
0
4
MS1A  
0
3
ELS1B  
0
2
ELS1A  
0
1
TOV1  
0
Bit 0  
CH1MAX  
0
Read:  
Write:  
Reset:  
0
0
Figure 23-10. TIM Channel 1 Status and Control Register (TSC1)  
CHxF — Channel x Flag Bit  
When channel x is an input capture channel, this read/write bit is set when an  
active edge occurs on the channel x pin. When channel x is an output compare  
channel, CHxF is set when the value in the TIM counter registers matches the  
value in the TIM channel x registers.  
Data Sheet  
316  
MC68HC908GZ16  
Timer Interface Module (TIM)  
MOTOROLA  
Timer Interface Module (TIM)  
I/O Registers  
When TIM CPU interrupt requests are enabled (CHxIE = 1), clear CHxF by  
reading TIM channel x status and control register with CHxF set and then writing  
a logic 0 to CHxF. If another interrupt request occurs before the clearing  
sequence is complete, then writing logic 0 to CHxF has no effect. Therefore, an  
interrupt request cannot be lost due to inadvertent clearing of CHxF.  
Reset clears the CHxF bit. Writing a logic 1 to CHxF has no effect.  
1 = Input capture or output compare on channel x  
0 = No input capture or output compare on channel x  
CHxIE — Channel x Interrupt Enable Bit  
This read/write bit enables TIM CPU interrupt service requests on channel x.  
Reset clears the CHxIE bit.  
1 = Channel x CPU interrupt requests enabled  
0 = Channel x CPU interrupt requests disabled  
MSxB — Mode Select Bit B  
This read/write bit selects buffered output compare/PWM operation. MSxB  
exists only in the TIM1 channel 0 and TIM2 channel 0 status and control  
registers.  
Setting MS0B disables the channel 1 status and control register and reverts  
TCH1 to general-purpose I/O.  
Reset clears the MSxB bit.  
1 = Buffered output compare/PWM operation enabled  
0 = Buffered output compare/PWM operation disabled  
MSxA — Mode Select Bit A  
When ELSxB:A 00, this read/write bit selects either input capture operation or  
unbuffered output compare/PWM operation.  
See Table 23-3.  
1 = Unbuffered output compare/PWM operation  
0 = Input capture operation  
When ELSxB:A = 00, this read/write bit selects the initial output level of the  
TCHx pin. See Table 23-3.  
Reset clears the MSxA bit.  
1 = Initial output level low  
0 = Initial output level high  
NOTE:  
Before changing a channel function by writing to the MSxB or MSxA bit, set the  
TSTOP and TRST bits in the TIM status and control register (TSC).  
ELSxB and ELSxA — Edge/Level Select Bits  
When channel x is an input capture channel, these read/write bits control the  
active edge-sensing logic on channel x.  
When channel x is an output compare channel, ELSxB and ELSxA control the  
channel x output behavior when an output compare occurs.  
When ELSxB and ELSxA are both clear, channel x is not connected to port D,  
and pin PTDx/TCHx is available as a general-purpose I/O pin. Table 23-3  
shows how ELSxB and ELSxA work. Reset clears the ELSxB and ELSxA bits.  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Timer Interface Module (TIM)  
317  
Timer Interface Module (TIM)  
Table 23-3. Mode, Edge, and Level Selection  
MSxB:MSxA  
ELSxB:ELSxA  
Mode  
Configuration  
Pin under port control;  
initial output level high  
X0  
00  
Output  
preset  
Pin under port control;  
initial output level low  
X1  
00  
00  
00  
01  
10  
Capture on rising edge only  
Capture on falling edge only  
Input  
capture  
Capture on rising or  
falling edge  
00  
11  
01  
01  
01  
1X  
1X  
1X  
01  
10  
11  
01  
10  
11  
Toggle output on compare  
Clear output on compare  
Set output on compare  
Toggle output on compare  
Clear output on compare  
Set output on compare  
Output compare  
or PWM  
Buffered output  
compare  
or buffered  
PWM  
NOTE:  
Before enabling a TIM channel register for input capture operation, make sure that  
the PTD/TCHx pin is stable for at least two bus clocks.  
TOVx — Toggle On Overflow Bit  
When channel x is an output compare channel, this read/write bit controls the  
behavior of the channel x output when the TIM counter overflows. When  
channel x is an input capture channel, TOVx has no effect.  
Reset clears the TOVx bit.  
1 = Channel x pin toggles on TIM counter overflow.  
0 = Channel x pin does not toggle on TIM counter overflow.  
NOTE:  
When TOVx is set, a TIM counter overflow takes precedence over a channel x  
output compare if both occur at the same time.  
CHxMAX — Channel x Maximum Duty Cycle Bit  
When the TOVx bit is at logic 1, setting the CHxMAX bit forces the duty cycle of  
buffered and unbuffered PWM signals to 100%. As Figure 23-11 shows, the  
CHxMAX bit takes effect in the cycle after it is set or cleared. The output stays  
at the 100% duty cycle level until the cycle after CHxMAX is cleared.  
Data Sheet  
318  
MC68HC908GZ16  
Timer Interface Module (TIM)  
MOTOROLA  
Timer Interface Module (TIM)  
I/O Registers  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
TCHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
CHxMAX  
Figure 23-11. CHxMAX Latency  
23.9.5 TIM Channel Registers  
These read/write registers contain the captured TIM counter value of the input  
capture function or the output compare value of the output compare function. The  
state of the TIM channel registers after reset is unknown.  
In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the TIM  
channel x registers (TCHxH) inhibits input captures until the low byte (TCHxL) is  
read.  
In output compare mode (MSxB:MSxA 0:0), writing to the high byte of the TIM  
channel x registers (TCHxH) inhibits output compares until the low byte (TCHxL) is  
written.  
Address: T1CH0H, $0026 and T2CH0H, $0031  
Bit 7  
6
5
4
3
2
1
9
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
14  
13  
12  
11  
10  
Indeterminate after reset  
Figure 23-12. TIM Channel 0 Register High (TCH0H)  
Address: T1CH0L, $0027 and T2CH0L $0032  
Bit 7  
6
5
4
4
3
3
2
2
1
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 7  
6
5
Indeterminate after reset  
Figure 23-13. TIM Channel 0 Register Low (TCH0L)  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
319  
Timer Interface Module (TIM)  
Timer Interface Module (TIM)  
Address: T1CH1H, $0029 and T2CH1H, $0034  
Bit 7  
6
5
4
3
2
1
9
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
14  
13  
12  
11  
10  
Indeterminate after reset  
Figure 23-14. TIM Channel 1 Register High (TCH1H)  
Address: T1CH1L, $002A and T2CH1L, $0035  
Bit 7  
6
5
4
4
3
3
2
2
1
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 7  
6
5
Indeterminate after reset  
Figure 23-15. TIM Channel 1 Register Low (TCH1L)  
Data Sheet  
320  
MC68HC908GZ16  
MOTOROLA  
Timer Interface Module (TIM)  
Data Sheet — MC68HC908GZ16  
Section 24. Electrical Specifications  
24.1 Introduction  
This section contains electrical and timing specifications.  
24.2 Absolute Maximum Ratings  
Maximum ratings are the extreme limits to which the MCU can be exposed without  
permanently damaging it.  
NOTE:  
This device is not guaranteed to operate properly at the maximum ratings. Refer to  
24.5 5-Vdc Electrical Characteristics and 24.6 3.3-Vdc Electrical  
Characteristics for guaranteed operating conditions.  
Characteristic(1)  
Supply voltage  
Symbol  
VDD  
Value  
Unit  
V
–0.3 to + 6.0  
VIn  
VSS – 0.3 to VDD + 0.3  
Input voltage  
V
Maximum current per pin  
I
± 15  
± 25  
mA  
mA  
excluding those specified below  
Maximum current for pins  
PTC0–PTC4  
IPTC0–PTC4  
Maximum current into VDD  
Maximum current out of VSS  
Storage temperature  
IMVDD  
IMVSS  
Tstg  
150  
150  
mA  
mA  
°C  
–55 to +150  
1. Voltages referenced to VSS  
NOTE:  
This device contains circuitry to protect the inputs against damage due to high  
static voltages or electric fields; however, it is advised that normal precautions be  
taken to avoid application of any voltage higher than maximum-rated voltages to  
this high-impedance circuit. For proper operation, it is recommended that VIn and  
VOut be constrained to the range VSS (VIn or VOut) VDD. Reliability of operation  
is enhanced if unused inputs are connected to an appropriate logic voltage level  
(for example, either VSS or VDD).  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
Electrical Specifications  
321  
Electrical Specifications  
24.3 Functional Operating Range  
Characteristic  
Symbol  
Value  
Unit  
TA  
Operating temperature range  
Operating voltage range  
–40 to +125  
°C  
5.0 ±10%  
3.3 ±10%  
VDD  
V
24.4 Thermal Characteristics  
Characteristic  
Thermal resistance  
Symbol  
Value  
Unit  
θJA  
32-pin LQFP  
48-pin LQFP  
95  
95  
°C/W  
PI/O  
PD  
I/O pin power dissipation  
Power dissipation(1)  
User determined  
W
W
PD = (IDD × VDD) + PI/O  
K/(TJ + 273 °C)  
=
P
D × (TA + 273 °C)  
+ PD2 × θJA  
Constant(2)  
K
W/°C  
°C  
TJ  
TA + (PD × θJA)  
Average junction temperature  
1. Power dissipation is a function of temperature.  
2. K is a constant unique to the device. K can be determined for a known TA and measured PD.  
With this value of K, PD and TJ can be determined for any value of TA.  
Data Sheet  
322  
MC68HC908GZ16  
Electrical Specifications  
MOTOROLA  
Electrical Specifications  
5-Vdc Electrical Characteristics  
24.5 5-Vdc Electrical Characteristics  
Typ(2)  
Characteristic(1)  
Symbol  
Min  
Max  
Unit  
Output high voltage  
V
V
V
(ILoad = –2.0 mA) all I/O pins  
VOH  
VOH  
VOH  
IOH1  
VDD – 0.8  
(ILoad = –10.0 mA) all I/O pins  
VDD – 1.5  
(ILoad = –20.0 mA) pins PTC0–PTC4 only  
Maximum combined IOH for port PTA7–PTA3,  
VDD – 1.5  
50  
50  
mA  
mA  
mA  
port PTC0–PTC1, port E, port PTD0–PTD3  
Maximum combined IOH for port PTA2–PTA0,  
IOH2  
IOHT  
port B, port PTC2-PTC6, port PTD4–PTD7  
Maximum total IOH for all port pins  
100  
Output low voltage  
0.4  
1.5  
1.5  
V
V
V
(ILoad = 1.6 mA) all I/O pins  
VOL  
VOL  
VOL  
IOL1  
(ILoad = 10 mA) all I/O pins  
(ILoad = 20mA) pins PTC0–PTC4 only  
Maximum combined IOH for port PTA7–PTA3,  
50  
50  
mA  
mA  
mA  
V
port PTC0-PTC1, port E, port PTD0–PTD3  
Maximum combined IOH for port PTA2–PTA0,  
IOL2  
IOLT  
VIH  
port B, port PTC2–PTC6, port PTD4–PTD7  
Maximum total IOL for all port pins  
100  
VDD  
Input high voltage  
0.7 × VDD  
All ports, IRQ, RST, OSC1  
Input low voltage  
VIL  
VSS  
0.2 × VDD  
V
All ports, IRQ, RST, OSC1  
VDD supply current  
Run(3)  
Wait(4)  
20  
6
30  
12  
mA  
mA  
Stop(5)  
IDD  
25°C  
3
20  
300  
50  
500  
µA  
µA  
µA  
µA  
µA  
25°C with TBM enabled(6)  
25°C with LVI and TBM enabled(6)  
–40°C to 125°C with TBM enabled(6)  
–40°C to 125°C with LVI and TBM enabled(6)  
I/O ports Hi-Z leakage current(7)  
Input current  
IIL  
IIn  
–10  
–1  
+10  
+1  
µA  
µA  
Pullup resistors (as input only)  
Ports PTA7/KBD7–PTA0/KBD0,  
RPU  
20  
45  
65  
kΩ  
PTC6–PTC0/CANTX  
,
PTD7/T2CH1–PTD0/SS  
COut  
CIn  
Capacitance  
12  
8
pF  
Ports (as input or output)  
Continued on next page  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
323  
Electrical Specifications  
Electrical Specifications  
Typ(2)  
Characteristic(1)  
Symbol  
VTST  
Min  
VDD + 2.5  
3.90  
Max  
VDD + 4.0  
4.50  
Unit  
Monitor mode entry voltage  
V
V
V
VTRIPF  
VTRIPR  
Low-voltage inhibit, trip falling voltage  
Low-voltage inhibit, trip rising voltage  
Low-voltage inhibit reset/recover hysteresis  
4.25  
4.35  
4.20  
4.60  
VHYS  
100  
mV  
(VTRIPF + VHYS = VTRIPR  
)
POR rearm voltage(8)  
POR reset voltage(9)  
VPOR  
VPORRST  
RPOR  
0
0
700  
100  
800  
mV  
mV  
POR rise time ramp rate(10)  
0.035  
V/ms  
1. VDD = 5.0 Vdc ± 10%, VSS = 0 Vdc, TA = TA (min) to TA (max), unless otherwise noted  
2. Typical values reflect average measurements at midpoint of voltage range, 25°C only.  
3. Run (operating) IDD measured using external square wave clock source (fOSC = 32 MHz). All inputs 0.2 V from rail. No  
dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly  
affects run IDD. Measured with all modules enabled.  
4. Wait IDD measured using external square wave clock source (fOSC = 32 MHz). All inputs 0.2 V from rail. No dc loads. Less  
than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait  
IDD. Measured with ICG and LVI enabled.  
5. Stop IDD is measured with OSC1 = VSS. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. All ports  
configured as inputs. Typical values at midpoint of voltage range, 25°C only.  
6. Stop IDD with TBM enabled is measured using an external square wave clock source (fOSC = 32 MHz). All inputs 0.2 V  
from rail. No dc loads. Less than 100 pF on all outputs. All inputs configured as inputs.  
7. Pullups and pulldowns are disabled. Port B leakage is specified in 24.10 5.0-Volt ADC Characteristics.  
8. Maximum is highest voltage that POR is guaranteed.  
9. Maximum is highest voltage that POR is possible.  
10. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum  
VDD is reached.  
Data Sheet  
324  
MC68HC908GZ16  
MOTOROLA  
Electrical Specifications  
Electrical Specifications  
3.3-Vdc Electrical Characteristics  
24.6 3.3-Vdc Electrical Characteristics  
Typ(2)  
Characteristic(1)  
Symbol  
Min  
Max  
Unit  
Output high voltage  
V
V
V
(ILoad = –0.6 mA) all I/O pins  
VOH  
VOH  
VOH  
IOH1  
VDD – 0.3  
(ILoad = –4.0 mA) all I/O pins  
VDD – 1.0  
(ILoad = –10.0 mA) pins PTC0–PTC4 only  
Maximum combined IOH for port PTA7–PTA3,  
VDD – 1.0  
30  
30  
60  
mA  
mA  
mA  
port PTC0–PTC1, port E, port PTD0–PTD3  
Maximum combined IOH for port PTA2–PTA0,  
IOH2  
IOHT  
port B, port PTC2–PTC6, port PTD4–PTD7  
Maximum total IOH for all port pins  
Output low voltage  
0.3  
1.0  
0.8  
V
V
V
(ILoad = 1.6 mA) all I/O pins  
VOL  
VOL  
VOL  
IOL1  
(ILoad = 10 mA) all I/O pins  
(ILoad = 20 mA) pins PTC0–PTC4 only  
Maximum combined IOH for port PTA7–PTA3,  
30  
30  
mA  
mA  
mA  
V
port PTC0–PTC1, port E, port PTD0–PTD3  
Maximum combined IOH for port PTA2–PTA0,  
IOL2  
IOLT  
VIH  
port B, port PTC2–PTC6, port PTD4–PTD7  
Maximum total IOL for all port pins  
60  
Input high voltage  
0.7 × VDD  
VDD  
All ports, IRQ, RST, OSC1  
Input low voltage  
VIL  
VSS  
0.3 × VDD  
V
All ports, IRQ, RST, OSC1  
VDD supply current  
Run(3)  
Wait(4)  
8
3
12  
6
mA  
mA  
Stop(5)  
IDD  
25°C  
2
12  
200  
30  
300  
µA  
µA  
µA  
µA  
µA  
25°C with TBM enabled(6)  
25°C with LVI and TBM enabled(6)  
–40°C to 125°C with TBM enabled(6)  
–40°C to 125°C with LVI and TBM enabled(6)  
I/O ports Hi-Z leakage current(7)  
Input current  
IIL  
IIn  
–10  
–1  
+10  
+1  
µA  
µA  
Pullup resistors (as input only)  
RPU  
Ports PTA7/KBD7–PTA0/KBD0, PTC6–PTC0,  
PTD7/T2CH1–PTD0/SS  
20  
45  
65  
kΩ  
COut  
CIn  
Capacitance  
12  
8
pF  
Ports (as input or output)  
Continued on next page  
MC68HC908GZ16  
Data Sheet  
325  
MOTOROLA  
Electrical Specifications  
Electrical Specifications  
Typ(2)  
Characteristic(1)  
Symbol  
VTST  
Min  
VDD + 2.5  
2.35  
Max  
VDD + 4.0  
2.7  
Unit  
Monitor mode entry voltage  
V
V
V
VTRIPF  
VTRIPR  
Low-voltage inhibit, trip falling voltage  
Low-voltage inhibit, trip rising voltage  
Low-voltage inhibit reset/recover hysteresis  
2.6  
2.4  
2.66  
2.8  
VHYS  
100  
mV  
(VTRIPF + VHYS = VTRIPR  
)
POR rearm voltage(8)  
POR reset voltage(9)  
VPOR  
VPORRST  
RPOR  
0
0
700  
100  
800  
mV  
mV  
POR rise time ramp rate(10)  
0.02  
V/ms  
1. VDD = 3.3 Vdc ± 10%, VSS = 0 Vdc, TA = TA (min) to TA (max), unless otherwise noted  
2. Typical values reflect average measurements at midpoint of voltage range, 25°C only.  
3. Run (operating) IDD measured using external square wave clock source (fOSC = 16 MHz). All inputs 0.2 V from rail. No  
dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly  
affects run IDD. Measured with all modules enabled.  
4. Wait IDD measured using external square wave clock source (fOSC = 16 MHz). All inputs 0.2 V from rail. No dc loads. Less  
than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait  
IDD. Measured with ICG and LVI enabled.  
5. Stop IDD is measured with OSC1 = VSS. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. All ports  
configured as inputs. Typical values at midpoint of voltage range, 25°C only.  
6. Stop IDD with TBM enabled is measured using an external square wave clock source (fOSC = 16 MHz). All inputs 0.2 V  
from rail. No dc loads. Less than 100 pF on all outputs. All inputs configured as inputs.  
7. Pullups and pulldowns are disabled.  
8. Maximum is highest voltage that POR is guaranteed.  
9. Maximum is highest voltage that POR is possible.  
10. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum  
VDD is reached.  
Data Sheet  
326  
MC68HC908GZ16  
MOTOROLA  
Electrical Specifications  
Electrical Specifications  
5.0-Volt Control Timing  
24.7 5.0-Volt Control Timing  
Characteristic(1)  
Symbol  
Min  
Max  
Unit  
Frequency of operation  
Crystal option  
fOSC  
1
8
MHz  
External clock option(2)  
dc  
32  
f
OP (fBus  
tCYC  
tRL  
)
Internal operating frequency  
125  
50  
8
MHz  
ns  
Internal clock period (1/fOP  
)
RST input pulse width low  
ns  
tILIH  
IRQ interrupt pulse width low (edge-triggered)  
IRQ interrupt pulse period  
50  
ns  
Note(3)  
tILIL  
tCYC  
1. VSS = 0 Vdc; timing shown with respect to 20% VDD and 70% VDD unless otherwise noted.  
2. No more than 10% duty cycle deviation from 50%.  
3. The minimum period is the number of cycles it takes to execute the interrupt service routine plus 1 tCYC  
.
24.8 3.3-Volt Control Timing  
Characteristic(1)  
Symbol  
Min  
Max  
Unit  
Frequency of operation  
Crystal option  
fOSC  
1
8
MHz  
External clock option(2)  
dc  
16  
fOP (fBus  
tCYC  
tRL  
)
Internal operating frequency  
4
MHz  
ns  
Internal clock period (1/fOP  
)
250  
125  
125  
RST input pulse width low  
ns  
tILIH  
IRQ interrupt pulse width low (edge-triggered)  
IRQ interrupt pulse period  
ns  
Note(3)  
tILIL  
tCYC  
1. VSS = 0 Vdc; timing shown with respect to 20% VDD and 70% VDD unless otherwise noted.  
2. No more than 10% duty cycle deviation from 50%.  
3. The minimum period is the number of cycles it takes to execute the interrupt service routine plus 1 tCYC  
.
tRL  
RST  
tILIL  
tILIH  
IRQ  
MC68HC908GZ16  
Data Sheet  
327  
MOTOROLA  
Electrical Specifications  
Electrical Specifications  
24.9 Clock Generation Module Characteristics  
24.9.1 CGM Component Specifications  
Characteristic  
Symbol  
fXCLK  
CL  
Min  
1
Typ  
4
Max  
8
Unit  
MHz  
pF  
Crystal frequency  
Crystal load capacitance(1)  
Crystal fixed capacitance  
1
C1  
(2 x CL) –5  
(2 x CL) –5  
pF  
C2  
Crystal tuning capacitance  
Feedback bias resistor  
pF  
RB  
10  
20  
MΩ  
1. Consult crystal manufacturer’s data.  
24.9.2 CGM Electrical Specifications  
Characteristic  
Reference frequency (for PLL operation)  
Range nominal multiplier  
Symbol  
Min  
1
Typ  
4
Max  
8
Unit  
MHz  
KHz  
fRCLK  
fNOM  
fVRS  
71.42  
(Lx2E)fNOM  
Programmed VCO center-of-range frequency(1)  
MHz  
1. See 7.3.6 Programming the PLL for detailed instruction on selecting appropriate values for L and E.  
Data Sheet  
MC68HC908GZ16  
MOTOROLA  
328  
Electrical Specifications  
Electrical Specifications  
5.0-Volt ADC Characteristics  
24.10 5.0-Volt ADC Characteristics  
Characteristic(1)  
Symbol  
Min  
Max  
5.5  
Unit  
Comments  
V
DDAD should be tied to  
VDDAD  
Supply voltage  
4.5  
V
the same potential as VDD  
via separate traces.  
VADIN  
BAD  
VDDAD  
VADIN <= VDDAD  
Input voltages  
0
10  
V
Bits  
Resolution  
10  
+4  
AAD  
Absolute accuracy  
ADC internal clock  
Conversion range  
Power-up time  
–4  
Counts  
Hz  
Includes quantization  
fADIC  
RAD  
tAIC = 1/fADIC  
500 k  
VSSAD  
1.048 M  
VDDAD  
V
tADPU  
tADC  
tADS  
MAD  
ZADI  
FADI  
CADI  
IVREF  
tAIC cycles  
tAIC cycles  
tAIC cycles  
16  
16  
5
17  
Conversion time  
Sample time  
Monotonicity  
Guaranteed  
VADIN = VSSA  
ADIN = VDDA  
Zero input reading  
Full-scale reading  
Input capacitance  
VDDAD/VREFH current  
000  
3FC  
003  
3FF  
30  
Hex  
Hex  
pF  
V
Not tested  
1.6  
mA  
Absolute accuracy  
AAD  
–1  
+1  
LSB  
LSB  
Includes quantization  
(8-bit truncation mode)  
Quantization error  
–1/8  
+7/8  
(8-bit truncation mode)  
1. VDD = 5.0 Vdc ± 10%, VSS = 0 Vdc, VDDAD/VREFH = 5.0 Vdc ± 10%, VSSAD/VREFL = 0 Vdc  
MC68HC908GZ16  
Data Sheet  
329  
MOTOROLA  
Electrical Specifications  
Electrical Specifications  
24.11 3.3-Volt ADC Characteristics  
Characteristic(1)  
Symbol  
Min  
Max  
3.6  
Unit  
Comments  
V
DDAD should be tied to  
VDDAD  
Supply voltage  
3.0  
V
the same potential as VDD  
via separate traces.  
VADIN  
BAD  
VDDAD  
VADIN <= VDDAD  
Input voltages  
0
10  
V
Bits  
Resolution  
10  
+6  
AAD  
Absolute accuracy  
ADC internal clock  
Conversion range  
Power-up time  
–6  
Counts  
Hz  
Includes quantization  
tAIC = 1/fADIC  
fADIC  
RAD  
500 k  
VSSAD  
1.048 M  
VDDAD  
V
tADPU  
tADC  
tADS  
MAD  
ZADI  
FADI  
CADI  
IVREF  
tAIC cycles  
tAIC cycles  
tAIC cycles  
16  
16  
5
17  
Conversion time  
Sample time  
Monotonicity  
Guaranteed  
VADIN = VSSA  
VADIN = VDDA  
Not tested  
Zero input reading  
Full-scale reading  
Input capacitance  
VDDAD/VREFH current  
000  
3FA  
005  
3FF  
30  
Hex  
Hex  
pF  
1.2  
mA  
Absolute accuracy  
AAD  
–1  
+1  
LSB  
LSB  
Includes quantization  
(8-bit truncation mode)  
Quantization error  
–1/8  
+7/8  
(8-bit truncation mode)  
1. VDD = 3.3 Vdc ± 10%, VSS = 0 Vdc, VDDAD/VREFH = 3.3 Vdc ± 10%, VSSAD/VREFL = 0 Vdc  
Data Sheet  
MC68HC908GZ16  
MOTOROLA  
330  
Electrical Specifications  
Electrical Specifications  
5.0-Volt SPI Characteristics  
24.12 5.0-Volt SPI Characteristics  
Diagram  
Characteristic(2)  
Number(1)  
Symbol  
Min  
Max  
Unit  
Operating frequency  
Master  
fOP(M)  
fOP(S)  
fOP/2  
fOP  
fOP/128  
dc  
MHz  
MHz  
Slave  
Cycle time  
tCYC(M)  
tCYC(S)  
tCYC  
tCYC  
1
Master  
Slave  
2
1
128  
tLead(S)  
tLag(S)  
tCYC  
tCYC  
2
3
Enable lead time  
Enable lag time  
1
1
Clock (SPSCK) high time  
tSCKH(M)  
tSCKH(S)  
tCYC –25  
64 tCYC  
4
5
6
7
Master  
Slave  
ns  
ns  
1/2 tCYC –25  
Clock (SPSCK) low time  
tSCKL(M)  
tSCKL(S)  
tCYC –25  
64 tCYC  
Master  
Slave  
ns  
ns  
1/2 tCYC –25  
Data setup time (inputs)  
tSU(M)  
tSU(S)  
Master  
Slave  
30  
30  
ns  
ns  
Data hold time (inputs)  
tH(M)  
tH(S)  
Master  
Slave  
30  
30  
ns  
ns  
Access time, slave(3)  
CPHA = 0  
tA(CP0)  
tA(CP1)  
8
9
0
0
40  
40  
ns  
ns  
CPHA = 1  
Disable time, slave(4)  
tDIS(S)  
40  
ns  
Data valid time, after enable edge  
Master  
tV(M)  
tV(S)  
10  
50  
50  
ns  
ns  
Slave(5)  
Data hold time, outputs, after enable edge  
tHO(M)  
tHO(S)  
11  
Master  
Slave  
0
0
ns  
ns  
1. Numbers refer to dimensions in Figure 24-1 and Figure 24-2.  
2. All timing is shown with respect to 20% VDD and 70% VDD, unless noted; 100 pF load on all SPI pins.  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
5. With 100 pF on all SPI pins  
MC68HC908GZ16  
Data Sheet  
331  
MOTOROLA  
Electrical Specifications  
Electrical Specifications  
24.13 3.3-Volt SPI Characteristics  
Diagram  
Characteristic(2)  
Number(1)  
Symbol  
Min  
Max  
Unit  
Operating frequency  
Master  
fOP(M)  
fOP(S)  
fOP/2  
fOP  
fOP/128  
DC  
MHz  
MHz  
Slave  
Cycle time  
tCYC(M)  
tCYC(S)  
tcyc  
tcyc  
1
Master  
Slave  
2
1
128  
tLead(S)  
tLag(S)  
tcyc  
tcyc  
2
3
Enable lead time  
Enable lag time  
1
1
Clock (SPSCK) high time  
tSCKH(M)  
tSCKH(S)  
tcyc –35  
64 tcyc  
4
5
6
7
Master  
Slave  
ns  
ns  
1/2 tcyc –35  
±
Clock (SPSCK) low time  
tSCKL(M)  
tSCKL(S)  
tcyc –35  
64 tcyc  
Master  
Slave  
ns  
ns  
1/2 tcyc –35  
Data setup time (inputs)  
tSU(M)  
tSU(S)  
Master  
Slave  
40  
40  
ns  
ns  
Data hold time (inputs)  
tH(M)  
tH(S)  
Master  
Slave  
40  
40  
ns  
ns  
Access time, slave(3)  
CPHA = 0  
tA(CP0)  
tA(CP1)  
8
9
0
0
50  
50  
ns  
ns  
CPHA = 1  
Disable time, slave(4)  
tDIS(S)  
50  
ns  
Data valid time, after enable edge  
Master  
tV(M)  
tV(S)  
10  
60  
60  
ns  
ns  
Slave(5)  
Data hold time, outputs, after enable edge  
tHO(M)  
tHO(S)  
11  
Master  
Slave  
0
0
ns  
ns  
1. Numbers refer to dimensions in Figure 24-1 and Figure 24-2.  
2. All timing is shown with respect to 20% VDD and 70% VDD, unless noted; 100 pF load on all SPI pins.  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
5. With 100 pF on all SPI pins  
Data Sheet  
MC68HC908GZ16  
MOTOROLA  
332  
Electrical Specifications  
Electrical Specifications  
3.3-Volt SPI Characteristics  
SS  
INPUT  
SS PIN OF MASTER HELD HIGH  
1
5
4
SPSCK OUTPUT  
CPOL = 0  
NOTE  
4
5
SPSCK OUTPUT  
CPOL = 1  
NOTE  
6
7
MISO  
INPUT  
MSB IN  
BITS 6–1  
BITS 6–1  
LSB IN  
11  
MASTER MSB OUT  
10  
11  
MOSI  
OUTPUT  
MASTER LSB OUT  
Note: This first clock edge is generated internally, but is not seen at the SPSCK pin.  
a) SPI Master Timing (CPHA = 0)  
SS  
INPUT  
SS PIN OF MASTER HELD HIGH  
1
SPSCK OUTPUT  
CPOL = 0  
5
NOTE  
4
SPSCK OUTPUT  
CPOL = 1  
5
NOTE  
4
6
7
MISO  
INPUT  
MSB IN  
BITS 6–1  
BITS 6–1  
LSB IN  
11  
10  
10  
MOSI  
OUTPUT  
MASTER MSB OUT  
MASTER LSB OUT  
Note: This last clock edge is generated internally, but is not seen at the SPSCK pin.  
b) SPI Master Timing (CPHA = 1)  
Figure 24-1. SPI Master Timing  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
333  
Electrical Specifications  
Electrical Specifications  
SS  
INPUT  
3
1
SPSCK INPUT  
CPOL = 0  
5
4
4
5
2
SPSCK INPUT  
CPOL = 1  
9
8
MISO  
INPUT  
SLAVE MSB OUT  
BITS 6–1  
BITS 6–1  
SLAVE LSB OUT  
11  
NOTE  
11  
6
7
10  
MOSI  
OUTPUT  
MSB IN  
LSB IN  
Note: Not defined but normally MSB of character just received  
a) SPI Slave Timing (CPHA = 0)  
SS  
INPUT  
1
SPSCK INPUT  
CPOL = 0  
5
4
5
2
3
SPSCK INPUT  
CPOL = 1  
4
10  
9
8
MISO  
OUTPUT  
NOTE  
SLAVE MSB OUT  
BITS 6–1  
BITS 6–1  
SLAVE LSB OUT  
11  
6
7
10  
MOSI  
INPUT  
MSB IN  
LSB IN  
Note: Not defined but normally LSB of character previously transmitted  
b) SPI Slave Timing (CPHA = 1)  
Figure 24-2. SPI Slave Timing  
Data Sheet  
334  
MC68HC908GZ16  
MOTOROLA  
Electrical Specifications  
Electrical Specifications  
Timer Interface Module Characteristics  
24.14 Timer Interface Module Characteristics  
Characteristic  
Timer input capture pulse width  
Timer Input capture period  
Symbol  
tTH, TL  
tTLTL  
Min  
Max  
Unit  
t
tCYC  
2
Note(1)  
tCYC  
1. The minimum period is the number of cycles it takes to execute the interrupt service routine plus 1 tCYC  
.
tTLTL  
tTH  
INPUT CAPTURE  
RISING EDGE  
tTLTL  
tTL  
INPUT CAPTURE  
FALLING EDGE  
tTLTL  
tTH  
tTL  
INPUT CAPTURE  
BOTH EDGES  
Figure 24-3. Input Capture Timing  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
335  
Electrical Specifications  
Electrical Specifications  
24.15 Memory Characteristics  
Characteristic  
RAM data retention voltage  
Symbol  
Min  
1.3  
1
Max  
Unit  
V
VRDR  
FLASH program bus clock frequency  
FLASH read bus clock frequency  
MHz  
Hz  
(1)  
dc  
8M  
fRead  
FLASH page erase time  
< 1K cycles  
> 1K cycles  
tErase  
1
4
ms  
tMErase  
tnvs  
FLASH mass erase time  
4
10  
5
40  
ms  
µs  
µs  
µs  
µs  
µs  
µs  
FLASH PGM/ERASE to HVEN set up time  
FLASH high-voltage hold time  
FLASH high-voltage hold time (mass erase)  
FLASH program hold time  
tnvh  
tnvhl  
100  
5
tpgs  
tPROG  
FLASH program time  
30  
1
(2)  
FLASH return to read time  
trcv  
(3)  
FLASH cumulative program HV period  
4
ms  
tHV  
FLASH endurance  
10k  
10  
Cycles  
Years  
FLASH data retention time  
1. fRead is defined as the frequency range for which the FLASH memory can be read.  
2. trcv is defined as the time it needs before the FLASH can be read after turning off the high voltage charge pump, by clearing  
HVEN to logic 0.  
3. tHV is defined as the cumulative high voltage programming time to the same row before next erase.  
tHV must satisfy this condition: tnvs + tnvh + tpgs + (tPROG × 64) tHV max.  
Data Sheet  
336  
MC68HC908GZ16  
MOTOROLA  
Electrical Specifications  
 
Data Sheet — MC68HC908GZ16  
Section 25. Ordering Information and Mechanical Specifications  
25.1 Introduction  
This section provides ordering information for the MC68HC908GZ16 along with the  
dimensions for:  
32-pin low-profile quad flat pack package (case 873A)  
48-pin low-profile quad flat pack (case 932-03)  
The following figures show the latest package drawings at the time of this  
publication. To make sure that you have the latest package specifications, contact  
your local Motorola Sales Office.  
25.2 MC Order Numbers  
Table 25-1. MC Order Numbers  
Operating  
Temperature Range  
MC Order Number  
Package  
MC68HC908GZ16CFJ  
MC68HC908GZ16VFJ  
MC68HC908GZ16MFJ  
MC68HC908GZ16CFA  
MC68HC908GZ16VFA  
MC68HC908GZ16MFA  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +125°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +125°C  
32-pin low-profile  
quad flat package  
(LQFP)  
48-pin low-profile  
quad flat package  
(LQFP)  
Temperature designators:  
C = –40°C to +85°C  
V = –40°C to +105°C  
M = –40°C to +125°C  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
337  
Ordering Information and Mechanical Specifications  
Ordering Information and Mechanical Specifications  
25.3 32-Pin Low-Profile Quad Flat Pack (LQFP)  
4X  
A
A1  
0.20 (0.008) AB T–U  
Z
32  
25  
1
–U–  
V
–T–  
B
AE  
AE  
P
B1  
DETAIL Y  
–Z–  
V1  
17  
8
DETAIL Y  
9
4X  
0.20 (0.008) AC T–U  
Z
9
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
S1  
S
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLANE –AB– IS LOCATED AT BOTTOM  
OF LEAD AND IS COINCIDENT WITH THE LEAD  
WHERE THE LEAD EXITS THE PLASTIC BODY AT  
THE BOTTOM OF THE PARTING LINE.  
4. DATUMS –T–, –U–, AND –Z– TO BE DETERMINED  
AT DATUM PLANE –AB–.  
DETAIL AD  
G
5. DIMENSIONS S AND V TO BE DETERMINED AT  
SEATING PLANE –AC–.  
–AB–  
–AC–  
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS  
0.250 (0.010) PER SIDE. DIMENSIONS A AND B  
DO INCLUDE MOLD MISMATCH AND ARE  
DETERMINED AT DATUM PLANE –AB–.  
7. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. DAMBAR PROTRUSION SHALL  
NOT CAUSE THE D DIMENSION TO EXCEED  
0.520 (0.020).  
SEATING  
PLANE  
0.10 (0.004) AC  
BASE  
METAL  
N
8. MINIMUM SOLDER PLATE THICKNESS SHALL BE  
0.0076 (0.0003).  
9. EXACT SHAPE OF EACH CORNER MAY VARY  
FROM DEPICTION.  
F
D
8X M  
MILLIMETERS  
DIM MIN MAX  
7.000 BSC  
INCHES  
MIN MAX  
0.276 BSC  
0.138 BSC  
0.276 BSC  
0.138 BSC  
R
J
A
A1  
B
3.500 BSC  
7.000 BSC  
3.500 BSC  
SECTION AE–AE  
E
C
B1  
C
1.400  
1.600  
0.450  
1.450  
0.400  
0.055  
0.063  
0.018  
0.057  
0.016  
D
E
F
0.300  
1.350  
0.300  
0.012  
0.053  
0.012  
W
G
H
J
0.800 BSC  
0.031 BSC  
Q
H
K
X
0.050  
0.090  
0.500  
0.150  
0.200  
0.700  
0.002  
0.004  
0.020  
0.006  
0.008  
0.028  
K
M
N
P
12 REF  
12 REF  
DETAIL AD  
0.090  
0.160  
0.004  
0.006  
0.400 BSC  
0.016 BSC  
Q
R
1
0.150  
5
0.250  
1
0.006  
5
0.010  
S
9.000 BSC  
0.354 BSC  
S1  
V
V1  
W
X
4.500 BSC  
9.000 BSC  
4.500 BSC  
0.200 REF  
1.000 REF  
0.177 BSC  
0.354 BSC  
0.177 BSC  
0.008 REF  
0.039 REF  
Data Sheet  
338  
MC68HC908GZ16  
MOTOROLA  
Ordering Information and Mechanical Specifications  
Ordering Information and Mechanical Specifications  
48-Pin Low-Profile Quad Flat Pack (LQFP)  
25.4 48-Pin Low-Profile Quad Flat Pack (LQFP)  
4X  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME  
0.200 AB T-U  
Z
Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETER.  
DETAIL Y  
9
A
3. DATUM PLANE AB IS LOCATED AT BOTTOM OF LEAD  
AND IS COINCIDENT WITH THE LEAD WHERE THE  
LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF  
THE PARTING LINE.  
P
A1  
48  
37  
4. DATUMS T, U, AND Z TO BE DETERMINED AT DATUM  
PLANE AB.  
5. DIMENSIONS S AND V TO BE DETERMINED AT  
SEATING PLANE AC.  
1
36  
T
U
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS 0.250  
PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD  
MISMATCH AND ARE DETERMINED AT DATUM PLANE  
AB.  
B
V
AE  
AE  
7. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. DAMBAR PROTRUSION SHALL NOT  
CAUSE THE D DIMENSION TO EXCEED 0.350.  
8. MINIMUM SOLDER PLATE THICKNESS SHALL BE  
B1  
V1  
12  
25  
MILLIMETERS  
13  
24  
DIM MIN  
MAX  
7.000 BSC  
3.500 BSC  
Z
A
A1  
B
B1  
C
S1  
7.000 BSC  
3.500 BSC  
T, U, Z  
1.400  
1.600  
0.270  
1.450  
0.230  
S
D
E
F
0.170  
1.350  
0.170  
DETAIL Y  
4X  
0.200 AC T-U  
Z
G
H
J
K
L
M
N
P
0.500 BSC  
0.050  
0.090  
0.500  
0
0.150  
0.200  
0.700  
7
×
×
0.080 AC  
12 REF  
×
G
AB  
AC  
0.090  
0.250 BSC  
0.150 0.250  
0.160  
R
S
S1  
V
V1  
W
AA  
9.000 BSC  
4.500 BSC  
9.000 BSC  
4.500 BSC  
0.200 REF  
1.000 REF  
AD  
°
M
BASE METAL  
TOP & BOTTOM  
R
N
J
E
C
H
F
D
M
0.080  
AC T-U Z  
SECTION AE-AE  
W
°
L
K
DETAIL AD  
AA  
MC68HC908GZ16  
MOTOROLA  
Data Sheet  
339  
Ordering Information and Mechanical Specifications  
Ordering Information and Mechanical Specifications  
Data Sheet  
MC68HC908GZ16  
MOTOROLA  
340  
Ordering Information and Mechanical Specifications  
blank  
HOW TO REACH US:  
USA/EUROPE/LOCATIONS NOT LISTED:  
Motorola Literature Distribution;  
P.O. Box 5405, Denver, Colorado 80217  
1-303-675-2140 or 1-800-441-2447  
JAPAN:  
Motorola Japan Ltd.; SPS, Technical Information Center,  
3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan  
81-3-3440-3569  
ASIA/PACIFIC:  
Information in this document is provided solely to enable system and software  
implementers to use Motorola products. There are no express or implied copyright  
licenses granted hereunder to design or fabricate any integrated circuits or  
integrated circuits based on the information in this document.  
Motorola Semiconductors H.K. Ltd.;  
Silicon Harbour Centre, 2 Dai King Street,  
Tai Po Industrial Estate, Tai Po, N.T., Hong Kong  
852-26668334  
TECHNICAL INFORMATION CENTER:  
1-800-521-6274  
Motorola reserves the right to make changes without further notice to any products  
herein. Motorola makes no warranty, representation or guarantee regarding the  
suitability of its products for any particular purpose, nor does Motorola assume any  
liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or  
incidental damages. “Typical” parameters which may be provided in Motorola data  
sheets and/or specifications can and do vary in different applications and actual  
performance may vary over time. All operating parameters, including “Typicals”  
must be validated for each customer application by customer’s technical experts.  
Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as  
components in systems intended for surgical implant into the body, or other  
applications intended to support or sustain life, or for any other application in which  
the failure of the Motorola product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use Motorola products for any such  
unintended or unauthorized application, Buyer shall indemnify and hold Motorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated  
with such unintended or unauthorized use, even if such claim alleges that Motorola  
was negligent regarding the design or manufacture of the part.  
HOME PAGE:  
http://motorola.com/semiconductors  
Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark  
Office. digital dna is a trademark of Motorola, Inc. All other product or service  
names are the property of their respective owners. Motorola, Inc. is an Equal  
Opportunity/Affirmative Action Employer.  
© Motorola, Inc. 2003  
MC68HC908GZ16/D  
Rev. 0  
2/2003  
Search  
Advanced | Parametric | Part Number | FAQ  
Select Country  
Motorola Home | Semiconductors Home | Contact Us  
Products | Design Support | Register | Login  
Semiconductors  
Motorola > Semiconductors >  
68HC908GZ16 : Microcontroller  
Page Contents:  
The MC68HC908GZ16 is a member of the low-cost, high-performance M68HC08 Family of 8-bit  
microcontroller units (MCUs). All MCUs in the family use the enhanced M68HC08 central processor unit  
(CPU08) and are available with a variety of modules, memory sizes and types, and package types.  
Features  
Documentation  
Tools  
Rich Media  
Block Diagram  
Orderable Parts  
Related Links  
68HC908GZ16 Features  
Other Info:  
FAQs  
High-performance M68HC08 architecture optimized for C-compilers  
Fully upward-compatible object code with M6805, M146805, and M68HC05 Families  
8-MHz internal bus frequency  
Clock generation module supporting 1-MHz to 8-MHz crystals  
MSCAN08 (Motorola scalable controller area network) controller (implementing 2.0b protocol as  
defined in BOSCH specification dated September 1991)  
FLASH program memory security  
16 Kbytes of on-chip FLASH memory  
On-chip programming firmware for use with host personal computer which does not require high  
voltage for entry  
3rd Party Design Help  
3rd Party Tool  
Vendors  
Rate this Page  
--  
-
0
+
++  
Submit  
1 Kbyte of on-chip random-access memory (RAM)  
Serial peripheral interface (SPI) module  
Care to Comment?  
Enhanced serial communications interface (ESCI) module  
Two 16-bit timer interface modules (TIM1 and TIM2) with selectable input capture, output compare,  
and pulse-width modulation (PWM) capability on each channel  
8-channel, 10-bit resolution analog-to-digital converter (ADC)  
Internal pullups on IRQ and RST to reduce customer system cost  
Up to 37 general-purpose input/output (I/O) pins  
Selectable pullups on inputs only on ports A, C, and D  
High current 10-mA sink/source capability on all port pins  
Higher current 20-mA sink/source capability on PTC0-PTC4  
Timebase module (TBM) with clock prescaler circuitry for eight user selectable periodic real-time  
interrupts with optional active clock source during stop mode for periodic wakeup from stop using  
an external crystal  
8-bit keyboard wakeup port  
In-system programming (ISP)  
System protection features:  
Optional computer operating properly (COP) reset  
Low-voltage detection with optional reset and selectable trip points for 3.3-V and 5.0-V  
operation  
Illegal opcode detection with reset  
Illegal address detection with reset  
LIN specific ehnahnced features:  
Generation of LIN 1.2 break symbols without extra software steps on each message  
Break detection filtering to prevent false interrupts  
Return to Top  
68HC908GZ16 Documentation  
Documentation  
Application Note  
Size Rev Date Last  
Order  
ID  
Name  
Vendor ID Format  
K
#
Modified Availability  
Designing for Electromagnetic Compatibility (EMC) with  
HCMOS Microcontrollers  
MOTOROLA  
pdf  
AN1050_D  
AN1218/D  
AN1219/D  
AN1219SW  
AN1221/D  
AN1221SW  
AN1222/D  
AN1222SW  
AN1259/D  
AN1263/D  
AN1274/D  
AN1516/D  
AN1705/D  
AN1744/D  
AN1752/D  
AN1771/D  
AN1775/D  
AN1783/D  
AN1818/D  
AN1820/D  
AN1820SW  
AN1837/D  
AN2093/D  
82  
0
1/01/2000  
1/01/1993  
1/01/1997  
1/01/1995  
1/01/1993  
1/01/1995  
1/01/1993  
1/01/1995  
1/01/1995  
1/01/1995  
1/01/1996  
1/24/2003  
1/01/1999  
1/01/1998  
5/07/2001  
1/01/1998  
1/01/1998  
1/01/1999  
1/01/1999  
1/01/1999  
1/01/1998  
3/27/2000  
1/01/2000  
-
MOTOROLA  
pdf  
HC05 to HC08 Optimization  
347  
177  
77  
2
1
0
0
0
0
0
0
0
0
2
0
0
1
0
1
1
0
0
0
0
0
MOTOROLA  
pdf  
M68HC08 Integer Math Routines  
Software Files for AN1219 zipped  
MOTOROLA  
zip  
-
-
-
Hamming Error Control Coding Techniques with the HC08 MOTOROLA  
MCU  
pdf  
zip  
pdf  
zip  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
zip  
pdf  
pdf  
63  
MOTOROLA  
Software Files for AN1221 zipped  
55  
MOTOROLA  
Arithmetic Waveform Synthesis with the HC05/08 MCUs  
24  
MOTOROLA  
Software Files for AN1222 zipped  
20  
System Design and Layout Techniques for Noise  
Reduction in MCU-Based Systems  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
78  
Designing for Electromagnetic Compatibility with Single-  
Chip Microcontrollers  
104  
47  
HC08 SCI Operation with Various Input Clocks  
Liquid Level Control Using a Motorola Pressure Sensor  
77  
Noise Reduction Techniques for Microcontroller-Based  
Systems  
67  
Resetting Microcontrollers During Power Transitions  
Data Structures for 8-Bit Microcontrollers  
Precision Sine-Wave Tone Synthesis Using 8-Bit MCUs  
Expanding Digital Input with an A/D Converter  
Determining MCU Oscillator Start-Up Parameters  
Software SCI Routines with the 16-Bit Timer Module  
Software I2C Communications  
80  
213  
250  
86  
48  
84  
55  
Software files for AN1820 zipped  
2
-
Non-Volatile Memory Technology Overview  
Creating Efficient C Code for the MC68HC08  
116  
36  
Connecting an M68HC08 Family Microcontroller to an  
Internet Service Provider (ISP) Using the Point-to-Point  
Protocol (PPP)  
MOTOROLA  
MOTOROLA  
AN2120/D  
pdf  
zip  
741  
0
5/20/2001  
AN2120SW  
Software for AN2120, zip format  
31 1.0 7/31/2002  
-
Compressor Induction Motor Stall and Rotation Detection MOTOROLA  
using Microcontrollers  
AN2149/D  
AN2159/D  
AN2159SW  
AN2262/D  
AN2262SW  
AN2295  
pdf  
pdf  
zip  
pdf  
zip  
pdf  
zip  
pdf  
pdf  
pdf  
zip  
pdf  
pdf  
zip  
pdf  
zip  
127  
129  
0
0
1
1
5/30/2001  
Digital Direct Current Ignition System Using HC08  
Microcontrollers  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
11/20/2001  
AN2159SW  
182  
3/08/2002  
6/18/2002  
-
-
-
1185  
Wireless HC08 Modem  
Software files for application note AN2262  
Developer's Serial Bootloader for M68HC08  
Software for AN2295  
31 1.1 6/25/2002  
10/29/2003  
738  
4
10/21/2003  
AN2295SW  
AN2321/D  
AN2342  
725 4.0  
1628  
0
Designing for Board Level Electromagnetic Compatibility  
8/15/2002  
9/25/2002  
4/01/2003  
4/18/2003  
Opto Isolation Circuits For In Circuit Debugging of  
68HC9(S)12 and 68HC908 Microcontrollers  
155  
678  
564  
297  
530  
59  
0
0
0
0
0
0
0
0
Servo Motor Control Application on a Local Area  
Interconnect Network (LIN)  
AN2396/D  
AN2396SW  
AN2438/D  
AN2504  
Software files for AN2396  
-
-
ADC Definitions and Specifications  
2/21/2003  
10/15/2003  
On-Chip FLASH Programming API for CodeWarrior  
Software files for application note AN2504  
10/21/2003  
AN2504SW  
AN2545  
Using MC68HC908GR/GZ On-Chip FLASH Programming MOTOROLA  
Routines  
567  
18  
8/26/2003  
8/26/2003  
MOTOROLA  
AN2545SW  
Software files to accompany application note AN2545  
-
Brochure  
ID  
Size Rev Date Last  
Order  
Name  
Vendor ID Format  
K
#
Modified Availability  
MOTOROLA  
pdf  
5/21/2003  
BR68HC08FAMAM/D  
FLYREMBEDFLASH/D  
68HC08 Family: High Performance and Flexibility  
57  
2
Embedded Flash: Changing the Technology World for MOTOROLA  
the Better  
5/21/2003  
pdf  
68  
2
Data Sheets  
ID  
Date Last  
Modified  
Order  
Availability  
Name  
Vendor ID Format Size K Rev #  
MOTOROLA pdf 4372  
MC68HC908GZ16/D  
MC68HC908GZ16 Technical Data  
0
2/21/2003  
Engineering Bulletin  
Size Rev Date Last  
Order  
ID  
Name  
Vendor ID Format  
K
#
Modified Availability  
TOF Consideration when Measuring a Long Input Capture MOTOROLA  
Event  
4/15/2002  
EB389/D  
EB390/D  
EB396/D  
EB398  
pdf  
pdf  
pdf  
pdf  
pdf  
55  
1
Porting the AN2120/D UDP/IP Code to the Avnet  
Evaluation Board  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
1501  
5/09/2002  
6/19/2002  
8/13/2002  
8/14/2002  
0
0
0
0
Use of OSC2/XTAL as a Clock Output on Motorola  
Microcontrollers  
49  
0
Techniques to Protect MCU Applications Against  
Malfunction Due to Code Run-Away  
Interrupt Handling Considerations When Modifying  
EEPROM on HC08 Microcontrollers  
EB608/D  
96  
Errata - Click here for important errata information  
Size Rev Date Last  
Order  
Availability  
ID  
Name  
Vendor ID Format  
K
#
Modified  
MSE908GZ16_4L35K/D  
Mask Set Errata for MSE908GZ16_4L35K MOTOROLA  
pdf  
33  
0
2/21/2003  
-
Fact Sheets  
Date Last  
Modified  
ID  
Name  
Vendor ID  
Format Size K Rev #  
pdf 48  
Order Availability  
CWDEVSTUDFACTHC08  
Development Studio  
MOTOROLA  
2
5/13/2002  
-
Product Change Notices  
Size Rev Date Last  
Order  
ID  
Name  
Vendor ID Format  
K
#
Modified Availability  
PCN8698  
PCN8701  
CARBON FIBER ITW QFP TRAY CONVERSION  
MOTOROLA htm 100  
0
3/31/2003  
4/01/2003  
-
-
HC908GZ16 AND HC908GR16 MC QUALIFICATION MOTOROLA htm  
6
0
Reference Manual  
ID  
Size Rev Date Last  
Order  
Name  
Vendor ID Format  
K
#
Modified Availability  
ADCRM/AD  
Analog-to-Digital Reference Manual  
MOTOROLA  
pdf  
pdf  
pdf  
231  
2666  
0
1/01/1996  
CPU08RM/AD  
TIM08RM/AD  
CPU08RM Central Processor Unit Reference Manual MOTOROLA  
3
4/03/2002  
TIM08 Timer Interface Module Reference Manual  
MOTOROLA  
771 1.0 1/10/1996  
Selector Guide  
ID  
Size Rev Date Last  
Order  
Name  
Vendor ID Format  
K
#
Modified Availability  
MOTOROLA  
pdf  
579  
10/24/2003  
10/24/2003  
10/24/2003  
10/24/2003  
11/11/2003  
SG1002  
SG1006  
SG1010  
SG1011  
SG2000CR  
SG2039  
Analog Selector Guide - Quarter 4, 2003  
Microcontrollers Selector Guide - Quarter 4, 2003  
Sensors Selector Guide - Quarter 4, 2003  
0
MOTOROLA  
pdf  
826  
219  
287  
0
0
0
3
0
MOTOROLA  
pdf  
Software and Development Tools Selector Guide - Quarter MOTOROLA  
4, 2003  
pdf  
pdf  
pdf  
MOTOROLA  
Application Selector Guide Index and Cross-Reference.  
95  
0
Application Selector Guide - Vacuum Cleaners Vacuum  
Cleaners  
MOTOROLA  
6/17/2003  
Users Guide  
ID  
Size Rev Date Last  
Order  
Name  
Vendor ID Format  
K
#
Modified Availability  
CodeWarrior™ Development Studio for 68HC08 Quick  
Start Guide  
MOTOROLA  
pdf  
2847  
9/20/2002  
-
CDSWHC08QS  
2.1  
Return to Top  
68HC908GZ16 Tools  
Order Availability  
Hardware Tools  
Adapters  
ID  
Name  
Vendor ID  
Format Size K Rev #  
SCDA08GAT  
Device Socket Adapter  
MOTOROLA  
-
-
-
-
-
-
-
-
-
-
-
-
SCDA08GCT  
SCDA08GZAT  
SCTQSAT  
Device Socket Adapter  
Device Socket Adapter  
Target Interface Adapter  
MOTOROLA  
MOTOROLA  
MOTOROLA  
Emulators/Probes/Wigglers  
Size Rev  
Order  
Availability  
ID  
Name  
Vendor ID Format  
K
#
IC10000  
IC20000  
IC40000  
ISYS  
ISYS  
ISYS  
iC1000 PowerEmulator  
iC2000 PowerEmulator  
iC4000 ActiveEmulator  
-
-
-
-
-
-
-
-
-
-
-
-
In-Circuit, Real-Time Debugger/Programmer for Motorola 68HC08  
Family (USB)  
INDART-HC08/D  
SOFTEC  
-
-
-
-
Evaluation/Development Boards and Systems  
Size  
K
Order  
Availability  
ID  
Name  
Vendor ID  
Format  
Rev #  
M68CBL05C  
Low-noise Flex Cable  
MOTOROLA  
-
-
-
KITMMEVS08GZ16  
KITMMDS08GZ16  
Modular Evaluation System (MMEVS)  
MOTOROLA  
MOTOROLA  
-
-
-
-
-
-
-
-
Modular Development System (MMDS) Kits  
M68EML08GZ16  
Emulation Module  
MOTOROLA  
-
-
-
M68MULTILINK08  
INDART-HC08/GZ  
METROWERKS  
SOFTEC  
MON08 Multilink  
-
-
-
-
-
-
Design Kit for Motorola MC68HC908GZ/GR (USB)  
-
Programmers  
ID  
Name  
Vendor ID  
Format  
Size K Rev #  
Order Availability  
POWERLAB  
SYSGEN  
Universal Programmer  
-
-
-
-
Software  
Application Software  
Code Examples  
Size Rev  
Order  
Availability  
ID  
Name  
Vendor ID Format  
K
#
HC08 Software Example: Subroutine that delays for a whole  
number of milliseconds  
MOTOROLA  
zip  
HC08DELAYSW  
HC08EXSW  
2
-
-
-
HC08 Software Example: Library containing software  
examples in assembly for 68HC08  
MOTOROLA  
zip  
14  
-
Device Drivers  
Size Rev  
Order  
Availability  
ID  
Name  
Vendor ID Format  
K
#
HC908 SGF NVM Standard Software Drivers  
Program/erase software driver for 0.5um SGF NVM (flash and  
EEPROM) in HC908  
HC908SGF50NVMSSD  
MOTOROLA  
zip  
1387 3.0.0  
-
Operating Systems  
ID  
Name  
Vendor ID  
Format  
Size K  
Rev #  
Order Availability  
CMX-TINY+  
CMX  
CMX-Tiny+  
-
-
-
-
Software Tools  
Assemblers  
ID  
Name  
Vendor ID Format Size K Rev # Order Availability  
AVOCET  
ADX-08  
ADX-08 Macro Assembler-Linker and IDE  
-
-
-
-
Compilers  
ID  
Name  
Vendor ID Format Size K Rev # Order Availability  
CX6808S  
COSMIC  
IMAGE  
CX6808 C Cross Compiler for HC08 and HCS08  
ICC08 V6 STD  
-
-
-
-
-
-
-
-
ICC08  
Debuggers  
ID  
Name  
Vendor ID  
Format  
Size K  
Rev #  
Order Availability  
NOICE08  
IMAGE  
NoICE08  
-
-
-
-
IDE (Integrated Development Environment)  
Size Rev  
Order  
Availability  
ID  
Name  
Vendor ID  
Format  
K
#
CDCWSEHC08  
CWHC08PRO  
METROWERKS  
METROWERKS  
CodeWarrior Development Studio™ for HC(S)08 Special Edition  
-
-
-
-
-
CodeWarrior Development Studio for Motorola HC08  
Microcontrollers Professional Edition  
-
-
-
-
CodeWarrior Development Studio for Motorola HC08  
Microcontrollers Standard Edition  
CWHC08STD  
METROWERKS  
-
IDEA08 integrated development environment for HC08 and HCS08  
IDEA08  
COSMIC  
ISYS  
-
-
-
-
-
-
-
-
IC-SW-OPR  
winIDEA  
Return to Top  
Rich Media  
Rich Media  
Webcast  
Size Rev  
Order  
Availability  
ID  
Name  
Vendor ID Format  
K
#
CodeWarrior Development Tools for 68HC08 and HCS12  
Microcontrollers.  
Listen to our webcast for an overview of some of the challenges  
that developers face and an explanation of the CodeWarrior  
tools that help to address these challenges.  
RMWC_CODEWARRIOR  
MOTOROLA  
html  
4
0.0  
-
-
8-bit Microcontroller Overview and Q-Family of Flash  
Microcontrollers  
Listen to our companion webcasts to learn about Motorola's  
recent 8-bit products and services-especially the HC08 Q-  
Family-that offer maximum design flexibility while helping you  
get to market fast.  
MOTOROLA  
htm  
RMWC_QFAMILY  
5
1.1  
Return to Top  
Orderable Parts Information  
Order  
Budgetary Price  
Tape  
and  
Reel  
Life Cycle Description  
(code)  
QTY 1000+  
($US)  
PartNumber  
Package Info  
Additional Info  
Availability  
LQFP 48  
7*7*1.4P0.5  
PRODUCT RAPID  
GROWTH(2)  
more  
more  
more  
more  
more  
more  
more  
more  
more  
more  
more  
more  
KMC908GZ16CFA  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
$4.20  
$4.00  
$4.67  
$4.44  
$4.21  
$4.41  
$4.20  
$4.00  
$4.62  
$4.40  
$4.41  
$4.20  
LQFP 32  
7*7*1.4P0.8  
PRODUCT NEWLY  
INTRO'D/RAMP-UP(1)  
KMC908GZ16CFJ  
LQFP 48  
7*7*1.4P0.5  
KMC908GZ16MFA  
KMC908GZ16MFJ  
-
-
LQFP 32  
7*7*1.4P0.8  
LQFP 48  
7*7*1.4P0.5  
PRODUCT RAPID  
GROWTH(2)  
KMC908GZ16VFA  
LQFP 32  
7*7*1.4P0.8  
PRODUCT NEWLY  
INTRO'D/RAMP-UP(1)  
KMC908GZ16VFJ  
LQFP 48  
7*7*1.4P0.5  
PRODUCT RAPID  
GROWTH(2)  
MC68HC908GZ16CFA  
MC68HC908GZ16CFJ  
MC68HC908GZ16MFA  
MC68HC908GZ16MFJ  
MC68HC908GZ16VFA  
MC68HC908GZ16VFJ  
LQFP 32  
7*7*1.4P0.8  
PRODUCT NEWLY  
INTRO'D/RAMP-UP(1)  
LQFP 48  
7*7*1.4P0.5  
PRODUCT RAPID  
GROWTH(2)  
LQFP 32  
7*7*1.4P0.8  
PRODUCT NEWLY  
INTRO'D/RAMP-UP(1)  
LQFP 48  
7*7*1.4P0.5  
PRODUCT RAPID  
GROWTH(2)  
LQFP 32  
7*7*1.4P0.8  
PRODUCT NEWLY  
INTRO'D/RAMP-UP(1)  
NOTE: Are you looking for an obsolete orderable part? Click HERE to check our distributors' inventory.  
Return to Top  
Related Links  
Automotive  
Microcontrollers  
Motor Control  
Sensors  
Return to Top  
http://www.motorola.com/ | Site Map | Contact Motorola | Terms of Use | Privacy Practices  
© Copyright 1994-2003 Motorola, Inc. All Rights Reserved.  

相关型号:

MC68HC908GZ16CFJ

Microcontroller, 8-Bit, FLASH, 68HC08 CPU, 8MHz, HCMOS, PQFP32, LQFP-32
MOTOROLA

MC68HC908GZ16MFA

8-BIT, FLASH, 8MHz, MICROCONTROLLER, PQFP48, LQFP-48
MOTOROLA

MC68HC908GZ16MFA

8-BIT, FLASH, 8MHz, MICROCONTROLLER, PQFP48, LQFP-48
NXP

MC68HC908GZ16MFJ

8-BIT, FLASH, 8MHz, MICROCONTROLLER, PQFP32, LQFP-32
MOTOROLA

MC68HC908GZ16MFJ

IC,MICROCONTROLLER,8-BIT,68HC08 CPU,CMOS,QFP,32PIN,PLASTIC
NXP

MC68HC908GZ16VFA

IC,MICROCONTROLLER,8-BIT,68HC08 CPU,CMOS,QFP,48PIN,PLASTIC
NXP

MC68HC908GZ16VFJ

IC,MICROCONTROLLER,8-BIT,68HC08 CPU,CMOS,QFP,32PIN,PLASTIC
NXP

MC68HC908GZ32

Microcontrollers
MOTOROLA

MC68HC908GZ32

Microcontrollers
FREESCALE

MC68HC908GZ32CFA

Microcontroller, 8-Bit, FLASH, 68HC08 CPU, 8MHz, HCMOS, PQFP48, LQFP-48
NXP

MC68HC908GZ32CFU

IC,MICROCONTROLLER,8-BIT,68HC08 CPU,CMOS,QFP,64PIN,PLASTIC
NXP

MC68HC908GZ32MFA

IC,MICROCONTROLLER,8-BIT,68HC08 CPU,CMOS,QFP,48PIN,PLASTIC
NXP