MC68HC908MR32VB [MOTOROLA]

8-BIT, FLASH, 8MHz, MICROCONTROLLER, PDIP56, SHRINK, DIP-56;
MC68HC908MR32VB
型号: MC68HC908MR32VB
厂家: MOTOROLA    MOTOROLA
描述:

8-BIT, FLASH, 8MHz, MICROCONTROLLER, PDIP56, SHRINK, DIP-56

微控制器
文件: 总391页 (文件大小:2071K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC68HC908MR32/D  
REV 5  
MC68HC908MR32  
MC68HC908MR16  
Advance Information  
HCMOS  
Microcontroller Unit  
blank  
MC68HC908MR32  
MC68HC908MR16  
Technical Summary  
Motorola reserves the right to make changes without further notice to any products  
herein. Motorola makes no warranty, representation or guarantee regarding the  
suitability of its products for any particular purpose, nor does Motorola assume any  
liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or incidental  
damages. "Typical" parameters which may be provided in Motorola data sheets and/or  
specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including "Typicals" must be validated for  
each customer application by customer’s technical experts. Motorola does not convey  
any license under its patent rights nor the rights of others. Motorola products are not  
designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Motorola product could create a  
situation where personal injury or death may occur. Should Buyer purchase or use  
Motorola products for any such unintended or unauthorized application, Buyer shall  
indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of personal  
injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
Motorola and  
are registered trademarks of Motorola, Inc.  
DigitalDNA is a trademark of Motorola, Inc.  
© Motorola, Inc., 2001  
MC68HC908MR16/MC68HC908MR32 — Rev. 5.0  
MOTOROLA  
Advance Information  
3
Revision History  
To provide the most up-to-date information, the revision of our  
documents on the World Wide Web will be the most current. Your printed  
copy may be an earlier revision. To verify you have the latest information  
available, refer to:  
http://www.motorola.com/semiconductors/  
The following revision history table summarizes changes contained in  
this document. For your convenience, the page number designators  
have been linked to the appropriate location.  
Revision History  
Revision  
Level  
Page  
Date  
Description  
Number(s)  
Figure 2-1. Memory Map Added FLASH Block Protect Register  
(FLBPR) at address location $FF7E  
41  
August,  
3
2001  
Figure A-1. MC68HC908MR16 Memory Map Added FLASH Block  
388  
Protect Register (FLBPR) at address location $FF7E  
October,  
4
19.4.3 Conversion Time Reworked equations and text for clarity.  
346  
187  
189  
199  
225  
2001  
Figure 10-1. Monitor Mode Circuit PTA7 and connecting circuitry  
added  
Table 10-2. Monitor Mode Signal Requirements and Options Switch  
locations added to column headings for clarity  
December,  
5
2001  
Section 11. Timer Interface A (TIMA) Timer discrepancies corrected  
throughout this section.  
Section 12. Timer Interface B (TIMB) Timer discrepancies corrected  
throughout this section.  
Advance Information  
4
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA  
Advance Information — MC68HC908MR16/MC68HC908MR32  
List of Sections  
Section 1. General Description . . . . . . . . . . . . . . . . . . . .29  
Section 2. Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Section 3. Random-Access Memory (RAM) . . . . . . . . . .55  
Section 4. FLASH Memory . . . . . . . . . . . . . . . . . . . . . . . .57  
Section 5. Configuration Register (CONFIG) . . . . . . . . .67  
Section 6. Central Processor Unit (CPU) . . . . . . . . . . . .71  
Section 7. System Integration Module (SIM) . . . . . . . . .89  
Section 8. Clock Generator Module (CGM). . . . . . . . . .109  
Section 9. Pulse-Width Modulator  
for Motor Control (PWMMC) . . . . . . . . . . .135  
Section 10. Monitor ROM (MON) . . . . . . . . . . . . . . . . . .185  
Section 11. Timer Interface A (TIMA). . . . . . . . . . . . . . .199  
Section 12. Timer Interface B (TIMB). . . . . . . . . . . . . . .225  
Section 13. Serial Peripheral Interface Module (SPI) . .249  
Section 14. Serial Communications Interface  
Module (SCI). . . . . . . . . . . . . . . . . . . . . . . .279  
Section 15. Input/Output (I/O) Ports . . . . . . . . . . . . . . .309  
Section 16. Computer Operating Properly (COP) . . . .325  
Section 17. External Interrupt (IRQ) . . . . . . . . . . . . . . .331  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA List of Sections  
Advance Information  
5
List of Sections  
Section 18. Low-Voltage Inhibit (LVI) . . . . . . . . . . . . . .337  
Section 19. Analog-to-Digital Converter (ADC) . . . . . .343  
Section 20. Power-On Reset (POR) . . . . . . . . . . . . . . . .359  
Section 21. Break Module (BRK) . . . . . . . . . . . . . . . . . .361  
Section 22. Electrical Specifications. . . . . . . . . . . . . . .369  
Section 23. Mechanical Specifications . . . . . . . . . . . . .381  
Section 24. Ordering Information . . . . . . . . . . . . . . . . .385  
Appendix A. MC68HC908MR16 . . . . . . . . . . . . . . . . . . .387  
Advance Information  
6
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
List of Sections  
MOTOROLA  
Advance Information MC68HC908MR16/MC68HC908MR32  
7DEOHꢀRIꢀ&RQWHQWV  
Section 1. General Description  
1.1  
1.2  
1.3  
1.4  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
1.5  
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Power Supply Pins (VDD and VSS). . . . . . . . . . . . . . . . . . . .35  
Oscillator Pins (OSC1 and OSC2) . . . . . . . . . . . . . . . . . . . .35  
External Reset Pin (RST). . . . . . . . . . . . . . . . . . . . . . . . . . .35  
External Interrupt Pin (IRQ) . . . . . . . . . . . . . . . . . . . . . . . . .36  
CGM Power Supply Pins (VDDA and VSSA) . . . . . . . . . . . . .36  
External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . . .36  
Analog Power Supply Pins (VDDA and VSSA). . . . . . . . . . . .36  
ADC Voltage Decoupling Capacitor Pin (VREFH) . . . . . . . . .36  
ADC Voltage Reference Low Pin (VREFL) . . . . . . . . . . . . . .36  
1.5.1  
1.5.2  
1.5.3  
1.5.4  
1.5.5  
1.5.6  
1.5.7  
1.5.8  
1.5.9  
1.5.10 Port A Input/Output (I/O) Pins (PTA7PTA0). . . . . . . . . . . .37  
1.5.11 Port B I/O Pins (PTB7/ATD7PTB0/ATD0) . . . . . . . . . . . . .37  
1.5.12 Port C I/O Pins (PTC6PTC2  
and PTC1/ATD9PTC0/ATD8) . . . . . . . . . . . . . . . . . . . .37  
1.5.13 Port D Input-Only Pins (PTD6/IS3PTD4/IS1  
and PTD3/FAULT4PTD0/FAULT1). . . . . . . . . . . . . . . .37  
1.5.14 PWM Pins (PWM6PWM1) . . . . . . . . . . . . . . . . . . . . . . . . .37  
1.5.15 PWM Ground Pin (PWMGND) . . . . . . . . . . . . . . . . . . . . . . .38  
1.5.16 Port E I/O Pins (PTE7/TCH3APTE3/TCLKA  
and PTE2/TCH1BPTE0/TCLKB). . . . . . . . . . . . . . . . . .38  
1.5.17 Port F I/O Pins (PTF5/TxDPTF4/RxD  
and PTF3/MISOPTF0/SPSCK) . . . . . . . . . . . . . . . . . . .38  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Table of Contents  
Advance Information  
7
Table of Contents  
Section 2. Memory Map  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . .39  
Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . .40  
I/O Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Monitor ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
Section 3. Random-Access Memory (RAM)  
3.1  
3.2  
3.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Section 4. FLASH Memory  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
FLASH Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . .60  
FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . .61  
FLASH Program/Read Operation. . . . . . . . . . . . . . . . . . . . . . .62  
FLASH Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . . . .65  
4.10 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
4.11 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
Section 5. Configuration Register (CONFIG)  
5.1  
5.2  
5.3  
5.4  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
Advance Information  
8
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Table of Contents  
MOTOROLA  
Table of Contents  
Section 6. Central Processor Unit (CPU)  
6.1  
6.2  
6.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
6.4  
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
6.4.1  
6.4.2  
6.4.3  
6.4.4  
6.4.5  
6.5  
Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
6.6  
6.6.1  
6.6.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78  
6.7  
6.8  
6.9  
CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .78  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
Section 7. System Integration Module (SIM)  
7.1  
7.2  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
7.3  
SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . .92  
Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
Clock Startup from POR or LVI Reset . . . . . . . . . . . . . . . . .93  
Clocks in Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
7.3.1  
7.3.2  
7.3.3  
7.4  
7.4.1  
7.4.2  
7.4.2.1  
7.4.2.2  
7.4.2.3  
7.4.2.4  
7.4.2.5  
7.4.2.6  
Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . .93  
External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
Active Resets from Internal Sources . . . . . . . . . . . . . . . . . .95  
Power-On Reset (POR) . . . . . . . . . . . . . . . . . . . . . . . . . .96  
Computer Operating Properly (COP) Reset. . . . . . . . . . .97  
Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . .97  
Illegal Address Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . .97  
Forced Monitor Mode Entry Reset (MENRST). . . . . . . . .98  
Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . .98  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Table of Contents  
AdvanceInformation  
9
Table of Contents  
7.5  
7.5.1  
7.5.2  
SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98  
SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . .98  
SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . .98  
7.6  
Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . .101  
Software Interrupt (SWI) Instruction. . . . . . . . . . . . . . . .102  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102  
7.6.1  
7.6.1.1  
7.6.1.2  
7.6.2  
7.7  
7.7.1  
7.7.2  
Low-Power Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104  
7.8  
SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104  
SIM Break Status Register. . . . . . . . . . . . . . . . . . . . . . . . .104  
SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . .106  
SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . .107  
7.8.1  
7.8.2  
7.8.3  
Section 8. Clock Generator Module (CGM)  
8.1  
8.2  
8.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110  
8.4  
8.4.1  
8.4.2  
8.4.2.1  
8.4.2.2  
8.4.2.3  
8.4.2.4  
8.4.2.5  
8.4.3  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111  
Crystal Oscillator Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . .111  
Phase-Locked Loop Circuit (PLL) . . . . . . . . . . . . . . . . . . .113  
PLL Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113  
Acquisition and Tracking Modes . . . . . . . . . . . . . . . . . .115  
Manual and Automatic PLL Bandwidth Modes . . . . . . .115  
Programming the PLL . . . . . . . . . . . . . . . . . . . . . . . . . .117  
Special Programming Exceptions . . . . . . . . . . . . . . . . .119  
Base Clock Selector Circuit . . . . . . . . . . . . . . . . . . . . . . . .119  
CGM External Connections . . . . . . . . . . . . . . . . . . . . . . . .119  
8.4.4  
8.5  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121  
Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . .121  
Crystal Amplifier Output Pin (OSC2) . . . . . . . . . . . . . . . . .121  
External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . .121  
PLL Analog Power Pin (VDDA) . . . . . . . . . . . . . . . . . . . . . .122  
Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . .122  
8.5.1  
8.5.2  
8.5.3  
8.5.4  
8.5.5  
Advance Information  
10  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Table of Contents  
MOTOROLA  
Table of Contents  
8.5.6  
8.5.7  
8.5.8  
Crystal Output Frequency Signal (CGMXCLK) . . . . . . . . .122  
CGM Base Clock Output (CGMOUT). . . . . . . . . . . . . . . . .122  
CGM CPU Interrupt (CGMINT) . . . . . . . . . . . . . . . . . . . . .122  
8.6  
CGM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123  
PLL Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124  
PLL Bandwidth Control Register . . . . . . . . . . . . . . . . . . . .126  
PLL Programming Register . . . . . . . . . . . . . . . . . . . . . . . .128  
8.6.1  
8.6.2  
8.6.3  
8.7  
8.8  
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130  
8.9  
Acquisition/Lock Time Specifications . . . . . . . . . . . . . . . . . . .130  
Acquisition/Lock Time Definitions. . . . . . . . . . . . . . . . . . . .130  
Parametric Influences on Reaction Time . . . . . . . . . . . . . .132  
Choosing a Filter Capacitor . . . . . . . . . . . . . . . . . . . . . . . .133  
Reaction Time Calculation . . . . . . . . . . . . . . . . . . . . . . . . .133  
8.9.1  
8.9.2  
8.9.3  
8.9.4  
Section 9. Pulse-Width Modulator for Motor Control  
(PWMMC)  
9.1  
9.2  
9.3  
9.4  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137  
Timebase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141  
9.4.1  
9.4.2  
Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141  
Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143  
9.5  
9.5.1  
9.5.2  
PWM Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143  
Load Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143  
PWM Data Overflow and Underflow Conditions. . . . . . . . .147  
9.6  
9.6.1  
Output Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
Selecting Six Independent PWMs  
or Three Complementary PWM Pairs . . . . . . . . . . . . . .147  
Dead-Time Insertion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149  
Top/Bottom Correction with Motor Phase  
9.6.2  
9.6.3  
Current Polarity Sensing . . . . . . . . . . . . . . . . . . . . . . . .153  
Output Polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157  
PWM Output Port Control. . . . . . . . . . . . . . . . . . . . . . . . . .158  
9.6.4  
9.6.5  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Table of Contents  
AdvanceInformation  
11  
Table of Contents  
9.7  
9.7.1  
9.7.1.1  
9.7.1.2  
9.7.1.3  
9.7.2  
Fault Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160  
Fault Condition Input Pins . . . . . . . . . . . . . . . . . . . . . . . . .161  
Fault Pin Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161  
Automatic Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163  
Manual Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164  
Software Output Disable . . . . . . . . . . . . . . . . . . . . . . . . . .165  
Output Port Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166  
9.7.3  
9.8  
9.9  
Initialization and the PWMEN Bit . . . . . . . . . . . . . . . . . . . . . .166  
PWM Operation in Wait Mode . . . . . . . . . . . . . . . . . . . . . . . .168  
9.10 Control Logic Block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168  
9.10.1 PWM Counter Registers. . . . . . . . . . . . . . . . . . . . . . . . . . .168  
9.10.2 PWM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . .169  
9.10.3 PWMx Value Registers . . . . . . . . . . . . . . . . . . . . . . . . . . .170  
9.10.4 PWM Control Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . .171  
9.10.5 PWM Control Register 2. . . . . . . . . . . . . . . . . . . . . . . . . . .173  
9.10.6 Dead-Time Write-Once Register . . . . . . . . . . . . . . . . . . . .176  
9.10.7 PWM Disable Mapping Write-Once Register . . . . . . . . . . .176  
9.10.8 Fault Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .177  
9.10.9 Fault Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179  
9.10.10 Fault Acknowledge Register. . . . . . . . . . . . . . . . . . . . . . . .180  
9.10.11 PWM Output Control Register . . . . . . . . . . . . . . . . . . . . . .182  
9.11 PWM Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183  
Section 10. Monitor ROM (MON)  
10.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185  
10.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185  
10.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186  
10.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186  
10.4.1 Entering Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . .188  
10.4.1.1  
10.4.1.2  
Normal Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . .188  
Forced Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . .190  
10.4.2 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191  
10.4.3 Echoing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191  
10.4.4 Break Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192  
10.4.5 Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192  
10.4.6 Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196  
10.5 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196  
Advance Information  
12  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Table of Contents  
MOTOROLA  
Table of Contents  
Section 11. Timer Interface A (TIMA)  
11.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199  
11.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200  
11.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200  
11.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204  
11.4.1 TIMA Counter Prescaler. . . . . . . . . . . . . . . . . . . . . . . . . . .204  
11.4.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204  
11.4.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205  
11.4.3.1  
11.4.3.2  
Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . .206  
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .206  
11.4.4 Pulse-Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . .207  
11.4.4.1  
11.4.4.2  
11.4.4.3  
Unbuffered PWM Signal Generation . . . . . . . . . . . . . . .209  
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . .210  
PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211  
11.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212  
11.6 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212  
11.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213  
11.7.1 TIMA Clock Pin (PTE3/TCLKA) . . . . . . . . . . . . . . . . . . . . .213  
11.7.2 TIMA Channel I/O Pins  
(PTE4/TCH0APTE7/TCH3A) . . . . . . . . . . . . . . . . . . .213  
11.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .214  
11.8.1 TIMA Status and Control Register . . . . . . . . . . . . . . . . . . .214  
11.8.2 TIMA Counter Registers. . . . . . . . . . . . . . . . . . . . . . . . . . .216  
11.8.3 TIMA Counter Modulo Registers . . . . . . . . . . . . . . . . . . . .217  
11.8.4 TIMA Channel Status and Control Registers . . . . . . . . . . .217  
11.8.5 TIMA Channel Registers . . . . . . . . . . . . . . . . . . . . . . . . . .222  
Section 12. Timer Interface B (TIMB)  
12.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225  
12.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226  
12.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226  
12.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226  
12.4.1 TIMB Counter Prescaler. . . . . . . . . . . . . . . . . . . . . . . . . . .227  
12.4.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Table of Contents  
AdvanceInformation  
13  
Table of Contents  
12.4.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230  
12.4.3.1  
12.4.3.2  
Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . .230  
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .231  
12.4.4 Pulse-Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . .232  
12.4.4.1  
12.4.4.2  
12.4.4.3  
Unbuffered PWM Signal Generation . . . . . . . . . . . . . . .233  
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . .234  
PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234  
12.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236  
12.6 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236  
12.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236  
12.7.1 TIMB Clock Pin (PTD4/ATD12) . . . . . . . . . . . . . . . . . . . . .237  
12.7.2 TIMB Channel I/O Pins  
(PTE1/TCH0BPTE2/TCH1B) . . . . . . . . . . . . . . . . . . .237  
12.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237  
12.8.1 TIMB Status and Control Register . . . . . . . . . . . . . . . . . . .238  
12.8.2 TIMB Counter Registers. . . . . . . . . . . . . . . . . . . . . . . . . . .240  
12.8.3 TIMB Counter Modulo Registers . . . . . . . . . . . . . . . . . . . .241  
12.8.4 TIMB Channel Status and Control Registers . . . . . . . . . . .242  
12.8.5 TIMB Channel Registers . . . . . . . . . . . . . . . . . . . . . . . . . .246  
Section 13. Serial Peripheral Interface Module (SPI)  
13.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249  
13.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250  
13.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250  
13.4 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250  
13.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251  
13.5.1 Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251  
13.5.2 Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .254  
13.6 Transmission Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .255  
13.6.1 Clock Phase and Polarity Controls. . . . . . . . . . . . . . . . . . .255  
13.6.2 Transmission Format When CPHA = 0 . . . . . . . . . . . . . . .255  
13.6.3 Transmission Format When CPHA = 1 . . . . . . . . . . . . . . .257  
13.6.4 Transmission Initiation Latency . . . . . . . . . . . . . . . . . . . . .258  
Advance Information  
14  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Table of Contents  
MOTOROLA  
Table of Contents  
13.7 Error Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .260  
13.7.1 Overflow Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .260  
13.7.2 Mode Fault Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .262  
13.8 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .264  
13.9 Resetting the SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266  
13.10 Queuing Transmission Data . . . . . . . . . . . . . . . . . . . . . . . . . .266  
13.11 Low-Power Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .268  
13.12 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .268  
13.12.1 MISO (Master In/Slave Out). . . . . . . . . . . . . . . . . . . . . . . .269  
13.12.2 MOSI (Master Out/Slave In). . . . . . . . . . . . . . . . . . . . . . . .269  
13.12.3 SPSCK (Serial Clock). . . . . . . . . . . . . . . . . . . . . . . . . . . . .269  
13.12.4 SS (Slave Select). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270  
13.12.5 VSS (Clock Ground) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271  
13.13 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271  
13.13.1 SPI Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .272  
13.13.2 SPI Status and Control Register . . . . . . . . . . . . . . . . . . . .274  
13.13.3 SPI Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .277  
Section 14. Serial Communications Interface  
Module (SCI)  
14.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .279  
14.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .280  
14.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .280  
14.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .281  
14.4.1 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .283  
14.4.2 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .283  
14.4.2.1  
14.4.2.2  
14.4.2.3  
14.4.2.4  
14.4.2.5  
14.4.2.6  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .283  
Character Transmission. . . . . . . . . . . . . . . . . . . . . . . . .283  
Break Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .285  
Idle Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .285  
Inversion of Transmitted Output. . . . . . . . . . . . . . . . . . .286  
Transmitter Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . .286  
14.4.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .286  
14.4.3.1  
14.4.3.2  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .286  
Character Reception . . . . . . . . . . . . . . . . . . . . . . . . . . .288  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Table of Contents  
AdvanceInformation  
15  
Table of Contents  
14.4.3.3  
14.4.3.4  
14.4.3.5  
14.4.3.6  
14.4.3.7  
Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .288  
Framing Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .290  
Receiver Wakeup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .290  
Receiver Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . .291  
Error Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .292  
14.5 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .292  
14.6 SCI During Break Module Interrupts. . . . . . . . . . . . . . . . . . . .293  
14.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293  
14.7.1 PTE2/TxD (Transmit Data). . . . . . . . . . . . . . . . . . . . . . . . .293  
14.7.2 PTE1/RxD (Receive Data) . . . . . . . . . . . . . . . . . . . . . . . . .294  
14.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294  
14.8.1 SCI Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . .294  
14.8.2 SCI Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . .297  
14.8.3 SCI Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . .300  
14.8.4 SCI Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .301  
14.8.5 SCI Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . .305  
14.8.6 SCI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .306  
14.8.7 SCI Baud Rate Register . . . . . . . . . . . . . . . . . . . . . . . . . .306  
Section 15. Input/Output (I/O) Ports  
15.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .309  
15.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .309  
15.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .312  
15.3.1 Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .312  
15.3.2 Data Direction Register A . . . . . . . . . . . . . . . . . . . . . . . . .312  
15.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314  
15.4.1 Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314  
15.4.2 Data Direction Register B. . . . . . . . . . . . . . . . . . . . . . . . . .314  
15.5 Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .316  
15.5.1 Port C Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .316  
15.5.2 Data Direction Register C . . . . . . . . . . . . . . . . . . . . . . . . .316  
15.6 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .318  
15.7 Port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .319  
15.7.1 Port E Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .319  
15.7.2 Data Direction Register E . . . . . . . . . . . . . . . . . . . . . . . . .320  
Advance Information  
16  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Table of Contents  
MOTOROLA  
Table of Contents  
15.8 Port F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .321  
15.8.1 Port F Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .321  
15.8.2 Data Direction Register F . . . . . . . . . . . . . . . . . . . . . . . . .322  
Section 16. Computer Operating Properly (COP)  
16.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .325  
16.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .325  
16.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .326  
16.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .327  
16.4.1 CGMXCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .327  
16.4.2 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .327  
16.4.3 Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .327  
16.4.4 Internal Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .328  
16.4.5 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .328  
16.4.6 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . .328  
16.5 COP Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .328  
16.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .328  
16.7 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .329  
16.8 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .329  
16.9 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .329  
Section 17. External Interrupt (IRQ)  
17.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .331  
17.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .331  
17.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .331  
17.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .332  
17.5 IRQ Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .335  
17.6 IRQ Status and Control Register . . . . . . . . . . . . . . . . . . . . . .336  
Section 18. Low-Voltage Inhibit (LVI)  
18.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337  
18.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337  
18.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Table of Contents  
AdvanceInformation  
17  
Table of Contents  
18.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .338  
18.4.1 Polled LVI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .339  
18.4.2 Forced Reset Operation. . . . . . . . . . . . . . . . . . . . . . . . . . .339  
18.4.3 False Reset Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . .339  
18.4.4 LVI Trip Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .340  
18.5 LVI Status and Control Register . . . . . . . . . . . . . . . . . . . . . . .340  
18.6 LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .341  
18.7 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .341  
18.8 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .342  
Section 19. Analog-to-Digital Converter (ADC)  
19.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .343  
19.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .344  
19.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .344  
19.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .344  
19.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .345  
19.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .346  
19.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .346  
19.4.4 Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . .347  
19.4.5 Result Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347  
19.4.6 Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .348  
19.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .348  
19.6 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349  
19.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349  
19.7.1 ADC Analog Power Pin (VDDAD) . . . . . . . . . . . . . . . . . . . .349  
19.7.2 ADC Analog Ground Pin (VSSAD). . . . . . . . . . . . . . . . . . . .349  
19.7.3 ADC Voltage Reference Pin (VREFH) . . . . . . . . . . . . . . . . .349  
19.7.4 ADC Voltage Reference Low Pin (VREFL) . . . . . . . . . . . . .350  
19.7.5 ADC Voltage In (ADVIN) . . . . . . . . . . . . . . . . . . . . . . . . . .350  
19.7.6 ADC External Connections. . . . . . . . . . . . . . . . . . . . . . . . .350  
19.7.6.1  
19.7.6.2  
19.7.6.3  
VREFH and VREFL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .350  
ANx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .350  
Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351  
19.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351  
19.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . .351  
Advance Information  
18  
MC68HC908MR16/MC68HC908MR32 — Rev. 5.0  
Table of Contents  
MOTOROLA  
Table of Contents  
19.8.2 ADC Data Register High . . . . . . . . . . . . . . . . . . . . . . . . . .354  
19.8.3 ADC Data Register Low . . . . . . . . . . . . . . . . . . . . . . . . . . .355  
19.8.4 ADC Clock Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .356  
Section 20. Power-On Reset (POR)  
20.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .359  
20.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .359  
20.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .359  
Section 21. Break Module (BRK)  
21.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361  
21.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361  
21.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .362  
21.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .362  
21.4.1 Flag Protection During Break Interrupts. . . . . . . . . . . . . . .364  
21.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .364  
21.4.3 TIM1 and TIM2 During Break Interrupts. . . . . . . . . . . . . . .364  
21.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .364  
21.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .364  
21.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .364  
21.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .365  
21.6 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .365  
21.6.1 Break Status and Control Register. . . . . . . . . . . . . . . . . . .365  
21.6.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . .366  
21.6.3 Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .367  
21.6.4 Break Flag Control Register. . . . . . . . . . . . . . . . . . . . . . . .368  
Section 22. Electrical Specifications  
22.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .369  
22.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .369  
22.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . .370  
22.4 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . .371  
22.5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .371  
22.6 DC Electrical Characteristics (VDD = 5.0 Vdc ± 10%). . . . . . .372  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Table of Contents  
AdvanceInformation  
19  
Table of Contents  
22.7 FLASH Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . .373  
22.8 Control Timing (VDD = 5.0 Vdc ± 10%) . . . . . . . . . . . . . . . . .374  
22.9 Serial Peripheral Interface Characteristics  
(VDD = 5.0 Vdc ± 10%) . . . . . . . . . . . . . . . . . . . . . . . . . . .375  
22.10 TImer Interface Module Characteristics . . . . . . . . . . . . . . . . .378  
22.11 Clock Generation Module Component Specifications . . . . . .378  
22.12 CGM Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . .378  
22.13 CGM Acquisition/Lock Time Specifications  
. . . . . . . . . . . .379  
22.14 Analog-to-Digital Converter (ADC) Characteristics. . . . . . . . .380  
Section 23. Mechanical Specifications  
23.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .381  
23.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .381  
23.3 64-Pin Plastic Quad Flat Pack (QFP) . . . . . . . . . . . . . . . . . . .382  
23.4 56-Pin Shrink Dual In-Line Package (SDIP). . . . . . . . . . . . . .383  
Section 24. Ordering Information  
24.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .385  
24.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .385  
24.3 Order Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .385  
Appendix A. MC68HC908MR16  
A.1  
A.2  
A.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .387  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .387  
Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .388  
Advance Information  
20  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Table of Contents  
MOTOROLA  
Advance Information MC68HC908MR16/MC68HC908MR32  
List of Figures  
Figure  
Title  
Page  
1-1  
1-2  
1-3  
1-4  
MCU Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
64-Pin QFP Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . .33  
56-Pin SDIP Pin Assignments . . . . . . . . . . . . . . . . . . . . . . .34  
Power Supply Bypassing . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
2-1  
2-2  
Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Control, Status, and Data Registers Summary . . . . . . . . . .42  
4-1  
4-2  
4-3  
4-4  
FLASH Control Register (FLCR) . . . . . . . . . . . . . . . . . . . . .59  
FLASH Programming Flowchart. . . . . . . . . . . . . . . . . . . . . .63  
FLASH Block Protect Register (FLBPR) . . . . . . . . . . . . . . .65  
FLASH Block Protect Start Address. . . . . . . . . . . . . . . . . . .65  
5-1  
Configuration Register (CONFIG) . . . . . . . . . . . . . . . . . . . .68  
6-1  
6-2  
6-3  
6-4  
6-5  
6-6  
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
Accumulator (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
Index Register (H:X). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
Stack Pointer (SP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
Program Counter (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
Condition Code Register (CCR). . . . . . . . . . . . . . . . . . . . . .75  
7-1  
7-2  
7-3  
7-4  
7-5  
7-6  
7-7  
7-8  
7-9  
SIM Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
CGM Clock Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
External Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
Sources of Internal Reset. . . . . . . . . . . . . . . . . . . . . . . . . . .95  
Internal Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95  
POR Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
Interrupt Entry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
Interrupt Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100  
Interrupt Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA List of Figures  
Advance Information  
21  
List of Figures  
Figure  
Title  
Page  
7-10  
7-11  
7-12  
7-13  
7-14  
7-15  
7-16  
Interrupt Recognition Example. . . . . . . . . . . . . . . . . . . . . .101  
Wait Mode Entry Timing. . . . . . . . . . . . . . . . . . . . . . . . . . .103  
Wait Recovery from Interrupt . . . . . . . . . . . . . . . . . . . . . . .103  
Wait Recovery from Internal Reset . . . . . . . . . . . . . . . . . .103  
SIM Break Status Register (SBSR) . . . . . . . . . . . . . . . . . .104  
SIM Reset Status Register (SRSR) . . . . . . . . . . . . . . . . . .106  
SIM Break Flag Control Register (SBFCR) . . . . . . . . . . . .107  
8-1  
8-2  
8-3  
8-4  
8-5  
8-6  
8-7  
CGM Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112  
CGM I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . .113  
CGM External Connections . . . . . . . . . . . . . . . . . . . . . . . .120  
CGM I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . .123  
PLL Control Register (PCTL) . . . . . . . . . . . . . . . . . . . . . . .124  
PLL Bandwidth Control Register (PBWC) . . . . . . . . . . . . .126  
PLL Programming Register (PPG). . . . . . . . . . . . . . . . . . .128  
9-1  
9-2  
9-3  
9-4  
9-5  
9-6  
9-7  
9-8  
PWM Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . .137  
Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138  
Center-Aligned PWM (Positive Polarity). . . . . . . . . . . . . . .141  
Edge-Aligned PWM (Positive Polarity). . . . . . . . . . . . . . . .142  
Reload Frequency Change . . . . . . . . . . . . . . . . . . . . . . . .144  
PWM Interrupt Requests . . . . . . . . . . . . . . . . . . . . . . . . . .144  
Center-Aligned PWM Value Loading . . . . . . . . . . . . . . . . .145  
Center-Aligned Loading of Modulus. . . . . . . . . . . . . . . . . .145  
Edge-Aligned PWM Value Loading . . . . . . . . . . . . . . . . . .146  
Edge-Aligned Modulus Loading . . . . . . . . . . . . . . . . . . . . .146  
Complementary Pairing . . . . . . . . . . . . . . . . . . . . . . . . . . .148  
Typical AC Motor Drive . . . . . . . . . . . . . . . . . . . . . . . . . . .148  
Dead-Time Generators. . . . . . . . . . . . . . . . . . . . . . . . . . . .150  
Effects of Dead-Time Insertion. . . . . . . . . . . . . . . . . . . . . .151  
Dead-Time at Duty Cycle Boundaries . . . . . . . . . . . . . . . .152  
Dead-Time and Small Pulse Widths. . . . . . . . . . . . . . . . . .152  
Ideal Complementary Operation (Dead-Time = 0) . . . . . . .154  
Current Convention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155  
Top/Bottom Correction for PWMs 1 and 2 . . . . . . . . . . . . .156  
PWM Polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157  
PWM Output Control Register (PWMOUT) . . . . . . . . . . . .158  
Dead-Time Insertion During OUTCTL = 1 . . . . . . . . . . . . .159  
9-9  
9-10  
9-11  
9-12  
9-13  
9-14  
9-15  
9-16  
9-17  
9-18  
9-19  
9-20  
9-21  
9-22  
Advance Information  
22  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
List of Figures  
MOTOROLA  
List of Figures  
Figure  
Title  
Page  
9-23  
9-24  
9-25  
9-26  
9-27  
9-28  
9-29  
9-30  
9-31  
9-32  
9-33  
9-34  
9-35  
9-36  
9-37  
9-38  
9-39  
9-40  
9-41  
Dead-Time Insertion During OUTCTL = 1 . . . . . . . . . . . . .160  
PWM Disable Mapping Write-Once Register (DISMAP) . .161  
PWM Disabling Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . .162  
PWM Disabling Decode Scheme . . . . . . . . . . . . . . . . . . . .163  
PWM Disabling in Automatic Mode . . . . . . . . . . . . . . . . . .163  
PWM Disabling in Manual Mode (Example 1) . . . . . . . . . .165  
PWM Disabling in Manual Mode (Example 2) . . . . . . . . . .165  
PWM Software Disable . . . . . . . . . . . . . . . . . . . . . . . . . . .166  
PWMEN and PWM Pins. . . . . . . . . . . . . . . . . . . . . . . . . . .167  
PWM Counter Register High (PCNTH) . . . . . . . . . . . . . . .168  
PWM Counter Register Low (PCNTL) . . . . . . . . . . . . . . . .168  
PWM Counter Modulo Register High (PMODH) . . . . . . . .169  
PWM Counter Modulo Register Low (PMODL) . . . . . . . . .169  
PWMx Value Registers High (PVALxH). . . . . . . . . . . . . . .170  
PWMx Value Registers Low (PVALxL) . . . . . . . . . . . . . . .170  
PWM Control Register 1 (PCTL1) . . . . . . . . . . . . . . . . . . .171  
PWM Control Register 2 (PCTL2) . . . . . . . . . . . . . . . . . . .174  
Dead-Time Write-Once Register (DEADTM) . . . . . . . . . . .176  
PWM Disable Mapping  
Write-Once Register (DISMAP). . . . . . . . . . . . . . . . . . .176  
Fault Control Register (FCR) . . . . . . . . . . . . . . . . . . . . . . .177  
Fault Status Register (FSR) . . . . . . . . . . . . . . . . . . . . . . . .179  
Fault Acknowledge Register (FTACK) . . . . . . . . . . . . . . . .180  
PWM Output Control Register (PWMOUT) . . . . . . . . . . . .182  
PWM Clock Cycle and PWM Cycle Definitions . . . . . . . . .184  
PWM Load Cycle/Frequency Definition . . . . . . . . . . . . . . .184  
9-42  
9-43  
9-44  
9-45  
9-46  
9-47  
10-1  
10-2  
10-3  
10-4  
10-5  
10-6  
Monitor Mode Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187  
Monitor Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191  
Sample Monitor Waveforms. . . . . . . . . . . . . . . . . . . . . . . .191  
Read Transaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191  
Break Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192  
Monitor Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . .197  
11-1  
11-2  
11-3  
11-4  
TIMA Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201  
TIM I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . .202  
PWM Period and Pulse Width . . . . . . . . . . . . . . . . . . . . . .208  
TIMA Status and Control Register (TASC). . . . . . . . . . . . .214  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA List of Figures  
AdvanceInformation  
23  
List of Figures  
Figure  
Title  
Page  
11-5  
11-6  
TIMA Counter Registers (TACNTH and TACNTL). . . . . . .216  
TIMA Counter Modulo Registers  
(TAMODH and TAMODL) . . . . . . . . . . . . . . . . . . . . . . .217  
TIMA Channel Status  
11-7  
and Control Registers (TASC0TASC3). . . . . . . . . . . .218  
CHxMAX Latency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221  
TIMA Channel Registers (TACH0H/LTACH3H/L) . . . . . .222  
11-8  
11-9  
12-1  
12-2  
12-3  
12-4  
12-5  
12-6  
TIMB Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227  
TIMB I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . .228  
PWM Period and Pulse Width . . . . . . . . . . . . . . . . . . . . . .232  
TIMB Status and Control Register (TBSC). . . . . . . . . . . . .238  
TIMB Counter Registers (TBCNTH and TBCNTL). . . . . . .240  
TIMB Counter Modulo Registers  
(TBMODH and TBMODL) . . . . . . . . . . . . . . . . . . . . . . .241  
TIMB Channel Status  
12-7  
and Control Registers (TBSC0TBSC1). . . . . . . . . . . .242  
CHxMAX Latency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .246  
TIMB Channel Registers (TBCH0H/LTBCH1H/L) . . . . . .246  
12-8  
12-9  
13-1  
13-2  
13-3  
13-4  
13-5  
13-6  
13-7  
13-8  
SPI Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . .252  
SPI I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . .253  
Full-Duplex Master-Slave Connections . . . . . . . . . . . . . . .253  
Transmission Format (CPHA = 0) . . . . . . . . . . . . . . . . . . .256  
CPHA/SS Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .256  
Transmission Format (CPHA = 1) . . . . . . . . . . . . . . . . . . .257  
Transmission Start Delay (Master). . . . . . . . . . . . . . . . . . .259  
Missed Read of Overflow Condition. . . . . . . . . . . . . . . . . .261  
Clearing SPRF When OVRF Interrupt Is Not Enabled. . . .262  
SPI Interrupt Request Generation . . . . . . . . . . . . . . . . . . .265  
SPRF/SPTE CPU Interrupt Timing. . . . . . . . . . . . . . . . . . .267  
CPHA/SS Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270  
SPI Control Register (SPCR) . . . . . . . . . . . . . . . . . . . . . . .272  
SPI Status and Control Register (SPSCR). . . . . . . . . . . . .274  
SPI Data Register (SPDR) . . . . . . . . . . . . . . . . . . . . . . . . .277  
13-9  
13-10  
13-11  
13-12  
13-13  
13-14  
13-15  
14-1  
14-2  
SCI Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . .281  
SCI I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . .282  
Advance Information  
24  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
List of Figures  
MOTOROLA  
List of Figures  
Figure  
Title  
Page  
14-3  
14-4  
14-5  
14-6  
14-7  
14-8  
14-9  
14-10  
14-11  
14-12  
14-13  
14-14  
SCI Data Formats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .283  
SCI Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .284  
SCI Receiver Block Diagram . . . . . . . . . . . . . . . . . . . . . . .287  
Receiver Data Sampling. . . . . . . . . . . . . . . . . . . . . . . . . . .288  
SCI Control Register 1 (SCC1) . . . . . . . . . . . . . . . . . . . . .295  
SCI Control Register 2 (SCC2) . . . . . . . . . . . . . . . . . . . . .298  
SCI Control Register 3 (SCC3) . . . . . . . . . . . . . . . . . . . . .300  
SCI Status Register 1 (SCS1) . . . . . . . . . . . . . . . . . . . . . .302  
Flag Clearing Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . .304  
SCI Status Register 2 (SCS2) . . . . . . . . . . . . . . . . . . . . . .305  
SCI Data Register (SCDR). . . . . . . . . . . . . . . . . . . . . . . . .306  
SCI Baud Rate Register (SCBR) . . . . . . . . . . . . . . . . . . . .306  
15-1  
15-2  
15-3  
15-4  
15-5  
15-6  
15-7  
15-8  
I/O Port Register Summary . . . . . . . . . . . . . . . . . . . . . . . .310  
Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . .312  
Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . .312  
Port A I/O Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .313  
Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . .314  
Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . .314  
Port B I/O Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .315  
Port C Data Register (PTC) . . . . . . . . . . . . . . . . . . . . . . . .316  
Data Direction Register C (DDRC). . . . . . . . . . . . . . . . . . .316  
Port C I/O Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .317  
Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . .318  
Port D Input Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .318  
Port E Data Register (PTE) . . . . . . . . . . . . . . . . . . . . . . . .319  
Data Direction Register E (DDRE) . . . . . . . . . . . . . . . . . . .320  
Port E I/O Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .320  
Port F Data Register (PTF) . . . . . . . . . . . . . . . . . . . . . . . .321  
Data Direction Register F (DDRF) . . . . . . . . . . . . . . . . . . .322  
Port F I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .323  
15-9  
15-10  
15-11  
15-12  
15-13  
15-14  
15-15  
15-16  
15-17  
15-18  
16-1  
16-2  
16-3  
COP Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .326  
COP I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . .326  
COP Control Register (COPCTL). . . . . . . . . . . . . . . . . . . .328  
17-1  
17-2  
IRQ Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . .332  
IRQ I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . .332  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA List of Figures  
AdvanceInformation  
25  
List of Figures  
Figure  
Title  
Page  
17-3  
17-4  
IRQ Interrupt Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . .334  
IRQ Status and Control Register (ISCR) . . . . . . . . . . . . . .336  
18-1  
18-2  
18-3  
LVI Module Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . .338  
LVI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . .339  
LVI Status and Control Register (LVISCR) . . . . . . . . . . . .340  
19-1  
19-2  
19-3  
19-4  
ADC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .345  
8-Bit Truncation Mode Error. . . . . . . . . . . . . . . . . . . . . . . .348  
ADC Status and Control Register (ADSCR). . . . . . . . . . . .351  
ADC Data Register High (ADRH)  
Left Justified Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . .354  
ADC Data Register High (ADRH)  
Right Justified Mode . . . . . . . . . . . . . . . . . . . . . . . . . . .354  
ADC Data Register Low (ADRL)  
Left Justified Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . .354  
ADC Data Register Low (ADRL)  
19-5  
19-6  
19-7  
Right Justified Mode . . . . . . . . . . . . . . . . . . . . . . . . . . .355  
ADC Data Register Low (ADRL) 8-Bit Mode . . . . . . . . . . .356  
ADC Clock Register (ADCLK) . . . . . . . . . . . . . . . . . . . . . .356  
19-8  
19-9  
21-1  
21-2  
21-3  
21-4  
21-5  
21-6  
21-7  
Break Module Block Diagram. . . . . . . . . . . . . . . . . . . . . . .363  
I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . .363  
Break Status and Control Register (BRKSCR) . . . . . . . . .365  
Break Address Register High (BRKH) . . . . . . . . . . . . . . . .366  
Break Address Register Low (BRKL). . . . . . . . . . . . . . . . .366  
SIM Break Status Register (SBSR) . . . . . . . . . . . . . . . . . .367  
SIM Break Flag Control Register (SBFCR) . . . . . . . . . . . .368  
22-1  
22-2  
SPI Master Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .376  
SPI Slave Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .377  
23-1  
23-2  
MC68HC908MR32FU . . . . . . . . . . . . . . . . . . . . . . . . . . . .382  
MC68HC908MR32B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .383  
A-1  
MC68HC908MR16 Memory Map. . . . . . . . . . . . . . . . . . . .388  
Advance Information  
26  
MC68HC908MR16/MC68HC908MR32 — Rev. 5.0  
List of Figures  
MOTOROLA  
Advance Information MC68HC908MR16/MC68HC908MR32  
List of Tables  
Table  
Title  
Page  
2-1  
4-1  
Vector Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Examples of Protect Start Address. . . . . . . . . . . . . . . . . . . . .66  
6-1  
6-2  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
Opcode Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87  
7-1  
7-2  
Signal Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
PIN Bit Set Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
8-1  
8-2  
Variable Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117  
VCO Frequency Multiplier (N) Selection. . . . . . . . . . . . . . . .128  
9-1  
9-2  
9-3  
9-4  
9-5  
9-6  
9-7  
9-8  
9-9  
9-10  
PWM Prescaler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143  
PWM Reload Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . .144  
PWM Data Overflow and Underflow Conditions. . . . . . . . . .147  
Current Sense Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154  
Correction Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155  
OUTx Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158  
Correction Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172  
PWM Reload Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . .174  
PWM Prescaler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175  
OUTx Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183  
10-1  
10-2  
10-3  
10-4  
10-5  
10-6  
10-7  
Mode Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188  
Monitor Mode Signal Requirements and Options. . . . . . . . .189  
READ (Read Memory) Command . . . . . . . . . . . . . . . . . . . .193  
WRITE (Write Memory) Command. . . . . . . . . . . . . . . . . . . .193  
IREAD (Indexed Read) Command . . . . . . . . . . . . . . . . . . . .194  
IWRITE (Indexed Write) Command . . . . . . . . . . . . . . . . . . .194  
READSP (Read Stack Pointer) Command. . . . . . . . . . . . . .195  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Advance Information  
27  
MOTOROLA  
List of Tables  
List of Tables  
Table  
Title  
Page  
10-8  
10-9  
RUN (Run User Program) Command. . . . . . . . . . . . . . . . . .195  
Monitor Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . .196  
11-1  
11-2  
Prescaler Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216  
Mode, Edge, and Level Selection. . . . . . . . . . . . . . . . . . . . .220  
12-1  
12-2  
Prescaler Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239  
Mode, Edge, and Level Selection. . . . . . . . . . . . . . . . . . . . .245  
13-1  
13-2  
13-3  
13-4  
Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . .251  
SPI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .264  
SPI Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271  
SPI Master Baud Rate Selection . . . . . . . . . . . . . . . . . . . . .276  
14-1  
14-2  
14-3  
14-4  
14-5  
14-6  
14-7  
Start Bit Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289  
Data Bit Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289  
Stop Bit Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .290  
Character Format Selection . . . . . . . . . . . . . . . . . . . . . . . . .297  
SCI Baud Rate Prescaling . . . . . . . . . . . . . . . . . . . . . . . . . .307  
SCI Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . .307  
SCI Baud Rate Selection Examples. . . . . . . . . . . . . . . . . . .308  
15-1  
15-2  
15-3  
15-4  
15-5  
15-6  
Port A Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .313  
Port B Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .315  
Port C Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .317  
Port D Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .318  
Port E Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .321  
Port F Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .323  
18-1  
LVIOUT Bit Indication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .341  
19-1  
19-2  
Mux Channel Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353  
ADC Clock Divide Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . .357  
24-1  
Order Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .385  
Advance Information  
28  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
List of Tables  
MOTOROLA  
Advance Information MC68HC908MR16/MC68HC908MR32  
Section 1. General Description  
1.1 Contents  
1.2  
1.3  
1.4  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
1.5  
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Power Supply Pins (VDD and VSS). . . . . . . . . . . . . . . . . . . .35  
Oscillator Pins (OSC1 and OSC2) . . . . . . . . . . . . . . . . . . . .35  
External Reset Pin (RST). . . . . . . . . . . . . . . . . . . . . . . . . . .35  
External Interrupt Pin (IRQ) . . . . . . . . . . . . . . . . . . . . . . . . .36  
CGM Power Supply Pins (VDDA and VSSA) . . . . . . . . . . . . .36  
External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . . .36  
Analog Power Supply Pins (VDDA and VSSA). . . . . . . . . . . .36  
ADC Voltage Decoupling Capacitor Pin (VREFH) . . . . . . . . .36  
ADC Voltage Reference Low Pin (VREFL) . . . . . . . . . . . . . .36  
1.5.1  
1.5.2  
1.5.3  
1.5.4  
1.5.5  
1.5.6  
1.5.7  
1.5.8  
1.5.9  
1.5.10 Port A Input/Output (I/O) Pins (PTA7PTA0). . . . . . . . . . . .37  
1.5.11 Port B I/O Pins (PTB7/ATD7PTB0/ATD0) . . . . . . . . . . . . .37  
1.5.12 Port C I/O Pins (PTC6PTC2  
and PTC1/ATD9PTC0/ATD8) . . . . . . . . . . . . . . . . . . . .37  
1.5.13 Port D Input-Only Pins (PTD6/IS3PTD4/IS1  
and PTD3/FAULT4PTD0/FAULT1). . . . . . . . . . . . . . . .37  
1.5.14 PWM Pins (PWM6PWM1) . . . . . . . . . . . . . . . . . . . . . . . . .37  
1.5.15 PWM Ground Pin (PWMGND) . . . . . . . . . . . . . . . . . . . . . . .38  
1.5.16 Port E I/O Pins (PTE7/TCH3APTE3/TCLKA  
and PTE2/TCH1BPTE0/TCLKB). . . . . . . . . . . . . . . . . .38  
1.5.17 Port F I/O Pins (PTF5/TxDPTF4/RxD  
and PTF3/MISOPTF0/SPSCK) . . . . . . . . . . . . . . . . . . .38  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA General Description  
Advance Information  
29  
General Description  
1.2 Introduction  
The MC68HC908MR32 is a member of the low-cost, high-performance  
M68HC08 Family of 8-bit microcontroller units (MCUs). The M68HC08  
Family is based on the customer-specified integrated circuit (CSIC)  
design strategy. All MCUs in the family use the enhanced M68HC08  
central processor unit (CPU08) and are available with a variety of  
modules, memory sizes and types, and package types.  
1.3 Features  
Features of the MC68HC908MR32 include:  
High-performance M68HC08 architecture  
Fully upward-compatible object code with M6805, M146805, and  
M68HC05 Families  
8-MHz internal bus frequency  
On-chip FLASH memory with in-circuit programming capabilities  
of FLASH program memory:  
MC68HC908MR32 32 Kbytes  
MC68HC908MR16 16 Kbytes  
On-chip programming firmware for use with host personal  
computer  
FLASH data security(1)  
768 bytes of on-chip random-access memory (RAM)  
12-bit, 6-channel center-aligned or edge-aligned pulse-width  
modulator (PWMMC)  
Serial peripheral interface module (SPI)  
Serial communications interface module (SCI)  
16-bit, 4-channel timer interface module (TIMA)  
16-bit, 2-channel timer interface module (TIMB)  
Clock generator module (CGM)  
1. No security feature is absolutely secure. However, Motorolas strategy is to make reading  
or copying the FLASH difficult for unauthorized users.  
Advance Information  
30  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
General Description  
MOTOROLA  
General Description  
MCU Block Diagram  
Low-voltage inhibit (LVI) module with software selectable trip  
points  
10-bit, 10-channel analog-to-digital converter (ADC)  
System protection features:  
Optional computer operating properly (COP) reset  
Low-voltage detection with optional reset  
Illegal opcode or address detection with optional reset  
Fault detection with optional PWM disabling  
Available packages:  
64-pin plastic quad flat pack (QFP)  
56-pin shrink dual in-line package (SDIP)  
Low-power design, fully static with wait mode  
Master reset pin (RST) and power-on reset (POR)  
Stop mode as an option  
Break module (BRK) supports setting the in-circuit simulator (ICS)  
single break point  
Features of the CPU08 include:  
Enhanced M68HC05 programming model  
Extensive loop control functions  
16 addressing modes (eight more than the M68HC05)  
16-bit index register and stack pointer  
Memory-to-memory data transfers  
Fast 8 × 8 multiply instruction  
Fast 16/8 divide instruction  
Binary-coded decimal (BCD) instructions  
Optimization for controller applications  
C language support  
1.4 MCU Block Diagram  
Figure 1-1 shows the structure of the MC68HC908MR32.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA General Description  
AdvanceInformation  
31  
INTERNAL BUS  
M68HC08 CPU  
PTA7–PTA0  
CPU  
ARITHMETIC/LOGIC  
UNIT  
REGISTERS  
LOW-VOLTAGE INHIBIT  
MODULE  
PTB7/ATD7  
PTB6/ATD6  
PTB5/ATD5  
PTB4/ATD4  
PTB3/ATD3  
PTB2/ATD2  
PTB1/ATD1  
PTB0/ATD0  
COMPUTER OPERATING PROPERLY  
MODULE  
CONTROL AND STATUS REGISTERS — 112 BYTES  
USER FLASH — 32,256 BYTES  
TIMER INTERFACE  
MODULE A  
USER RAM 768 BYTES  
PTC6  
PTC5  
TIMER INTERFACE  
MODULE B  
PTC4  
MONITOR ROM — 240 BYTES  
PTC3  
PTC2  
SERIAL COMMUNICATIONS INTERFACE  
MODULE  
PTC1/ATD9(1)  
PTC0/ATD8  
USER FLASH VECTOR SPACE — 46 BYTES  
PTD6/IS3  
SERIAL PERIPHERAL INTERFACE  
MODULE  
OSC1  
CLOCK GENERATOR  
MODULE  
PTD5/IS2  
OSC2  
PTD4/IS1  
CGMXFC  
PTD3/FAULT4  
PTD2/FAULT3  
PTD1/FAULT2  
PTD0/FAULT1  
POWER-ON RESET  
MODULE  
SYSTEM INTEGRATION  
MODULE  
RST  
IRQ  
SINGLE BRKPT BREAK  
MODULE  
IRQ  
PTE7/TCH3A  
PTE6/TCH2A  
PTE5/TCH1A  
PTE4/TCH0A  
PTE3/TCLKA  
MODULE  
V
DDA  
(3)  
V
ANALOG-TO-DIGITAL CONVERTER  
MODULE  
SSA  
(3  
V
REFL  
PTF5/TxD  
PTF4/RxD  
(1)  
VREFH  
PTE2/TCH1B  
(1)  
PTE1/TCH0B  
PWMGND  
(1)  
PULSE-WIDTH MODULATOR  
MODULE  
PTF3/MISO  
(1)  
PTE0/TCLKB  
(1)  
PWM6–PWM1  
PTF2/MOSI  
PTF1/SS(1)  
V
SS  
(1)  
PTF0/SPSCK  
V
DD  
POWER  
V
DDA  
Notes:  
V
SSA  
1. These pins are not available in the 56-pin SDIP package.  
2. This module is not available in the 56-pin SDIP package.  
3. In the 56-pin SDIP package, these pins are bonded together.  
Figure 1-1. MCU Block Diagram  
General Description  
Pin Assignments  
1.5 Pin Assignments  
Figure 1-2 shows the 64-pin QFP pin assignments and Figure 1-3  
shows the 56-pin SDIP pin assignments.  
PTB2/ATD2  
PTB3/ATD3  
PTB4/ATD4  
PTB5/ATD5  
PTB6/ATD6  
PTB7/ATD7  
PTC0/ATD8  
PTC1/ATD9  
IRQ  
PTF5/TxD  
PTF4/RxD  
PTF3/MISO  
PTF2/MOSI  
PTF1/SS  
PTF0/SPSCK  
V
SS  
V
V
DD  
DDA  
V
PTE7/TCH3A  
PTE6/TCH2A  
PTE5/TCH1A  
PTE4/TCH0A  
PTE3/TCLKA  
PTE2/TCH1B  
PTE1/TCH0B  
SSA  
VREFL  
V
REFH  
PTC2  
PTC3  
PTC4  
PTC5  
Figure 1-2. 64-Pin QFP Pin Assignments  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA General Description  
AdvanceInformation  
33  
 
General Description  
PTA2  
PTA3  
PTA1  
PTA0  
1
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
2
PTA4  
V
3
SSA  
PTA5  
OSC2  
4
PTA6  
OSC1  
5
PTA7  
CGMXFC  
6
PTB0/ATD0  
PTB1/ATD1  
PTB2/ATD2  
PTB3/ATD3  
PTB4/ATD4  
PTB5/ATD5  
PTB6/ATD5  
PTB7/ATD7  
PTC0/ATD8  
VDDAD  
V
7
DDA  
RST  
8
IRQ  
9
PTF5/TxD  
PTF4/RxD  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
V
SS  
V
DD  
PTE7/TCH3A  
PTE6/TCH2A  
PTE5/TCH1A  
PTE4/TCH0A  
PTE3/TCLKA  
NC  
V
SSAD/VREFL  
V
REFH  
PTC2  
PTC3  
PWM6  
PTC4  
PWM5  
PTC5  
PWMGND  
PWM4  
PTC6  
PTD0/FAULT1  
PTD1/FAULT2  
PTD2/FAULT3  
PTD3/FAULT4  
PTD4/IS1  
PWM3  
PWM2  
PWM1  
PTD6/IS3  
PTD5/IS2  
Note: PTC1, PTE0, PTE1, PTE2, PTF0, PTF1, PTF2, and PTF3 are removed from this package.  
Figure 1-3. 56-Pin SDIP Pin Assignments  
Advance Information  
34  
MC68HC908MR16/MC68HC908MR32 — Rev. 5.0  
General Description  
MOTOROLA  
General Description  
Pin Assignments  
1.5.1 Power Supply Pins (VDD and VSS)  
VDD and VSS are the power supply and ground pins. The MCU operates  
from a single power supply.  
Fast signal transitions on MCU pins place high, short-duration current  
demands on the power supply. To prevent noise problems, take special  
care to provide power supply bypassing at the MCU as Figure 1-4  
shows. Place the C1 bypass capacitor as close to the MCU as possible.  
Use a high-frequency-response ceramic capacitor for C1. C2 is an  
optional bulk current bypass capacitor for use in applications that require  
the port pins to source high-current levels.  
MCU  
V
V
SS  
DD  
C1  
0.1 µF  
+
C2  
110 µF  
V
DD  
Note: Component values shown represent typical applications.  
Figure 1-4. Power Supply Bypassing  
1.5.2 Oscillator Pins (OSC1 and OSC2)  
The OSC1 and OSC2 pins are the connections for the on-chip oscillator  
circuit. For more detailed information, see Section 8. Clock Generator  
Module (CGM).  
1.5.3 External Reset Pin (RST)  
A logic 0 on the RST pin forces the MCU to a known startup state. RST  
is bidirectional, allowing a reset of the entire system. It is driven low when  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA General Description  
AdvanceInformation  
35  
 
General Description  
any internal reset source is asserted. See Section 7. System  
Integration Module (SIM).  
1.5.4 External Interrupt Pin (IRQ)  
IRQ is an asynchronous external interrupt pin. See Section 17. External  
Interrupt (IRQ).  
1.5.5 CGM Power Supply Pins (VDDA and VSSA  
)
VDDA and VSSA are the power supply pins for the analog portion of the  
clock generator module (CGM). Decoupling of these pins should be per  
the digital supply. See Section 8. Clock Generator Module (CGM).  
1.5.6 External Filter Capacitor Pin (CGMXFC)  
CGMXFC is an external filter capacitor connection for the CGM. See  
Section 8. Clock Generator Module (CGM).  
1.5.7 Analog Power Supply Pins (VDDA and VSSA  
)
VDDAD and VSSA are the power supply pins for the analog-to-digital  
converter. Decoupling of these pins should be per the digital supply. See  
Section 19. Analog-to-Digital Converter (ADC).  
1.5.8 ADC Voltage Decoupling Capacitor Pin (VREFH  
)
VREFH is the power supply for setting the reference voltage. Connect the  
VREFH pin to the same voltage potential as VDDAD. See Section 19.  
Analog-to-Digital Converter (ADC).  
1.5.9 ADC Voltage Reference Low Pin (VREFL  
)
VREFL is the lower reference supply for the ADC. Connect the VREFL pin  
to the same voltage potential as VSSAD. See Section 19.  
Analog-to-Digital Converter (ADC).  
Advance Information  
36  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
General Description  
MOTOROLA  
General Description  
Pin Assignments  
1.5.10 Port A Input/Output (I/O) Pins (PTA7PTA0)  
PTA7PTA0 are general-purpose bidirectional input/output (I/O) port  
pins. See Section 15. Input/Output (I/O) Ports.  
1.5.11 Port B I/O Pins (PTB7/ATD7PTB0/ATD0)  
Port B is an 8-bit special function port that shares all eight pins with the  
analog-to-digital converter (ADC). See Section 19. Analog-to-Digital  
Converter (ADC) and Section 15. Input/Output (I/O) Ports.  
1.5.12 Port C I/O Pins (PTC6PTC2 and PTC1/ATD9PTC0/ATD8)  
PTC6PTC2 are general-purpose bidirectional I/O port pins (see  
Section 15. Input/Output (I/O) Ports). PTC1/ATD9PTC0/ATD8 are  
special function port pins that are shared with the analog-to-digital  
converter (ADC). See Section 19. Analog-to-Digital Converter (ADC)  
and Section 15. Input/Output (I/O) Ports.  
1.5.13 Port D Input-Only Pins (PTD6/IS3PTD4/IS1 and PTD3/FAULT4PTD0/FAULT1)  
PTD6/IS3PTD4/IS1 are special function input-only port pins that also  
serve as current sensing pins for the pulse-width modulator module  
(PWMMC). PTD3/FAULT4PTD0/FAULT1are special function port pins  
that also serve as fault pins for the PWMMC. See Section 9.  
Pulse-Width Modulator for Motor Control (PWMMC) and Section 15.  
Input/Output (I/O) Ports.  
1.5.14 PWM Pins (PWM6PWM1)  
PWM6PWM1 are dedicated pins used for the outputs of the  
pulse-width modulator module (PWMMC). These are high-current sink  
pins. See Section 9. Pulse-Width Modulator for Motor Control  
(PWMMC) and Section 22. Electrical Specifications.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA General Description  
AdvanceInformation  
37  
General Description  
1.5.15 PWM Ground Pin (PWMGND)  
PWMGND is the ground pin for the pulse-width modulator module  
(PWMMC). This dedicated ground pin is used as the ground for the six  
high-current PWM pins. See Section 9. Pulse-Width Modulator for  
Motor Control (PWMMC).  
1.5.16 Port E I/O Pins (PTE7/TCH3APTE3/TCLKA and PTE2/TCH1BPTE0/TCLKB)  
Port E is an 8-bit special function port that shares its pins with the two  
timer interface modules (TIMA and TIMB). See Section 11. Timer  
Interface A (TIMA), Section 12. Timer Interface B (TIMB), and  
Section 15. Input/Output (I/O) Ports.  
1.5.17 Port F I/O Pins (PTF5/TxDPTF4/RxD and PTF3/MISOPTF0/SPSCK)  
Port F is a 6-bit special function port that shares two of its pins with the  
serial communications interface module (SCI) and four of its pins with  
the serial peripheral interface module (SPI). See Section 13. Serial  
Peripheral Interface Module (SPI), Section 14. Serial  
Communications Interface Module (SCI), and Section 15.  
Input/Output (I/O) Ports.  
Advance Information  
38  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
General Description MOTOROLA  
Advance Information MC68HC908MR16/MC68HC908MR32  
Section 2. Memory Map  
2.1 Contents  
2.2  
2.3  
2.4  
2.5  
2.6  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . .39  
Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . .40  
I/O Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Monitor ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
2.2 Introduction  
The central processor unit (CPU08) can address 64 Kbytes of memory  
space. The memory map, shown in Figure 2-1, includes:  
32 Kbytes of FLASH  
768 bytes of random-access memory (RAM)  
46 bytes of user-defined vectors  
240 bytes of monitor read-only memory (ROM)  
2.3 Unimplemented Memory Locations  
Some addresses are unimplemented. Accessing an unimplemented  
address can cause an illegal address reset. In the memory map and in  
the input/output (I/O) register summary, unimplemented addresses are  
shaded.  
Some I/O bits are read only; the write function is unimplemented. Writing  
to a read-only I/O bit has no effect on microcontroller unit (MCU)  
operation. In register figures, the write function of read-only bits is  
shaded.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Memory Map  
Advance Information  
39  
 
 
Memory Map  
Similarly, some I/O bits are write only; the read function is  
unimplemented. Reading of write-only I/O bits has no effect on MCU  
operation. In register figures, the read function of write-only bits is  
shaded.  
2.4 Reserved Memory Locations  
Some addresses are reserved. Writing to a reserved address can  
have unpredictable effects on MCU operation. In the memory map,  
Figure 2-1, and in the I/O register summary, Figure 2-2, reserved  
addresses are marked with the word reserved.  
Some I/O bits are reserved. Writing to a reserved bit can have  
unpredictable effects on MCU operation. In register figures, reserved  
bits are marked with the letter R.  
2.5 I/O Section  
Addresses $0000$005F, shown in Figure 2-2, contain most of the  
control, status, and data registers. Additional I/O registers have these  
addresses:  
$FE00, SIM break status register (SBSR)  
$FE01, SIM reset status register (SRSR)  
$FE03, SIM break flag control register (SBFCR)  
$FE07, FLASH control register (FLCR)  
$FE0C, Break address register high (BRKH)  
$FE0D, Break address register low (BRKL)  
$FE0E, Break status and control register (BRKSCR)  
$FE0F, LVI status and control register (LVISCR)  
$FF7E, FLASH block protect register (FLBPR)  
$FFFF, COP control register (COPCTL)  
Advance Information  
40  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Memory Map  
MOTOROLA  
Memory Map  
I/O Section  
$0000  
$005F  
I/O REGISTERS 96 BYTES  
RAM 768 BYTES  
$0060  
$035F  
$0360  
$7FFF  
UNIMPLEMENTED 31,904 BYTES  
FLASH 32,256 BYTES  
$8000  
$FDFF  
$FE00  
$FE01  
$FE02  
$FE03  
$FE04  
$FE05  
$FE06  
$FE07  
$FE08  
$FE09  
$FE0A  
$FE0B  
$FE0C  
$FE0D  
$FE0E  
$FE0F  
SIM BREAK STATUS REGISTER (SBSR)  
SIM RESET STATUS REGISTER (SRSR)  
RESERVED  
SIM BREAK FLAG CONTROL REGISTER (SBFCR)  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
FLASH CONTROL REGISTER (FLCR)  
UNIMPLEMENTED  
UNIMPLEMENTED  
UNIMPLEMENTED  
SIM BREAK ADDRESS REGISTER HIGH (BRKH)  
SIM BREAK ADDRESS REGISTER LOW (BRKL)  
SIM BREAK FLAG CONTROL REGISTER (SBFCR)  
LVI STATUS AND CONTROL REGISTER (LVISCR)  
$FE10  
MONITOR ROM 240 BYTES  
$FEFF  
$FF00  
$FF7D  
UNIMPLEMENTED 126 BYTES  
FLASH BLOCK PROTECT REGISTER (FLBPR)  
UNIMPLEMENTED 83 BYTES  
$FF7E  
$FF7F  
$FFD1  
$FFD2  
VECTORS 46 BYTES  
$FFFF  
Figure 2-1. Memory Map  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
AdvanceInformation  
41  
MOTOROLA  
Memory Map  
Memory Map  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Port A Data Register  
(PTA) Write:  
PTA7  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
$0000  
See page 312.  
Reset:  
Read:  
Unaffected by reset  
PTB4 PTB3  
Unaffected by reset  
PTC4 PTC3  
Unaffected by reset  
Port B Data Register  
PTB7  
PTB6  
PTC6  
PTB5  
PTC5  
PTB2  
PTC2  
PTB1  
PTC1  
PTB0  
PTC0  
$0001  
$0002  
$0003  
$0004  
$0005  
(PTB) Write:  
See page 314.  
Reset:  
Read:  
0
Port C Data Register  
(PTC) Write:  
See page 316.  
R
Reset:  
Read:  
0
PTD6  
R
PTD5  
R
PTD4  
R
PTD3  
R
PTD2  
R
PTD1  
R
PTD0  
R
Port D Data Register  
(PTD) Write:  
R
See page 318.  
Reset:  
Read:  
Unaffected by reset  
Data Direction Register A  
DDRA7 DDRA6 DDRA5 DDRA4  
DDRA3  
DDRA2 DDRA1 DDRA0  
(DDRA) Write:  
See page 312.  
Reset:  
Read:  
0
0
0
0
0
DDRB3  
0
0
0
0
Data Direction Register B  
DDRB7 DDRB6 DDRB5 DDRB4  
DDRB2 DDRB1 DDRB0  
(DDRB) Write:  
See page 314.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
Data Direction Register C  
DDRC6 DDRC5 DDRC4  
DDRC3  
DDRC2 DDRC1 DDRC0  
$0006  
$0007  
(DDRC) Write:  
See page 316.  
R
0
Reset:  
0
0
0
0
0
0
0
Unimplemented  
Read:  
Port E Data Register  
PTE7  
PTE6  
PTE5  
PTF5  
PTE4  
PTE3  
PTE2  
PTF2  
PTE1  
PTF1  
PTE0  
PTF0  
$0008  
(PTE) Write:  
See page 319.  
Reset:  
Read:  
Unaffected by reset  
0
0
Port F Data Register  
PTF4  
Unaffected by reset  
Bold = Buffered  
PTF3  
$0009  
(PTF) Write:  
See page 321.  
R
R
Reset:  
U = Unaffected X = Indeterminate  
R
= Reserved  
= Unimplemented  
Figure 2-2. Control, Status, and Data Registers Summary (Sheet 1 of 11)  
Advance Information  
42  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Memory Map  
MOTOROLA  
Memory Map  
I/O Section  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
$000A  
Unimplemented  
$000B  
Unimplemented  
Read:  
Data Direction Register E  
DDRE7 DDRE6 DDRE5 DDRE4  
DDRE3  
0
DDRE2 DDRE1 DDRE0  
$000C  
(DDRE) Write:  
See page 320.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
Data Direction Register F  
DDRF5 DDRF4  
DDRF3  
DDRF2 DDRF1 DDRF0  
$000D  
$000E  
$000F  
$0010  
$0011  
$0012  
$0013  
(DDRF) Write:  
See page 322.  
R
R
Reset:  
Read: TOF  
0
0
0
0
0
0
0
0
TIMA Status/Control Register  
See page 214.  
TOIE  
TSTOP  
PS2  
PS1  
PS0  
(TASC) Write:  
0
0
TRST  
0
R
Reset:  
0
Bit 14  
R
1
Bit 13  
R
0
0
Bit 10  
R
0
Bit 9  
R
0
Bit 8  
R
Read: Bit 15  
Bit 12  
R
Bit 11  
R
TIMA Counter Register High  
See page 216.  
(TACNTH) Write:  
R
0
Reset:  
0
0
0
0
0
0
0
Read: Bit 7  
Bit 6  
R
Bit 5  
R
Bit 4  
R
Bit 3  
R
Bit 2  
R
Bit 1  
R
Bit 0  
R
TIMA Counter Register Low  
See page 216.  
(TACNTL) Write:  
R
0
Reset:  
Read:  
0
0
0
0
0
0
0
TIMA Counter Modulo  
Bit 15  
1
14  
1
13  
1
12  
1
11  
1
10  
9
1
Bit 8  
1
Register High (TAMODH) Write:  
See page 217.  
Reset:  
1
Bit 2  
1
Read:  
TIMA Counter Modulo  
Bit 7  
1
Bit 6  
1
Bit 5  
1
Bit 4  
1
Bit 3  
1
Bit 1  
1
Bit 0  
1
Register Low (TAMODL) Write:  
See page 217.  
Reset:  
Read: CH0F  
TIMA Channel 0 Status/Control  
See page 218.  
CH0IE  
MS0B  
0
MS0A  
ELS0B  
ELS0A  
0
TOV0 CH0MAX  
Register (TASC0) Write:  
0
0
Reset:  
0
0
0
0
0
U = Unaffected X = Indeterminate  
R
= Reserved  
Bold  
= Buffered  
= Unimplemented  
Figure 2-2. Control, Status, and Data Registers Summary (Sheet 2 of 11)  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
AdvanceInformation  
43  
MOTOROLA  
Memory Map  
Memory Map  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 8  
Read:  
TIMA Channel 0 Register High  
(TACH0H) Write:  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
$0014  
See page 222.  
Reset:  
Read:  
Indeterminate after reset  
Bit 4 Bit 3  
Indeterminate after reset  
TIMA Channel 0 Register Low  
Bit 7  
Bit 6  
Bit 5  
Bit 2  
Bit 1  
Bit 0  
$0015  
$0016  
$0017  
$0018  
$0019  
$001A  
$001B  
$001C  
(TACH0L) Write:  
See page 222.  
Reset:  
Read: CH1F  
0
R
0
TIMA Channel 1 Status/Control  
See page 222.  
CH1IE  
0
MS1A  
0
ELS1B  
0
ELS1A  
0
TOV1 CH1MAX  
Register (TASC1) Write:  
0
0
Reset:  
Read:  
0
0
TIMA Channel 1 Register High  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
(TACH1H) Write:  
See page 222.  
Reset:  
Read:  
Indeterminate after reset  
Bit 4 Bit 3  
Indeterminate after reset  
TIMA Channel 1 Register Low  
Bit 7  
Bit 6  
Bit 5  
Bit 2  
Bit 1  
Bit 0  
(TACH1L) Write:  
See page 222.  
Reset:  
Read: CH2F  
TIMA Channel 2 Status/Control  
See page 218.  
CH2IE  
0
MS2B  
0
MS2A  
0
ELS2B  
0
ELS2A  
0
TOV2 CH2MAX  
Register (TASC2) Write:  
0
0
Reset:  
Read:  
0
0
TIMA Channel 2 Register High  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
(TACH2H) Write:  
See page 222.  
Reset:  
Read:  
Indeterminate after reset  
Bit 4 Bit 3  
Indeterminate after reset  
TIMA Channel 2 Register Low  
Bit 7  
Bit 6  
Bit 5  
Bit 2  
Bit 1  
Bit 0  
(TACH2L) Write:  
See page 222.  
Reset:  
Read: CH3F  
0
R
0
TIMA Channel 3 Status/Control  
See page 218.  
CH3IE  
MS3A  
ELS3B  
ELS3A  
0
TOV3 CH3MAX  
Register (TASC3) Write:  
0
0
Reset:  
0
0
0
0
0
U = Unaffected X = Indeterminate  
R
= Reserved  
Bold  
= Buffered  
= Unimplemented  
Figure 2-2. Control, Status, and Data Registers Summary (Sheet 3 of 11)  
Advance Information  
44  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Memory Map  
MOTOROLA  
Memory Map  
I/O Section  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 8  
Read:  
TIMA Channel 3 Register High  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
$001D  
(TACH3H) Write:  
See page 222.  
Reset:  
Read:  
Indeterminate after reset  
Bit 4 Bit 3  
Indeterminate after reset  
EDGE BOTNEG TOPNEG INDEP LVIRST LVIPWR STOPE COPD  
TIMA Channel 3 Register Low  
Bit 7  
Bit 6  
Bit 5  
Bit 2  
Bit 1  
Bit 0  
$001E  
$001F  
$0020  
$0021  
$0022  
$0023  
$0024  
$0025  
(TACH3L) Write:  
See page 222.  
Reset:  
Read:  
Configuration Register  
(CONFIG) Write:  
See page 68.  
Reset:  
0
DISX  
0
0
0
0
1
ISENS1  
0
1
0
0
Read:  
PWM Control Register 1  
DISY PWMINT PWMF  
ISENS0 LDOK PWMEN  
(PCTL1) Write:  
See page 171.  
Reset:  
Read:  
0
0
0
0
IPOL1  
0
0
0
0
PWM Control Register 2  
LDFQ1 LDFQ0  
IPOL2  
0
IPOL3 PRSC1 PRSC0  
(PCTL2) Write:  
See page 174.  
Reset:  
Read:  
0
0
0
0
0
0
Fault Control Register  
FINT4 FMODE4 FINT3 FMODE3  
FINT2  
FMODE2 FINT1 FMODE1  
(FCR) Write:  
See page 177.  
Reset:  
0
0
0
0
0
0
0
0
Read: FPIN4 FFLAG4 FPIN3 FFLAG3  
FPIN2  
FFLAG2 FPIN1 FFLAG1  
Fault Status Register  
(FSR) Write:  
See page 179.  
Reset:  
Read:  
U
0
0
U
0
DT5  
U
0
DT3  
U
0
DT1  
0
FTACK4  
0
DT6  
DT4  
DT2  
Fault Acknowledge Register  
(FTACK) Write:  
See page 180.  
FTACK3  
0
FTACK2  
0
FTACK1  
0
Reset:  
Read:  
0
0
0
0
0
OUT2  
0
PWM Output Control  
Register (PWMOUT) Write:  
OUTCTL OUT6  
OUT5  
OUT4  
OUT3  
0
OUT1  
See page 182.  
Reset:  
0
0
0
0
0
0
U = Unaffected X = Indeterminate  
R
= Reserved  
Bold  
= Buffered  
= Unimplemented  
Figure 2-2. Control, Status, and Data Registers Summary (Sheet 4 of 11)  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
AdvanceInformation  
45  
MOTOROLA  
Memory Map  
Memory Map  
Addr.  
Register Name  
Bit 7  
0
6
0
5
0
4
0
3
2
1
Bit 0  
Bit 8  
Read:  
Bit 11  
Bit 10  
Bit 9  
PWM Counter Register High  
(PCNTH) Write:  
See page 168.  
$0026  
Reset:  
0
0
0
0
0
0
0
0
Read: Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PWM Counter Register Low  
(PCNTL) Write:  
$0027  
$0028  
$0029  
$002A  
$002B  
$002C  
$002D  
See page 168.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
Bit 11  
X
0
Bit 10  
X
0
Bit 9  
X
0
Bit 8  
X
PWM Counter Modulo Register  
High (PMODH) Write:  
See page 169.  
Reset:  
0
Bit 7  
X
0
Bit 6  
X
0
Bit 5  
X
0
Bit 4  
X
Read:  
PWM Counter Modulo Register  
Bit 3  
X
Bit 2  
X
Bit 1  
X
Bit 0  
X
Low (PMODL) Write:  
See page 169.  
Reset:  
Read:  
PWM 1 Value Register High  
Bit 15  
0
Bit 14  
0
Bit 13  
0
Bit 12  
0
Bit 11  
0
Bit 10  
0
Bit 9  
0
Bit 8  
0
(PVAL1H) Write:  
See page 170.  
Reset:  
Read:  
PWM 1 Value Register Low  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
(PVAL1L) Write:  
See page 170.  
Reset:  
Read:  
PWM 2 Value Register High  
Bit 15  
0
Bit 14  
0
Bit 13  
0
Bit 12  
0
Bit 11  
0
Bit 10  
0
Bit 9  
0
Bit 8  
0
(PVAL2H) Write:  
See page 170.  
Reset:  
Read:  
PWM 2 Value Register Low  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
(PVAL2L) Write:  
See page 170.  
Reset:  
Read:  
PWM 3 Value Register High  
Bit 15  
Bit 14  
Bit 13  
0
Bit 12  
Bit 11  
Bit 10  
0
Bit 9  
Bit 8  
$002E  
(PVAL3H) Write:  
See page 170.  
Reset:  
0
0
0
0
0
0
U = Unaffected X = Indeterminate  
R
= Reserved  
Bold  
= Buffered  
= Unimplemented  
Figure 2-2. Control, Status, and Data Registers Summary (Sheet 5 of 11)  
Advance Information  
46  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Memory Map  
MOTOROLA  
Memory Map  
I/O Section  
Addr.  
Register Name  
Bit 7  
Bit 7  
0
6
Bit 6  
0
5
Bit 5  
0
4
Bit 4  
0
3
Bit 3  
0
2
Bit 2  
0
1
Bit 0  
Bit 0  
0
Read:  
PWM 3 Value Register Low  
Bit 1  
0
$002F  
(PVAL3L) Write:  
See page 170.  
Reset:  
Read:  
PWM 4 Value Register High  
Bit 15  
0
Bit 14  
0
Bit 13  
0
Bit 12  
0
Bit 11  
0
Bit 10  
0
Bit 9  
0
Bit 8  
0
$0030  
$0031  
$0032  
$0033  
$0034  
$0035  
$0036  
$0037  
(PVAL4H) Write:  
See page 170.  
Reset:  
Read:  
PWM 4 Value Register Low  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
(PVAL4L) Write:  
See page 170.  
Reset:  
Read:  
PWM 5 Value Register High  
Bit 15  
0
Bit 14  
0
Bit 13  
0
Bit 12  
0
Bit 11  
0
Bit 10  
0
Bit 9  
0
Bit 8  
0
(PMVAL5H) Write:  
See page 170.  
Reset:  
Read:  
PWM 5 Value Register Low  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
(PVAL5L) Write:  
See page 170.  
Reset:  
Read:  
PWM 6 Value Register High  
Bit 15  
0
Bit 14  
0
Bit 13  
0
Bit 12  
0
Bit 11  
0
Bit 10  
0
Bit 9  
0
Bit 8  
0
(PVAL6H) Write:  
See page 170.  
Reset:  
Read:  
PWM 6 Value Register Low  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
(PMVAL6L) Write:  
See page 170.  
Reset:  
Read:  
Dead-Time Write-Once  
Bit 7  
1
Bit 6  
1
Bit 5  
1
Bit 4  
1
Bit 3  
1
Bit 2  
1
Bit 1  
1
Bit 0  
1
Register (DEADTM) Write:  
See page 176.  
Reset:  
Read:  
PWM Disable Mapping  
Write-Once Register Write:  
(DISMAP) See page 161.  
Bit 7  
Bit 6  
Bit 5  
1
Bit 4  
Bit 3  
Bit 2  
1
Bit 1  
Bit 0  
Reset:  
1
1
1
1
1
1
U = Unaffected X = Indeterminate  
R
= Reserved  
Bold  
= Buffered  
= Unimplemented  
Figure 2-2. Control, Status, and Data Registers Summary (Sheet 6 of 11)  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
AdvanceInformation  
47  
MOTOROLA  
Memory Map  
Memory Map  
Addr.  
Register Name  
Bit 7  
6
5
4
M
3
WAKE  
0
2
ILTY  
0
1
PEN  
0
Bit 0  
PTY  
0
Read:  
SCI Control Register 1  
(SCC1) Write:  
LOOPS ENSCI TXINV  
$0038  
See page 295.  
Reset:  
Read:  
0
SCTIE  
0
0
TCIE  
0
0
0
SCI Control Register 2  
SCRIE  
ILIE  
TE  
RE  
0
RWU  
0
SBK  
0
$0039  
$003A  
$003B  
$003C  
$003D  
$003E  
$003F  
$0040  
(SCC2) Write:  
See page 298.  
Reset:  
0
0
0
0
0
Read: R8  
SCI Control Register 3  
See page 300.  
T8  
ORIE  
NEIE  
FEIE  
PEIE  
(SCC3) Write:  
R
U
R
R
Reset:  
U
TC  
R
0
0
0
OR  
R
0
NF  
R
0
FE  
R
0
PE  
R
Read: SCTE  
SCRF  
R
IDLE  
R
SCI Status Register 1  
See page 302.  
(SCS1) Write:  
R
1
Reset:  
Read:  
1
0
0
0
0
0
0
0
0
0
0
0
0
BKF  
R
RPF  
R
SCI Status Register 2  
(SCS2) Write:  
See page 305.  
R
0
R
R
R
R
R
Reset:  
0
0
0
0
0
0
0
Read: R7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SCI Data Register  
(SCDR) Write: T7  
See page 306.  
Reset:  
Read:  
Unaffected by reset  
0
R
0
0
R
0
0
SCI Baud Rate Register  
SCP1  
SCP0  
R
SCR2  
SCR1  
0
SCR0  
0
(SCBR) Write:  
See page 306.  
Reset:  
Read:  
0
0
0
0
0
IRQF  
0
0
0
0
0
IRQ Status/Control Register  
IMASK1 MODE1  
(ISCR) Write:  
R
0
R
0
R
0
R
0
ACK1  
0
See page 336.  
Reset:  
Read:  
0
0
COCO/  
IDMAS  
ADC Status and Control  
AIEN  
ADCO  
0
ADCH4  
ADCH3  
ADCH2 ADCH1 ADCH0  
Register (ADSCR) Write:  
See page 351.  
Reset:  
0
0
1
1
1
1
1
U = Unaffected X = Indeterminate  
R
= Reserved  
Bold  
= Buffered  
= Unimplemented  
Figure 2-2. Control, Status, and Data Registers Summary (Sheet 7 of 11)  
Advance Information  
48  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Memory Map  
MOTOROLA  
Memory Map  
I/O Section  
Addr.  
Register Name  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
Bit 0  
AD8  
R
Read:  
AD9  
R
ADC Data Register High  
Right Justified Mode(ADRH) Write:  
$0041  
R
R
R
R
R
R
See page 354.  
Reset:  
Unaffected by reset  
Read: AD7  
AD6  
R
AD5  
R
AD4  
R
AD3  
R
AD2  
R
AD1  
R
AD0  
R
ADC Data Register Low  
$0042 Right Justified Mode (ADRL) Write:  
R
See page 355.  
Reset:  
Unaffected by reset  
Read:  
0
R
0
ADC Clock Register  
ADIV2 ADIV1  
ADIV0  
1
ADICLK MODE1  
MODE0  
0
0
0
$0043  
$0044  
$0045  
$0046  
(ADCLK) Write:  
See page 356.  
Reset:  
Read:  
0
SPRIE  
0
1
R
1
0
SPI Control Register  
SPMSTR CPOL  
CPHA  
SPWOM SPE  
SPTIE  
0
(SPCR) Write:  
See page 272.  
Reset:  
0
1
OVRF  
R
0
MODF  
R
1
SPTE  
R
0
0
Read: SPRF  
SPI Status and Control  
ERRIE  
MODFEN SPR1  
SPR0  
Register (SPSCR) Write:  
R
0
See page 274.  
Reset:  
0
0
0
1
0
0
0
Read: R7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SPI Data Register  
(SPDR) Write: T7  
See page 277.  
Reset:  
Unaffected by reset  
$0047  
Unimplemented  
$0050  
Unimplemented  
Read: TOF  
0
TRST  
0
0
TIMB Status/Control Register  
See page 238.  
TOIE  
TSTOP  
PS2  
PS1  
PS0  
$0051  
$0052  
(TBSC) Write:  
0
0
R
Reset:  
0
1
Bit 13  
R
0
0
Bit 10  
R
0
Bit 9  
R
0
Bit 8  
R
Read: Bit 15  
Bit 14  
Bit 12  
R
Bit 11  
TIMB Counter Register High  
See page 240.  
(TBCNTH) Write:  
R
0
R
R
0
Reset:  
0
0
0
0
0
0
U = Unaffected X = Indeterminate  
R
= Reserved  
Bold  
= Buffered  
= Unimplemented  
Figure 2-2. Control, Status, and Data Registers Summary (Sheet 8 of 11)  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
AdvanceInformation  
49  
MOTOROLA  
Memory Map  
Memory Map  
Addr.  
Register Name  
Bit 7  
6
Bit 6  
R
5
Bit 5  
R
4
Bit 4  
R
3
Bit 3  
R
2
Bit 2  
R
1
Bit 1  
R
Bit 0  
Bit 0  
R
Read: Bit 7  
TIMB Counter Register Low  
See page 240.  
$0053  
(TBCNTL) Write:  
R
0
Reset:  
Read:  
0
0
0
0
0
0
0
TIMB Counter Modulo Register  
Bit 15  
1
Bit 14  
1
Bit 13  
1
Bit 12  
1
Bit 11  
1
Bit 10  
1
Bit 9  
1
Bit 8  
1
$0054  
$0055  
$0056  
$0057  
$0058  
$0059  
$005A  
High (TBMODH) Write:  
See page 241.  
Reset:  
Read:  
TIMB Counter Modulo Register  
Bit 7  
Bit 6  
1
Bit 5  
1
Bit 4  
1
Bit 3  
1
Bit 2  
1
Bit 1  
1
Bit 0  
1
Low (TBMODL) Write:  
See page 241.  
Reset:  
1
Read: CH0F  
TIMB Channel 0 Status/Control  
(TBSC0) See page 242.  
CH0IE  
0
MS0B  
0
MS0A  
0
ELS0B  
0
ELS0A  
0
TOV0 CH0MAX  
Register Write:  
0
0
Reset:  
Read:  
0
0
TIMB Channel 0 Register High  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
(TBCH0H) Write:  
See page 246.  
Reset:  
Read:  
Indeterminate after reset  
Bit 4 Bit 3  
Indeterminate after reset  
TIMB Channel 0 Register Low  
Bit 7  
Bit 6  
Bit 5  
Bit 2  
Bit 1  
Bit 0  
(TBCH0L) Write:  
See page 246.  
Reset:  
Read: CH1F  
0
R
0
TIMB Channel 1 Status/Control  
(TBSC1) See page 242.  
CH1IE  
0
MS1A  
0
ELS1B  
0
ELS1A  
0
TOV1 CH1MAX  
Register Write:  
0
0
Reset:  
Read:  
0
0
TIMB Channel 1 Register High  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
(TBCH1H) Write:  
See page 246.  
Reset:  
Read:  
Indeterminate after reset  
Bit 4 Bit 3  
TIMB Channel 1 Register Low  
Bit 7  
R
Bit 6  
Bit 5  
Bit 2  
Bit 1  
Bit 0  
$005B  
(TBCH1L) Write:  
See page 246.  
Reset:  
Indeterminate after reset  
Bold = Buffered  
U = Unaffected X = Indeterminate  
= Reserved  
= Unimplemented  
Figure 2-2. Control, Status, and Data Registers Summary (Sheet 9 of 11)  
Advance Information  
50  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Memory Map  
MOTOROLA  
Memory Map  
I/O Section  
Addr.  
Register Name  
Bit 7  
PLLIE  
0
6
PLLF  
R
5
PLLON  
1
4
BCS  
0
3
1
2
1
1
Bit 0  
1
Read:  
1
R
1
PLL Control Register  
$005C  
(PCTL) Write:  
R
1
R
1
R
1
See page 124.  
Reset:  
Read:  
0
LOCK  
R
0
0
0
0
PLL Bandwidth Control  
AUTO  
0
ACQ  
0
XLD  
0
$005D  
Register (PBWC) Write:  
See page 126.  
R
0
R
0
R
0
R
0
Reset:  
0
Read:  
PLL Programming Register  
MUL7  
0
MUL6  
1
MUL5  
1
MUL4  
VRS7  
VRS6  
1
VRS5  
1
VRS4  
0
$005E  
$005F  
(PPG) Write:  
See page 128.  
Reset:  
0
0
Unimplemented  
Read:  
SIM Break Status Register  
R
R
R
R
R
R
BW  
R
$FE00  
$FE01  
$FE03  
(SBSR) Write:  
See page 104.  
Reset:  
Read: POR  
0
LVI  
R
PIN  
R
COP  
R
ILOP  
R
ILAD  
R
MENRST  
0
R
0
SIM Reset Status Register  
See page 106.  
(SRSR) Write:  
R
1
R
0
Reset:  
Read:  
0
0
0
0
0
SIM Break Flag Control  
BCFE  
0
R
R
R
R
R
R
R
Register (SBFCR) Write:  
See page 107.  
Reset:  
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
FLASH Control Register  
(FLCR)  
HVEN  
0
MASS ERASE PGM  
$FE08  
See page 59.  
0
0
0
Read:  
Break Address Register High  
Bit 15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
Bit 8  
0
$FE0C  
(BRKH) Write:  
See page 366.  
Reset:  
U = Unaffected X = Indeterminate  
R
= Reserved  
Bold  
= Buffered  
= Unimplemented  
Figure 2-2. Control, Status, and Data Registers Summary (Sheet 10 of 11)  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
AdvanceInformation  
51  
MOTOROLA  
Memory Map  
Memory Map  
Addr.  
Register Name  
Bit 7  
Bit 7  
0
6
6
0
5
5
0
4
4
0
3
3
0
2
2
0
1
1
0
Bit 0  
Bit 0  
0
Read:  
Break Address Register Low  
(BRKL) Write:  
$FE0D  
See page 366.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
0
0
0
Break Status and Control  
BRKE  
0
BRKA  
0
$FE0E  
$FE0F  
$FF7E  
Register (BRKSCR) Write:  
See page 365.  
Reset:  
Read: LVIOUT  
0
R
0
0
R
0
0
R
0
0
R
0
0
R
0
0
R
0
LVI Status and Control  
TRPSEL  
0
Register (LVISCR) Write:  
R
0
See page 340.  
Reset:  
Read:  
FLASH Block Protect Register  
BPR7  
0
BPR6  
BPR5  
BPR4  
BPR3  
BPR2  
BPR1  
BPR0  
(FLBPR) Write:  
See page 65.  
Reset:  
0
0
0
0
0
0
0
Read:  
Low byte of reset vector  
Clear COP counter  
Unaffected by reset  
COP Control Register  
$FFFF  
(COPCTL) Write:  
See page 328.  
Reset:  
U = Unaffected X = Indeterminate  
R
= Reserved  
Bold  
= Buffered  
= Unimplemented  
Figure 2-2. Control, Status, and Data Registers Summary (Sheet 11 of 11)  
Advance Information  
52  
MC68HC908MR16/MC68HC908MR32 — Rev. 5.0  
MOTOROLA  
Memory Map  
Memory Map  
I/O Section  
Table 2-1 is a list of vector locations.  
Table 2-1. Vector Addresses  
Address  
$FFD2  
$FFD3  
$FFD4  
$FFD5  
$FFD6  
$FFD7  
$FFD8  
Vector  
SCI transmit vector (high)  
SCI transmit vector (low)  
SCI receive vector (high)  
SCI receive vector (low)  
SCI error vector (high)  
SCI error vector (low)  
(1)  
SPI transmit vector (high)  
(1)  
$FFD9  
$FFDA  
SPI transmit vector (low)  
SPI receive vector (high)  
(1)  
(1)  
$FFDB  
$FFDC  
$FFDD  
$FFDE  
$FFDF  
$FFE0  
$FFE1  
$FFE2  
$FFE3  
$FFE4  
$FFE5  
$FFE6  
$FFE7  
$FFE8  
$FFE9  
$FFEA  
$FFEB  
$FFEC  
$FFED  
SPI receive vector (low)  
A/D vector (high)  
A/D vector (low)  
TIM B overflow vector (high)  
TIM B overflow vector (low)  
TIM B channel 1 vector (high)  
TIM B channel 1 vector (low)  
TIM B channel 0 vector (high)  
TIM B channel 0 vector (low)  
TIM A overflow vector (high)  
TIM A overflow vector (low)  
TIM A channel 3 vector (high)  
TIM A channel 3 vector (low)  
TIM A channel 2 vector (high)  
TIM A channel 2 vector (low)  
TIM A channel 1 vector (high)  
TIM A channel 1 vector (low)  
TIM A channel 0 vector (high)  
TIM A channel 0 vector (low)  
1. The SPI module is not available in the 56-pin SDIP package.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
AdvanceInformation  
53  
MOTOROLA  
Memory Map  
 
Memory Map  
Table 2-1. Vector Addresses (Continued)  
Address  
$FFEE  
$FFEF  
$FFF0  
$FFF1  
$FFF2  
$FFF3  
$FFF4  
$FFF5  
$FFF6  
$FFF7  
$FFF8  
$FFF9  
$FFFA  
$FFFB  
$FFFC  
$FFFD  
$FFFE  
$FFFF  
Vector  
PWMMC vector (high)  
PWMMC vector (low)  
FAULT 4 (high)  
FAULT 4 (low)  
FAULT 3 (high)  
FAULT 3 (low)  
FAULT 2 (high)  
FAULT 2 (low)  
FAULT 1 (high)  
FAULT 1 (low)  
PLL vector (high)  
PLL vector (low)  
IRQ vector (high)  
IRQ vector (low)  
SWI vector (high)  
SWI vector (low)  
Reset vector (high)  
Reset vector (low)  
2.6 Monitor ROM  
The 240 bytes at addresses $FE10$FEFF are reserved ROM  
addresses that contain the instructions for the monitor functions. See  
Section 10. Monitor ROM (MON).  
Advance Information  
54  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Memory Map  
MOTOROLA  
Advance Information MC68HC908MR16/MC68HC908MR32  
Section 3. Random-Access Memory (RAM)  
3.1 Contents  
3.2  
3.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
3.2 Introduction  
This section describes the 768 bytes of random-access memory (RAM).  
3.3 Functional Description  
Addresses $0060$035F are RAM locations. The location of the stack  
RAM is programmable. The 16-bit stack pointer allows the stack to be  
anywhere in the 64-Kbyte memory space.  
NOTE: For correct operation, the stack pointer must point only to RAM  
locations.  
Within page zero are 160 bytes of RAM. Because the location of the  
stack RAM is programmable, all page zero RAM locations can be used  
for input/output (I/O) control and user data or code. When the stack  
pointer is moved from its reset location at $00FF, direct addressing  
mode instructions can access efficiently all page zero RAM locations.  
Page zero RAM, therefore, provides ideal locations for frequently  
accessed global variables.  
Before processing an interrupt, the central processor unit (CPU) uses  
five bytes of the stack to save the contents of the CPU registers.  
NOTE: For M68HC05 and M1468HC05 compatibility, the H register is not  
stacked.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Random-Access Memory (RAM)  
Advance Information  
55  
 
 
Random-Access Memory (RAM)  
During a subroutine call, the CPU uses two bytes of the stack to store  
the return address. The stack pointer decrements during pushes and  
increments during pulls.  
NOTE: Be careful when using nested subroutines. The CPU may overwrite data  
in the RAM during a subroutine or during the interrupt stacking  
operation.  
Advance Information  
56  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Random-Access Memory (RAM) MOTOROLA  
Advance Information MC68HC908MR16/MC68HC908MR32  
Section 4. FLASH Memory  
4.1 Contents  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
FLASH Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . .60  
FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . .61  
FLASH Program/Read Operation. . . . . . . . . . . . . . . . . . . . . . .62  
FLASH Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . . . .65  
4.10 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
4.11 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
4.2 Introduction  
This section describes the operation of the embedded FLASH memory.  
This memory can be read, programmed, and erased from a single  
external supply. The program and erase operations are enabled through  
the use of an internal charge pump.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA FLASH Memory  
Advance Information  
57  
 
FLASH Memory  
4.3 Functional Description  
The FLASH memory is an array of 32,256 bytes with an additional  
46 bytes of user vectors and one byte of block protection.  
NOTE: An erased bit reads as a logic 1 and a programmed bit reads as a logic 0.  
Program and erase operations are facilitated through control bits in a  
memory mapped register. Details for these operations appear later in  
this section.  
Memory in the FLASH array is organized into two rows per page. The  
page size is 128 bytes per page. The minimum erase page size is  
128 bytes. Programming is performed on a row basis, 64 bytes at a time.  
The address ranges for the user memory and vectors are:  
$8000$FDFF, user memory  
$FF7E, block protect register (FLBPR)  
$FE08, FLASH control register (FLCR)  
$FFDC$FFFF, reserved for user-defined interrupt and reset  
vectors  
Programming tools are available from Motorola. Contact a local Motorola  
representative for more information.  
NOTE: A security feature prevents viewing of the FLASH contents.(1)  
1. No security feature is absolutely secure. However, Motorolas strategy is to make reading  
or copying the FLASH difficult for unauthorized users.  
Advance Information  
58  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
FLASH Memory MOTOROLA  
FLASH Memory  
FLASH Control Register  
4.4 FLASH Control Register  
The FLASH control register (FLCR) controls FLASH program and erase  
operations.  
Address: $FE08  
Bit 7  
0
6
0
5
0
4
0
3
HVEN  
0
2
MASS  
0
1
ERASE  
0
Bit 0  
PGM  
0
Read:  
Write:  
Reset:  
0
0
0
0
= Unimplemented  
Figure 4-1. FLASH Control Register (FLCR)  
HVEN High-Voltage Enable Bit  
This read/write bit enables the charge pump to drive high voltages for  
program and erase operations in the array. HVEN can only be set if  
either PGM = 1 or ERASE = 1 and the proper sequence for program  
or erase is followed.  
1 = High voltage enabled to array and charge pump on  
0 = High voltage disabled to array and charge pump off  
MASS Mass Erase Control Bit  
Setting this read/write bit configures the 32-Kbyte FLASH array for  
mass erase operation.  
1 = MASS erase operation selected  
0 = MASS erase operation unselected  
ERASE Erase Control Bit  
This read/write bit configures the memory for erase operation.  
ERASE is interlocked with the PGM bit such that both bits cannot be  
equal to 1 or set to 1 at the same time.  
1 = Erase operation selected  
0 = Erase operation unselected  
PGM Program Control Bit  
This read/write bit configures the memory for program operation.  
PGM is interlocked with the ERASE bit such that both bits cannot be  
equal to 1 or set to 1 at the same time.  
1 = Program operation selected  
0 = Program operation unselected  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA FLASH Memory  
AdvanceInformation  
59  
FLASH Memory  
4.5 FLASH Page Erase Operation  
Use this step-by-step procedure to erase a page (128 bytes) of FLASH  
memory to read as logic 1:  
1. Set the ERASE bit, and clear the MASS bit in the FLASH control  
register.  
2. Read the FLASH block protect register.  
3. Write any data to any FLASH address within the page address  
range desired.  
4. Wait for a time, tNVS, minimum of 10 µs.  
5. Set the HVEN bit.  
6. Wait for a time, tErase, minimum of 1 ms.  
7. Clear the ERASE bit.  
8. Wait for a time, tNVH, minimum of 5 µs.  
9. Clear the HVEN bit.  
10. After a time, tRCV (typically 1 µs), the memory can be accessed  
again in read mode.  
NOTE: While these operations must be performed in the order shown, other  
unrelated operations may occur between the steps.  
Advance Information  
60  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
FLASH Memory MOTOROLA  
FLASH Memory  
FLASH Mass Erase Operation  
4.6 FLASH Mass Erase Operation  
Use this step-by-step procedure to erase the entire FLASH memory to  
read as logic 1:  
1. Set both the ERASE bit and the MASS bit in the FLASH control  
register.  
2. Read from the FLASH block protect register.  
3. Write any data to any FLASH address(2) within the FLASH  
memory address range.  
4. Wait for a time, tNVS, minimum of 10 µs.  
5. Set the HVEN bit.  
6. Wait for a time, tMErase, minimum of 4 ms.  
7. Clear the ERASE bit.  
8. Wait for a time, tNVHL, minimum of 100 µs.  
9. Clear the HVEN bit.  
10. After a time, tRCV (minimum of 1 µs), the memory can be accessed  
again in read mode.  
NOTE: Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory. While these operations  
must be performed in the order shown, other unrelated operations may  
occur between the steps.  
2. In monitor mode, when security sequence fails (see Section 10. Monitor ROM (MON)),  
write to the FLASH block protect register instead of any FLASH address.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA FLASH Memory  
AdvanceInformation  
61  
FLASH Memory  
4.7 FLASH Program/Read Operation  
Programming of the FLASH memory is done on a row basis. A row  
consists of 64 consecutive bytes starting from addresses $XX00,  
$XX40, $0080 and $XXC0.  
Use this step-by-step procedure to program a row of FLASH memory  
(Figure 4-2 provides a flowchart representation):  
1. Set the PGM bit. This configures the memory for program  
operation and enables the latching of address and data for  
programming.  
2. Read from the FLASH block protect register.  
3. Write any data to any FLASH address within the row address  
range desired.  
4. Wait for a time, tNVS, minimum of 10 µs.  
5. Set the HVEN bit.  
6. Wait for a time, tPGS, minimum of 5 µs.  
7. Write data to the FLASH address to be programmed.  
8. Wait for a time, tPROG, minimum of 30 µs.  
9. Repeat step 7 and 8 until all the bytes within the row are  
programmed.  
10. Clear the PGM bit.  
11. Wait for a time, tNVH, minimum of 5 µs.  
12. Clear the HVEN bit.  
13. After a time, tRCV (minimum of 1 µs), the memory can be accessed  
in read mode again.  
This program sequence is repeated throughout the memory until all data  
is programmed.  
NOTE: The time between each FLASH address change, or the time between  
the last FLASH address programmed to clearing of the PGM bit, must  
not exceed the maximum programming time, tPROG  
.
Advance Information  
62  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
FLASH Memory MOTOROLA  
FLASH Memory  
FLASH Program/Read Operation  
1
2
3
ALGORITHM FOR PROGRAMMING  
A ROW (64 BYTES) OF FLASH MEMORY  
SET PGM BIT  
READ THE FLASH BLOCK PROTECT REGISTER  
WRITE ANY DATA TO ANY FLASH ADDRESS  
WITHIN THE ROW ADDRESS RANGE DESIRED  
4
5
6
WAIT FOR A TIME, tNVS  
SET HVEN BIT  
WAIT FOR A TIME, tPGS  
7
8
WRITE DATA TO THE FLASH ADDRESS  
TO BE PROGRAMMED  
WAIT FOR A TIME, tPROG  
COMPLETED  
YES  
PROGRAMMING  
THIS ROW?  
NO  
10  
CLEAR PGM BIT  
WAIT FOR A TIME, tNVH  
CLEAR HVEN BIT  
11  
12  
Note:  
The time between each FLASH address change (step 7 to step 7), or  
the time between the last FLASH address programmed  
to clearing PGM bit (step 7 to step 10)  
must not exceed the maximum programming  
13  
WAIT FOR A TIME, tRCV  
END OF PROGRAMMING  
time, t  
max.  
PROG  
This row program algorithm assumes the row/s  
to be programmed are initially erased.  
Figure 4-2. FLASH Programming Flowchart  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA FLASH Memory  
AdvanceInformation  
63  
FLASH Memory  
NOTE: Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory. While these operations  
must be performed in the order shown, other unrelated operations may  
occur between the steps. Do not exceed tPROG maximum. See  
Section 22. Electrical Specifications.  
4.8 FLASH Block Protection  
Due to the ability of the on-board charge pump to erase and program the  
FLASH memory in the target application, provision is made for protecting  
a block of memory from unintentional erase or program operations due  
to system malfunction. This protection is done by using a FLASH block  
protect register (FLBPR).  
The FLBPR determines the range of the FLASH memory which is to be  
protected. The range of the protected area starts from a location defined  
by FLBPR and ends at the bottom of the FLASH memory ($FFFF). When  
the memory is protected, the HVEN bit cannot be set in either ERASE or  
PROGRAM operations.  
NOTE: In performing a program or erase operation, the FLASH block protect  
register must be read after setting the PGM or ERASE bit and before  
asserting the HVEN bit  
When the FLBPR is programmed with all 0s, the entire memory is  
protected from being programmed and erased. When all the bits are  
erased (all 1s), the entire memory is accessible for program and erase.  
When bits within the FLBPR are programmed, they lock a block of  
memory, whose address ranges are shown in 4.9 FLASH Block Protect  
Register. Once the FLBPR is programmed with a value other than $FF,  
any erase or program of the FLBPR or the protected block of FLASH  
memory is prohibited. The FLBPR itself can be erased or programmed  
only with an external voltage, VTST, present on the IRQ pin. This voltage  
also allows entry from reset into the monitor mode.  
Advance Information  
64  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
FLASH Memory MOTOROLA  
FLASH Memory  
FLASH Block Protect Register  
4.9 FLASH Block Protect Register  
The FLASH block protect register (FLBPR) is implemented as a byte  
within the FLASH memory, and therefore can be written only during a  
programming sequence of the FLASH memory. The value in this register  
determines the starting location of the protected range within the FLASH  
memory.  
Address: $FF7E  
Bit 7  
BPR7  
0
6
BPR6  
0
5
BPR5  
0
4
BPR4  
0
3
BPR3  
0
2
BPR2  
0
1
BPR1  
0
Bit 0  
BPR0  
0
Read:  
Write:  
Reset:  
U = Unaffected by reset. Initial value from factory is 1.  
Write to this register by a programming sequence to the FLASH memory.  
Figure 4-3. FLASH Block Protect Register (FLBPR)  
BPR[7:0] FLASH Block Protect Bits  
These eight bits represent bits [14:7] of a 16-bit memory address.  
Bit 15 is logic 1 and bits [6:0] are logic 0s.  
The resultant 16-bit address is used for specifying the start address  
of the FLASH memory for block protection. The FLASH is protected  
from this start address to the end of FLASH memory at $FFFF. With  
this mechanism, the protect start address can be XX00 and XX80  
(128 bytes page boundaries) within the FLASH memory.  
16-BIT MEMORY ADDRESS  
START ADDRESS OF FLASH  
0
0
0
0
0
0
0
FLBPR VALUE  
1
BLOCK PROTECT  
Figure 4-4. FLASH Block Protect Start Address  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA FLASH Memory  
AdvanceInformation  
65  
FLASH Memory  
Refer to Table 4-1 for examples of the protect start address.  
Table 4-1. Examples of Protect Start Address  
BPR[7:0]  
$00  
Start of Address of Protect Range  
The entire FLASH memory is protected.  
$8080 (1000 0000 1000 0000)  
$8100 (1000 0001 0000 0000)  
and so on...  
$01 (0000 0001)  
$02 (0000 0010)  
$FE (1111 1110)  
$FF00 (1111 1111 0000 0000)  
The entire FLASH memory is not protected.  
$FF  
Note: The end address of the protected range is always $FFFF.  
4.10 Wait Mode  
Putting the MCU into wait mode while the FLASH is in read mode does  
not affect the operation of the FLASH memory directly, but there will not  
be any memory activity since the CPU is inactive.  
The WAIT instruction should not be executed while performing a  
program or erase operation on the FLASH. Otherwise, the operation will  
discontinue, and the FLASH will be on standby mode.  
4.11 Stop Mode  
Putting the MCU into stop mode while the FLASH is in read mode does  
not affect the operation of the FLASH memory directly, but there will not  
be any memory activity since the CPU is inactive.  
The STOP instruction should not be executed while performing a  
program or erase operation on the FLASH, otherwise the operation will  
discontinue, and the FLASH will be on standby mode  
NOTE: Standby mode is the power-saving mode of the FLASH module in which  
all internal control signals to the FLASH are inactive and the current  
consumption of the FLASH is at a minimum.  
Advance Information  
66  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
FLASH Memory MOTOROLA  
 
Advance Information MC68HC908MR16/MC68HC908MR32  
Section 5. Configuration Register (CONFIG)  
5.1 Contents  
5.2  
5.3  
5.4  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
5.2 Introduction  
This section describes the configuration register (CONFIG). This register  
contains bits that configure these options:  
Resets caused by the low-voltage inhibit (LVI) module  
Power to the LVI module  
Computer operating properly (COP) module  
Top-side pulse-width modulator (PWM) polarity  
Bottom-side PWM polarity  
Edge-aligned versus center-aligned PWMs  
Six independent PWMs versus three complementary PWM pairs  
5.3 Functional Description  
The configuration register (CONFIG) is used in the initialization of  
various options. The configuration register can be written once after  
each reset. All of the configuration register bits are cleared during reset.  
Since the various options affect the operation of the microcontroller unit  
(MCU), it is recommended that this register be written immediately after  
reset. The configuration register is located at $001F and may be read at  
anytime.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Configuration Register (CONFIG)  
Advance Information  
67  
 
 
 
 
Configuration Register (CONFIG)  
NOTE: On a FLASH device, the options are one-time writeable by the user after  
each reset. The registers are not in the FLASH memory but are special  
registers containing one-time writeable latches after each reset. Upon a  
reset, the configuration register defaults to predetermined settings as  
shown in Figure 5-1.  
If the LVI module and the LVI reset signal are enabled, a reset occurs  
when VDD falls to a voltage, VLVRx, and remains at or below that level for  
at least nine consecutive central processor unit (CPU) cycles. Once an  
LVI reset occurs, the MCU remains in reset until VDD rises to a voltage,  
VLVRX  
.
5.4 Configuration Register  
Address: $001F  
Bit 7  
6
5
4
3
2
1
Bit 0  
COPD  
0
Read:  
EDGE BOTNEG TOPNEG INDEP  
LVIRST LVIPWR STOPE  
Write:  
Reset:  
0
0
0
0
1
1
0
Figure 5-1. Configuration Register (CONFIG)  
EDGE Edge-Align Enable Bit  
EDGE determines if the motor control PWM will operate in  
edge-aligned mode or center-aligned mode. See Section 9.  
Pulse-Width Modulator for Motor Control (PWMMC).  
1 = Edge-aligned mode enabled  
0 = Center-aligned mode enabled  
BOTNEG Bottom-Side PWM Polarity Bit  
BOTNEG determines if the bottom-side PWMs will have positive or  
negative polarity. See Section 9. Pulse-Width Modulator for Motor  
Control (PWMMC).  
1 = Negative polarity  
0 = Positive polarity  
Advance Information  
68  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Configuration Register (CONFIG)  
MOTOROLA  
 
Configuration Register (CONFIG)  
Configuration Register  
TOPNEG Top-Side PWM Polarity Bit  
TOPNEG determines if the top-side PWMs will have positive or  
negative polarity. See Section 9. Pulse-Width Modulator for Motor  
Control (PWMMC).  
1 = Negative polarity  
0 = Positive polarity  
INDEP Independent Mode Enable Bit  
INDEP determines if the motor control PWMs will be six independent  
PWMs or three complementary PWM pairs. See Section 9.  
Pulse-Width Modulator for Motor Control (PWMMC).  
1 = Six independent PWMs  
0 = Three complementary PWM pairs  
LVIRST LVI Reset Enable Bit  
LVIRST enables the reset signal from the LVI module. See  
Section 18. Low-Voltage Inhibit (LVI).  
1 = LVI module resets enabled  
0 = LVI module resets disabled  
LVIPWR LVI Power Enable Bit  
LVIPWR enables the LVI module. See Section 18. Low-Voltage  
Inhibit (LVI).  
1 = LVI module power enabled  
0 = LVI module power disabled  
STOPE Stop Enable Bit  
Writing a 0 or a 1 to bit 1 has no effect on MCU operation. Bit 1  
operates the same as the other bits within this write-once register  
operate.  
1 = STOP mode enabled  
0 = STOP mode disabled  
COPD COP Disable Bit  
COPD disables the COP module. See Section 16. Computer  
Operating Properly (COP).  
1 = COP module disabled  
0 = COP module enabled  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Configuration Register (CONFIG)  
AdvanceInformation  
69  
Configuration Register (CONFIG)  
Advance Information  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
70  
Configuration Register (CONFIG)  
MOTOROLA  
Advance Information MC68HC908MR16/MC68HC908MR32  
Section 6. Central Processor Unit (CPU)  
6.1 Contents  
6.2  
6.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
6.4  
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
6.4.1  
6.4.2  
6.4.3  
6.4.4  
6.4.5  
6.5  
Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
6.6  
6.6.1  
6.6.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78  
6.7  
6.8  
6.9  
CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .78  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
6.2 Introduction  
This section describes the central processor unit (CPU08, version A).  
The M68HC08 CPU is an enhanced and fully object-code-compatible  
version of the M68HC05 CPU. The CPU08 Reference Manual, Motorola  
document order number CPU08RM/AD, contains a description of the  
CPU instruction set, addressing modes, and architecture.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Central Processor Unit (CPU)  
Advance Information  
71  
 
Central Processor Unit (CPU)  
6.3 Features  
Features of the CPU08 include:  
Fully upward, object-code compatibility with M68HC05 Family  
16-bit stack pointer with stack manipulation instructions  
16-bit index register with X-register manipulation instructions  
8-MHz CPU internal bus frequency  
64-Kbyte program/data memory space  
16 addressing modes  
Memory-to-memory data moves without using accumulator  
Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions  
Enhanced binary-coded decimal (BCD) data handling  
Modular architecture with expandable internal bus definition for  
extension of addressing range beyond 64 Kbytes  
Low-power wait mode  
6.4 CPU Registers  
Figure 6-1 shows the five CPU registers. CPU registers are not part of  
the memory map.  
7
0
0
0
0
0
ACCUMULATOR (A)  
15  
15  
15  
H
X
INDEX REGISTER (H:X)  
STACK POINTER (SP)  
PROGRAM COUNTER (PC)  
7
V 1 1 H I N Z C CONDITION CODE REGISTER (CCR)  
CARRY/BORROW FLAG  
ZERO FLAG  
NEGATIVE FLAG  
INTERRUPT MASK  
HALF-CARRY FLAG  
TWOS COMPLEMENT OVERFLOW FLAG  
Figure 6-1. CPU Registers  
Advance Information  
72  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Central Processor Unit (CPU)  
MOTOROLA  
 
Central Processor Unit (CPU)  
CPU Registers  
6.4.1 Accumulator  
The accumulator is a general-purpose 8-bit register. The CPU uses the  
accumulator to hold operands and the results of arithmetic/logic  
operations.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Unaffected by reset  
Figure 6-2. Accumulator (A)  
6.4.2 Index Register  
The 16-bit index register allows indexed addressing of a 64-Kbyte  
memory space. H is the upper byte of the index register, and X is the  
lower byte. H:X is the concatenated 16-bit index register.  
In the indexed addressing modes, the CPU uses the contents of the  
index register to determine the conditional address of the operand.  
Bit  
Bit  
15 14 13 12 11 10  
9
0
8
0
7
6
5
4
3
2
1
0
Read:  
Write:  
Reset:  
0
0
0
0
0
0
X
X
X
X
X
X
X
X
X = Indeterminate  
Figure 6-3. Index Register (H:X)  
The index register can serve also as a temporary data storage location.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Central Processor Unit (CPU)  
AdvanceInformation  
73  
Central Processor Unit (CPU)  
6.4.3 Stack Pointer  
The stack pointer (SP) is a 16-bit register that contains the address of  
the next location on the stack. During a reset, the stack pointer is preset  
to $00FF. The reset stack pointer (RSP) instruction sets the least  
significant byte to $FF and does not affect the most significant byte. The  
stack pointer decrements as data is pushed onto the stack and  
increments as data is pulled from the stack.  
In the stack pointer 8-bit offset and 16-bit offset addressing modes, the  
stack pointer can function as an index register to access data on the  
stack. The CPU uses the contents of the stack pointer to determine the  
conditional address of the operand.  
Bit  
Bit  
0
15 14 13 12 11 10  
9
8
7
6
5
4
1
3
1
2
1
1
1
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
1
1
1
1
Figure 6-4. Stack Pointer (SP)  
NOTE: The location of the stack is arbitrary and may be relocated anywhere in  
RAM. Moving the SP out of page zero ($0000$00FF) frees direct  
address (page zero) space. For correct operation, the stack pointer must  
point only to RAM locations.  
Advance Information  
74  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Central Processor Unit (CPU) MOTOROLA  
Central Processor Unit (CPU)  
CPU Registers  
6.4.4 Program Counter  
The program counter (PC) is a 16-bit register that contains the address  
of the next instruction or operand to be fetched.  
Normally, the program counter automatically increments to the next  
sequential memory location every time an instruction or operand is  
fetched. Jump, branch, and interrupt operations load the program  
counter with an address other than that of the next sequential location.  
During reset, the program counter is loaded with the reset vector  
address located at $FFFE and $FFFF. The vector address is the  
address of the first instruction to be executed after exiting the reset state.  
Bit  
Bit  
0
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
Loaded with vector from $FFFE and $FFFF  
Figure 6-5. Program Counter (PC)  
6.4.5 Condition Code Register  
The 8-bit condition code register (CCR) contains the interrupt mask and  
five flags that indicate the results of the instruction just executed. Bits 6  
and 5 are set permanently to logic 1. The functions of the condition code  
register are described here.  
Bit 7  
V
6
1
1
5
1
1
4
3
I
2
1
Bit 0  
C
Read:  
Write:  
Reset:  
H
X
N
X
Z
X
X
1
X
X = Indeterminate  
Figure 6-6. Condition Code Register (CCR)  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
AdvanceInformation  
75  
MOTOROLA  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
V Overflow Flag  
The CPU sets the overflow flag when a two's complement overflow  
occurs. The signed branch instructions BGT, BGE, BLE, and BLT use  
the overflow flag.  
1 = Overflow  
0 = No overflow  
H Half-Carry Flag  
The CPU sets the half-carry flag when a carry occurs between  
accumulator bits 3 and 4 during an ADD or ADC operation. The  
half-carry flag is required for binary-coded decimal (BCD) arithmetic  
operations. The decimal adjust A (DAA) instruction uses the states of  
the H and C flags to determine the appropriate correction factor.  
1 = Carry between bits 3 and 4  
0 = No carry between bits 3 and 4  
I Interrupt Mask Bit  
When the interrupt mask is set, all maskable CPU interrupts are  
disabled. CPU interrupts are enabled when the interrupt mask is  
cleared. When a CPU interrupt occurs, the interrupt mask is set  
automatically after the CPU registers are saved on the stack, but  
before the interrupt vector is fetched.  
1 = Interrupts disabled  
0 = Interrupts enabled  
NOTE: To maintain M6805 compatibility, the upper byte of the index register (H)  
is not stacked automatically. If the interrupt service routine modifies H,  
then the user must stack and unstack H using the push H onto stack  
(PSHH) and pull H from stack (PULH) instructions.  
After the I bit is cleared, the highest-priority interrupt request is  
serviced first.  
A return-from-interrupt (RTI) instruction pulls the CPU registers from  
the stack and restores the interrupt mask from the stack. After any  
reset, the interrupt mask is set and can be cleared only by the clear  
interrupt mask software instruction (CLI).  
Advance Information  
76  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Central Processor Unit (CPU) MOTOROLA  
Central Processor Unit (CPU)  
Arithmetic/Logic Unit (ALU)  
N Negative Flag  
The CPU sets the negative flag when an arithmetic operation, logic  
operation, or data manipulation produces a negative result, setting  
bit 7 of the result.  
1 = Negative result  
0 = Non-negative result  
Z Zero Flag  
The CPU sets the zero flag when an arithmetic operation, logic  
operation, or data manipulation produces a result of $00.  
1 = Zero result  
0 = Non-zero result  
C Carry/Borrow Flag  
The CPU sets the carry/borrow flag when an addition operation  
produces a carry out of bit 7 of the accumulator or when a subtraction  
operation requires a borrow. Some instructions such as bit test and  
branch, shift, and rotate also clear or set the carry/borrow flag.  
1 = Carry out of bit 7  
0 = No carry out of bit 7  
6.5 Arithmetic/Logic Unit (ALU)  
The ALU performs the arithmetic and logic operations defined by the  
instruction set.  
Refer to the CPU08 Reference Manual, Motorola document order  
number CPU08RM/AD, for a description of the instructions and  
addressing modes and more detail about CPU architecture.  
6.6 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption  
standby modes.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Central Processor Unit (CPU)  
AdvanceInformation  
77  
Central Processor Unit (CPU)  
6.6.1 Wait Mode  
The WAIT instruction:  
Clears the interrupt mask (I bit) in the condition code register,  
enabling interrupts. After exit from wait mode by interrupt, the I bit  
remains clear. After exit by reset, the I bit is set.  
Disables the CPU clock  
6.6.2 Stop Mode  
The STOP instruction:  
Clears the interrupt mask (I bit) in the condition code register,  
enabling external interrupts. After exit from stop mode by external  
interrupt, the I bit remains clear. After exit by reset, the I bit is set.  
Disables the CPU clock  
After exiting stop mode, the CPU clock begins running after the oscillator  
stabilization delay.  
6.7 CPU During Break Interrupts  
If a break module is present on the MCU, the CPU starts a break  
interrupt by:  
Loading the instruction register with the software interrupt (SWI)  
instruction  
Loading the program counter with $FFFC:$FFFD or with  
$FEFC:$FEFD in monitor mode  
The break interrupt begins after completion of the CPU instruction in  
progress. If the break address register match occurs on the last cycle of  
a CPU instruction, the break interrupt begins immediately.  
A return-from-interrupt instruction (RTI) in the break routine ends the  
break interrupt and returns the MCU to normal operation if the break  
interrupt has been deasserted.  
Advance Information  
78  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Central Processor Unit (CPU)  
MOTOROLA  
Central Processor Unit (CPU)  
Instruction Set Summary  
6.8 Instruction Set Summary  
Table 6-1 provides a summary of the M68HC08 instruction set..  
Table 6-1. Instruction Set Summary (Sheet 1 of 8)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
ADC #opr  
IMM  
DIR  
EXT  
IX2  
A9 ii  
B9 dd  
C9 hh ll  
D9 ee ff  
E9 ff  
2
3
4
4
3
2
4
5
ADC opr  
ADC opr  
ADC opr,X  
ADC opr,X  
ADC ,X  
Add with Carry  
A (A) + (M) + (C)  
IX1  
IX  
SP1  
SP2  
F9  
ADC opr,SP  
ADC opr,SP  
9EE9 ff  
9ED9 ee ff  
ADD #opr  
ADD opr  
IMM  
DIR  
EXT  
IX2  
AB ii  
BB dd  
CB hh ll  
DB ee ff  
EB ff  
2
3
4
4
3
2
4
5
ADD opr  
ADD opr,X  
ADD opr,X  
ADD ,X  
ADD opr,SP  
ADD opr,SP  
Add without Carry  
A (A) + (M)  
IX1  
IX  
SP1  
SP2  
FB  
9EEB ff  
9EDB ee ff  
AIS #opr  
AIX #opr  
Add Immediate Value (Signed) to SP  
Add Immediate Value (Signed) to H:X  
IMM  
IMM  
A7 ii  
AF ii  
2
2
SP (SP) + (16 « M)  
H:X (H:X) + (16 « M)  
AND #opr  
AND opr  
IMM  
DIR  
EXT  
A4 ii  
B4 dd  
C4 hh ll  
D4 ee ff  
E4 ff  
2
3
4
4
3
2
4
5
AND opr  
AND opr,X  
AND opr,X  
AND ,X  
AND opr,SP  
AND opr,SP  
IX2  
Logical AND  
A (A) & (M)  
0
IX1  
IX  
SP1  
SP2  
F4  
9EE4 ff  
9ED4 ee ff  
ASL opr  
ASLA  
ASLX  
ASL opr,X  
ASL ,X  
ASL opr,SP  
DIR  
INH  
INH  
IX1  
IX  
38 dd  
48  
58  
68 ff  
78  
9E68 ff  
4
1
1
4
3
5
Arithmetic Shift Left  
(Same as LSL)  
C
0
b7  
b7  
b0  
b0  
SP1  
ASR opr  
ASRA  
ASRX  
ASR opr,X  
ASR opr,X  
ASR opr,SP  
DIR  
INH  
INH  
IX1  
IX  
37 dd  
47  
4
1
1
4
3
5
57  
C
Arithmetic Shift Right  
67 ff  
77  
SP1  
9E67 ff  
BCC rel  
Branch if Carry Bit Clear  
PC (PC) + 2 + rel ? (C) = 0  
REL  
24 rr  
3
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Central Processor Unit (CPU)  
AdvanceInformation  
79  
 
Central Processor Unit (CPU)  
Table 6-1. Instruction Set Summary (Sheet 2 of 8)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
DIR (b0) 11 dd  
DIR (b1) 13 dd  
DIR (b2) 15 dd  
DIR (b3) 17 dd  
DIR (b4) 19 dd  
DIR (b5) 1B dd  
DIR (b6) 1D dd  
DIR (b7) 1F dd  
4
4
4
4
4
4
4
4
BCLR n, opr  
Clear Bit n in M  
Mn 0  
BCS rel  
BEQ rel  
Branch if Carry Bit Set (Same as BLO)  
Branch if Equal  
PC (PC) + 2 + rel ? (C) = 1  
PC (PC) + 2 + rel ? (Z) = 1  
REL  
REL  
25 rr  
27 rr  
3
3
Branch if Greater Than or Equal To  
(Signed Operands)  
BGE opr  
BGT opr  
REL  
REL  
90 rr  
92 rr  
3
PC (PC) + 2 + rel ? (N V) = 0  
Branch if Greater Than (Signed  
Operands)  
3
3
PC (PC) + 2 + rel ? (Z) | (N  
V) = 0  
BHCC rel  
BHCS rel  
BHI rel  
Branch if Half Carry Bit Clear  
Branch if Half Carry Bit Set  
Branch if Higher  
PC (PC) + 2 + rel ? (H) = 0  
PC (PC) + 2 + rel ? (H) = 1  
PC (PC) + 2 + rel ? (C) | (Z) = 0  
REL  
REL  
REL  
28 rr  
29 rr  
22 rr  
3
3
3
Branch if Higher or Same  
(Same as BCC)  
BHS rel  
PC (PC) + 2 + rel ? (C) = 0  
REL  
24 rr  
BIH rel  
BIL rel  
Branch if IRQ Pin High  
Branch if IRQ Pin Low  
PC (PC) + 2 + rel ? IRQ = 1  
PC (PC) + 2 + rel ? IRQ = 0  
REL  
REL  
2F rr  
2E rr  
3
3
BIT #opr  
BIT opr  
IMM  
DIR  
EXT  
A5 ii  
B5 dd  
C5 hh ll  
D5 ee ff  
E5 ff  
2
3
4
4
3
2
4
5
BIT opr  
BIT opr,X  
BIT opr,X  
BIT ,X  
BIT opr,SP  
BIT opr,SP  
IX2  
Bit Test  
(A) & (M)  
0
IX1  
IX  
SP1  
SP2  
F5  
9EE5 ff  
9ED5 ee ff  
Branch if Less Than or Equal To  
(Signed Operands)  
BLE opr  
REL  
93 rr  
3
PC (PC) + 2 + rel ? (Z) | (N  
V) = 1  
BLO rel  
BLS rel  
BLT opr  
BMC rel  
BMI rel  
BMS rel  
Branch if Lower (Same as BCS)  
Branch if Lower or Same  
PC (PC) + 2 + rel ? (C) = 1  
REL  
REL  
REL  
REL  
REL  
REL  
25 rr  
23 rr  
91 rr  
2C rr  
2B rr  
2D rr  
3
3
3
3
3
3
PC (PC) + 2 + rel ? (C) | (Z) = 1  
Branch if Less Than (Signed Operands)  
Branch if Interrupt Mask Clear  
Branch if Minus  
PC (PC) + 2 + rel ? (N  
V) =1  
PC (PC) + 2 + rel ? (I) = 0  
PC (PC) + 2 + rel ? (N) = 1  
PC (PC) + 2 + rel ? (I) = 1  
Branch if Interrupt Mask Set  
Advance Information  
80  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Central Processor Unit (CPU) MOTOROLA  
Central Processor Unit (CPU)  
Instruction Set Summary  
Table 6-1. Instruction Set Summary (Sheet 3 of 8)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
BNE rel  
Branch if Not Equal  
PC (PC) + 2 + rel ? (Z) = 0  
PC (PC) + 2 + rel ? (N) = 0  
PC (PC) + 2 + rel  
REL  
REL  
REL  
26 rr  
2A rr  
20 rr  
3
3
3
BPL rel  
BRA rel  
Branch if Plus  
Branch Always  
DIR (b0) 01 dd rr  
DIR (b1) 03 dd rr  
DIR (b2) 05 dd rr  
DIR (b3) 07 dd rr  
DIR (b4) 09 dd rr  
DIR (b5) 0B dd rr  
DIR (b6) 0D dd rr  
DIR (b7) 0F dd rr  
5
5
5
5
5
5
5
5
BRCLR n,opr,rel Branch if Bit n in M Clear  
PC (PC) + 3 + rel ? (Mn) = 0  
BRN rel  
Branch Never  
PC (PC) + 2  
REL  
21 rr  
3
DIR (b0) 00 dd rr  
DIR (b1) 02 dd rr  
DIR (b2) 04 dd rr  
DIR (b3) 06 dd rr  
DIR (b4) 08 dd rr  
DIR (b5) 0A dd rr  
DIR (b6) 0C dd rr  
DIR (b7) 0E dd rr  
5
5
5
5
5
5
5
5
BRSET n,opr,rel Branch if Bit n in M Set  
PC (PC) + 3 + rel ? (Mn) = 1  
DIR (b0) 10 dd  
DIR (b1) 12 dd  
DIR (b2) 14 dd  
DIR (b3) 16 dd  
DIR (b4) 18 dd  
DIR (b5) 1A dd  
DIR (b6) 1C dd  
DIR (b7) 1E dd  
4
4
4
4
4
4
4
4
BSET n,opr  
BSR rel  
Set Bit n in M  
Mn 1  
PC (PC) + 2; push (PCL)  
SP (SP) 1; push (PCH)  
SP (SP) 1  
Branch to Subroutine  
REL  
AD rr  
4
PC (PC) + rel  
CBEQ opr,rel  
PC (PC) + 3 + rel ? (A) (M) = $00  
PC (PC) + 3 + rel ? (A) (M) = $00  
PC (PC) + 3 + rel ? (X) (M) = $00  
PC (PC) + 3 + rel ? (A) (M) = $00  
PC (PC) + 2 + rel ? (A) (M) = $00  
PC (PC) + 4 + rel ? (A) (M) = $00  
DIR  
31 dd rr  
41 ii rr  
51 ii rr  
61 ff rr  
71 rr  
5
4
4
5
4
6
CBEQA #opr,rel  
CBEQX #opr,rel  
CBEQ opr,X+,rel  
CBEQ X+,rel  
IMM  
IMM  
Compare and Branch if Equal  
IX1+  
IX+  
CBEQ opr,SP,rel  
SP1  
9E61 ff rr  
CLC  
CLI  
Clear Carry Bit  
C 0  
I 0  
0 INH  
98  
9A  
1
2
Clear Interrupt Mask  
0
INH  
CLR opr  
CLRA  
M $00  
A $00  
X $00  
H $00  
M $00  
M $00  
M $00  
DIR  
INH  
3F dd  
4F  
3
1
1
1
3
2
4
CLRX  
INH  
5F  
CLRH  
Clear  
0
0
1
INH  
IX1  
IX  
SP1  
8C  
CLR opr,X  
CLR ,X  
6F ff  
7F  
CLR opr,SP  
9E6F ff  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Central Processor Unit (CPU)  
AdvanceInformation  
81  
Central Processor Unit (CPU)  
Table 6-1. Instruction Set Summary (Sheet 4 of 8)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
CMP #opr  
IMM  
DIR  
EXT  
IX2  
A1 ii  
B1 dd  
C1 hh ll  
D1 ee ff  
E1 ff  
2
3
4
4
3
2
4
5
CMP opr  
CMP opr  
CMP opr,X  
CMP opr,X  
CMP ,X  
Compare A with M  
(A) (M)  
IX1  
IX  
SP1  
SP2  
F1  
CMP opr,SP  
CMP opr,SP  
9EE1 ff  
9ED1 ee ff  
COM opr  
COMA  
M (M) = $FF (M)  
A (A) = $FF (M)  
X (X) = $FF (M)  
M (M) = $FF (M)  
M (M) = $FF (M)  
M (M) = $FF (M)  
DIR  
INH  
INH  
IX1  
IX  
33 dd  
43  
4
1
1
4
3
5
COMX  
53  
Complement (Ones Complement)  
0
1
COM opr,X  
COM ,X  
COM opr,SP  
63 ff  
73  
9E63 ff  
SP1  
CPHX #opr  
CPHX opr  
IMM  
DIR  
65 ii ii+1  
75 dd  
3
4
Compare H:X with M  
(H:X) (M:M + 1)  
CPX #opr  
CPX opr  
IMM  
DIR  
EXT  
IX2  
A3 ii  
B3 dd  
C3 hh ll  
D3 ee ff  
E3 ff  
2
3
4
4
3
2
4
5
CPX opr  
CPX ,X  
Compare X with M  
(X) (M)  
CPX opr,X  
CPX opr,X  
CPX opr,SP  
CPX opr,SP  
IX1  
IX  
SP1  
SP2  
F3  
9EE3 ff  
9ED3 ee ff  
(A)10  
DAA  
Decimal Adjust A  
U
INH  
72  
2
A (A) 1 or M (M) 1 or X (X) 1  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 4 + rel ? (result) 0  
5
3
3
5
4
6
DBNZ opr,rel  
DBNZA rel  
DBNZX rel  
DBNZ opr,X,rel  
DBNZ X,rel  
DBNZ opr,SP,rel  
DIR  
INH  
INH  
IX1  
IX  
SP1  
3B dd rr  
4B rr  
Decrement and Branch if Not Zero  
5B rr  
6B ff rr  
7B rr  
9E6B ff rr  
DEC opr  
DECA  
M (M) 1  
A (A) 1  
X (X) 1  
M (M) 1  
M (M) 1  
M (M) 1  
DIR  
INH  
3A dd  
4A  
4
1
1
4
3
5
DECX  
INH  
5A  
Decrement  
Divide  
DEC opr,X  
DEC ,X  
DEC opr,SP  
IX1  
6A ff  
7A  
9E6A ff  
IX  
SP1  
A (H:A)/(X)  
H Remainder  
DIV  
INH  
52  
7
EOR #opr  
EOR opr  
IMM  
DIR  
EXT  
A8 ii  
B8 dd  
C8 hh ll  
D8 ee ff  
E8 ff  
2
3
4
4
3
2
4
5
EOR opr  
EOR opr,X  
EOR opr,X  
EOR ,X  
EOR opr,SP  
EOR opr,SP  
IX2  
Exclusive OR M with A  
0
A (A M)  
IX1  
IX  
SP1  
SP2  
F8  
9EE8 ff  
9ED8 ee ff  
Advance Information  
82  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Central Processor Unit (CPU) MOTOROLA  
Central Processor Unit (CPU)  
Instruction Set Summary  
Table 6-1. Instruction Set Summary (Sheet 5 of 8)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
INC opr  
M (M) + 1  
A (A) + 1  
X (X) + 1  
M (M) + 1  
M (M) + 1  
M (M) + 1  
DIR  
INH  
INH  
IX1  
IX  
3C dd  
4C  
4
1
1
4
3
5
INCA  
INCX  
5C  
Increment  
Jump  
INC opr,X  
INC ,X  
6C ff  
7C  
9E6C ff  
INC opr,SP  
SP1  
JMP opr  
JMP opr  
JMP opr,X  
JMP opr,X  
JMP ,X  
DIR  
EXT  
IX2  
IX1  
IX  
BC dd  
CC hh ll  
DC ee ff  
EC ff  
2
3
4
3
2
PC Jump Address  
FC  
JSR opr  
JSR opr  
JSR opr,X  
JSR opr,X  
JSR ,X  
DIR  
EXT  
IX2  
IX1  
BD dd  
CD hh ll  
DD ee ff  
ED ff  
4
5
6
5
4
PC (PC) + n (n = 1, 2, or 3)  
Push (PCL); SP (SP) 1  
Push (PCH); SP (SP) 1  
PC Unconditional Address  
Jump to Subroutine  
IX  
FD  
LDA #opr  
LDA opr  
IMM  
DIR  
EXT  
A6 ii  
B6 dd  
C6 hh ll  
D6 ee ff  
E6 ff  
2
3
4
4
3
2
4
5
LDA opr  
LDA opr,X  
LDA opr,X  
LDA ,X  
LDA opr,SP  
LDA opr,SP  
IX2  
Load A from M  
Load H:X from M  
Load X from M  
A (M)  
H:X ← (M:M + 1)  
X (M)  
0
0
0
IX1  
IX  
SP1  
SP2  
F6  
9EE6 ff  
9ED6 ee ff  
LDHX #opr  
LDHX opr  
IMM  
45 ii jj  
55 dd  
3
4
DIR  
LDX #opr  
LDX opr  
LDX opr  
LDX opr,X  
LDX opr,X  
LDX ,X  
LDX opr,SP  
LDX opr,SP  
IMM  
DIR  
EXT  
AE ii  
BE dd  
CE hh ll  
DE ee ff  
EE ff  
FE  
9EEE ff  
9EDE ee ff  
2
3
4
4
3
2
4
5
IX2  
IX1  
IX  
SP1  
SP2  
LSL opr  
LSLA  
DIR  
INH  
INH  
IX1  
IX  
38 dd  
48  
4
1
1
4
3
5
LSLX  
Logical Shift Left  
(Same as ASL)  
58  
C
0
LSL opr,X  
LSL ,X  
LSL opr,SP  
68 ff  
78  
9E68 ff  
b7  
b0  
SP1  
LSR opr  
LSRA  
LSRX  
LSR opr,X  
LSR ,X  
LSR opr,SP  
DIR  
INH  
INH  
IX1  
IX  
34 dd  
44  
4
1
1
4
3
5
54  
0
C
Logical Shift Right  
0
64 ff  
74  
b7  
b0  
SP1  
9E64 ff  
MOV opr,opr  
MOV opr,X+  
MOV #opr,opr  
MOV X+,opr  
DD  
4E dd dd  
5E dd  
5
4
4
4
(M)Destination (M)Source  
DIX+  
Move  
0
IMD  
IX+D  
6E ii dd  
7E dd  
H:X (H:X) + 1 (IX+D, DIX+)  
MUL  
Unsigned multiply  
X:A (X) × (A)  
0
0 INH  
42  
5
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Central Processor Unit (CPU)  
AdvanceInformation  
83  
Central Processor Unit (CPU)  
Table 6-1. Instruction Set Summary (Sheet 6 of 8)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
NEG opr  
DIR  
INH  
INH  
IX1  
IX  
30 dd  
40  
4
1
1
4
3
5
M (M) = $00 (M)  
A (A) = $00 (A)  
X (X) = $00 (X)  
M (M) = $00 (M)  
M (M) = $00 (M)  
NEGA  
NEGX  
50  
Negate (Twos Complement)  
NEG opr,X  
NEG ,X  
60 ff  
70  
9E60 ff  
NEG opr,SP  
SP1  
NOP  
NSA  
No Operation  
None  
INH  
INH  
9D  
62  
1
3
Nibble Swap A  
A (A[3:0]:A[7:4])  
ORA #opr  
ORA opr  
IMM  
DIR  
EXT  
AA ii  
BA dd  
CA hh ll  
DA ee ff  
EA ff  
2
3
4
4
3
2
4
5
ORA opr  
ORA opr,X  
ORA opr,X  
ORA ,X  
ORA opr,SP  
ORA opr,SP  
IX2  
Inclusive OR A and M  
A (A) | (M)  
0
IX1  
IX  
SP1  
SP2  
FA  
9EEA ff  
9EDA ee ff  
PSHA  
PSHH  
PSHX  
PULA  
PULH  
PULX  
Push A onto Stack  
Push H onto Stack  
Push X onto Stack  
Pull A from Stack  
Pull H from Stack  
Pull X from Stack  
Push (A); SP (SP) – 1  
Push (H); SP (SP) 1  
Push (X); SP (SP) 1  
SP (SP + 1); Pull (A)  
SP (SP + 1); Pull (H)  
SP (SP + 1); Pull (X)  
INH  
INH  
INH  
INH  
INH  
INH  
87  
8B  
89  
86  
8A  
88  
2
2
2
2
2
2
ROL opr  
ROLA  
DIR  
INH  
INH  
IX1  
IX  
39 dd  
49  
4
1
1
4
3
5
ROLX  
59  
C
Rotate Left through Carry  
Rotate Right through Carry  
ROL opr,X  
ROL ,X  
ROL opr,SP  
69 ff  
79  
9E69 ff  
b7  
b0  
SP1  
ROR opr  
RORA  
RORX  
ROR opr,X  
ROR ,X  
ROR opr,SP  
DIR  
INH  
INH  
IX1  
IX  
36 dd  
46  
56  
66 ff  
76  
9E66 ff  
4
1
1
4
3
5
C
b7  
b0  
SP1  
RSP  
RTI  
Reset Stack Pointer  
Return from Interrupt  
SP $FF  
INH  
9C  
80  
1
SP (SP) + 1; Pull (CCR)  
SP (SP) + 1; Pull (A)  
SP (SP) + 1; Pull (X)  
SP (SP) + 1; Pull (PCH)  
SP (SP) + 1; Pull (PCL)  
INH  
7
SP SP + 1; Pull (PCH)  
SP SP + 1; Pull (PCL)  
RTS  
Return from Subroutine  
INH  
81  
4
Advance Information  
84  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Central Processor Unit (CPU) MOTOROLA  
Central Processor Unit (CPU)  
Instruction Set Summary  
Table 6-1. Instruction Set Summary (Sheet 7 of 8)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
SBC #opr  
IMM  
DIR  
EXT  
IX2  
A2 ii  
B2 dd  
C2 hh ll  
D2 ee ff  
E2 ff  
2
3
4
4
3
2
4
5
SBC opr  
SBC opr  
SBC opr,X  
SBC opr,X  
SBC ,X  
Subtract with Carry  
A (A) (M) (C)  
IX1  
IX  
SP1  
SP2  
F2  
SBC opr,SP  
SBC opr,SP  
9EE2 ff  
9ED2 ee ff  
SEC  
SEI  
Set Carry Bit  
C 1  
I 1  
1 INH  
99  
9B  
1
2
Set Interrupt Mask  
1
INH  
STA opr  
DIR  
EXT  
IX2  
B7 dd  
C7 hh ll  
D7 ee ff  
E7 ff  
3
4
4
3
2
4
5
STA opr  
STA opr,X  
STA opr,X  
STA ,X  
STA opr,SP  
STA opr,SP  
Store A in M  
M (A)  
0
IX1  
IX  
F7  
SP1  
SP2  
9EE7 ff  
9ED7 ee ff  
STHX opr  
Store H:X in M  
(M:M + 1) (H:X)  
0
DIR  
INH  
35 dd  
8E  
4
1
STOP  
Enable IRQ Pin; Stop Oscillator  
I 0; Stop Oscillator  
0
– –  
STX opr  
DIR  
EXT  
IX2  
BF dd  
CF hh ll  
DF ee ff  
EF ff  
3
4
4
3
2
4
5
STX opr  
STX opr,X  
STX opr,X  
STX ,X  
STX opr,SP  
STX opr,SP  
Store X in M  
M (X)  
0
IX1  
IX  
FF  
SP1  
SP2  
9EEF ff  
9EDF ee ff  
SUB #opr  
SUB opr  
SUB opr  
SUB opr,X  
SUB opr,X  
SUB ,X  
SUB opr,SP  
SUB opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
A0 ii  
B0 dd  
C0 hh ll  
D0 ee ff  
E0 ff  
2
3
4
4
3
2
4
5
Subtract  
A (A) (M)  
F0  
9EE0 ff  
9ED0 ee ff  
PC (PC) + 1; Push (PCL)  
SP (SP) 1; Push (PCH)  
SP (SP) 1; Push (X)  
SP (SP) 1; Push (A)  
SP (SP) 1; Push (CCR)  
SP (SP) 1; I 1  
SWI  
Software Interrupt  
1
INH  
83  
9
PCH Interrupt Vector High Byte  
PCL Interrupt Vector Low Byte  
TAP  
TAX  
TPA  
Transfer A to CCR  
Transfer A to X  
CCR (A)  
X (A)  
INH  
INH  
INH  
84  
97  
85  
2
1
1
Transfer CCR to A  
A (CCR)  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Central Processor Unit (CPU)  
AdvanceInformation  
85  
Central Processor Unit (CPU)  
Table 6-1. Instruction Set Summary (Sheet 8 of 8)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
TST opr  
DIR  
INH  
INH  
IX1  
IX  
3D dd  
4D  
3
1
1
3
2
4
TSTA  
TSTX  
5D  
Test for Negative or Zero  
(A) $00 or (X) $00 or (M) $00  
0
TST opr,X  
TST ,X  
6D ff  
7D  
9E6D ff  
TST opr,SP  
SP1  
TSX  
TXA  
TXS  
WAIT  
Transfer SP to H:X  
H:X (SP) + 1  
A (X)  
0
INH  
INH  
INH  
INH  
95  
9F  
94  
8F  
2
1
2
1
Transfer X to A  
Transfer H:X to SP  
(SP) (H:X) 1  
I bit 0  
Enable Interrupts; Stop Processor  
A
C
Accumulator  
Carry/borrow bit  
n
Any bit  
opr Operand (one or two bytes)  
PC Program counter  
PCH Program counter high byte  
PCL Program counter low byte  
REL Relative addressing mode  
CCR Condition code register  
dd Direct address of operand  
dd rr Direct address of operand and relative offset of branch instruction  
DD  
DIR  
DIX+ Direct to indexed with post increment addressing mode  
ee ff High and low bytes of offset in indexed, 16-bit offset addressing  
EXT Extended addressing mode  
ff  
H
H
Direct to direct addressing mode  
Direct addressing mode  
rel  
rr  
Relative program counter offset byte  
Relative program counter offset byte  
SP1 Stack pointer, 8-bit offset addressing mode  
SP2 Stack pointer 16-bit offset addressing mode  
SP Stack pointer  
U
V
X
Z
&
|
Offset byte in indexed, 8-bit offset addressing  
Half-carry bit  
Index register high byte  
Undefined  
Overflow bit  
Index register low byte  
Zero bit  
Logical AND  
Logical OR  
hh ll High and low bytes of operand address in extended addressing  
I
ii  
Interrupt mask  
Immediate operand byte  
IMD Immediate source to direct destination addressing mode  
IMM Immediate addressing mode  
Logical EXCLUSIVE OR  
Contents of  
( ) Negation (twos complement)  
INH  
IX  
Inherent addressing mode  
Indexed, no offset addressing mode  
Indexed, no offset, post increment addressing mode  
( )  
IX+  
#
Immediate value  
IX+D Indexed with post increment to direct addressing mode  
IX1 Indexed, 8-bit offset addressing mode  
IX1+ Indexed, 8-bit offset, post increment addressing mode  
«
?
Sign extend  
Loaded with  
If  
IX2  
M
N
Indexed, 16-bit offset addressing mode  
Memory location  
Negative bit  
:
Concatenated with  
Set or cleared  
Not affected  
6.9 Opcode Map  
See Table 6-2.  
Advance Information  
86  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Central Processor Unit (CPU) MOTOROLA  
Table 6-2. Opcode Map  
Bit Manipulation Branch  
Read-Modify-Write  
Control  
Register/Memory  
DIR  
DIR  
REL  
DIR  
3
INH  
4
INH  
IX1  
SP1  
9E6  
IX  
7
INH  
INH  
IMM  
A
DIR  
B
EXT  
C
IX2  
SP2  
IX1  
E
SP1  
9EE  
IX  
F
MSB  
0
1
2
5
6
8
9
D
9ED  
LSB  
5
4
3
4
1
1
4
5
3
7
3
2
3
4
4
5
3
4
2
0
BRSET0 BSET0  
BRA  
NEG  
NEGA  
INH  
NEGX  
INH  
NEG  
NEG  
NEG  
RTI  
BGE  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
3
DIR  
5
2
DIR 2 REL 2  
4
DIR  
5
1
1
2
IX1  
5
3
4
SP1  
1
2
1
1
1
2
1
1
1
1
1
2
1
1
2
1
IX  
4
CBEQ  
1
1
INH  
4
2
2
2
2
1
1
REL 2 IMM 2  
3
DIR  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
EXT 3  
4
IX2  
4
4
4
4
4
4
4
4
4
4
4
4
4
SP2  
5
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
IX1  
3
3
3
3
3
3
3
3
3
3
3
3
3
SP1  
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
IX  
2
3
4
4
6
CBEQ  
SP1  
2
1
2
BRCLR0 BCLR0  
BRN  
CBEQ CBEQA CBEQX CBEQ  
RTS  
BLT  
CMP  
CMP  
CMP  
CMP  
CMP  
CMP  
CMP  
CMP  
3
DIR  
5
2
DIR 2 REL 3  
4
DIR  
3
1
IMM 3 IMM  
5
3
1
2
2
3
2
2
2
2
2
IX1+  
3
IX+  
2
INH  
REL 2 IMM 2  
3
DIR  
3
EXT 3  
4
IX2  
4
SP2  
5
IX1  
3
SP1  
4
IX  
2
3
7
2
BRSET1 BSET1  
BHI  
MUL  
DIV  
NSA  
DAA  
BGT  
SBC  
SBC  
SBC  
SBC  
SBC  
SBC  
SBC  
SBC  
3
DIR  
5
2
DIR 2 REL  
4
INH  
1
COMA  
INH  
1
LSRA  
INH  
3
LDHX  
IMM 2  
1
RORA  
1
INH  
1
COMX  
INH  
1
LSRX  
INH  
4
LDHX  
DIR  
1
RORX  
INH  
1
ASRX  
INH  
4
INH  
3
REL 2 IMM 2  
3
DIR  
3
EXT 3  
4
IX2  
4
SP2  
5
IX1  
3
SP1  
4
IX  
2
3
4
5
COM  
SP1  
5
LSR  
SP1  
9
2
3
BRCLR1 BCLR1  
BLS  
COM  
COM  
COM  
SWI  
BLE  
CPX  
CPX  
CPX  
CPX  
CPX  
CPX  
CPX  
CPX  
3
DIR  
5
2
DIR 2 REL 2  
4
DIR  
4
1
1
IX1  
4
3
3
IX  
3
1
1
1
1
1
1
1
1
1
1
INH  
2
REL 2 IMM 2  
2
DIR  
3
EXT 3  
4
IX2  
4
SP2  
5
IX1  
3
SP1  
4
IX  
2
3
2
4
BRSET2 BSET2  
BCC  
LSR  
LSR  
LSR  
TAP  
TXS  
AND  
AND  
AND  
AND  
AND  
AND  
AND  
AND  
3
DIR  
5
2
DIR 2 REL 2  
4
DIR  
4
STHX  
1
3
1
IX1  
3
CPHX  
IMM  
4
IX  
4
CPHX  
INH  
1
INH  
2
2
2
2
2
2
2
2
2
IMM 2  
2
DIR  
3
EXT 3  
4
IX2  
4
SP2  
5
IX1  
3
SP1  
4
IX  
2
3
5
BRCLR2 BCLR2  
BCS  
TPA  
TSX  
BIT  
BIT  
BIT  
BIT  
BIT  
BIT  
BIT  
BIT  
3
DIR  
5
2
DIR 2 REL 2  
4
DIR  
4
DIR  
3
INH  
2
PULA  
INH  
2
PSHA  
INH  
2
PULX  
INH  
2
PSHX  
INH  
2
PULH  
INH  
2
PSHH  
INH  
IMM 2  
2
DIR  
3
EXT 3  
4
IX2  
4
SP2  
5
IX1  
3
SP1  
4
IX  
2
LDA  
IX  
3
5
ROR  
SP1  
5
ASR  
SP1  
5
LSL  
SP1  
5
ROL  
SP1  
5
DEC  
SP1  
6
DBNZ  
SP1  
6
BRSET3 BSET3  
BNE  
ROR  
ROR  
ROR  
LDA  
LDA  
LDA  
LDA  
LDA  
LDA  
LDA  
3
DIR  
5
2
DIR 2 REL 2  
4
DIR  
4
1
1
1
1
1
INH  
1
ASRA  
1
IX1  
4
3
3
3
3
3
4
3
3
IX  
3
IMM 2  
2
DIR  
3
EXT 3  
4
IX2  
4
SP2  
5
IX1  
3
SP1  
4
3
1
2
7
BRCLR3 BCLR3  
BEQ  
ASR  
ASR  
ASR  
TAX  
AIS  
STA  
STA  
STA  
STA  
STA  
STA  
STA  
3
DIR  
5
2
DIR 2 REL 2  
4
DIR  
4
INH  
1
1
1
1
1
INH  
1
IX1  
4
IX  
3
1
1
1
1
1
1
1
INH  
1
IMM 2  
2
DIR  
3
EXT 3  
4
IX2  
4
SP2  
5
IX1  
3
SP1  
4
IX  
2
EOR  
IX  
3
8
BRSET4 BSET4 BHCC  
LSL  
LSLA  
LSLX  
LSL  
LSL  
CLC  
EOR  
EOR  
EOR  
EOR  
EOR  
EOR  
EOR  
3
DIR  
5
2
DIR 2 REL 2  
4
DIR  
4
INH  
1
ROLA  
INH  
1
DECA  
INH  
1
ROLX  
INH  
1
DECX  
IX1  
4
IX  
3
ROL  
IX  
INH  
1
IMM 2  
2
DIR  
3
EXT 3  
4
IX2  
4
SP2  
5
IX1  
3
SP1  
4
3
2
9
BRCLR4 BCLR4 BHCS  
ROL  
ROL  
SEC  
ADC  
ADC  
ADC  
ADC  
ADC  
ADC  
ADC  
ADC  
3
DIR  
5
2
DIR 2 REL 2  
4
DIR  
4
IX1  
4
INH  
2
IMM 2  
2
DIR  
3
EXT 3  
4
IX2  
4
SP2  
5
IX1  
3
SP1  
4
IX  
2
3
3
A
B
C
D
E
F
BRSET5 BSET5  
BPL  
DEC  
DEC  
DEC  
CLI  
ORA  
ORA  
ORA  
ORA  
ORA  
ORA  
ORA  
ORA  
3
DIR  
5
2
DIR 2 REL 2  
4
DIR  
5
INH  
3
INH  
3
IX1  
5
IX  
4
DBNZ  
INH  
2
IMM 2  
2
DIR  
3
EXT 3  
4
IX2  
4
SP2  
5
ADD  
SP2  
IX1  
3
SP1  
4
ADD  
SP1  
IX  
2
3
BRCLR5 BCLR5  
BMI  
DBNZ DBNZA DBNZX DBNZ  
SEI  
ADD  
ADD  
ADD  
ADD  
ADD  
ADD  
3
DIR  
5
2
DIR 2 REL 3  
4
DIR  
4
2
1
1
3
1
INH  
1
2
1
1
2
1
INH  
1
3
2
2
IX1  
4
IX  
3
INH  
1
INH  
1
IMM 2  
DIR  
2
EXT 3  
3
IX2  
4
IX1  
3
IX  
2
3
5
INC  
SP1  
4
TST  
SP1  
BRSET6 BSET6  
BMC  
INC  
INCA  
INCX  
INC  
INC  
CLRH  
RSP  
JMP  
JMP  
JMP  
JMP  
JMP  
3
DIR  
5
2
DIR 2 REL 2  
4
DIR  
3
INH  
1
INH  
IX1  
3
IX  
2
TST  
IX  
INH  
INH  
1
NOP  
INH  
2
4
DIR  
4
EXT 3  
5
IX2  
6
IX1  
5
IX  
4
3
1
BRCLR6 BCLR6  
BMS  
TST  
TSTA  
TSTX  
TST  
BSR  
JSR  
JSR  
JSR  
JSR  
JSR  
3
DIR  
5
2
DIR 2 REL 2  
4
DIR  
INH  
5
INH  
4
IX1  
4
2
2
2
REL 2  
2
DIR  
3
EXT 3  
4
IX2  
4
IX1  
3
IX  
2
LDX  
IX  
3
4
1
5
4
BRSET7 BSET7  
BIL  
MOV  
MOV  
MOV  
MOV  
STOP  
LDX  
LDX  
LDX  
LDX  
LDX  
LDX  
LDX  
*
3
DIR  
5
2
DIR 2 REL  
4
DD  
1
CLRA  
INH  
DIX+ 3 IMD  
IX+D  
2
CLR  
IX  
1
1
INH  
1
IMM 2  
2
AIX  
IMM 2  
DIR  
3
EXT 3  
4
STX  
EXT 3  
IX2  
4
STX  
IX2  
4
4
SP2  
5
STX  
SP2  
IX1  
3
STX  
IX1  
3
3
SP1  
4
STX  
SP1  
3
3
1
3
4
CLR  
SP1  
1
2
BRCLR7 BCLR7  
BIH  
CLR  
DIR  
CLRX  
INH  
CLR  
IX1  
WAIT  
INH  
TXA  
INH  
STX  
STX  
IX  
3
DIR  
2
DIR 2 REL 2  
2
3
1
DIR  
INH Inherent  
REL Relative  
SP1 Stack Pointer, 8-Bit Offset  
SP2 Stack Pointer, 16-Bit Offset  
IX+ Indexed, No Offset with  
Post Increment  
IX1+ Indexed, 1-Byte Offset with  
Post Increment  
MSB  
0
High Byte of Opcode in Hexadecimal  
Cycles  
IMM Immediate  
DIR Direct  
IX  
Indexed, No Offset  
LSB  
IX1 Indexed, 8-Bit Offset  
IX2 Indexed, 16-Bit Offset  
IMD Immediate-Direct  
EXT Extended  
DD Direct-Direct  
IX+D Indexed-Direct DIX+ Direct-Indexed  
*Pre-byte for stack pointer indexed instructions  
5
Low Byte of Opcode in Hexadecimal  
0
BRSET0 Opcode Mnemonic  
DIR Number of Bytes / Addressing Mode  
3
Central Processor Unit (CPU)  
Advance Information  
88  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Central Processor Unit (CPU) MOTOROLA  
Advance Information MC68HC908MR16/MC68HC908MR32  
Section 7. System Integration Module (SIM)  
7.1 Contents  
7.2  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
7.3  
SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . .92  
Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
Clock Startup from POR or LVI Reset . . . . . . . . . . . . . . . . .93  
Clocks in Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
7.3.1  
7.3.2  
7.3.3  
7.4  
7.4.1  
7.4.2  
7.4.2.1  
7.4.2.2  
7.4.2.3  
7.4.2.4  
7.4.2.5  
7.4.2.6  
Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . .93  
External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
Active Resets from Internal Sources . . . . . . . . . . . . . . . . . .95  
Power-On Reset (POR) . . . . . . . . . . . . . . . . . . . . . . . . . .96  
Computer Operating Properly (COP) Reset. . . . . . . . . . .97  
Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . .97  
Illegal Address Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . .97  
Forced Monitor Mode Entry Reset (MENRST). . . . . . . . .98  
Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . .98  
7.5  
7.5.1  
7.5.2  
SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98  
SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . .98  
SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . .98  
7.6  
Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . .101  
Software Interrupt (SWI) Instruction. . . . . . . . . . . . . . . .102  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102  
7.6.1  
7.6.1.1  
7.6.1.2  
7.6.2  
7.7  
7.7.1  
7.7.2  
Low-Power Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA System Integration Module (SIM)  
Advance Information  
89  
 
System Integration Module (SIM)  
7.8  
SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104  
7.8.1  
7.8.2  
7.8.3  
SIM Break Status Register. . . . . . . . . . . . . . . . . . . . . . . . .104  
SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . .106  
SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . .107  
7.2 Introduction  
This section describes the system integration module (SIM). Together  
with the central processor unit (CPU), the SIM controls all  
microcontroller unit (MCU) activities.  
A block diagram of the SIM is shown in Figure 7-1.  
The SIM is a system state controller that coordinates CPU and exception  
timing. The SIM is responsible for:  
Bus clock generation and control for CPU and peripherals:  
Wait/reset/break entry and recovery  
Internal clock control  
Master reset control, including power-on reset (POR) and  
computer operating properly (COP) timeout  
Interrupt control:  
Acknowledge timing  
Arbitration control timing  
Vector address generation  
CPU enable/disable timing  
Modular architecture expandable to 128 interrupt sources  
Table 7-1 shows the internal signal names used in this section.  
Advance Information  
90  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
Introduction  
MODULE WAIT  
WAIT  
CONTROL  
CPU WAIT (FROM CPU)  
SIMOSCEN (TO CGM)  
SIM  
COUNTER  
COP CLOCK  
CGMXCLK (FROM CGM)  
CGMOUT (FROM CGM)  
÷ 2  
CLOCK  
CONTROL  
CLOCK GENERATORS  
INTERNAL CLOCKS  
LVI (FROM LVI MODULE)  
RESET  
PIN LOGIC  
POR CONTROL  
RESET PIN CONTROL  
MASTER  
RESET  
CONTROL  
ILLEGAL OPCODE (FROM CPU)  
ILLEGAL ADDRESS (FROM ADDRESS  
MAP DECODERS)  
SIM RESET STATUS REGISTER  
COP (FROM COP MODULE)  
RESET  
INTERRUPT SOURCES  
CPU INTERFACE  
INTERRUPT CONTROL  
AND PRIORITY DECODE  
Figure 7-1. SIM Block Diagram  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA System Integration Module (SIM)  
AdvanceInformation  
91  
System Integration Module (SIM)  
Table 7-1. Signal Name Conventions  
Signal Name  
CGMXCLK  
CGMVCLK  
Description  
Buffered version of OSC1 from clock generator module (CGM)  
Phase-locked loop (PLL) circuit output  
PLL-based or OSC1-based clock output from CGM module  
(Bus clock = CGMOUT divided by two)  
CGMOUT  
IAB  
IDB  
Internal address bus  
Internal data bus  
PORRST  
IRST  
Signal from the power-on reset module to the SIM  
Internal reset signal  
R/W  
Read/write signal  
7.3 SIM Bus Clock Control and Generation  
The bus clock generator provides system clock signals for the CPU and  
peripherals on the MCU. The system clocks are generated from an  
incoming clock, CGMOUT, as shown in Figure 7-2. This clock can come  
from either an external oscillator or from the on-chip phase-locked loop  
(PLL) circuit. See Section 8. Clock Generator Module (CGM).  
CGMXCLK  
OSC1  
SIM COUNTER  
CLOCK  
SELECT  
CIRCUIT  
A
B
CGMOUT  
BUS CLOCK  
GENERATORS  
÷ 2  
÷ 2  
CGMVCLK  
PLL  
S*  
*When S = 1,  
CGMOUT = B  
BCS  
PTC2  
MONITOR MODE  
USER MODE  
Figure 7-2. CGM Clock Signals  
Advance Information  
92  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
System Integration Module (SIM) MOTOROLA  
 
System Integration Module (SIM)  
Reset and System Initialization  
7.3.1 Bus Timing  
In user mode, the internal bus frequency is either the crystal oscillator  
output (CGMXCLK) divided by four or the PLL output (CGMVCLK)  
divided by four. See Section 8. Clock Generator Module (CGM).  
7.3.2 Clock Startup from POR or LVI Reset  
When the power-on reset (POR) module or the low-voltage inhibit (LVI)  
module generates a reset, the clocks to the CPU and peripherals are  
inactive and held in an inactive phase until after the 4096 CGMXCLK  
cycle POR timeout has completed. The RST pin is driven low by the SIM  
during this entire period. The internal bus (IBUS) clocks start upon  
completion of the timeout.  
7.3.3 Clocks in Wait Mode  
In wait mode, the CPU clocks are inactive. The SIM also produces two  
sets of clocks for other modules. Refer to the wait mode subsection of  
each module to see if the module is active or inactive in wait mode.  
Some modules can be programmed to be active in wait mode.  
7.4 Reset and System Initialization  
The MCU has these reset sources:  
Power-on reset module (POR)  
External reset pin (RST)  
Computer operating properly (COP) module  
Low-voltage inhibit (LVI) module  
Illegal opcode  
Illegal address  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA System Integration Module (SIM)  
AdvanceInformation  
93  
System Integration Module (SIM)  
All of these resets produce the vector $FFFEFFFF ($FEFEFEFF in  
monitor mode) and assert the internal reset signal (IRST). IRST causes  
all registers to be returned to their default values and all modules to be  
returned to their reset states.  
An internal reset clears the SIM counter (see 7.5 SIM Counter), but an  
external reset does not. Each of the resets sets a corresponding bit in  
the SIM reset status register (SRSR). See 7.8.2 SIM Reset Status  
Register.  
7.4.1 External Pin Reset  
Pulling the asynchronous RST pin low halts all processing. The PIN bit  
of the SIM reset status register (SRSR) is set as long as RST is held low  
for a minimum of 67 CGMXCLK cycles, assuming that neither the POR  
nor the LVI was the source of the reset. See Table 7-2 for details.  
Figure 7-3 shows the relative timing.  
Table 7-2. PIN Bit Set Timing  
Reset Type  
POR/LVI  
Number of Cycles Required to Set PIN  
4163 (4096 + 64 + 3)  
All others  
67 (64 + 3)  
CGMOUT  
RST  
VECT H VECT L  
IAB  
PC  
Figure 7-3. External Reset Timing  
Advance Information  
94  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
System Integration Module (SIM) MOTOROLA  
 
 
System Integration Module (SIM)  
Reset and System Initialization  
7.4.2 Active Resets from Internal Sources  
All internal reset sources actively pull the RST pin low for 32 CGMXCLK  
cycles to allow resetting of external peripherals. The internal reset  
signal (IRST) continues to be asserted for an additional 32 cycles (see  
Figure 7-5). An internal reset can be caused by an illegal address, illegal  
opcode, COP timeout, LVI, or POR. (See Figure 7-4.)  
ILLEGAL ADDRESS RST  
ILLEGAL OPCODE RST  
COPRST  
LVI  
INTERNAL RESET  
POR  
Figure 7-4. Sources of Internal Reset  
NOTE: For LVI or POR resets, the SIM cycles through 4096 CGMXCLK cycles  
during which the SIM forces the RST pin low. The internal reset signal  
then follows the sequence from the falling edge of RST, as shown in  
Figure 7-5.  
IRST  
RST PULLED LOW BY MCU  
32 CYCLES  
RST  
32 CYCLES  
CGMXCLK  
IAB  
VECTOR HIGH  
Figure 7-5. Internal Reset Timing  
The COP reset is asynchronous to the bus clock.  
The active reset feature allows the part to issue a reset to peripherals  
and other chips within a system built around the MCU.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA System Integration Module (SIM)  
AdvanceInformation  
95  
 
 
 
 
System Integration Module (SIM)  
7.4.2.1 Power-On Reset (POR)  
When power is first applied to the MCU, the power-on reset (POR)  
module generates a pulse to indicate that power-on has occurred. The  
external reset pin (RST) is held low while the SIM counter counts out  
4096 CGMXCLK cycles. Sixty-four CGMXCLK cycles later, the CPU and  
memories are released from reset to allow the reset vector sequence to  
occur.  
At power-on, these events occur:  
A POR pulse is generated.  
The internal reset signal is asserted.  
The SIM enables CGMOUT.  
Internal clocks to the CPU and modules are held inactive for 4096  
CGMXCLK cycles to allow stabilization of the oscillator.  
The RST pin is driven low during the oscillator stabilization time.  
The POR bit of the SIM reset status register (SRSR) is set and all  
other bits in the register are cleared.  
OSC1  
PORRST  
4096  
CYCLES  
32  
CYCLES  
32  
CYCLES  
CGMXCLK  
CGMOUT  
RST  
IAB  
$FFFE  
$FFFF  
Figure 7-6. POR Recovery  
Advance Information  
96  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
System Integration Module (SIM) MOTOROLA  
System Integration Module (SIM)  
Reset and System Initialization  
7.4.2.2 Computer Operating Properly (COP) Reset  
An input to the SIM is reserved for the COP reset signal. The overflow of  
the COP counter causes an internal reset and sets the COP bit in the  
SIM reset status register (SRSR). The SIM actively pulls down the RST  
pin for all internal reset sources.  
To prevent a COP module timeout, write any value to location $FFFF.  
Writing to location $FFFF clears the COP counter and bits 124 of  
the SIM counter. The SIM counter output, which occurs at least every  
21324 CGMXCLK cycles, drives the COP counter. The COP should be  
serviced as soon as possible out of reset to guarantee the maximum  
amount of time before the first timeout.  
The COP module is disabled if the RST pin or the IRQ pin is held at VHI  
while the MCU is in monitor mode. The COP module can be disabled  
only through combinational logic conditioned with the high voltage signal  
on the RST or the IRQ pin. This prevents the COP from becoming  
disabled as a result of external noise. During a break state, VHI on the  
RST pin disables the COP module.  
7.4.2.3 Illegal Opcode Reset  
The SIM decodes signals from the CPU to detect illegal instructions. An  
illegal instruction sets the ILOP bit in the SIM reset status register  
(SRSR) and causes a reset.  
Because the MC68HC908MR32 has stop mode disabled, execution of  
the STOP instruction will cause an illegal opcode reset.  
7.4.2.4 Illegal Address Reset  
An opcode fetch from addresses other than FLASH or RAM addresses  
generates an illegal address reset (unimplemented locations within  
memory map). The SIM verifies that the CPU is fetching an opcode prior  
to asserting the ILAD bit in the SIM reset status register (SRSR) and  
resetting the MCU. A data fetch from an unmapped address does not  
generate a reset.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA System Integration Module (SIM)  
AdvanceInformation  
97  
System Integration Module (SIM)  
7.4.2.5 Forced Monitor Mode Entry Reset (MENRST)  
The MENRST module monitors the reset vector fetches and will assert  
an internal reset if it detects that the reset vectors are erased ($FF).  
When the MCU comes out of reset, it is forced into monitor mode.  
7.4.2.6 Low-Voltage Inhibit (LVI) Reset  
The low-voltage inhibit (LVI) module asserts its output to the SIM when  
the VDD voltage falls to the VLVRX voltage and remains at or below that  
level for at least nine consecutive CPU cycles (see 22.6 DC Electrical  
Characteristics (VDD = 5.0 Vdc ± 10%)). The LVI bit in the SIM reset  
status register (SRSR) is set, and the external reset pin (RST) is held low  
while the SIM counter counts out 4096 CGMXCLK cycles. Sixty-four  
CGMXCLK cycles later, the CPU is released from reset to allow the reset  
vector sequence to occur. The SIM actively pulls down the RST pin for  
all internal reset sources.  
7.5 SIM Counter  
The SIM counter is used by the power-on reset (POR) module to allow  
the oscillator time to stabilize before enabling the internal bus (IBUS)  
clocks. The SIM counter also serves as a prescaler for the computer  
operating properly (COP) module. The SIM counter overflow supplies  
the clock for the COP module. The SIM counter is 13 bits long and is  
clocked by the falling edge of CGMXCLK.  
7.5.1 SIM Counter During Power-On Reset  
The power-on reset (POR) module detects power applied to the MCU.  
At power-on, the POR circuit asserts the signal PORRST. Once the SIM  
is initialized, it enables the clock generation (CGM) module to drive the  
bus clock state machine.  
7.5.2 SIM Counter and Reset States  
External reset has no effect on the SIM counter. The SIM counter is  
free-running after all reset states. For counter control and internal reset  
recovery sequences, see 7.4.2 Active Resets from Internal Sources.  
Advance Information  
98  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
System Integration Module (SIM)  
MOTOROLA  
 
System Integration Module (SIM)  
Exception Control  
7.6 Exception Control  
Normal, sequential program execution can be changed in three different  
ways:  
1. Interrupts:  
a. Maskable hardware CPU interrupts  
b. Non-maskable software interrupt instruction (SWI)  
2. Reset  
3. Break interrupts  
7.6.1 Interrupts  
At the beginning of an interrupt, the CPU saves the CPU register  
contents on the stack and sets the interrupt mask (I bit) to prevent  
additional interrupts. At the end of an interrupt, the return-from-interrupt  
(RTI) instruction recovers the CPU register contents from the stack so  
that normal processing can resume. Figure 7-7 shows interrupt entry  
timing. Figure 7-9 shows interrupt recovery timing.  
Interrupts are latched, and arbitration is performed in the SIM at the start  
of interrupt processing. The arbitration result is a constant that the CPU  
uses to determine which vector to fetch. Once an interrupt is latched by  
the SIM, no other interrupt can take precedence, regardless of priority,  
until the latched interrupt is serviced (or the I bit is cleared).  
See Figure 7-8.  
MODULE  
INTERRUPT  
I BIT  
START  
IAB  
IDB  
DUMMY  
SP  
SP 1  
SP 2  
SP 3  
SP 4  
VECT H  
VECT L  
ADDR  
DUMMY PC 1[7:0] PC 1[15:8]  
X
A
CCR  
V DATA H V DATA L OPCODE  
R/W  
Figure 7-7. Interrupt Entry  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA System Integration Module (SIM)  
AdvanceInformation  
99  
 
System Integration Module (SIM)  
FROM RESET  
YES  
BREAK OR SWI  
INTERRUPT?  
NO  
YES  
I BIT SET?  
NO  
YES  
INTERRUPT?  
NO  
STACK CPU REGISTERS  
SET I BIT  
LOAD PC WITH INTERRUPT VECTOR  
AS MANY INTERRUPTS AS EXIST ON CHIP  
FETCH NEXT  
INSTRUCTION  
SWI  
YES  
YES  
INSTRUCTION?  
NO  
RTI  
UNSTACK CPU REGISTERS  
EXECUTE INSTRUCTION  
INSTRUCTION?  
NO  
Figure 7-8. Interrupt Processing  
Advance Information  
100  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
System Integration Module (SIM) MOTOROLA  
System Integration Module (SIM)  
Exception Control  
MODULE  
INTERRUPT  
I BIT  
IAB  
SP 4  
SP 3  
SP 2  
SP 1  
SP  
PC  
PC + 1  
IDB  
CCR  
A
X
PC 1[7:0] PC 1[15:8] OPCODE OPERAND  
R/W  
Figure 7-9. Interrupt Recovery  
7.6.1.1 Hardware Interrupts  
A hardware interrupt does not stop the current instruction. Processing of  
a hardware interrupt begins after completion of the current instruction.  
When the current instruction is complete, the SIM checks all pending  
hardware interrupts. If interrupts are not masked (I bit clear in the  
condition code register), and if the corresponding interrupt enable bit is  
set, the SIM proceeds with interrupt processing; otherwise, the next  
instruction is fetched and executed.  
If more than one interrupt is pending at the end of an instruction  
execution, the highest priority interrupt is serviced first. Figure 7-10  
demonstrates what happens when two interrupts are pending. If an  
interrupt is pending upon exit from the original interrupt service routine,  
the pending interrupt is serviced before the load-accumulator-from-  
memory (LDA) instruction is executed.  
CLI  
LDA#$FF  
BACKGROUND ROUTINE  
INT1  
INT2  
PSHH  
INT1 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
PSHH  
INT2 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
Figure 7-10. Interrupt Recognition Example  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA System Integration Module (SIM)  
AdvanceInformation  
101  
 
System Integration Module (SIM)  
The LDA opcode is prefetched by both the INT1 and INT2 RTI  
instructions. However, in the case of the INT1 RTI prefetch, this is a  
redundant operation.  
NOTE: To maintain compatibility with the M6805 Family, the H register is not  
pushed on the stack during interrupt entry. If the interrupt service routine  
modifies the H register or uses the indexed addressing mode, software  
should save the H register and then restore it prior to exiting the routine.  
7.6.1.2 Software Interrupt (SWI) Instruction  
The software interrupt (SWI) instruction is a non-maskable instruction  
that causes an interrupt regardless of the state of the interrupt mask  
(I bit) in the condition code register.  
7.6.2 Reset  
All reset sources always have equal and highest priority and cannot be  
arbitrated.  
7.7 Low-Power Mode  
Executing the WAIT instruction puts the MCU in a low  
power-consumption mode for standby situations. The SIM holds the  
CPU in a non-clocked state. WAIT clears the interrupt mask (I) in the  
condition code register, allowing interrupts to occur.  
7.7.1 Wait Mode  
In wait mode, the CPU clocks are inactive while the peripheral clocks  
continue to run. Figure 7-11 shows the timing for wait mode entry.  
A module that is active during wait mode can wake up the CPU with an  
interrupt if the interrupt is enabled. Stacking for the interrupt begins one  
cycle after the WAIT instruction during which the interrupt occurred.  
Refer to the wait mode subsection of each module to see if the module  
is active or inactive in wait mode. Some modules can be programmed to  
be active in wait mode.  
Advance Information  
102  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
Low-Power Mode  
Wait mode can also be exited by a reset. If the COP disable bit, COPD,  
in the configuration register is logic 0, then the computer operating  
properly module (COP) is enabled and remains active in wait mode.  
IAB  
IDB  
WAIT ADDR  
WAIT ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
R/W  
Note: Previous data can be operand data or the WAIT opcode, depending on the  
last instruction.  
Figure 7-11. Wait Mode Entry Timing  
Figure 7-12 and Figure 7-13 show the timing for wait recovery.  
IAB  
IDB  
$6E0B  
$A6  
$6E0C  
$00FF  
$00FE  
$00FD  
$00FC  
$A6  
$A6  
$01  
$0B  
$6E  
EXITSTOPWAIT  
Note: EXITSTOPWAIT = RST pin OR CPU interrupt  
Figure 7-12. Wait Recovery from Interrupt  
32  
32  
IAB  
$6E0B  
$A6  
RST VCT H RST VCT L  
IDB $A6  
RST  
$A6  
CGMXCLK  
Figure 7-13. Wait Recovery from Internal Reset  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA System Integration Module (SIM)  
AdvanceInformation  
103  
 
 
System Integration Module (SIM)  
7.7.2 Stop Mode  
In stop mode, the SIM counter is reset and the system clocks are  
disabled. An interrupt request from a module can cause an exit from stop  
mode. Stacking for interrupts begins after the selected stop recovery  
time has elapsed. Reset or break also causes an exit from stop mode.  
The SIM disables the clock generator module outputs (CGMOUT and  
CGMXCLK) in stop mode, stopping the CPU and peripherals. Stop  
recovery time is hard wired at the normal delay of 4096 CGMXCLK  
cycles.  
It is important to note that when using the PWM generator, its outputs will  
stop toggling when stop mode is entered. The PWM module must be  
disabled before entering stop mode to prevent external inverter failure.  
7.8 SIM Registers  
This subsection describes the SIM registers.  
7.8.1 SIM Break Status Register  
The SIM break status register (SBSR) contains a flag to indicate that a  
break caused an exit from wait mode.  
Address: $FE00  
BIt 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
SBSW  
R
R
R
R
R
R
(1)  
Note  
0
R
= Reserved  
Note 1. Writing a logic 0 clears SBSW.  
Figure 7-14. SIM Break Status Register (SBSR)  
Advance Information  
104  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
System Integration Module (SIM) MOTOROLA  
System Integration Module (SIM)  
SIM Registers  
SBSW SIM Break Stop/Wait Bit  
This status bit is useful in applications requiring a return to wait mode  
after exiting from a break interrupt. Clear SBSW by writing a logic 0 to  
it. Reset clears SBSW.  
1 = Wait mode was exited by break interrupt.  
0 = Wait mode was not exited by break interrupt.  
SBSW can be read within the break state SWI routine. The user can  
modify the return address on the stack by subtracting one from it. The  
following code is an example of this. Writing 0 to the SBSW bit  
clears it.  
;This code works if the H register has been pushed onto the stack in the break  
;service routine software. This code should be executed at the end of the break  
;service routine software.  
HIBYTE  
LOBYTE  
EQU  
EQU  
5
6
;
If not SBSW, do RTI  
BRCLR  
SBSW,SBSR, RETURN  
;See if wait mode was exited by break.  
;
TST  
BNE  
DEC  
DEC  
LOBYTE,SP  
DOLO  
;If RETURNLO is not zero,  
;then just decrement low byte.  
;Else deal with high byte, too.  
;Point to WAIT opcode.  
HIBYTE,SP  
LOBYTE,SP  
DOLO  
RETURN  
PULH  
RTI  
;Restore H register.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA System Integration Module (SIM)  
AdvanceInformation  
105  
System Integration Module (SIM)  
7.8.2 SIM Reset Status Register  
The SIM reset status register (SRSR) contains six flags that show the  
source of the last reset. Clear the SIM reset status register by reading it.  
A power-on reset sets the POR bit and clears all other bits in the  
register.  
Address: $FE01  
BIt 7  
POR  
R
6
5
COP  
R
4
ILOP  
R
3
ILAD  
R
2
1
LVI  
R
Bit 0  
0
Read:  
Write:  
Reset:  
PIN  
MENRST  
R
R
0
R
1
0
0
0
0
0
0
R
= Reserved  
Figure 7-15. SIM Reset Status Register (SRSR)  
POR Power-On Reset Bit  
1 = Last reset caused by POR circuit  
0 = Read of SRSR  
PIN External Reset Bit  
1 = Last reset caused by external reset pin (RST)  
0 = POR or read of SRSR  
COP Computer Operating Properly Reset Bit  
1 = Last reset caused by COP counter  
0 = POR or read of SRSR  
ILOP Illegal Opcode Reset Bit  
1 = Last reset caused by an illegal opcode  
0 = POR or read of SRSR  
ILAD Illegal Address Reset Bit (opcode fetches only)  
1 = Last reset caused by an opcode fetch from an illegal address  
0 = POR or read of SRSR  
MENRST Forced Monitor Mode Entry Reset Bit  
1 = Last reset caused by the MENRST circuit  
0 = POR or read of SRSR  
Advance Information  
106  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
System Integration Module (SIM)  
MOTOROLA  
 
System Integration Module (SIM)  
SIM Registers  
LVI Low-Voltage Inhibit Reset Bit  
1 = Last reset caused by the LVI circuit  
0 = POR or read of SRSR  
7.8.3 SIM Break Flag Control Register  
The SIM break control register (SBFCR) contains a bit that enables  
software to clear status bits while the MCU is in a break state.  
Address: $FE03  
BIt 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
0
R
= Reserved  
Figure 7-16. SIM Break Flag Control Register (SBFCR)  
BCFE Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing  
status registers while the MCU is in a break state. To clear status bits  
during the break state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA System Integration Module (SIM)  
AdvanceInformation  
107  
System Integration Module (SIM)  
Advance Information  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
108  
System Integration Module (SIM)  
MOTOROLA  
Advance Information MC68HC908MR16/MC68HC908MR32  
Section 8. Clock Generator Module (CGM)  
8.1 Contents  
8.2  
8.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110  
8.4  
8.4.1  
8.4.2  
8.4.2.1  
8.4.2.2  
8.4.2.3  
8.4.2.4  
8.4.2.5  
8.4.3  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111  
Crystal Oscillator Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . .111  
Phase-Locked Loop Circuit (PLL) . . . . . . . . . . . . . . . . . . .113  
PLL Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113  
Acquisition and Tracking Modes . . . . . . . . . . . . . . . . . .115  
Manual and Automatic PLL Bandwidth Modes . . . . . . .115  
Programming the PLL . . . . . . . . . . . . . . . . . . . . . . . . . .117  
Special Programming Exceptions . . . . . . . . . . . . . . . . .119  
Base Clock Selector Circuit . . . . . . . . . . . . . . . . . . . . . . . .119  
CGM External Connections . . . . . . . . . . . . . . . . . . . . . . . .119  
8.4.4  
8.5  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121  
Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . .121  
Crystal Amplifier Output Pin (OSC2) . . . . . . . . . . . . . . . . .121  
External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . .121  
PLL Analog Power Pin (VDDA) . . . . . . . . . . . . . . . . . . . . . .122  
Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . .122  
Crystal Output Frequency Signal (CGMXCLK) . . . . . . . . .122  
CGM Base Clock Output (CGMOUT). . . . . . . . . . . . . . . . .122  
CGM CPU Interrupt (CGMINT) . . . . . . . . . . . . . . . . . . . . .122  
8.5.1  
8.5.2  
8.5.3  
8.5.4  
8.5.5  
8.5.6  
8.5.7  
8.5.8  
8.6  
CGM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123  
PLL Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124  
PLL Bandwidth Control Register . . . . . . . . . . . . . . . . . . . .126  
PLL Programming Register . . . . . . . . . . . . . . . . . . . . . . . .128  
8.6.1  
8.6.2  
8.6.3  
8.7  
8.8  
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Clock Generator Module (CGM)  
Advance Information  
109  
Clock Generator Module (CGM)  
8.9  
Acquisition/Lock Time Specifications . . . . . . . . . . . . . . . . . . .130  
8.9.1  
8.9.2  
8.9.3  
8.9.4  
Acquisition/Lock Time Definitions. . . . . . . . . . . . . . . . . . . .130  
Parametric Influences on Reaction Time . . . . . . . . . . . . . .132  
Choosing a Filter Capacitor . . . . . . . . . . . . . . . . . . . . . . . .133  
Reaction Time Calculation . . . . . . . . . . . . . . . . . . . . . . . . .133  
8.2 Introduction  
This section describes the clock generator module (CGM, version A).  
The CGM generates the crystal clock signal, CGMXCLK, which operates  
at the frequency of the crystal. The CGM also generates the base clock  
signal, CGMOUT, from which the system integration module (SIM)  
derives the system clocks.  
CGMOUT is based on either the crystal clock divided by two or the  
phase-locked loop (PLL) clock, CGMVCLK, divided by two. The PLL is  
a frequency generator designed for use with crystals or ceramic  
resonators. The PLL can generate an 8-MHz bus frequency without  
using a 32-MHz external clock.  
8.3 Features  
Features of the CGM include:  
PLL with output frequency in integer multiples of the crystal  
reference  
Programmable hardware voltage-controlled oscillator (VCO) for  
low-jitter operation  
Automatic bandwidth control mode for low-jitter operation  
Automatic frequency lock detector  
Central processor unit (CPU) interrupt on entry or exit from locked  
condition  
Advance Information  
110  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Clock Generator Module (CGM)  
MOTOROLA  
Clock Generator Module (CGM)  
Functional Description  
8.4 Functional Description  
The CGM consists of three major submodules:  
1. Crystal oscillator circuit The crystal oscillator circuit generates  
the constant crystal frequency clock, CGMXCLK.  
2. Phase-locked loop (PLL) The PLL generates the  
programmable VCO frequency clock, CGMVCLK.  
3. Base clock selector circuit This software-controlled circuit  
selects either CGMXCLK divided by two or the VCO clock,  
CGMVCLK, divided by two as the base clock, CGMOUT. The SIM  
derives the system clocks from CGMOUT.  
Figure 8-1 shows the structure of the CGM.  
8.4.1 Crystal Oscillator Circuit  
The crystal oscillator circuit consists of an inverting amplifier and an  
external crystal. The OSC1 pin is the input to the amplifier and the OSC2  
pin is the output. The SIMOSCEN signal from the system integration  
module (SIM) enables the crystal oscillator circuit.  
The CGMXCLK signal is the output of the crystal oscillator circuit and  
runs at a rate equal to the crystal frequency. CGMXCLK is then buffered  
to produce CGMRCLK, the PLL reference clock.  
CGMXCLK can be used by other modules which require precise timing  
for operation. The duty cycle of CGMXCLK is not guaranteed to be  
50 percent and depends on external factors, including the crystal and  
related external components.  
An externally generated clock also can feed the OSC1 pin of the crystal  
oscillator circuit. Connect the external clock to the OSC1 pin and let the  
OSC2 pin float.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Clock Generator Module (CGM)  
AdvanceInformation  
111  
Clock Generator Module (CGM)  
CRYSTAL OSCILLATOR  
OSC2  
CGMXCLK  
CGMOUT  
TO SIM  
TO SIM  
CLOCK  
SELECT  
CIRCUIT  
OSC1  
A
B
÷ 2  
S*  
*WHEN S = 1, CGMOUT = B  
SIMOSCEN  
CGMRDV  
CGMRCLK  
BCS  
USER MODE  
V
CGMXFC  
V
SS  
DDA  
PTC2  
VRS[7:4]  
MONITOR MODE  
VOLTAGE  
CONTROLLED  
OSCILLATOR  
PHASE  
DETECTOR  
LOOP  
FILTER  
PLL ANALOG  
CGMINT  
LOCK  
DETECTOR  
BANDWIDTH  
CONTROL  
INTERRUPT  
CONTROL  
LOCK  
AUTO  
ACQ  
PLLIE  
PLLF  
MUL[7:4]  
CGMVDV  
CGMVCLK  
FREQUENCY  
DIVIDER  
Figure 8-1. CGM Block Diagram  
Advance Information  
112  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Clock Generator Module (CGM) MOTOROLA  
Clock Generator Module (CGM)  
Functional Description  
Addr.  
Register Name  
Bit 7  
PLLIE  
0
6
PLLF  
R
5
PLLON  
1
4
BCS  
0
3
1
2
1
1
1
Bit 0  
1
Read:  
PLL Control Register  
(PCTL) Write:  
$005C  
R
1
R
1
R
1
R
See page 124.  
Reset:  
Read:  
0
1
LOCK  
R
0
0
0
0
PLL Bandwidth Control Register  
AUTO  
0
ACQ  
0
XLD  
0
$005D  
$005E  
(PBWC) Write:  
R
0
R
0
R
0
R
See page 126.  
Reset:  
Read:  
0
0
PLL Programming Register  
MUL7  
MUL6  
MUL5  
MUL4  
0
VRS7  
0
VRS6  
1
VRS5  
1
VRS4  
0
(PPG) Write:  
See page 128.  
Reset:  
0
1
1
R
=Reserved  
Figure 8-2. CGM I/O Register Summary  
8.4.2 Phase-Locked Loop Circuit (PLL)  
The PLL is a frequency generator that can operate in either acquisition  
mode or tracking mode, depending on the accuracy of the output  
frequency. The PLL can change between acquisition and tracking  
modes either automatically or manually.  
8.4.2.1 PLL Circuits  
The PLL consists of these circuits:  
Voltage-controlled oscillator (VCO)  
Modulo VCO frequency divider  
Phase detector  
Loop filter  
Lock detector  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Clock Generator Module (CGM)  
AdvanceInformation  
113  
 
Clock Generator Module (CGM)  
The operating range of the VCO is programmable for a wide range of  
frequencies and for maximum immunity to external noise, including  
supply and CGMXFC noise. The VCO frequency is bound to a range  
from roughly one-half to twice the center-of-range frequency, fVRS  
.
Modulating the voltage on the CGMXFC pin changes the frequency  
within this range. By design, fVRS is equal to the nominal center-of-range  
frequency, fNOM, (4.9152 MHz) times a linear factor, L or (L) fNOM  
.
CGMRCLK is the PLL reference clock, a buffered version of CGMXCLK.  
CGMRCLK runs at a frequency, fRCLK, and is fed to the PLL through a  
buffer. The buffer output is the final reference clock, CGMRDV, running  
at a frequency, fRDV = fRCLK  
.
The VCOs output clock, CGMVCLK, running at a frequency, fVCLK, is  
fed back through a programmable modulo divider. The modulo divider  
reduces the VCO clock by a factor, N. The dividers output is the VCO  
feedback clock, CGMVDV, running at a frequency, fVDV = fVCLK/N. (See  
8.4.2.4 Programming the PLL for more information.)  
The phase detector then compares the VCO feedback clock, CGMVDV,  
with the final reference clock, CGMRDV. A correction pulse is generated  
based on the phase difference between the two signals. The loop filter  
then slightly alters the dc voltage on the external capacitor connected to  
CGMXFC based on the width and direction of the correction pulse. The  
filter can make fast or slow corrections depending on its mode,  
described in 8.4.2.2 Acquisition and Tracking Modes. The value of the  
external capacitor and the reference frequency determines the speed of  
the corrections and the stability of the PLL.  
The lock detector compares the frequencies of the VCO feedback clock,  
CGMVDV, and the final reference clock, CGMRDV. Therefore, the  
speed of the lock detector is directly proportional to the final reference  
frequency, fRDV. The circuit determines the mode of the PLL and the lock  
condition based on this comparison.  
Advance Information  
114  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Clock Generator Module (CGM)  
MOTOROLA  
Clock Generator Module (CGM)  
Functional Description  
8.4.2.2 Acquisition and Tracking Modes  
The PLL filter is manually or automatically configurable into one of two  
operating modes:  
1. Acquisition mode In acquisition mode, the filter can make large  
frequency corrections to the VCO. This mode is used at PLL  
startup or when the PLL has suffered a severe noise hit and the  
VCO frequency is far off the desired frequency. When in  
acquisition mode, the ACQ bit is clear in the PLL bandwidth control  
register. See 8.6.2 PLL Bandwidth Control Register.  
2. Tracking mode In tracking mode, the filter makes only small  
corrections to the frequency of the VCO. PLL jitter is much lower  
in tracking mode, but the response to noise is also slower. The  
PLL enters tracking mode when the VCO frequency is nearly  
correct, such as when the PLL is selected as the base clock  
source. See 8.4.3 Base Clock Selector Circuit. The PLL is  
automatically in tracking mode when not in acquisition mode or  
when the ACQ bit is set.  
8.4.2.3 Manual and Automatic PLL Bandwidth Modes  
The PLL can change the bandwidth or operational mode of the loop filter  
manually or automatically.  
In automatic bandwidth control mode (AUTO = 1), the lock detector  
automatically switches between acquisition and tracking modes.  
Automatic bandwidth control mode also is used to determine when the  
VCO clock, CGMVCLK, is safe to use as the source for the base clock,  
CGMOUT. See 8.6.2 PLL Bandwidth Control Register. If PLL  
interrupts are enabled, the software can wait for a PLL interrupt request  
and then check the LOCK bit. If interrupts are disabled, software can poll  
the LOCK bit continuously (during PLL startup, usually) or at periodic  
intervals. In either case, when the LOCK bit is set, the VCO clock is safe  
to use as the source for the base clock. See 8.4.3 Base Clock Selector  
Circuit. If the VCO is selected as the source for the base clock and the  
LOCK bit is clear, the PLL has suffered a severe noise hit and the  
software must take appropriate action, depending on the application.  
See 8.7 Interrupts for information and precautions on using interrupts.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Clock Generator Module (CGM)  
AdvanceInformation  
115  
 
 
Clock Generator Module (CGM)  
These conditions apply when the PLL is in automatic bandwidth control  
mode:  
The ACQ bit (see 8.6.2 PLL Bandwidth Control Register) is a  
read-only indicator of the mode of the filter. For more information,  
see 8.4.2.2 Acquisition and Tracking Modes.  
The ACQ bit is set when the VCO frequency is within a certain  
tolerance, TRK, and is cleared when the VCO frequency is out of  
a certain tolerance, UNT. For more information, see  
8.9 Acquisition/Lock Time Specifications.  
The LOCK bit is a read-only indicator of the locked state of the  
PLL.  
The LOCK bit is set when the VCO frequency is within a certain  
tolerance, Lock, and is cleared when the VCO frequency is out of  
a certain tolerance, UNL. For more information, see  
8.9 Acquisition/Lock Time Specifications.  
CPU interrupts can occur if enabled (PLLIE = 1) when the PLLs  
lock condition changes, toggling the LOCK bit. For more  
information, see 8.6.1 PLL Control Register.  
The PLL also may operate in manual mode (AUTO = 0). Manual mode  
is used by systems that do not require an indicator of the lock condition  
for proper operation. Such systems typically operate well below fBUSMAX  
and require fast startup. These conditions apply when in manual mode:  
ACQ is a writable control bit that controls the mode of the filter.  
Before turning on the PLL in manual mode, the ACQ bit must be  
clear.  
Before entering tracking mode (ACQ = 1), software must wait a  
given time, tACQ (see 8.9 Acquisition/Lock Time  
Specifications), after turning on the PLL by setting PLLON in the  
PLL control register (PCTL).  
Software must wait a given time, tAL, after entering tracking mode  
before selecting the PLL as the clock source to CGMOUT  
(BCS = 1).  
The LOCK bit is disabled.  
CPU interrupts from the CGM are disabled.  
Advance Information  
116  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Clock Generator Module (CGM)  
MOTOROLA  
Clock Generator Module (CGM)  
Functional Description  
8.4.2.4 Programming the PLL  
Use this 9-step procedure to program the PLL. Table 8-1 lists the  
variables used and their meaning.  
Table 8-1. Variable Definitions  
Variable  
Definition  
Desired bus clock frequency  
Desired VCO clock frequency  
Chosen reference crystal frequency  
Calculated VCO clock frequency  
Calculated bus clock frequency  
Nominal VCO center frequency  
Shifted FCO center frequency  
f
BUSDES  
f
VCLKDES  
f
RCLK  
f
VCLK  
f
BUS  
f
NOM  
f
VRS  
1. Choose the desired bus frequency, fBUSDES  
Example: fBUSDES = 8 MHz  
.
2. Calculate the desired VCO frequency, fVCLKDES  
.
fVCLKDES = 4 x fBUSDES  
Example: fVCLKDES = 4 x 8 MHz = 32 MHz  
3. Using a reference frequency, fRCLK, equal to the crystal frequency,  
calculate the VCO frequency multiplier, N. Round the result to the  
nearest integer.  
fVCLKDES  
N =  
fRCLK  
32 MHz  
4 MHz  
Example: N =  
= 8 MHz  
4. Calculate the VCO frequency, fVCLK  
.
fVCLK = N x fRCLK  
Example: fVCLK = 8 x 4 MHz = 32 MHz  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Clock Generator Module (CGM)  
AdvanceInformation  
117  
 
 
Clock Generator Module (CGM)  
5. Calculate the bus frequency, fBUS, and compare fBUS with  
fBUSDES  
.
fVCLK  
fBUS  
=
4
32 MHz  
4 MHz  
Example: N =  
= 8 MHz  
6. If the calculated fBUS is not within the tolerance limits of the  
application, select another fBUSDES or another fRCLK  
.
7. Using the value 4.9152 MHz for fNOM, calculate the VCO linear  
range multiplier, L. The linear range multiplier controls the  
frequency range of the PLL.  
fVCLK  
L = round  
fNOM  
32 MHz  
4.9152 MHz  
Example: L =  
= 7 MHz  
8. Calculate the VCO center-of-range frequency, fVRS. The  
center-or-range frequency is the midpoint between the minimum  
and maximum frequencies attainable by the PLL.  
fVRS = L x fNOM  
Example: fVRS = 7 x 4.9152 MHz = 34.4 MHz  
For proper operation,  
CAUTION: Exceeding the recommended maximum bus frequency or VCO  
frequency can crash the MCU.  
9. Program the PLL registers accordingly:  
a. In the upper four bits of the PLL programming register (PPG),  
program the binary equivalent of N.  
b. In the lower four bits of the PLL programming register (PPG),  
program the binary equivalent of L.  
Advance Information  
118  
MC68HC908MR16/MC68HC908MR32 — Rev. 5.0  
Clock Generator Module (CGM) MOTOROLA  
Clock Generator Module (CGM)  
Functional Description  
8.4.2.5 Special Programming Exceptions  
The programming method described in 8.4.2.4 Programming the PLL  
does not account for possible exceptions. A value of 0 for N or L is  
meaningless when used in the equations given. To account for these  
exceptions:  
A 0 value for N is interpreted exactly the same as a value of 1.  
A 0 value for L disables the PLL and prevents its selection as the  
source for the base clock. See 8.4.3 Base Clock Selector  
Circuit.  
8.4.3 Base Clock Selector Circuit  
This circuit is used to select either the crystal clock, CGMXCLK, or the  
VCO clock, CGMVCLK, as the source of the base clock, CGMOUT. The  
two input clocks go through a transition control circuit that waits up to  
three CGMXCLK cycles and three CGMVCLK cycles to change from  
one clock source to the other. During this time, CGMOUT is held in  
stasis. The output of the transition control circuit is then divided by two  
to correct the duty cycle. Therefore, the bus clock frequency, which is  
one-half of the base clock frequency, is one-fourth the frequency of the  
selected clock (CGMXCLK or CGMVCLK).  
The BCS bit in the PLL control register (PCTL) selects which clock drives  
CGMOUT. The VCO clock cannot be selected as the base clock source  
if the PLL is not turned on. The PLL cannot be turned off if the VCO clock  
is selected. The PLL cannot be turned on or off simultaneously with the  
selection or deselection of the VCO clock. The VCO clock also cannot  
be selected as the base clock source if the factor L is programmed to a 0.  
This value would set up a condition inconsistent with the operation of the  
PLL, so that the PLL would be disabled and the crystal clock would be  
forced as the source of the base clock.  
8.4.4 CGM External Connections  
In its typical configuration, the CGM requires seven external  
components. Five of these are for the crystal oscillator and two are for  
the PLL.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Clock Generator Module (CGM)  
AdvanceInformation  
119  
 
 
Clock Generator Module (CGM)  
The crystal oscillator is normally connected in a Pierce oscillator  
configuration, as shown in Figure 8-3. Figure 8-3 shows only the logical  
representation of the internal components and may not represent actual  
circuitry.  
SIMOSCEN  
CGMXCLK  
OSC1  
OSC2  
R *  
V
CGMXFC  
C
V
DDA  
SS  
V
DD  
C
R
X1  
C1  
C2  
*RS can be 0 (shorted) when used with higher-frequency crystals.  
Refer to manufacturers data.  
Figure 8-3. CGM External Connections  
The oscillator configuration uses five components:  
1. Crystal, X1  
2. Fixed capacitor, C1  
3. Tuning capacitor, C2 (can also be a fixed capacitor)  
4. Feedback resistor, RB  
5. Series resistor, RS (optional)  
The series resistor (RS) is included in the diagram to follow strict Pierce  
oscillator guidelines and may not be required for all ranges of operation,  
especially with high-frequency crystals. Refer to the crystal  
manufacturers data for more information.  
Advance Information  
120  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Clock Generator Module (CGM)  
MOTOROLA  
 
Clock Generator Module (CGM)  
I/O Signals  
Figure 8-3 also shows the external components for the PLL:  
Bypass capacitor, CBYP  
Filter capacitor, CF  
NOTE: Routing should be done with great care to minimize signal cross talk and  
noise. (See 8.9 Acquisition/Lock Time Specifications for routing  
information and more information on the filter capacitors value and its  
effects on PLL performance.)  
8.5 I/O Signals  
This section describes the CGM input/output (I/O) signals.  
8.5.1 Crystal Amplifier Input Pin (OSC1)  
The OSC1 pin is an input to the crystal oscillator amplifier.  
8.5.2 Crystal Amplifier Output Pin (OSC2)  
The OSC2 pin is the output of the crystal oscillator inverting amplifier.  
8.5.3 External Filter Capacitor Pin (CGMXFC)  
The CGMXFC pin is required by the loop filter to filter out phase  
corrections. A small external capacitor is connected to this pin.  
NOTE: To prevent noise problems, CF should be placed as close to the  
CGMXFC pin as possible, with minimum routing distances and no  
routing of other signals across the CF connection.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Clock Generator Module (CGM)  
AdvanceInformation  
121  
Clock Generator Module (CGM)  
8.5.4 PLL Analog Power Pin (VDDA  
)
VDDA is a power pin used by the analog portions of the PLL. Connect  
the VDDA pin to the same voltage potential as the VDD pin.  
NOTE: Route VDDA carefully for maximum noise immunity and place bypass  
capacitors as close as possible to the package.  
8.5.5 Oscillator Enable Signal (SIMOSCEN)  
The SIMOSCEN signal comes from the system integration module (SIM)  
and enables the oscillator and PLL.  
8.5.6 Crystal Output Frequency Signal (CGMXCLK)  
CGMXCLK is the crystal oscillator output signal. It runs at the full speed  
of the crystal (fXCLK) and comes directly from the crystal oscillator circuit.  
Figure 8-3 shows only the logical relation of CGMXCLK to OSC1 and  
OSC2 and may not represent the actual circuitry. The duty cycle of  
CGMXCLK is unknown and may depend on the crystal and other  
external factors. Also, the frequency and amplitude of CGMXCLK can be  
unstable at startup.  
8.5.7 CGM Base Clock Output (CGMOUT)  
CGMOUT is the clock output of the CGM. This signal goes to the SIM,  
which generates the MCU clocks. CGMOUT is a 50 percent duty cycle  
clock running at twice the bus frequency. CGMOUT is software  
programmable to be either the oscillator output, CGMXCLK, divided by  
two or the VCO clock, CGMVCLK, divided by two.  
8.5.8 CGM CPU Interrupt (CGMINT)  
CGMINT is the interrupt signal generated by the PLL lock detector.  
Advance Information  
122  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Clock Generator Module (CGM)  
MOTOROLA  
Clock Generator Module (CGM)  
CGM Registers  
8.6 CGM Registers  
These registers control and monitor operation of the CGM:  
PLL control register (PCTL)  
See 8.6.1 PLL Control Register.  
PLL bandwidth control register (PBWC)  
See 8.6.2 PLL Bandwidth Control Register.  
PLL programming register (PPG)  
See 8.6.3 PLL Programming Register.  
Figure 8-4 is a summary of the CGM registers.  
Addr.  
Register Name  
Bit 7  
PLLIE  
0
6
PLLF  
R
5
PLLON  
1
4
BCS  
0
3
1
2
1
1
1
Bit 0  
1
Read:  
PLL Control Register  
(PCTL) Write:  
$005C  
R
1
R
1
R
1
R
1
See page 124.  
Reset:  
Read:  
0
LOCK  
R
0
0
0
0
PLL Bandwidth Control Register  
AUTO  
0
ACQ  
0
XLD  
0
$005D  
$005E  
Notes:  
(PBWC) Write:  
R
0
R
0
R
0
R
0
See page 126.  
Reset:  
Read:  
0
PLL Programming Register  
MUL7  
MUL6  
MUL5  
MUL4  
0
VRS7  
0
VRS6  
1
VRS5  
1
VRS4  
0
(PPG) Write:  
See page 128.  
Reset:  
0
1
1
R
=Reserved  
1. When AUTO = 0, PLLIE is forced to logic 0 and is read-only.  
2. When AUTO = 0, PLLF and LOCK read as logic 0.  
3. When AUTO = 1, ACQ is read-only.  
4. When PLLON = 0 or VRS[7:4] = $0, BCS is forced to logic 0 and is read-only.  
5. When PLLON = 1, the PLL programming register is read-only.  
6. When BCS = 1, PLLON is forced set and is read-only.  
Figure 8-4. CGM I/O Register Summary  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Clock Generator Module (CGM)  
AdvanceInformation  
123  
 
Clock Generator Module (CGM)  
8.6.1 PLL Control Register  
The PLL control register (PCTL) contains the interrupt enable and flag  
bits, the on/off switch, and the base clock selector bit.  
Address: $005C  
Bit 7  
6
5
PLLON  
1
4
BCS  
0
3
1
2
1
1
1
Bit 0  
1
Read:  
Write:  
Reset:  
PLLF  
PLLIE  
R
R
1
R
1
R
1
R
0
0
1
R
= Reserved  
Figure 8-5. PLL Control Register (PCTL)  
PLLIE PLL Interrupt Enable Bit  
This read/write bit enables the PLL to generate an interrupt request  
when the LOCK bit toggles, setting the PLL flag, PLLF. When the  
AUTO bit in the PLL bandwidth control register (PBWC) is clear,  
PLLIE cannot be written and reads as logic 0. Reset clears the  
PLLIE bit.  
1 = PLL interrupts enabled  
0 = PLL interrupts disabled  
PLLF PLL Interrupt Flag  
This read-only bit is set whenever the LOCK bit toggles. PLLF  
generates an interrupt request if the PLLIE bit also is set. PLLF  
always reads as logic 0 when the AUTO bit in the PLL bandwidth  
control register (PBWC) is clear. Clear the PLLF bit by reading the  
PLL control register. Reset clears the PLLF bit.  
1 = Change in lock condition  
0 = No change in lock condition  
NOTE: Do not inadvertently clear the PLLF bit. Any read or read-modify-write  
operation on the PLL control register clears the PLLF bit.  
Advance Information  
124  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Clock Generator Module (CGM) MOTOROLA  
 
Clock Generator Module (CGM)  
CGM Registers  
PLLON PLL On Bit  
This read/write bit activates the PLL and enables the VCO clock,  
CGMVCLK. PLLON cannot be cleared if the VCO clock is driving the  
base clock, CGMOUT (BCS = 1). See 8.4.3 Base Clock Selector  
Circuit. Reset sets this bit so that the loop can stabilize as the MCU  
is powering up.  
1 = PLL on  
0 = PLL off  
BCS Base Clock Select Bit  
This read/write bit selects either the crystal oscillator output,  
CGMXCLK, or the VCO clock, CGMVCLK, as the source of the CGM  
output, CGMOUT. CGMOUT frequency is one-half the frequency of  
the selected clock. BCS cannot be set while the PLLON bit is clear.  
After toggling BCS, it may take up to three CGMXCLK and three  
CGMVCLK cycles to complete the transition from one source clock to  
the other. During the transition, CGMOUT is held in stasis. See  
8.4.3 Base Clock Selector Circuit. Reset clears the BCS bit.  
1 = CGMVCLK divided by two drives CGMOUT  
0 = CGMXCLK divided by two drives CGMOUT  
NOTE: PLLON and BCS have built-in protection that prevents the base clock  
selector circuit from selecting the VCO clock as the source of the base  
clock if the PLL is off. Therefore, PLLON cannot be cleared when BCS  
is set, and BCS cannot be set when PLLON is clear. If the PLL is off  
(PLLON = 0), selecting CGMVCLK requires two writes to the PLL control  
register. See 8.4.3 Base Clock Selector Circuit.  
PCTL[3:0] Unimplemented Bits  
These bits provide no function and always read as logic 1s.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Clock Generator Module (CGM)  
AdvanceInformation  
125  
Clock Generator Module (CGM)  
8.6.2 PLL Bandwidth Control Register  
The PLL bandwidth control register (PBWC):  
Selects automatic or manual (software-controlled) bandwidth  
control mode  
Indicates when the PLL is locked  
In automatic bandwidth control mode, indicates when the PLL is in  
acquisition or tracking mode  
In manual operation, forces the PLL into acquisition or tracking  
mode  
Address: $005D  
Bit 7  
6
5
ACQ  
0
4
XLD  
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
LOCK  
AUTO  
R
R
0
R
0
R
0
R
0
0
0
R
= Reserved  
Figure 8-6. PLL Bandwidth Control Register (PBWC)  
AUTO Automatic Bandwidth Control Bit  
This read/write bit selects automatic or manual bandwidth control.  
When initializing the PLL for manual operation (AUTO = 0), clear the  
ACQ bit before turning on the PLL. Reset clears the AUTO bit.  
1 = Automatic bandwidth control  
0 = Manual bandwidth control  
LOCK Lock Indicator Bit  
When the AUTO bit is set, LOCK is a read-only bit that becomes set  
when the VCO clock, CGMVCLK, is locked (running at the  
programmed frequency). When the AUTO bit is clear, LOCK reads as  
logic 0 and has no meaning. Reset clears the LOCK bit.  
1 = VCO frequency correct or locked  
0 = VCO frequency incorrect or unlocked  
Advance Information  
126  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Clock Generator Module (CGM)  
MOTOROLA  
Clock Generator Module (CGM)  
CGM Registers  
ACQ Acquisition Mode Bit  
When the AUTO bit is set, ACQ is a read-only bit that indicates  
whether the PLL is in acquisition mode or tracking mode. When the  
AUTO bit is clear, ACQ is a read/write bit that controls whether the  
PLL is in acquisition or tracking mode.  
In automatic bandwidth control mode (AUTO = 1), the last-written  
value from manual operation is stored in a temporary location and is  
recovered when manual operation resumes. Reset clears this bit,  
enabling acquisition mode.  
1 = Tracking mode  
0 = Acquisition mode  
XLD Crystal Loss Detect Bit  
When the VCO output, CGMVCLK, is driving CGMOUT, this  
read/write bit can indicate whether the crystal reference frequency is  
active or not. To check the status of the crystal reference, follow these  
steps:  
1. Write a logic 1 to XLD.  
2. Wait N × 4 cycles. (N is the VCO frequency multiplier.)  
3. Read XLD.  
The crystal loss detect function works only when the BCS bit is set,  
selecting CGMVCLK to drive CGMOUT. When BCS is clear, XLD  
always reads as logic 0.  
1 = Crystal reference is not active.  
0 = Crystal reference is active.  
PBWC[3:0] Reserved for Test  
These bits enable test functions not available in user mode. To ensure  
software portability from development systems to user applications,  
software should write 0s to PBWC[3:0] whenever writing to PBWC.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Clock Generator Module (CGM)  
AdvanceInformation  
127  
Clock Generator Module (CGM)  
8.6.3 PLL Programming Register  
The PLL programming register (PPG) contains the programming  
information for the modulo feedback divider and the programming  
information for the hardware configuration of the VCO.  
Address: $005E  
Bit 7  
MUL7  
0
6
MUL6  
1
5
MUL5  
1
4
MUL4  
0
3
VRS7  
0
2
VRS6  
1
1
VRS5  
1
Bit 0  
VRS4  
0
Read:  
Write:  
Reset:  
Figure 8-7. PLL Programming Register (PPG)  
MUL[7:4] Multiplier Select Bits  
These read/write bits control the modulo feedback divider that selects  
the VCO frequency multiplier, N. See 8.4.2.1 PLL Circuits and  
8.4.2.4 Programming the PLL. A value of $0 in the multiplier select  
bits configures the modulo feedback divider the same as a value of  
$1. Reset initializes these bits to $6 to give a default multiply value  
of 6.  
Table 8-2. VCO Frequency Multiplier (N) Selection  
MUL7:MUL6:MUL5:MUL4  
VCO Frequency Multiplier (N)  
0000  
0001  
0010  
0011  
1
1
2
3
1101  
1110  
1111  
13  
14  
15  
NOTE: The multiplier select bits have built-in protection that prevents them from  
being written when the PLL is on (PLLON = 1).  
Advance Information  
128  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Clock Generator Module (CGM) MOTOROLA  
Clock Generator Module (CGM)  
Interrupts  
VRS[7:4] VCO Range Select Bits  
These read/write bits control the hardware center-of-range linear  
multiplier L, which controls the hardware center-of-range frequency  
fVRS. See 8.4.2.1 PLL Circuits, 8.4.2.4 Programming the PLL and  
8.6.1 PLL Control Register. VRS[7:4] cannot be written when the  
PLLON bit in the PLL control register (PCTL) is set. See 8.4.2.5  
Special Programming Exceptions. A value of $0 in the VCO range  
select bits disables the PLL and clears the BCS bit in the PCTL. See  
8.4.3 Base Clock Selector Circuit and 8.4.2.5 Special  
Programming Exceptions for more information.  
Reset initializes the bits to $6 to give a default range multiply  
value of 6.  
NOTE: The VCO range select bits have built-in protection that prevents them  
from being written when the PLL is on (PLLON = 1) and prevents  
selection of the VCO clock as the source of the base clock (BCS = 1) if  
the VCO range select bits are all clear.  
The VCO range select bits must be programmed correctly. Incorrect  
programming may result in failure of the PLL to achieve lock.  
8.7 Interrupts  
When the AUTO bit is set in the PLL bandwidth control register (PBWC),  
the PLL can generate a CPU interrupt request every time the LOCK bit  
changes state. The PLLIE bit in the PLL control register (PCTL) enables  
CPU interrupts from the PLL. PLLF, the interrupt flag in the PCTL,  
becomes set whether interrupts are enabled or not. When the AUTO bit  
is clear, CPU interrupts from the PLL are disabled and PLLF reads as  
logic 0.  
Software should read the LOCK bit after a PLL interrupt request to see  
if the request was due to an entry into lock or an exit from lock. When the  
PLL enters lock, the VCO clock, CGMVCLK, divided by two can be  
selected as the CGMOUT source by setting BCS in the PCTL. When the  
PLL exits lock, the VCO clock frequency is corrupt, and appropriate  
precautions should be taken. If the application is not  
frequency-sensitive, interrupts should be disabled to prevent PLL  
interrupt service routines from impeding software performance or from  
exceeding stack limitations.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Clock Generator Module (CGM)  
AdvanceInformation  
129  
Clock Generator Module (CGM)  
NOTE: Software can select the CGMVCLK divided by two as the CGMOUT  
source even if the PLL is not locked (LOCK = 0). Therefore, software  
should make sure the PLL is locked before setting the BCS bit.  
8.8 Wait Mode  
The WAIT instruction puts the MCU in low power-consumption standby  
mode.  
The WAIT instruction does not affect the CGM. Before entering wait  
mode, software can disengage and turn off the PLL by clearing the BCS  
and PLLON bits in the PLL control register (PCTL). Less power-sensitive  
applications can disengage the PLL without turning it off. Applications  
that require the PLL to wake the MCU from wait mode also can deselect  
the PLL output without turning off the PLL.  
8.9 Acquisition/Lock Time Specifications  
The acquisition and lock times of the PLL are, in many applications, the  
most critical PLL design parameters. Proper design and use of the PLL  
ensures the highest stability and lowest acquisition/lock times.  
8.9.1 Acquisition/Lock Time Definitions  
Typical control systems refer to the acquisition time or lock time as the  
reaction time, within specified tolerances, of the system to a step input.  
In a PLL, the step input occurs when the PLL is turned on or when it  
suffers a noise hit. The tolerance is usually specified as a percent of the  
step input or when the output settles to the desired value plus or minus  
a percent of the frequency change. Therefore, the reaction time is  
constant in this definition, regardless of the size of the step input. For  
example, consider a system with a 5 percent acquisition time tolerance.  
If a command instructs the system to change from 0 Hz to 1 MHz, the  
acquisition time is the time taken for the frequency to reach  
1 MHz ± 50 kHz. Fifty kHz = 5% of the 1-MHz step input. If the system is  
operating at 1 MHz and suffers a 100-kHz noise hit, the acquisition time  
is the time taken to return from 900 kHz to 1 MHz ±5 kHz. Five kHz = 5%  
of the 100-kHz step input.  
Advance Information  
130  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Clock Generator Module (CGM)  
MOTOROLA  
 
Clock Generator Module (CGM)  
Acquisition/Lock Time Specifications  
Other systems refer to acquisition and lock times as the time the system  
takes to reduce the error between the actual output and the desired  
output to within specified tolerances. Therefore, the acquisition or lock  
time varies according to the original error in the output. Minor errors may  
not even be registered. Typical PLL applications prefer to use this  
definition because the system requires the output frequency to be within  
a certain tolerance of the desired frequency regardless of the size of the  
initial error.  
The discrepancy in these definitions makes it difficult to specify an  
acquisition or lock time for a typical PLL. Therefore, the definitions for  
acquisition and lock times for this module are:  
Acquisition time, tACQ, is the time the PLL takes to reduce the error  
between the actual output frequency and the desired output  
frequency to less than the tracking mode entry tolerance, TRK  
.
Acquisition time is based on an initial frequency error,  
(fDES fORIG)/fDES, of not more than ±100 percent. In automatic  
bandwidth control mode (see 8.4.2.3 Manual and Automatic PLL  
Bandwidth Modes), acquisition time expires when the ACQ bit  
becomes set in the PLL bandwidth control register (PBWC).  
Lock time, tLock, is the time the PLL takes to reduce the error  
between the actual output frequency and the desired output  
frequency to less than the lock mode entry tolerance, Lock. Lock  
time is based on an initial frequency error, (fDES fORIG)/fDES, of  
not more than ±100 percent. In automatic bandwidth control  
mode, lock time expires when the LOCK bit becomes set in the  
PLL bandwidth control register (PBWC). See 8.4.2.3 Manual and  
Automatic PLL Bandwidth Modes.  
Obviously, the acquisition and lock times can vary according to how  
large the frequency error is and may be shorter or longer in many cases.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Clock Generator Module (CGM)  
AdvanceInformation  
131  
Clock Generator Module (CGM)  
8.9.2 Parametric Influences on Reaction Time  
Acquisition and lock times are designed to be as short as possible while  
still providing the highest possible stability. These reaction times are not  
constant, however. Many factors directly and indirectly affect the  
acquisition time.  
The most critical parameter which affects the reaction times of the PLL  
is the reference frequency, fRDV. This frequency is the input to the phase  
detector and controls how often the PLL makes corrections. For stability,  
the corrections must be small compared to the desired frequency, so  
several corrections are required to reduce the frequency error.  
Therefore, the slower the reference the longer it takes to make these  
corrections. This parameter is also under user control via the choice of  
crystal frequency, fXCLK  
.
Another critical parameter is the external filter capacitor. The PLL  
modifies the voltage on the VCO by adding or subtracting charge from  
this capacitor. Therefore, the rate at which the voltage changes for a  
given frequency error (thus change in charge) is proportional to the  
capacitor size. The size of the capacitor also is related to the stability of  
the PLL. If the capacitor is too small, the PLL cannot make small enough  
adjustments to the voltage and the system cannot lock. If the capacitor  
is too large, the PLL may not be able to adjust the voltage in a  
reasonable time. See 8.9.3 Choosing a Filter Capacitor.  
Also important is the operating voltage potential applied to VDDA. The  
power supply potential alters the characteristics of the PLL. A fixed value  
is best. Variable supplies, such as batteries, are acceptable if they vary  
within a known range at very slow speeds. Noise on the power supply is  
not acceptable, because it causes small frequency errors which  
continually change the acquisition time of the PLL.  
Temperature and processing also can affect acquisition time because  
the electrical characteristics of the PLL change. The part operates as  
specified as long as these influences stay within the specified limits.  
External factors, however, can cause drastic changes in the operation of  
the PLL. These factors include noise injected into the PLL through the  
filter capacitor filter, capacitor leakage, stray impedances on the circuit  
board, and even humidity or circuit board contamination.  
Advance Information  
132  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Clock Generator Module (CGM)  
MOTOROLA  
 
Clock Generator Module (CGM)  
Acquisition/Lock Time Specifications  
8.9.3 Choosing a Filter Capacitor  
As described in 8.9.2 Parametric Influences on Reaction Time, the  
external filter capacitor, CF, is critical to the stability and reaction time of  
the PLL. The PLL is also dependent on reference frequency and supply  
voltage. The value of the capacitor must, therefore, be chosen with  
supply potential and reference frequency in mind. For proper operation,  
the external filter capacitor must be chosen according to this equation:  
V
DDA  
--------------  
C = C  
F
FACT  
f
RDV  
For acceptable values of CFACT, see 8.9 Acquisition/Lock Time  
Specifications. For the value of VDDA, choose the voltage potential at  
which the MCU is operating. If the power supply is variable, choose a  
value near the middle of the range of possible supply values.  
This equation does not always yield a commonly available capacitor  
size, so round to the nearest available size. If the value is between two  
different sizes, choose the higher value for better stability. Choosing the  
lower size may seem attractive for acquisition time improvement, but the  
PLL can become unstable. Also, always choose a capacitor with a tight  
tolerance (±20 percent or better) and low dissipation.  
8.9.4 Reaction Time Calculation  
The actual acquisition and lock times can be calculated using the  
equations here. These equations yield nominal values under these  
conditions:  
Correct selection of filter capacitor, CF, see 8.9.3 Choosing a  
Filter Capacitor  
Room temperature operation  
Negligible external leakage on CGMXFC  
Negligible noise  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Clock Generator Module (CGM)  
AdvanceInformation  
133  
 
t
= -------------- -------------  
                                                                                                                               
-
Clock Generator Module (CGM)  
The K factor in the equations is derived from internal PLL parameters.  
KACQ is the K factor when the PLL is configured in acquisition mode, and  
TRK is the K factor when the PLL is configured in tracking mode. See  
K
8.4.2.2 Acquisition and Tracking Modes.  
V
8
DDA  
ACQ  
f
K
RDV  
ACQ  
V
4
DDA  
-------------- --------------  
t
=
AL  
f
K
RDV  
TRK  
t
= t  
+ t  
ACQ AL  
Lock  
NOTE: The inverse proportionality between the lock time and the reference  
frequency.  
In automatic bandwidth control mode, the acquisition and lock times are  
quantized into units based on the reference frequency. See  
8.4.2.3 Manual and Automatic PLL Bandwidth Modes A certain  
number of clock cycles, ACQ, is required to ascertain that the PLL is  
within the tracking mode entry tolerance, TRK, before exiting acquisition  
mode. A certain number of clock cycles, nTRK, is required to ascertain  
that the PLL is within the lock mode entry tolerance, Lock. Therefore, the  
acquisition time, tACQ, is an integer multiple of nACQ RDV  
acquisition to lock time, tAL, is an integer multiple of nTRK RDV  
/f  
, and the  
/f . Also,  
since the average frequency over the entire measurement period must  
be within the specified tolerance, the total time usually is longer than  
t
Lock as calculated in the previous example.  
In manual mode, it is usually necessary to wait considerably longer than  
tLock before selecting the PLL clock (see 8.4.3 Base Clock Selector  
Circuit) because the factors described in 8.9.2 Parametric Influences  
on Reaction Time may slow the lock time considerably.  
Advance Information  
134  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Clock Generator Module (CGM)  
MOTOROLA  
Advance Information MC68HC908MR16/MC68HC908MR32  
Section 9. Pulse-Width Modulator for Motor Control  
(PWMMC)  
9.1 Contents  
9.2  
9.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137  
9.4  
9.4.1  
9.4.2  
Timebase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141  
Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141  
Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143  
9.5  
9.5.1  
9.5.2  
PWM Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143  
Load Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143  
PWM Data Overflow and Underflow Conditions. . . . . . . . .147  
9.6  
9.6.1  
Output Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
Selecting Six Independent PWMs  
or Three Complementary PWM Pairs . . . . . . . . . . . . . .147  
Dead-Time Insertion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149  
Top/Bottom Correction with Motor Phase  
9.6.2  
9.6.3  
Current Polarity Sensing . . . . . . . . . . . . . . . . . . . . . . . .153  
Output Polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157  
PWM Output Port Control. . . . . . . . . . . . . . . . . . . . . . . . . .158  
9.6.4  
9.6.5  
9.7  
9.7.1  
9.7.1.1  
9.7.1.2  
9.7.1.3  
9.7.2  
Fault Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160  
Fault Condition Input Pins . . . . . . . . . . . . . . . . . . . . . . . . .161  
Fault Pin Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161  
Automatic Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163  
Manual Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164  
Software Output Disable . . . . . . . . . . . . . . . . . . . . . . . . . .165  
Output Port Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166  
9.7.3  
9.8  
9.9  
Initialization and the PWMEN Bit . . . . . . . . . . . . . . . . . . . . . .166  
PWM Operation in Wait Mode . . . . . . . . . . . . . . . . . . . . . . . .168  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Pulse-Width Modulator for Motor Control (PWMMC)  
Advance Information  
135  
Pulse-Width Modulator for Motor Control  
9.10 Control Logic Block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168  
9.10.1 PWM Counter Registers. . . . . . . . . . . . . . . . . . . . . . . . . . .168  
9.10.2 PWM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . .169  
9.10.3 PWMx Value Registers . . . . . . . . . . . . . . . . . . . . . . . . . . .170  
9.10.4 PWM Control Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . .171  
9.10.5 PWM Control Register 2. . . . . . . . . . . . . . . . . . . . . . . . . . .173  
9.10.6 Dead-Time Write-Once Register . . . . . . . . . . . . . . . . . . . .176  
9.10.7 PWM Disable Mapping Write-Once Register . . . . . . . . . . .176  
9.10.8 Fault Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .177  
9.10.9 Fault Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179  
9.10.10 Fault Acknowledge Register. . . . . . . . . . . . . . . . . . . . . . . .180  
9.10.11 PWM Output Control Register . . . . . . . . . . . . . . . . . . . . . .182  
9.11 PWM Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183  
9.2 Introduction  
This section describes the pulse-width modulator for motor control  
(PWMMC, version A). The MC68HC908MR24 PWM module can  
generate three complementary PWM pairs or six independent PWM  
signals. These PWM signals can be center-aligned or edge-aligned. A  
block diagram of the PWM module is shown in Figure 9-1.  
A12-bit timer PWM counter is common to all six channels. PWM  
resolution is one clock period for edge-aligned operation and two clock  
periods for center-aligned operation. The clock period is dependent on  
the internal operating frequency (fOP) and a programmable prescaler.  
The highest resolution for edge-aligned operation is 125 ns  
(fOP = 8 MHz). The highest resolution for center-aligned operation is  
250 ns (fOP = 8 MHz).  
When generating complementary PWM signals, the module features  
automatic dead-time insertion to the PWM output pairs and transparent  
toggling of PWM data based upon sensed motor phase current polarity.  
A summary of the PWM registers is shown in Figure 9-2.  
Advance Information  
136  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Pulse-Width Modulator for Motor Control (PWMMC)  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
Features  
9.3 Features  
Features of the PWMMC include:  
Three complementary PWM pairs or six independent PWM  
signals  
Edge-aligned PWM signals or center-aligned PWM signals  
PWM signal polarity control  
20-mA current sink capability on PWM pins  
Manual PWM output control through software  
Programmable fault protection  
Complementary mode featuring:  
Dead-time insertion  
Separate top/bottom pulse width correction via current sensing  
or programmable software bits  
8
CPU BUS  
PWM1 PIN  
PWM CHANNELS 1 AND 2  
PWM2 PIN  
PWM3 PIN  
PWM CHANNELS 3 AND 4  
PWM4 PIN  
PWM5 PIN  
PWM CHANNELS 5 AND 6  
PWM6 PIN  
FAULT  
4
INTERRUPT  
PINS  
12  
TIMEBASE  
3
COIL CURRENT  
POLARITY PINS  
Figure 9-1. PWM Module Block Diagram  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Pulse-Width Modulator for Motor Control (PWMMC)  
AdvanceInformation  
137  
Pulse-Width Modulator for Motor Control  
Addr.  
Register Name  
Bit 7  
DISX  
0
6
5
4
3
ISENS1  
0
2
1
Bit 0  
Read:  
PWM Control Register 1  
DISY PWMINT PWMF  
ISENS0 LDOK PWMEN  
$0020  
(PCTL1) Write:  
See page 171.  
Reset:  
Read:  
0
0
0
0
IPOL1  
0
0
0
0
PWM Control Register 2  
LDFQ1 LDFQ0  
IPOL2  
0
IPOL3 PRSC1 PRSC0  
$0021  
$0022  
$0023  
$0024  
$0025  
$0026  
$0027  
$0028  
(PCTL2) Write:  
See page 174.  
Reset:  
Read:  
0
0
0
0
0
0
Fault Control Register  
FINT4 FMODE4 FINT3 FMODE3  
FINT2  
FMODE2 FINT1 FMODE1  
(FCR) Write:  
See page 177.  
Reset:  
0
0
0
0
0
0
0
0
Read: FPIN4 FFLAG4 FPIN3 FFLAG3  
FPIN2  
FFLAG2 FPIN1 FFLAG1  
Fault Status Register  
(FSR) Write:  
See page 179.  
Reset:  
Read:  
U
0
0
U
0
DT5  
U
0
DT3  
U
0
DT1  
0
FTACK4  
0
DT6  
DT4  
DT2  
Fault Acknowledge Register  
(FTACK) Write:  
See page 180.  
FTACK3  
0
FTACK2  
0
FTACK1  
0
Reset:  
Read:  
0
0
0
0
0
PWM Output Control  
Register (PWMOUT) Write:  
OUTCTL OUT6  
OUT5  
OUT4  
OUT3  
OUT2  
OUT1  
See page 182.  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
Read:  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
PWM Counter Register High  
(PCNTH) Write:  
See page 168.  
Reset:  
0
0
0
0
0
0
0
0
Read: Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PWM Counter Register Low  
(PCNTL) Write:  
See page 168.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
0
Bit 10  
X
0
Bit 9  
X
0
Bit 8  
X
PWM Counter Modulo Register  
Bit 11  
High (PMODH) Write:  
See page 169.  
Reset:  
0
0
0
0
X
R
= Reserved  
Bold  
= Buffered  
X = Indeterminate  
Figure 9-2. Register Summary (Sheet 1 of 3)  
Advance Information  
138  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Pulse-Width Modulator for Motor Control (PWMMC) MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
Features  
Addr.  
Register Name  
Bit 7  
Bit 7  
X
6
Bit 6  
X
5
Bit 5  
X
4
Bit 4  
X
3
Bit 3  
X
2
Bit 2  
X
1
Bit 1  
X
Bit 0  
Bit 0  
X
Read:  
PWM Counter Modulo Register  
$0029  
Low (PMODL) Write:  
See page 169.  
Reset:  
Read:  
PWM 1 Value Register High  
Bit 15  
0
Bit 14  
0
Bit 13  
0
Bit 12  
0
Bit 11  
0
Bit 10  
0
Bit 9  
0
Bit 8  
0
$002A  
$002B  
$002C  
$002D  
$002E  
$002F  
$0030  
$0031  
(PVAL1H) Write:  
See page 170.  
Reset:  
Read:  
PWM 1 Value Register Low  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
(PVAL1L) Write:  
See page 170.  
Reset:  
Read:  
PWM 2 Value Register High  
Bit 15  
0
Bit 14  
0
Bit 13  
0
Bit 12  
0
Bit 11  
0
Bit 10  
0
Bit 9  
0
Bit 8  
0
(PVAL2H) Write:  
See page 170.  
Reset:  
Read:  
PWM 2 Value Register Low  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
(PVAL2L) Write:  
See page 170.  
Reset:  
Read:  
PWM 3 Value Register High  
Bit 15  
0
Bit 14  
0
Bit 13  
0
Bit 12  
0
Bit 11  
0
Bit 10  
0
Bit 9  
0
Bit 8  
0
(PVAL3H) Write:  
See page 170.  
Reset:  
Read:  
PWM 3 Value Register Low  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
(PVAL3L) Write:  
See page 170.  
Reset:  
Read:  
PWM 4 Value Register High  
Bit 15  
0
Bit 14  
0
Bit 13  
0
Bit 12  
0
Bit 11  
0
Bit 10  
0
Bit 9  
0
Bit 8  
0
(PVAL4H) Write:  
See page 170.  
Reset:  
Read:  
PWM 4 Value Register Low  
Bit 7  
Bit 6  
Bit 5  
0
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
(PVAL4L) Write:  
See page 170.  
Reset:  
0
0
0
0
0
0
R
= Reserved  
Bold  
= Buffered  
X = Indeterminate  
Figure 9-2. Register Summary (Sheet 2 of 3)  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Pulse-Width Modulator for Motor Control (PWMMC)  
AdvanceInformation  
139  
Pulse-Width Modulator for Motor Control  
Addr.  
Register Name  
Bit 7  
Bit 15  
0
6
Bit 14  
0
5
Bit 13  
0
4
Bit 12  
0
3
Bit 11  
0
2
Bit 10  
0
1
Bit 9  
0
Bit 0  
Bit 8  
0
Read:  
PWM 5 Value Register High  
$0032  
(PVAL5H) Write:  
See page 170.  
Reset:  
Read:  
PWM 5 Value Register Low  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
$0033  
$0034  
$0035  
$0036  
$0037  
(PVAL5L) Write:  
See page 170.  
Reset:  
Read:  
PWM 6 Value Register High  
Bit 15  
0
Bit 14  
0
Bit 13  
0
Bit 12  
0
Bit 11  
0
Bit 10  
0
Bit 9  
0
Bit 8  
0
(PVAL6H) Write:  
See page 170.  
Reset:  
Read:  
PWM 6 Value Register Low  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
(PMVAL6L) Write:  
See page 170.  
Reset:  
Read:  
Dead-Time Write-Once  
Bit 7  
1
Bit 6  
1
Bit 5  
1
Bit 4  
1
Bit 3  
1
Bit 2  
1
Bit 1  
1
Bit 0  
1
Register (DEADTM) Write:  
See page 176.  
Reset:  
Read:  
PWM Disable Mapping  
Write-Once Register Write:  
(DISMAP) See page 176.  
Bit 7  
Bit 6  
Bit 5  
1
Bit 4  
Bit 3  
Bit 2  
1
Bit 1  
1
Bit 0  
1
Reset:  
1
1
1
1
R
= Reserved  
Bold  
= Buffered  
X = Indeterminate  
Figure 9-2. Register Summary (Sheet 3 of 3)  
Advance Information  
140  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Pulse-Width Modulator for Motor Control (PWMMC) MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
Timebase  
9.4 Timebase  
This section provides a discussion of the timebase.  
9.4.1 Resolution  
In center-aligned mode, a 12-bit up/down counter is used to create the  
PWM period. Therefore, the PWM resolution in center-aligned mode is  
two clocks (highest resolution is 250 ns @ fOP = 8 MHz) as shown in  
Figure 9-3. The up/down counter uses the value in the timer modulus  
register to determine its maximum count. The PWM period will equal:  
[(timer modulus) x (PWM clock period) x 2].  
UP/DOWN COUNTER  
MODULUS = 4  
PERIOD = 8 X (PWM CLOCK PERIOD)  
PWM = 0  
PWM = 1  
PWM = 2  
PWM = 3  
PWM = 4  
Figure 9-3. Center-Aligned PWM (Positive Polarity)  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Pulse-Width Modulator for Motor Control (PWMMC)  
AdvanceInformation  
141  
 
Pulse-Width Modulator for Motor Control  
For edge-aligned mode, a 12-bit up-only counter is used to create the  
PWM period. Therefore, the PWM resolution in edge-aligned mode is  
one clock (highest resolution is125 ns @ fOP = 8 MHz) as shown in  
Figure 9-4. Again, the timer modulus register is used to determine the  
maximum count. The PWM period will equal:  
(timer modulus) x (PWM clock period)  
Center-aligned operation versus edge-aligned operation is determined  
by the option EDGE. See 5.3 Functional Description.  
UP-ONLY COUNTER  
MODULUS = 4  
PERIOD = 4 X (PWM  
CLOCK PERIOD)  
PWM = 0  
PWM = 1  
PWM = 2  
PWM = 3  
PWM = 4  
Figure 9-4. Edge-Aligned PWM (Positive Polarity)  
Advance Information  
142  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Pulse-Width Modulator for Motor Control (PWMMC)  
MOTOROLA  
 
Pulse-Width Modulator for Motor Control (PWMMC)  
PWM Generators  
9.4.2 Prescaler  
To permit lower PWM frequencies, a prescaler is provided which will  
divide the PWM clock frequency by 1, 2, 4, or 8. Table 9-1 shows how  
setting the prescaler bits in PWM control register 2 affects the PWM  
clock frequency. This prescaler is buffered and will not be used by the  
PWM generator until the LDOK bit is set and a new PWM reload cycle  
begins.  
Table 9-1. PWM Prescaler  
Prescaler Bits  
PWM Clock Frequency  
PRSC1 and PRSC0  
f
00  
01  
10  
11  
OP  
f
f
f
/2  
/4  
/8  
OP  
OP  
OP  
9.5 PWM Generators  
Pulse-width modulator (PWM) generators are discussed in this  
subsection.  
9.5.1 Load Operation  
To help avoid erroneous pulse widths and PWM periods, the modulus,  
prescaler, and PWM value registers are buffered. New PWM values,  
counter modulus values, and prescalers can be loaded from their buffers  
into the PWM module every one, two, four, or eight PWM cycles. LDFQ1  
and LDFQ0 in PWM control register 2 are used to control this reload  
frequency, as shown in Table 9-2. When a reload cycle arrives,  
regardless of whether an actual reload occurs (as determined by the  
LDOK bit), the PWM reload flag bit in PWM control register 1 will be set.  
If the PWMINT bit in PWM control register 1 is set, a CPU interrupt  
request will be generated when PWMF is set. Software can use this  
interrupt to calculate new PWM parameters in real time for the PWM  
module.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Pulse-Width Modulator for Motor Control (PWMMC)  
AdvanceInformation  
143  
 
Pulse-Width Modulator for Motor Control  
Table 9-2. PWM Reload Frequency  
Reload Frequency Bits  
LDFQ1 and LDFQ0  
PWM Reload Frequency  
00  
01  
10  
11  
Every PWM cycle  
Every 2 PWM cycles  
Every 4 PWM cycles  
Every 8 PWM cycles  
For ease of software, the LDFQx bits are buffered. When the LDFQx bits  
are changed, the reload frequency will not change until the previous  
reload cycle is completed. See Figure 9-5.  
NOTE: When reading the LDFQx bits, the value is the buffered value (for  
example, not necessarily the value being acted upon).  
RELOAD  
RELOAD  
RELOAD  
RELOAD RELOADRELOADRELOAD  
CHANGE RELOAD  
FREQUENCY TO  
EVERY 4 CYCLES  
CHANGE RELOAD  
FREQUENCY TO  
EVERY CYCLE  
Figure 9-5. Reload Frequency Change  
PWMINT enables CPU interrupt requests as shown in Figure 9-6. When  
this bit is set, CPU interrupt requests are generated when the PWMF bit  
is set. When the PWMINT bit is clear, PWM interrupt requests are  
inhibited. PWM reloads will still occur at the reload rate, but no interrupt  
requests will be generated.  
READ PWMF AS 1,  
WRITE PWMF AS 0  
OR  
VDD  
RESET  
RESET  
PWMF  
CPU INTERRUPT  
REQUEST  
D
LATCH  
PWM RELOAD  
PWMINT  
CK  
Figure 9-6. PWM Interrupt Requests  
Advance Information  
144  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Pulse-Width Modulator for Motor Control (PWMMC) MOTOROLA  
 
 
Pulse-Width Modulator for Motor Control (PWMMC)  
PWM Generators  
To prevent a partial reload of PWM parameters from occurring while the  
software is still calculating them, an interlock bit controlled from software  
is provided. This bit informs the PWM module that all the PWM  
parameters have been calculated, and it is okayto use them. A new  
modulus, prescaler, and/or PWM value cannot be loaded into the PWM  
module until the LDOK bit in PWM control register 1 is set. When the  
LDOK bit is set, these new values are loaded into a second set of  
registers and used by the PWM generator at the beginning of the next  
PWM reload cycle as shown in Figure 9-7, Figure 9-8, Figure 9-9, and  
Figure 9-10. After these values are loaded, the LDOK bit is cleared.  
NOTE: When the PWM module is enabled (via the PWMEN bit), a load will occur  
if the LDOK bit is set. Even if it is not set, an interrupt will occur if the  
PWMINT bit is set. To prevent this, the software should clear the  
PWMINT bit before enabling the PWM module.  
LDFQ1:LDFQ0 = 00 (RELOAD EVERY CYCLE)  
UP/DOWN  
COUNTER  
LDOK = 1  
MODULUS = 3  
PWM VALUE = 2  
PWMF SET  
LDOK = 1  
MODULUS = 3  
PWM VALUE = 1  
PWMF SET  
LDOK = 0  
MODULUS = 3  
PWM VALUE = 2  
PWMF SET  
LDOK = 0  
MODULUS = 3  
PWM VALUE = 1  
PWMF SET  
PWM  
Figure 9-7. Center-Aligned PWM Value Loading  
LDFQ1:LDFQ0 = 00 (RELOAD EVERY CYCLE)  
UP/DOWN  
COUNTER  
LDOK = 1  
LDOK = 1  
MODULUS = 3  
PWM VALUE = 1  
PWMF SET  
LDOK = 1  
MODULUS = 2 MODULUS = 1  
PWMVALUE = 1 PWM VALUE = 1  
LDOK = 1  
LDOK = 0  
MODULUS = 2  
PWM VALUE = 1  
PWMF SET  
MODULUS = 2  
PWM VALUE = 1  
PWMF SET  
PWMF SET  
PWMF SET  
PWM  
Figure 9-8. Center-Aligned Loading of Modulus  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Pulse-Width Modulator for Motor Control (PWMMC)  
AdvanceInformation  
145  
 
 
Pulse-Width Modulator for Motor Control  
LDFQ1:LDFQ0 = 00 (RELOAD EVERY CYCLE)  
UP-ONLY  
COUNTER  
LDOK = 1  
MODULUS = 3  
PWM VALUE = 2  
PWMF SET  
LDOK = 1  
MODULUS = 3  
PWM VALUE = 1  
PWMF SET  
LDOK = 0  
MODULUS = 3  
PWM VALUE = 1  
PWMF SET  
LDOK = 0  
MODULUS = 3  
PWM VALUE = 2  
PWMF SET  
LDOK = 0  
MODULUS = 3  
PWM VALUE = 1  
PWMF SET  
PWM  
Figure 9-9. Edge-Aligned PWM Value Loading  
LDFQ1:LDFQ0 = 00 (RELOAD EVERY CYCLE)  
UP-ONLY  
COUNTER  
LDOK = 1  
LDOK = 1  
LDOK = 0  
LDOK = 1  
MODULUS = 3  
MODULUS = 4  
MODULUS = 1  
MODULUS = 2  
PWM VALUE = 2  
PWMF SET  
PWM VALUE = 2  
PWMF SET  
PWM VALUE = 2  
PWMF SET  
PWM VALUE = 2  
PWMF SET  
PWM  
Figure 9-10. Edge-Aligned Modulus Loading  
Advance Information  
146  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Pulse-Width Modulator for Motor Control (PWMMC) MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
Output Control  
9.5.2 PWM Data Overflow and Underflow Conditions  
The PWM value registers are 16-bit registers. Although the counter is  
only 12 bits, the user may write a 16-bit signed value to a PWM value  
register. As shown in Figure 9-3 and Figure 9-4, if the PWM value is  
less than or equal to zero, the PWM will be inactive for the entire period.  
Conversely, if the PWM value is greater than or equal to the timer  
modulus, the PWM will be active for the entire period. Refer to Table 9-3.  
NOTE: The terms activeand inactiverefer to the asserted and negated  
states of the PWM signals and should not be confused with the  
high-impedance state of the PWM pins.  
Table 9-3. PWM Data Overflow and Underflow Conditions  
PWMVALxH:PWMVALxL  
$0000$0FFF  
Condition  
Normal  
PWM Value Used  
Per register contents  
$FFF  
$1000$7FFF  
Overflow  
Underflow  
$8000$FFFF  
$000  
9.6 Output Control  
This subsection discusses output control.  
9.6.1 Selecting Six Independent PWMs or Three Complementary PWM Pairs  
The PWM outputs can be configured as six independent PWM channels  
or three complementary channel pairs. The option INDEP determines  
which mode is used (see 5.3 Functional Description). If  
complementary operation is chosen, the PWM pins are paired as shown  
in Figure 9-11. Operation of one pair is then determined by one PWM  
value register. This type of operation is meant for use in motor drive  
circuits such as the one in Figure 9-12.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Pulse-Width Modulator for Motor Control (PWMMC)  
AdvanceInformation  
147  
 
Pulse-Width Modulator for Motor Control  
PWM1 PIN  
PWM2 PIN  
PWM VALUE REGISTER  
PWM VALUE REGISTER  
PWM VALUE REGISTER  
PWMS 1 AND 2  
PWMS 3 AND 4  
PWM3 PIN  
PWM4 PIN  
PWM5 PIN  
PWM6 PIN  
PWMS 5 AND 6  
Figure 9-11. Complementary Pairing  
PWM  
3
PWM  
1
PWM  
5
TO  
AC  
MOTOR  
INPUTS  
PWM  
2
PWM  
4
PWM  
6
Figure 9-12. Typical AC Motor Drive  
Advance Information  
148  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Pulse-Width Modulator for Motor Control (PWMMC) MOTOROLA  
 
Pulse-Width Modulator for Motor Control (PWMMC)  
Output Control  
When complementary operation is used, two additional features are  
provided:  
Dead-time insertion  
Separate top/bottom pulse width correction to correct for  
distortions caused by the motor drive characteristics  
If independent operation is chosen, each PWM has its own PWM value  
register.  
9.6.2 Dead-Time Insertion  
As shown in Figure 9-12, in complementary mode, each PWM pair can  
be used to drive top-side/bottom-side transistors.  
When controlling dc-to-ac inverters such as this, the top and  
bottom PWMs in one pair should never be active at the same time. In  
Figure 9-12, if PWM1 and PWM2 were on at the same time, large  
currents would flow through the two transistors as they discharge the  
bus capacitor. The IGBTs could be weakened or destroyed.  
Simply forcing the two PWMs to be inversions of each other is not always  
sufficient. Since a time delay is associated with turning off the transistors  
in the motor drive, there must be a dead-time between the deactivation  
of one PWM and the activation of the other.  
A dead-time can be specified in the dead-time write-once register. This  
8-bit value specifies the number of CPU clock cycles to use for the  
dead-time. The dead-time is not affected by changes in the PWM period  
caused by the prescaler.  
Dead-time insertion is achieved by feeding the top PWM outputs of the  
PWM generator into dead-time generators, as shown in Figure 9-13.  
Current sensing determines which PWM value of a PWM generator pair  
to use for the top PWM in the next PWM cycle. See 9.6.3 Top/Bottom  
Correction with Motor Phase Current Polarity Sensing. When output  
control is enabled, the odd OUT bits, rather than the PWM generator  
outputs, are fed into the dead-time generators. See 9.6.5 PWM Output  
Port Control.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Pulse-Width Modulator for Motor Control (PWMMC)  
AdvanceInformation  
149  
Pulse-Width Modulator for Motor Control  
OUTPUT CONTROL  
OUT2  
OUT4  
OUT6  
(OUTCTL)  
MUX  
PWMPAIR12  
TOP  
(PWM1)  
PWM1  
PWM2  
PWM (TOP)  
(TOP)  
DEAD-TIME  
POSTDT (TOP)  
PREDT (TOP)  
OUTX  
BOTTOM  
(PWM2)  
SELECT  
MUX  
PWMPAIR34  
(TOP)  
TOP  
(PWM3)  
PWM (TOP)  
PWM3  
PWM4  
DEAD-TIME  
POSTDT (TOP)  
PREDT (TOP)  
OUTX  
BOTTOM  
(PWM4)  
SELECT  
6
MUX  
PWMPAIR56  
(TOP)  
TOP  
(PWM5)  
PWM (TOP)  
PWM5  
PWM6  
DEAD-TIME  
POSTDT (TOP)  
PREDT (TOP)  
OUTX  
BOTTOM  
(PWM6)  
SELECT  
Figure 9-13. Dead-Time Generators  
Whenever an input to a dead-time generator transitions, a dead-time is  
inserted (for example, both PWMs in the pair are forced to their inactive  
state). The bottom PWM signal is generated from the top PWM and the  
dead-time. In the case of output control enabled, the odd OUTx bits  
control the top PWMs, the even OUTx bits control the bottom PWMs with  
respect to the odd OUTx bits (see Table 9-6). Figure 9-14 shows the  
effects of the dead-time insertion.  
As seen in Figure 9-14, some pulse width distortion occurs when the  
dead-time is inserted. The active pulse widths are reduced. For  
example, in Figure 9-14, when the PWM value register is equal to two,  
the ideal waveform (with no dead-time) has pulse widths equal to four.  
However, the actual pulse widths shrink to two after a dead-time of two  
was inserted. In this example, with the prescaler set to divide by one and  
center-aligned operation selected, this distortion can be compensated  
for by adding or subtracting half the dead-time value to or from the PWM  
Advance Information  
150  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Pulse-Width Modulator for Motor Control (PWMMC)  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
Output Control  
register value. This correction is further described in 9.6.3 Top/Bottom  
Correction with Motor Phase Current Polarity Sensing.  
Further examples of dead-time insertion are shown in Figure 9-15 and  
Figure 9-16. Figure 9-15 shows the effects of dead-time insertion at the  
duty cycle boundaries (near 0 percent and 100 percent duty cycles).  
Figure 9-16 shows the effects of dead-time insertion on pulse widths  
smaller than the dead-time.  
UP/DOWN COUNTER  
MODULUS = 4  
PWM VALUE = 2  
PWM VALUE = 3  
PWM VALUE = 2  
PWM1 W/  
NO DEAD-TIME  
PWM2 W/  
NO DEAD-TIME  
PWM1 W/  
DEAD-TIME = 2  
2
2
2
2
PWM2 W/  
DEAD-TIME = 2  
2
2
Figure 9-14. Effects of Dead-Time Insertion  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Pulse-Width Modulator for Motor Control (PWMMC)  
AdvanceInformation  
151  
 
Pulse-Width Modulator for Motor Control  
UP/DOWN COUNTER  
MODULUS = 3  
PWM VALUE = 1  
PWM VALUE = 1  
PWM VALUE = 3  
PWM VALUE = 3  
PWM1 W/  
NO DEAD-TIME  
PWM2 W/  
NO DEAD-TIME  
PWM1 W/  
DEAD-TIME = 2  
2
2
PWM2 W/  
2
2
DEAD-TIME = 2  
Figure 9-15. Dead-Time at Duty Cycle Boundaries  
UP/DOWN COUNTER  
MOUDULUS = 3  
PWM VALUE = 2  
PWM VALUE = 3  
PWM VALUE = 2  
PWM VALUE = 1  
PWM1 W/  
NO DEAD-TIME  
PWM2 W/  
NO DEAD-TIME  
PWM1 W/  
DEAD-TIME = 3  
3
3
3
PWM2 W/  
DEAD-TIME = 3  
3
3
3
Figure 9-16. Dead-Time and Small Pulse Widths  
Advance Information  
152  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Pulse-Width Modulator for Motor Control (PWMMC) MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
Output Control  
9.6.3 Top/Bottom Correction with Motor Phase Current Polarity Sensing  
Ideally, when complementary pairs are used, the PWM pairs are  
inversions of each other, as shown in Figure 9-17. When PWM1 is  
active, PWM2 is inactive, and vice versa. In this case, the motor terminal  
voltage is never allowed to float and is strictly controlled by the PWM  
waveforms.  
However, when dead-time is inserted, the motor voltage is allowed to  
float momentarily during the dead-time interval, creating a distortion in  
the motor current waveform. This distortion is aggravated by dissimilar  
turn-on and turn-off delays of each of the transistors.  
For a typical motor drive inverter as shown in Figure 9-12, for a given  
top/bottom transistor pair, only one of the transistors will be effective in  
controlling the output voltage at any given time depending on the  
direction of the motor current for that pair. To achieve distortion  
correction, one of two different correction factors must be added to the  
desired PWM value, depending on whether the top or bottom transistor  
is controlling the output voltage. Therefore, the software is responsible  
for calculating both compensated PWM values and placing them in an  
odd/even PWM register pair. By supplying the PWM module with  
information regarding which transistor (top or bottom) is controlling the  
output voltage at any given time (for instance, the current polarity for that  
motor phase), the PWM module selects either the odd or even  
numbered PWM value register to be used by the PWM generator.  
Current sensing or programmable software bits are then used to  
determine which PWM value to use. If the current sensed at the motor  
for that PWM pair is positive (voltage on current pin ISx is low) or bit  
IPOLx in PWM control register 2 is low, the top PWM value is used for  
the PWM pair. Likewise, if the current sensed at the motor for that PWM  
pair is negative (voltage on current pin ISx is high) or bit IPOLx in PWM  
control register 2 is high, the bottom PWM value is used. See  
Table 9-4.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Pulse-Width Modulator for Motor Control (PWMMC)  
AdvanceInformation  
153  
Pulse-Width Modulator for Motor Control  
UP/DOWN COUNTER  
MODULUS = 4  
PWM1  
PWM VALUE = 1  
PWM2  
PWM3  
PWM VALUE = 2  
PWM4  
PWM5  
PWM VALUE = 3  
PWM6  
Figure 9-17. Ideal Complementary Operation (Dead-Time = 0)  
NOTE: This text assumes the user will provide current sense circuitry which  
causes the voltage at the corresponding input pin to be low for positive  
current and high for negative current. See Figure 9-18 for current  
convention. In addition, it assumes the top PWMs are PWMs 1, 3, and 5  
while the bottom PWMs are PWMs 2, 4, and 6.  
Table 9-4. Current Sense Pins  
Voltage  
Current  
on Current  
Sense Pin  
PWM Value  
Register Used  
PWMs  
Affected  
Sense Pin  
or Bit  
or IPOLx Bit  
IS1 or IPOL1  
IS1 or IPOL1  
IS2 or IPOL2  
IS2 or IPOL2  
IS3 or IPOL3  
IS3 or IPOL3  
Logic 0  
Logic 1  
Logic 0  
Logic 1  
Logic 0  
Logic 1  
PWM value register 1  
PWM value register 2  
PWM value register 3  
PWM value register 4  
PWM value register 5  
PWM value register 6  
PWMs 1 and 2  
PWMs 1 and 2  
PWMs 3 and 4  
PWMs 3 and 4  
PWMs 5 and 6  
PWMs 5 and 6  
Advance Information  
154  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Pulse-Width Modulator for Motor Control (PWMMC) MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
Output Control  
I+  
I-  
Figure 9-18. Current Convention  
To allow for correction based on different current sensing methods or  
correction controlled by software, the ISENS1 and ISENS0 bits in PWM  
control register 1 are provided to choose the correction method. These  
bits provide correction according to Table 9-5.  
Table 9-5. Correction Methods  
Current Correction Bits  
Correction Method  
ISENS1 and ISENS0  
00  
Bits IPOL1, IPOL2, and IPOL3 used for correction  
01  
Current sensing on pins IS1, IS2, and IS3 occurs  
during the dead-time.  
10  
Current sensing on pins IS1, IS2, and IS3 occurs at  
11  
the half cycle in center-aligned mode and at the end  
of the cycle in edge-aligned mode.  
If correction is to be done in software or is not necessary, setting  
ISENS1:ISENS0 = 00 or = 01 causes the correction to be based on bits  
IPOL1, IPOL2, and IPOL3 in PWM control register 2. If correction is not  
required, the user can initialize the IPOLx bits and then only load one  
PWM value register per PWM pair.  
To allow the user to use a current sense scheme based upon sensed  
phase voltage during dead-time, setting ISENS1:ISENS0 = 10 causes  
the polarity of the Ix pin to be latched when both the top and bottom  
PWMs are off (for example, during the dead-time). At the 0 percent and  
100 percent duty cycle boundaries, there is no dead-time so no new  
current value is sensed.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Pulse-Width Modulator for Motor Control (PWMMC)  
AdvanceInformation  
155  
 
Pulse-Width Modulator for Motor Control  
To accommodate other current sensing schemes, setting  
ISENS1:ISENS0 = 11 causes the polarity of the current sense pin to be  
latched half-way into the PWM cycle in center-aligned mode and at the  
end of the cycle in edge-aligned mode. Therefore, even at 0 percent and  
100 percent duty cycle, the current is sensed.  
Distortion correction is only available in complementary mode. At the  
beginning of the PWM period, the PWM uses this latched current value  
or polarity bit to decide whether the top PWM value or bottom PWM  
value is used. Figure 9-19 shows an example of top/bottom correction  
for PWMs 1 and 2.  
NOTE: The IPOLx bits and the values latched on the ISx pins are buffered so  
that only one PWM register is used per PWM cycle. If the IPOLx bits or  
the current sense values change during a PWM period, this new value  
will not be used until the next PWM period. The ISENSx bits are NOT  
buffered; therefore, changing the current sensing method could affect  
the present PWM cycle.  
PWM VALUE REG. 1 = 1  
PWM VALUE REG. 2 = 2  
IS1 NEGATIVE  
PWM = 2  
IS1 POSITIVE  
PWM = 1  
IS1 POSITIVE  
PWM = 1  
IS1 NEGATIVE  
PWM = 2  
PWM1  
PWM2  
Figure 9-19. Top/Bottom Correction for PWMs 1 and 2  
When the PWM is first enabled by setting PWMEN, PWM value registers  
1, 3, and 5 will be used if the ISENSx bits are configured for current  
sensing correction. This is because no current will have previously been  
sensed.  
Advance Information  
156  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Pulse-Width Modulator for Motor Control (PWMMC)  
MOTOROLA  
 
Pulse-Width Modulator for Motor Control (PWMMC)  
Output Control  
9.6.4 Output Polarity  
The output polarity of the PWMs is determined by two options: TOPNEG  
and BOTNEG. The top polarity option, TOPNEG, controls the polarity of  
PWMs 1, 3, and 5. The bottom polarity option, BOTNEG, controls the  
polarity of PWMs 2, 4, and 6. Positive polarity means that when the PWM  
is active, the PWM output is high. Conversely, negative polarity means  
that when the PWM is active, PWM output is low. See Figure 9-20.  
NOTE: Both bits are found in the CONFIG register, which is a write-once  
register. This reduces the chances of the software inadvertently  
changing the polarity of the PWM signals and possibly damaging the  
motor drive hardware.  
CENTER-ALIGNED POSITIVE POLARITY  
EDGE-ALIGNED POSITIVE POLARITY  
UP-ONLY COUNTER  
MODULUS = 4  
UP/DOWN COUNTER  
MODULUS = 4  
PWM <= 0  
PWM = 1  
PWM = 2  
PWM = 3  
PWM >= 4  
PWM <= 0  
PWM = 1  
PWM = 2  
PWM = 3  
PWM >= 4  
CENTER-ALIGNED NEGATIVE POLARITY  
EDGE-ALIGNED NEGATIVE POLARITY  
UP-ONLY COUNTER  
MODULUS = 4  
UP/DOWN COUNTER  
MODULUS = 4  
PWM <= 0  
PWM = 1  
PWM = 2  
PWM = 3  
PWM >= 4  
PWM <= 0  
PWM = 1  
PWM = 2  
PWM = 3  
PWM >= 4  
Figure 9-20. PWM Polarity  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
AdvanceInformation  
157  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
 
Pulse-Width Modulator for Motor Control  
9.6.5 PWM Output Port Control  
Conditions may arise in which the PWM pins need to be individually  
controlled. This is made possible by the PWM output control register  
(PWMOUT) shown in Figure 9-21.  
Address: $0025  
Bit 7  
0
6
5
4
OUT5  
0
3
OUT4  
0
2
OUT3  
0
1
OUT2  
0
Bit 0  
OUT1  
0
Read:  
Write:  
Reset:  
OUTCTL OUT6  
0
0
0
= Unimplemented  
Figure 9-21. PWM Output Control Register (PWMOUT)  
If the OUTCTL bit is set, the PWM pins can be controlled by the OUTx  
bits. These bits behave according to Table 9-6.  
Table 9-6. OUTx Bits  
OUTx Bit  
Complementary Mode  
Independent Mode  
1 PWM1 is active.  
0 PWM1 is inactive.  
1 PWM1 is active.  
0 PWM1 is inactive.  
OUT1  
1 PWM2 is complement of PWM 1.  
0 PWM2 is inactive.  
1 PWM2 is active.  
0 PWM2 is inactive.  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
1 PWM3 is active.  
0 PWM3 is inactive.  
1 PWM3 is active.  
0 PWM3 is inactive.  
1 PWM4 is complement of PWM 3.  
0 PWM4 is inactive.  
1 PWM4 is active.  
0 PWM4 is inactive.  
1 PWM5 is active.  
0 PWM5 is inactive.  
1 PWM5 is active.  
0 PWM5 is inactive.  
1 PWM 6 is complement of PWM 5.  
0 PWM6 is inactive.  
1 PWM6 is active.  
0 PWM6 is inactive.  
When OUTCTL is set, the polarity options TOPPOL and BOTPOL will  
still affect the outputs. In addition, if complementary operation is in use,  
the PWM pairs will not be allowed to be active simultaneously, and  
dead-time will still not be violated. When OUTCTL is set and  
Advance Information  
158  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Pulse-Width Modulator for Motor Control (PWMMC)  
MOTOROLA  
 
 
Pulse-Width Modulator for Motor Control (PWMMC)  
Output Control  
complementary operation is in use, the odd OUTx bits are inputs to the  
dead-time generators as shown in Figure 9-14. Dead-time is inserted  
whenever the odd OUTx bit toggles as shown in Figure 9-22. Although  
dead-time is not inserted when the even OUTx bits change, there will be  
no dead-time violation as shown in Figure 9-23.  
Setting the OUTCTL bit does not disable the PWM generator and current  
sensing circuitry. They continue to run, but are no longer controlling the  
output pins. In addition, OUTCTL will control the PWM pins even when  
PWMEN = 0. When OUTCTL is cleared, the outputs of the PWM  
generator become the inputs to the dead-time and output circuitry at the  
beginning of the next PWM cycle.  
NOTE: To avoid an unexpected dead-time occurrence, it is recommended that  
the OUTx bits be cleared prior to entering and prior to exiting individual  
PWM output control mode.  
UP/DOWN COUNTER  
MODULUS = 4  
DEAD-TIME = 2  
PWM VALUE = 3  
OUTCTL  
OUT1  
OUT2  
PWM1  
PWM2  
PWM1/PWM2  
DEAD-TIME  
2
2
2
DEAD-TIME INSERTED AS PART OF DEAD-TIME INSERTED DUE  
DEAD-TIME INSERTED  
DUE TO CLEARING OF  
OUT1 BIT  
NORMAL PWM OPERATION AS  
CONTROLLED BY CURRENT  
SENSING AND PWM GENERATOR  
TO SETTING OF OUT1 BIT  
Figure 9-22. Dead-Time Insertion During OUTCTL = 1  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Pulse-Width Modulator for Motor Control (PWMMC)  
AdvanceInformation  
159  
 
Pulse-Width Modulator for Motor Control  
UP/DOWN COUNTER  
MODULUS = 4  
DEAD-TIME = 2  
PWM VALUE = 3  
OUTCTL  
OUT1  
OUT2  
PWM1  
PWM2  
2
2
2
2
PWM1/PWM2  
DEAD-TIME  
NO DEAD-TIME INSERTED  
BECAUSE OUT1 IS NOT  
TOGGLING  
DEAD-TIME INSERTED BECAUSE  
WHEN OUTCTL WAS SET, THE  
STATE OF OUT1 WAS SUCH THAT  
PWM1 WAS DIRECTED TO TOGGLE  
DEAD-TIME INSERTED  
BECAUSE OUT1 TOGGLES,  
DIRECTING PWM1 TO  
TOGGLE  
Figure 9-23. Dead-Time Insertion During OUTCTL = 1  
9.7 Fault Protection  
Conditions may arise in the external drive circuitry which require that the  
PWM signals become inactive immediately, such as an overcurrent fault  
condition. Furthermore, it may be desirable to selectively disable  
PWM(s) solely with software.  
One or more PWM pins can be disabled (forced to their inactive state)  
by applying a logic high to any of the four external fault pins or by writing  
a logic high to either of the disable bits (DISX and DISY in PWM control  
register 1). Figure 9-25 shows the structure of the PWM disabling  
scheme. While the PWM pins are disabled, they are forced to their  
inactive state. The PWM generator continues to run only the output  
pins are disabled.  
To allow for different motor configurations and the controlling of more  
than one motor, the PWM disabling function is organized as two banks,  
bank X and bank Y. Bank information combines with information from  
the disable mapping register to allow selective PWM disabling. Fault  
Advance Information  
160  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Pulse-Width Modulator for Motor Control (PWMMC)  
MOTOROLA  
 
Pulse-Width Modulator for Motor Control (PWMMC)  
Fault Protection  
pin 1, fault pin 2, and PWM disable bit X constitute the disabling function  
of bank X. Fault pin 3, fault pin 4, and PWM disable bit Y constitute the  
disabling function of bank Y. Figure 9-24 and Figure 9-26 show the  
disable mapping write-once register and the decoding scheme of the  
bank which selectively disables PWM(s). When all bits of the disable  
mapping register are set, any disable condition will disable all PWMs.  
A fault can also generate a CPU interrupt. Each fault pin has its own  
interrupt vector.  
Address: $0037  
Bit 7  
Bit 7  
1
6
Bit 6  
1
5
Bit 5  
1
4
Bit 4  
1
3
Bit 3  
1
2
Bit 2  
1
1
Bit 1  
1
Bit 0  
Bit 0  
1
Read:  
Write:  
Reset:  
Figure 9-24. PWM Disable Mapping Write-Once Register (DISMAP)  
9.7.1 Fault Condition Input Pins  
A logic high level on a fault pin disables the respective PWM(s)  
determined by the bank and the disable mapping register. Each fault pin  
incorporates a filter to assist in rejecting spurious faults. All of the  
external fault pins are software-configurable to re-enable the PWMs  
either with the fault pin (automatic mode) or with software (manual  
mode). Each fault pin has an associated FMODE bit to control the PWM  
re-enabling method. Automatic mode is selected by setting the FMODEx  
bit in the fault control register. Manual mode is selected when FMODEx  
is clear.  
9.7.1.1 Fault Pin Filter  
Each fault pin incorporates a filter to assist in determining a genuine fault  
condition. After a fault pin has been logic low for one CPU cycle, a rising  
edge (logic high) will be synchronously sampled once per CPU cycle for  
two cycles. If both samples are detected logic high, the corresponding  
FPIN bit and FFLAG bit will be set. The FPIN bit will remain set until the  
corresponding fault pin is logic low and synchronously sampled once in  
the following CPU cycle.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Pulse-Width Modulator for Motor Control (PWMMC)  
AdvanceInformation  
161  
 
Pulse-Width Modulator for Motor Control  
DISX  
SOFTWARE X DISABLE  
CYCLE START  
S
Q
R
BANK X  
DISABLE  
FMODE2  
FAULT PIN 2 DISABLE  
AUTO  
MODE  
FPIN2  
LOGIC HIGH FOR FAULT  
S
Q
TWO  
ONE  
SHOT  
R
SAMPLE  
S
Q
FFLAG2  
FAULT  
FILTER  
MANUAL  
MODE  
PIN2  
R
CLEAR BY WRITING 1 TO FTACK4  
INTERRUPT REQUEST  
FINT2  
The example is of fault pin 2 with DISX. Fault pin 4 with DISY is logically similar and affects BANK Y disable.  
Note: In manual mode (FMODE = 0), faults 2 and 4 may be cleared only if a logic level low at the input of the fault  
pin is present.  
CYCLE START  
FMODE1  
FAULT PIN 1 DISABLE  
AUTO  
FPIN1  
MODE  
LOGIC HIGH FOR FAULT  
S
Q
BANK X DISABLE  
TWO  
SAMPLE  
FILTER  
ONE  
SHOT  
R
S
Q
FFLAG1  
MANUAL  
MODE  
R
CLEAR BY WRITING 1 TO FTACK1  
INTERRUPT REQUEST  
FINT1  
The example is of fault pin 1. Fault pin 3 is logically similar and affects BANK Y disable.  
Note: In manual mode (FMODE = 0), faults 1 and 3 may be cleared regardless of the logic level at the input of the fault pin.  
Figure 9-25. PWM Disabling Scheme  
Advance Information  
162  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Pulse-Width Modulator for Motor Control (PWMMC) MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
Fault Protection  
BIT 7  
DISABLE  
PWM PIN 1  
BIT 6  
BIT 5  
DISABLE  
PWM PIN 2  
DISABLE  
PWM PIN 3  
BIT 4  
BIT 3  
BANK X  
DISABLE  
BANK Y  
DISABLE  
DISABLE  
PWM PIN 4  
BIT 2  
DISABLE  
PWM PIN 5  
BIT 1  
BIT 0  
DISABLE  
PWM PIN 6  
Figure 9-26. PWM Disabling Decode Scheme  
9.7.1.2 Automatic Mode  
In automatic mode, the PWM(s) are disabled immediately once a filtered  
fault condition is detected (logic high). The PWM(s) remain disabled until  
the filtered fault condition is cleared (logic low) and a new PWM cycle  
begins as shown in Figure 9-27. Clearing the corresponding FFLAGx  
event bit will not enable the PWMs in automatic mode.  
FILTERED FAULT PIN  
PWM(S) ENABLED  
PWM(S) ENABLED  
PWM(S) DISABLED (INACTIVE)  
Figure 9-27. PWM Disabling in Automatic Mode  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Pulse-Width Modulator for Motor Control (PWMMC)  
AdvanceInformation  
163  
 
Pulse-Width Modulator for Motor Control  
The filtered fault pins logic state is reflected in the respective FPINx bit.  
Any write to this bit is overwritten by the pin state. The FFLAGx event bit  
is set with each rising edge of the respective fault pin after filtering has  
been applied. To clear the FFLAGx bit, the user must write a 1 to the  
corresponding FTACKx bit.  
If the FINTx bit is set, a fault condition resulting in setting the  
corresponding FFLAG bit will also latch a CPU interrupt request. The  
interrupt request latch is not cleared until one of these actions occurs:  
The FFLAGx bit is cleared by writing a 1 to the corresponding  
FTACKx bit.  
The FINTx bit is cleared. This will not clear the FFLAGx bit.  
A reset automatically clears all four interrupt latches.  
If prior to a vector fetch, the interrupt request latch is cleared by one of  
the actions listed, a CPU interrupt will no longer be requested. A vector  
fetch does not alter the state of the PWMs, the FFLAGx event flag, or  
FINTx.  
NOTE: If the FFLAGx or FINTx bits are not cleared during the interrupt service  
routine, the interrupt request latch will not be cleared.  
9.7.1.3 Manual Mode  
In manual mode, the PWM(s) are disabled immediately once a filtered  
fault condition is detected (logic high). The PWM(s) remain disabled until  
software clears the corresponding FFLAGx event bit and a new PWM  
cycle begins. In manual mode, the fault pins are grouped in pairs, each  
pair sharing common functionality. A fault condition on pins 1 and 3 may  
be cleared, allowing the PWM(s) to enable at the start of a PWM cycle  
regardless of the logic level at the fault pin. See Figure 9-28. A fault  
condition on pins 2 and 4 can only be cleared, allowing the PWM(s) to  
enable, if a logic low level at the fault pin is present at the start of a PWM  
cycle. See Figure 9-29.  
The function of the fault control and event bits is the same as in  
automatic mode except that the PWMs are not re-enabled until the  
FFLAGx event bit is cleared by writing to the FTACKx bit and the filtered  
fault condition is cleared (logic low).  
Advance Information  
164  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Pulse-Width Modulator for Motor Control (PWMMC)  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
Fault Protection  
FILTERED FAULT PIN 1 OR 3  
PWM(S) ENABLED  
PWM(S) ENABLED  
PWM(S) DISABLED  
FFLAGX CLEARED  
Figure 9-28. PWM Disabling in Manual Mode (Example 1)  
FILTERED FAULT PIN 2 OR 4  
PWM(S) ENABLED  
PWM(S) ENABLED  
PWM(S) DISABLED  
FFLAGX CLEARED  
Figure 9-29. PWM Disabling in Manual Mode (Example 2)  
9.7.2 Software Output Disable  
Setting PWM disable bit DISX or DISY in PWM control register 1  
immediately disables the corresponding PWM pins as determined by the  
bank and disable mapping register. The PWM pin(s) remain disabled  
until the PWM disable bit is cleared and a new PWM cycle begins as  
shown in Figure 9-30. Setting a PWM disable bit does not latch a CPU  
interrupt request, and there are no event flags associated with the PWM  
disable bits.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Pulse-Width Modulator for Motor Control (PWMMC)  
AdvanceInformation  
165  
Pulse-Width Modulator for Motor Control  
9.7.3 Output Port Control  
When operating the PWMs using the OUTx bits (OUTCTL = 1), fault  
protection applies as described in this section. Due to the absence of  
periodic PWM cycles, fault conditions are cleared upon each CPU cycle  
and the PWM outputs are re-enabled, provided all fault clearing  
conditions are satisfied.  
DISABLE BIT  
PWM(S) ENABLED  
PWM(S) DISABLED  
PWM(S) ENABLED  
Figure 9-30. PWM Software Disable  
9.8 Initialization and the PWMEN Bit  
For proper operation, all registers should be initialized and the LDOK bit  
should be set before enabling the PWM via the PWMEN bit. When the  
PWMEN bit is first set, a reload will occur immediately, setting the PWMF  
flag and generating an interrupt if PWMINT is set. In addition, in  
complementary mode, PWM value registers 1, 3, and 5 will be used for  
the first PWM cycle if current sensing is selected.  
NOTE: If the LDOK bit is not set when PWMEN is set after a RESET, the  
prescaler and PWM values will be 0, but the modulus will be unknown.  
If the LDOK bit is not set after the PWMEN bit has been cleared then set  
(without a RESET), the modulus value that was last loaded will be used.  
If the dead-time register (DEADTM) is changed after PWMEN or  
OUTCTL is set, an improper dead-time insertion could occur. However,  
the dead-time can never be shorter than the specified value.  
Because of the equals-comparator architecture of this PWM, the  
modulus = 0 case is considered illegal. Therefore, the modulus register  
Advance Information  
166  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Pulse-Width Modulator for Motor Control (PWMMC) MOTOROLA  
 
Pulse-Width Modulator for Motor Control (PWMMC)  
Initialization and the PWMEN Bit  
is not reset, and a modulus value of 0 will result in waveforms  
inconsistent with the other modulus waveforms. See 9.10.2 PWM  
Counter Modulo Registers.  
When PWMEN is set, the PWM pins change from high impedance to  
outputs. At this time, assuming no fault condition is present, the PWM  
pins will drive according to the PWM values, polarity, and dead-time.  
See the timing diagram in Figure 9-31.  
CPU CLOCK  
PWMEN  
DRIVE ACCORDING TO PWM  
VALUE, POLARITY, AND DEAD-TIME  
HI-Z IF OUTCTL = 0  
PWM PINS  
HI-Z IF OUTCTL = 0  
Figure 9-31. PWMEN and PWM Pins  
When the PWMEN bit is cleared, this will occur:  
PWM pins will be three-stated unless OUTCTL = 1.  
PWM counter is cleared and will not be clocked.  
Internally, the PWM generator will force its outputs to 0 to avoid  
glitches when the PWMEN is set again.  
When PWMEN is cleared, these features remain active:  
All fault circuitry  
Manual PWM pin control via the PWMOUT register  
Dead-time insertion when PWM pins change via the PWMOUT  
register  
NOTE: The PWMF flag and pending CPU interrupts are NOT cleared when  
PWMEN = 0.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Pulse-Width Modulator for Motor Control (PWMMC)  
AdvanceInformation  
167  
 
Pulse-Width Modulator for Motor Control  
9.9 PWM Operation in Wait Mode  
When the microcontroller is put in low-power wait mode via the WAIT  
instruction, all clocks to the PWM module will continue to run. If an  
interrupt is issued from the PWM module (via a reload or a fault), the  
microcontroller will exit wait mode.  
Clearing the PWMEN bit before entering wait mode will reduce power  
consumption in wait mode because the counter, prescaler divider, and  
LDFQ divider will no longer be clocked. In addition, power will be  
reduced because the PWMs will no longer toggle.  
9.10 Control Logic Block  
This subsection provides a description of the control logic block.  
9.10.1 PWM Counter Registers  
The PWM counter registers (PCNTH and PCNTL) display the 12-bit  
up/down or up-only counter. When the high byte of the counter is read,  
the lower byte is latched. PCNTL will hold this latched value until it is  
read. See Figure 9-32 and Figure 9-33.  
Address: $0026  
Bit 7  
0
6
0
5
0
4
0
3
2
1
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 11  
Bit 10  
Bit 9  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 9-32. PWM Counter Register High (PCNTH)  
Address: $0027  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 9-33. PWM Counter Register Low (PCNTL)  
Advance Information  
168  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Pulse-Width Modulator for Motor Control (PWMMC) MOTOROLA  
 
 
Pulse-Width Modulator for Motor Control (PWMMC)  
Control Logic Block  
9.10.2 PWM Counter Modulo Registers  
The PWM counter modulus registers (PMODH and PMODL) hold a  
12-bit unsigned number that determines the maximum count for the  
up/down or up-only counter. In center-aligned mode, the PWM period  
will be twice the modulus (assuming no prescaler). In edge-aligned  
mode, the PWM period will equal the modulus. See Figure 9-34 and  
Figure 9-35.  
Address: $0028  
Bit 7  
0
6
0
5
0
4
0
3
Bit 11  
X
2
Bit 10  
X
1
Bit 9  
X
Bit 0  
Bit 8  
X
Read:  
Write:  
Reset:  
0
0
0
0
= Unimplemented  
X = Indeterminate  
Figure 9-34. PWM Counter Modulo Register High (PMODH)  
Address: $0029  
Bit 7  
6
Bit 6  
X
5
Bit 5  
X
4
Bit 4  
X
3
Bit 3  
X
2
Bit 2  
X
1
Bit 1  
X
Bit 0  
Bit 0  
X
Read:  
Write:  
Reset:  
Bit 7  
X
X = Indeterminate  
Figure 9-35. PWM Counter Modulo Register Low (PMODL)  
To avoid erroneous PWM periods, this value is buffered and will not be  
used by the PWM generator until the LDOK bit has been set and the next  
PWM load cycle begins.  
NOTE: When reading this register, the value read is the buffer (not necessarily  
the value the PWM generator is currently using).  
Because of the equals-comparator architecture of this PWM, the  
modulus = 0 case is considered illegal. Therefore, the modulus register  
is not reset, and a modulus value of 0 will result in waveforms  
inconsistent with the other modulus waveforms. If a modulus of 0 is  
loaded, the counter will continually count down from $FFF. This  
operation will not be tested or guaranteed (the user should consider it  
illegal). However, the dead-time constraints and fault conditions will still  
be guaranteed.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Pulse-Width Modulator for Motor Control (PWMMC)  
AdvanceInformation  
169  
 
 
Pulse-Width Modulator for Motor Control  
9.10.3 PWMx Value Registers  
Each of the six PWMs has a 16-bit PWM value register.  
Bit 7  
6
5
Bit 13  
0
4
Bit 12  
0
3
Bit 11  
0
2
Bit 10  
0
1
Bit 9  
0
Bit 0  
Bit 8  
0
Read:  
Write:  
Reset:  
Bit 15  
Bit 14  
0
0
Bold  
= Buffered  
Figure 9-36. PWMx Value Registers High (PVALxH)  
Bit 7  
6
5
Bit 5  
0
4
Bit 4  
0
3
Bit 3  
0
2
Bit 2  
0
1
Bit 1  
0
Bit 0  
Bit 0  
0
Read:  
Write:  
Reset:  
Bit 7  
Bit 6  
0
0
Bold  
= Buffered  
Figure 9-37. PWMx Value Registers Low (PVALxL)  
The 16-bit signed value stored in this register determines the duty cycle  
of the PWM. The duty cycle is defined as: (PWM value/modulus) x 100.  
Writing a number less than or equal to 0 causes the PWM to be off for  
the entire PWM period. Writing a number greater than or equal to the  
12-bit modulus causes the PWM to be on for the entire PWM period.  
If the complementary mode is selected, the PWM pairs share PWM  
value registers.  
To avoid erroneous PWM pulses, this value is buffered and will not be  
used by the PWM generator until the LDOK bit has been set and the next  
PWM load cycle begins.  
NOTE: When reading these registers, the value read is the buffer (not  
necessarily the value the PWM generator is currently using).  
Advance Information  
170  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Pulse-Width Modulator for Motor Control (PWMMC) MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
Control Logic Block  
9.10.4 PWM Control Register 1  
PWM control register 1 (PCTL1) controls PWM enabling/disabling, the  
loading of new modulus, prescaler, PWM values, and the PWM  
correction method. In addition, this register contains the software disable  
bits to force the PWM outputs to their inactive states (according to the  
disable mapping register).  
Address: $0020  
Bit 7  
DISX  
0
6
DISY  
0
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PWMINT PWMF  
ISENS1 ISENS0  
LDOK PWMEN  
0
0
0
0
0
0
Figure 9-38. PWM Control Register 1 (PCTL1)  
DISX Software Disable Bit for Bank X Bit  
This read/write bit allows the user to disable one or more PWM pins  
in bank X. The pins that are disabled are determined by the disable  
mapping write-once register.  
1 = Disable PWM pins in bank X.  
0 = Re-enable PWM pins at beginning of next PWM cycle.  
DISY Software Disable Bit for Bank Y Bit  
This read/write bit allows the user to disable one or more PWM pins  
in bank Y. The pins that are disabled are determined by the disable  
mapping write-once register.  
1 = Disable PWM pins in bank Y.  
0 = Re-enable PWM pins at beginning of next PWM cycle.  
PWMINT PWM Interrupt Enable Bit  
This read/write bit allows the user to enable and disable PWM CPU  
interrupts. If set, a CPU interrupt will be pending when the PWMF flag  
is set.  
1 = Enable PWM CPU interrupts.  
0 = Disable PWM CPU interrupts.  
NOTE: When PWMINT is cleared, pending CPU interrupts are inhibited.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Pulse-Width Modulator for Motor Control (PWMMC)  
AdvanceInformation  
171  
Pulse-Width Modulator for Motor Control  
PWMF PWM Reload Flag  
This read/write bit is set at the beginning of every reload cycle  
regardless of the state of the LDOK bit. This bit is cleared by reading  
PWM control register 1 with the PWMF flag set, then writing a logic 0  
to PWMF. If another reload occurs before the clearing sequence is  
complete, then writing logic 0 to PWMF has no effect.  
1 = New reload cycle began.  
0 = New reload cycle has not begun.  
NOTE: When PWMF is cleared, pending PWM CPU interrupts are cleared (not  
including fault interrupts).  
ISENS1 and ISENS0 Current Sense Correction Bits  
These read/write bits select the top/bottom correction scheme as  
shown in Table 9-7.  
Table 9-7. Correction Methods  
Current Correction Bits  
Correction Method  
ISENS1 and ISENS0  
00  
Bits IPOL1, IPOL2, and IPOL3 are used for correction.  
01  
Current sensing on pins IS1, IS2, and IS3 occurs  
during the dead-time.  
10  
Current sensing on pins IS1, IS2, and IS3 occurs at  
11  
the half cycle in center-aligned mode and at the end of  
the cycle in edge-aligned mode.  
1. The polarity of the ISx pin is latched when both the top and bottom PWMs are off. At  
the 0% and 100% duty cycle boundaries, there is no dead-time, so no new current  
value is sensed.  
2. Current is sensed even with 0% and 100% duty cycle.  
NOTE: The ISENSx bits are not buffered. Changing the current sensing method  
can affect the present PWM cycle.  
LDOKLoad OK Bit  
This read/write bit loads the prescaler bits of the PMCTL2 register and  
the entire PMMODH/L and PWMVALH/L registers into a set of  
buffers. The buffered prescaler divisor, PWM counter modulus value,  
and PWM pulse will take effect at the next PWM load. Set LDOK by  
reading it when it is logic 0 and then writing a logic 1 to it. LDOK is  
Advance Information  
172  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Pulse-Width Modulator for Motor Control (PWMMC) MOTOROLA  
 
Pulse-Width Modulator for Motor Control (PWMMC)  
Control Logic Block  
automatically cleared after the new values are loaded or can be  
manually cleared before a reload by writing a 0 to it. Reset clears  
LDOK.  
1 = Load prescaler, modulus, and PWM values.  
0 = Do not load new modulus, prescaler, and PWM values.  
NOTE: The user should initialize the PWM registers and set the LDOK bit before  
enabling the PWM.  
A PWM CPU interrupt request can still be generated when LDOK is 0.  
PWMEN — PWM Module Enable Bit  
This read/write bit enables and disables the PWM generator and the  
PWM pins. When PWMEN is clear, the PWM generator is disabled  
and the PWM pins are in the high-impedance state (unless  
OUTCTL = 1).  
When the PWMEN bit is set, the PWM generator and PWM pins are  
activated.  
For more information, see 9.8 Initialization and the PWMEN Bit.  
1 = PWM generator and PWM pins enabled  
0 = PWM generator and PWM pins disabled  
9.10.5 PWM Control Register 2  
PWM control register 2 (PCTL2) controls the PWM load frequency, the  
PWM correction method, and the PWM counter prescaler. For ease of  
software and to avoid erroneous PWM periods, some of these register  
bits are buffered. The PWM generator will not use the prescaler value  
until the LDOK bit has been set, and a new PWM cycle is starting. The  
correction bits are used at the beginning of each PWM cycle (if the  
ISENSx bits are configured for software correction). The load frequency  
bits are not used until the current load cycle is complete.  
See Figure 9-39.  
NOTE: The user should initialize this register before enabling the PWM.  
MC68HC908MR16/MC68HC908MR32 — Rev. 5.0  
MOTOROLA Pulse-Width Modulator for Motor Control (PWMMC)  
AdvanceInformation  
173  
Pulse-Width Modulator for Motor Control  
Address: $0021  
Bit 7  
LDFQ1  
0
6
LDFQ0  
0
5
0
4
3
2
IPOL3  
0
1
PRSC1  
0
Bit 0  
PRSC0  
0
Read:  
Write:  
Reset:  
IPOL1  
IPOL2  
0
0
0
= Unimplemented  
Bold  
= Buffered  
Figure 9-39. PWM Control Register 2 (PCTL2)  
LDFQ1 and LDFQ0 PWM Load Frequency Bits  
These buffered read/write bits select the PWM CPU load frequency  
according to Table 9-8.  
NOTE: When reading these bits, the value read is the buffer value (not  
necessarily the value the PWM generator is currently using).  
The LDFQx bits take effect when the current load cycle is complete  
regardless of the state of the load okay bit, LDOK.  
Table 9-8. PWM Reload Frequency  
Reload Frequency Bits  
PWM Reload Frequency  
LDFQ1 and LDFQ0  
00  
01  
10  
11  
Every PWM cycle  
Every 2 PWM cycles  
Every 4 PWM cycles  
Every 8 PWM cycles  
NOTE: Reading the LPFQx bit reads the buffered values and not necessarily the  
values currently in effect.  
IPOL1 Top/Bottom Correction Bit for PWM Pair 1 (PWMs 1 and 2)  
This buffered read/write bit selects which PWM value register is used  
if top/bottom correction is to be achieved without current sensing.  
1 = Use PWM value register 2.  
0 = Use PWM value register 1.  
NOTE: When reading this bit, the value read is the buffer value (not necessarily  
the value the output control block is currently using).  
Advance Information  
174  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Pulse-Width Modulator for Motor Control (PWMMC) MOTOROLA  
 
Pulse-Width Modulator for Motor Control (PWMMC)  
Control Logic Block  
The IPOLx bits take effect at the beginning of the next load cycle,  
regardless of the state of the load okay bit, LDOK.  
IPOL2 Top/Bottom Correction Bit for PWM Pair 2 (PWMs 3 and 4)  
This buffered read/write bit selects which PWM value register is used  
if top/bottom correction is to be achieved without current sensing.  
1 = Use PWM value register 4.  
0 = Use PWM value register 3.  
NOTE: When reading this bit, the value read is the buffer value (not necessarily  
the value the output control block is currently using).  
IPOL3 Top/Bottom Correction Bit for PWM Pair 3 (PWMs 5 and 6)  
This buffered read/write bit selects which PWM value register is used  
if top/bottom correction is to be achieved without current sensing.  
1 = Use PWM value register 6.  
0 = Use PWM value register 5.  
NOTE: When reading this bit, the value read is the buffer value (not necessarily  
the value the output control block is currently using).  
PRSC1 and PRSC0 PWM Prescaler Bits  
These buffered read/write bits allow the PWM clock frequency to be  
modified as shown in Table 9-9.  
NOTE: When reading these bits, the value read is the buffer value (not  
necessarily the value the PWM generator is currently using).  
Table 9-9. PWM Prescaler  
Prescaler Bits  
PWM Clock Frequency  
PRSC1 and PRSC0  
f
00  
01  
10  
11  
OP  
f
f
f
/2  
/4  
/8  
OP  
OP  
OP  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Pulse-Width Modulator for Motor Control (PWMMC)  
AdvanceInformation  
175  
 
Pulse-Width Modulator for Motor Control  
9.10.6 Dead-Time Write-Once Register  
The dead-time write-once register (DEADTM) holds an 8-bit value which  
specifies the number of CPU clock cycles to use for the dead-time when  
complementary PWM mode is selected. After this register is written for  
the first time, it cannot be rewritten unless a reset occurs. Dead-time is  
not affected by changes to the prescaler value.  
Address: $0036  
Bit 7  
Bit 7  
1
6
Bit 6  
1
5
Bit 5  
1
4
Bit 4  
1
3
Bit 3  
1
2
Bit 2  
1
1
Bit 1  
1
Bit 0  
Bit 0  
1
Read:  
Write:  
Reset:  
Figure 9-40. Dead-Time Write-Once Register (DEADTM)  
9.10.7 PWM Disable Mapping Write-Once Register  
The PWM disable mapping write-once register (DISMAP) holds an 8-bit  
value which determines which PWM pins will be disabled if an external  
fault or software disable occurs. For a further description of disable  
mapping, see 9.7 Fault Protection. After this register is written for the  
first time, it cannot be rewritten unless a reset occurs.  
Address: $0037  
Bit 7  
Bit 7  
1
6
Bit 6  
1
5
Bit 5  
1
4
Bit 4  
1
3
Bit 3  
1
2
Bit 2  
1
1
Bit 1  
1
Bit 0  
Bit 0  
1
Read:  
Write:  
Reset:  
Figure 9-41. PWM Disable Mapping  
Write-Once Register (DISMAP)  
Advance Information  
176  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Pulse-Width Modulator for Motor Control (PWMMC) MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
Control Logic Block  
9.10.8 Fault Control Register  
The fault control register (FCR) controls the fault-protection circuitry.  
Address: $0022  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
FINT4 FMODE4 FINT3 FMODE3 FINT2 FMODE2 FINT1 FMODE1  
0
0
0
0
0
0
0
0
Figure 9-42. Fault Control Register (FCR)  
FINT4 Fault 4 Interrupt Enable Bit  
This read/write bit allows the CPU interrupt caused by faults on fault  
pin 4 to be enabled. The fault protection circuitry is independent of this  
bit and will always be active. If a fault is detected, the PWM pins will  
still be disabled according to the disable mapping register.  
1 = Fault pin 4 will cause CPU interrupts.  
0 = Fault pin 4 will not cause CPU interrupts.  
FMODE4 Fault Mode Selection for Fault Pin 4 Bit  
(automatic versus manual mode)  
This read/write bit allows the user to select between automatic and  
manual mode faults. For further descriptions of each mode,  
see 9.7 Fault Protection.  
1 = Automatic mode  
0 = Manual mode  
FINT3 Fault 3 Interrupt Enable Bit  
This read/write bit allows the CPU interrupt caused by faults on fault  
pin 3 to be enabled. The fault protection circuitry is independent of this  
bit and will always be active. If a fault is detected, the PWM pins will  
still be disabled according to the disable mapping register.  
1 = Fault pin 3 will cause CPU interrupts.  
0 = Fault pin 3 will not cause CPU interrupts.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Pulse-Width Modulator for Motor Control (PWMMC)  
AdvanceInformation  
177  
Pulse-Width Modulator for Motor Control  
FMODE3 Fault Mode Selection for Fault Pin 3 Bit  
(automatic versus manual mode)  
This read/write bit allows the user to select between automatic and  
manual mode faults. For further descriptions of each mode,  
see 9.7 Fault Protection.  
1 = Automatic mode  
0 = Manual mode  
FINT2 Fault 2 Interrupt Enable Bit  
This read/write bit allows the CPU interrupt caused by faults on fault  
pin 2 to be enabled. The fault protection circuitry is independent of this  
bit and will always be active. If a fault is detected, the PWM pins will  
still be disabled according to the disable mapping register.  
1 = Fault pin 2 will cause CPU interrupts.  
0 = Fault pin 2 will not cause CPU interrupts.  
FMODE2 Fault Mode Selection for Fault Pin 2 Bit  
(automatic versus manual mode)  
This read/write bit allows the user to select between automatic and  
manual mode faults. For further descriptions of each mode, see  
9.7 Fault Protection.  
1 = Automatic mode  
0 = Manual mode  
FINT1 Fault 1 Interrupt Enable Bit  
This read/write bit allows the CPU interrupt caused by faults on fault  
pin 1 to be enabled. The fault protection circuitry is independent of this  
bit and will always be active. If a fault is detected, the PWM pins will  
still be disabled according to the disable mapping register.  
1 = Fault pin 1 will cause CPU interrupts.  
0 = Fault pin 1 will not cause CPU interrupts.  
FMODE1 Fault Mode Selection for Fault Pin 1 Bit  
(automatic versus manual mode)  
This read/write bit allows the user to select between automatic and  
manual mode faults. For further descriptions of each mode, see  
9.7 Fault Protection.  
1 = Automatic mode  
0 = Manual mode  
Advance Information  
178  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Pulse-Width Modulator for Motor Control (PWMMC)  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
Control Logic Block  
9.10.9 Fault Status Register  
The fault status register (FSR) is a read-only register that indicates the  
current fault status.  
Address: $0023  
Bit 7  
Read: FPIN4  
Write:  
6
5
4
3
2
1
Bit 0  
FFLAG4  
FPIN3  
FFLAG3  
FPIN2  
FFLAG2  
FPIN1  
FFLAG1  
Reset:  
U
0
U
0
U
0
U
0
= Unimplemented  
U = Unaffected  
Figure 9-43. Fault Status Register (FSR)  
FPIN4 State of Fault Pin 4 Bit  
This read-only bit allows the user to read the current state of fault  
pin 4.  
1 = Fault pin 4 is at logic 1.  
0 = Fault pin 4 is at logic 0.  
FFLAG4 Fault Event Flag 4  
The FFLAG4 event bit is set within two CPU cycles after a rising edge  
on fault pin 4. To clear the FFLAG4 bit, the user must write a 1 to the  
FTACK4 bit in the fault acknowledge register.  
1 = A fault has occurred on fault pin 4.  
0 = No new fault on fault pin 4  
FPIN3 State of Fault Pin 3 Bit  
This read-only bit allows the user to read the current state of fault  
pin 3.  
1 = Fault pin 3 is at logic 1.  
0 = Fault pin 3 is at logic 0.  
FFLAG3 Fault Event Flag 3  
The FFLAG3 event bit is set within two CPU cycles after a rising edge  
on fault pin 3. To clear the FFLAG3 bit, the user must write a 1 to the  
FTACK3 bit in the fault acknowledge register.  
1 = A fault has occurred on fault pin 3.  
0 = No new fault on fault pin 3.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Pulse-Width Modulator for Motor Control (PWMMC)  
AdvanceInformation  
179  
Pulse-Width Modulator for Motor Control  
FPIN2 State of Fault Pin 2 Bit  
This read-only bit allows the user to read the current state of fault  
pin 2.  
1 = Fault pin 2 is at logic 1.  
0 = Fault pin 2 is at logic 0.  
FFLAG2 Fault Event Flag 2  
The FFLAG2 event bit is set within two CPU cycles after a rising edge  
on fault pin 2. To clear the FFLAG2 bit, the user must write a 1 to the  
FTACK2 bit in the fault acknowledge register.  
1 = A fault has occurred on fault pin 2.  
0 = No new fault on fault pin 2  
FPIN1 State of Fault Pin 1 Bit  
This read-only bit allows the user to read the current state of fault  
pin 1.  
1 = Fault pin 1 is at logic 1.  
0 = Fault pin 1 is at logic 0.  
FFLAG1 Fault Event Flag 1  
The FFLAG1 event bit is set within two CPU cycles after a rising edge  
on fault pin 1. To clear the FFLAG1 bit, the user must write a 1 to the  
FTACK1 bit in the fault acknowledge register.  
1 = A fault has occurred on fault pin 1.  
0 = No new fault on fault pin 1.  
9.10.10 Fault Acknowledge Register  
The fault acknowledge register (FTACK) is used to acknowledge and  
clear the FFLAGs. In addition, it is used to monitor the current sensing  
bits to test proper operation.  
Address: $0024  
Bit 7  
0
6
5
4
DT5  
3
2
DT3  
1
Bit 0  
DT1  
Read:  
Write:  
Reset:  
0
FTACK4  
0
DT6  
DT4  
DT2  
FTACK3  
0
FTACK2  
0
FTACK1  
0
0
0
0
0
= Unimplemented  
Figure 9-44. Fault Acknowledge Register (FTACK)  
Advance Information  
180  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Pulse-Width Modulator for Motor Control (PWMMC) MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
Control Logic Block  
FTACK4 Fault Acknowledge 4 Bit  
The FTACK4 bit is used to acknowledge and clear FFLAG4. This bit  
will always read 0. Writing a 1 to this bit will clear FFLAG4. Writing a  
0 will have no effect.  
FTACK3 Fault Acknowledge 3 Bit  
The FTACK3 bit is used to acknowledge and clear FFLAG3. This bit  
will always read 0. Writing a 1 to this bit will clear FFLAG3. Writing a  
0 will have no effect.  
FTACK2 Fault Acknowledge 2 Bit  
The FTACK2 bit is used to acknowledge and clear FFLAG2. This bit  
will always read 0. Writing a 1 to this bit will clear FFLAG2. Writing a  
0 will have no effect.  
FTACK1 Fault Acknowledge 1 Bit  
The FTACK1 bit is used to acknowledge and clear FFLAG1. This bit  
will always read 0. Writing a 1 to this bit will clear FFLAG1. Writing a  
0 will have no effect.  
DT6 Dead-Time 6 Bit  
Current sensing pin IS3 is monitored immediately before dead-time  
ends due to the assertion of PWM6.  
DT5 Dead-Time 5 Bit  
Current sensing pin IS3 is monitored immediately before dead-time  
ends due to the assertion of PWM5.  
DT4 Dead-Time 4 Bit  
Current sensing pin IS2 is monitored immediately before dead-time  
ends due to the assertion of PWM4.  
DT3 Dead-Time 3 Bit  
Current sensing pin IS2 is monitored immediately before dead-time  
ends due to the assertion of PWM3.  
DT2 Dead-Time 2 Bit  
Current sensing pin IS1 is monitored immediately before dead-time  
ends due to the assertion of PWM2.  
DT1 Dead-Time 1 Bit  
Current sensing pin IS1 is monitored immediately before dead-time  
ends due to the assertion of PWM1.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Pulse-Width Modulator for Motor Control (PWMMC)  
AdvanceInformation  
181  
Pulse-Width Modulator for Motor Control  
9.10.11 PWM Output Control Register  
The PWM output control register (PWMOUT) is used to manually control  
the PWM pins.  
Address: $0025  
Bit 7  
6
5
4
OUT5  
0
3
OUT4  
0
2
OUT3  
0
1
OUT2  
0
Bit 0  
OUT1  
0
Read:  
Write:  
Reset:  
0
OUTCTL OUT6  
0
0
0
= Unimplemented  
Figure 9-45. PWM Output Control Register (PWMOUT)  
OUTCTLOutput Control Enable Bit  
This read/write bit allows the user to manually control the PWM pins.  
When set, the PWM generator is no longer the input to the dead-time  
and output circuitry. The OUTx bits determine the state of the PWM  
pins. Setting the OUTCTL bit does not disable the PWM generator.  
The generator continues to run, but is no longer the input to the PWM  
dead-time and output circuitry. When OUTCTL is cleared, the outputs  
of the PWM generator immediately become the inputs to the  
dead-time and output circuitry.  
1 = PWM outputs controlled manually  
0 = PWM outputs determined by PWM generator  
OUT6OUT1PWM Pin Output Control Bits  
These read/write bits control the PWM pins according to Table 9-10.  
Advance Information  
182  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Pulse-Width Modulator for Motor Control (PWMMC)  
MOTOROLA  
Pulse-Width Modulator for Motor Control (PWMMC)  
PWM Glossary  
Table 9-10. OUTx Bits  
OUTx Bit  
Complementary Mode  
Independent Mode  
1 PWM1 is active.  
0 PWM1 is inactive.  
1 PWM1 is active.  
0 PWM1 is inactive.  
OUT1  
1 PWM2 is complement of PWM 1.  
0 PWM2 is inactive.  
1 PWM2 is active.  
0 PWM2 is inactive.  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
1 PWM3 is active.  
0 PWM3 is inactive.  
1 PWM3 is active.  
0 PWM3 is inactive.  
1 PWM4 is complement of PWM 3.  
0 PWM4 is inactive.  
1 PWM4 is active.  
0 PWM4 is inactive.  
1 PWM5 is active.  
0 PWM5 is inactive.  
1 PWM5 is active.  
0 PWM5 is inactive.  
1 PWM 6 is complement of PWM 5.  
0 PWM6 is inactive.  
1 PWM6 is active.  
0 PWM6 is inactive.  
9.11 PWM Glossary  
CPU cycle One internal bus cycle (1/fOP)  
PWM clock cycle (or period) One tick of the PWM counter (1/fOP  
with no prescaler). See Figure 9-46.  
PWM cycle (or period)  
Center-aligned mode: The time it takes the PWM counter to count  
up and count down (modulus * 2/fOP assuming no prescaler). See  
Figure 9-46.  
Edge-aligned mode: The time it takes the PWM counter to count  
up (modulus/fOP). See Figure 9-46.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Pulse-Width Modulator for Motor Control (PWMMC)  
AdvanceInformation  
183  
Pulse-Width Modulator for Motor Control  
Center-Aligned Mode  
PWM CLOCK CYCLE  
PWM CYCLE (OR PERIOD)  
Edge-Aligned Mode  
PWM  
CLOCK  
CYCLE  
PWM CYCLE (OR PERIOD)  
Figure 9-46. PWM Clock Cycle and PWM Cycle Definitions  
PWM Load Frequency Frequency at which new PWM parameters  
get loaded into the PWM. See Figure 9-47.  
LDFQ1:LDFQ0 = 01 Reload Every Two Cycles  
PWM LOAD CYCLE  
(1/PWM LOAD FREQUENCY)  
RELOAD NEW  
MODULUS,  
RELOAD NEW  
MODULUS,  
PRESCALER, &  
PWM VALUES IF  
LDOK = 1  
PRESCALER, &  
PWM VALUES IF  
LDOK = 1  
Figure 9-47. PWM Load Cycle/Frequency Definition  
Advance Information  
184  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Pulse-Width Modulator for Motor Control (PWMMC)  
MOTOROLA  
 
Advance Information MC68HC908MR16/MC68HC908MR32  
Section 10. Monitor ROM (MON)  
10.1 Contents  
10.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185  
10.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186  
10.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186  
10.4.1 Entering Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . .188  
10.4.1.1  
10.4.1.2  
Normal Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . .188  
Forced Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . .190  
10.4.2 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191  
10.4.3 Echoing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191  
10.4.4 Break Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192  
10.4.5 Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192  
10.4.6 Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196  
10.5 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196  
10.2 Introduction  
This section describes the monitor read-only memory (ROM). The  
monitor ROM (MON) allows complete testing of the microcontroller unit  
(MCU) through a single-wire interface with a host computer.  
Monitor mode entry can be achieved without the use of VTST as long as  
vector addresses $FFFE and $FFFF are blank, thus reducing the  
hardware requirements for in-circuit programming.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Monitor ROM (MON)  
Advance Information  
185  
 
Monitor ROM (MON)  
10.3 Features  
Features of the monitor ROM include:  
Normal user-mode pin functionality  
One pin dedicated to serial communication between monitor ROM  
and host computer  
Standard mark/space non-return-to-zero (NRZ) communication  
with host computer  
4800 baud28.8 Kbaud communication with host computer  
Execution of code in random-access memory (RAM) or ROM  
FLASH programming  
10.4 Functional Description  
The monitor ROM receives and executes commands from a host  
computer. Figure 10-1 shows a sample circuit used to enter monitor  
mode and communicate with a host computer via a standard RS-232  
interface.  
Simple monitor commands can access any memory address. In monitor  
mode, the MCU can execute host-computer code in RAM while all MCU  
pins retain normal operating mode functions. All communication  
between the host computer and the MCU is through the PTA0 pin. A  
level-shifting and multiplexing interface is required between PTA0 and  
the host computer. PTA0 is used in a wired-OR configuration and  
requires a pullup resistor.  
Advance Information  
186  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Monitor ROM (MON)  
MOTOROLA  
Monitor ROM (MON)  
Functional Description  
VDD  
MC68HC908MR16/  
MC68HC908MR32  
10 kΩ  
S1  
RST  
0.1 µF  
V
HI  
10 kΩ  
IRQ  
V
DDA  
V
DDA  
1
20  
MC145407  
0.1 µF  
+
+
+
+
V
DDAD  
10 µF  
10 µF  
10 µF  
10 µF  
V
DDAD  
3
4
18  
17  
0.1 µF  
VREFH  
V
DD  
V
REFH  
2
19  
0.1 µF  
CGMXFC  
0.02 µF  
10 MΩ  
DB-25  
2
5
6
16  
15  
3
7
OSC1  
OSC2  
X1  
4.9152 MHz  
20 pF  
VDD  
V
20 pF  
REFL  
V
SSAD  
1
2
6
4
14  
3
MC74HC125  
V
SSA  
PWMGND  
V
SS  
5
VDD  
V
DD  
0.1 µF  
VDD  
7
VDD  
10 kΩ  
10 kΩ  
PTA0  
PTA7  
PTC2  
A
B
S3  
V
DD  
V
DD  
10 kΩ  
10 kΩ  
S2 Position A Bus clock = CGMXCLK ÷ 4 or CGMVCLK ÷ 4  
S2 Position B Bus clock = CGMXCLK ÷ 2  
S3 Position A Parallel communication  
S3 Position B Serial communication  
A
PTC3  
PTC4  
S2  
B
Figure 10-1. Monitor Mode Circuit  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Monitor ROM (MON)  
AdvanceInformation  
187  
Monitor ROM (MON)  
10.4.1 Entering Monitor Mode  
There are two methods for entering monitor:  
The first is the traditional M68HC08 method where VDD + VHI is  
applied to IRQ1 and the mode pins are configured appropriately.  
A second method, intended for in-circuit programming  
applications, will force entry into monitor mode without requiring  
high voltage on the IRQ1 pin when the reset vector locations of the  
FLASH are erased ($FF).  
NOTE: For both methods, holding the PTC2 pin low when entering monitor  
mode causes a bypass of a divide-by-two stage at the oscillator. The  
CGMOUT frequency is equal to the CGMXCLK frequency, and the  
OSC1 input directly generates internal bus clocks. In this case, the  
OSC1 signal must have a 50 percent duty cycle at maximum bus  
frequency.  
is a summary of the differences between user mode and monitor mode.  
Table 10-1. Mode Differences  
Functions  
Rest  
Reset  
Break  
Break  
SWI  
SWI  
Modes  
COP  
Vector Vector Vector Vector Vector Vector  
High  
Low  
High  
Low  
High  
Low  
User  
Enabled  
$FFFE  
$FFFF $FFFC $FFFD $FFFC $FFFD  
(1)  
Monitor  
$FEFE $FEFF $FEFC $FEFD $FEFC $FEFD  
Disabled  
1. If the high voltage (V + V ) is removed from the IRQ1 pin or the RST pin, the SIM  
DD  
HI  
asserts its COP enable output. The COP is a mask option enabled or disabled by the  
COPD bit in the configuration register.  
10.4.1.1 Normal Monitor Mode  
Table 10-2 shows the pin conditions for entering monitor mode.  
Advance Information  
188  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Monitor ROM (MON)  
MOTOROLA  
Table 10-2. Monitor Mode Signal Requirements and Options  
For Serial  
Communication  
(2)  
External  
RESET  
(S1)  
$FFFE  
/$FFFF  
PTC2  
(S2)  
Bus  
Frequency  
IRQ  
PLL PTC3 PTC4  
CGMOUT  
COP  
Comment  
(1)  
Clock  
Baud  
PTA7  
(S3)  
PTA0  
(3) (4)  
Rate  
No operation until  
reset goes high  
X
GND  
X
X
X
X
1
X
0
X
0
X
0
0
Disabled  
X
1
X
0
0
9600  
PTC3 and PTC2  
voltages only  
required if  
V
DD  
4.9152  
MHz  
4.9152  
MHz  
2.4576  
MHz  
V
IRQ = V  
;
or  
OFF  
Disabled  
TST  
TST  
X
1
1
0
1
DNA  
9600  
DNA  
V
PTC2  
determines  
frequency divider  
TST  
PTC3 and PTC2  
voltages only  
required if  
V
DD  
9.8304  
MHz  
4.9152  
MHz  
2.4576  
MHz  
V
IRQ = V  
;
or  
X
OFF  
1
0
1
Disabled  
TST  
TST  
X
V
PTC2  
TST  
determines  
frequency divider  
1
0
1
9600  
DNA  
External frequency  
always divided  
by 4  
$FFFF  
Blank  
9.8304  
MHz  
4.9152  
MHz  
2.4576  
MHz  
V
V
DD  
OFF  
OFF  
OFF  
X
X
X
X
X
X
X
X
X
Disabled  
Enabled  
Enabled  
DD  
DD  
X
Enters user  
mode will  
encounter an  
illegal address  
reset  
V
$FFFF  
Blank  
V
X
X
X
X
X
X
or  
TST  
GND  
V
V
DD  
DD  
Non-$FF  
Programmed  
or  
Enters user mode  
or  
V
GND  
TST  
1. External clock is derived by a 32.768 kHz crystal or a 4.9152/9.8304 MHz off-chip oscillator.  
2. DNA = does not apply, X = dont care  
3. PAT0 = 1 if serial communication; PTA0 = X if parallel communication  
4. PTA7 = 0 serial, PTA7 = 1 parallel communication for security code entry  
Monitor ROM (MON)  
Enter monitor mode by either:  
Executing a software interrupt instruction (SWI) or  
Applying a logic 0 and then a logic 1 to the RST pin  
Once out of reset, the MCU waits for the host to send eight security  
bytes. After receiving the security bytes, the MCU sends a break signal  
(10 consecutive logic 0s) to the host computer, indicating that it is ready  
to receive a command. The break signal also provides a timing reference  
to allow the host to determine the necessary baud rate.  
Monitor mode uses alternate vectors for reset and SWI. The alternate  
vectors are in the $FE page instead of the $FF page and allow code  
execution from the internal monitor firmware instead of user code. The  
computer operating properly (COP) module is disabled in monitor mode  
as long as VHI is applied to either the IRQ pin or the RST pin. (See  
Section 7. System Integration Module (SIM) for more information on  
modes of operation.)  
10.4.1.2 Forced Monitor Mode  
If the voltage applied to the IRQ1 is less than VDD + VHI the MCU will  
come out of reset in user mode. The MENRST module is monitoring the  
reset vector fetches and will assert an internal reset if it detects that the  
reset vectors are erased ($FF). When the MCU comes out of reset, it is  
forced into monitor mode without requiring high voltage on the IRQ1 pin.  
The COP module is disabled in forced monitor mode. Any reset other  
than a POR reset will automatically force the MCU to come back to the  
forced monitor mode.  
Advance Information  
190  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Monitor ROM (MON)  
MOTOROLA  
Monitor ROM (MON)  
Functional Description  
10.4.2 Data Format  
Communication with the monitor ROM is in standard non-return-to-zero  
(NRZ) mark/space data format. (See Figure 10-2 and Figure 10-3.)  
NEXT  
START  
BIT  
START  
BIT  
STOP  
BIT  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
Figure 10-2. Monitor Data Format  
NEXT  
START  
BIT  
START  
STOP  
$A5  
BIT 0  
BIT 0  
BIT 1  
BIT 1  
BIT 2  
BIT 2  
BIT 3  
BIT 3  
BIT 4  
BIT 4  
BIT 5  
BIT 5  
BIT 6  
BIT 6  
BIT 7  
BIT 7  
BIT  
BIT  
STOP  
BIT  
START  
BIT  
NEXT  
START  
BIT  
BREAK  
Figure 10-3. Sample Monitor Waveforms  
The data transmit and receive rate can be anywhere from 4800 baud to  
28.8 Kbaud. Transmit and receive baud rates must be identical.  
10.4.3 Echoing  
As shown in Figure 10-4, the monitor ROM immediately echoes each  
received byte back to the PTA0 pin for error checking.  
SENT TO  
MONITOR  
READ  
READ  
ADDR. HIGH ADDR. HIGH ADDR. LOW ADDR. LOW  
DATA  
ECHO  
RESULT  
Figure 10-4. Read Transaction  
Any result of a command appears after the echo of the last byte of the  
command.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Monitor ROM (MON)  
AdvanceInformation  
191  
 
 
 
Monitor ROM (MON)  
10.4.4 Break Signal  
A start bit followed by nine low bits is a break signal. See Figure 10-5.  
When the monitor receives a break signal, it drives the PTA0 pin high for  
the duration of two bits before echoing the break signal.  
MISSING STOP BIT  
2--STOP-BIT DELAY BEFORE ZERO ECHO  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
Figure 10-5. Break Transaction  
10.4.5 Commands  
The monitor ROM uses these commands (see Table 10-3Table 10-8):  
READ, read memory  
WRITE, write memory  
IREAD, indexed read  
IWRITE, indexed write  
READSP, read stack pointer  
RUN, run user program  
Advance Information  
192  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Monitor ROM (MON)  
MOTOROLA  
 
Monitor ROM (MON)  
Functional Description  
Table 10-3. READ (Read Memory) Command  
Description  
Read byte from memory  
Operand  
Specifies 2-byte address in high byte:low byte order  
Returns contents of specified address  
$4A  
Data returned  
Opcode  
Command sequence  
SENT TO  
MONITOR  
READ  
READ  
ADDR. HIGH  
ADDR. HIGH  
ADDR. LOW  
ADDR. LOW  
DATA  
ECHO  
RESULT  
Table 10-4. WRITE (Write Memory) Command  
Description  
Write byte to memory  
Operand  
Specifies 2-byte address in high byte:low byte order; low byte followed by data byte  
Data returned  
Opcode  
None  
$49  
Command sequence  
SENT TO  
MONITOR  
WRITE  
ECHO  
WRITE  
ADDR. HIGH  
ADDR. HIGH  
ADDR. LOW  
ADDR. LOW  
DATA  
DATA  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Monitor ROM (MON)  
AdvanceInformation  
193  
Monitor ROM (MON)  
Table 10-5. IREAD (Indexed Read) Command  
Description  
Read next 2 bytes in memory from last address accessed  
Specifies 2-byte address in high byte:low byte order  
Returns contents of next two addresses  
$1A  
Operand  
Data returned  
Opcode  
Command sequence  
SENT TO  
MONITOR  
IREAD  
IREAD  
DATA  
DATA  
RESULT  
ECHO  
Table 10-6. IWRITE (Indexed Write) Command  
Description  
Write to last address accessed + 1  
Operand  
Specifies single data byte  
Data returned  
Opcode  
None  
$19  
Command sequence  
SENT TO  
MONITOR  
IWRITE  
IWRITE  
DATA  
DATA  
ECHO  
NOTE: A sequence of IREAD or IWRITE commands can sequentially access a  
block of memory over the full 64-Kbyte memory map.  
Advance Information  
194  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Monitor ROM (MON) MOTOROLA  
Monitor ROM (MON)  
Functional Description  
Table 10-7. READSP (Read Stack Pointer) Command  
Description  
Reads stack pointer  
Operand  
None  
Data returned  
Opcode  
Returns stack pointer in high byte:low byte order  
$0C  
Command sequence  
SENT TO  
MONITOR  
READSP  
READSP  
SP HIGH  
SP LOW  
RESULT  
ECHO  
Table 10-8. RUN (Run User Program) Command  
Description  
Executes RTI instruction  
Operand  
None  
None  
$28  
Data returned  
Opcode  
Command sequence  
SENT TO  
MONITOR  
RUN  
RUN  
ECHO  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Monitor ROM (MON)  
AdvanceInformation  
195  
Monitor ROM (MON)  
10.4.6 Baud Rate  
With a 4.9152-MHz crystal and the PTC2 pin at logic 1 during reset,  
data is transferred between the monitor and host at 4800 baud. If the  
PTC2 pin is at logic 0 during reset, the monitor baud rate is 9600. See  
Table 10-9.  
Table 10-9. Monitor Baud Rate Selection  
VCO Frequency Multiplier (N)  
1
2
3
4
5
6
Monitor baud rate  
4800  
9600  
14,400  
19,200  
24,000  
28,800  
10.5 Security  
A security feature discourages unauthorized reading of FLASH locations  
while in monitor mode. The host can bypass the security feature at  
monitor mode entry by sending eight security bytes that match the bytes  
at locations $FFF6$FFFD. Locations $FFF6$FFFD contain  
user-defined data.  
NOTE: Do not leave locations $FFF6$FFFD blank. For security reasons,  
program locations $FFF6$FFFD even if they are not used for vectors.  
During monitor mode entry, the MCU waits after the power-on reset for  
the host to send the eight security bytes on pin PTA0. If the received  
bytes match those at locations $FFF6$FFFD, the host bypasses the  
security feature and can read all FLASH locations and execute code  
from FLASH. Security remains bypassed until a power-on reset occurs.  
If the reset was not a power-on reset, security remains bypassed and  
security code entry is not required. (See Figure 10-6.)  
Upon power-on reset, if the received bytes of the security code do not  
match the data at locations $FFF6$FFFD, the host fails to bypass the  
security feature. The MCU remains in monitor mode, but reading a  
FLASH location returns an invalid value and trying to execute code from  
FLASH causes an illegal address reset. After receiving the eight security  
bytes from the host, the MCU transmits a break character, signifying that  
it is ready to receive a command.  
NOTE: The MCU does not transmit a break character until after the host sends  
the eight security bytes.  
Advance Information  
196  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Monitor ROM (MON) MOTOROLA  
 
Monitor ROM (MON)  
Security  
V
4096 + 32 CGMXCLK CYCLES  
24 BUS CYCLES  
PA7  
256 BUS CYCLES (MINIMUM)  
FROM HOST  
FROM MCU  
PA0  
1
1
3
1
3
2
1
Figure 10-6. Monitor Mode Entry Timing  
To determine whether the security code entered is correct, check to see  
if bit 6 of RAM address $60 is set. If it is, then the correct security code  
has been entered and FLASH can be accessed.  
If the security sequence fails, the device can be reset (via power-pin  
reset only) and brought up in monitor mode to attempt another entry.  
After failing the security sequence, the FLASH mode can also be bulk  
erased by executing an erase routine that was downloaded into internal  
RAM. The bulk erase operation clears the security code locations so that  
all eight security bytes become $FF.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Monitor ROM (MON)  
AdvanceInformation  
197  
Monitor ROM (MON)  
Advance Information  
198  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Monitor ROM (MON) MOTOROLA  
Advance Information MC68HC908MR16/MC68HC908MR32  
Section 11. Timer Interface A (TIMA)  
11.1 Contents  
11.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200  
11.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200  
11.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204  
11.4.1 TIMA Counter Prescaler. . . . . . . . . . . . . . . . . . . . . . . . . . .204  
11.4.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204  
11.4.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205  
11.4.3.1  
11.4.3.2  
Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . .206  
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .206  
11.4.4 Pulse-Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . .207  
11.4.4.1  
11.4.4.2  
11.4.4.3  
Unbuffered PWM Signal Generation . . . . . . . . . . . . . . .209  
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . .210  
PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211  
11.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212  
11.6 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212  
11.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213  
11.7.1 TIMA Clock Pin (PTE3/TCLKA) . . . . . . . . . . . . . . . . . . . . .213  
11.7.2 TIMA Channel I/O Pins  
(PTE4/TCH0APTE7/TCH3A) . . . . . . . . . . . . . . . . . . .213  
11.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .214  
11.8.1 TIMA Status and Control Register . . . . . . . . . . . . . . . . . . .214  
11.8.2 TIMA Counter Registers. . . . . . . . . . . . . . . . . . . . . . . . . . .216  
11.8.3 TIMA Counter Modulo Registers . . . . . . . . . . . . . . . . . . . .217  
11.8.4 TIMA Channel Status and Control Registers . . . . . . . . . . .217  
11.8.5 TIMA Channel Registers . . . . . . . . . . . . . . . . . . . . . . . . . .222  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Timer Interface A (TIMA)  
Advance Information  
199  
Timer Interface A (TIMA)  
11.2 Introduction  
This section describes the timer interface module A (TIMA). The TIMA is  
a 4-channel timer that provides:  
Timing reference with input capture  
Output compare  
Pulse-width modulator functions  
Figure 11-1 is a block diagram of the TIMA.  
11.3 Features  
Features of the TIMA include:  
Four input capture/output compare channels:  
Rising-edge, falling-edge, or any-edge input capture trigger  
Set, clear, or toggle output compare action  
Buffered and unbuffered pulse-width modulator (PWM) signal  
generation  
Programmable TIMA clock input:  
7-frequency internal bus clock prescaler selection  
External TIMA clock input (4-MHz maximum frequency)  
Free-running or modulo up-count operation  
Toggle any channel pin on overflow  
TIMA counter stop and reset bits  
Advance Information  
200  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Timer Interface A (TIMA)  
MOTOROLA  
Timer Interface A (TIMA)  
Features  
TCLK  
PTE3/TCLKA  
PRESCALER SELECT  
INTERNAL  
BUS CLOCK  
PRESCALER  
TSTOP  
TRST  
PS2  
PS1  
PS0  
16-BIT COUNTER  
INTER-  
RUPT  
LOGIC  
TOF  
TOIE  
16-BIT COMPARATOR  
TMODH:TMODL  
ELS0B  
ELS0A  
ELS1A  
CHANNEL 0  
16-BIT COMPARATOR  
TCH0H:TCH0L  
TOV0  
CH0MAX  
PTE4  
PTE4/TCH0A  
PTE5/TCH1A  
LOGIC  
CH0F  
MS0B  
INTER-  
RUPT  
LOGIC  
16-BIT LATCH  
CH0IE  
MS0A  
ELS1B  
ELS2B  
CHANNEL 1  
16-BIT COMPARATOR  
TCH1H:TCH1L  
TOV1  
CH1MAX  
PTE5  
LOGIC  
CH1F  
INTER-  
RUPT  
LOGIC  
16-BIT LATCH  
CH1IE  
MS1A  
ELS2A  
CHANNEL 2  
16-BIT COMPARATOR  
TCH2H:TCH2L  
TOV2  
CH2MAX  
PTE6  
PTE6/TCH2A  
PTE7/TCH3A  
LOGIC  
CH2F  
MS2B  
INTER-  
RUPT  
LOGIC  
16-BIT LATCH  
CH2IE  
MS2A  
ELS3B  
ELS3A  
CHANNEL 3  
16-BIT COMPARATOR  
TCH3H:TCH3L  
TOV3  
CH3MAX  
PTE7  
LOGIC  
CH3F  
INTER-  
RUPT  
LOGIC  
16-BIT LATCH  
CH3IE  
MS3A  
Figure 11-1. TIMA Block Diagram  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Timer Interface A (TIMA)  
AdvanceInformation  
201  
 
Timer Interface A (TIMA)  
Addr.  
Register Name  
Bit 7  
6
5
4
0
3
0
2
1
Bit 0  
Read: TOF  
TIMA Status/Control Register  
See page 214.  
TOIE  
TSTOP  
PS2  
PS1  
PS0  
$000E  
(TASC) Write:  
0
0
TRST  
0
R
Reset:  
0
Bit 14  
R
1
Bit 13  
R
0
0
Bit 10  
R
0
Bit 9  
R
0
Bit 8  
R
Read: Bit 15  
Bit 12  
R
Bit 11  
R
TIMA Counter Register High  
See page 216.  
$000F  
$0010  
$0011  
$0012  
$0013  
$0014  
$0015  
$0016  
(TACNTH) Write:  
R
0
Reset:  
0
0
0
0
0
0
0
Read: Bit 7  
Bit 6  
R
Bit 5  
R
Bit 4  
R
Bit 3  
R
Bit 2  
R
Bit 1  
R
Bit 0  
R
TIMA Counter Register Low  
See page 216.  
(TACNTL) Write:  
R
0
Reset:  
Read:  
0
0
0
0
0
0
0
TIMA Counter Modulo  
Register High (TAMODH) Write:  
Bit 15  
1
14  
13  
12  
11  
10  
9
1
1
1
Bit 8  
1
See page 217.  
Reset:  
1
1
1
1
1
Read:  
TIMA Counter Modulo  
Register Low (TAMODL) Write:  
Bit 7  
1
6
1
5
1
4
1
3
2
Bit 0  
1
See page 217.  
Reset:  
1
ELS0B  
0
1
ELS0A  
0
Read: CH0F  
TIMA Channel 0 Status/Control  
See page 218.  
CH0IE  
0
MS0B  
0
MS0A  
0
TOV0 CH0MAX  
Register (TASC0) Write:  
0
0
Reset:  
Read:  
0
9
0
TIMA Channel 0 Register High  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
(TACH0H) Write:  
See page 222.  
Reset:  
Read:  
Indeterminate after reset  
TIMA Channel 0 Register Low  
Bit 7  
6
5
4
3
2
1
Bit 0  
(TACH0L) Write:  
See page 222.  
Reset:  
Indeterminate after reset  
Read: CH1F  
0
R
0
TIMA Channel 1 Status/Control  
See page 218.  
CH1IE  
MS1A  
0
ELS1B  
0
ELS1A  
0
TOV1 CH1MAX  
Register (TASC1) Write:  
0
0
Reset:  
0
0
0
R
= Reserved  
Figure 11-2. TIM I/O Register Summary  
Advance Information  
202  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Timer Interface A (TIMA) MOTOROLA  
Timer Interface A (TIMA)  
Features  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
TIMA Channel 1 Register High  
Bit 15  
14  
13  
12  
11  
10  
9
Bit 8  
$0017  
(TACH1H) Write:  
See page 222.  
Reset:  
Read:  
Indeterminate after reset  
TIMA Channel 1 Register Low  
Bit 7  
6
5
4
3
2
1
Bit 0  
$0018  
$0019  
$001A  
$001B  
$001C  
$001D  
$001E  
(TACH1L) Write:  
See page 222.  
Reset:  
Indeterminate after reset  
Read: CH2F  
TIMA Channel 2 Status/Control  
See page 218.  
CH2IE  
0
MS2B  
0
MS2A  
0
ELS2B  
ELS2A  
TOV2 CH2MAX  
Register (TASC2) Write:  
0
0
Reset:  
Read:  
0
0
0
9
0
TIMA Channel 2 Register High  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
(TACH2H) Write:  
See page 222.  
Reset:  
Read:  
Indeterminate after reset  
TIMA Channel 2 Register Low  
Bit 7  
6
5
4
3
2
1
Bit 0  
(TACH2L) Write:  
See page 222.  
Reset:  
Indeterminate after reset  
Read: CH3F  
0
R
0
TIMA Channel 3 Status/Control  
See page 218.  
CH3IE  
0
MS3A  
0
ELS3B  
ELS3A  
TOV3 CH3MAX  
Register (TASC3) Write:  
0
0
Reset:  
Read:  
0
0
0
9
0
TIMA Channel 3 Register High  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
(TACH3H) Write:  
See page 222.  
Reset:  
Read:  
Indeterminate after reset  
TIMA Channel 3 Register Low  
Bit 7  
R
6
5
4
3
2
1
Bit 0  
(TACH3L) Write:  
See page 222.  
Reset:  
Indeterminate after reset  
= Reserved  
Figure 11-2. TIM I/O Register Summary (Continued)  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Timer Interface A (TIMA)  
AdvanceInformation  
203  
Timer Interface A (TIMA)  
11.4 Functional Description  
Figure 11-1 shows the TIMA structure. The central component of the  
TIMA is the 16-bit TIMA counter that can operate as a free-running  
counter or a modulo up-counter. The TIMA counter provides the timing  
reference for the input capture and output compare functions. The TIMA  
counter modulo registers, TAMODHTAMODL, control the modulo  
value of the TIMA counter. Software can read the TIMA counter value at  
any time without affecting the counting sequence.  
The four TIMA channels are programmable independently as input  
capture or output compare channels.  
11.4.1 TIMA Counter Prescaler  
The TIMA clock source can be one of the seven prescaler outputs or the  
TIMA clock pin, PTE3/TCLKA. The prescaler generates seven clock  
rates from the internal bus clock. The prescaler select bits, PS[2:0], in  
the TIMA status and control register select the TIMA clock source.  
11.4.2 Input Capture  
An input capture function has three basic parts:  
1. Edge select logic  
2. Input capture latch  
3. 16-bit counter  
Two 8-bit registers, which make up the 16-bit input capture register, are  
used to latch the value of the free-running counter after the  
corresponding input capture edge detector senses a defined transition.  
The polarity of the active edge is programmable. The level transition  
which triggers the counter transfer is defined by the corresponding input  
edge bits (ELSxB and ELSxA in TASC0TASC3 control registers with x  
referring to the active channel number). When an active edge occurs on  
the pin of an input capture channel, the TIMA latches the contents of the  
TIMA counter into the TIMA channel registers, TACHxHTACHxL. Input  
captures can generate TIMA CPU interrupt requests. Software can  
determine that an input capture event has occurred by enabling input  
capture interrupts or by polling the status flag bit.  
Advance Information  
204  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Timer Interface A (TIMA)  
MOTOROLA  
Timer Interface A (TIMA)  
Functional Description  
The free-running counter contents are transferred to the TIMA channel  
status and control register (TACHxHTACHxL, see 11.8.5 TIMA  
Channel Registers) on each proper signal transition regardless of  
whether the TIMA channel flag (CH0FCH3F in TASC0TASC3  
registers) is set or clear. When the status flag is set, a CPU interrupt is  
generated if enabled. The value of the count latched or capturedis the  
time of the event. Because this value is stored in the input capture  
register two bus cycles after the actual event occurs, user software can  
respond to this event at a later time and determine the actual time of the  
event. However, this must be done prior to another input capture on the  
same pin; otherwise, the previous time value will be lost.  
By recording the times for successive edges on an incoming signal,  
software can determine the period and/or pulse width of the signal. To  
measure a period, two successive edges of the same polarity are  
captured. To measure a pulse width, two alternate polarity edges are  
captured. Software should track the overflows at the 16-bit module  
counter to extend its range.  
Another use for the input capture function is to establish a time  
reference. In this case, an input capture function is used in conjunction  
with an output compare function. For example, to activate an output  
signal a specified number of clock cycles after detecting an input event  
(edge), use the input capture function to record the time at which the  
edge occurred. A number corresponding to the desired delay is added to  
this captured value and stored to an output compare register (see  
11.8.5 TIMA Channel Registers). Because both input captures and  
output compares are referenced to the same 16-bit modulo counter, the  
delay can be controlled to the resolution of the counter independent of  
software latencies.  
Reset does not affect the contents of the input capture channel registers.  
11.4.3 Output Compare  
With the output compare function, the TIMA can generate a periodic  
pulse with a programmable polarity, duration, and frequency. When the  
counter reaches the value in the registers of an output compare channel,  
the TIMA can set, clear, or toggle the channel pin. Output compares can  
generate TIMA CPU interrupt requests.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Timer Interface A (TIMA)  
AdvanceInformation  
205  
 
Timer Interface A (TIMA)  
11.4.3.1 Unbuffered Output Compare  
Any output compare channel can generate unbuffered output compare  
pulses as described in 11.4.3 Output Compare. The pulses are  
unbuffered because changing the output compare value requires writing  
the new value over the old value currently in the TIMA channel registers.  
An unsynchronized write to the TIMA channel registers to change an  
output compare value could cause incorrect operation for up to two  
counter overflow periods. For example, writing a new value before the  
counter reaches the old value but after the counter reaches the new  
value prevents any compare during that counter overflow period. Also,  
using a TIMA overflow interrupt routine to write a new, smaller output  
compare value may cause the compare to be missed. The TIMA may  
pass the new value before it is written.  
Use this method to synchronize unbuffered changes in the output  
compare value on channel x:  
When changing to a smaller value, enable channel x output  
compare interrupts and write the new value in the output compare  
interrupt routine. The output compare interrupt occurs at the end  
of the current output compare pulse. The interrupt routine has until  
the end of the counter overflow period to write the new value.  
When changing to a larger output compare value, enable TIMA  
overflow interrupts and write the new value in the TIMA overflow  
interrupt routine. The TIMA overflow interrupt occurs at the end of  
the current counter overflow period. Writing a larger value in an  
output compare interrupt routine (at the end of the current pulse)  
could cause two output compares to occur in the same counter  
overflow period.  
11.4.3.2 Buffered Output Compare  
Channels 0 and 1 can be linked to form a buffered output compare  
channel whose output appears on the PTE4/TCH0A pin. The TIMA  
channel registers of the linked pair alternately control the output.  
Setting the MS0B bit in TIMA channel 0 status and control register  
(TASC0) links channel 0 and channel 1. The output compare value in the  
TIMA channel 0 registers initially controls the output on the  
PTE4/TCH0A pin. Writing to the TIMA channel 1 registers enables the  
Advance Information  
206  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Timer Interface A (TIMA)  
MOTOROLA  
Timer Interface A (TIMA)  
Functional Description  
TIMA channel 1 registers to synchronously control the output after the  
TIMA overflows. At each subsequent overflow, the TIMA channel  
registers (0 or 1) that control the output are the ones written to last.  
TASC0 controls and monitors the buffered output compare function, and  
TIMA channel 1 status and control register (TASC1) is unused. While the  
MS0B bit is set, the channel 1 pin, PTE5/TCH1A, is available as a  
general-purpose I/O pin.  
Channels 2 and 3 can be linked to form a buffered output compare  
channel whose output appears on the PTE6/TCH2A pin. The TIMA  
channel registers of the linked pair alternately control the output.  
Setting the MS2B bit in TIMA channel 2 status and control register  
(TASC2) links channel 2 and channel 3. The output compare value in the  
TIMA channel 2 registers initially controls the output on the  
PTE6/TCH2A pin. Writing to the TIMA channel 3 registers enables the  
TIMA channel 3 registers to synchronously control the output after the  
TIMA overflows. At each subsequent overflow, the TIMA channel  
registers (2 or 3) that control the output are the ones written to last.  
TASC2 controls and monitors the buffered output compare function, and  
TIMA channel 3 status and control register (TASC3) is unused. While the  
MS2B bit is set, the channel 3 pin, PTE7/TCH3A, is available as a  
general-purpose I/O pin.  
NOTE: In buffered output compare operation, do not write new output compare  
values to the currently active channel registers. User software should  
track the currently active channel to prevent writing a new value to the  
active channel. Writing to the active channel registers is the same as  
generating unbuffered output compares.  
11.4.4 Pulse-Width Modulation (PWM)  
By using the toggle-on-overflow feature with an output compare channel,  
the TIMA can generate a PWM signal. The value in the TIMA counter  
modulo registers determines the period of the PWM signal. The channel  
pin toggles when the counter reaches the value in the TIMA counter  
modulo registers. The time between overflows is the period of the PWM  
signal.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Timer Interface A (TIMA)  
AdvanceInformation  
207  
 
Timer Interface A (TIMA)  
As Figure 11-3 shows, the output compare value in the TIMA channel  
registers determines the pulse width of the PWM signal. The time  
between overflow and output compare is the pulse width. Program the  
TIMA to clear the channel pin on output compare if the state of the PWM  
pulse is logic 1. Program the TIMA to set the pin if the state of the PWM  
pulse is logic 0.  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
PULSE  
WIDTH  
PTEx/TCHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
Figure 11-3. PWM Period and Pulse Width  
The value in the TIMA counter modulo registers and the selected  
prescaler output determines the frequency of the PWM output. The  
frequency of an 8-bit PWM signal is variable in 256 increments. Writing  
$00FF (255) to the TIMA counter modulo registers produces a PWM  
period of 256 times the internal bus clock period if the prescaler select  
value is $000 (see 11.8.1 TIMA Status and Control Register).  
The value in the TIMA channel registers determines the pulse width of  
the PWM output. The pulse width of an 8-bit PWM signal is variable in  
256 increments. Writing $0080 (128) to the TIMA channel registers  
produces a duty cycle of 128/256 or 50 percent.  
Advance Information  
208  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Timer Interface A (TIMA)  
MOTOROLA  
 
Timer Interface A (TIMA)  
Functional Description  
11.4.4.1 Unbuffered PWM Signal Generation  
Any output compare channel can generate unbuffered PWM pulses as  
described in 11.4.4 Pulse-Width Modulation (PWM). The pulses are  
unbuffered because changing the pulse width requires writing the new  
pulse width value over the value currently in the TIMA channel registers.  
An unsynchronized write to the TIMA channel registers to change a  
pulse width value could cause incorrect operation for up to two PWM  
periods. For example, writing a new value before the counter reaches  
the old value but after the counter reaches the new value prevents any  
compare during that PWM period. Also, using a TIMA overflow interrupt  
routine to write a new, smaller pulse width value may cause the compare  
to be missed. The TIMA may pass the new value before it is written to  
the TIMA channel registers.  
Use this method to synchronize unbuffered changes in the PWM pulse  
width on channel x:  
When changing to a shorter pulse width, enable channel x output  
compare interrupts and write the new value in the output compare  
interrupt routine. The output compare interrupt occurs at the end  
of the current pulse. The interrupt routine has until the end of the  
PWM period to write the new value.  
When changing to a longer pulse width, enable TIMA overflow  
interrupts and write the new value in the TIMA overflow interrupt  
routine. The TIMA overflow interrupt occurs at the end of the  
current PWM period. Writing a larger value in an output compare  
interrupt routine (at the end of the current pulse) could cause two  
output compares to occur in the same PWM period.  
NOTE: In PWM signal generation, do not program the PWM channel to toggle  
on output compare. Toggling on output compare prevents reliable  
0 percent duty cycle generation and removes the ability of the channel  
to self-correct in the event of software error or noise. Toggling on output  
compare also can cause incorrect PWM signal generation when  
changing the PWM pulse width to a new, much larger value.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Timer Interface A (TIMA)  
AdvanceInformation  
209  
Timer Interface A (TIMA)  
11.4.4.2 Buffered PWM Signal Generation  
Channels 0 and 1 can be linked to form a buffered PWM channel whose  
output appears on the PTE4/TCH0A pin. The TIMA channel registers of  
the linked pair alternately control the pulse width of the output.  
Setting the MS0B bit in TIMA channel 0 status and control register  
(TASC0) links channel 0 and channel 1. The TIMA channel 0 registers  
initially control the pulse width on the PTE4/TCH0A pin. Writing to the  
TIMA channel 1 registers enables the TIMA channel 1 registers to  
synchronously control the pulse width at the beginning of the next PWM  
period. At each subsequent overflow, the TIMA channel registers  
(0 or 1) that control the pulse width are the ones written to last. TASC0  
controls and monitors the buffered PWM function, and TIMA channel 1  
status and control register (TASC1) is unused. While the MS0B bit is set,  
the channel 1 pin, PTE5/TCH1A, is available as a general-purpose  
I/O pin.  
Channels 2 and 3 can be linked to form a buffered PWM channel whose  
output appears on the PTE6/TCH2A pin. The TIMA channel registers of  
the linked pair alternately control the pulse width of the output.  
Setting the MS2B bit in TIMA channel 2 status and control register  
(TASC2) links channel 2 and channel 3. The TIMA channel 2 registers  
initially control the pulse width on the PTE6/TCH2A pin. Writing to the  
TIMA channel 3 registers enables the TIMA channel 3 registers to  
synchronously control the pulse width at the beginning of the next PWM  
period. At each subsequent overflow, the TIMA channel registers  
(2 or 3) that control the pulse width are written to last. TASC2 controls  
and monitors the buffered PWM function, and TIMA channel 3 status  
and control register (TASC3) is unused. While the MS2B bit is set, the  
channel 3 pin, PTE7/TCH3A, is available as a general-purpose  
I/O pin.  
NOTE: In buffered PWM signal generation, do not write new pulse width values  
to the currently active channel registers. User software should track the  
currently active channel to prevent writing a new value to the active  
channel. Writing to the active channel registers is the same as  
generating unbuffered PWM signals.  
Advance Information  
210  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Timer Interface A (TIMA) MOTOROLA  
Timer Interface A (TIMA)  
Functional Description  
11.4.4.3 PWM Initialization  
To ensure correct operation when generating unbuffered or buffered  
PWM signals, use this initialization procedure:  
1. In the TIMA status and control register (TASC):  
a. Stop the TIMA counter by setting the TIMA stop bit, TSTOP.  
b. Reset the TIMA counter and prescaler by setting the TIMA  
reset bit, TRST.  
2. In the TIMA counter modulo registers (TAMODHTAMODL), write  
the value for the required PWM period.  
3. In the TIMA channel x registers (TACHxHTACHxL), write the  
value for the required pulse width.  
4. In TIMA channel x status and control register (TSCx):  
a. Write 0:1 (for unbuffered output compare or PWM signals) or  
1:0 (for buffered output compare or PWM signals) to the mode  
select bits, MSxBMSxA. (See Table 11-2.)  
b. Write 1 to the toggle-on-overflow bit, TOVx.  
c. Write 1:0 (to clear output on compare) or 1:1 (to set output on  
compare) to the edge/level select bits, ELSxBELSxA. The  
output action on compare must force the output to the  
complement of the pulse width level. (See Table 11-2.)  
NOTE: In PWM signal generation, do not program the PWM channel to toggle  
on output compare. Toggling on output compare prevents reliable  
0 percent duty cycle generation and removes the ability of the channel  
to self-correct in the event of software error or noise. Toggling on output  
compare can also cause incorrect PWM signal generation when  
changing the PWM pulse width to a new, much larger value.  
5. In the TIMA status control register (TASC), clear the TIMA stop bit,  
TSTOP.  
Setting MS0B links channels 0 and 1 and configures them for buffered  
PWM operation. The TIMA channel 0 registers (TACH0HTACH0L)  
initially control the buffered PWM output. TIMA status control register 0  
(TASC0) controls and monitors the PWM signal from the linked  
channels. MS0B takes priority over MS0A.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Timer Interface A (TIMA)  
AdvanceInformation  
211  
Timer Interface A (TIMA)  
Setting MS2B links channels 2 and 3 and configures them for buffered  
PWM operation. The TIMA channel 2 registers (TACH2HTACH2L)  
initially control the buffered PWM output. TIMA status control register 2  
(TASC2) controls and monitors the PWM signal from the linked  
channels. MS2B takes priority over MS2A.  
Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on  
TIMA overflows. Subsequent output compares try to force the output to  
a state it is already in and have no effect. The result is a 0 percent duty  
cycle output.  
Setting the channel x maximum duty cycle bit (CHxMAX) and setting the  
TOVx bit generates a 100 percent duty cycle output. (See  
11.8.4 TIMA Channel Status and Control Registers.)  
11.5 Interrupts  
These TIMA sources can generate interrupt requests:  
TIMA overflow flag (TOF) The timer overflow flag (TOF) bit is  
set when the TIMA counter reads the modulo value programmed  
in the TIMA counter modulo registers. The TIMA overflow interrupt  
enable bit, TOIE, enables TIMA overflow interrupt requests. TOF  
and TOIE are in the TIMA status and control registers.  
TIMA channel flags (CH3FCH0F) The CHxF bit is set when an  
input capture or output compare occurs on channel x. Channel x  
TIMA CPU interrupt requests are controlled by the channel x  
interrupt enable bit, CHxIE.  
11.6 Wait Mode  
The WAIT instruction puts the MCU in low power-consumption standby  
mode.  
The TIMA remains active after the execution of a WAIT instruction. In  
wait mode, the TIMA registers are not accessible by the CPU. Any  
enabled CPU interrupt request from the TIMA can bring the MCU out of  
wait mode.  
Advance Information  
212  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Timer Interface A (TIMA)  
MOTOROLA  
Timer Interface A (TIMA)  
I/O Signals  
If TIMA functions are not required during wait mode, reduce power  
consumption by stopping the TIMA before executing the WAIT  
instruction.  
11.7 I/O Signals  
Port E shares five of its pins with the TIMA:  
PTE3/TCLKA is an external clock input to the TIMA prescaler.  
The four TIMA channel I/O pins are PTE4/TCH0A, PTE5/TCH1A,  
PTE6/TCH2A, and PTE7/TCH3A.  
11.7.1 TIMA Clock Pin (PTE3/TCLKA)  
PTE3/TCLKA is an external clock input that can be the clock source for  
the TIMA counter instead of the prescaled internal bus clock. Select the  
PTE3/TCLKA input by writing logic 1s to the three prescaler select bits,  
PS[2:0]. See 11.8.1 TIMA Status and Control Register. The minimum  
TCLK pulse width, TCLKLMIN or TCLKHMIN, is:  
1
------------------------------------- + t SU  
bus frequency  
The maximum TCLK frequency is the least: 4 MHz or bus frequency ÷ 2.  
PTE3/TCLKA is available as a general-purpose I/O pin or ADC channel  
when not used as the TIMA clock input. When the PTE3/TCLKA pin is  
the TIMA clock input, it is an input regardless of the state of the DDRE3  
bit in data direction register E.  
11.7.2 TIMA Channel I/O Pins (PTE4/TCH0A–PTE7/TCH3A)  
Each channel I/O pin is programmable independently as an input  
capture pin or an output compare pin. PTE2/TCH0 and PTE4/TCH2 can  
be configured as buffered output compare or buffered PWM pins.  
MC68HC908MR16/MC68HC908MR32 — Rev. 5.0  
MOTOROLA Timer Interface A (TIMA)  
AdvanceInformation  
213  
Timer Interface A (TIMA)  
11.8 I/O Registers  
These input/output (I/O) registers control and monitor TIMA operation:  
TIMA status and control register (TASC)  
TIMA control registers (TACNTHTACNTL)  
TIMA counter modulo registers (TAMODHTAMODL)  
TIMA channel status and control registers (TASC0, TASC1,  
TASC2, and TASC3)  
TIMA channel registers (TACH0HTACH0L, TACH1HTACH1L,  
TACH2HTACH2L, and TACH3HTACH3L)  
11.8.1 TIMA Status and Control Register  
The TIMA status and control register:  
Enables TIMA overflow interrupts  
Flags TIMA overflows  
Stops the TIMA counter  
Resets the TIMA counter  
Prescales the TIMA counter clock  
Address: $000E  
Bit 7  
TOF  
0
6
5
TSTOP  
1
4
0
3
0
2
PS2  
0
1
PS1  
0
Bit 0  
PS0  
0
Read:  
Write:  
Reset:  
TOIE  
TRST  
0
R
0
0
0
R
=Reserved  
Figure 11-4. TIMA Status and Control Register (TASC)  
TOF TIMA Overflow Flag  
This read/write flag is set when the TIMA counter reaches the modulo  
value programmed in the TIMA counter modulo registers. Clear TOF  
by reading the TIMA status and control register when TOF is set and  
then writing a logic 0 to TOF. If another TIMA overflow occurs before  
the clearing sequence is complete, then writing logic 0 to TOF has no  
effect. Therefore, a TOF interrupt request cannot be lost due to  
Advance Information  
214  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Timer Interface A (TIMA)  
MOTOROLA  
Timer Interface A (TIMA)  
I/O Registers  
inadvertent clearing of TOF. Reset clears the TOF bit. Writing a  
logic 1 to TOF has no effect.  
1 = TIMA counter has reached modulo value.  
0 = TIMA counter has not reached modulo value.  
TOIE TIMA Overflow Interrupt Enable Bit  
This read/write bit enables TIMA overflow interrupts when the TOF bit  
becomes set. Reset clears the TOIE bit.  
1 = TIMA overflow interrupts enabled  
0 = TIMA overflow interrupts disabled  
TSTOP TIMA Stop Bit  
This read/write bit stops the TIMA counter. Counting resumes when  
TSTOP is cleared. Reset sets the TSTOP bit, stopping the TIMA  
counter until software clears the TSTOP bit.  
1 = TIMA counter stopped  
0 = TIMA counter active  
NOTE: Do not set the TSTOP bit before entering wait mode if the TIMA is  
required to exit wait mode. Also when the TSTOP bit is set and the timer  
is configured for input capture operation, input captures are inhibited  
until the TSTOP bit is cleared.  
TRST TIMA Reset Bit  
Setting this write-only bit resets the TIMA counter and the TIMA  
prescaler. Setting TRST has no effect on any other registers.  
Counting resumes from $0000. TRST is cleared automatically after  
the TIMA counter is reset and always reads as logic 0. Reset clears  
the TRST bit.  
1 = Prescaler and TIMA counter cleared  
0 = No effect  
NOTE: Setting the TSTOP and TRST bits simultaneously stops the TIMA  
counter at a value of $0000.  
PS[2:0] Prescaler Select Bits  
These read/write bits select either the PTD6/ATD14/TCLK pin or one  
of the seven prescaler outputs as the input to the TIMA counter as  
Table 11-1 shows. Reset clears the PS[2:0] bits.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Timer Interface A (TIMA)  
AdvanceInformation  
215  
Timer Interface A (TIMA)  
Table 11-1. Prescaler Selection  
PS[2:0]  
TIMA Clock Source  
Internal bus clock ÷1  
Internal bus clock ÷ 2  
Internal bus clock ÷ 4  
Internal bus clock ÷ 8  
Internal bus clock ÷ 16  
Internal bus clock ÷ 32  
Internal bus clock ÷ 64  
PTE3/TCLKA  
000  
001  
010  
011  
100  
101  
110  
111  
11.8.2 TIMA Counter Registers  
The two read-only TIMA counter registers contain the high and low bytes  
of the value in the TIMA counter. Reading the high byte (TACNTH)  
latches the contents of the low byte (TACNTL) into a buffer. Subsequent  
reads of TACNTH do not affect the latched TACNTL value until TACNTL  
is read. Reset clears the TIMA counter registers. Setting the TIMA reset  
bit (TRST) also clears the TIMA counter registers.  
NOTE: If TACNTH is read during a break interrupt, be sure to unlatch TACNTL  
by reading TACNTL before exiting the break interrupt. Otherwise,  
TACNTL retains the value latched during the break.  
Register Name and Address: TACNTH $000F  
Bit 7  
6
Bit 14  
R
5
Bit 13  
R
4
Bit 12  
R
3
Bit 11  
R
2
Bit 10  
R
1
Bit 9  
R
Bit 0  
Bit 8  
R
Read: Bit 15  
Write:  
Reset:  
R
0
0
0
0
0
0
0
0
Register Name and Address: TACNTL $0010  
Bit 7  
Bit 7  
R
6
5
Bit 5  
R
4
Bit 4  
R
3
Bit 3  
R
2
Bit 2  
R
1
Bit 1  
R
Bit 0  
Bit 0  
R
Read:  
Write:  
Reset:  
Bit 6  
R
0
0
0
0
0
0
0
0
R
=Reserved  
Figure 11-5. TIMA Counter Registers (TACNTH and TACNTL)  
Advance Information  
216  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Timer Interface A (TIMA)  
MOTOROLA  
Timer Interface A (TIMA)  
I/O Registers  
11.8.3 TIMA Counter Modulo Registers  
The read/write TIMA modulo registers contain the modulo value for the  
TIMA counter. When the TIMA counter reaches the modulo value, the  
overflow flag (TOF) becomes set, and the TIMA counter resumes  
counting from $0000 at the next timer clock. Writing to the high byte  
(TAMODH) inhibits the TOF bit and overflow interrupts until the low byte  
(TAMODL) is written. Reset sets the TIMA counter modulo registers.  
Register Name and Address: TAMODH $0011  
Bit 7  
Bit 15  
1
6
Bit 14  
1
5
Bit 13  
1
4
Bit 12  
1
3
Bit 11  
1
2
Bit 10  
1
1
Bit 9  
1
Bit 0  
Bit 8  
1
Read:  
Write:  
Reset:  
Register Name and Address: TAMODL $0012  
Bit 7  
Bit 7  
1
6
Bit 6  
1
5
Bit 5  
1
4
Bit 4  
1
3
Bit 3  
1
2
Bit 2  
1
1
Bit 1  
1
Bit 0  
Bit 0  
1
Read:  
Write:  
Reset:  
Figure 11-6. TIMA Counter Modulo Registers  
(TAMODH and TAMODL)  
NOTE: Reset the TIMA counter before writing to the TIMA counter modulo  
registers.  
11.8.4 TIMA Channel Status and Control Registers  
Each of the TIMA channel status and control registers:  
Flags input captures and output compares  
Enables input capture and output compare interrupts  
Selects input capture, output compare, or PWM operation  
Selects high, low, or toggling output on output compare  
Selects rising edge, falling edge, or any edge as the active input  
capture trigger  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Timer Interface A (TIMA)  
AdvanceInformation  
217  
Timer Interface A (TIMA)  
Selects output toggling on TIMA overflow  
Selects 0 percent and 100 percent PWM duty cycle  
Selects buffered or unbuffered output compare/PWM operation  
Register Name and Address: TASC0 $0013  
Bit 7  
6
CH0IE  
0
5
MS0B  
0
4
MS0A  
0
3
ELS0B  
0
2
ELS0A  
0
1
TOV0  
0
Bit 0  
CH0MAX  
0
Read: CH0F  
Write:  
0
0
Reset:  
Register Name and Address: TASC1 $0016  
Bit 7  
6
CH1IE  
0
5
0
4
MS1A  
0
3
ELS1B  
0
2
ELS1A  
0
1
TOV1  
0
Bit 0  
CH1MAX  
0
Read: CH1F  
Write:  
0
0
R
0
Reset:  
Register Name and Address: TASC2 $0019  
Bit 7  
6
CH2IE  
0
5
MS2B  
0
4
MS2A  
0
3
ELS2B  
0
2
ELS2A  
0
1
TOV2  
0
Bit 0  
CH2MAX  
0
Read: CH2F  
Write:  
0
0
Reset:  
Register Name and Address: TASC3 $001C  
Bit 7  
6
5
0
4
MS3A  
0
3
ELS3B  
0
2
ELS3A  
0
1
TOV3  
0
Bit 0  
CH3MAX  
0
Read: CH3F  
CH3IE  
Write:  
0
0
R
0
Reset:  
0
R
=Reserved  
Figure 11-7. TIMA Channel Status  
and Control Registers (TASC0TASC3)  
Advance Information  
218  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Timer Interface A (TIMA) MOTOROLA  
Timer Interface A (TIMA)  
I/O Registers  
CHxF Channel x Flag Bit  
When channel x is an input capture channel, this read/write bit is set  
when an active edge occurs on the channel x pin. When channel x is  
an output compare channel, CHxF is set when the value in the TIMA  
counter registers matches the value in the TIMA channel x registers.  
When CHxIE = 1, clear CHxF by reading TIMA channel x status and  
control register with CHxF set, and then writing a logic 0 to CHxF. If  
another interrupt request occurs before the clearing sequence is  
complete, then writing logic 0 to CHxF has no effect. Therefore, an  
interrupt request cannot be lost due to inadvertent clearing of CHxF.  
Reset clears the CHxF bit. Writing a logic 1 to CHxF has no effect.  
1 = Input capture or output compare on channel x  
0 = No input capture or output compare on channel x  
CHxIE Channel x Interrupt Enable Bit  
This read/write bit enables TIMA CPU interrupts on channel x.  
Reset clears the CHxIE bit.  
1 = Channel x CPU interrupt requests enabled  
0 = Channel x CPU interrupt requests disabled  
MSxB Mode Select Bit B  
This read/write bit selects buffered output compare/PWM operation.  
MSxB exists only in the TIMA channel 0 and TIMA channel 2 status  
and control registers.  
Setting MS0B disables the channel 1 status and control register and  
reverts TCH1A pin to general-purpose I/O.  
Setting MS2B disables the channel 3 status and control register and  
reverts TCH3A pin to general-purpose I/O.  
Reset clears the MSxB bit.  
1 = Buffered output compare/PWM operation enabled  
0 = Buffered output compare/PWM operation disabled  
MSxA Mode Select Bit A  
When ELSxB:A 00, this read/write bit selects either input capture  
operation or unbuffered output compare/PWM operation.  
See Table 11-2.  
1 = Unbuffered output compare/PWM operation  
0 = Input capture operation  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Timer Interface A (TIMA)  
AdvanceInformation  
219  
Timer Interface A (TIMA)  
When ELSxB:A = 00, this read/write bit selects the initial output level  
of the TCHxA pin once PWM, input capture, or output compare  
operation is enabled. See Table 11-2. Reset clears the MSxA bit.  
1 = Initial output level low  
0 = Initial output level high  
NOTE: Before changing a channel function by writing to the MSxB or MSxA bit,  
set the TSTOP and TRST bits in the TIMA status and control register  
(TASC).  
ELSxB and ELSxA Edge/Level Select Bits  
When channel x is an input capture channel, these read/write bits  
control the active edge-sensing logic on channel x.  
When channel x is an output compare channel, ELSxB and ELSxA  
control the channel x output behavior when an output compare  
occurs.  
When ELSxB and ELSxA are both clear, channel x is not connected  
to port E, and pin PTEx/TCHxA is available as a general-purpose I/O  
pin. However, channel x is at a state determined by these bits and  
becomes transparent to the respective pin when PWM, input capture,  
or output compare mode is enabled. Table 11-2 shows how ELSxB  
and ELSxA work. Reset clears the ELSxB and ELSxA bits.  
Table 11-2. Mode, Edge, and Level Selection  
MSxB:MSxA ELSxB:ELSxA  
Mode  
Configuration  
Pin under port control; initialize timer output level high  
Pin under port control; initialize timer output level low  
Capture on rising edge only  
X0  
X1  
00  
00  
00  
01  
01  
01  
1X  
1X  
1X  
00  
00  
01  
10  
11  
01  
10  
11  
01  
10  
11  
Output preset  
Input capture  
Capture on falling edge only  
Capture on rising or falling edge  
Toggle output on compare  
Output  
compare  
or PWM  
Clear output on compare  
Set output on compare  
Toggle output on compare  
Buffered  
output compare  
or buffered PWM  
Clear output on compare  
Set output on compare  
Advance Information  
220  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Timer Interface A (TIMA)  
MOTOROLA  
 
Timer Interface A (TIMA)  
I/O Registers  
NOTE: Before enabling a TIMA channel register for input capture operation,  
make sure that the PTEx/TACHx pin is stable for at least two bus clocks.  
TOVx Toggle-On-Overflow Bit  
When channel x is an output compare channel, this read/write bit  
controls the behavior of the channel x output when the TIMA counter  
overflows. When channel x is an input capture channel, TOVx has no  
effect. Reset clears the TOVx bit.  
1 = Channel x pin toggles on TIMA counter overflow.  
0 = Channel x pin does not toggle on TIMA counter overflow.  
NOTE: When TOVx is set, a TIMA counter overflow takes precedence over a  
channel x output compare if both occur at the same time.  
CHxMAX Channel x Maximum Duty Cycle Bit  
When the TOVx is at logic 1 and clear output on compare is selected,  
setting the CHxMAX bit forces the duty cycle of buffered and  
unbuffered PWM signals to 100 percent. As Figure 11-8 shows,  
CHxMAX bit takes effect in the cycle after it is set or cleared. The  
output stays at 100 percent duty cycle level until the cycle after  
CHxMAX is cleared.  
NOTE: The PWM 0 percent duty cycle is defined as output low all of the time.To  
generate the 0 percent duty cycle select clear output on compare and  
then clear the TOVx bit (CHxMAX = 0). The PWM 100 percent duty cycle  
is defined as output high all of the time. To generate the 100 percent duty  
cycle, use the CHxMAX bit in the TSCx register.  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
PTEx/TCHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
CHxMAX  
TOVx  
Figure 11-8. CHxMAX Latency  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Timer Interface A (TIMA)  
AdvanceInformation  
221  
 
Timer Interface A (TIMA)  
11.8.5 TIMA Channel Registers  
These read/write registers contain the captured TIMA counter value of  
the input capture function or the output compare value of the output  
compare function. The state of the TIMA channel registers after reset is  
unknown.  
In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the  
TIMA channel x registers (TACHxH) inhibits input captures until the low  
byte (TACHxL) is read.  
In output compare mode (MSxB:MSxA 0:0), writing to the high byte of  
the TIMA channel x registers (TACHxH) inhibits output compares until  
the low byte (TACHxL) is written.  
Register Name and Address: TACH0H $0014  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Indeterminate after reset  
Register Name and Address: TACH0L $0015  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Indeterminate after reset  
Register Name and Address: TACH1H $0017  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Indeterminate after reset  
Figure 11-9. TIMA Channel Registers  
(TACH0H/LTACH3H/L)  
Advance Information  
222  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Timer Interface A (TIMA) MOTOROLA  
Timer Interface A (TIMA)  
I/O Registers  
Register Name and Address: TACH1L $0018  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Indeterminate after reset  
Register Name and Address: TACH2H $001A  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Indeterminate after reset  
Register Name and Address: TACH2L $001B  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Indeterminate after reset  
Register Name and Address: TACH3H $001D  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Indeterminate after reset  
Register Name and Address: TACH3L $001E  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Indeterminate after reset  
Figure 11-9. TIMA Channel Registers  
(TACH0H/LTACH3H/L) (Continued)  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Timer Interface A (TIMA)  
AdvanceInformation  
223  
Timer Interface A (TIMA)  
Advance Information  
224  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Timer Interface A (TIMA) MOTOROLA  
Advance Information MC68HC908MR16/MC68HC908MR32  
Section 12. Timer Interface B (TIMB)  
12.1 Contents  
12.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226  
12.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226  
12.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226  
12.4.1 TIMB Counter Prescaler. . . . . . . . . . . . . . . . . . . . . . . . . . .227  
12.4.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229  
12.4.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230  
12.4.3.1  
12.4.3.2  
Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . .230  
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .231  
12.4.4 Pulse-Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . .232  
12.4.4.1  
12.4.4.2  
12.4.4.3  
Unbuffered PWM Signal Generation . . . . . . . . . . . . . . .233  
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . .234  
PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234  
12.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236  
12.6 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236  
12.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236  
12.7.1 TIMB Clock Pin (PTD4/ATD12) . . . . . . . . . . . . . . . . . . . . .237  
12.7.2 TIMB Channel I/O Pins  
(PTE1/TCH0BPTE2/TCH1B) . . . . . . . . . . . . . . . . . . .237  
12.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237  
12.8.1 TIMB Status and Control Register . . . . . . . . . . . . . . . . . . .238  
12.8.2 TIMB Counter Registers. . . . . . . . . . . . . . . . . . . . . . . . . . .240  
12.8.3 TIMB Counter Modulo Registers . . . . . . . . . . . . . . . . . . . .241  
12.8.4 TIMB Channel Status and Control Registers . . . . . . . . . . .242  
12.8.5 TIMB Channel Registers . . . . . . . . . . . . . . . . . . . . . . . . . .246  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Timer Interface B (TIMB)  
Advance Information  
225  
Timer Interface B (TIMB)  
12.2 Introduction  
This section describes the timer interface module B (TIMB). The TIMB is  
a 2-channel timer that provides:  
Timing reference with input capture  
Output compare  
Pulse-width modulation functions  
Figure 12-1 is a block diagram of the TIMB.  
NOTE: The TIMB module is not available in the 56-pin shrink dual in-line  
package (SDIP).  
12.3 Features  
Features of the TIMB include:  
Two input capture/output compare channels:  
Rising-edge, falling-edge, or any-edge input capture trigger  
Set, clear, or toggle output compare action  
Buffered and unbuffered pulse-width modulation (PWM) signal  
generation  
Programmable TIMB clock input:  
7-frequency internal bus clock prescaler selection  
External TIMB clock input (4-MHz maximum frequency)  
Free-running or modulo up-count operation  
Toggle any channel pin on overflow  
TIMB counter stop and reset bits  
12.4 Functional Description  
Figure 12-1 shows the TIMB structure. The central component of the  
TIMB is the 16-bit TIMB counter that can operate as a free-running  
counter or a modulo up-counter. The TIMB counter provides the timing  
reference for the input capture and output compare functions. The TIMB  
counter modulo registers, TBMODHTBMODL, control the modulo  
value of the TIMB counter. Software can read the TIMB counter value at  
any time without affecting the counting sequence.  
Advance Information  
226  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Timer Interface B (TIMB)  
MOTOROLA  
Timer Interface B (TIMB)  
Functional Description  
TCLK  
PTE0/TCLKB  
PRESCALER SELECT  
INTERNAL  
BUS CLOCK  
PRESCALER  
TSTOP  
TRST  
PS2  
PS1  
PS0  
16-BIT COUNTER  
INTER-  
RUPT  
LOGIC  
TOF  
TOIE  
16-BIT COMPARATOR  
TMODH:TMODL  
ELS0B  
ELS0A  
ELS1A  
CHANNEL 0  
16-BIT COMPARATOR  
TCH0H:TCH0L  
TOV0  
CH0MAX  
PTE1  
PTE1/TCH0B  
PTE2/TCH1B  
LOGIC  
CH0F  
MS0B  
INTER-  
RUPT  
LOGIC  
16-BIT LATCH  
CH0IE  
MS0A  
ELS1B  
CHANNEL 1  
16-BIT COMPARATOR  
TCH1H:TCH1L  
TOV1  
CH1MAX  
PTE2  
LOGIC  
CH1F  
INTER-  
RUPT  
LOGIC  
16-BIT LATCH  
CH1IE  
MS1A  
Figure 12-1. TIMB Block Diagram  
The two TIMB channels are programmable independently as input  
capture or output compare channels.  
NOTE: The TIMB module is not available in the 56-pin SDIP.  
12.4.1 TIMB Counter Prescaler  
The TIMB clock source can be one of the seven prescaler outputs or the  
TIMB clock pin, PTD4/ATD12. The prescaler generates seven clock  
rates from the internal bus clock. The prescaler select bits, PS[2:0], in  
the TIMB status and control register select the TIMB clock source.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Timer Interface B (TIMB)  
AdvanceInformation  
227  
Timer Interface B (TIMB)  
Addr.  
Register Name  
Bit 7  
6
5
4
0
3
0
2
1
Bit 0  
Read: TOF  
TIMB Status/Control Register  
TOIE  
TSTOP  
PS2  
PS1  
PS0  
$0051  
(TBSC) Write:  
0
0
TRST  
0
R
See page 238.  
TIMB Counter Register High  
See page 240.  
Reset:  
0
Bit 14  
R
1
Bit 13  
R
0
0
Bit 10  
R
0
Bit 9  
R
0
Bit 8  
R
Read: Bit 15  
Bit 12  
R
Bit 11  
R
$0052  
$0053  
$0054  
$0055  
$0056  
$0057  
$0058  
$0059  
$005A  
$005B  
(TBCNTH) Write:  
R
0
Reset:  
0
0
0
0
0
0
0
Read: Bit 7  
Bit 6  
R
Bit 5  
R
Bit 4  
R
Bit 3  
R
Bit 2  
R
Bit 1  
R
Bit 0  
R
TIMB Counter Register Low  
See page 240.  
(TBCNTL) Write:  
R
0
Reset:  
Read:  
0
0
0
0
0
0
0
TIMB Counter Modulo Register  
Bit 15  
1
Bit 14  
1
Bit 13  
1
Bit 12  
1
Bit 11  
1
Bit 10  
1
Bit 9  
1
Bit 8  
1
High (TBMODH) Write:  
See page 241.  
Reset:  
Read:  
TIMB Counter Modulo Register  
Bit 7  
1
Bit 6  
1
Bit 5  
1
Bit 4  
1
Bit 3  
1
Bit 2  
1
Bit 1  
1
Bit 0  
1
Low (TBMODL) Write:  
See page 241.  
Reset:  
Read: CH0F  
TIMB Channel 0 Status/Control  
(TBSC0) See page 242.  
CH0IE  
0
MS0B  
0
MS0A  
0
ELS0B  
0
ELS0A  
0
TOV0 CH0MAX  
Register Write:  
0
0
Reset:  
Read:  
0
0
TIMB Channel 0 Register High  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
(TBCH0H) Write:  
See page 246.  
Reset:  
Read:  
Indeterminate after reset  
Bit 4 Bit 3  
Indeterminate after reset  
TIMB Channel 0 Register Low  
Bit 7  
Bit 6  
Bit 5  
Bit 2  
Bit 1  
Bit 0  
(TBCH0L) Write:  
See page 246.  
Reset:  
Read: CH1F  
0
R
0
TIMB Channel 1 Status/Control  
(TBSC1) See page 242.  
CH1IE  
0
MS1A  
0
ELS1B  
0
ELS1A  
0
TOV1 CH1MAX  
Register Write:  
0
0
Reset:  
Read:  
0
0
TIMB Channel 1 Register High  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
(TBCH1H) Write:  
See page 246.  
Reset:  
Read:  
Indeterminate after reset  
Bit 4 Bit 3  
Indeterminate after reset  
TIMB Channel 1 Register Low  
Bit 7  
R
Bit 6  
Bit 5  
Bit 2  
Bit 1  
Bit 0  
(TBCH1L) Write:  
See page 246.  
Reset:  
=Reserved  
Figure 12-2. TIMB I/O Register Summary  
Advance Information  
228  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Timer Interface B (TIMB) MOTOROLA  
Timer Interface B (TIMB)  
Functional Description  
12.4.2 Input Capture  
An input capture function has three basic parts:  
1. Edge select logic  
2. Input capture latch  
3. 16-bit counter  
Two 8-bit registers, which make up the 16-bit input capture register, are  
used to latch the value of the free-running counter after the  
corresponding input capture edge detector senses a defined transition.  
The polarity of the active edge is programmable. The level transition  
which triggers the counter transfer is defined by the corresponding input  
edge bits (ELSxB and ELSxA in TBSC0TBSC1 control registers with x  
referring to the active channel number). When an active edge occurs on  
the pin of an input capture channel, the TIMB latches the contents of the  
TIMB counter into the TIMB channel registers, TCHxHTCHxL. Input  
captures can generate TIMB CPU interrupt requests. Software can  
determine that an input capture event has occurred by enabling input  
capture interrupts or by polling the status flag bit.  
The free-running counter contents are transferred to the TIMB channel  
status and control register (TBCHxHTBCHxL, see 12.8.5 TIMB  
Channel Registers) on each proper signal transition regardless of  
whether the TIMB channel flag (CH0FCH1F in TBSC0TBSC1  
registers) is set or clear. When the status flag is set, a CPU interrupt is  
generated if enabled. The value of the count latched or capturedis the  
time of the event. Because this value is stored in the input capture  
register two bus cycles after the actual event occurs, user software can  
respond to this event at a later time and determine the actual time of the  
event. However, this must be done prior to another input capture on the  
same pin; otherwise, the previous time value will be lost.  
By recording the times for successive edges on an incoming signal,  
software can determine the period and/or pulse width of the signal. To  
measure a period, two successive edges of the same polarity are  
captured. To measure a pulse width, two alternate polarity edges are  
captured. Software should track the overflows at the 16-bit module  
counter to extend its range.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Timer Interface B (TIMB)  
AdvanceInformation  
229  
Timer Interface B (TIMB)  
Another use for the input capture function is to establish a time  
reference. In this case, an input capture function is used in conjunction  
with an output compare function. For example, to activate an output  
signal a specified number of clock cycles after detecting an input event  
(edge), use the input capture function to record the time at which the  
edge occurred. A number corresponding to the desired delay is added to  
this captured value and stored to an output compare register (see 12.8.5  
TIMB Channel Registers). Because both input captures and output  
compares are referenced to the same 16-bit modulo counter, the delay  
can be controlled to the resolution of the counter independent of  
software latencies.  
Reset does not affect the contents of the input capture channel register  
(TBCHxHTBCHxL).  
12.4.3 Output Compare  
With the output compare function, the TIMB can generate a periodic  
pulse with a programmable polarity, duration, and frequency. When the  
counter reaches the value in the registers of an output compare channel,  
the TIMB can set, clear, or toggle the channel pin. Output compares can  
generate TIMB CPU interrupt requests.  
12.4.3.1 Unbuffered Output Compare  
Any output compare channel can generate unbuffered output compare  
pulses as described in 12.4.3 Output Compare. The pulses are  
unbuffered because changing the output compare value requires writing  
the new value over the old value currently in the TIMB channel registers.  
An unsynchronized write to the TIMB channel registers to change an  
output compare value could cause incorrect operation for up to two  
counter overflow periods. For example, writing a new value before the  
counter reaches the old value but after the counter reaches the new  
value prevents any compare during that counter overflow period. Also,  
using a TIMB overflow interrupt routine to write a new, smaller output  
compare value may cause the compare to be missed. The TIMB may  
pass the new value before it is written.  
Advance Information  
230  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Timer Interface B (TIMB)  
MOTOROLA  
 
Timer Interface B (TIMB)  
Functional Description  
Use this method to synchronize unbuffered changes in the output  
compare value on channel x:  
When changing to a smaller value, enable channel x output  
compare interrupts and write the new value in the output compare  
interrupt routine. The output compare interrupt occurs at the end  
of the current output compare pulse. The interrupt routine has until  
the end of the counter overflow period to write the new value.  
When changing to a larger output compare value, enable TIMB  
overflow interrupts and write the new value in the TIMB overflow  
interrupt routine. The TIMB overflow interrupt occurs at the end of  
the current counter overflow period. Writing a larger value in an  
output compare interrupt routine (at the end of the current pulse)  
could cause two output compares to occur in the same counter  
overflow period.  
12.4.3.2 Buffered Output Compare  
Channels 0 and 1 can be linked to form a buffered output compare  
channel whose output appears on the PTE1/TCH0B pin. The TIMB  
channel registers of the linked pair alternately control the output.  
Setting the MS0B bit in TIMB channel 0 status and control register  
(TBSC0) links channel 0 and channel 1. The output compare value in the  
TIMB channel 0 registers initially controls the output on the  
PTE1/TCH0B pin. Writing to the TIMB channel 1 registers enables the  
TIMB channel 1 registers to synchronously control the output after the  
TIMB overflows. At each subsequent overflow, the TIMB channel  
registers (0 or 1) that control the output are the ones written to last. TSC0  
controls and monitors the buffered output compare function, and TIMB  
channel 1 status and control register (TBSC1) is unused. While the  
MS0B bit is set, the channel 1 pin, PTE2/TCH1B, is available as a  
general-purpose I/O pin.  
NOTE: In buffered output compare operation, do not write new output compare  
values to the currently active channel registers. User software should  
track the currently active channel to prevent writing a new value to the  
active channel. Writing to the active channel registers is the same as  
generating unbuffered output compares.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Timer Interface B (TIMB)  
AdvanceInformation  
231  
Timer Interface B (TIMB)  
12.4.4 Pulse-Width Modulation (PWM)  
By using the toggle-on-overflow feature with an output compare channel,  
the TIMB can generate a PWM signal. The value in the TIMB counter  
modulo registers determines the period of the PWM signal. The channel  
pin toggles when the counter reaches the value in the TIMB counter  
modulo registers. The time between overflows is the period of the PWM  
signal.  
As Figure 12-3 shows, the output compare value in the TIMB channel  
registers determines the pulse width of the PWM signal. The time  
between overflow and output compare is the pulse width. Program the  
TIMB to clear the channel pin on output compare if the state of the PWM  
pulse is logic 1. Program the TIMB to set the pin if the state of the PWM  
pulse is logic 0.  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
PULSE  
WIDTH  
PTEx/TCHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
Figure 12-3. PWM Period and Pulse Width  
The value in the TIMB counter modulo registers and the selected  
prescaler output determines the frequency of the PWM output. The  
frequency of an 8-bit PWM signal is variable in 256 increments. Writing  
$00FF (255) to the TIMB counter modulo registers produces a PWM  
period of 256 times the internal bus clock period if the prescaler select  
value is $000 (see 12.8.1 TIMB Status and Control Register).  
The value in the TIMB channel registers determines the pulse width of  
the PWM output. The pulse width of an 8-bit PWM signal is variable in  
256 increments. Writing $0080 (128) to the TIMB channel registers  
produces a duty cycle of 128/256 or 50 percent.  
Advance Information  
232  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Timer Interface B (TIMB)  
MOTOROLA  
 
 
Timer Interface B (TIMB)  
Functional Description  
12.4.4.1 Unbuffered PWM Signal Generation  
Any output compare channel can generate unbuffered PWM pulses as  
described in 12.4.4 Pulse-Width Modulation (PWM). The pulses are  
unbuffered because changing the pulse width requires writing the new  
pulse width value over the value currently in the TIMB channel registers.  
An unsynchronized write to the TIMB channel registers to change a  
pulse width value could cause incorrect operation for up to two PWM  
periods. For example, writing a new value before the counter reaches  
the old value but after the counter reaches the new value prevents any  
compare during that PWM period. Also, using a TIMB overflow interrupt  
routine to write a new, smaller pulse width value may cause the compare  
to be missed. The TIMB may pass the new value before it is written to  
the TIMB channel registers.  
Use this method to synchronize unbuffered changes in the PWM pulse  
width on channel x:  
When changing to a shorter pulse width, enable channel x output  
compare interrupts and write the new value in the output compare  
interrupt routine. The output compare interrupt occurs at the end  
of the current pulse. The interrupt routine has until the end of the  
PWM period to write the new value.  
When changing to a longer pulse width, enable TIMB overflow  
interrupts and write the new value in the TIMB overflow interrupt  
routine. The TIMB overflow interrupt occurs at the end of the  
current PWM period. Writing a larger value in an output compare  
interrupt routine (at the end of the current pulse) could cause two  
output compares to occur in the same PWM period.  
NOTE: In PWM signal generation, do not program the PWM channel to toggle  
on output compare. Toggling on output compare prevents reliable  
0 percent duty cycle generation and removes the ability of the channel  
to self-correct in the event of software error or noise. Toggling on output  
compare also can cause incorrect PWM signal generation when  
changing the PWM pulse width to a new, much larger value.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Timer Interface B (TIMB)  
AdvanceInformation  
233  
Timer Interface B (TIMB)  
12.4.4.2 Buffered PWM Signal Generation  
Channels 0 and 1 can be linked to form a buffered PWM channel whose  
output appears on the PTE1/TCH0B pin. The TIMB channel registers of  
the linked pair alternately control the pulse width of the output.  
Setting the MS0B bit in TIMB channel 0 status and control register  
(TBSC0) links channel 0 and channel 1. The TIMB channel 0 registers  
initially control the pulse width on the PTE1/TCH0B pin. Writing to the  
TIMB channel 1 registers enables the TIMB channel 1 registers to  
synchronously control the pulse width at the beginning of the next PWM  
period. At each subsequent overflow, the TIMB channel registers  
(0 or 1) that control the pulse width are the ones written to last. TBSC0  
controls and monitors the buffered PWM function, and TIMB channel 1  
status and control register (TBSC1) is unused. While the MS0B bit is set,  
the channel 1 pin, PTE2/TCH1B, is available as a general-purpose  
I/O pin.  
NOTE: In buffered PWM signal generation, do not write new pulse width values  
to the currently active channel registers. User software should track the  
currently active channel to prevent writing a new value to the active  
channel. Writing to the active channel registers is the same as  
generating unbuffered PWM signals.  
12.4.4.3 PWM Initialization  
To ensure correct operation when generating unbuffered or buffered  
PWM signals, use this initialization procedure:  
1. In the TIMB status and control register (TBSC):  
a. Stop the TIMB counter by setting the TIMB stop bit, TSTOP.  
b. Reset the TIMB counter and prescaler by setting the TIMB  
reset bit, TRST.  
2. In the TIMB counter modulo registers (TBMODHTBMODL), write  
the value for the required PWM period.  
3. In the TIMB channel x registers (TBCHxHTBCHxL), write the  
value for the required pulse width.  
Advance Information  
234  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Timer Interface B (TIMB)  
MOTOROLA  
Timer Interface B (TIMB)  
Functional Description  
4. In TIMB channel x status and control register (TBSCx):  
a. Write 0:1 (for unbuffered output compare or PWM signals) or  
1:0 (for buffered output compare or PWM signals) to the mode  
select bits, MSxBMSxA. (See Table 12-2.)  
b. Write 1 to the toggle-on-overflow bit, TOVx.  
c. Write 1:0 (to clear output on compare) or 1:1 (to set output on  
compare) to the edge/level select bits, ELSxBELSxA. The  
output action on compare must force the output to the  
complement of the pulse width level. (See Table 12-2.)  
NOTE: In PWM signal generation, do not program the PWM channel to toggle  
on output compare. Toggling on output compare prevents reliable  
0 percent duty cycle generation and removes the ability of the channel  
to self-correct in the event of software error or noise. Toggling on output  
compare can also cause incorrect PWM signal generation when  
changing the PWM pulse width to a new, much larger value.  
5. In the TIMB status control register (TBSC), clear the TIMB stop bit,  
TSTOP.  
Setting MS0B links channels 0 and 1 and configures them for buffered  
PWM operation. The TIMB channel 0 registers (TBCH0HTBCH0L)  
initially control the buffered PWM output. TIMB status control register 0  
(TBSC0) controls and monitors the PWM signal from the linked  
channels. MS0B takes priority over MS0A.  
Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on  
TIMB overflows. Subsequent output compares try to force the output to  
a state it is already in and have no effect. The result is a 0 percent duty  
cycle output.  
Setting the channel x maximum duty cycle bit (CHxMAX) and setting the  
TOVx bit generates a 100 percent duty cycle output. (See 12.8.4 TIMB  
Channel Status and Control Registers.)  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Timer Interface B (TIMB)  
AdvanceInformation  
235  
Timer Interface B (TIMB)  
12.5 Interrupts  
These TIMB sources can generate interrupt requests:  
TIMB overflow flag (TOF) The timer overflow flag (TOF) bit is  
set when the TIMB counter reaches the modulo value  
programmed in the TIMB counter modulo registers. The TIMB  
overflow interrupt enable bit, TOIE, enables TIMB overflow  
interrupt requests. TOF and TOIE are in the TIMB status and  
control registers.  
TIMB channel flags (CH1FCH0F) The CHxF bit is set when an  
input capture or output compare occurs on channel x. Channel x  
TIMB CPU interrupt requests are controlled by the channel x  
interrupt enable bit, CHxIE.  
12.6 Wait Mode  
The WAIT instruction puts the MCU in low-power standby mode.  
The TIMB remains active after the execution of a WAIT instruction. In  
wait mode, the TIMB registers are not accessible by the CPU. Any  
enabled CPU interrupt request from the TIMB can bring the MCU out of  
wait mode.  
If TIMB functions are not required during wait mode, reduce power  
consumption by stopping the TIMB before executing the WAIT  
instruction.  
12.7 I/O Signals  
Port E shares three of its pins with the TIMB:  
PTD4/ATD12 is an external clock input to the TIMB prescaler.  
The two TIMB channel I/O pins are PTE1/TCH0B and  
PTE2/TCH1B.  
Advance Information  
236  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Timer Interface B (TIMB)  
MOTOROLA  
Timer Interface B (TIMB)  
I/O Registers  
12.7.1 TIMB Clock Pin (PTD4/ATD12)  
PTD4/ATD12 is an external clock input that can be the clock source for  
the TIMB counter instead of the prescaled internal bus clock. Select the  
PTD4/ATD12 input by writing logic 1s to the three prescaler select bits,  
PS[2:0]. See 12.8.1 TIMB Status and Control Register. The minimum  
TCLK pulse width, TCLKLMIN or TCLKHMIN, is:  
1
------------------------------------- + t SU  
bus frequency  
The maximum TCLK frequency is the least: 4 MHz or bus frequency ÷ 2.  
PTD4/ATD12 is available as a general-purpose I/O pin or ADC channel  
when not used as the TIMB clock input. When the PTD4/ATD12 pin is  
the TIMB clock input, it is an input regardless of the state of the DDRE0  
bit in data direction register E.  
12.7.2 TIMB Channel I/O Pins (PTE1/TCH0B–PTE2/TCH1B)  
Each channel I/O pin is programmable independently as an input  
capture pin or an output compare pin. PTE1/TCH0B andPTE2/TCH1B  
can be configured as buffered output compare or buffered PWM pins.  
12.8 I/O Registers  
These input/output (I/O) registers control and monitor TIMB operation:  
TIMB status and control register (TBSC)  
TIMB control registers (TBCNTH–TBCNTL)  
TIMB counter modulo registers (TBMODH–TBMODL)  
TIMB channel status and control registers (TBSC0 and TBSC1)  
TIMB channel registers (TBCH0H–TBCH0L and  
TBCH1H–TBCH1L)  
MC68HC908MR16/MC68HC908MR32 — Rev. 5.0  
MOTOROLA Timer Interface B (TIMB)  
AdvanceInformation  
237  
Timer Interface B (TIMB)  
12.8.1 TIMB Status and Control Register  
The TIMB status and control register:  
Enables TIMB overflow interrupts  
Flags TIMB overflows  
Stops the TIMB counter  
Resets the TIMB counter  
Prescales the TIMB counter clock  
Address: $0051  
Bit 7  
TOF  
6
5
TSTOP  
1
4
0
3
0
2
PS2  
0
1
PS1  
0
Bit 0  
PS0  
0
Read:  
Write:  
Reset:  
TOIE  
0
0
TRST  
0
R
0
0
R
=Reserved  
Figure 12-4. TIMB Status and Control Register (TBSC)  
TOF TIMB Overflow Flag  
This read/write flag is set when the TIMB counter reaches the modulo  
value programmed in the TIMB counter modulo registers. Clear TOF  
by reading the TIMB status and control register when TOF is set and  
then writing a logic 0 to TOF. If another TIMB overflow occurs before  
the clearing sequence is complete, then writing logic 0 to TOF has no  
effect. Therefore, a TOF interrupt request cannot be lost due to  
inadvertent clearing of TOF. Reset clears the TOF bit. Writing a logic  
1 to TOF has no effect.  
1 = TIMB counter has reached modulo value.  
0 = TIMB counter has not reached modulo value.  
TOIE TIMB Overflow Interrupt Enable Bit  
This read/write bit enables TIMB overflow interrupts when the TOF bit  
becomes set. Reset clears the TOIE bit.  
1 = TIMB overflow interrupts enabled  
0 = TIMB overflow interrupts disabled  
Advance Information  
238  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Timer Interface B (TIMB)  
MOTOROLA  
Timer Interface B (TIMB)  
I/O Registers  
TSTOP TIMB Stop Bit  
This read/write bit stops the TIMB counter. Counting resumes when  
TSTOP is cleared. Reset sets the TSTOP bit, stopping the TIMB  
counter until software clears the TSTOP bit.  
1 = TIMB counter stopped  
0 = TIMB counter active  
NOTE: Do not set the TSTOP bit before entering wait mode if the TIMB is  
required to exit wait mode. Also, when the TSTOP bit is set and the timer  
is configured for input capture operation, input captures are inhibited  
until TSTOP is cleared.  
TRST TIMB Reset Bit  
Setting this write-only bit resets the TIMB counter and the TIMB  
prescaler. Setting TRST has no effect on any other registers.  
Counting resumes from $0000. TRST is cleared automatically after  
the TIMB counter is reset and always reads as logic 0. Reset clears  
the TRST bit.  
1 = Prescaler and TIMB counter cleared  
0 = No effect  
NOTE: Setting the TSTOP and TRST bits simultaneously stops the TIMB  
counter at a value of $0000.  
PS[2:0] Prescaler Select Bits  
These read/write bits select either the PTD4/ATD12 pin or one of the  
seven prescaler outputs as the input to the TIMB counter as  
Table 12-1 shows. Reset clears the PS[2:0] bits.  
Table 12-1. Prescaler Selection  
PS[2:0]  
000  
TIMB Clock Source  
Internal bus clock ÷1  
Internal bus clock ÷ 2  
Internal bus clock ÷ 4  
Internal bus clock ÷ 8  
Internal bus clock ÷ 16  
Internal bus clock ÷ 32  
Internal bus clock ÷ 64  
PTE0/TCLKB  
001  
010  
011  
100  
101  
110  
111  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
AdvanceInformation  
239  
MOTOROLA  
Timer Interface B (TIMB)  
 
Timer Interface B (TIMB)  
12.8.2 TIMB Counter Registers  
The two read-only TIMB counter registers contain the high and low bytes  
of the value in the TIMB counter. Reading the high byte (TBCNTH)  
latches the contents of the low byte (TBCNTL) into a buffer. Subsequent  
reads of TBCNTH do not affect the latched TBCNTL value until TBCNTL  
is read. Reset clears the TIMB counter registers. Setting the TIMB reset  
bit (TRST) also clears the TIMB counter registers.  
NOTE: If TBCNTH is read during a break interrupt, be sure to unlatch TBCNTL  
by reading TBCNTL before exiting the break interrupt. Otherwise,  
TBCNTL retains the value latched during the break.  
Register Name and Address: TBCNTH $0052  
Bit 7  
6
Bit 14  
R
5
Bit 13  
R
4
Bit 12  
R
3
Bit 11  
R
2
Bit 10  
R
1
Bit 9  
R
Bit 0  
Bit 8  
R
Read: Bit 15  
Write:  
Reset:  
R
0
0
0
0
0
0
0
0
Register Name and Address: TBCNTL $0053  
Bit 7  
Bit 7  
R
6
5
Bit 5  
R
4
Bit 4  
R
3
Bit 3  
R
2
Bit 2  
R
1
Bit 1  
R
Bit 0  
Bit 0  
R
Read:  
Write:  
Reset:  
Bit 6  
R
0
0
0
0
0
0
0
0
R
=Reserved  
Figure 12-5. TIMB Counter Registers (TBCNTH and TBCNTL)  
Advance Information  
240  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Timer Interface B (TIMB)  
MOTOROLA  
Timer Interface B (TIMB)  
I/O Registers  
12.8.3 TIMB Counter Modulo Registers  
The read/write TIMB modulo registers contain the modulo value for the  
TIMB counter. When the TIMB counter reaches the modulo value, the  
overflow flag (TOF) becomes set, and the TIMB counter resumes  
counting from $0000 at the next timer clock. Writing to the high byte  
(TBMODH) inhibits the TOF bit and overflow interrupts until the low byte  
(TBMODL) is written. Reset sets the TIMB counter modulo registers.  
Register Name and Address: TBMODH $0054  
Bit 7  
Bit 15  
1
6
Bit 14  
1
5
Bit 13  
1
4
Bit 12  
1
3
Bit 11  
1
2
Bit 10  
1
1
Bit 9  
1
Bit 0  
Bit 8  
1
Read:  
Write:  
Reset:  
Register Name and Address: TBMODL $0055  
Bit 7  
Bit 7  
1
6
Bit 6  
1
5
Bit 5  
1
4
Bit 4  
1
3
Bit 3  
1
2
Bit 2  
1
1
Bit 1  
1
Bit 0  
Bit 0  
1
Read:  
Write:  
Reset:  
Figure 12-6. TIMB Counter Modulo Registers  
(TBMODH and TBMODL)  
NOTE: Reset the TIMB counter before writing to the TIMB counter modulo  
registers.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Timer Interface B (TIMB)  
AdvanceInformation  
241  
Timer Interface B (TIMB)  
12.8.4 TIMB Channel Status and Control Registers  
Each of the TIMB channel status and control registers:  
Flags input captures and output compares  
Enables input capture and output compare interrupts  
Selects input capture, output compare, or PWM operation  
Selects high, low, or toggling output on output compare  
Selects rising edge, falling edge, or any edge as the active input  
capture trigger  
Selects output toggling on TIMB overflow  
Selects 0 percent and 100 percent PWM duty cycle  
Selects buffered or unbuffered output compare/PWM operation  
Register Name and Address: TBSC0 $0056  
Bit 7  
6
CH0IE  
0
5
MS0B  
0
4
MS0A  
0
3
ELS0B  
0
2
ELS0A  
0
1
TOV0  
0
Bit 0  
CH0MAX  
0
Read: CH0F  
Write:  
0
0
Reset:  
Register Name and Address: TBSC1 $0059  
Bit 7  
6
5
0
4
MS1A  
0
3
ELS1B  
0
2
ELS1A  
0
1
TOV1  
0
Bit 0  
CH1MAX  
0
Read: CH1F  
CH1IE  
Write:  
0
0
R
0
Reset:  
0
R
=Reserved  
Figure 12-7. TIMB Channel Status  
and Control Registers (TBSC0TBSC1)  
Advance Information  
242  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Timer Interface B (TIMB) MOTOROLA  
Timer Interface B (TIMB)  
I/O Registers  
CHxF Channel x Flag  
When channel x is an input capture channel, this read/write bit is set  
when an active edge occurs on the channel x pin. When channel x is  
an output compare channel, CHxF is set when the value in the TIMB  
counter registers matches the value in the TIMB channel x registers.  
When CHxIE = 1, clear CHxF by reading TIMB channel x status and  
control register with CHxF set, and then writing a logic 0 to CHxF. If  
another interrupt request occurs before the clearing sequence is  
complete, then writing logic 0 to CHxF has no effect. Therefore, an  
interrupt request cannot be lost due to inadvertent clearing of CHxF.  
Reset clears the CHxF bit. Writing a logic 1 to CHxF has no effect.  
1 = Input capture or output compare on channel x  
0 = No input capture or output compare on channel x  
CHxIE Channel x Interrupt Enable Bit  
This read/write bit enables TIMB CPU interrupts on channel x.  
Reset clears the CHxIE bit.  
1 = Channel x CPU interrupt requests enabled  
0 = Channel x CPU interrupt requests disabled  
MSxB Mode Select Bit B  
This read/write bit selects buffered output compare/PWM operation.  
MSxB exists only in the TIMB channel 0.  
Setting MS0B disables the channel 1 status and control register and  
reverts TCH1B to general-purpose I/O.  
Reset clears the MSxB bit.  
1 = Buffered output compare/PWM operation enabled  
0 = Buffered output compare/PWM operation disabled  
MSxA Mode Select Bit A  
When ELSxB:A 00, this read/write bit selects either input capture  
operation or unbuffered output compare/PWM operation.  
See Table 12-2.  
1 = Unbuffered output compare/PWM operation  
0 = Input capture operation  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Timer Interface B (TIMB)  
AdvanceInformation  
243  
Timer Interface B (TIMB)  
When ELSxB:A = 00, this read/write bit selects the initial output level  
of the TCHx pin once PWM, input capture, or output compare  
operation is enabled. See Table 12-2. Reset clears the MSxA bit.  
1 = Initial output level low  
0 = Initial output level high  
NOTE: Before changing a channel function by writing to the MSxB or MSxA bit,  
set the TSTOP and TRST bits in the TIMB status and control register  
(TBSC).  
ELSxB and ELSxA Edge/Level Select Bits  
When channel x is an input capture channel, these read/write bits  
control the active edge-sensing logic on channel x.  
When channel x is an output compare channel, ELSxB and ELSxA  
control the channel x output behavior when an output compare  
occurs.  
When ELSxB and ELSxA are both clear, channel x is not connected  
to port E, and pin PTEx/TCHxB is available as a general-purpose I/O  
pin. However, channel x is at a state determined by these bits and  
becomes transparent to the respective pin when PWM, input capture,  
or output compare mode is enabled. Table 12-2 shows how ELSxB  
and ELSxA work. Reset clears the ELSxB and ELSxA bits.  
NOTE: Before enabling a TIMB channel register for input capture operation,  
make sure that the PTEx/TBCHx pin is stable for at least two bus clocks.  
TOVx Toggle-On-Overflow Bit  
When channel x is an output compare channel, this read/write bit  
controls the behavior of the channel x output when the TIMB counter  
overflows. When channel x is an input capture channel, TOVx has no  
effect. Reset clears the TOVx bit.  
1 = Channel x pin toggles on TIMB counter overflow.  
0 = Channel x pin does not toggle on TIMB counter overflow.  
Advance Information  
244  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Timer Interface B (TIMB) MOTOROLA  
Timer Interface B (TIMB)  
I/O Registers  
Table 12-2. Mode, Edge, and Level Selection  
MSxB:MSxA ELSxB:ELSxA  
Mode  
Configuration  
Pin under port control; initialize timer output level high  
X0  
X1  
00  
00  
00  
01  
01  
01  
1X  
1X  
1X  
00  
00  
01  
10  
11  
01  
10  
11  
01  
10  
11  
Output preset  
Pin under port control; initialize timer output level low  
Capture on rising edge only  
Capture on falling edge only  
Capture on rising or falling edge  
Toggle output on compare  
Clear output on compare  
Input capture  
Output compare  
or PWM  
Set output on compare  
Toggle output on compare  
Clear output on compare  
Buffered output  
compare  
or buffered  
PWM  
Set output on compare  
NOTE: When TOVx is set, a TIMB counter overflow takes precedence over a  
channel x output compare if both occur at the same time.  
CHxMAX Channel x Maximum Duty Cycle Bit  
When the TOVx is at logic 1 and clear output on compare is selected,  
setting the CHxMAX bit forces the duty cycle of buffered and  
unbuffered PWM signals to 100 percent. As Figure 12-8 shows,  
CHxMAX bit takes effect in the cycle after it is set or cleared. The  
output stays at 100 percent duty cycle level until the cycle after  
CHxMAX is cleared.  
NOTE: The PWM 0 percent duty cycle is defined as output low all of the time.To  
generate the 0 percent duty cycle select clear output on compare and  
then clear the TOVx bit (CHxMAX = 0). The PWM 100 percent duty cycle  
is defined as output high all of the time. To generate the 100 percent duty  
cycle, use the CHxMAX bit in the TSCx register.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Timer Interface B (TIMB)  
AdvanceInformation  
245  
Timer Interface B (TIMB)  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
OUTPUT  
PTEx/TCHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
COMPARE  
CHxMAX  
TOVx  
Figure 12-8. CHxMAX Latency  
12.8.5 TIMB Channel Registers  
These read/write registers contain the captured TIMB counter value of  
the input capture function or the output compare value of the output  
compare function. The state of the TIMB channel registers after reset is  
unknown.  
In input capture mode (MSxBMSxA = 0:0), reading the high byte of the  
TIMB channel x registers (TBCHxH) inhibits input captures until the low  
byte (TBCHxL) is read.  
In output compare mode (MSxBMSxA 0:0), writing to the high byte of  
the TIMB channel x registers (TBCHxH) inhibits output compares until  
the low byte (TBCHxL) is written.  
Register Name and Address: TBCH0H $0057  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Indeterminate after reset  
Figure 12-9. TIMB Channel Registers  
(TBCH0H/LTBCH1H/L) (Sheet 1 of 2)  
Advance Information  
246  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Timer Interface B (TIMB) MOTOROLA  
Timer Interface B (TIMB)  
I/O Registers  
Register Name and Address: TBCH0L $0058  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Indeterminate after reset  
Register Name and Address: TBCH1H $005A  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Indeterminate after reset  
Register Name and Address: TBCH1L $005B  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Indeterminate after reset  
Figure 12-9. TIMB Channel Registers  
(TBCH0H/LTBCH1H/L) (Sheet 2 of 2)  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Timer Interface B (TIMB)  
AdvanceInformation  
247  
Timer Interface B (TIMB)  
Advance Information  
248  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Timer Interface B (TIMB) MOTOROLA  
Advance Information MC68HC908MR16/MC68HC908MR32  
Section 13. Serial Peripheral Interface Module (SPI)  
13.1 Contents  
13.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250  
13.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250  
13.4 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250  
13.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251  
13.5.1 Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251  
13.5.2 Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .254  
13.6 Transmission Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .255  
13.6.1 Clock Phase and Polarity Controls. . . . . . . . . . . . . . . . . . .255  
13.6.2 Transmission Format When CPHA = 0 . . . . . . . . . . . . . . .255  
13.6.3 Transmission Format When CPHA = 1 . . . . . . . . . . . . . . .257  
13.6.4 Transmission Initiation Latency . . . . . . . . . . . . . . . . . . . . .258  
13.7 Error Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .260  
13.7.1 Overflow Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .260  
13.7.2 Mode Fault Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .262  
13.8 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .264  
13.9 Resetting the SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266  
13.10 Queuing Transmission Data . . . . . . . . . . . . . . . . . . . . . . . . . .266  
13.11 Low-Power Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .268  
13.12 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .268  
13.12.1 MISO (Master In/Slave Out). . . . . . . . . . . . . . . . . . . . . . . .269  
13.12.2 MOSI (Master Out/Slave In). . . . . . . . . . . . . . . . . . . . . . . .269  
13.12.3 SPSCK (Serial Clock). . . . . . . . . . . . . . . . . . . . . . . . . . . . .269  
13.12.4 SS (Slave Select). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270  
13.12.5 VSS (Clock Ground) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271  
13.13 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271  
13.13.1 SPI Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .272  
13.13.2 SPI Status and Control Register . . . . . . . . . . . . . . . . . . . .274  
13.13.3 SPI Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .277  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Serial Peripheral Interface Module (SPI)  
Advance Information  
249  
Serial Peripheral Interface Module (SPI)  
13.2 Introduction  
The serial peripheral interface (SPI) module allows full-duplex,  
synchronous, serial communications with peripheral devices.  
13.3 Features  
Features of the SPI module include:  
Full-duplex operation  
Master and slave modes  
Double-buffered operation with separate transmit and receive  
registers  
Four master mode frequencies (maximum = bus frequency ÷ 2)  
Maximum slave mode frequency = bus frequency  
Serial clock with programmable polarity and phase  
Two separately enabled interrupts with central processor unit  
(CPU) service:  
SPRF (SPI receiver full)  
SPTE (SPI transmitter empty)  
Mode fault error flag with CPU interrupt capability  
Overflow error flag with CPU interrupt capability  
Programmable wired-OR mode  
I2C (inter-integrated circuit) compatibility  
13.4 Pin Name Conventions  
The generic names of the SPI input/output (I/O) pins are:  
SS, slave select  
SPSCK, SPI serial clock  
MOSI, master out/slave in  
MISO, master in/slave out  
Advance Information  
250  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Serial Peripheral Interface Module (SPI) MOTOROLA  
Serial Peripheral Interface Module (SPI)  
Functional Description  
SPI pins are shared by parallel I/O ports or have alternate functions. The  
full name of an SPI pin reflects the name of the shared port pin or the  
name of an alternate pin function. The generic pin names appear in the  
text that follows. Table 13-1 shows the full names of the SPI I/O pins.  
Table 13-1. Pin Name Conventions  
Generic  
Pin Names:  
MISO  
MOSI  
SPSCK  
SS  
Full  
Pin Names:  
PTF3/MISO  
PTF2/MOSI  
PTF0/SPSCK  
PTF1/SS  
13.5 Functional Description  
Figure 13-1 shows the structure of the SPI module and Figure 13-2  
shows the locations and contents of the SPI I/O registers.  
The SPI module allows full-duplex, synchronous, serial communication  
between the microcontroller unit (MCU) and peripheral devices,  
including other MCUs. Software can poll the SPI status flags or SPI  
operation can be interrupt-driven. All SPI interrupts can be serviced by  
the CPU.  
13.5.1 Master Mode  
The SPI operates in master mode when the SPI master bit, SPMSTR, is  
set.  
NOTE: Configure the SPI modules as master or slave before enabling them.  
Enable the master SPI before enabling the slave SPI. Disable the slave  
SPI before disabling the master SPI. See 13.13.1 SPI Control Register.  
Only a master SPI module can initiate transmissions. Software begins  
the transmission from a master SPI module by writing to the SPI data  
register. If the shift register is empty, the byte immediately transfers to  
the shift register, setting the SPI transmitter empty bit, SPTE. The byte  
begins shifting out on the MOSI pin under the control of the serial clock.  
See Figure 13-3.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Serial Peripheral Interface Module (SPI)  
AdvanceInformation  
251  
 
Serial Peripheral Interface Module (SPI)  
INTERNAL BUS  
TRANSMIT DATA REGISTER  
SHIFT REGISTER  
CGMOUT ÷ 2  
(FROM SIM)  
MISO  
MOSI  
7
6
5
4
3
2
1
0
÷ 2  
÷ 8  
÷ 32  
CLOCK  
DIVIDER  
RECEIVE DATA REGISTER  
PIN  
CONTROL  
LOGIC  
÷ 128  
CLOCK  
SPSCK  
SS  
SPMSTR  
SPE  
SELECT  
M
CLOCK  
LOGIC  
S
SPR1  
SPR0  
SPMSTR  
CPHA  
CPOL  
SPWOM  
TRANSMITTER CPU INTERRUPT REQUEST  
RECEIVER/ERROR CPU INTERRUPT REQUEST  
MODFEN  
ERRIE  
SPTIE  
SPRIE  
SPE  
SPI  
CONTROL  
SPRF  
SPTE  
OVRF  
MODF  
Figure 13-1. SPI Module Block Diagram  
Advance Information  
252  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Serial Peripheral Interface Module (SPI) MOTOROLA  
 
Serial Peripheral Interface Module (SPI)  
Functional Description  
Addr.  
Register Name  
Bit 7  
SPRIE  
0
6
R
5
4
3
2
1
Bit 0  
SPTIE  
0
Read:  
SPI Control Register  
SPMSTR CPOL  
CPHA SPWOM SPE  
$0044  
(SPCR) Write:  
See page 272.  
Reset:  
0
1
OVRF  
R
0
MODF  
R
1
SPTE  
R
0
0
Read: SPRF  
SPI Status and Control  
ERRIE  
MODFEN SPR1  
SPR0  
$0045  
$0046  
Register (SPSCR) Write:  
R
0
See page 274.  
Reset:  
0
0
0
1
0
0
0
Read:  
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SPI Data Register  
(SPDR) Write:  
See page 277.  
Reset:  
Unaffected by reset  
R
= Reserved  
Figure 13-2. SPI I/O Register Summary  
MASTER MCU  
SLAVE MCU  
MISO  
MOSI  
MISO  
SHIFT REGISTER  
MOSI  
SHIFT REGISTER  
SPSCK  
SS  
SPSCK  
SS  
BAUD RATE  
GENERATOR  
V
Figure 13-3. Full-Duplex Master-Slave Connections  
The SPR1 and SPR0 bits control the baud rate generator and determine  
the speed of the shift register. See 13.13.2 SPI Status and Control  
Register. Through the SPSCK pin, the baud-rate generator of the  
master also controls the shift register of the slave peripheral.  
As the byte shifts out on the MOSI pin of the master, another byte shifts  
in from the slave on the masters MISO pin. The transmission ends when  
the receiver full bit, SPRF, becomes set. At the same time that SPRF  
becomes set, the byte from the slave transfers to the receive data  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Serial Peripheral Interface Module (SPI)  
AdvanceInformation  
253  
Serial Peripheral Interface Module (SPI)  
register. In normal operation, SPRF signals the end of a transmission.  
Software clears SPRF by reading the SPI status and control register with  
SPRF set and then reading the SPI data register. Writing to the SPI data  
register clears the SPTE bit.  
13.5.2 Slave Mode  
The SPI operates in slave mode when the SPMSTR bit is clear. In slave  
mode the SPSCK pin is the input for the serial clock from the master  
MCU. Before a data transmission occurs, the SS pin of the slave SPI  
must be at logic 0. SS must remain low until the transmission is  
complete. See 13.7.2 Mode Fault Error.  
In a slave SPI module, data enters the shift register under the control of  
the serial clock from the master SPI module. After a byte enters the shift  
register of a slave SPI, it transfers to the receive data register, and the  
SPRF bit is set. To prevent an overflow condition, slave software then  
must read the receive data register before another full byte enters the  
shift register.  
The maximum frequency of the SPSCK for an SPI configured as a slave  
is the bus clock speed (which is twice as fast as the fastest master  
SPSCK clock that can be generated). The frequency of the SPSCK for  
an SPI configured as a slave does not have to correspond to any SPI  
baud rate. The baud rate only controls the speed of the SPSCK  
generated by an SPI configured as a master. Therefore, the frequency  
of the SPSCK for an SPI configured as a slave can be any frequency  
less than or equal to the bus speed.  
When the master SPI starts a transmission, the data in the slave shift  
register begins shifting out on the MISO pin. The slave can load its shift  
register with a new byte for the next transmission by writing to its transmit  
data register. The slave must write to its transmit data register at least  
one bus cycle before the master starts the next transmission. Otherwise,  
the byte already in the slave shift register shifts out on the MISO pin.  
Data written to the slave shift register during a transmission remains in  
a buffer until the end of the transmission.  
When the clock phase bit (CPHA) is set, the first edge of SPSCK starts  
a transmission. When CPHA is clear, the falling edge of SS starts a  
transmission. See 13.6 Transmission Formats.  
Advance Information  
254  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Serial Peripheral Interface Module (SPI)  
MOTOROLA  
Serial Peripheral Interface Module (SPI)  
Transmission Formats  
NOTE: If the write to the data register is late, the SPI transmits the data already  
in the shift register from the previous transmission.  
SPSCK must be in the proper idle state before the slave is enabled to  
prevent SPSCK from appearing as a clock edge.  
13.6 Transmission Formats  
During an SPI transmission, data is simultaneously transmitted (shifted  
out serially) and received (shifted in serially). A serial clock synchronizes  
shifting and sampling on the two serial data lines. A slave select line  
allows selection of an individual slave SPI device; slave devices that are  
not selected do not interfere with SPI bus activities. On a master SPI  
device, the slave select line can optionally be used to indicate  
multiple-master bus contention.  
13.6.1 Clock Phase and Polarity Controls  
Software can select any of four combinations of serial clock (SPSCK)  
phase and polarity using two bits in the SPI control register (SPCR). The  
clock polarity is specified by the CPOL control bit, which selects an  
active high or low clock and has no significant effect on the transmission  
format.  
The clock phase (CPHA) control bit selects one of two fundamentally  
different transmission formats. The clock phase and polarity should be  
identical for the master SPI device and the communicating slave device.  
In some cases, the phase and polarity are changed between  
transmissions to allow a master device to communicate with peripheral  
slaves having different requirements.  
NOTE: Before writing to the CPOL bit or the CPHA bit, disable the SPI by  
clearing the SPI enable bit (SPE).  
13.6.2 Transmission Format When CPHA = 0  
Figure 13-4 shows an SPI transmission in which CPHA is logic 0. The  
figure should not be used as a replacement for data sheet parametric  
information.Two waveforms are shown for SPSCK: one for CPOL = 0  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Serial Peripheral Interface Module (SPI)  
AdvanceInformation  
255  
 
Serial Peripheral Interface Module (SPI)  
and another for CPOL = 1. The diagram may be interpreted as a master  
or slave timing diagram since the serial clock (SPSCK), master in/slave  
out (MISO), and master out/slave in (MOSI) pins are directly connected  
between the master and the slave. The MISO signal is the output from  
the slave, and the MOSI signal is the output from the master. The SS line  
is the slave select input to the slave. The slave SPI drives its MISO  
output only when its slave select input (SS) is at logic 0, so that only the  
selected slave drives to the master. The SS pin of the master is not  
shown but is assumed to be inactive. The SS pin of the master must be  
high or must be reconfigured as general-purpose I/O not affecting the  
SPI. (See 13.7.2 Mode Fault Error.) When CPHA = 0, the first SPSCK  
edge is the MSB capture strobe. Therefore, the slave must begin driving  
its data before the first SPSCK edge, and a falling edge on the SS pin is  
used to start the slave data transmission. The slaves SS pin must be  
toggled back to high and then low again between each byte transmitted  
as shown in Figure 13-5.  
SPSCK CYCLE #  
FOR REFERENCE  
1
2
3
4
5
6
7
8
SPSCK, CPOL = 0  
SPSCK, CPOL = 1  
MOSI  
MSB  
BIT 6  
BIT 6  
BIT 5  
BIT 5  
BIT 4  
BIT 4  
BIT 3  
BIT 3  
BIT 2  
BIT 2  
BIT 1  
BIT 1  
LSB  
LSB  
FROM MASTER  
MISO  
FROM SLAVE  
MSB  
, TO SLAVE  
CAPTURE STROBE  
Figure 13-4. Transmission Format (CPHA = 0)  
MISO/MOSI  
MASTER SS  
BYTE 1  
BYTE 2  
BYTE 3  
SLAVE SS  
CPHA = 0  
SLAVE SS  
CPHA = 1  
Figure 13-5. CPHA/SS Timing  
Advance Information  
256  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Serial Peripheral Interface Module (SPI) MOTOROLA  
 
 
Serial Peripheral Interface Module (SPI)  
Transmission Formats  
When CPHA = 0 for a slave, the falling edge of SS indicates the  
beginning of the transmission. This causes the SPI to leave its idle state  
and begin driving the MISO pin with the MSB of its data. Once the  
transmission begins, no new data is allowed into the shift register from  
the transmit data register. Therefore, the SPI data register of the slave  
must be loaded with transmit data before the falling edge of SS. Any data  
written after the falling edge is stored in the transmit data register and  
transferred to the shift register after the current transmission.  
13.6.3 Transmission Format When CPHA = 1  
Figure 13-6 shows an SPI transmission in which CPHA is logic 1. The  
figure should not be used as a replacement for data sheet parametric  
information. Two waveforms are shown for SPSCK: one for CPOL = 0  
and another for CPOL = 1. The diagram may be interpreted as a master  
or slave timing diagram since the serial clock (SPSCK), master in/slave  
out (MISO), and master out/slave in (MOSI) pins are directly connected  
between the master and the slave. The MISO signal is the output from  
the slave, and the MOSI signal is the output from the master. The SS line  
is the slave select input to the slave. The slave SPI drives its MISO  
output only when its slave select input (SS) is at logic 0, so that only the  
selected slave drives to the master. The SS pin of the master is not  
shown but is assumed to be inactive. The SS pin of the master must be  
high or must be reconfigured as general-purpose I/O not affecting the  
SPI. See 13.7.2 Mode Fault Error. When CPHA = 1, the master begins  
driving its MOSI pin on the first SPSCK edge. Therefore, the slave uses  
SPSCK CYCLE #  
FOR REFERENCE  
1
2
3
4
5
6
7
8
SPSCK, CPOL = 0  
SPSCK, CPOL = 1  
MOSI  
MSB  
MSB  
BIT 6  
BIT 6  
BIT 5  
BIT 5  
BIT 4  
BIT 4  
BIT 3  
BIT 3  
BIT 2  
BIT 2  
BIT 1  
BIT 1  
LSB  
FROM MASTER  
MISO  
LSB  
FROM SLAVE  
SS, TO SLAVE  
CAPTURE STROBE  
Figure 13-6. Transmission Format (CPHA = 1)  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Serial Peripheral Interface Module (SPI)  
AdvanceInformation  
257  
 
Serial Peripheral Interface Module (SPI)  
the first SPSCK edge as a start transmission signal. The SS pin can  
remain low between transmissions. This format may be preferable in  
systems having only one master and only one slave driving the MISO  
data line.  
When CPHA = 1 for a slave, the first edge of the SPSCK indicates the  
beginning of the transmission. This causes the SPI to leave its idle state  
and begin driving the MISO pin with the MSB of its data. Once the  
transmission begins, no new data is allowed into the shift register from  
the transmit data register. Therefore, the SPI data register of the slave  
must be loaded with transmit data before the first edge of SPSCK. Any  
data written after the first edge is stored in the transmit data register and  
transferred to the shift register after the current transmission.  
13.6.4 Transmission Initiation Latency  
When the SPI is configured as a master (SPMSTR = 1), writing to the  
SPDR starts a transmission. CPHA has no effect on the delay to the start  
of the transmission, but it does affect the initial state of the SPSCK  
signal. When CPHA = 0, the SPSCK signal remains inactive for the first  
half of the first SPSCK cycle. When CPHA = 1, the first SPSCK cycle  
begins with an edge on the SPSCK line from its inactive to its active  
level. The SPI clock rate (selected by SPR1:SPR0) affects the delay  
from the write to SPDR and the start of the SPI transmission. See  
Figure 13-7 The internal SPI clock in the master is a free-running  
derivative of the internal MCU clock. To conserve power, it is enabled  
only when both the SPE and SPMSTR bits are set. SPSCK edges occur  
halfway through the low time of the internal MCU clock. Since the SPI  
clock is free-running, it is uncertain where the write to the SPDR occurs  
relative to the slower SPSCK. This uncertainty causes the variation in  
the initiation delay shown in Figure 13-7. This delay is no longer than a  
single SPI bit time. That is, the maximum delay is two MCU bus cycles  
for DIV2, eight MCU bus cycles for DIV8, 32 MCU bus cycles for DIV32,  
and 128 MCU bus cycles for DIV128.  
Advance Information  
258  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Serial Peripheral Interface Module (SPI)  
MOTOROLA  
Serial Peripheral Interface Module (SPI)  
Transmission Formats  
WRITE  
TO SPDR  
INITIATION DELAY  
MSB  
BUS  
CLOCK  
MOSI  
BIT 6  
BIT 5  
SPSCK  
CPHA = 1  
SPSCK  
CPHA = 0  
SPSCK CYCLE  
NUMBER  
1
2
3
INITIATION DELAY FROM WRITE SPDR TO TRANSFER BEGIN  
WRITE  
TO SPDR  
BUS  
CLOCK  
SPSCK = INTERNAL CLOCK ÷ 2;  
2 POSSIBLE START POINTS  
EARLIEST LATEST  
WRITE  
TO SPDR  
BUS  
CLOCK  
EARLIEST  
SPSCK = INTERNAL CLOCK ÷ 8;  
8 POSSIBLE START POINTS  
LATEST  
LATEST  
LATEST  
WRITE  
TO SPDR  
BUS  
CLOCK  
EARLIEST  
SPSCK = INTERNAL CLOCK ÷ 32;  
32 POSSIBLE START POINTS  
WRITE  
TO SPDR  
BUS  
CLOCK  
EARLIEST  
SPSCK = INTERNAL CLOCK ÷ 128;  
128 POSSIBLE START POINTS  
Figure 13-7. Transmission Start Delay (Master)  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Serial Peripheral Interface Module (SPI)  
AdvanceInformation  
259  
Serial Peripheral Interface Module (SPI)  
13.7 Error Conditions  
These flags signal SPI error conditions:  
Overflow (OVRF) Failing to read the SPI data register before  
the next full byte enters the shift register sets the OVRF bit. The  
new byte does not transfer to the receive data register, and the  
unread byte still can be read. OVRF is in the SPI status and control  
register.  
Mode fault error (MODF) The MODF bit indicates that the  
voltage on the slave select pin (SS) is inconsistent with the mode  
of the SPI. MODF is in the SPI status and control register.  
13.7.1 Overflow Error  
The overflow flag (OVRF) becomes set if the receive data register still  
has unread data from a previous transmission when the capture strobe  
of bit 1 of the next transmission occurs. If an overflow occurs, all data  
received after the overflow and before the OVRF bit is cleared does not  
transfer to the receive data register and does not set the SPI receiver full  
bit (SPRF). The unread data that transferred to the receive data register  
before the overflow occurred can still be read. Therefore, an overflow  
error always indicates the loss of data. Clear the overflow flag by reading  
the SPI status and control register and then reading the SPI data  
register.  
OVRF generates a receiver/error CPU interrupt request if the error  
interrupt enable bit (ERRIE) is also set. MODF and OVRF can generate  
a receiver/error CPU interrupt request. See Figure 13-10. It is not  
possible to enable MODF or OVRF individually to generate a  
receiver/error CPU interrupt request. However, leaving MODFEN low  
prevents MODF from being set.  
Advance Information  
260  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Serial Peripheral Interface Module (SPI)  
MOTOROLA  
Serial Peripheral Interface Module (SPI)  
Error Conditions  
If the CPU SPRF interrupt is enabled and the OVRF interrupt is not,  
watch for an overflow condition. Figure 13-8 shows how it is possible to  
miss an overflow. The first part of Figure 13-8 shows how it is possible  
to read the SPSCR and SPDR to clear the SPRF without problems.  
However, as illustrated by the second transmission example, the OVRF  
bit can be set in between the time that SPSCR and SPDR  
are read.  
BYTE 1  
1
BYTE 2  
4
BYTE 3  
6
BYTE 4  
8
SPRF  
OVRF  
READ  
2
5
5
SPSCR  
READ  
SPDR  
3
7
1
2
3
4
6
7
8
Figure 13-8. Missed Read of Overflow Condition  
In this case, an overflow can easily be missed. Since no more SPRF  
interrupts can be generated until this OVRF is serviced, it is not obvious  
that bytes are being lost as more transmissions are completed. To  
prevent this, either enable the OVRF interrupt or do another read of the  
SPSCR following the read of the SPDR. This ensures that the OVRF  
was not set before the SPRF was cleared and that future transmissions  
can set the SPRF bit. Figure 13-9 illustrates this process. Generally, to  
avoid this second SPSCR read, enable the OVRF interrupt to the CPU  
by setting the ERRIE bit.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Serial Peripheral Interface Module (SPI)  
AdvanceInformation  
261  
 
Serial Peripheral Interface Module (SPI)  
BYTE 1  
BYTE 2  
5
BYTE 3  
7
BYTE 4  
11  
SPI RECEIVE  
COMPLETE  
1
SPRF  
OVRF  
READ  
SPSCR  
2
4
6
9
12  
14  
READ  
SPDR  
3
8
10  
13  
1
2
8
9
BYTE 1 SETS SPRF BIT.  
CPU READS BYTE 2 IN SPDR,  
CLEARING SPRF BIT.  
CPU READS SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
CPU READS SPSCR AGAIN  
TO CHECK OVRF BIT.  
3
4
CPU READS BYTE 1 IN SPDR,  
CLEARING SPRF BIT.  
10  
CPU READS BYTE 2 SPDR,  
CLEARING OVRF BIT.  
CPU READS SPSCR AGAIN  
TO CHECK OVRF BIT.  
11  
12  
13  
BYTE 4 SETS SPRF BIT.  
CPU READS SPSCR.  
5
6
BYTE 2 SETS SPRF BIT.  
CPU READS SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
CPU READS BYTE 4 IN SPDR,  
CLEARING SPRF BIT.  
7
BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST.  
14  
CPU READS SPSCR AGAIN  
TO CHECK OVRF BIT.  
Figure 13-9. Clearing SPRF When OVRF Interrupt Is Not Enabled  
13.7.2 Mode Fault Error  
Setting the SPMSTR bit selects master mode and configures the  
SPSCK and MOSI pins as outputs and the MISO pin as an input.  
Clearing SPMSTR selects slave mode and configures the SPSCK and  
MOSI pins as inputs and the MISO pin as an output. The mode fault bit,  
MODF, becomes set any time the state of the slave select pin, SS, is  
inconsistent with the mode selected by SPMSTR.  
To prevent SPI pin contention and damage to the MCU, a mode fault  
error occurs if:  
The SS pin of a slave SPI goes high during a transmission.  
The SS pin of a master SPI goes low at any time.  
For the MODF flag to be set, the mode fault error enable bit (MODFEN)  
must be set. Clearing the MODFEN bit does not clear the MODF flag but  
does prevent MODF from being set again after MODF is cleared.  
Advance Information  
262  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Serial Peripheral Interface Module (SPI)  
MOTOROLA  
 
Serial Peripheral Interface Module (SPI)  
Error Conditions  
MODF generates a receiver/error CPU interrupt request if the error  
interrupt enable bit (ERRIE) is also set. The SPRF, MODF, and OVRF  
interrupts share the same CPU interrupt vector. MODF and OVRF can  
generate a receiver/error CPU interrupt request. See Figure 13-10. It is  
not possible to enable MODF or OVRF individually to generate a  
receiver/error CPU interrupt request. However, leaving MODFEN low  
prevents MODF from being set.  
In a master SPI with the mode fault enable bit (MODFEN) set, the mode  
fault flag (MODF) is set if SS goes to logic 0. A mode fault in a master  
SPI causes these events to occur:  
If ERRIE = 1, the SPI generates an SPI receiver/error CPU  
interrupt request.  
The SPE bit is cleared.  
The SPTE bit is set.  
The SPI state counter is cleared.  
The data direction register of the shared I/O port regains control of  
port drivers.  
NOTE: To prevent bus contention with another master SPI after a mode fault  
error, clear all SPI bits of the data direction register of the shared I/O port  
before enabling the SPI.  
When configured as a slave (SPMSTR = 0), the MODF flag is set if SS  
goes high during a transmission. When CPHA = 0, a transmission begins  
when SS goes low and ends once the incoming SPSCK goes back to its  
idle level following the shift of the eighth data bit. When CPHA = 1, the  
transmission begins when the SPSCK leaves its idle level and SS is  
already low. The transmission continues until the SPSCK returns to its  
idle level following the shift of the last data bit. See 13.6 Transmission  
Formats.  
NOTE: Setting the MODF flag does not clear the SPMSTR bit. Reading  
SPMSTR when MODF = 1 will indicate a mode fault error occurred in  
either master mode or slave mode.  
When CPHA = 0, a MODF occurs if a slave is selected (SS is at logic 0)  
and later unselected (SS is at logic 1) even if no SPSCK is sent to that  
slave. This happens because SS at logic 0 indicates the start of the  
transmission (MISO driven out with the value of MSB) for CPHA = 0.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Serial Peripheral Interface Module (SPI)  
AdvanceInformation  
263  
Serial Peripheral Interface Module (SPI)  
When CPHA = 1, a slave can be selected and then later unselected with  
no transmission occurring. Therefore, MODF does not occur since a  
transmission was never begun.  
In a slave SPI (MSTR = 0), the MODF bit generates an SPI  
receiver/error CPU interrupt request if the ERRIE bit is set. The MODF  
bit does not clear the SPE bit or reset the SPI in any way. Software can  
abort the SPI transmission by clearing the SPE bit of the slave.  
NOTE: A logic 1 voltage on the SS pin of a slave SPI puts the MISO pin in a high  
impedance state. Also, the slave SPI ignores all incoming SPSCK  
clocks, even if it was already in the middle of a transmission.  
To clear the MODF flag, read the SPSCR with the MODF bit set and then  
write to the SPCR register. This entire clearing procedure must occur  
with no MODF condition existing or else the flag is not cleared.  
13.8 Interrupts  
Four SPI status flags can be enabled to generate CPU interrupt requests  
as shown in Table 13-2.  
Table 13-2. SPI Interrupts  
Flag  
Request  
SPTE transmitter empty SPI transmitter CPU interrupt request (SPTIE = 1, SPE = 1)  
SPRF receiver full  
OVRF overflow  
SPI receiver CPU interrupt request (SPRIE = 1)  
SPI receiver/error interrupt request (ERRIE = 1)  
SPI receiver/error interrupt request (ERRIE = 1)  
MODF mode fault  
The SPI transmitter interrupt enable bit (SPTIE) enables the SPTE flag  
to generate transmitter CPU interrupt requests, provided that the SPI is  
enabled (SPE = 1).  
The SPI receiver interrupt enable bit (SPRIE) enables the SPRF bit to  
generate receiver CPU interrupt requests, provided that the SPI is  
enabled (SPE = 1). (See Figure 13-10.)  
Advance Information  
264  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Serial Peripheral Interface Module (SPI)  
MOTOROLA  
 
 
Serial Peripheral Interface Module (SPI)  
Interrupts  
SPTE  
SPTIE  
SPRF  
SPE  
SPI TRANSMITTER  
CPU INTERRUPT REQUEST  
SPRIE  
SPI RECEIVER/ERROR  
CPU INTERRUPT REQUEST  
ERRIE  
MODF  
OVRF  
Figure 13-10. SPI Interrupt Request Generation  
The error interrupt enable bit (ERRIE) enables both the MODF and  
OVRF bits to generate a receiver/error CPU interrupt request.  
The mode fault enable bit (MODFEN) can prevent the MODF flag from  
being set so that only the OVRF bit is enabled by the ERRIE bit to  
generate receiver/error CPU interrupt requests.  
These sources in the SPI status and control register can generate CPU  
interrupt requests:  
SPI receiver full bit (SPRF) The SPRF bit becomes set every  
time a byte transfers from the shift register to the receive data  
register. If the SPI receiver interrupt enable bit, SPRIE, is also set,  
SPRF can generate either an SPI receiver/error or CPU interrupt.  
SPI transmitter empty (SPTE) The SPTE bit becomes set every  
time a byte transfers from the transmit data register to the shift  
register. If the SPI transmit interrupt enable bit, SPTIE, is also set,  
SPTE can generate either an SPTE or CPU interrupt request.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Serial Peripheral Interface Module (SPI)  
AdvanceInformation  
265  
Serial Peripheral Interface Module (SPI)  
13.9 Resetting the SPI  
Any system reset completely resets the SPI. Partial resets occur  
whenever the SPI enable bit (SPE) is low. Whenever SPE is low:  
The SPTE flag is set.  
Any transmission currently in progress is aborted.  
The shift register is cleared.  
The SPI state counter is cleared, making it ready for a new  
complete transmission.  
All the SPI port logic is defaulted back to being general-purpose  
I/O.  
These items are reset only by a system reset:  
All control bits in the SPCR  
All control bits in the SPSCR (MODFEN, ERRIE, SPR1, and  
SPR0)  
The status flags SPRF, OVRF, and MODF  
By not resetting the control bits when SPE is low, the user can clear SPE  
between transmissions without having to set all control bits again when  
SPE is set back high for the next transmission.  
By not resetting the SPRF, OVRF, and MODF flags, the user can still  
service these interrupts after the SPI has been disabled. The user can  
disable the SPI by writing 0 to the SPE bit. The SPI can also be disabled  
by a mode fault occurring in an SPI that was configured as a master with  
the MODFEN bit set.  
13.10 Queuing Transmission Data  
The double-buffered transmit data register allows a data byte to be  
queued and transmitted. For an SPI configured as a master, a queued  
data byte is transmitted immediately after the previous transmission has  
completed. The SPI transmitter empty flag (SPTE) indicates when the  
transmit data buffer is ready to accept new data. Write to the transmit  
data register only when the SPTE bit is high. Figure 13-11 shows the  
timing associated with doing back-to-back transmissions with the SPI  
(SPSCK has CPHA:CPOL = 1:0).  
Advance Information  
266  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Serial Peripheral Interface Module (SPI)  
MOTOROLA  
 
Serial Peripheral Interface Module (SPI)  
Queuing Transmission Data  
1
3
8
WRITE TO SPDR  
SPTE  
5
10  
2
SPSCK  
CPHA:CPOL = 1:0  
MOSI  
MSBBIT BIT BIT BIT BIT BIT LSBMSBBIT BIT BIT BIT BIT BIT LSBMSBBIT BIT BIT  
6
5
4
3
2
1
6
5
4
3
2
1
6
5
4
BYTE 1  
BYTE 2  
BYTE 3  
4
9
SPRF  
READ SPSCR  
READ SPDR  
6
11  
7
12  
1
2
CPU WRITES BYTE 1 TO SPDR, CLEARING SPTE BIT.  
7
8
CPU READS SPDR, CLEARING SPRF BIT.  
CPU WRITES BYTE 3 TO SPDR, QUEUEING BYTE  
3 AND CLEARING SPTE BIT.  
BYTE 1 TRANSFERS FROM TRANSMIT DATA  
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.  
9
SECOND INCOMING BYTE TRANSFERS FROM SHIFT  
REGISTER TO RECEIVE DATA REGISTER, SETTING  
SPRF BIT.  
BYTE 3 TRANSFERS FROM TRANSMIT DATA  
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.  
CPU WRITES BYTE 2 TO SPDR, QUEUEING BYTE 2  
AND CLEARING SPTE BIT.  
3
4
10  
FIRST INCOMING BYTE TRANSFERS FROM SHIFT  
REGISTER TO RECEIVE DATA REGISTER, SETTING  
SPRF BIT.  
11  
12  
CPU READS SPSCR WITH SPRF BIT SET.  
CPU READS SPDR, CLEARING SPRF BIT.  
5
6
BYTE 2 TRANSFERS FROM TRANSMIT DATA  
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.  
CPU READS SPSCR WITH SPRF BIT SET.  
Figure 13-11. SPRF/SPTE CPU Interrupt Timing  
For a slave, the transmit data buffer allows back-to-back transmissions  
without the slave precisely timing its writes between transmissions as in  
a system with a single data buffer. Also, if no new data is written to the  
data buffer, the last value contained in the shift register is the next data  
word to be transmitted.  
For an idle master or idle slave that has no data loaded into its transmit  
buffer, the SPTE is set again no more than two bus cycles after the  
transmit buffer empties into the shift register. This allows the user to  
queue up a 16-bit value to send. For an already active slave, the load of  
the shift register cannot occur until the transmission is completed. This  
implies that a back-to-back write to the transmit data register is not  
possible. The SPTE indicates when the next write can occur.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Serial Peripheral Interface Module (SPI)  
AdvanceInformation  
267  
Serial Peripheral Interface Module (SPI)  
13.11 Low-Power Mode  
The WAIT instruction puts the MCU in a low power-consumption standby  
mode.  
The SPI module remains active after the execution of a WAIT instruction.  
In wait mode the SPI module registers are not accessible by the CPU.  
Any enabled CPU interrupt request from the SPI module can bring the  
MCU out of wait mode.  
If SPI module functions are not required during wait mode, reduce power  
consumption by disabling the SPI module before executing the WAIT  
instruction.  
To exit wait mode when an overflow condition occurs, enable the OVRF  
bit to generate CPU interrupt requests by setting the error interrupt  
enable bit (ERRIE). See 13.8 Interrupts.  
Since the SPTE bit cannot be cleared during a break with the BCFE bit  
cleared, a write to the transmit data register in break mode does not  
initiate a transmission nor is this data transferred into the shift register.  
Therefore, a write to the SPDR in break mode with the BCFE bit cleared  
has no effect.  
13.12 I/O Signals  
The SPI module has five I/O pins and shares four of them with a parallel  
I/O port. The pins are:  
MISO Data received  
MOSI Data transmitted  
SPSCK Serial clock  
SS Slave select  
The SPI has limited inter-integrated circuit (I2C) capability (requiring  
software support) as a master in a single-master environment. To  
communicate with I2C peripherals, MOSI becomes an open-drain output  
when the SPWOM bit in the SPI control register is set. In I2C  
communication, the MOSI and MISO pins are connected to a  
bidirectional pin from the I2C peripheral and through a pullup resistor  
to VDD  
.
Advance Information  
268  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Serial Peripheral Interface Module (SPI) MOTOROLA  
Serial Peripheral Interface Module (SPI)  
I/O Signals  
13.12.1 MISO (Master In/Slave Out)  
MISO is one of the two SPI module pins that transmits serial data. In full  
duplex operation, the MISO pin of the master SPI module is connected  
to the MISO pin of the slave SPI module. The master SPI simultaneously  
receives data on its MISO pin and transmits data from its MOSI pin.  
Slave output data on the MISO pin is enabled only when the SPI is  
configured as a slave. The SPI is configured as a slave when its  
SPMSTR bit is logic 0 and its SS pin is at logic 0. To support a  
multiple-slave system, a logic 1 on the SS pin puts the MISO pin in a  
high-impedance state.  
When enabled, the SPI controls data direction of the MISO pin  
regardless of the state of the data direction register of the shared  
I/O port.  
13.12.2 MOSI (Master Out/Slave In)  
MOSI is one of the two SPI module pins that transmits serial data. In  
full-duplex operation, the MOSI pin of the master SPI module is  
connected to the MOSI pin of the slave SPI module. The master SPI  
simultaneously transmits data from its MOSI pin and receives data on its  
MISO pin.  
When enabled, the SPI controls data direction of the MOSI pin  
regardless of the state of the data direction register of the shared  
I/O port.  
13.12.3 SPSCK (Serial Clock)  
The serial clock synchronizes data transmission between master and  
slave devices. In a master MCU, the SPSCK pin is the clock output. In a  
slave MCU, the SPSCK pin is the clock input. In full-duplex operation,  
the master and slave MCUs exchange a byte of data in eight serial clock  
cycles.  
When enabled, the SPI controls data direction of the SPSCK pin  
regardless of the state of the data direction register of the shared  
I/O port.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Serial Peripheral Interface Module (SPI)  
AdvanceInformation  
269  
Serial Peripheral Interface Module (SPI)  
13.12.4 SS (Slave Select)  
The SS pin has various functions depending on the current state of the  
SPI. For an SPI configured as a slave, the SS is used to select a slave.  
For CPHA = 0, the SS is used to define the start of a transmission. See  
13.6 Transmission Formats. Since it is used to indicate the start of a  
transmission, the SS must be toggled high and low between each byte  
transmitted for the CPHA = 0 format. However, it can remain low  
between transmissions for the CPHA = 1 format. See Figure 13-12.  
MISO/MOSI  
MASTER  
BYTE 1  
BYTE 2  
BYTE 3  
SLAVE  
CPHA = 0  
SLAVE  
CPHA = 1  
Figure 13-12. CPHA/SS Timing  
When an SPI is configured as a slave, the SS pin is always configured  
as an input. It cannot be used as a general-purpose I/O regardless of the  
state of the MODFEN control bit. However, the MODFEN bit can still  
prevent the state of the SS from creating a MODF error. See 13.13.2 SPI  
Status and Control Register.  
NOTE: A logic 1 voltage on the SS pin of a slave SPI puts the MISO pin in a  
high-impedance state. The slave SPI ignores all incoming SPSCK  
clocks, even if it was already in the middle of a transmission.  
When an SPI is configured as a master, the SS input can be used in  
conjunction with the MODF flag to prevent multiple masters from driving  
MOSI and SPSCK. (See 13.7.2 Mode Fault Error.) For the state of the  
SS pin to set the MODF flag, the MODFEN bit in the SPSCK register  
must be set. If the MODFEN bit is low for an SPI master, the SS pin can  
be used as a general-purpose I/O under the control of the data direction  
register of the shared I/O port. With MODFEN high, it is an input-only pin  
to the SPI regardless of the state of the data direction register of the  
shared I/O port.  
Advance Information  
270  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Serial Peripheral Interface Module (SPI) MOTOROLA  
 
 
Serial Peripheral Interface Module (SPI)  
I/O Registers  
The CPU can always read the state of the SS pin by configuring the  
appropriate pin as an input and reading the port data register.  
See Table 13-3.  
Table 13-3. SPI Configuration  
SPE  
SPMSTR  
MODFEN  
SPI Configuration  
Not enabled  
Slave  
State of SS Logic  
General-purpose I/O;  
SS ignored by SPI  
(1)  
0
1
1
1
X
X
0
X
0
1
1
Input-only to SPI  
Master  
without MODF  
General-purpose I/O;  
SS ignored by SPI  
1
Master with MODF  
Input-only to SPI  
1. X = dont care  
13.12.5 VSS (Clock Ground)  
VSS is the ground return for the serial clock pin, SPSCK, and the ground  
for the port output buffers. To reduce the ground return path loop and  
minimize radio frequency (RF) emissions, connect the ground pin of the  
slave to the VSS pin of the master.  
13.13 I/O Registers  
Three registers control and monitor SPI operation:  
SPI control register, SPCR  
SPI status and control register, SPSCR  
SPI data register, SPDR  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Serial Peripheral Interface Module (SPI)  
AdvanceInformation  
271  
 
Serial Peripheral Interface Module (SPI)  
13.13.1 SPI Control Register  
The SPI control register (SPCR):  
Enables SPI module interrupt requests  
Selects CPU interrupt requests or DMA service requests  
Configures the SPI module as master or slave  
Selects serial clock polarity and phase  
Configures the SPSCK, MOSI, and MISO pins as open-drain  
outputs  
Enables the SPI module  
Address: $0044  
Bit 7  
6
5
4
3
2
1
SPE  
0
Bit 0  
SPTIE  
0
Read:  
Write:  
Reset:  
SPRIE  
R
SPMSTR CPOL  
CPHA SPWOM  
0
0
1
0
1
0
R
= Reserved  
Figure 13-13. SPI Control Register (SPCR)  
SPRIE SPI Receiver Interrupt Enable Bit  
This read/write bit enables CPU interrupt requests generated by the  
SPRF bit. The SPRF bit is set when a byte transfers from the shift  
register to the receive data register. Reset clears the SPRIE bit.  
1 = SPRF CPU interrupt requests enabled  
0 = SPRF CPU interrupt requests disabled  
SPMSTR SPI Master Bit  
This read/write bit selects master mode operation or slave mode  
operation. Reset sets the SPMSTR bit.  
1 = Master mode  
0 = Slave mode  
Advance Information  
272  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Serial Peripheral Interface Module (SPI)  
MOTOROLA  
Serial Peripheral Interface Module (SPI)  
I/O Registers  
CPOL Clock Polarity Bit  
This read/write bit determines the logic state of the SPSCK pin  
between transmissions. See Figure 13-4 and Figure 13-6. To  
transmit data between SPI modules, the SPI modules must have  
identical CPOL values. Reset clears the CPOL bit.  
CPHA Clock Phase Bit  
This read/write bit controls the timing relationship between the serial  
clock and SPI data. See Figure 13-4 and Figure 13-6. To transmit  
data between SPI modules, the SPI modules must have identical  
CPHA bits. When CPHA = 0, the SS pin of the slave SPI module must  
be set to logic 1 between bytes. See Figure 13-12. Reset sets the  
CPHA bit.  
When CPHA = 0 for a slave, the falling edge of SS indicates the  
beginning of the transmission. This causes the SPI to leave its idle  
state and begin driving the MISO pin with the MSB of its data, once  
the transmission begins, no new data is allowed into the shift register  
from the data register. Therefore, the slave data register must be  
loaded with the desired transmit data before the falling edge of SS.  
Any data written after the falling edge is stored in the data register and  
transferred to the shift register at the current transmission.  
When CPHA = 1 for a slave, the first edge of the SPSCK indicates the  
beginning of the transmission. The same applies when SS is high for  
a slave. The MISO pin is held in a high-impedance state, and the  
incoming SPSCK is ignored. In certain cases, it may also cause the  
MODF flag to be set. See 13.7.2 Mode Fault Error. A logic 1 on the  
SS pin does not in any way affect the state of the SPI state machine.  
SPWOM SPI Wired-OR Mode Bit  
This read/write bit disables the pullup devices on pins SPSCK, MOSI,  
and MISO so that those pins become open-drain outputs.  
1 = Wired-OR SPSCK, MOSI, and MISO pins  
0 = Normal push-pull SPSCK, MOSI, and MISO pins  
SPE SPI Enable Bit  
This read/write bit enables the SPI module. Clearing SPE causes a  
partial reset of the SPI. See 13.9 Resetting the SPI. Reset clears the  
SPE bit.  
1 = SPI module enabled  
0 = SPI module disabled  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Serial Peripheral Interface Module (SPI)  
AdvanceInformation  
273  
Serial Peripheral Interface Module (SPI)  
SPTIESPI Transmit Interrupt Enable Bit  
This read/write bit enables CPU interrupt requests generated by the  
SPTE bit. SPTE is set when a byte transfers from the transmit data  
register to the shift register. Reset clears the SPTIE bit.  
1 = SPTE CPU interrupt requests enabled  
0 = SPTE CPU interrupt requests disabled  
13.13.2 SPI Status and Control Register  
The SPI status and control register (SPSCR) contains flags to signal  
these conditions:  
Receive data register full  
Failure to clear SPRF bit before next byte is received (overflow  
error)  
Inconsistent logic level on SS pin (mode fault error)  
Transmit data register empty  
The SPI status and control register also contains bits that perform these  
functions:  
Enable error interrupts  
Enable mode fault error detection  
Select master SPI baud rate  
Address: $0045  
Bit 7  
6
5
OVRF  
R
4
MODF  
R
3
SPTE  
R
2
1
Bit 0  
SPR0  
0
Read: SPRF  
ERRIE  
MODFEN SPR1  
Write:  
Reset:  
R
0
0
0
0
1
0
0
R
=Reserved  
Figure 13-14. SPI Status and Control Register (SPSCR)  
SPRF SPI Receiver Full Bit  
This clearable, read-only flag is set each time a byte transfers from  
the shift register to the receive data register. SPRF generates a CPU  
interrupt request if the SPRIE bit in the SPI control register is set also.  
Advance Information  
274  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Serial Peripheral Interface Module (SPI)  
MOTOROLA  
Serial Peripheral Interface Module (SPI)  
I/O Registers  
During an SPRF CPU interrupt (DMAS = 0), the CPU clears SPRF by  
reading the SPI status and control register with SPRF set and then  
reading the SPI data register.  
Reset clears the SPRF bit.  
1 = Receive data register full  
0 = Receive data register not full  
ERRIE Error interrupt Enable Bit  
This read/write bit enables the MODF and OVRF bits to generate  
CPU interrupt requests. Reset clears the ERRIE bit.  
1 = MODF and OVRF can generate CPU interrupt requests.  
0 = MODF and OVRF cannot generate CPU interrupt requests.  
OVRF Overflow Bit  
This clearable, read-only flag is set if software does not read the byte  
in the receive data register before the next full byte enters the shift  
register. In an overflow condition, the byte already in the receive data  
register is unaffected, and the byte that shifted in last is lost. Clear the  
OVRF bit by reading the SPI status and control register with OVRF set  
and then reading the receive data register. Reset clears the OVRF bit.  
1 = Overflow  
0 = No overflow  
MODF Mode Fault Bit  
This clearable, read-only flag is set in a slave SPI if the SS pin goes  
high during a transmission with the MODFEN bit set. In a master SPI,  
the MODF flag is set if the SS pin goes low at any time with the  
MODFEN bit set. Clear the MODF bit by reading the SPI status and  
control register (SPSCR) with MODF set and then writing to the SPI  
control register (SPCR). Reset clears the MODF bit.  
1 = SS pin at inappropriate logic level  
0 = SS pin at appropriate logic level  
SPTE SPI Transmitter Empty Bit  
This clearable, read-only flag is set each time the transmit data  
register transfers a byte into the shift register. SPTE generates an  
SPTE CPU interrupt request or an SPTE DMA service request if the  
SPTIE bit in the SPI control register is set also.  
NOTE: Do not write to the SPI data register unless the SPTE bit is high.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Serial Peripheral Interface Module (SPI)  
AdvanceInformation  
275  
Serial Peripheral Interface Module (SPI)  
For an idle master of idle slave that has no data loaded into its  
transmit buffer, the SPTE will be set again within two bus cycles since  
the transmit buffer empties into the shift register. This allows the user  
to queue up a 16-bit value to send. For an already active slave, the  
load of the shift register cannot occur until the transmission is  
completed. This implies that a back-to-back write to the transmit data  
register is not possible. The SPTE indicates when the next write can  
occur.  
Reset sets the SPTE bit.  
1 = Transmit data register empty  
0 = Transmit data register not empty  
MODFEN Mode Fault Enable Bit  
This read/write bit, when set to 1, allows the MODF flag to be set. If  
the MODF flag is set, clearing the MODFEN does not clear the MODF  
flag. If the SPI is enabled as a master and the MODFEN bit is low,  
then the SS pin is available as a general-purpose I/O.  
If the MODFEN bit is set, then this pin is not available as a  
general-purpose I/O. When the SPI is enabled as a slave, the SS pin  
is not available as a general-purpose I/O regardless of the value of  
MODFEN. See 13.12.4 SS (Slave Select).  
If the MODFEN bit is low, the level of the SS pin does not affect the  
operation of an enabled SPI configured as a master. For an enabled  
SPI configured as a slave, having MODFEN low only prevents the  
MODF flag from being set. It does not affect any other part of SPI  
operation. See 13.7.2 Mode Fault Error.  
SPR1 and SPR0 SPI Baud Rate Select Bits  
In master mode, these read/write bits select one of four baud rates as  
shown in Table 13-4. SPR1 and SPR0 have no effect in slave mode.  
Reset clears SPR1 and SPR0.  
Table 13-4. SPI Master Baud Rate Selection  
SPR1:SPR0  
Baud Rate Divisor (BD)  
00  
01  
10  
11  
2
8
32  
128  
Advance Information  
276  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Serial Peripheral Interface Module (SPI)  
MOTOROLA  
 
Serial Peripheral Interface Module (SPI)  
I/O Registers  
Use this formula to calculate the SPI baud rate:  
CGMOUT  
Baud rate = --------------------------  
2 × BD  
where:  
CGMOUT = base clock output of the clock generator module (CGM)  
BD = baud rate divisor  
13.13.3 SPI Data Register  
The SPI data register consists of the read-only receive data register and  
the write-only transmit data register. Writing to the SPI data register  
writes data into the transmit data register. Reading the SPI data register  
reads data from the receive data register. The transmit data and receive  
data registers are separate registers that can contain different values.  
See Figure 13-1.  
Address: $0046  
Bit 7  
R7  
6
5
4
3
2
1
Bit 0  
R0  
Read:  
Write:  
Reset:  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
T7  
T0  
Indeterminate after reset  
Figure 13-15. SPI Data Register (SPDR)  
R7:R0/T7:T0 Receive/Transmit Data Bits  
NOTE: Do not use read-modify-write instructions on the SPI data register since  
the register read is not the same as the register written.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Serial Peripheral Interface Module (SPI)  
AdvanceInformation  
277  
Serial Peripheral Interface Module (SPI)  
Advance Information  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
278  
Serial Peripheral Interface Module (SPI)  
MOTOROLA  
Advance Information MC68HC908MR16/MC68HC908MR32  
Section 14. Serial Communications Interface Module (SCI)  
14.1 Contents  
14.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .280  
14.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .280  
14.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .281  
14.4.1 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .283  
14.4.2 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .283  
14.4.2.1  
14.4.2.2  
14.4.2.3  
14.4.2.4  
14.4.2.5  
14.4.2.6  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .283  
Character Transmission. . . . . . . . . . . . . . . . . . . . . . . . .283  
Break Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .285  
Idle Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .285  
Inversion of Transmitted Output. . . . . . . . . . . . . . . . . . .286  
Transmitter Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . .286  
14.4.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .286  
14.4.3.1  
14.4.3.2  
14.4.3.3  
14.4.3.4  
14.4.3.5  
14.4.3.6  
14.4.3.7  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .286  
Character Reception . . . . . . . . . . . . . . . . . . . . . . . . . . .288  
Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .288  
Framing Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .290  
Receiver Wakeup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .290  
Receiver Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . .291  
Error Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .292  
14.5 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .292  
14.6 SCI During Break Module Interrupts. . . . . . . . . . . . . . . . . . . .293  
14.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293  
14.7.1 PTE2/TxD (Transmit Data). . . . . . . . . . . . . . . . . . . . . . . . .293  
14.7.2 PTE1/RxD (Receive Data) . . . . . . . . . . . . . . . . . . . . . . . . .294  
14.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294  
14.8.1 SCI Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . .294  
14.8.2 SCI Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . .297  
14.8.3 SCI Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . .300  
14.8.4 SCI Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .301  
14.8.5 SCI Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . .305  
14.8.6 SCI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .306  
14.8.7 SCI Baud Rate Register . . . . . . . . . . . . . . . . . . . . . . . . . .306  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Serial Communications Interface Module (SCI)  
Advance Information  
279  
Serial Communications Interface Module (SCI)  
14.2 Introduction  
This section describes the serial communications interface module (SCI,  
version D), which allows high-speed asynchronous communications  
with peripheral devices and other microcontroller units (MCUs).  
14.3 Features  
Features of the SCI module include:  
Full-duplex operation  
Standard mark/space non-return-to-zero (NRZ) format  
32 programmable baud rates  
Programmable 8-bit or 9-bit character length  
Separately enabled transmitter and receiver  
Separate receiver and transmitter CPU interrupt requests  
Separate receiver and transmitter  
Programmable transmitter output polarity  
Two receiver wakeup methods:  
Idle line wakeup  
Address mark wakeup  
Interrupt-driven operation with eight interrupt flags:  
Transmitter empty  
Transmission complete  
Receiver full  
Idle receiver input  
Receiver overrun  
Noise error  
Framing error  
Parity error  
Receiver framing error detection  
Hardware parity checking  
1/16 bit-time noise detection  
Advance Information  
280  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Serial Communications Interface Module (SCI)  
MOTOROLA  
Serial Communications Interface Module (SCI)  
Functional Description  
14.4 Functional Description  
Figure 14-1 shows the structure of the SCI module. The SCI allows  
full-duplex, asynchronous, NRZ serial communication among the MCU  
and remote devices, including other MCUs. The transmitter and receiver  
of the SCI operate independently, although they use the same baud rate  
generator. During normal operation, the CPU monitors the status of the  
SCI, writes the data to be transmitted, and processes received data.  
INTERNAL BUS  
SCI DATA  
REGISTER  
SCI DATA  
REGISTER  
RECEIVE  
SHIFT REGISTER  
TRANSMIT  
SHIFT REGISTER  
PTE1/RxD  
PTE2/TxD  
TXINV  
SCTIE  
R8  
T8  
TCIE  
SCRIE  
ILIE  
TE  
SCTE  
TC  
RE  
RWU  
SBK  
SCRF  
IDLE  
OR  
NF  
FE  
PE  
ORIE  
NEIE  
FEIE  
PEIE  
LOOPS  
ENSCI  
LOOPS  
RECEIVE  
CONTROL  
FLAG  
CONTROL  
TRANSMIT  
CONTROL  
WAKEUP  
CONTROL  
M
BKF  
RPF  
ENSCI  
WAKE  
ILTY  
PEN  
PTY  
PRE-  
BAUD RATE  
f
÷ 4  
SCALER GENERATOR  
DATA SELECTION  
CONTROL  
÷ 16  
Figure 14-1. SCI Module Block Diagram  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Serial Communications Interface Module (SCI)  
AdvanceInformation  
281  
 
Serial Communications Interface Module (SCI)  
Addr.  
Register Name  
Bit 7  
6
5
4
M
3
WAKE  
0
2
ILTY  
0
1
PEN  
0
Bit 0  
PTY  
0
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
SCI Control Register 1  
(SCC1)  
LOOPS ENSCI TXINV  
$0038  
See page 295.  
0
0
TCIE  
0
0
0
SCI Control Register 2  
(SCC2)  
SCTIE  
SCRIE  
ILIE  
TE  
RE  
0
RWU  
0
SBK  
0
$0039  
$003A  
$003B  
$003C  
$003D  
$003E  
See page 298.  
0
R8  
R
0
0
0
0
0
SCI Control Register 3  
(SCC3)  
T8  
ORIE  
NEIE  
FEIE  
PEIE  
R
R
See page 300.  
U
U
TC  
R
0
0
0
OR  
R
0
NF  
R
0
FE  
R
0
PE  
R
Read: SCTE  
SCRF  
R
IDLE  
R
SCI Status Register 1  
(SCS1)  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
R
1
See page 302.  
1
0
0
0
0
0
0
0
0
0
0
0
0
BKF  
R
RPF  
R
SCI Status Register 2  
(SCS2)  
R
R
R
R
R
R
See page 305.  
0
0
0
0
0
0
0
0
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SCI Data Register  
(SCDR)  
See page 306.  
Unaffected by reset  
0
R
0
0
R
0
0
SCI Baud Rate Register  
(SCBR)  
SCP1  
0
SCP0  
R
SCR2  
0
SCR1  
0
SCR0  
0
See page 306.  
0
0
R
= Reserved  
U = Unaffected  
Figure 14-2. SCI I/O Register Summary  
Advance Information  
282  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Serial Communications Interface Module (SCI) MOTOROLA  
Serial Communications Interface Module (SCI)  
Functional Description  
14.4.1 Data Format  
The SCI uses the standard non-return-to-zero mark/space data format  
illustrated in Figure 14-3.  
8-BIT DATA FORMAT  
BIT M IN SCC1 CLEAR  
POSSIBLE  
PARITY  
NEXT  
START  
BIT  
BIT  
START  
STOP  
BIT  
BIT 0  
BIT 0  
BIT 1  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
BIT  
9-BIT DATA FORMAT  
BIT M IN SCC1 SET  
POSSIBLE  
PARITY  
BIT  
NEXT  
START  
BIT  
START  
BIT  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
BIT 8  
STOP  
BIT  
Figure 14-3. SCI Data Formats  
14.4.2 Transmitter  
Figure 14-4 shows the structure of the SCI transmitter.  
14.4.2.1 Character Length  
The transmitter can accommodate either 8-bit or 9-bit data. The state of  
the M bit in SCI control register 1 (SCC1) determines character length.  
When transmitting 9-bit data, bit T8 in SCI control register 3 (SCC3) is  
the ninth bit (bit 8).  
14.4.2.2 Character Transmission  
During an SCI transmission, the transmit shift register shifts a character  
out to the PTE2/TxD pin. The SCI data register (SCDR) is the write-only  
buffer between the internal data bus and the transmit shift register. To  
initiate an SCI transmission:  
1. Enable the SCI by writing a logic 1 to the enable SCI bit (ENSCI)  
in SCI control register 1 (SCC1).  
2. Enable the transmitter by writing a logic 1 to the transmitter enable  
bit (TE) in SCI control register 2 (SCC2).  
3. Clear the SCI transmitter empty bit by first reading SCI status  
register 1 (SCS1) and then writing to the SCDR.  
4. Repeat step 3 for each subsequent transmission.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Serial Communications Interface Module (SCI)  
AdvanceInformation  
283  
 
Serial Communications Interface Module (SCI)  
INTERNAL BUS  
PRE-  
SCALER DIVIDER  
BAUD  
÷ 16  
÷ 4  
SCI DATA REGISTER  
SCP1  
SCP0  
SCR1  
SCR2  
SCR0  
11-BIT  
TRANSMIT  
SHIFT REGISTER  
H
8
7
6
5
4
3
2
1
0
L
TXINV  
M
PEN  
PTY  
PARITY  
GENERATION  
T8  
TRANSMITTER  
CONTROL LOGIC  
SCTE  
SBK  
SCTE  
LOOPS  
ENSCI  
TE  
SCTIE  
SCTIE  
TC  
TC  
TCIE  
TCIE  
Figure 14-4. SCI Transmitter  
At the start of a transmission, transmitter control logic automatically  
loads the transmit shift register with a preamble of logic 1s. After the  
preamble shifts out, control logic transfers the SCDR data into the  
transmit shift register. A logic 0 start bit automatically goes into the least  
significant bit (LSB) position of the transmit shift register. A logic 1 stop  
bit goes into the most significant bit (MSB) position.  
The SCI transmitter empty bit, SCTE, in SCS1 becomes set when the  
SCDR transfers a byte to the transmit shift register. The SCTE bit  
indicates that the SCDR can accept new data from the internal data bus.  
If the SCI transmit interrupt enable bit, SCTIE, in SCC2 is also set, the  
SCTE bit generates a transmitter CPU interrupt request.  
Advance Information  
284  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Serial Communications Interface Module (SCI)  
MOTOROLA  
Serial Communications Interface Module (SCI)  
Functional Description  
When the transmit shift register is not transmitting a character, the  
PTE2/TxD pin goes to the idle condition, logic 1. If at any time software  
clears the ENSCI bit in SCI control register 1 (SCC1), the transmitter and  
receiver relinquish control of the port E pins.  
14.4.2.3 Break Characters  
Writing a logic 1 to the send break bit, SBK, in SCC2 loads the transmit  
shift register with a break character. A break character contains all logic  
0s and has no start, stop, or parity bit. Break character length depends  
on the M bit in SCC1. As long as SBK is at logic 1, transmitter logic  
continuously loads break characters into the transmit shift register. After  
software clears the SBK bit, the shift register finishes transmitting the  
last break character and then transmits at least one logic 1. The  
automatic logic 1 at the end of a break character guarantees the  
recognition of the start bit of the next character.  
The SCI recognizes a break character when a start bit is followed by  
eight or nine logic 0 data bits and a logic 0 where the stop bit should be.  
Receiving a break character has these effects on SCI registers:  
Sets the framing error bit (FE) in SCS1  
Sets the SCI receiver full bit (SCRF) in SCS1  
Clears the SCI data register (SCDR)  
Clears the R8 bit in SCC3  
Sets the break flag bit (BKF) in SCS2  
May set the overrun (OR), noise flag (NF), parity error (PE), or  
reception-in-progress flag (RPF) bits  
14.4.2.4 Idle Characters  
An idle character contains all logic 1s and has no start, stop, or parity bit.  
Idle character length depends on the M bit in SCC1. The preamble is a  
synchronizing idle character that begins every transmission.  
If the TE bit is cleared during a transmission, the PTE2/TxD pin becomes  
idle after completion of the transmission in progress. Clearing and then  
setting the TE bit during a transmission queues an idle character to be  
sent after the character currently being transmitted.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Serial Communications Interface Module (SCI)  
AdvanceInformation  
285  
Serial Communications Interface Module (SCI)  
NOTE: When queueing an idle character, return the TE bit to logic 1 before the  
stop bit of the current character shifts out to the PTE2/TxD pin. Setting  
TE after the stop bit appears on PTE2/TxD causes data previously  
written to the SCDR to be lost.  
A good time to toggle the TE bit is when the SCTE bit becomes set and  
just before writing the next byte to the SCDR.  
14.4.2.5 Inversion of Transmitted Output  
The transmit inversion bit (TXINV) in SCI control register 1 (SCC1)  
reverses the polarity of transmitted data. All transmitted values, including  
idle, break, start, and stop bits, are inverted when TXINV is at logic 1.  
See 14.8.1 SCI Control Register 1.  
14.4.2.6 Transmitter Interrupts  
These conditions can generate CPU interrupt requests from the SCI  
transmitter:  
SCI transmitter empty (SCTE) The SCTE bit in SCS1 indicates  
that the SCDR has transferred a character to the transmit shift  
register. SCTE can generate a transmitter CPU interrupt request.  
Setting the SCI transmit interrupt enable bit, SCTIE, in SCC2  
enables the SCTE bit to generate transmitter CPU interrupt  
requests.  
Transmission complete (TC) The TC bit in SCS1 indicates that  
the transmit shift register and the SCDR are empty and that no  
break or idle character has been generated. The transmission  
complete interrupt enable bit, TCIE, in SCC2 enables the TC bit to  
generate transmitter CPU interrupt requests.  
14.4.3 Receiver  
Figure 14-5 shows the structure of the SCI receiver.  
14.4.3.1 Character Length  
The receiver can accommodate either 8-bit or 9-bit data. The state of the  
M bit in SCI control register 1 (SCC1) determines character length.  
Advance Information  
286  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Serial Communications Interface Module (SCI) MOTOROLA  
Serial Communications Interface Module (SCI)  
Functional Description  
When receiving 9-bit data, bit R8 in SCI control register 2 (SCC2) is the  
ninth bit (bit 8). When receiving 8-bit data, bit R8 is a copy of the eighth  
bit (bit 7).  
INTERNAL BUS  
SCR1  
SCP1  
SCP0  
SCR2  
SCI DATA REGISTER  
SCR0  
PRE-  
SCALER DIVIDER  
BAUD  
÷ 4  
÷ 16  
11-BIT  
RECEIVE SHIFT REGISTER  
f
DATA  
RECOVERY  
H
8
7
6
5
4
3
2
1
0
L
PTE1/Rx  
ALL 0s  
BKF  
RPF  
M
RWU  
SCRF  
IDLE  
WAKE  
ILTY  
WAKEUP  
LOGIC  
PEN  
PTY  
R8  
PARITY  
CHECKING  
IDLE  
ILIE  
ILIE  
SCRF  
SCRIE  
SCRIE  
OR  
OR  
ORIE  
ORIE  
NF  
NF  
NEIE  
NEIE  
FE  
FE  
FEIE  
FEIE  
PE  
PE  
PEIE  
PEIE  
Figure 14-5. SCI Receiver Block Diagram  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Serial Communications Interface Module (SCI)  
AdvanceInformation  
287  
Serial Communications Interface Module (SCI)  
14.4.3.2 Character Reception  
During an SCI reception, the receive shift register shifts characters in  
from the PTE1/RxD pin. The SCI data register (SCDR) is the read-only  
buffer between the internal data bus and the receive shift register.  
After a complete character shifts into the receive shift register, the data  
portion of the character transfers to the SCDR. The SCI receiver full bit,  
SCRF, in SCI status register 1 (SCS1) becomes set, indicating that the  
received byte can be read. If the SCI receive interrupt enable bit, SCRIE,  
in SCC2 is also set, the SCRF bit generates a receiver CPU interrupt  
request.  
14.4.3.3 Data Sampling  
The receiver samples the PTE1/RxD pin at the RT clock rate. The RT  
clock is an internal signal with a frequency 16 times the baud rate. To  
adjust for baud rate mismatch, the RT clock is resynchronized at these  
times (see Figure 14-6):  
After every start bit  
After the receiver detects a data bit change from logic 1 to logic 0  
(after the majority of data bit samples at RT8, RT9, and RT10  
return a valid logic 1 and the majority of the next RT8, RT9, and  
RT10 samples return a valid logic 0)  
START BIT  
LSB  
PTE1/RxD  
SAMPLES  
START BIT  
QUALIFICATION  
START BIT  
VERIFICATION  
DATA  
SAMPLING  
RT  
CLOCK  
RT CLOCK  
STATE  
RT CLOCK  
RESET  
Figure 14-6. Receiver Data Sampling  
Advance Information  
288  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Serial Communications Interface Module (SCI) MOTOROLA  
 
Serial Communications Interface Module (SCI)  
Functional Description  
To locate the start bit, data recovery logic does an asynchronous search  
for a logic 0 preceded by three logic 1s. When the falling edge of a  
possible start bit occurs, the RT clock begins to count to 16.  
To verify the start bit and to detect noise, data recovery logic takes  
samples at RT3, RT5, and RT7. Table 14-1 summarizes the results of  
the start bit verification samples.  
Table 14-1. Start Bit Verification  
RT3, RT5, and RT7  
Samples  
Start Bit  
Verification  
Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
Yes  
Yes  
Yes  
No  
0
1
1
0
1
0
0
0
Yes  
No  
No  
No  
If start bit verification is not successful, the RT clock is reset and a new  
search for a start bit begins.  
To determine the value of a data bit and to detect noise, recovery logic  
takes samples at RT8, RT9, and RT10. Table 14-2 summarizes the  
results of the data bit samples.  
Table 14-2. Data Bit Recovery  
RT8, RT9, and RT10  
Samples  
Data Bit  
Determination  
Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
0
0
0
1
0
1
1
1
0
1
1
1
1
1
1
0
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Serial Communications Interface Module (SCI)  
AdvanceInformation  
289  
 
 
Serial Communications Interface Module (SCI)  
NOTE: The RT8, RT9, and RT10 samples do not affect start bit verification. If  
any or all of the RT8, RT9, and RT10 start bit samples are logic 1s  
following a successful start bit verification, the noise flag (NF) is set and  
the receiver assumes that the bit is a start bit.  
To verify a stop bit and to detect noise, recovery logic takes samples at  
RT8, RT9, and RT10. Table 14-3 summarizes the results of the stop bit  
samples.  
Table 14-3. Stop Bit Recovery  
RT8, RT9, and RT10  
Samples  
Framing  
Error Flag  
Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
1
1
1
0
1
0
0
0
0
1
1
1
1
1
1
0
14.4.3.4 Framing Errors  
If the data recovery logic does not detect a logic 1 where the stop bit  
should be in an incoming character, it sets the framing error bit, FE, in  
SCS1. The FE flag is set at the same time that the SCRF bit is set. A  
break character that has no stop bit also sets the FE bit.  
14.4.3.5 Receiver Wakeup  
So that the MCU can ignore transmissions intended only for other  
receivers in multiple-receiver systems, the receiver can be put into a  
standby state. Setting the receiver wakeup bit, RWU, in SCC2 puts the  
receiver into a standby state during which receiver interrupts are  
disabled.  
Advance Information  
290  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Serial Communications Interface Module (SCI)  
MOTOROLA  
 
Serial Communications Interface Module (SCI)  
Functional Description  
Depending on the state of the WAKE bit in SCC1, either of two  
conditions on the PTE1/RxD pin can bring the receiver out of the standby  
state:  
Address mark An address mark is a logic 1 in the most  
significant bit position of a received character. When the WAKE bit  
is set, an address mark wakes the receiver from the standby state  
by clearing the RWU bit. The address mark also sets the SCI  
receiver full bit, SCRF. Software can then compare the character  
containing the address mark to the user-defined address of the  
receiver. If they are the same, the receiver remains awake and  
processes the characters that follow. If they are not the same,  
software can set the RWU bit and put the receiver back into the  
standby state.  
Idle input line condition When the WAKE bit is clear, an idle  
character on the PTE1/RxD pin wakes the receiver from the  
standby state by clearing the RWU bit. The idle character that  
wakes the receiver does not set the receiver idle bit, IDLE, or the  
SCI receiver full bit, SCRF. The idle line type bit, ILTY, determines  
whether the receiver begins counting logic 1s as idle character bits  
after the start bit or after the stop bit.  
NOTE: Clearing the WAKE bit after the PTE1/RxD pin has been idle can cause  
the receiver to wake up immediately.  
14.4.3.6 Receiver Interrupts  
These sources can generate CPU interrupt requests from the SCI  
receiver:  
SCI receiver full (SCRF) The SCRF bit in SCS1 indicates that  
the receive shift register has transferred a character to the SCDR.  
SCRF can generate a receiver CPU interrupt request. Setting the  
SCI receive interrupt enable bit, SCRIE, in SCC2 enables the  
SCRF bit to generate receiver CPU interrupts.  
Idle input (IDLE) The IDLE bit in SCS1 indicates that 10 or 11  
consecutive logic 1s shifted in from the PTE1/RxD pin. The idle  
line interrupt enable bit, ILIE, in SCC2 enables the IDLE bit to  
generate CPU interrupt requests.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Serial Communications Interface Module (SCI)  
AdvanceInformation  
291  
Serial Communications Interface Module (SCI)  
14.4.3.7 Error Interrupts  
These receiver error flags in SCS1 can generate CPU interrupt requests:  
Receiver overrun (OR) The OR bit indicates that the receive  
shift register shifted in a new character before the previous  
character was read from the SCDR. The previous character  
remains in the SCDR, and the new character is lost. The overrun  
interrupt enable bit, ORIE, in SCC3 enables OR to generate SCI  
error CPU interrupt requests.  
Noise flag (NF) The NF bit is set when the SCI detects noise on  
incoming data or break characters, including start, data, and stop  
bits. The noise error interrupt enable bit, NEIE, in SCC3 enables  
NF to generate SCI error CPU interrupt requests.  
Framing error (FE) The FE bit in SCS1 is set when a logic 0  
occurs where the receiver expects a stop bit. The framing error  
interrupt enable bit, FEIE, in SCC3 enables FE to generate SCI  
error CPU interrupt requests.  
Parity error (PE) The PE bit in SCS1 is set when the SCI  
detects a parity error in incoming data. The parity error interrupt  
enable bit, PEIE, in SCC3 enables PE to generate SCI error CPU  
interrupt requests.  
14.5 Wait Mode  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes.  
The SCI module remains active after the execution of a WAIT  
instruction. In wait mode the SCI module registers are not accessible by  
the CPU. Any enabled CPU interrupt request from the SCI module can  
bring the MCU out of wait mode.  
If SCI module functions are not required during wait mode, reduce power  
consumption by disabling the module before executing the WAIT  
instruction.  
Advance Information  
292  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Serial Communications Interface Module (SCI)  
MOTOROLA  
Serial Communications Interface Module (SCI)  
SCI During Break Module Interrupts  
14.6 SCI During Break Module Interrupts  
The system integration module (SIM) controls whether status bits in  
other modules can be cleared during interrupts generated by the break  
module. The BCFE bit in the SIM break flag control register (SBFCR)  
enables software to clear status bits during the break state.  
To allow software to clear status bits during a break interrupt, write a  
logic 1 to the BCFE bit. If a status bit is cleared during the break state, it  
remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a logic 0 to the BCFE  
bit. With BCFE at logic 0 (its default state), software can read and write  
I/O registers during the break state without affecting status bits. Some  
status bits have a 2-step read/write clearing procedure. If software does  
the first step on such a bit before the break, the bit cannot change during  
the break state as long as BCFE is at logic 0. After the break, doing the  
second step clears the status bit.  
14.7 I/O Signals  
Port F shares two of its pins with the SCI module. The two SCI  
input/output (I/O) pins are:  
PTE2/TxD Transmit data  
PTE1/RxD Receive data  
14.7.1 PTE2/TxD (Transmit Data)  
The PTE2/TxD pin is the serial data output from the SCI transmitter. The  
SCI shares the PTE2/TxD pin with port E. When the SCI is enabled, the  
PTE2/TxD pin is an output regardless of the state of the DDRF5 bit in  
data direction register F (DDRF).  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Serial Communications Interface Module (SCI)  
AdvanceInformation  
293  
Serial Communications Interface Module (SCI)  
14.7.2 PTE1/RxD (Receive Data)  
The PTE1/RxD pin is the serial data input to the SCI receiver. The SCI  
shares the PTE1/RxD pin with port E. When the SCI is enabled, the  
PTE1/RxD pin is an input regardless of the state of the DDRF4 bit in data  
direction register F (DDRF).  
14.8 I/O Registers  
These I/O registers control and monitor SCI operation:  
SCI control register 1 (SCC1)  
SCI control register 2 (SCC2)  
SCI control register 3 (SCC3)  
SCI status register 1 (SCS1)  
SCI status register 2 (SCS2)  
SCI data register (SCDR)  
SCI baud rate register (SCBR)  
14.8.1 SCI Control Register 1  
SCI control register 1 (SCC1):  
Enables loop-mode operation  
Enables the SCI  
Controls output polarity  
Controls character length  
Controls SCI wakeup method  
Controls idle character detection  
Enables parity function  
Controls parity type  
Advance Information  
294  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Serial Communications Interface Module (SCI) MOTOROLA  
Serial Communications Interface Module (SCI)  
I/O Registers  
Address: $0038  
Bit 7  
6
ENSCI  
0
5
TXINV  
0
4
M
0
3
WAKE  
0
2
ILTY  
0
1
PEN  
0
Bit 0  
PTY  
0
Read:  
LOOPS  
Write:  
Reset:  
0
Figure 14-7. SCI Control Register 1 (SCC1)  
LOOPS Loop Mode Select Bit  
This read/write bit enables loop mode operation. In loop mode the  
PTE6/RxD pin is disconnected from the SCI, and the transmitter  
output goes into the receiver input. Both the transmitter and the  
receiver must be enabled to use loop mode. Reset clears the  
LOOPS bit.  
1 = Loop mode enabled  
0 = Normal operation enabled  
ENSCI Enable SCI Bit  
This read/write bit enables the SCI and the SCI baud rate generator.  
Clearing ENSCI sets the SCTE and TC bits in SCI status register 1  
and disables transmitter interrupts. Reset clears the ENSCI bit.  
1 = SCI enabled  
0 = SCI disabled  
TXINV Transmit Inversion Bit  
This read/write bit reverses the polarity of transmitted data. Reset  
clears the TXINV bit.  
1 = Transmitter output inverted  
0 = Transmitter output not inverted  
NOTE: Setting the TXINV bit inverts all transmitted values, including idle, break,  
start, and stop bits.  
M Mode (Character Length) Bit  
This read/write bit determines whether SCI characters are eight or  
nine bits long. See Table 14-4. The ninth bit can serve as an extra  
stop bit, as a receiver wakeup signal, or as a parity bit. Reset clears  
the M bit.  
1 = 9-bit SCI characters  
0 = 8-bit SCI characters  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Serial Communications Interface Module (SCI)  
AdvanceInformation  
295  
Serial Communications Interface Module (SCI)  
WAKE Wakeup Condition Bit  
This read/write bit determines which condition wakes up the SCI: a  
logic 1 (address mark) in the most significant bit (MSB) position of a  
received character or an idle condition on the PTE6/RxD pin. Reset  
clears the WAKE bit.  
1 = Address mark wakeup  
0 = Idle line wakeup  
ILTY Idle Line Type Bit  
This read/write bit determines when the SCI starts counting logic 1s  
as idle character bits. The counting begins either after the start bit or  
after the stop bit. If the count begins after the start bit, then a string of  
logic 1s preceding the stop bit may cause false recognition of an idle  
character. Beginning the count after the stop bit avoids false idle  
character recognition, but requires properly synchronized  
transmissions. Reset clears the ILTY bit.  
1 = Idle character bit count begins after stop bit.  
0 = Idle character bit count begins after start bit.  
PEN Parity Enable Bit  
This read/write bit enables the SCI parity function. See Table 14-4.  
When enabled, the parity function inserts a parity bit in the most  
significant bit position. See Figure 14-3. Reset clears the PEN bit.  
1 = Parity function enabled  
0 = Parity function disabled  
PTY Parity Bit  
This read/write bit determines whether the SCI generates and checks  
for odd parity or even parity. See Table 14-4. Reset clears the  
PTY bit.  
1 = Odd parity  
0 = Even parity  
NOTE: Changing the PTY bit in the middle of a transmission or reception can  
generate a parity error.  
Advance Information  
296  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Serial Communications Interface Module (SCI) MOTOROLA  
Serial Communications Interface Module (SCI)  
I/O Registers  
Table 14-4. Character Format Selection  
Control Bits  
PEN:PTY  
Character Format  
Start  
Bits  
Data  
Bits  
Stop  
Parity  
Character  
Length  
M
Bits  
0
1
0
0
1
1
0X  
0X  
10  
11  
10  
11  
1
1
1
1
1
1
8
9
7
7
8
8
None  
None  
Even  
Odd  
1
1
1
1
1
1
10 bits  
11 bits  
10 bits  
10 bits  
11 bits  
11 bits  
Even  
Odd  
14.8.2 SCI Control Register 2  
SCI control register 2 (SCC2):  
Enables these CPU interrupt requests:  
Enables the SCTE bit to generate transmitter CPU interrupt  
requests  
Enables the TC bit to generate transmitter CPU interrupt  
requests  
Enables the SCRF bit to generate receiver CPU interrupt  
requests  
Enables the IDLE bit to generate receiver CPU interrupt  
requests  
Enables the transmitter  
Enables the receiver  
Enables SCI wakeup  
Transmits SCI break characters  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Serial Communications Interface Module (SCI)  
AdvanceInformation  
297  
Serial Communications Interface Module (SCI)  
Address: $0039  
Bit 7  
SCTIE  
0
6
TCIE  
0
5
SCRIE  
0
4
ILIE  
0
3
TE  
0
2
RE  
0
1
RWU  
0
Bit 0  
SBK  
0
Read:  
Write:  
Reset:  
Figure 14-8. SCI Control Register 2 (SCC2)  
SCTIE SCI Transmit Interrupt Enable Bit  
This read/write bit enables the SCTE bit to generate SCI transmitter  
CPU interrupt requests. Setting the SCTIE bit in SCC3 enables SCTE  
CPU interrupt requests. Reset clears the SCTIE bit.  
1 = SCTE enabled to generate CPU interrupt  
0 = SCTE not enabled to generate CPU interrupt  
TCIE Transmission Complete Interrupt Enable Bit  
This read/write bit enables the TC bit to generate SCI transmitter CPU  
interrupt requests. Reset clears the TCIE bit.  
1 = TC enabled to generate CPU interrupt requests  
0 = TC not enabled to generate CPU interrupt requests  
SCRIE SCI Receive Interrupt Enable Bit  
This read/write bit enables the SCRF bit to generate SCI receiver  
CPU interrupt requests. Setting the SCRIE bit in SCC3 enables the  
SCRF bit to generate CPU interrupt requests. Reset clears the  
SCRIE bit.  
1 = SCRF enabled to generate CPU interrupt  
0 = SCRF not enabled to generate CPU interrupt  
ILIE Idle Line Interrupt Enable Bit  
This read/write bit enables the IDLE bit to generate SCI receiver CPU  
interrupt requests. Reset clears the ILIE bit.  
1 = IDLE enabled to generate CPU interrupt requests  
0 = IDLE not enabled to generate CPU interrupt requests  
TE Transmitter Enable Bit  
Setting this read/write bit begins the transmission by sending a  
preamble of 10 or 11 logic 1s from the transmit shift register to the  
PTE2/TxD pin. If software clears the TE bit, the transmitter completes  
any transmission in progress before the PTE2/TxD returns to the idle  
Advance Information  
298  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Serial Communications Interface Module (SCI)  
MOTOROLA  
Serial Communications Interface Module (SCI)  
I/O Registers  
condition (logic 1). Clearing and then setting TE during a transmission  
queues an idle character to be sent after the character currently being  
transmitted. Reset clears the TE bit.  
1 = Transmitter enabled  
0 = Transmitter disabled  
NOTE: Writing to the TE bit is not allowed when the enable SCI bit (ENSCI) is  
clear. ENSCI is in SCI control register 1.  
RE Receiver Enable Bit  
Setting this read/write bit enables the receiver. Clearing the RE bit  
disables the receiver but does not affect receiver interrupt flag bits.  
Reset clears the RE bit.  
1 = Receiver enabled  
0 = Receiver disabled  
NOTE: Writing to the RE bit is not allowed when the enable SCI bit (ENSCI) is  
clear. ENSCI is in SCI control register 1.  
RWU Receiver Wakeup Bit  
This read/write bit puts the receiver in a standby state during which  
receiver interrupts are disabled. The WAKE bit in SCC1 determines  
whether an idle input or an address mark brings the receiver out of the  
standby state and clears the RWU bit. Reset clears the RWU bit.  
1 = Standby state  
0 = Normal operation  
SBK Send Break Bit  
Setting and then clearing this read/write bit transmits a break  
character followed by a logic 1. The logic 1 after the break character  
guarantees recognition of a valid start bit. If SBK remains set, the  
transmitter continuously transmits break characters with no logic 1s  
between them. Reset clears the SBK bit.  
1 = Transmit break characters  
0 = No break characters being transmitted  
NOTE: Do not toggle the SBK bit immediately after setting the SCTE bit.  
Toggling SBK too early causes the SCI to send a break character  
instead of a preamble.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Serial Communications Interface Module (SCI)  
AdvanceInformation  
299  
Serial Communications Interface Module (SCI)  
14.8.3 SCI Control Register 3  
SCI control register 3 (SCC3):  
Stores the ninth SCI data bit received and the ninth SCI data bit to  
be transmitted  
Enables SCI receiver full (SCRF)  
Enables SCI transmitter empty (SCTE)  
Enables the following interrupts:  
Receiver overrun interrupts  
Noise error interrupts  
Framing error interrupts  
Parity error interrupts  
Address: $003A  
Bit 7  
R8  
R
6
5
0
4
0
3
ORIE  
0
2
NEIE  
0
1
FEIE  
0
Bit 0  
PEIE  
0
Read:  
Write:  
Reset:  
T8  
R
0
R
0
U
U
R
= Reserved  
U = Unaffected  
Figure 14-9. SCI Control Register 3 (SCC3)  
R8 Received Bit 8  
When the SCI is receiving 9-bit characters, R8 is the read-only ninth  
bit (bit 8) of the received character. R8 is received at the same time  
that the SCDR receives the other eight bits.  
When the SCI is receiving 8-bit characters, R8 is a copy of the eighth  
bit (bit 7). Reset has no effect on the R8 bit.  
T8 Transmitted Bit 8  
When the SCI is transmitting 9-bit characters, T8 is the read/write  
ninth bit (bit 8) of the transmitted character. T8 is loaded into the  
transmit shift register at the same time that the SCDR is loaded into  
the transmit shift register. Reset has no effect on the T8 bit.  
Advance Information  
300  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Serial Communications Interface Module (SCI)  
MOTOROLA  
Serial Communications Interface Module (SCI)  
I/O Registers  
ORIE Receiver Overrun Interrupt Enable Bit  
This read/write bit enables SCI error CPU interrupt requests  
generated by the receiver overrun bit, OR.  
1 = SCI error CPU interrupt requests from OR bit enabled  
0 = SCI error CPU interrupt requests from OR bit disabled  
NEIE Receiver Noise Error Interrupt Enable Bit  
This read/write bit enables SCI error CPU interrupt requests  
generated by the noise error bit, NE. Reset clears NEIE.  
1 = SCI error CPU interrupt requests from NE bit enabled  
0 = SCI error CPU interrupt requests from NE bit disabled  
FEIE Receiver Framing Error Interrupt Enable Bit  
This read/write bit enables SCI error CPU interrupt requests  
generated by the framing error bit, FE. Reset clears FEIE.  
1 = SCI error CPU interrupt requests from FE bit enabled  
0 = SCI error CPU interrupt requests from FE bit disabled  
PEIE Receiver Parity Error Interrupt Enable Bit  
This read/write bit enables SCI receiver CPU interrupt  
requests generated by the parity error bit, PE. See 14.8.4 SCI Status  
Register 1. Reset clears PEIE.  
1 = SCI error CPU interrupt requests from PE bit enabled  
0 = SCI error CPU interrupt requests from PE bit disabled  
14.8.4 SCI Status Register 1  
SCI status register 1 (SCS1) contains flags to signal these conditions:  
Transfer of SCDR data to transmit shift register complete  
Transmission complete  
Transfer of receive shift register data to SCDR complete  
Receiver input idle  
Receiver overrun  
Noisy data  
Framing error  
Parity error  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Serial Communications Interface Module (SCI)  
AdvanceInformation  
301  
 
Serial Communications Interface Module (SCI)  
Address: $003B  
Bit 7  
6
5
SCRF  
R
4
IDLE  
R
3
OR  
R
2
NF  
R
1
FE  
R
Bit 0  
PE  
R
Read: SCTE  
TC  
Write:  
Reset:  
R
1
R
1
0
0
0
0
0
0
R
= Reserved  
Figure 14-10. SCI Status Register 1 (SCS1)  
SCTE SCI Transmitter Empty Bit  
This clearable, read-only bit is set when the SCDR transfers a  
character to the transmit shift register. SCTE can generate an SCI  
transmitter CPU interrupt request. When the SCTIE bit in SCC2 is set,  
SCTE generates an SCI transmitter CPU interrupt request. In normal  
operation, clear the SCTE bit by reading SCS1 with SCTE set and  
then writing to SCDR. Reset sets the SCTE bit.  
1 = SCDR data transferred to transmit shift register  
0 = SCDR data not transferred to transmit shift register  
TC Transmission Complete Bit  
This read-only bit is set when the SCTE bit is set and no data,  
preamble, or break character is being transmitted. TC generates an  
SCI transmitter CPU interrupt request if the TCIE bit in SCC2 is also  
set. TC is cleared automatically when data, preamble, or break is  
queued and ready to be sent. There may be up to 1.5 transmitter  
clocks of latency between queueing data, preamble, and break and  
the transmission actually starting. Reset sets the TC bit.  
1 = No transmission in progress  
0 = Transmission in progress  
SCRF SCI Receiver Full Bit  
This clearable, read-only bit is set when the data in the receive shift  
register transfers to the SCI data register. SCRF can generate an SCI  
receiver CPU interrupt request. When the SCRIE bit in SCC2 is set,  
SCRF generates a CPU interrupt request. In normal operation, clear  
the SCRF bit by reading SCS1 with SCRF set and then reading the  
SCDR. Reset clears SCRF.  
1 = Received data available in SCDR  
0 = Data not available in SCDR  
Advance Information  
302  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Serial Communications Interface Module (SCI)  
MOTOROLA  
Serial Communications Interface Module (SCI)  
I/O Registers  
IDLE Receiver Idle Bit  
This clearable, read-only bit is set when 10 or 11 consecutive logic 1s  
appear on the receiver input. IDLE generates an SCI error CPU  
interrupt request if the ILIE bit in SCC2 is also set. Clear the IDLE bit  
by reading SCS1 with IDLE set and then reading the SCDR. After the  
receiver is enabled, it must receive a valid character that sets the  
SCRF bit before an idle condition can set the IDLE bit. Also, after the  
IDLE bit has been cleared, a valid character must again set the SCRF  
bit before an idle condition can set the IDLE bit. Reset clears the  
IDLE bit.  
1 = Receiver input idle  
0 = Receiver input active or idle since the IDLE bit was cleared  
OR Receiver Overrun Bit  
This clearable, read-only bit is set when software fails to read the  
SCDR before the receive shift register receives the next character.  
The OR bit generates an SCI error CPU interrupt request if the ORIE  
bit in SCC3 is also set. The data in the shift register is lost, but the data  
already in the SCDR is not affected. Clear the OR bit by reading SCS1  
with OR set and then reading the SCDR. Reset clears the OR bit.  
1 = Receive shift register full and SCRF = 1  
0 = No receiver overrun  
Software latency may allow an overrun to occur between reads of  
SCS1 and SCDR in the flag-clearing sequence. Figure 14-11 shows  
the normal flag-clearing sequence and an example of an overrun  
caused by a delayed flag-clearing sequence. The delayed read of  
SCDR does not clear the OR bit because OR was not set when SCS1  
was read. Byte 2 caused the overrun and is lost. The next  
flag-clearing sequence reads byte 3 in the SCDR instead of byte 2.  
In applications that are subject to software latency or in which it is  
important to know which byte is lost due to an overrun, the  
flag-clearing routine can check the OR bit in a second read of SCS1  
after reading the data register.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Serial Communications Interface Module (SCI)  
AdvanceInformation  
303  
Serial Communications Interface Module (SCI)  
NF Receiver Noise Flag Bit  
This clearable, read-only bit is set when the SCI detects noise on the  
PTE1/RxD pin. NF generates an NF CPU interrupt request if the NEIE  
bit in SCC3 is also set. Clear the NF bit by reading SCS1 and then  
reading the SCDR. Reset clears the NF bit.  
1 = Noise detected  
0 = No noise detected  
FE Receiver Framing Error Bit  
This clearable, read-only bit is set when a logic 0 is accepted as the  
stop bit. FE generates an SCI error CPU interrupt request if the FEIE  
bit in SCC3 also is set. Clear the FE bit by reading SCS1 with FE set  
and then reading the SCDR. Reset clears the FE bit.  
1 = Framing error detected  
0 = No framing error detected  
PE Receiver Parity Error Bit  
This clearable, read-only bit is set when the SCI detects a parity error  
in incoming data. PE generates a PE CPU interrupt request if the  
PEIE bit in SCC3 is also set. Clear the PE bit by reading SCS1 with  
PE set and then reading the SCDR. Reset clears the PE bit.  
1 = Parity error detected  
0 = No parity error detected  
NORMAL FLAG CLEARING SEQUENCE  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCDR  
BYTE 1  
READ SCDR  
BYTE 2  
READ SCDR  
BYTE 3  
DELAYED FLAG CLEARING SEQUENCE  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 1  
READ SCDR  
BYTE 1  
READ SCDR  
BYTE 3  
Figure 14-11. Flag Clearing Sequence  
Advance Information  
304  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Serial Communications Interface Module (SCI) MOTOROLA  
Serial Communications Interface Module (SCI)  
I/O Registers  
14.8.5 SCI Status Register 2  
SCI status register 2 (SCS2) contains flags to signal these conditions:  
Break character detected  
Incoming data  
Address: $003C  
Bit 7  
0
6
5
0
4
0
3
0
2
0
1
BKF  
R
Bit 0  
RPF  
R
Read:  
Write:  
Reset:  
0
R
R
R
0
R
0
R
0
R
0
0
0
0
0
R
= Reserved  
Figure 14-12. SCI Status Register 2 (SCS2)  
BKF Break Flag  
This clearable, read-only bit is set when the SCI detects a break  
character on the PTE1/RxD pin. In SCS1, the FE and SCRF bits are  
also set. In 9-bit character transmissions, the R8 bit in SCC3 is  
cleared. BKF does not generate a CPU interrupt request. Clear BKF  
by reading SCS2 with BKF set and then reading the SCDR. Once  
cleared, BKF can become set again only after logic 1s again appear  
on the PTE1/RxD pin followed by another break character. Reset  
clears the BKF bit.  
1 = Break character detected  
0 = No break character detected  
RPF Reception-in-Progress Flag  
This read-only bit is set when the receiver detects a logic 0 during the  
RT1 time period of the start bit search. RPF does not generate an  
interrupt request. RPF is reset after the receiver detects false start bits  
(usually from noise or a baud rate mismatch, or when the receiver  
detects an idle character. Polling RPF before disabling the SCI  
module or entering stop mode can show whether a reception is in  
progress.  
1 = Reception in progress  
0 = No reception in progress  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Serial Communications Interface Module (SCI)  
AdvanceInformation  
305  
Serial Communications Interface Module (SCI)  
14.8.6 SCI Data Register  
The SCI data register (SCDR) is the buffer between the internal data bus  
and the receive and transmit shift registers. Reset has no effect on data  
in the SCI data register.  
Address: $003D  
Bit 7  
R7  
6
5
4
3
2
1
Bit 0  
R0  
Read:  
Write:  
Reset:  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
T7  
T0  
Unaffected by reset  
Figure 14-13. SCI Data Register (SCDR)  
R7/T7:R0/T0 Receive/Transmit Data Bits  
Reading address $003D accesses the read-only received data bits,  
R7:R0. Writing to address $003D writes the data to be transmitted,  
T7:T0. Reset has no effect on the SCI data register.  
14.8.7 SCI Baud Rate Register  
The baud rate register (SCBR) selects the baud rate for both the receiver  
and the transmitter.  
Address: $003E  
Bit 7  
0
6
5
SCP1  
0
4
SCP0  
0
3
0
2
SCR2  
0
1
SCR1  
0
Bit 0  
SCR0  
0
Read:  
Write:  
Reset:  
0
R
R
R
0
0
0
R
= Reserved  
Figure 14-14. SCI Baud Rate Register (SCBR)  
Advance Information  
306  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Serial Communications Interface Module (SCI) MOTOROLA  
Serial Communications Interface Module (SCI)  
I/O Registers  
SCP1 and SCP0 SCI Baud Rate Prescaler Bits  
These read/write bits select the baud rate prescaler divisor as shown  
in Table 14-5. Reset clears SCP1 and SCP0.  
Table 14-5. SCI Baud Rate Prescaling  
SCP1:SCP0  
Prescaler Divisor (PD)  
00  
01  
10  
11  
1
3
4
13  
SCR2SCR0 SCI Baud Rate Select Bits  
These read/write bits select the SCI baud rate divisor as shown in  
Table 14-6. Reset clears SCR2SCR0.  
Table 14-6. SCI Baud Rate Selection  
SCR2:SCR1:SCR0  
Baud Rate Divisor (BD)  
000  
001  
010  
011  
100  
101  
110  
111  
1
2
4
8
16  
32  
64  
128  
Use this formula to calculate the SCI baud rate:  
f
OP  
Baud rate = ------------------------------------  
64 × PD × BD  
where:  
fOP = internal operating frequency  
PD = prescaler divisor  
BD = baud rate divisor  
Table 14-7 shows the SCI baud rates that can be generated with a  
4.9152-MHz crystal with the CGM set for an fOP of 7.3728 MHz and the  
CGM set for an fOP of 4.9152 MHz.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Serial Communications Interface Module (SCI)  
AdvanceInformation  
307  
 
 
Serial Communications Interface Module (SCI)  
Table 14-7. SCI Baud Rate Selection Examples  
Baud Rate  
(f = 7.3728 MHz) (f = 4.9152 MHz)  
Baud Rate  
Prescaler  
Divisor (PD)  
Baud Rate  
Divisor (BD)  
SCP1:SCP0  
SCR2:SCR1:SCR0  
OP  
OP  
00  
00  
00  
00  
00  
00  
00  
00  
01  
01  
01  
01  
01  
01  
01  
01  
10  
10  
10  
10  
10  
10  
10  
10  
11  
11  
11  
11  
11  
11  
11  
11  
1
1
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
1
2
115,200  
57,600  
28,800  
14,400  
7200  
76,800  
38,400  
19,200  
9600  
4800  
2400  
1200  
600  
1
4
1
8
1
16  
32  
64  
128  
1
1
3600  
1
1800  
1
900  
3
38,400  
19,200  
9600  
25,600  
12,800  
6400  
3200  
1600  
800  
3
2
3
4
3
8
4800  
3
16  
32  
64  
128  
1
2400  
3
1200  
3
600  
400  
3
300  
200  
4
28,800  
14,400  
7200  
19,200  
9600  
4800  
2400  
1200  
600  
4
2
4
4
4
8
3600  
4
16  
32  
64  
128  
1
1800  
4
900  
4
450  
300  
4
225  
150  
13  
13  
13  
13  
13  
13  
13  
13  
8861.5  
4430.7  
2215.4  
1107.7  
553.8  
276.9  
138.5  
69.2  
5907.7  
2953.8  
1476.9  
738.5  
369.2  
184.6  
92.3  
2
4
8
16  
32  
64  
128  
46.2  
Advance Information  
308  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Serial Communications Interface Module (SCI) MOTOROLA  
Advance Information MC68HC908MR16/MC68HC908MR32  
Section 15. Input/Output (I/O) Ports  
15.1 Contents  
15.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .309  
15.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .312  
15.3.1 Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .312  
15.3.2 Data Direction Register A . . . . . . . . . . . . . . . . . . . . . . . . .312  
15.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314  
15.4.1 Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314  
15.4.2 Data Direction Register B. . . . . . . . . . . . . . . . . . . . . . . . . .314  
15.5 Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .316  
15.5.1 Port C Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .316  
15.5.2 Data Direction Register C . . . . . . . . . . . . . . . . . . . . . . . . .316  
15.6 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .318  
15.7 Port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .319  
15.7.1 Port E Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .319  
15.7.2 Data Direction Register E . . . . . . . . . . . . . . . . . . . . . . . . .320  
15.8 Port F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .321  
15.8.1 Port F Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .321  
15.8.2 Data Direction Register F . . . . . . . . . . . . . . . . . . . . . . . . .322  
15.2 Introduction  
Thirty-seven bidirectional input-output (I/O) pins and seven input pins  
form six parallel ports. All I/O pins are programmable as inputs or  
outputs.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Input/Output (I/O) Ports  
Advance Information  
309  
 
Input/Output (I/O) Ports  
When using the 56-pin package version:  
Set the data direction register bits in DDRC such that bit 1 is  
written to a logic 1 (along with any other output bits on port C).  
Set the data direction register bits in DDRE such that bits 0, 1,  
and 2 are written to a logic 1 (along with any other output bits on  
port E).  
Set the data direction register bits in DDRF such that bits 0, 1, 2,  
and 3 are written to a logic 1 (along with any other output bits on  
port F).  
NOTE: Connect any unused I/O pins to an appropriate logic level, either VDD or  
VSS. Although PWM6PWM1 do not require termination for proper  
operation, termination reduces excess current consumption and the  
possibility of electrostatic damage.  
Addr.  
Register Name  
Port A Data Register  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
PTA7  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
$0000  
(PTA)  
See page 312.  
Unaffected by reset  
PTB4 PTB3  
Unaffected by reset  
PTC4 PTC3  
Unaffected by reset  
Port B Data Register  
(PTB)  
PTB7  
PTB6  
PTC6  
PTB5  
PTC5  
PTB2  
PTC2  
PTB1  
PTC1  
PTB0  
PTC0  
$0001  
$0002  
$0003  
$0004  
See page 314.  
0
Port C Data Register  
(PTC)  
R
See page 316.  
0
PTD6  
R
PTD5  
R
PTD4  
R
PTD3  
R
PTD2  
R
PTD1  
R
PTD0  
R
Port D Data Register  
(PTD)  
R
See page 318.  
Unaffected by reset  
Data Direction Register A  
(DDRA)  
DDRA7 DDRA6 DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0  
See page 312.  
0
0
0
0
0
0
0
0
R
=Reserved  
Figure 15-1. I/O Port Register Summary  
Advance Information  
310  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Input/Output (I/O) Ports MOTOROLA  
Input/Output (I/O) Ports  
Introduction  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Data Direction Register B  
(DDRB)  
DDRB7 DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0  
$0005  
See page 314.  
0
0
0
0
0
0
0
0
0
Data Direction Register C  
(DDRC)  
DDRC6 DDRC5 DDRC4 DDRC3 DDRC2 DDRC1 DDRC0  
$0006  
$0007  
R
0
See page 316.  
0
0
0
0
0
0
0
Unimplemented  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Port E Data Register  
(PTE)  
PTE7  
PTE6  
PTE5  
PTF5  
PTE4  
Unaffected by reset  
PTF4 PTF3  
PTE3  
PTE2  
PTF2  
PTE1  
PTF1  
PTE0  
PTF0  
$0008  
$0009  
See page 319.  
0
0
Port F Data Register  
(PTF)  
R
R
See page 321.  
Unaffected by reset  
Unimplemented  
Unimplemented  
$000A  
$000B  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Data Direction Register E  
(DDRE)  
DDRE7 DDRE6 DDRE5 DDRE4 DDRE3 DDRE2 DDRE1 DDRE0  
$000C  
$000D  
See page 320.  
0
0
0
0
0
0
0
0
0
0
Data Direction Register F  
(DDRF)  
DDRF5 DDRF4 DDRF3 DDRF2 DDRF1 DDRF0  
R
R
See page 322.  
0
0
0
0
0
0
R
=Reserved  
Figure 15-1. I/O Port Register Summary (Continued)  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Input/Output (I/O) Ports  
AdvanceInformation  
311  
Input/Output (I/O) Ports  
15.3 Port A  
Port A is an 8-bit, general-purpose, bidirectional I/O port.  
15.3.1 Port A Data Register  
The port A data register (PTA) contains a data latch for each of the eight  
port A pins.  
Address: $0000  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
PTA7  
Write:  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
Reset:  
Unaffected by reset  
Figure 15-2. Port A Data Register (PTA)  
PTA[7:0] Port A Data Bits  
These read/write bits are software programmable. Data direction of  
each port A pin is under the control of the corresponding bit in data  
direction register A. Reset has no effect on port A data.  
15.3.2 Data Direction Register A  
Data direction register A (DDRA) determines whether each port A pin is  
an input or an output. Writing a logic 1 to a DDRA bit enables the output  
buffer for the corresponding port A pin; a logic 0 disables the output  
buffer.  
Address: $0004  
Bit 7  
DDRA7  
0
6
DDRA6  
0
5
DDRA5  
0
4
DDRA4  
0
3
DDRA3  
0
2
DDRA2  
0
1
DDRA1  
0
Bit 0  
DDRA0  
0
Read:  
Write:  
Reset:  
Figure 15-3. Data Direction Register A (DDRA)  
Advance Information  
312  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Input/Output (I/O) Ports MOTOROLA  
Input/Output (I/O) Ports  
Port A  
DDRA[7:0] Data Direction Register A Bits  
These read/write bits control port A data direction. Reset clears  
DDRA[7:0], configuring all port A pins as inputs.  
1 = Corresponding port A pin configured as output  
0 = Corresponding port A pin configured as input  
NOTE: Avoid glitches on port A pins by writing to the port A data register before  
changing data direction register A bits from 0 to 1.  
Figure 15-4 shows the port A I/O logic.  
READ DDRA ($0004)  
WRITE DDRA ($0004)  
DDRAx  
RESET  
WRITE PTA ($0000)  
PTAx  
PTAx  
READ PTA ($0000)  
Figure 15-4. Port A I/O Circuit  
When bit DDRAx is a logic 1, reading address $0000 reads the PTAx  
data latch. When bit DDRAx is a logic 0, reading address $0000 reads  
the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 15-1 summarizes  
the operation of the port A pins.  
Table 15-1. Port A Pin Functions  
Accesses  
Accesses to PTA  
DDRA  
Bit  
I/O Pin  
Mode  
to DDRA  
Read/Write  
DDRA[7:0]  
DDRA[7:0]  
PTA Bit  
Read  
Pin  
Write  
(1)  
(2)  
(3)  
0
1
X
Input, Hi-Z  
Output  
PTA[7:0]  
X
PTA[7:0]  
PTA[7:0]  
1. X = dont care  
2. Hi-Z = high impedance  
3. Writing affects data register, but does not affect input.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Input/Output (I/O) Ports  
AdvanceInformation  
313  
 
 
Input/Output (I/O) Ports  
15.4 Port B  
Port B is an 8-bit, general-purpose, bidirectional I/O port that shares its  
pins with the analog-to-digital convertor (ADC) module.  
15.4.1 Port B Data Register  
The port B data register (PTB) contains a data latch for each of the eight  
port B pins.  
Address: $0001  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTB7  
PTB6  
PTB5  
PTB4  
PTB3  
PTB2  
PTB1  
PTB0  
Unaffected by reset  
Figure 15-5. Port B Data Register (PTB)  
PTB[7:0] Port B Data Bits  
These read/write bits are software-programmable. Data direction of  
each port B pin is under the control of the corresponding bit in data  
direction register B. Reset has no effect on port B data.  
15.4.2 Data Direction Register B  
Data direction register B (DDRB) determines whether each port B pin is  
an input or an output. Writing a logic 1 to a DDRB bit enables the output  
buffer for the corresponding port B pin; a logic 0 disables the output  
buffer.  
Address: $0005  
Bit 7  
DDRB7  
0
6
DDRB6  
0
5
DDRB5  
0
4
DDRB4  
0
3
DDRB3  
0
2
DDRB2  
0
1
DDRB1  
0
Bit 0  
DDRB0  
0
Read:  
Write:  
Reset:  
Figure 15-6. Data Direction Register B (DDRB)  
Advance Information  
314  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Input/Output (I/O) Ports MOTOROLA  
Input/Output (I/O) Ports  
Port B  
DDRB[7:0] Data Direction Register B Bits  
These read/write bits control port B data direction. Reset clears  
DDRB[7:0], configuring all port B pins as inputs.  
1 = Corresponding port B pin configured as output  
0 = Corresponding port B pin configured as input  
NOTE: Avoid glitches on port B pins by writing to the port B data register before  
changing data direction register B bits from 0 to 1.  
Figure 15-7 shows the port B I/O logic.  
READ DDRB ($0005)  
WRITE DDRB ($0005)  
DDRBx  
RESET  
WRITE PTB ($0001)  
PTBx  
PTBx  
READ PTB ($0001)  
Figure 15-7. Port B I/O Circuit  
When bit DDRBx is a logic 1, reading address $0001 reads the PTBx  
data latch. When bit DDRBx is a logic 0, reading address $0001 reads  
the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 15-2 summarizes  
the operation of the port B pins.  
Table 15-2. Port B Pin Functions  
Accesses  
Accesses to PTB  
DDRB  
Bit  
to DDRB  
Read/Write  
DDRB[7:0]  
DDRB[7:0]  
PTB Bit  
I/O Pin Mode  
Read  
Pin  
Write  
(1)  
(2)  
(3)  
0
1
X
Input, Hi-Z  
PTB[7:0]  
X
Output  
PTB[7:0]  
PTB[7:0]  
1. X = dont care  
2. Hi-Z = high impedance  
3. Writing affects data register, but does not affect input.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Input/Output (I/O) Ports  
AdvanceInformation  
315  
 
 
Input/Output (I/O) Ports  
15.5 Port C  
Port C is a 7-bit, general-purpose, bidirectional I/O port that shares two  
of its pins with the analog-to-digital convertor module (ADC).  
15.5.1 Port C Data Register  
The port C data register (PTC) contains a data latch for each of the  
seven port C pins.  
Address: $0002  
Bit 7  
0
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTC6  
PTC5  
PTC4  
PTC3  
PTC2  
PTC1  
PTC0  
R
Unaffected by reset  
R
= Reserved  
Figure 15-8. Port C Data Register (PTC)  
PTC[6:0] Port C Data Bits  
These read/write bits are software-programmable. Data direction of  
each port C pin is under the control of the corresponding bit in data  
direction register C. Reset has no effect on port C data.  
15.5.2 Data Direction Register C  
Data direction register C (DDRC) determines whether each port C pin is  
an input or an output. Writing a logic 1 to a DDRC bit enables the output  
buffer for the corresponding port C pin; a logic 0 disables the output  
buffer.  
Address: $0006  
Bit 7  
0
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
DDRC6 DDRC5 DDRC4 DDRC3 DDRC2 DDRC1 DDRC0  
R
0
0
0
0
0
0
0
0
R
=Reserved  
Figure 15-9. Data Direction Register C (DDRC)  
Advance Information  
316  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Input/Output (I/O) Ports MOTOROLA  
Input/Output (I/O) Ports  
Port C  
DDRC[6:0] Data Direction Register C Bits  
These read/write bits control port C data direction. Reset clears  
DDRC[6:0], configuring all port C pins as inputs.  
1 = Corresponding port C pin configured as output  
0 = Corresponding port C pin configured as input  
NOTE: Avoid glitches on port C pins by writing to the port C data register before  
changing data direction register C bits from 0 to 1.  
Figure 15-10 shows the port C I/O logic.  
READ DDRC ($0006)  
WRITE DDRC ($0006)  
DDRCx  
RESET  
WRITE PTC ($0002)  
PTCx  
PTCx  
READ PTC ($0002)  
Figure 15-10. Port C I/O Circuit  
When bit DDRCx is a logic 1, reading address $0002 reads the PTCx  
data latch. When bit DDRCx is a logic 0, reading address $0002 reads  
the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 15-3 summarizes  
the operation of the port C pins.  
Table 15-3. Port C Pin Functions  
Accesses  
Accesses to PTC  
DDRC  
Bit  
to DDRC  
Read/Write  
DDRC[6:0]  
DDRC[6:0]  
PTC Bit  
I/O Pin Mode  
Read  
Pin  
Write  
(1)  
(2)  
(3)  
0
1
X
Input, Hi-Z  
PTC[6:0]  
X
Output  
PTC[6:0]  
PTC[6:0]  
1. X = dont care  
2. Hi-Z = high impedance  
3. Writing affects data register, but does not affect input.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Input/Output (I/O) Ports  
AdvanceInformation  
317  
 
 
Input/Output (I/O) Ports  
15.6 Port D  
Port D is a 7-bit, input-only port that shares its pins with the pulse width  
modulator for motor control module (PMC).  
The port D data register (PTD) contains a data latch for each of the  
seven port pins.  
Address: $0003  
Bit 7  
0
6
PTD6  
R
5
PTD5  
R
4
PTD4  
R
3
PTD3  
R
2
PTD2  
R
1
PTD1  
R
Bit 0  
PTD0  
R
Read:  
Write:  
Reset:  
R
Unaffected by reset  
R
= Reserved  
Figure 15-11. Port D Data Register (PTD)  
PTD[6:0] Port D Data Bits  
These read/write bits are software programmable. Reset has no  
effect on port D data.  
Figure 15-12 shows the port D input logic.  
READ PTD ($0003)  
PTDx  
Figure 15-12. Port D Input Circuit  
Reading address $0003 reads the voltage level on the pin. Table 15-4  
summarizes the operation of the port D pins.  
Table 15-4. Port D Pin Functions  
Accesses to PTD  
PTD Bit  
Pin Mode  
Read  
Write  
(1)  
(2)  
(3)  
Pin  
X
Input, Hi-Z  
PTD[6:0]  
1. X = dont care  
2. Hi-Z = high impedance  
3. Writing affects data register, but does not affect input.  
Advance Information  
318  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Input/Output (I/O) Ports MOTOROLA  
 
Input/Output (I/O) Ports  
Port E  
15.7 Port E  
Port E is an 8-bit, special function port that shares five of its pins with the  
timer interface module (TIM) and two of its pins with the serial  
communications interface module (SCI).  
15.7.1 Port E Data Register  
The port E data register (PTE) contains a data latch for each of the eight  
port E pins.  
Address: $0008  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
PTE7  
Write:  
PTE6  
PTE5  
PTE4  
PTE3  
PTE2  
PTE1  
PTE0  
Reset:  
Unaffected by reset  
Figure 15-13. Port E Data Register (PTE)  
PTE[7:0] Port E Data Bits  
PTE[7:0] are read/write, software-programmable bits. Data direction  
of each port E pin is under the control of the corresponding bit in data  
direction register E.  
NOTE: Data direction register E (DDRE) does not affect the data direction of  
port E pins that are being used by the TIMA or TIMB. However, the  
DDRE bits always determine whether reading port E returns the states  
of the latches or the states of the pins.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Input/Output (I/O) Ports  
AdvanceInformation  
319  
Input/Output (I/O) Ports  
15.7.2 Data Direction Register E  
Data direction register E (DDRE) determines whether each port E pin is  
an input or an output. Writing a logic 1 to a DDRE bit enables the output  
buffer for the corresponding port E pin; a logic 0 disables the output  
buffer.  
Address: $000C  
Bit 7  
DDRE7  
0
6
DDRE6  
0
5
DDRE5  
0
4
DDRE4  
0
3
DDRE3  
0
2
DDRE2  
0
1
DDRE1  
0
Bit 0  
DDRE0  
0
Read:  
Write:  
Reset:  
Figure 15-14. Data Direction Register E (DDRE)  
DDRE[7:0] Data Direction Register E Bits  
These read/write bits control port E data direction. Reset clears  
DDRE[7:0], configuring all port E pins as inputs.  
1 = Corresponding port E pin configured as output  
0 = Corresponding port E pin configured as input  
NOTE: Avoid glitches on port E pins by writing to the port E data register before  
changing data direction register E bits from 0 to 1.  
Figure 15-15 shows the port E I/O logic.  
READ DDRE ($000C)  
WRITE DDRE ($000C)  
DDREx  
RESET  
WRITE PTE ($0008)  
PTEx  
PTEx  
READ PTE ($0008)  
Figure 15-15. Port E I/O Circuit  
Advance Information  
320  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Input/Output (I/O) Ports MOTOROLA  
 
Input/Output (I/O) Ports  
Port F  
When bit DDREx is a logic 1, reading address $0008 reads the PTEx  
data latch. When bit DDREx is a logic 0, reading address $0008 reads  
the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 15-5 summarizes  
the operation of the port E pins.  
Table 15-5. Port E Pin Functions  
Accesses  
Accesses to PTE  
DDRE  
Bit  
PTE  
Bit  
to DDRE  
Read/Write  
DDRE[7:0]  
DDRE[7:0]  
I/O Pin Mode  
Read  
Pin  
Write  
(1)  
(2)  
(3)  
0
1
X
Input, Hi-Z  
PTE[7:0]  
X
Output  
PTE[7:0]  
PTE[7:0]  
1. X = dont care  
2. Hi-Z = high impedance  
3. Writing affects data register, but does not affect input.  
15.8 Port F  
Port F is a 6-bit, special function port that shares four of its pins with the  
serial peripheral interface module (SPI) and two pins with the serial  
communications interface (SCI).  
15.8.1 Port F Data Register  
The port F data register (PTF) contains a data latch for each of the six  
port F pins.  
Address: $0009  
Bit 7  
6
0
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
0
PTF5  
PTF4  
PTF3  
PTF2  
PTF1  
PTF0  
R
R
Unaffected by reset  
R
= Reserved  
Figure 15-16. Port F Data Register (PTF)  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Input/Output (I/O) Ports  
AdvanceInformation  
321  
Input/Output (I/O) Ports  
PTF[5:0] Port F Data Bits  
These read/write bits are software programmable. Data direction of  
each port F pin is under the control of the corresponding bit in data  
direction register F. Reset has no effect on PTF[5:0].  
NOTE: Data direction register F (DDRF) does not affect the data direction of port  
F pins that are being used by the SPI or SCI module. However, the  
DDRF bits always determine whether reading port F returns the states  
of the latches or the states of the pins.  
15.8.2 Data Direction Register F  
Data direction register F (DDRF) determines whether each port F pin is  
an input or an output. Writing a logic 1 to a DDRF bit enables the output  
buffer for the corresponding port F pin; a logic 0 disables the output  
buffer.  
Address: $000D  
Bit 7  
0
6
0
5
DDRF5  
0
4
DDRF4  
0
3
DDRF3  
0
2
DDRF2  
0
1
DDRF1  
0
Bit 0  
DDRF0  
0
Read:  
Write:  
Read:  
R
R
R
= Reserved  
Figure 15-17. Data Direction Register F (DDRF)  
DDRF[5:0] Data Direction Register F Bits  
These read/write bits control port F data direction. Reset clears  
DDRF[5:0], configuring all port F pins as inputs.  
1 = Corresponding port F pin configured as output  
0 = Corresponding port F pin configured as input  
NOTE: Avoid glitches on port F pins by writing to the port F data register before  
changing data direction register F bits from 0 to 1.  
Figure 15-18 shows the port F I/O logic.  
Advance Information  
322  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Input/Output (I/O) Ports MOTOROLA  
Input/Output (I/O) Ports  
Port F  
READ DDRF ($000D)  
WRITE DDRF ($000D)  
DDRFx  
PTFx  
RESET  
WRITE PTF ($0009)  
READ PTF ($0009)  
PTFx  
Figure 15-18. Port F I/O Circuit  
When bit DDRFx is a logic 1, reading address $0009 reads the PTFx  
data latch. When bit DDRFx is a logic 0, reading address $0009 reads  
the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 15-6 summarizes  
the operation of the port F pins.  
Table 15-6. Port F Pin Functions  
Accesses  
Accesses to PTF  
DDRF  
Bit  
PTF  
Bit  
to DDRF  
Read/Write  
DDRF[6:0]  
DDRF[6:0]  
I/O Pin Mode  
Read  
Pin  
Write  
(1)  
(2)  
(3)  
0
1
X
Input, Hi-Z  
PTF[6:0]  
X
Output  
PTF[6:0]  
PTF[6:0]  
1. X = dont care  
2. Hi-Z = high impedance  
3. Writing affects data register, but does not affect input.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Input/Output (I/O) Ports  
AdvanceInformation  
323  
Input/Output (I/O) Ports  
Advance Information  
324  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Input/Output (I/O) Ports MOTOROLA  
Advance Information MC68HC908MR16/MC68HC908MR32  
Section 16. Computer Operating Properly (COP)  
16.1 Contents  
16.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .325  
16.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .326  
16.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .327  
16.4.1 CGMXCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .327  
16.4.2 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .327  
16.4.3 Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .327  
16.4.4 Internal Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .328  
16.4.5 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .328  
16.4.6 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . .328  
16.5 COP Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .328  
16.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .328  
16.7 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .329  
16.8 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .329  
16.9 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .329  
16.2 Introduction  
This section describes the computer operating properly module, a  
free-running counter that generates a reset if allowed to overflow. The  
computer operating properly (COP) module helps software recover from  
runaway code. Prevent a COP reset by periodically clearing the COP  
counter.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Computer Operating Properly (COP)  
Advance Information  
325  
 
Computer Operating Properly (COP)  
16.3 Functional Description  
Figure 16-1 shows the structure of the COP module. A summary of the  
input/output (I/O) register is shown in Figure 16-2.  
SIM RESET CIRCUIT  
13-BIT SIM COUNTER  
CGMXCLK  
SIM RESET STATUS REGISTER  
INTERNAL RESET SOURCES(1)  
RESET VECTOR FETCH  
COPCTL WRITE  
6-BIT COP COUNTER  
COPD (FROM CONFIG)  
RESET  
CLEAR  
COP COUNTER  
COPCTL WRITE  
Note 1. See 7.4.2 Active Resets from Internal Sources.  
Figure 16-1. COP Block Diagram  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Low byte of reset vector  
Clear COP counter  
Unaffected by reset  
COP Control Register  
$FFFF  
(COPCTL) Write:  
See page 328.  
Reset:  
Figure 16-2. COP I/O Register Summary  
Advance Information  
326  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Computer Operating Properly (COP) MOTOROLA  
 
 
Computer Operating Properly (COP)  
I/O Signals  
The COP counter is a free-running, 6-bit counter preceded by the 13-bit  
system integration module (SIM) counter. If not cleared by software, the  
COP counter overflows and generates an asynchronous reset after  
21824 CGMXCLK cycles. With a 4.9152-MHz crystal, the COP timeout  
period is 53.3 ms. Writing any value to location $FFFF before overflow  
occurs clears the COP counter and prevents reset.  
A COP reset pulls the RST pin low for 32 CGMXCLK cycles and sets the  
COP bit in the SIM reset status register (SRSR). See 7.8.2 SIM Reset  
Status Register.  
NOTE: Place COP clearing instructions in the main program and not in an  
interrupt subroutine. Such an interrupt subroutine could keep the COP  
from generating a reset even while the main program is not working  
properly.  
16.4 I/O Signals  
This section describes the signals shown in Figure 16-1.  
16.4.1 CGMXCLK  
CGMXCLK is the crystal oscillator output signal. CGMXCLK frequency  
is equal to the crystal frequency.  
16.4.2 COPCTL Write  
Writing any value to the COP control register (COPCTL) (see 16.5 COP  
Control Register) clears the COP counter and clears bits 124 of the  
SIM counter. Reading the COP control register returns the reset vector.  
16.4.3 Power-On Reset  
The power-on reset (POR) circuit in the SIM clears the SIM counter 4096  
CGMXCLK cycles after power-up.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Computer Operating Properly (COP)  
AdvanceInformation  
327  
Computer Operating Properly (COP)  
16.4.4 Internal Reset  
An internal reset clears the SIM counter and the COP counter.  
16.4.5 Reset Vector Fetch  
A reset vector fetch occurs when the vector address appears on the data  
bus. A reset vector fetch clears the SIM counter.  
16.4.6 COPD (COP Disable)  
The COPD signal reflects the state of the COP disable bit (COPD) in the  
configuration register (CONFIG). See Section 5. Configuration  
Register (CONFIG).  
16.5 COP Control Register  
The COP control register is located at address $FFFF and overlaps the  
reset vector. Writing any value to $FFFF clears the COP counter and  
starts a new timeout period. Reading location $FFFF returns the low  
byte of the reset vector.  
Address: $FFFF  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Low byte of reset vector  
Clear COP counter  
Unaffected by reset  
Figure 16-3. COP Control Register (COPCTL)  
16.6 Interrupts  
The COP does not generate CPU interrupt requests.  
Advance Information  
328  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Computer Operating Properly (COP) MOTOROLA  
Computer Operating Properly (COP)  
Monitor Mode  
16.7 Monitor Mode  
16.8 Wait Mode  
The COP is disabled in monitor mode when VHI is present on the IRQ pin  
or on the RST pin.  
The WAIT instruction puts the MCU in low power-consumption standby  
mode.  
The COP continues to operate during wait mode.  
16.9 Stop Mode  
Stop mode turns off the CGMXCLK input to the COP and clears the COP  
prescaler. Service the COP immediately before entering or after exiting  
stop mode to ensure a full COP timeout period after entering or exiting  
stop mode.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Computer Operating Properly (COP)  
AdvanceInformation  
329  
Computer Operating Properly (COP)  
Advance Information  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
330  
Computer Operating Properly (COP)  
MOTOROLA  
Advance Information MC68HC908MR16/MC68HC908MR32  
Section 17. External Interrupt (IRQ)  
17.1 Contents  
17.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .331  
17.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .331  
17.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .332  
17.5 IRQ Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .335  
17.6 IRQ Status and Control Register . . . . . . . . . . . . . . . . . . . . . .336  
17.2 Introduction  
17.3 Features  
This section describes the external interrupt (IRQ) module, which  
supports external interrupt functions.  
Features of the IRQ module include:  
A dedicated external interrupt pin, IRQ  
Hysteresis buffers  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA External Interrupt (IRQ)  
Advance Information  
331  
 
 
External Interrupt (IRQ)  
17.4 Functional Description  
A logic 0 applied to any of the external interrupt pins can latch a CPU  
interrupt request. Figure 17-1 shows the structure of the IRQ module.  
Interrupt signals on the IRQ pin are latched into the IRQ1 latch. An  
interrupt latch remains set until one of the following actions occurs:  
Vector fetch A vector fetch automatically generates an interrupt  
acknowledge signal that clears the latch that caused the vector  
fetch.  
Software clear Software can clear an interrupt latch by writing  
to the appropriate acknowledge bit in the interrupt status and  
control register (ISCR). Writing a logic 1 to the ACK1 bit clears the  
IRQ1 latch.  
Reset A reset automatically clears both interrupt latches.  
ACK1  
CLR  
V
D
Q
SYNCHRO-  
NIZER  
IRQ  
INTERRUPT  
REQUEST  
CK  
IRQ  
IRQ  
LATCH  
IMASK1  
MODE1  
TO MODE  
SELECT  
LOGIC  
HIGH  
VOLTAGE  
DETECT  
Figure 17-1. IRQ Module Block Diagram  
Addr.  
Register Name  
Bit 7  
0
6
5
0
4
0
3
IRQF  
0
2
0
1
Bit 0  
Read:  
Write:  
Reset:  
0
IRQ Status/Control Register  
(ISCR)  
IMASK1 MODE1  
$003F  
R
R
R
0
R
0
ACK1  
0
See page 336.  
0
0
0
0
R
=Reserved  
Figure 17-2. IRQ I/O Register Summary  
Advance Information  
332  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
External Interrupt (IRQ) MOTOROLA  
 
External Interrupt (IRQ)  
Functional Description  
The external interrupt pins are falling-edge-triggered and are  
software-configurable to be both falling-edge and low-level-triggered.  
The MODE1 bit in the ISCR controls the triggering sensitivity of the  
IRQ pin.  
When the interrupt pin is edge-triggered only, the interrupt latch remains  
set until a vector fetch, software clear, or reset occurs.  
When the interrupt pin is both falling-edge and low-level-triggered, the  
interrupt latch remains set until both of these occur:  
Vector fetch, software clear, or reset  
Return of the interrupt pin to logic 1  
The vector fetch or software clear can occur before or after the interrupt  
pin returns to logic 1. As long as the pin is low, the interrupt request  
remains pending.  
When set, the IMASK1 bit in the ISCR masks all external interrupt  
requests. A latched interrupt request is not presented to the interrupt  
priority logic unless the IMASK bit is clear.  
NOTE: The interrupt mask (I) in the condition code register (CCR) masks all  
interrupt requests, including external interrupt requests.  
(See Figure 17-3.)  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA External Interrupt (IRQ)  
AdvanceInformation  
333  
External Interrupt (IRQ)  
FROM RESET  
YES  
I BIT SET?  
NO  
YES  
INTERRUPT?  
NO  
STACK CPU REGISTERS  
SET I BIT  
LOAD PC WITH INTERRUPT VECTOR  
FETCH NEXT  
INSTRUCTION  
YES  
YES  
SWI  
INSTRUCTION?  
NO  
RTI  
UNSTACK CPU REGISTERS  
EXECUTE INSTRUCTION  
INSTRUCTION?  
NO  
Figure 17-3. IRQ Interrupt Flowchart  
Advance Information  
334  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
External Interrupt (IRQ) MOTOROLA  
External Interrupt (IRQ)  
IRQ Pin  
17.5 IRQ Pin  
A logic 0 on the IRQ pin can latch an interrupt request into the IRQ latch.  
A vector fetch, software clear, or reset clears the IRQ latch.  
If the MODE1 bit is set, the IRQ pin is both falling-edge-sensitive and  
low-level-sensitive. With MODE1 set, both of these actions must occur  
to clear the IRQ1 latch:  
Vector fetch, software clear, or reset A vector fetch generates  
an interrupt acknowledge signal to clear the latch. Software can  
generate the interrupt acknowledge signal by writing a logic 1 to  
the ACK1 bit in the interrupt status and control register (ISCR).  
The ACK1 bit is useful in applications that poll the IRQ pin and  
require software to clear the IRQ1 latch. Writing to the ACK1 bit  
can also prevent spurious interrupts due to noise. Setting ACK1  
does not affect subsequent transitions on the IRQ pin. A falling  
edge that occurs after writing to the ACK1 bit latches another  
interrupt request. If the IRQ1 mask bit, IMASK1, is clear, the CPU  
loads the program counter with the vector address at locations  
$FFFA and $FFFB.  
Return of the IRQ pin to logic 1 As long as the IRQ pin is at logic  
0, the IRQ1 latch remains set.  
The vector fetch or software clear and the return of the IRQ pin to logic 1  
can occur in any order. The interrupt request remains pending as long  
as the IRQ pin is at logic 0.  
If the MODE1 bit is clear, the IRQ pin is falling-edge-sensitive only. With  
MODE1 clear, a vector fetch or software clear immediately clears the  
IRQ1 latch.  
Use the branch if IRQ pin high (BIH) or branch if IRQ pin low (BIL)  
instruction to read the logic level on the IRQ pin.  
NOTE: When using the level-sensitive interrupt trigger, avoid false interrupts by  
masking interrupt requests in the interrupt routine.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA External Interrupt (IRQ)  
AdvanceInformation  
335  
External Interrupt (IRQ)  
17.6 IRQ Status and Control Register  
The IRQ status and control register (ISCR) has these functions:  
Clears the IRQ interrupt latch  
Masks IRQ interrupt requests  
Controls triggering sensitivity of the IRQ interrupt pin  
Address: $003F  
Bit 7  
6
5
0
4
0
3
IRQF  
0
2
0
1
Bit 0  
Read:  
Write:  
Reset:  
0
0
IMASK1 MODE1  
R
0
R
R
0
R
0
ACK1  
0
0
0
0
R
=Reserved  
Figure 17-4. IRQ Status and Control Register (ISCR)  
ACK1 IRQ Interrupt Request Acknowledge Bit  
Writing a logic 1 to this write-only bit clears the IRQ latch. ACK1  
always reads as logic 0. Reset clears ACK1.  
IMASK1 IRQ Interrupt Mask Bit  
Writing a logic 1 to this read/write bit disables IRQ interrupt requests.  
Reset clears IMASK1.  
1 = IRQ interrupt requests disabled  
0 = IRQ interrupt requests enabled  
MODE1 IRQ Edge/Level Select Bit  
This read/write bit controls the triggering sensitivity of the IRQ pin.  
Reset clears MODE1.  
1 = IRQ interrupt requests on falling edges and low levels  
0 = IRQ interrupt requests on falling edges only  
IRQF IRQ Flag  
This read-only bit acts as a status flag, indicating an IRQ event  
occurred.  
1 = External IRQ event occurred.  
0 = External IRQ event did not occur.  
Advance Information  
336  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
External Interrupt (IRQ)  
MOTOROLA  
Advance Information MC68HC908MR16/MC68HC908MR32  
Section 18. Low-Voltage Inhibit (LVI)  
18.1 Contents  
18.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337  
18.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337  
18.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .338  
18.4.1 Polled LVI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .339  
18.4.2 Forced Reset Operation. . . . . . . . . . . . . . . . . . . . . . . . . . .339  
18.4.3 False Reset Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . .339  
18.4.4 LVI Trip Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .340  
18.5 LVI Status and Control Register . . . . . . . . . . . . . . . . . . . . . . .340  
18.6 LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .341  
18.7 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .341  
18.8 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .342  
18.2 Introduction  
18.3 Features  
This section describes the low-voltage inhibit (LVI) module, which  
monitors the voltage on the VDD pin and can force a reset when the VDD  
voltage falls to the LVI trip voltage.  
Features of the LVI module include:  
Programmable LVI reset  
Programmable power consumption  
Digital filtering of VDD pin level  
Selectable LVI trip voltage  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Low-Voltage Inhibit (LVI)  
Advance Information  
337  
 
 
 
Low-Voltage Inhibit (LVI)  
18.4 Functional Description  
Figure 18-1 shows the structure of the LVI module. The LVI is enabled  
out of reset. The LVI module contains a bandgap reference circuit and  
comparator. The LVI power bit, LVIPWR, enables the LVI to monitor VDD  
voltage. The LVI reset bit, LVIRST, enables the LVI module to generate  
a reset when VDD falls below a voltage, VLVRX, and remains at or below  
that level for nine or more consecutive CGMXCLK. VLVRX and VLVHX are  
determined by the TRPSEL bit in the LVISCR (see Figure 18-2).  
LVIPWR and LVIRST are in the configuration register (CONFIG). See  
Section 5. Configuration Register (CONFIG).  
Once an LVI reset occurs, the MCU remains in reset until VDD rises  
above a voltage, VLVRX + VLVHX. VDD must be above VLVRX + VLVHX for  
only one CPU cycle to bring the MCU out of reset. See 7.4.2.6  
Low-Voltage Inhibit (LVI) Reset. The output of the comparator controls  
the state of the LVIOUT flag in the LVI status register (LVISCR).  
An LVI reset also drives the RST pin low to provide low-voltage  
protection to external peripheral devices. See 22.6 DC Electrical  
Characteristics (VDD = 5.0 Vdc ± 10%).  
V
LVIPWR  
FROM CONFIG  
FROM CONFIG  
CPU CLOCK  
LVIRST  
V
V
V
> LVItrip = 0  
< LVItrip = 1  
LVI RESET  
LOW V  
DETECTOR  
DIGITAL FILTER  
TRPSEL  
ANLGTRIP  
LVIOUT  
FROM LVISCR  
Figure 18-1. LVI Module Block Diagram  
Advance Information  
338  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Low-Voltage Inhibit (LVI) MOTOROLA  
 
Low-Voltage Inhibit (LVI)  
Functional Description  
Addr.  
Register Name  
Bit 7  
6
0
5
TRPSEL  
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read: LVIOUT  
LVI Status and Control  
See page 340.  
$FE0F  
Register (LVISCR) Write:  
R
0
R
0
R
0
R
0
R
0
R
0
R
Reset:  
0
R
=Reserved  
Figure 18-2. LVI I/O Register Summary  
18.4.1 Polled LVI Operation  
In applications that can operate at VDD levels below VLVRX, software can  
monitor VDD by polling the LVIOUT bit. In the configuration register, the  
LVIPWR bit must be at logic 1 to enable the LVI module, and the LVIRST  
bit must be at logic 0 to disable LVI resets. See Section 5.  
Configuration Register (CONFIG). TRPSEL in the LVISCR selects  
VLVRX  
.
18.4.2 Forced Reset Operation  
In applications that require VDD to remain above VLVRX, enabling LVI  
resets allows the LVI module to reset the MCU when VDD falls to the  
LVRX level and remains at or below that level for nine or more  
V
consecutive CPU cycles. In the CONFIG register, the LVIPWR and  
LVIRST bits must be at logic 1 to enable the LVI module and to enable  
LVI resets. TRPSEL in the LVISCR selects VLVRX  
.
18.4.3 False Reset Protection  
The VDD pin level is digitally filtered to reduce false resets due to power  
supply noise. In order for the LVI module to reset the MCU, VDD must  
remain at or below VLVRX for nine or more consecutive CPU cycles. VDD  
must be above VLVRX + VLVHX for only one CPU cycle to bring the MCU  
out of reset. TRPSEL in the LVISCR selects VLVRX + VLVHX  
.
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Low-Voltage Inhibit (LVI)  
AdvanceInformation  
339  
Low-Voltage Inhibit (LVI)  
18.4.4 LVI Trip Selection  
The TRPSEL bit allows the user to chose between 5 percent and  
10 percent tolerance when monitoring the supply voltage. The  
10 percent option is enabled out of reset. Writing a logic 1 to TRPSEL  
will enable 5 percent option.  
NOTE: The microcontroller is guaranteed to operate at a minimum supply  
voltage. The trip point (VLVR1 or VLVR2) may be lower than this.  
See 22.6 DC Electrical Characteristics (VDD = 5.0 Vdc ± 10%).  
18.5 LVI Status and Control Register  
The LVI status register (LVISCR) flags VDD voltages below the VLVRX  
level.  
Address: $FE0F  
Bit 7  
6
5
TRPSEL  
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read: LVIOUT  
0
Write:  
Reset:  
R
0
R
R
0
R
0
R
0
R
0
R
0
0
R
=Reserved  
Figure 18-3. LVI Status and Control Register (LVISCR)  
LVIOUT LVI Output Bit  
This read-only flag becomes set when the VDD voltage falls below the  
VLVRX voltage for 32 to 40 CGMXCLK cycles. See Table 18-1. Reset  
clears the LVIOUT bit.  
Advance Information  
340  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Low-Voltage Inhibit (LVI)  
MOTOROLA  
Low-Voltage Inhibit (LVI)  
LVI Interrupts  
Table 18-1. LVIOUT Bit Indication  
V
DD  
LVIOUT  
For Number of  
CGMXCLK Cycles:  
At Level:  
V
> V  
+ V  
LVRX LVHX  
Any  
0
0
DD  
V
V
V
< V  
< 32 CGMXCLK cycles  
DD  
LVRX  
< V  
< V  
Between 32 & 40 CGMXCLK cycles  
> 40 CGMXCLK cycles  
0 or 1  
1
DD  
DD  
LVRX  
LVRX  
LVRX  
Previous  
value  
V
< V < V  
+ V  
LVHX  
Any  
LVRX  
DD  
TRPSEL LVI Trip Select Bit  
This bit selects the LVI trip point. Reset clears this bit.  
1 = 5 percent tolerance. The trip point and recovery point are  
determined by VLVR1 and VLVH1, respectively.  
0 = 10 percent tolerance. The trip point and recovery point are  
determined by VLVR2 and VLVH2, respectively.  
NOTE: If LVIRST and LVIPWR are at logic 0, note that when changing the  
tolerence, LVI reset will be generated if the supply voltage is below the  
trip point.  
18.6 LVI Interrupts  
The LVI module does not generate interrupt requests.  
18.7 Wait Mode  
The WAIT instruction puts the MCU in low power-consumption standby  
mode.  
With the LVIPWR bit in the configuration register programmed to logic 1,  
the LVI module is active after a WAIT instruction.  
With the LVIRST bit in the configuration register programmed to logic 1,  
the LVI module can generate a reset and bring the MCU out of wait  
mode.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Low-Voltage Inhibit (LVI)  
AdvanceInformation  
341  
Low-Voltage Inhibit (LVI)  
18.8 Stop Mode  
If enabled, the LVI module remains active in stop mode. If enabled to  
generate resets, the LVI module can generate a reset and bring the MCU  
out of stop mode.  
Advance Information  
342  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Low-Voltage Inhibit (LVI)  
MOTOROLA  
Advance Information — MC68HC908MR16/MC68HC908MR32  
Section 19. Analog-to-Digital Converter (ADC)  
19.1 Contents  
19.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .344  
19.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .344  
19.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .344  
19.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .345  
19.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .346  
19.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .346  
19.4.4 Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . .347  
19.4.5 Result Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347  
19.4.6 Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .348  
19.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .348  
19.6 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349  
19.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349  
19.7.1 ADC Analog Power Pin (VDDAD) . . . . . . . . . . . . . . . . . . . .349  
19.7.2 ADC Analog Ground Pin (VSSAD). . . . . . . . . . . . . . . . . . . .349  
19.7.3 ADC Voltage Reference Pin (VREFH) . . . . . . . . . . . . . . . . .349  
19.7.4 ADC Voltage Reference Low Pin (VREFL) . . . . . . . . . . . . .350  
19.7.5 ADC Voltage In (ADVIN) . . . . . . . . . . . . . . . . . . . . . . . . . .350  
19.7.6 ADC External Connections. . . . . . . . . . . . . . . . . . . . . . . . .350  
19.7.6.1  
19.7.6.2  
19.7.6.3  
VREFH and VREFL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .350  
ANx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .350  
Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351  
19.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351  
19.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . .351  
19.8.2 ADC Data Register High . . . . . . . . . . . . . . . . . . . . . . . . . .354  
19.8.3 ADC Data Register Low . . . . . . . . . . . . . . . . . . . . . . . . . . .355  
19.8.4 ADC Clock Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .356  
MC68HC908MR16/MC68HC908MR32 — Rev. 5.0  
MOTOROLA Analog-to-Digital Converter (ADC)  
Advance Information  
343  
Analog-to-Digital Converter (ADC)  
19.2 Introduction  
This section describes the 10-bit analog-to-digital converter (ADC).  
19.3 Features  
Features of the ADC module include:  
10 channels with multiplexed input  
Linear successive approximation  
10-bit resolution, 8-bit accuracy  
Single or continuous conversion  
Conversion complete flag or conversion complete interrupt  
Selectable ADC clock  
Left or right justified result  
Left justified sign data mode  
High impedance buffered ADC input  
19.4 Functional Description  
Ten ADC channels are available for sampling external sources at pins  
PTC1/ATD9:PTC0/ATD8 and PTB7/ATD7:PTB0/ATD0. To achieve the  
best possible accuracy, these pins are implemented as input-only pins  
when the analog-to-digital (A/D) feature is enabled. An analog  
multiplexer allows the single ADC to select one of the 10 ADC channels  
as ADC voltage IN (ADCVIN). ADCVIN is converted by the successive  
approximation algorithm. When the conversion is completed, the ADC  
places the result in the ADC data register (ADRH and ADRL) and sets a  
flag or generates an interrupt. See Figure 19-1.  
Advance Information  
344  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Analog-to-Digital Converter (ADC)  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
Functional Description  
INTERNAL  
DATA BUS  
PTB/Cx  
ADC CHANNEL x  
READ PTB/PTC  
DISABLE  
ADC DATA REGISTERS  
ADC VOLTAGE IN  
ADVIN  
CONVERSION  
COMPLETE  
INTERRUPT  
LOGIC  
CHANNEL  
ADCH[4:0]  
SELECT  
ADC  
AIEN  
COCO/IDMAS  
ADC CLOCK  
PTx  
CGMXCLK  
BUS CLOCK  
CLOCK  
GENERATOR  
ADIV[2:0]  
ADICLK  
Figure 19-1. ADC Block Diagram  
19.4.1 ADC Port I/O Pins  
PTC1/ATD9:PTC0/ATD8 and PTB7/ATD7:PTB0/ATD0 are  
general-purpose I/O pins that are shared with the ADC channels.  
The channel select bits define which ADC channel/port pin will be used  
as the input signal. The ADC overrides the port logic when that port is  
selected by the ADC multiplexer. The remaining ADC channels/port pins  
are controlled by the port logic and can be used as general-purpose  
input/output (I/O) pins. Writes to the port register or DDR will not have  
any effect on the port pin that is selected by the ADC. Read of a port pin  
which is in use by the ADC will return a logic 0.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Analog-to-Digital Converter (ADC)  
AdvanceInformation  
345  
Analog-to-Digital Converter (ADC)  
19.4.2 Voltage Conversion  
When the input voltage to the ADC equals VREFH, the ADC converts the  
signal to $3FF (full scale). If the input voltage equals VREFL, the ADC  
converts it to $000. Input voltages between VREFH and VREFL are  
straight-line linear conversions. All other input voltages will result in  
$3FF if greater than VREFH and $000 if less than VREFL  
.
NOTE: Input voltage should not exceed the analog supply voltages. See  
22.14 Analog-to-Digital Converter (ADC) Characteristics.  
19.4.3 Conversion Time  
Conversion starts after a write to the ADSCR. A conversion is between  
16 and 17 ADC clock cycles, therefore:  
16 to17 ADC Cycles  
Conversion time =  
ADC Frequency  
Number of Bus Cycles = Conversion Time x CPU Bus Frequency  
The ADC conversion time is determined by the clock source chosen and  
the divide ratio selected. The clock source is either the bus clock or  
CGMXCLK and is selectable by ADICLK located in the ADC clock  
register. For example, if CGMXCLK is 4 MHz and is selected as the ADC  
input clock source, the ADC input clock divide-by-4 prescale is selected  
and the CPU bus frequency is 8 MHz:  
16 to 17 ADC Cycles  
Conversion Time =  
= 16 to 17 µs  
4 MHz/4  
Number of bus cycles = 16 µs x 8 MHz = 128 to 136 cycles  
NOTE: The ADC frequency must be between fADIC minimum and fADIC  
maximum to meet A/D specifications. See 22.14 Analog-to-Digital  
Converter (ADC) Characteristics.  
Since an ADC cycle may be comprised of several bus cycles (eight, 136  
minus 128, in the previous example) and the start of a conversion is  
initiated by a bus cycle write to the ADSCR, from zero to eight additional  
bus cycles may occur before the start of the initial ADC cycle. This  
results in a fractional ADC cycle and is represented as the 17th cycle.  
Advance Information  
346  
MC68HC908MR16/MC68HC908MR32 — Rev. 5.0  
Analog-to-Digital Converter (ADC) MOTOROLA  
Analog-to-Digital Converter (ADC)  
Functional Description  
19.4.4 Continuous Conversion  
In continuous conversion mode, the ADC data registers ADRH and  
ADRL will be filled with new data after each conversion. Data from the  
previous conversion will be overwritten whether that data has been read  
or not. Conversions will continue until the ADCO bit is cleared. The  
COCO bit is set after the first conversion and will stay set for the next  
several conversions until the next write of the ADC status and control  
register or the next read of the ADC data register.  
19.4.5 Result Justification  
The conversion result may be formatted in four different ways:  
1. Left justified  
2. Right justified  
3. Left Justified sign data mode  
4. 8-bit truncation mode  
All four of these modes are controlled using MODE0 and MODE1 bits  
located in the ADC clock register (ADCR).  
Left justification will place the eight most significant bits (MSB) in the  
corresponding ADC data register high, ADRH. This may be useful if the  
result is to be treated as an 8-bit result where the two least significant  
bits (LSB), located in the ADC data register low, ADRL, can be ignored.  
However, ADRL must be read after ADRH or else the interlocking will  
prevent all new conversions from being stored.  
Right justification will place only the two MSBs in the corresponding ADC  
data register high, ADRH, and the eight LSBs in ADC data register low,  
ADRL. This mode of operation typically is used when a 10-bit unsigned  
result is desired.  
Left justified sign data mode is similar to left justified mode with one  
exception. The MSB of the 10-bit result, AD9 located in ADRH, is  
complemented. This mode of operation is useful when a result,  
represented as a signed magnitude from mid-scale, is needed. Finally,  
8-bit truncation mode will place the eight MSBs in ADC data register low,  
ADRL. The two LSBs are dropped. This mode of operation is used when  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Analog-to-Digital Converter (ADC)  
AdvanceInformation  
347  
Analog-to-Digital Converter (ADC)  
compatibility with 8-bit ADC designs are required. No interlocking  
between ADRH and ADRL is present.  
NOTE: Quantization error is affected when only the most significant eight bits  
are used as a result. See Figure 19-2.  
8-BIT 10-BIT  
RESUL RESULT  
IDEAL 8-BIT CHARACTERISTIC  
WITH QUANTIZATION = ±1/2  
10-BIT TRUNCATED  
TO 8-BIT RESULT  
003  
00B  
00A  
009  
IDEAL 10-BIT CHARACTERISTIC  
WITH QUANTIZATION = ±1/2  
002  
001  
000  
008  
007  
006  
005  
004  
003  
002  
001  
000  
WHEN TRUNCATION IS USED,  
ERROR FROM IDEAL 8-BIT = 3/8 LSB  
DUE TO NON-IDEAL QUANTIZATION.  
INPUT VOLTAGE  
1/2  
2 1/2  
4 1/2  
6 1/2  
8 1/2  
REPRESENTED AS 10-BIT  
1 1/2  
3 1/2  
5 1/2  
7 1/2  
9 1/2  
INPUT VOLTAGE  
REPRESENTED AS 8-BIT  
1/2  
1 1/2  
2 1/2  
Figure 19-2. 8-Bit Truncation Mode Error  
19.4.6 Monotonicity  
The conversion process is monotonic and has no missing codes.  
19.5 Interrupts  
When the AIEN bit is set, the ADC module is capable of generating a  
CPU interrupt after each ADC conversion. A CPU interrupt is generated  
if the COCO bit is at logic 0. The COCO bit is not used as a conversion  
complete flag when interrupts are enabled.  
Advance Information  
348  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Analog-to-Digital Converter (ADC)  
MOTOROLA  
 
Analog-to-Digital Converter (ADC)  
Wait Mode  
19.6 Wait Mode  
The WAIT instruction can put the MCU in low power-consumption  
standby mode.  
The ADC continues normal operation during wait mode. Any enabled  
CPU interrupt request from the ADC can bring the MCU out of wait  
mode. If the ADC is not required to bring the MCU out of wait mode,  
power down the ADC by setting ADCH[4:0] in the ADC status and control  
register before executing the WAIT instruction.  
19.7 I/O Signals  
The ADC module has 10 input signals that are shared with port B and  
port C.  
19.7.1 ADC Analog Power Pin (VDDAD  
)
The ADC analog portion uses VDDAD as its power pin. Connect the  
DDAD pin to the same voltage potential asVDD. External filtering may be  
V
necessary to ensure clean VDDAD for good results.  
NOTE: Route VDDAD carefully for maximum noise immunity and place bypass  
capacitors as close as possible to the package.  
19.7.2 ADC Analog Ground Pin (VSSAD  
)
The ADC analog portion uses VSSAD as its ground pin. Connect the  
VSSAD pin to the same voltage potential as VSS.  
19.7.3 ADC Voltage Reference Pin (VREFH  
)
VREFH is the power supply for setting the reference voltage VREFH  
.
Connect the VREFH pin to the same voltage potential as VDDAD. There  
will be a finite current associated with VREFH. See Section 22. Electrical  
Specifications.  
NOTE: Route VREFH carefully for maximum noise immunity and place bypass  
capacitors as close as possible to the package.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Analog-to-Digital Converter (ADC)  
AdvanceInformation  
349  
Analog-to-Digital Converter (ADC)  
19.7.4 ADC Voltage Reference Low Pin (VREFL  
)
VREFL is the lower reference supply for the ADC. Connect the VREFL pin  
to the same voltage potential as VSSAD. A finite current will be  
associated with VREFL. See Section 22. Electrical Specifications.  
NOTE: In the 56-pin shrink dual in-line package (SDIP), VREFL and VSSAD are  
tied together.  
19.7.5 ADC Voltage In (ADVIN)  
ADVIN is the input voltage signal from one of the 10 ADC channels to  
the ADC module.  
19.7.6 ADC External Connections  
This section describes the ADC external connections: VREFH and VREFL  
,
ANx, and grounding.  
19.7.6.1 VREFH and VREFL  
Both ac and dc current are drawn through the VREFH and VREFL loop.  
The AC current is in the form of current spikes required to supply charge  
to the capacitor array at each successive approximation step. The  
current flows through the internal resistor string. The best external  
component to meet both these current demands is a capacitor in the  
0.01 µF to 1 µF range with good high frequency characteristics. This  
capacitor is connected between VREFH and VREFL and must be placed  
as close as possible to the package pins. Resistance in the path is not  
recommended because the dc current will cause a voltage drop which  
could result in conversion errors.  
19.7.6.2 ANx  
Empirical data shows that capacitors from the analog inputs to VREFL  
improve ADC performance. 0.01-µF and 0.1-µF capacitors with good  
high-frequency characteristics are sufficient. These capacitors must be  
placed as close as possible to the package pins.  
Advance Information  
350  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Analog-to-Digital Converter (ADC)  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
I/O Registers  
19.7.6.3 Grounding  
In cases where separate power supplies are used for analog and digital  
power, the ground connection between these supplies should be at the  
VSSA pin. This should be the only ground connection between these  
supplies if possible. The VSSA pin makes a good single point ground  
location. Connect the VREFL pin to the same potential as VSSAD at the  
single point ground location.  
19.8 I/O Registers  
These I/O registers control and monitor operation of the ADC:  
ADC status and control register, ADSCR  
ADC data registers, ADRH and ARDL  
ADC clock register, ADCLK  
19.8.1 ADC Status and Control Register  
This section describes the function of the ADC status and control  
register (ADSCR). Writing ADSCR aborts the current conversion and  
initiates a new conversion.  
Address: $0040  
Bit 7  
COCO  
0
6
AIEN  
0
5
ADCO  
0
4
ADCH4  
1
3
ADCH3  
1
2
ADCH2  
1
1
ADCH1  
1
Bit 0  
ADCH0  
1
Read:  
Write:  
Reset:  
Figure 19-3. ADC Status and Control Register (ADSCR)  
COCO Conversions Complete Bit  
When AIEN bit is a logic 0, the COCO is a read-only bit which is set  
each time a conversion is completed except in the continuous  
conversion mode where it is set after the first conversion. This bit is  
cleared whenever the ADC status and control register is written or  
whenever the ADC data register is read.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Analog-to-Digital Converter (ADC)  
AdvanceInformation  
351  
Analog-to-Digital Converter (ADC)  
If AIEN bit is a logic 1, the COCO is a read/write bit. Reset clears this  
bit.  
1 = Conversion completed (AIEN = 0)  
0 = Conversion not completed (AIEN = 0)/CPU interrupt (AIEN = 1)  
AIEN ADC Interrupt Enable Bit  
When this bit is set, an interrupt is generated at the end of an ADC  
conversion. The interrupt signal is cleared when the data register is  
read or the status/control register is written. Reset clears the AIEN bit.  
1 = ADC interrupt enabled  
0 = ADC interrupt disabled  
ADCO ADC Continuous Conversion Bit  
When set, the ADC will convert samples continuously and update the  
ADR register at the end of each conversion. Only one conversion is  
allowed when this bit is cleared. Reset clears the ADCO bit.  
1 = Continuous ADC conversion  
0 = One ADC conversion  
ADCH[4:0] ADC Channel Select Bits  
ADCH4, ADCH3, ADCH2, ADCH1, and ADCH0 form a 5-bit field  
which is used to select one of 10 ADC channels. The ADC channels  
are detailed in Table 19-1.  
NOTE: Take care to prevent switching noise from corrupting the analog signal  
when simultaneously using a port pin as both an analog and digital input.  
The ADC subsystem is turned off when the channel select bits are all  
set to 1. This feature allows for reduced power consumption for the  
MCU when the ADC is not used.  
NOTE: Recovery from the disabled state requires one conversion cycle to  
stabilize.  
The voltage levels supplied from internal reference nodes as  
specified in Table 19-1 are used to verify the operation of the ADC  
both in production test and for user applications.  
Advance Information  
352  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Analog-to-Digital Converter (ADC) MOTOROLA  
Analog-to-Digital Converter (ADC)  
I/O Registers  
Table 19-1. Mux Channel Select  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
Input Select  
PTB0/ATD0  
PTB1/ATD1  
PTB2/ATD2  
PTB3/ATD3  
PTB4/ATD4  
PTB5/ATD5  
PTB6/ATD6  
PTB7/ATD7  
PTC0/ATD8  
PTC1/ATD9 ***  
Unused *  
Ø
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
0
1
Ø
Ø
Ø
Ø
Ø
Unused *  
Reserved **  
Unused *  
V
REFH  
V
1
1
1
1
1
1
1
1
0
1
REFL  
ADC power off  
* If any unused channels are selected, the resulting ADC conversion will be unknown.  
** Used for factory testing.  
*** ATD9 is not available in the 56-pin SDIP package.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Analog-to-Digital Converter (ADC)  
AdvanceInformation  
353  
Analog-to-Digital Converter (ADC)  
19.8.2 ADC Data Register High  
In left justified mode, this 8-bit result register holds the eight MSBs of the  
10-bit result. This register is updated each time an ADC single channel  
conversion completes. Reading ADRH latches the contents of ADRL  
until ADRL is read. Until ADRL is read, all subsequent ADC results will  
be lost.  
Address: $0041  
Bit 7  
AD9  
R
6
AD8  
R
5
AD7  
R
4
AD6  
R
3
AD5  
R
2
AD4  
R
1
AD3  
R
Bit 0  
AD2  
R
Read:  
Write:  
Reset:  
Unaffected by reset  
R
=Reserved  
Figure 19-4. ADC Data Register High (ADRH)  
Left Justified Mode  
In right justified mode, this 8-bit result register holds the two MSBs of the  
10-bit result. All other bits read as 0. This register is updated each time  
a single channel ADC conversion completes. Reading ADRH latches the  
contents of ADRL until ADRL is read. Until ADRL is read, all subsequent  
ADC results will be lost.  
Address: $0041  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
AD9  
R
Bit 0  
AD8  
R
Read:  
Write:  
Reset:  
R
R
R
R
R
R
Unaffected by reset  
R
=Reserved  
Figure 19-5. ADC Data Register High (ADRH)  
Right Justified Mode  
Advance Information  
354  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Analog-to-Digital Converter (ADC) MOTOROLA  
Analog-to-Digital Converter (ADC)  
I/O Registers  
19.8.3 ADC Data Register Low  
In left justified mode, this 8-bit result register holds the two LSBs of the  
10-bit result. All other bits read as 0. This register is updated each time  
a single channel ADC conversion completes. Reading ADRH latches the  
contents of ADRL until ADRL is read. Until ADRL is read, all subsequent  
ADC results will be lost.  
Address: $0042  
Bit 7  
AD1  
R
6
AD0  
R
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
R
R
R
R
R
R
Unaffected by reset  
R
=Reserved  
Figure 19-6. ADC Data Register Low (ADRL)  
Left Justified Mode  
In right justified mode, this 8-bit result register holds the eight LSBs of  
the 10-bit result. This register is updated each time an ADC conversion  
completes. Reading ADRH latches the contents of ADRL until ADRL is  
read. Until ADRL is read, all subsequent ADC results will be lost.  
Address: $0042  
Bit 7  
AD7  
R
6
AD6  
R
5
AD5  
R
4
AD4  
R
3
AD3  
R
2
AD2  
R
1
AD1  
R
Bit 0  
AD0  
R
Read:  
Write:  
Reset:  
Unaffected by reset  
R
=Reserved  
Figure 19-7. ADC Data Register Low (ADRL)  
Right Justified Mode  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
AdvanceInformation  
355  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
Analog-to-Digital Converter (ADC)  
In 8-bit mode, this 8-bit result register holds the eight MSBs of the 10-bit  
result. This register is updated each time an ADC conversion completes.  
In 8-bit mode, this register contains no interlocking with ADRH.  
Address: $0042  
Bit 7  
AD9  
R
6
AD8  
R
5
AD7  
R
4
AD6  
R
3
AD5  
R
2
AD4  
R
1
AD3  
R
Bit 0  
AD2  
R
Read:  
Write:  
Reset:  
Unaffected by reset  
R
=Reserved  
Figure 19-8. ADC Data Register Low (ADRL) 8-Bit Mode  
19.8.4 ADC Clock Register  
This register selects the clock frequency for the ADC, selecting between  
modes of operation.  
Address: $0043  
Bit 7  
6
5
ADIV0  
1
4
3
2
1
0
0
Bit 0  
0
Read:  
Write:  
Reset:  
ADIV2  
ADIV1  
ADICLK MODE1 MODE0  
R
0
1
1
0
0
0
R
=Reserved  
Figure 19-9. ADC Clock Register (ADCLK)  
ADIV2:ADIV0 ADC Clock Prescaler Bits  
ADIV2, ADIV1, and ADIV0 form a 3-bit field which selects the divide  
ratio used by the ADC to generate the internal ADC clock.  
Table 19-2 shows the available clock configurations.  
Advance Information  
356  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Analog-to-Digital Converter (ADC)  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
I/O Registers  
Table 19-2. ADC Clock Divide Ratio  
ADIV2  
ADIV1  
ADIV0  
ADC Clock Rate  
ADC input clock /1  
ADC input clock /2  
ADC input clock /4  
ADC input clock /8  
ADC input clock /16  
0
0
0
0
1
0
0
1
1
X
0
1
0
1
X
X = don’t care  
ADICLK — ADC Input Clock Select Bit  
ADICLK selects either bus clock or CGMXCLK as the input clock  
source to generate the internal ADC clock. Reset selects CGMXCLK  
as the ADC clock source.  
If the external clock (CGMXCLK) is equal to or greater than 1 MHz,  
CGMXCLK can be used as the clock source for the ADC. If  
CGMXCLK is less than 1 MHz, use the PLL-generated bus clock as  
the clock source. As long as the internal ADC clock is at fADIC, correct  
operation can be guaranteed. See 22.14 Analog-to-Digital  
Converter (ADC) Characteristics.  
1 = Internal bus clock  
0 = External clock, CGMXCLK  
CGMXCLK or bus frequency  
fADIC  
=
ADIV[2:0]  
MODE1:MODE0 — Modes of Result Justification Bits  
MODE1:MODE0 selects among four modes of operation. The  
manner in which the ADC conversion results will be placed in the ADC  
data registers is controlled by these modes of operation. Reset  
returns right-justified mode.  
00 = 8-bit truncation mode  
01 = Right justified mode  
10 = Left justified mode  
11 = Left justified sign data mode  
MC68HC908MR16/MC68HC908MR32 — Rev. 5.0  
MOTOROLA Analog-to-Digital Converter (ADC)  
AdvanceInformation  
357  
Analog-to-Digital Converter (ADC)  
Advance Information  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
358  
Analog-to-Digital Converter (ADC)  
MOTOROLA  
Section 20. Power-On Reset (POR)  
20.1 Contents  
20.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .359  
20.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .359  
20.2 Introduction  
This section describes the power-on reset (POR) module.  
20.3 Functional Description  
The POR module provides a known, stable signal to the microcontroller  
unit (MCU) at power-on. This signal tracks VDD until the MCU generates  
a feedback signal to indicate that it is properly initialized. At this time, the  
POR drives its output low.  
The POR is not a brown-out detector, low-voltage detector, or glitch  
detector. VDD at the POR must go completely to 0 to reset the MCU. To  
detect power-loss conditions, use a low-voltage inhibit module (LVI) or  
other suitable circuit.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Power-On Reset (POR)  
Advance Information  
359  
 
 
Power-On Reset (POR)  
Advance Information  
360  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Power-On Reset (POR) MOTOROLA  
Advance Information MC68HC908MR16/MC68HC908MR32  
Section 21. Break Module (BRK)  
21.1 Contents  
21.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361  
21.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .362  
21.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .362  
21.4.1 Flag Protection During Break Interrupts. . . . . . . . . . . . . . .364  
21.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .364  
21.4.3 TIM1 and TIM2 During Break Interrupts. . . . . . . . . . . . . . .364  
21.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .364  
21.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .364  
21.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .364  
21.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .365  
21.6 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .365  
21.6.1 Break Status and Control Register. . . . . . . . . . . . . . . . . . .365  
21.6.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . .366  
21.6.3 Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .367  
21.6.4 Break Flag Control Register. . . . . . . . . . . . . . . . . . . . . . . .368  
21.2 Introduction  
This section describes the break module (BRK). The break module can  
generate a break interrupt that stops normal program flow at a defined  
address to enter a background program.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Break Module (BRK)  
Advance Information  
361  
 
Break Module (BRK)  
21.3 Features  
Features of the break module include:  
Accessible input/output (I/O) registers during the break interrupt  
Central processor unit (CPU) generated break interrupts  
Software-generated break interrupts  
Computer operating properly (COP) disabling during break  
interrupts  
21.4 Functional Description  
When the internal address bus matches the value written in the break  
address registers, the break module issues a breakpoint signal to the  
CPU. The CPU then loads the instruction register with a software  
interrupt instruction (SWI) after completion of the current CPU  
instruction. The program counter vectors to $FFFC and $FFFD ($FEFC  
and $FEFD in monitor mode).  
These events can cause a break interrupt to occur:  
A CPU-generated address (the address in the program counter)  
matches the contents of the break address registers.  
Software writes a logic 1 to the BRKA bit in the break status and  
control register.  
When a CPU-generated address matches the contents of the break  
address registers, the break interrupt begins after the CPU completes its  
current instruction. A return-from-interrupt instruction (RTI) in the break  
routine ends the break interrupt and returns the microcontroller unit  
(MCU) to normal operation. Figure 21-1 shows the structure of the break  
module.  
Advance Information  
362  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Break Module (BRK)  
MOTOROLA  
Break Module (BRK)  
Functional Description  
IAB15IAB8  
BREAK ADDRESS REGISTER HIGH  
8-BIT COMPARATOR  
IAB15IAB0  
BREAK  
CONTROL  
8-BIT COMPARATOR  
BREAK ADDRESS REGISTER LOW  
IAB7IAB0  
Figure 21-1. Break Module Block Diagram  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
BW  
0
Bit 0  
Read:  
SIM Break Status Register  
R
R
R
R
R
R
R
$FE00  
(SBSR) Write:  
See page 367.  
Reset:  
Read:  
SIM Break Flag Control  
BCFE  
0
R
R
R
R
R
R
R
$FE03  
$FE0C  
$FE0D  
$FE0E  
Register (SBFCR) Write:  
See page 368.  
Reset:  
Read:  
Break Address Register  
Bit 15  
0
14  
13  
0
12  
0
11  
0
10  
0
9
0
1
Bit 8  
0
High (BRKH) Write:  
See page 366.  
Reset:  
0
Read:  
Break Address Register  
Bit 7  
0
6
5
4
3
2
Bit 0  
Low (BRKL) Write:  
See page 366.  
Reset:  
0
BRKA  
0
0
0
0
0
0
0
0
0
0
0
0
0
Read:  
Break Status and Control  
BRKE  
0
Register (BRKSCR) Write:  
See page 365.  
Reset:  
0
0
0
0
0
0
Note: Writing a logic 0 clears BW.  
= Unimplemented  
R
= Reserved  
Figure 21-2. I/O Register Summary  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Break Module (BRK)  
AdvanceInformation  
363  
Break Module (BRK)  
21.4.1 Flag Protection During Break Interrupts  
The BCFE bit in the SIM break flag control register (SBFCR) enables  
software to clear status bits during the break state.  
21.4.2 CPU During Break Interrupts  
The CPU starts a break interrupt by:  
Loading the instruction register with the SWI instruction  
Loading the program counter with $FFFC and $FFFD ($FEFC and  
$FEFD in monitor mode)  
The break interrupt begins after completion of the CPU instruction in  
progress. If the break address register match occurs on the last cycle of  
a CPU instruction, the break interrupt begins immediately.  
21.4.3 TIM1 and TIM2 During Break Interrupts  
A break interrupt stops the timer counters.  
21.4.4 COP During Break Interrupts  
The COP is disabled during a break interrupt when VTST is present on  
the RST pin.  
21.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes.  
21.5.1 Wait Mode  
If enabled, the break module is active in wait mode. In the break routine,  
the user can subtract one from the return address on the stack if SBSW  
is set. Clear the BW bit by writing logic 0 to it.  
Advance Information  
364  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Break Module (BRK)  
MOTOROLA  
Break Module (BRK)  
Break Module Registers  
21.5.2 Stop Mode  
The break module is inactive in stop mode. The STOP instruction does  
not affect break module register states.  
21.6 Break Module Registers  
These registers control and monitor operation of the break module:  
Break status and control register (BRKSCR)  
Break address register high (BRKH)  
Break address register low (BRKL)  
SIM break status register (SBSR)  
SIM break flag control register (SBFCR)  
21.6.1 Break Status and Control Register  
The break status and control register (BRKSCR) contains break module  
enable and status bits.  
Address: $FE0E  
Bit 7  
BRKE  
0
6
BRKA  
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
0
= Unimplemented  
Figure 21-3. Break Status and Control Register (BRKSCR)  
BRKE Break Enable Bit  
This read/write bit enables breaks on break address register matches.  
Clear BRKE by writing a logic 0 to bit 7. Reset clears the BRKE bit.  
1 = Breaks enabled on 16-bit address match  
0 = Breaks disabled on 16-bit address match  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Break Module (BRK)  
AdvanceInformation  
365  
Break Module (BRK)  
BRKA Break Active Bit  
This read/write status and control bit is set when a break address  
match occurs. Writing a logic 1 to BRKA generates a break interrupt.  
Clear BRKA by writing a logic 0 to it before exiting the break routine.  
Reset clears the BRKA bit.  
1 = When read, break address match  
0 = When read, no break address match  
21.6.2 Break Address Registers  
The break address registers (BRKH and BRKL) contain the high and low  
bytes of the desired breakpoint address. Reset clears the break address  
registers.  
Address: $FE0C  
Bit 7  
Bit 15  
0
6
14  
0
5
13  
0
4
12  
0
3
11  
0
2
10  
0
1
9
0
Bit 0  
Bit 8  
0
Read:  
Write:  
Reset:  
Figure 21-4. Break Address Register High (BRKH)  
Address: $FE0D  
Bit 7  
6
6
0
5
5
0
4
4
0
3
3
0
2
2
0
1
1
0
Bit 0  
Bit 0  
0
Read:  
Bit 7  
Write:  
Reset:  
0
Figure 21-5. Break Address Register Low (BRKL)  
Advance Information  
366  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Break Module (BRK) MOTOROLA  
Break Module (BRK)  
Break Module Registers  
21.6.3 Break Status Register  
The break status register (SBSR) contains a flag to indicate that a break  
caused an exit from wait mode. The flag is useful in applications  
requiring a return to wait mode after exiting from a break interrupt.  
Address: $FE00  
Bit 7  
6
5
4
3
2
1
BW  
0
Bit 0  
R
Read:  
Write:  
Reset:  
R
R
R
R
R
R
Figure 21-6. SIM Break Status Register (SBSR)  
BW Break Wait Bit  
This read/write bit is set when a break interrupt causes an exit from  
wait mode. Clear BW by writing a logic 0 to it. Reset clears BW.  
1 = Break interrupt during wait mode  
0 = No break interrupt during wait mode  
BW can be read within the break interrupt routine. The user can  
modify the return address on the stack by subtracting 1 from it. The  
following code is an example.  
This code works if the H register was stacked in the break interrupt  
routine. Execute this code at the end of the break interrupt routine.  
HIBYTE EQU  
LOBYTE EQU  
5
6
; If not BW, do RTI  
BRCLR BW,BSR, RETURN ; See if wait mode or stop mode  
; was exited by break.  
TST  
BNE  
DEC  
DEC  
LOBYTE,SP  
DOLO  
; If RETURNLO is not 0,  
; then just decrement low byte.  
; Else deal with high byte also.  
; Point to WAIT/STOP opcode.  
; Restore H register.  
HIBYTE,SP  
LOBYTE,SP  
DOLO  
RETURN PULH  
RTI  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Break Module (BRK)  
AdvanceInformation  
367  
Break Module (BRK)  
21.6.4 Break Flag Control Register  
The break flag control register (SBFCR) contains a bit that enables  
software to clear status bits while the MCU is in a break state.  
Address: $FE03  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
0
R
= Reserved  
Figure 21-7. SIM Break Flag Control Register (SBFCR)  
BCFE Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing  
status registers while the MCU is in a break state. To clear status bits  
during the break state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
Advance Information  
368  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Break Module (BRK)  
MOTOROLA  
Advance Information MC68HC908MR16/MC68HC908MR32  
Section 22. Electrical Specifications  
22.1 Contents  
22.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .369  
22.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . .370  
22.4 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . .371  
22.5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .371  
22.6 DC Electrical Characteristics  
(VDD = 5.0 Vdc ± 10%) . . . . . . . . . . . . . . . . . . . . . . . . . . .372  
22.7 FLASH Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . .373  
22.8 Control Timing (VDD = 5.0 Vdc ± 10%) . . . . . . . . . . . . . . . . .374  
22.9 Serial Peripheral Interface Characteristics  
(VDD = 5.0 Vdc ± 10%) . . . . . . . . . . . . . . . . . . . . . . . . . . .375  
22.10 TImer Interface Module Characteristics . . . . . . . . . . . . . . . . .378  
22.11 Clock Generation Module Component Specifications . . . . . .378  
22.12 CGM Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . .378  
22.13 CGM Acquisition/Lock Time Specifications  
. . . . . . . . . . . .379  
22.14 Analog-to-Digital Converter (ADC) Characteristics. . . . . . . . .380  
22.2 Introduction  
This section contains electrical and timing specifications. These values  
are design targets and have not yet been fully characterized.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Electrical Specifications  
Advance Information  
369  
 
Electrical Specifications  
22.3 Absolute Maximum Ratings  
Maximum ratings are the extreme limits to which the MCU can be  
exposed without permanently damaging it.  
NOTE: This device is not guaranteed to operate properly at the maximum  
ratings. For guaranteed operating conditions, refer to 22.6 DC Electrical  
Characteristics (VDD = 5.0 Vdc ± 10%).  
(1)  
Symbol  
Value  
Unit  
Characteristic  
Supply voltage  
V
0.3 to +6.0  
V
DD  
V
0.3 to  
SS  
V
Input voltage  
V
V
In  
V
+0.3  
DD  
V
V
+ 4 maximum  
DD  
Input high voltage  
HI  
Maximum current per pin  
I
±25  
mA  
excluding V and V  
DD  
SS  
T
Storage temperature  
55 to +150  
100  
°C  
mA  
mA  
STG  
Maximum current out of V  
Maximum current into V  
I
SS  
MVSS  
I
100  
DD  
MVDD  
1. Voltages referenced to V  
.
SS  
NOTE: This device contains circuitry to protect the inputs against damage due  
to high static voltages or electric fields; however, it is advised that normal  
precautions be taken to avoid application of any voltage higher than  
maximum-rated voltages to this high-impedance circuit. For proper  
operation, it is recommended that VIn be constrained to the range  
VSS (VIn) VDD. Reliability of operation is enhanced if unused inputs  
are connected to an appropriate logic voltage level (for example, either  
VSS or VDD).  
Advance Information  
370  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Electrical Specifications  
MOTOROLA  
Electrical Specifications  
Functional Operating Range  
22.4 Functional Operating Range  
Characteristic  
Symbol  
Value  
Unit  
°C  
(1)  
Operating temperature range  
MC68HC908MR24CFU  
MC68HC908MR24VFU  
T
40 to 85  
40 to 105  
A
V
Operating voltage range  
5.0 ± 10%  
V
DD  
1. See Motorola representative for temperature availability.  
C = Extended temperature range (40°C to +85°C)  
V = Automotive temperature range (40°C to +105°C)  
22.5 Thermal Characteristics  
Characteristic  
Thermal resistance,  
Symbol  
Value  
Unit  
°C/W  
W
θ
76  
JA  
64-pin QFP  
P
I/O pin power dissipation  
User determined  
I/O  
P = (I x V ) + P =  
I/O  
D
DD  
DD  
(1)  
P
W
Power dissipation  
D
K/(T + 273°C)  
J
P x (T + 273°C)  
D
A
(2)  
K
W/°C  
Constant  
2
+ P x θ  
D
JA  
T
T + (P x θ  
)
JA  
Average junction temperature  
Maximum junction temperature  
°C  
°C  
J
A
D
T
125  
JM  
1. Power dissipation is a function of temperature.  
2. K is a constant unique to the device. K can be determined for a known T and  
A
measured P With this value of K, P and T can be determined for any value of T .  
D.  
D
J
A
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
AdvanceInformation  
371  
MOTOROLA  
Electrical Specifications  
Electrical Specifications  
22.6 DC Electrical Characteristics (VDD = 5.0 Vdc ± 10%)  
Typ(2)  
Characteristic  
Symbol  
Min  
Max  
Unit  
Output high voltage  
(ILoad = 2.0 mA) all I/O pins  
VOH  
VDD 0.8  
V
Output low voltage  
(ILoad = 1.6 mA) all I/O pins  
VOL  
IOH  
0.4  
V
PWM pin output source current  
(VOH = VDD 0.8 V)  
7  
mA  
PWM pin output sink current (VOL = 0.8 V)  
IOL  
VIH  
VIL  
20  
0.7 x VDD  
VSS  
mA  
V
VDD  
Input high voltage, all ports, IRQs, RESET, OSC1  
Input low voltage, all ports, IRQs, RESET, OSC1  
VDD supply current  
0.3 x VDD  
V
Run(3)  
Wait(4)  
Stop(5)  
30  
12  
700  
mA  
mA  
µA  
IDD  
IIL  
IIn  
I/O ports high-impedance leakage current  
Input current (input only pins)  
±10  
±1  
µA  
µA  
COut  
CIn  
Capacitance  
Ports (as input or output)  
12  
8
pF  
Low-voltage inhibit reset(9)  
VLVR1  
VLVH1  
4.0  
40  
4.35  
90  
4.65  
150  
V
Low-voltage reset/recover hysteresis  
mV  
Low-voltage inhibit reset recovery  
VREC1  
4.04  
4.5  
4.75  
V
(VREC1 = VLVR1 + VLVH1  
)
VLVR2  
VLVH2  
Low-voltage inhibit reset  
3.85  
150  
4.15  
210  
4.45  
250  
V
Low-voltage reset/recover hysteresis  
Low-voltage inhibit reset recovery  
mV  
VREC2  
4.0  
4.4  
4.6  
V
(VREC2 = VLVR2 + VLVH2  
)
POR re-arm voltage(6)  
POR rise time ramp rate(8)  
POR reset voltage  
VPOR  
RPOR  
0
100  
mV  
V/ms  
V
0.035  
0
800  
VPORRST  
VHi  
700  
VDD + 2.5  
VDD + Hi  
Monitor mode entry voltage (on IRQ)  
V
1. V = 5.0 Vdc ± 10%, V = 0 Vdc, T = T to T , unless otherwise noted  
DD  
SS  
A
L
H
2. Typical values reflect average measurements at midpoint of voltage range, 25°C only.  
3. Run (operating) I measured using external square wave clock source (f = 8.2 MHz). All inputs 0.2 V from rail; no  
DD  
OSC  
dc loads; less than 100 pF on all outputs. C = 20 pF on OSC2; all ports configured as inputs; OSC2 capacitance linearly  
L
affects run I ; measured with all modules enabled  
DD  
4. Wait I measured using external square wave clock source (f  
= 8.2 MHz); all inputs 0.2 V from rail; no dc loads;  
DD  
OSC  
less than 100 pF on all outputs. C = 20 pF on OSC2; all ports configured as inputs; OSC2 capacitance linearly affects  
L
wait I ; measured with PLL and LVI enabled  
DD  
5. Stop I measured with PLL and LVI disengaged, OCS1 grounded, no port pins sourcing current. It is measured  
DD  
through combination of V , V  
, and V  
.
DD  
DDAD  
DDA  
6. Maximum is highest voltage that POR is guaranteed.  
7. Maximum is highest voltage that POR is possible.  
8. If minimum V is not reached before the internal POR is released, RST must be driven low externally until  
DD  
minimum V is reached.  
DD  
9. The low-voltage inhibit reset is software selectable. Refer to Section 18. Low-Voltage Inhibit (LVI).  
Advance Information  
372  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Electrical Specifications MOTOROLA  
Electrical Specifications  
FLASH Memory Characteristics  
22.7 FLASH Memory Characteristics  
Symbol/  
Description  
Characteristic  
Min  
Max  
Units  
V
RAM data retention voltage  
1.3  
1
V
RDR  
FLASH program bus clock frequency  
FLASH read bus clock frequency  
MHz  
Hz  
(1)  
32 k  
8.4 M  
f
Read  
(2)  
Erase  
FLASH page erase time  
1
ms  
t
(3)  
FLASH mass erase time  
4
10  
5
40  
ms  
µs  
µs  
µs  
µs  
µs  
µs  
t
MErase  
t
FLASH PGM/Erase to HVEN set up time  
FLASH high-voltage hold time  
FLASH high-voltage hold time (mass erase)  
FLASH program hold time  
NVS  
t
NVH  
t
100  
5
NVHL  
t
PGS  
t
FLASH program time  
30  
1
PROG  
(4)  
FLASH return to read time  
t
RCV  
(5)  
HV  
FLASH cumulative program HV period  
4
ms  
t
(6)  
10 k  
10 k  
10  
Cycles  
Cycles  
Years  
FLASH row erase endurance  
(7)  
FLASH row program endurance  
(8)  
FLASH data retention time  
1. f  
is defined as the frequency range for which the FLASH memory can be read.  
Read  
2. If the page erase time is longer than t  
memory.  
(min), there is no erase-disturb, but it reduces the endurance of the FLASH  
Erase  
3. If the mass erase time is longer than t  
memory.  
(min), there is no erase-disturb, but it reduces the endurance of the FLASH  
MErase  
4. t  
is defined as the time it needs before the FLASH can be read after turning off the high voltage charge pump, by clear-  
RCV  
ing HVEN to logic 0.  
5. tHV is defined as the cumulative high voltage programming time to the same row before next erase.  
tHV must satisfy this condition: t  
+ t  
+ t  
+ (tPROG × 64) t max.  
NVS  
PGS HV  
6. The minimum row endurance valuNeVHspecifies each row of the FLASH memory is guaranteed to work for at  
least this many erase/program cycles.  
7. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at  
least this many erase/program cycles.  
8. The FLASH is guaranteed to retain data over the entire operating temperature range for at least the minimum  
time specified.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Electrical Specifications  
AdvanceInformation  
373  
Electrical Specifications  
22.8 Control Timing (VDD = 5.0 Vdc ± 10%)  
(1)  
Symbol  
Min  
Max  
Unit  
Characteristic  
(2)  
Frequency of operation  
1
f
Crystal option  
8
32.8  
MHz  
OSC  
(4)  
(3)  
dc  
External clock option  
f
Internal operating frequency  
8.2  
MHz  
ns  
OP  
(5)  
t
50  
RESET input pulse width low  
IRL  
1. V = 0 Vdc; timing shown with respect to 20% V and 70% V , unless otherwise noted  
SS  
DD  
DD  
2. See 22.9 Serial Peripheral Interface Characteristics (V = 5.0 Vdc ± 10%) for more information.  
DD  
3. No more than 10% duty cycle deviation from 50%.  
4. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this  
information.  
5. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset.  
Advance Information  
374  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Electrical Specifications MOTOROLA  
Electrical Specifications  
Serial Peripheral Interface Characteristics (V = 5.0 Vdc ± 10%)  
DD  
22.9 Serial Peripheral Interface Characteristics (VDD = 5.0 Vdc ± 10%)  
Diagram  
(2)  
Symbol  
Min  
Max  
Unit  
Characteristic  
Operating frequency  
Master  
Slave  
(1)  
Number  
f
f
/2  
f
/128  
MHz  
OP(M)  
OP  
f
OP  
f
dc  
OP  
OP(S)  
Cycle time  
Master  
Slave  
t
t
1
2
1
128  
CYC(M)  
CYC  
t
CYC(S)  
t
2
3
Enable lead time  
Enable lag time  
15  
15  
ns  
ns  
Lead(S)  
t
Lag(S)  
Clock (SPCK) high time  
Master  
Slave  
t
4
5
100  
50  
ns  
ns  
SCKH(M)  
t
SCKH(S)  
Clock (SPCK) low time  
Master  
Slave  
t
100  
50  
SCKL(M)  
t
SCKL(S)  
Data setup time (inputs)  
Master  
Slave  
t
45  
5
SU(M)  
6
7
ns  
ns  
t
SU(S)  
Data hold time (inputs)  
Master  
Slave  
t
0
15  
H(M)  
t
H(S)  
(3)  
Access time, slave  
CPHA = 0  
CHPA = 1  
t
0
0
40  
20  
A(CP0)  
8
9
ns  
ns  
ns  
t
A(CP1)  
(4)  
t
25  
Disable time, slave  
DIS(S)  
Data valid time after enable edge  
Master  
t
10  
10  
40  
V(M)  
(5)  
t
Slave  
V(S)  
1. All timing is shown with respect to 20% V and 70% V , unless otherwise noted; assumes 100 pF load on all SPI pins  
DD  
DD  
2. Numbers refer to dimensions in Figure 22-1 and Figure 22-2.  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
5. With 100 pF on all SPI pins  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
AdvanceInformation  
375  
MOTOROLA  
Electrical Specifications  
Electrical Specifications  
SS  
INPUT  
SS PIN OF MASTER HELD HIGH  
1
5
4
SPCK, CPOL = 0  
OUTPUT  
NOTE  
NOTE  
4
5
SPCK, CPOL = 1  
OUTPUT  
6
7
MISO  
MSB IN  
BITS 61  
BITS 61  
LSB IN  
INPUT  
10  
11  
MASTER MSB OUT  
10  
11  
MOSI  
OUTPUT  
MASTER LSB OUT  
Note: This first clock edge is generated internally, but is not seen at the SCK pin.  
a) SPI Master Timing (CPHA = 0)  
SS  
INPUT  
SS PIN OF MASTER HELD HIGH  
1
SPCK, CPOL = 0  
OUTPUT  
5
NOTE  
NOTE  
4
SPCK, CPOL = 1  
OUTPUT  
5
4
6
7
LSB IN  
11  
MISO  
MSB IN  
11  
BITS 61  
BITS 61  
INPUT  
10  
10  
MOSI  
OUTPUT  
MASTER MSB OUT  
MASTER LSB OUT  
Note: This last clock edge is generated internally, but is not seen at the SCK pin.  
b) SPI Master Timing (CPHA = 1)  
Figure 22-1. SPI Master Timing  
Advance Information  
376  
MC68HC908MR16/MC68HC908MR32 — Rev. 5.0  
Electrical Specifications MOTOROLA  
Electrical Specifications  
Serial Peripheral Interface Characteristics (V = 5.0 Vdc ± 10%)  
DD  
SS  
INPUT  
3
1
SPCK, CPOL = 0  
INPUT  
11  
4
5
2
SPCK, CPOL = 1  
INPUT  
4
9
8
MISO  
SLAVE MSB OUT  
BITS 61  
BITS 61  
SLAVE LSB OUT  
NOTE  
INPUT  
11  
11  
6
7
10  
MOSI  
OUTPUT  
MSB IN  
LSB IN  
Note: Not defined, but normally MSB of character just received  
a) SPI Slave Timing (CPHA = 0)  
SS  
INPUT  
1
SPCK, CPOL = 0  
INPUT  
5
4
5
2
3
SPCK, CPOL = 1  
INPUT  
4
10  
SLAVE MSB OUT  
9
8
MISO  
INPUT  
NOTE  
BITS 61  
BITS 61  
SLAVE LSB OUT  
11  
6
7
10  
MOSI  
OUTPUT  
MSB IN  
LSB IN  
Note: Not defined, but normally LSB of character previously transmitted  
b) SPI Slave Timing (CPHA = 1)  
Figure 22-2. SPI Slave Timing  
MC68HC908MR16/MC68HC908MR32 — Rev. 5.0  
MOTOROLA Electrical Specifications  
AdvanceInformation  
377  
Electrical Specifications  
22.10 TImer Interface Module Characteristics  
Characteristic  
Input capture pulse width  
Input clock pulse width  
Symbol  
Min  
Max  
Unit  
ns  
t
t
125  
TIH, TIL  
t
t
(1/f ) + 5  
ns  
TCH, TCL  
OP  
22.11 Clock Generation Module Component Specifications  
Characteristic  
Symbol  
Min  
Typ  
Max  
Notes  
Consult crystal  
manufacturing data  
C
Crystal load capacitance  
L
Consult crystal  
manufacturing data  
C
2 * C  
2 * C  
Crystal fixed capacitance  
Crystal tuning capacitance  
1
L
L
Consult crystal  
manufacturing data  
C
2
R
Feedback bias resistor  
Series resistor  
22 MΩ  
330 kΩ  
B
R
0
1 MΩ  
Not required  
S
C
*
FACT  
C
Filter capacitor  
F
(V  
/f  
)
DDA XCLK  
C
must provide low ac  
BYP  
impedance from  
/100 to 100*f  
C
Bypass capacitor  
0.1 µF  
f = f  
,
VCLK  
BYP  
XCLK  
so series resistance must  
be considered  
22.12 CGM Operating Conditions  
Characteristic  
Crystal reference frequency  
Range nominal multiplier  
Symbol  
Min  
1
Typ  
Max  
8
Unit  
MHz  
MHz  
f
XCLK  
f
4.9152  
NOM  
f
VCO center-of-range frequency  
VCO frequency multiplier  
4.9152  
32.8  
15  
MHz  
VRS  
N
L
1
VCO center of range multiplier  
VCO operating frequency  
1
15  
f
f
f
VRSMAX  
VCLK  
VRSMIN  
Advance Information  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Electrical Specifications MOTOROLA  
378  
Electrical Specifications  
CGM Acquisition/Lock Time Specifications  
22.13 CGM Acquisition/Lock Time Specifications  
Description  
Symbol  
Min  
Typ  
Max  
Notes  
F/sV  
V
C
Filter capacitor multiply factor  
Acquisition mode time factor  
Tracking mode time factor  
0.0154  
0.1135  
0.0174  
FACT  
K
ACQ  
K
V
TRK  
(8*V  
)/  
If C chosen  
DDA  
F
t
Manual mode time to stable  
ACQ  
(f  
(f  
*K  
correctly  
XCLK ACQ)  
(4*V  
)/  
If C chosen  
DDA  
F
t
Manual stable to lock time  
Manual acquisition time  
0
AL  
*K  
)
correctly  
XCLK TRK  
t
t
+t  
Lock  
ACQ AL  
Tracking mode entry frequency  
tolerance  
±3.6%  
TRK  
Acquisition mode entry frequency  
tolerance  
±6.3%  
±7.2%  
ACQ  
Lock entry frequency tolerance  
Lock exit frequency tolerance  
0
±0.9%  
±1.8%  
Lock  
±0.9%  
UNL  
Reference cycles per acquisition  
mode measurement  
n
32  
ACQ  
Reference cycles per tracking  
mode measurement  
n
128  
TRK  
(8*V  
)/  
If C chosen  
DDA  
F
t
n
/f  
Automatic mode time to stable  
ACQ  
ACQ XCLK  
(f  
(f  
*K  
correctly  
XCLK ACQ)  
(4*V  
)/  
If C chosen  
DDA  
F
t
n
/f  
Automatic stable to lock time  
Automatic lock time  
AL  
TRK XCLK  
*K  
)
correctly  
XCLK TRK  
t
t
+t  
Lock  
ACQ AL  
± (f  
*(0.025%)  
*(N/4)  
)
XCLK  
PLL jitter (deviation of average bus  
frequency over 2 ms)  
N = VCO  
freq. mult.  
fJ  
0
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Electrical Specifications  
AdvanceInformation  
379  
Electrical Specifications  
22.14 Analog-to-Digital Converter (ADC) Characteristics  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Notes  
V
should be tied  
DDAD  
to the same potential  
V
Supply voltage  
4.5  
5.5  
V
DDAD  
as V via separate  
DD  
traces  
V
V
V
<= V  
Input voltages  
0
10  
V
Bits  
Counts  
Hz  
ADIN  
DDAD  
ADIN DDAD  
B
Resolution  
10  
AD  
A
Absolute accuracy  
ADC internal clock  
Conversion range  
Power-up time  
Conversion time  
Sample time  
±4  
Includes quantization  
AD  
f
t
= 1/f  
AIC ADIC  
500 k  
1.048 M  
ADIC  
R
V
V
V
AD  
SSAD  
DDAD  
t
t
t
t
cycles  
16  
17  
ADPU  
AIC  
AIC  
AIC  
t
cycles  
cycles  
16  
5
ADC  
t
ADS  
M
Monotonicity  
Guaranteed  
AD  
Z
V
V
= V  
= V  
Zero input reading  
Full-scale reading  
Input capacitance  
000  
3FC  
003  
3FF  
30  
Hex  
Hex  
pF  
ADI  
ADIN  
SSAD  
F
ADI  
ADIN  
DDAD  
C
Not tested  
ADI  
V
/V  
current  
I
1.6  
mA  
REFH REFL  
VREF  
Absolute accuracy  
(8-bit truncation mode)  
A
±1  
LSB  
LSB  
Includes quantization  
AD  
Quantization error  
(8-bit truncation mode)  
+7/8  
1/8  
Advance Information  
380  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Electrical Specifications MOTOROLA  
Advance Information MC68HC908MR16/MC68HC908MR32  
Section 23. Mechanical Specifications  
23.1 Contents  
23.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .381  
23.3 64-Pin Plastic Quad Flat Pack (QFP) . . . . . . . . . . . . . . . . . . .382  
23.4 56-Pin Shrink Dual In-Line Package (SDIP). . . . . . . . . . . . . .383  
23.2 Introduction  
This section gives the dimensions for the 64-lead plastic quad flat pack  
(QFP) and 56-pin shrink dual in-line package (SDIP).  
Figure 23-1 and Figure 23-2 show the latest package at the time of this  
publication. To make sure that you have the latest package  
specifications, contact one of the following:  
Local Motorola Sales Office  
World Wide Web at http://www.motorola.com/semiconductors/  
Follow the World Wide Web on-line instructions to retrieve the current  
mechanical specifications.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Mechanical Specifications  
Advance Information  
381  
 
Mechanical Specifications  
23.3 64-Pin Plastic Quad Flat Pack (QFP)  
L
48  
33  
49  
32  
B
B
P
-B-  
-A-  
L
B
V
-A-, -B-, D-  
DETAIL A  
DETAIL A  
F
17  
64  
1
16  
-D-  
A
M
S
S
S
0.20 (0.008)  
C
A-B  
A-B  
D
J
N
0.05 (0.002) A-B  
S
M
S
0.20 (0.008)  
H
D
BASE METAL  
M
DETAIL C  
D
E
M
S
S
0.20 (0.008)  
A-B  
D
C
C
DATUM  
PLANE  
SECTION B-B  
-H-  
-C-  
SEATING  
PLANE  
0.01 (0.004)  
M
H
G
MILLIMETERS  
MIN MAX  
INCHES  
MIN MAX  
NOTES:  
U
DIM  
A
B
C
D
E
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
13.90 14.10 0.547 0.555  
13.90 14.10 0.547 0.555  
T
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLANE ĆHĆ IS LOCATED AT BOTTOM OF  
LEAD AND IS COINCIDENT WITH THE LEAD WHERE  
THE LEAD EXITS THE PLASTIC BODY AT THE  
BOTTOM OF THE PARTING LINE.  
4. DATUMS A-B AND ĆDĆ TO BE DETERMINED AT  
DATUM PLANE ĆHĆ.  
5. DIMENSIONS S AND V TO BE DETERMINED AT  
SEATING PLANE ĆCĆ.  
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS 0.25  
(0.010) PER SIDE. DIMENSIONS A AND B DO  
INCLUDE MOLD MISMATCH AND ARE DETERMINED  
AT DATUM PLANE ĆHĆ.  
7. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION  
SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE D  
DIMENSION AT MAXIMUM MATERIAL CONDITION.  
DAMBAR CANNOT BE LOCATED ON THE LOWER  
RADIUS OR THE FOOT.  
2.15  
2.45 0.085 0.096  
0.45 0.012 0.018  
2.40 0.079 0.094  
0.40 0.012 0.016  
0.30  
R
2.00  
F
0.30  
DATUM  
PLANE  
0.031 BSC  
G
H
J
0.80 BSC  
-H-  
Ċ
0.25  
Ċ
0.010  
0.13  
0.23 0.005 0.009  
0.95 0.026 0.037  
0.472 REF  
Q
K
L
0.65  
12.00 REF  
M
N
P
5°  
0.13  
10°  
5°  
10°  
K
0.17 0.005 0.007  
0.016 BSC  
W
0.40 BSC  
Q
R
S
0°  
0.13  
7°  
0.30 0.005 0.012  
0°  
7°  
X
16.95 17.45 0.667 0.687  
T
0.13  
Ċ
Ċ
0.005  
Ċ
Ċ
U
V
0°  
0°  
DETAIL C  
16.95 17.45 0.667 0.687  
0.35 0.45 0.014 0.018  
0.063REF  
W
X
1.6 REF  
Figure 23-1. MC68HC908MR32FU  
Advance Information  
382  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Mechanical Specifications MOTOROLA  
Mechanical Specifications  
56-Pin Shrink Dual In-Line Package (SDIP)  
23.4 56-Pin Shrink Dual In-Line Package (SDIP)  
A–  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
56  
29  
28  
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
FLASH. MAXIMUM MOLD FLASH 0.25 (0.010)  
B–  
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN MAX  
1
A
B
C
D
E
2.035 2.065 51.69 52.45  
0.540 0.560 13.72 14.22  
L
0.155 0.200  
0.014 0.022  
0.035 BSC  
3.94  
0.36  
0.89 BSC  
5.08  
0.56  
H
C
F
0.032 0.046  
0.070 BSC  
0.300 BSC  
0.81  
1.778 BSC  
7.62 BSC  
0.20  
2.92  
15.24 BSC  
1.17  
G
H
J
K
L
T–  
K
0.008 0.015  
0.38  
3.43  
SEATING  
0.115  
0.135  
PLANE  
0.600 BSC  
N
G
M
F
M
N
0
15  
0
0.51  
15  
1.02  
0.020 0.040  
E
J 56 PL  
D 56 PL  
M
S
0.25 (0.010)  
T A  
M
S
0.25 (0.010)  
T B  
Figure 23-2. MC68HC908MR32B  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Mechanical Specifications  
AdvanceInformation  
383  
Mechanical Specifications  
Advance Information  
384  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Mechanical Specifications MOTOROLA  
Advance Information MC68HC908MR16/MC68HC908MR32  
Section 24. Ordering Information  
24.1 Contents  
24.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .385  
24.3 Order Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .385  
24.2 Introduction  
This section contains instructions for ordering the MC68HC908MR16  
and MC68HC908MR32.  
24.3 Order Numbers  
Table 24-1. Order Numbers  
Operating  
Temperature Range  
(1)  
MC Order Number  
68HC908MR16CFU  
68HC908MR16VFU  
40°C to +85°C  
40°C to +105°C  
68HC908MR16CB  
68HC908MR16VB  
40°C to +85°C  
40°C to +105°C  
68HC908MR32CFU  
68HC908MR32VFU  
40°C to +85°C  
40°C to +105°C  
68HC908MR32CB  
68HC908MR32VB  
40°C to +85°C  
40°C to +105°C  
1. FU = quad flat pack  
B = shrink dual in-line package  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA Ordering Information  
Advance Information  
385  
 
 
Ordering Information  
Advance Information  
386  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
Ordering Information MOTOROLA  
Advance Information MC68HC908MR16/MC68HC908MR32  
Appendix A. MC68HC908MR16  
A.1 Contents  
A.2  
A.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .387  
Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .388  
A.2 Introduction  
The information contained in this document pertains to the  
MC68HC908MR16 with the except of that shown in Figure A-1.  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MOTOROLA MC68HC908MR16  
Advance Information  
387  
 
MC68HC908MR16  
A.3 Memory Map  
$0000  
$005F  
I/O REGISTERS 96 BYTES  
RAM 768 BYTES  
$0060  
$035F  
$0360  
$7FFF  
UNIMPLEMENTED 31,904 BYTES  
FLASH 16,128 BYTES  
$8000  
$BEFF  
$BF00  
UNIMPLEMENTED 16,128 BYTES  
$FDFF  
$FE00  
$FE01  
$FE02  
$FE03  
$FE04  
$FE05  
$FE06  
$FE07  
$FE08  
$FE09  
$FE0A  
$FE0B  
$FE0C  
$FE0D  
$FE0E  
$FE0F  
SIM BREAK STATUS REGISTER (SBSR)  
SIM RESET STATUS REGISTER (SRSR)  
RESERVED  
SIM BREAK FLAG CONTROL REGISTER (SBFCR)  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
FLASH CONTROL REGISTER (FLCR)  
UNIMPLEMENTED  
UNIMPLEMENTED  
UNIMPLEMENTED  
SIM BREAK ADDRESS REGISTER HIGH (BRKH)  
SIM BREAK ADDRESS REGISTER LOW (BRKL)  
SIM BREAK FLAG CONTROL REGISTER (SBFCR)  
LVI STATUS AND CONTROL REGISTER (LVISCR)  
$FE10  
MONITOR ROM 240 BYTES  
$FEFF  
$FF00  
$FF7D  
UNIMPLEMENTED 126 BYTES  
FLASH BLOCK PROTECT REGISTER (FLBPR)  
UNIMPLEMENTED 83 BYTES  
$FF7E  
$FF7F  
$FFD1  
$FFD2  
VECTORS 46 BYTES  
$FFFF  
Figure A-1. MC68HC908MR16 Memory Map  
Advance Information  
388  
MC68HC908MR16/MC68HC908MR32 Rev. 5.0  
MC68HC908MR16 MOTOROLA  
blank  
How to Reach Us:  
USA/EUROPE/LOCATIONS NOT LISTED:  
Motorola Literature Distribution  
P.O. Box 5405  
Denver, Colorado 80217  
1-303-675-2140  
1-800-441-2447  
TECHNICAL INFORMATION CENTER:  
1-800-521-6274  
JAPAN:  
Motorola Japan Ltd.  
SPS, Technical Information Center  
3-20-1, Minami-Azabu, Minato-ku  
Tokyo 106-8573 Japan  
81-3-3440-3569  
ASIA/PACIFIC:  
Motorola Semiconductors H.K. Ltd.  
Silicon Harbour Centre  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
852-26668334  
HOME PAGE:  
http://www.motorola.com/semiconductors/  
MC68HC908MR32/D  
REV 5  
This datasheet has been download from:  
www.datasheetcatalog.com  
Datasheets for electronics components.  

相关型号:

MC68HC908MR32VFU

Microcontroller, 8-Bit, FLASH, 68HC08 CPU, 8MHz, HCMOS, PQFP64, 20 X 20, QFP-64
MOTOROLA

MC68HC908MR4

In-Circuit Simulator
MOTOROLA

MC68HC908MR8

Microcontrollers
MOTOROLA

MC68HC908MR8

M68HC08 Microcontrollers
FREESCALE

MC68HC908MR8CDW

Microcontrollers
MOTOROLA

MC68HC908MR8CDW

M68HC08 Microcontrollers
FREESCALE

MC68HC908MR8CDWR2

8-BIT, FLASH, 8.2MHz, MICROCONTROLLER, PDSO28, SOIC-28
MOTOROLA

MC68HC908MR8CDWR3

8-BIT, FLASH, 8.2MHz, MICROCONTROLLER, PDSO28, SOIC-28
MOTOROLA

MC68HC908MR8CFA

Microcontrollers
MOTOROLA

MC68HC908MR8CFA

M68HC08 Microcontrollers
FREESCALE

MC68HC908MR8CFA

8-BIT, FLASH, 8.2MHz, MICROCONTROLLER, PQFP32, LQFP-32
ROCHESTER

MC68HC908MR8CFU

8-BIT, FLASH, 8.2MHz, MICROCONTROLLER, PQFP32, LQFP-32
MOTOROLA