MC68HRC98JK1ECP [MOTOROLA]

Microcontrollers; 微控制器
MC68HRC98JK1ECP
型号: MC68HRC98JK1ECP
厂家: MOTOROLA    MOTOROLA
描述:

Microcontrollers
微控制器

微控制器
文件: 总226页 (文件大小:1479K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC68HC908JL3E  
MC68HC908JK3E  
MC68HC908JK1E  
MC68HRC908JL3E  
MC68HRC908JK3E  
MC68HRC908JK1E  
MC68HLC908JL3E  
MC68HLC908JK3E  
MC68HLC908JK1E  
Technical Data  
M68HC08  
Microcontrollers  
MC68HC908JL3E/D  
Rev. 2, 12/2002  
MOTOROLA.COM/SEMICONDUCTORS  
MC68HC908JL3E/JK3E/JK1E  
MC68HRC908JL3E/JK3E/JK1E  
MC68HLC908JL3E/JK3E/JK1E  
Technical Data  
Motorola reserves the right to make changes without further notice to any products  
herein. Motorola makes no warranty, representation or guarantee regarding the  
suitability of its products for any particular purpose, nor does Motorola assume any  
liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or incidental  
damages. “Typical” parameters which may be provided in Motorola data sheets and/or  
specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for  
each customer application by customer's technical experts. Motorola does not convey  
any license under its patent rights nor the rights of others. Motorola products are not  
designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Motorola product could create a  
situation where personal injury or death may occur. Should Buyer purchase or use  
Motorola products for any such unintended or unauthorized application, Buyer shall  
indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of personal  
injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
Motorola and the Stylized M logo are registered in the U.S. Patent and Trademark Office.  
digital dna is a trademark of Motorola, Inc.  
© Motorola, Inc., 2002  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
3
Revision History  
To provide the most up-to-date information, the revision of our  
documents on the World Wide Web will be the most current. Your printed  
copy may be an earlier revision. To verify you have the latest information  
available, refer to:  
http://motorola.com/semiconductors  
The following revision history table summarizes changes contained in  
this document. For your convenience, the page number designators  
have been linked to the appropriate location.  
Revision History  
Revision  
Level  
Page  
Date  
Description  
Number(s)  
Added appendix A for low-volt devices.  
217–224  
109, 110  
Updated Monitor Mode Circuit (Figure 9-1) and Monitor Mode  
Entry Requirements and Options (Table 9-1) in Monitor ROM  
section.  
Dec 2002  
May 2002  
2
1
First general release.  
Technical Data  
4
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data – MC68H(R)C908JL3E/JK3E/JK1E  
List of Sections  
Section 1. General Description . . . . . . . . . . . . . . . . . . . .23  
Section 2. Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . .31  
Section 3. Random-Access Memory (RAM) . . . . . . . . . .41  
Section 4. FLASH Memory (FLASH) . . . . . . . . . . . . . . . .43  
Section 5. Configuration Register (CONFIG) . . . . . . . . .53  
Section 6. Central Processor Unit (CPU) . . . . . . . . . . . .57  
Section 7. System Integration Module (SIM) . . . . . . . . .77  
Section 8. Oscillator (OSC) . . . . . . . . . . . . . . . . . . . . . .101  
Section 9. Monitor ROM (MON) . . . . . . . . . . . . . . . . . . .107  
Section 10. Timer Interface Module (TIM) . . . . . . . . . . .121  
Section 11. Analog-to-Digital Converter (ADC) . . . . . .143  
Section 12. Input/Output (I/O) Ports . . . . . . . . . . . . . . .153  
Section 13. External Interrupt (IRQ) . . . . . . . . . . . . . . .165  
Section 14. Keyboard Interrupt Module (KBI). . . . . . . .171  
Section 15. Computer Operating Properly (COP) . . . .179  
Section 16. Low Voltage Inhibit (LVI) . . . . . . . . . . . . . .185  
Section 17. Break Module (BREAK) . . . . . . . . . . . . . . .189  
Section 18. Electrical Specifications. . . . . . . . . . . . . . .197  
Section 19. Mechanical Specifications . . . . . . . . . . . . .209  
Section 20. Ordering Information . . . . . . . . . . . . . . . . .213  
Appendix A. MC68HLC908JL3E/JK3E/JK1E. . . . . . . . .217  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
5
List of Sections  
List of Sections  
Technical Data  
6
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
List of Sections  
Technical Data – MC68H(R)C908JL3E/JK3E/JK1E  
Table of Contents  
Section 1. General Description  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Section 2. Memory Map  
2.1  
2.2  
2.3  
2.4  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
I/O Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Monitor ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Section 3. Random-Access Memory (RAM)  
3.1  
3.2  
3.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Section 4. FLASH Memory (FLASH)  
4.1  
4.2  
4.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
7
Table of Contents  
Table of Contents  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
FLASH Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . .46  
FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . .47  
FLASH Program Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
FLASH Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . . . .50  
Section 5. Configuration Register (CONFIG)  
5.1  
5.2  
5.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
Section 6. Central Processor Unit (CPU)  
6.1  
6.2  
6.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
6.4  
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
6.4.1  
6.4.2  
6.4.3  
6.4.4  
6.4.5  
6.5  
Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
6.6  
6.6.1  
6.6.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
6.7  
6.8  
6.9  
CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .65  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
Technical Data  
8
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Table of Contents  
MOTOROLA  
Table of Contents  
Section 7. System Integration Module (SIM)  
7.1  
7.2  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78  
7.3  
SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . .81  
Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81  
Clock Start-Up from POR. . . . . . . . . . . . . . . . . . . . . . . . . . .81  
Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . .81  
7.3.1  
7.3.2  
7.3.3  
7.4  
7.4.1  
7.4.2  
7.4.2.1  
7.4.2.2  
7.4.2.3  
7.4.2.4  
7.4.2.5  
Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . .82  
External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82  
Active Resets from Internal Sources . . . . . . . . . . . . . . . . . .83  
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84  
Computer Operating Properly (COP) Reset. . . . . . . . . . .85  
Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
LVI Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
7.5  
SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . .86  
SIM Counter During Stop Mode Recovery. . . . . . . . . . . . . .86  
SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . .87  
7.5.1  
7.5.2  
7.5.3  
7.6  
7.6.1  
Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87  
Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
Interrupt Status Registers. . . . . . . . . . . . . . . . . . . . . . . . . . .91  
Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . .92  
Interrupt Status Register 2. . . . . . . . . . . . . . . . . . . . . . . .92  
Interrupt Status Register 3. . . . . . . . . . . . . . . . . . . . . . . .93  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . .94  
7.6.1.1  
7.6.1.2  
7.6.2  
7.6.2.1  
7.6.2.2  
7.6.2.3  
7.6.3  
7.6.4  
7.6.5  
7.7  
7.7.1  
7.7.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
7.8  
SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
9
Table of Contents  
Table of Contents  
7.8.1  
7.8.2  
7.8.3  
Break Status Register (BSR) . . . . . . . . . . . . . . . . . . . . . . . .97  
Reset Status Register (RSR) . . . . . . . . . . . . . . . . . . . . . . . .98  
Break Flag Control Register (BFCR) . . . . . . . . . . . . . . . . .100  
Section 8. Oscillator (OSC)  
8.1  
8.2  
8.3  
8.4  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101  
X-tal Oscillator (MC68HC908JL3E/JK3E/JK1E). . . . . . . . . . .102  
RC Oscillator (MC68HRC908JL3E/JK3E/JK1E) . . . . . . . . . .103  
8.5  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104  
Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . .104  
Crystal Amplifier Output Pin (OSC2/PTA6/RCCLK). . . . . .104  
Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . .104  
X-tal Oscillator Clock (XTALCLK). . . . . . . . . . . . . . . . . . . .104  
RC Oscillator Clock (RCCLK). . . . . . . . . . . . . . . . . . . . . . .105  
Oscillator Out 2 (2OSCOUT) . . . . . . . . . . . . . . . . . . . . . . .105  
Oscillator Out (OSCOUT). . . . . . . . . . . . . . . . . . . . . . . . . .105  
8.5.1  
8.5.2  
8.5.3  
8.5.4  
8.5.5  
8.5.6  
8.5.7  
8.6  
8.6.1  
8.6.2  
Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
8.7  
Oscillator During Break Mode. . . . . . . . . . . . . . . . . . . . . . . . .106  
Section 9. Monitor ROM (MON)  
9.1  
9.2  
9.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108  
9.4  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108  
Entering Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . .110  
Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114  
Echoing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114  
Break Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115  
9.4.1  
9.4.2  
9.4.3  
9.4.4  
9.4.5  
Technical Data  
10  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Table of Contents  
MOTOROLA  
Table of Contents  
9.4.6  
9.5  
Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115  
Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119  
Section 10. Timer Interface Module (TIM)  
10.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121  
10.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122  
10.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122  
10.4 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122  
10.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123  
10.5.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . .125  
10.5.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125  
10.5.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125  
10.5.3.1  
10.5.3.2  
Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . .126  
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .127  
10.5.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . .127  
10.5.4.1  
10.5.4.2  
10.5.4.3  
Unbuffered PWM Signal Generation . . . . . . . . . . . . . . .128  
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . .129  
PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130  
10.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131  
10.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131  
10.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132  
10.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132  
10.8 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .132  
10.9 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133  
10.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133  
10.10.1 TIM Status and Control Register (TSC) . . . . . . . . . . . . . . .134  
10.10.2 TIM Counter Registers (TCNTH:TCNTL). . . . . . . . . . . . . .136  
10.10.3 TIM Counter Modulo Registers (TMODH:TMODL) . . . . . .137  
10.10.4 TIM Channel Status and Control Registers (TSC0:TSC1).138  
10.10.5 TIM Channel Registers (TCH0H/L:TCH1H/L) . . . . . . . . . .142  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
11  
Table of Contents  
Table of Contents  
Section 11. Analog-to-Digital Converter (ADC)  
11.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143  
11.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143  
11.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144  
11.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144  
11.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145  
11.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146  
11.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146  
11.4.4 Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . .146  
11.4.5 Accuracy and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
11.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
11.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
11.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
11.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
11.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
11.7.1 ADC Voltage In (ADCVIN) . . . . . . . . . . . . . . . . . . . . . . . . .148  
11.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148  
11.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . .148  
11.8.2 ADC Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151  
11.8.3 ADC Input Clock Register . . . . . . . . . . . . . . . . . . . . . . . . .151  
Section 12. Input/Output (I/O) Ports  
12.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153  
12.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153  
12.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156  
12.3.1 Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . .156  
12.3.2 Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . .157  
12.3.3 Port A Input Pull-up Enable Register (PTAPUE) . . . . . . . .158  
12.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159  
12.4.1 Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . .159  
12.4.2 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . .160  
Technical Data  
12  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Table of Contents  
MOTOROLA  
Table of Contents  
12.5 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161  
12.5.1 Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . .162  
12.5.2 Data Direction Register D (DDRD). . . . . . . . . . . . . . . . . . .163  
12.5.3 Port D Control Register (PDCR). . . . . . . . . . . . . . . . . . . . .164  
Section 13. External Interrupt (IRQ)  
13.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165  
13.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165  
13.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165  
13.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166  
13.4.1 IRQ1 Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167  
13.5 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . .169  
13.6 IRQ Status and Control Register (INTSCR) . . . . . . . . . . . . . .169  
Section 14. Keyboard Interrupt Module (KBI)  
14.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171  
14.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171  
14.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171  
14.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172  
14.4.1 Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . .174  
14.4.2 Keyboard Status and Control Register. . . . . . . . . . . . . . . .175  
14.4.3 Keyboard Interrupt Enable Register. . . . . . . . . . . . . . . . . .176  
14.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177  
14.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177  
14.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177  
14.6 Keyboard Module During Break Interrupts . . . . . . . . . . . . . . .177  
Section 15. Computer Operating Properly (COP)  
15.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179  
15.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179  
15.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
13  
Table of Contents  
Table of Contents  
15.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181  
15.4.1 2OSCOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181  
15.4.2 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181  
15.4.3 Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181  
15.4.4 Internal Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181  
15.4.5 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182  
15.4.6 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . .182  
15.4.7 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . .182  
15.5 COP Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183  
15.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183  
15.7 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183  
15.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183  
15.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183  
15.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184  
15.9 COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . .184  
Section 16. Low Voltage Inhibit (LVI)  
16.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185  
16.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185  
16.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185  
16.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186  
16.5 LVI Control Register (CONFIG2/CONFIG1). . . . . . . . . . . . . .186  
16.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187  
16.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187  
16.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187  
Section 17. Break Module (BREAK)  
17.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189  
17.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189  
17.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190  
Technical Data  
14  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Table of Contents  
MOTOROLA  
Table of Contents  
17.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190  
17.4.1 Flag Protection During Break Interrupts. . . . . . . . . . . . . . .192  
17.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .192  
17.4.3 TIM During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . .192  
17.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .192  
17.5 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192  
17.5.1 Break Status and Control Register (BRKSCR) . . . . . . . . .193  
17.5.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . .194  
17.5.3 Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .194  
17.5.4 Break Flag Control Register (BFCR) . . . . . . . . . . . . . . . . .196  
17.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196  
17.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196  
17.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196  
Section 18. Electrical Specifications  
18.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197  
18.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197  
18.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . .198  
18.4 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . .199  
18.5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199  
18.6 5V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . .200  
18.7 5V Control Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201  
18.8 5V Oscillator Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . .202  
18.9 3V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . .203  
18.10 3V Control Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204  
18.11 3V Oscillator Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . .205  
18.12 Typical Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206  
18.13 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208  
18.14 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
15  
Table of Contents  
Table of Contents  
Section 19. Mechanical Specifications  
19.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211  
19.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211  
19.3 20-Pin PDIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212  
19.4 20-Pin SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212  
19.5 28-Pin PDIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213  
19.6 28-Pin SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213  
19.7 48-Pin LQFP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .214  
Section 20. Ordering Information  
20.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215  
20.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215  
20.3 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216  
Appendix A. MC68HLC908JL3E/JK3E/JK1E  
A.1  
A.2  
A.3  
A.4  
A.5  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .217  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .217  
FLASH Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218  
Low-Voltage Inhibit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218  
Oscillator Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218  
A.6  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218  
Functional Operating Range . . . . . . . . . . . . . . . . . . . . . . .218  
DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . .219  
Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220  
Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . .220  
ADC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221  
Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . .222  
A.6.1  
A.6.2  
A.6.3  
A.6.4  
A.6.5  
A.6.6  
A.7  
MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223  
Technical Data  
16  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Table of Contents  
MOTOROLA  
Technical Data – MC68H(R)C908JL3E/JK3E/JK1E  
List of Figures  
Figure  
Title  
Page  
1-1  
1-2  
1-3  
1-4  
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
28-Pin PDIP/SOIC Pin Assignment . . . . . . . . . . . . . . . . . . . . .27  
20-Pin PDIP/SOIC Pin Assignment . . . . . . . . . . . . . . . . . . . . .27  
48-Pin LQFP Pin Assignment. . . . . . . . . . . . . . . . . . . . . . . . . .28  
2-1  
2-2  
Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Control, Status, and Data Registers . . . . . . . . . . . . . . . . . . . . .34  
4-1  
4-2  
4-3  
4-4  
FLASH I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . .44  
FLASH Control Register (FLCR) . . . . . . . . . . . . . . . . . . . . . . .45  
FLASH Programming Flowchart. . . . . . . . . . . . . . . . . . . . . . . .49  
FLASH Block Protect Register (FLBPR). . . . . . . . . . . . . . . . . .50  
5-1  
5-2  
6-1  
Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . . .54  
Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . . .55  
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
6-2  
6-3  
6-4  
6-5  
6-6  
Accumulator (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
Index Register (H:X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
Stack Pointer (SP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Program Counter (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Condition Code Register (CCR) . . . . . . . . . . . . . . . . . . . . . . . .62  
7-1  
7-2  
7-3  
7-4  
7-5  
7-6  
7-7  
SIM Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
SIM I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . .80  
SIM Clock Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81  
External Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82  
Internal Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83  
Sources of Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83  
POR Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
17  
List of Figures  
List of Figures  
Figure  
Title  
Page  
7-8  
7-9  
Interrupt Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
Interrupt Entry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
7-10 Interrupt Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
7-11 Interrupt Recognition Example . . . . . . . . . . . . . . . . . . . . . . . . .90  
7-12 Interrupt Status Register 1 (INT1). . . . . . . . . . . . . . . . . . . . . . .92  
7-13 Interrupt Status Register 2 (INT2). . . . . . . . . . . . . . . . . . . . . . .92  
7-14 Interrupt Status Register 3 (INT3). . . . . . . . . . . . . . . . . . . . . . .93  
7-15 Wait Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95  
7-16 Wait Recovery from Interrupt or Break . . . . . . . . . . . . . . . . . . .95  
7-17 Wait Recovery from Internal Reset. . . . . . . . . . . . . . . . . . . . . .95  
7-18 Stop Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
7-19 Stop Mode Recovery from Interrupt or Break. . . . . . . . . . . . . .97  
7-20 Break Status Register (BSR) . . . . . . . . . . . . . . . . . . . . . . . . . .97  
7-21 Reset Status Register (RSR) . . . . . . . . . . . . . . . . . . . . . . . . . .99  
7-22 Break Flag Control Register (BFCR) . . . . . . . . . . . . . . . . . . .100  
8-1  
8-2  
X-tal Oscillator External Connections . . . . . . . . . . . . . . . . . . .102  
RC Oscillator External Connections . . . . . . . . . . . . . . . . . . . .103  
9-1  
9-2  
9-3  
9-4  
9-5  
9-6  
9-7  
Monitor Mode Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109  
Low-Voltage Monitor Mode Entry Flowchart. . . . . . . . . . . . . .112  
Monitor Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114  
Sample Monitor Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . .114  
Read Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114  
Break Transaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115  
Monitor Mode Entry Timing. . . . . . . . . . . . . . . . . . . . . . . . . . .119  
10-1 TIM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123  
10-2 TIM I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . .124  
10-3 PWM Period and Pulse Width . . . . . . . . . . . . . . . . . . . . . . . .128  
10-4 TIM Status and Control Register (TSC) . . . . . . . . . . . . . . . . .134  
10-5 TIM Counter Registers (TCNTH:TCNTL) . . . . . . . . . . . . . . . .136  
10-6 TIM Counter Modulo Registers (TMODH:TMODL). . . . . . . . .137  
10-7 TIM Channel Status and Control Registers (TSC0:TSC1) . . .138  
10-8 CHxMAX Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141  
10-9 TIM Channel Registers (TCH0H/L:TCH1H/L). . . . . . . . . . . . .142  
Technical Data  
18  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
List of Figures  
MOTOROLA  
List of Figures  
Figure  
Title  
Page  
11-1 ADC I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . .144  
11-2 ADC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145  
11-3 ADC Status and Control Register (ADSCR). . . . . . . . . . . . . .148  
11-4 ADC Data Register (ADR) . . . . . . . . . . . . . . . . . . . . . . . . . . .151  
11-5 ADC Input Clock Register (ADICLK) . . . . . . . . . . . . . . . . . . .151  
12-1 I/O Port Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . .154  
12-2 Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . . . .156  
12-3 Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . . . .157  
12-4 Port A I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157  
12-5 Port A Input Pull-up Enable Register (PTAPUE) . . . . . . . . . .158  
12-6 Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . . . .159  
12-7 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . . . .160  
12-8 Port B I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161  
12-9 Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . . . .162  
12-10 Data Direction Register D (DDRD) . . . . . . . . . . . . . . . . . . . . .163  
12-11 Port D I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163  
12-12 Port D Control Register (PDCR). . . . . . . . . . . . . . . . . . . . . . .164  
13-1 IRQ Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . .167  
13-2 IRQ I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . .167  
13-3 IRQ Status and Control Register (INTSCR) . . . . . . . . . . . . . .169  
13-4 Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . .170  
14-1 KBI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . .172  
14-2 Keyboard Interrupt Block Diagram . . . . . . . . . . . . . . . . . . . . .172  
14-3 Keyboard Status and Control Register (KBSCR) . . . . . . . . . .175  
14-4 Keyboard Interrupt Enable Register (KBIER) . . . . . . . . . . . . .176  
15-1 COP Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180  
15-2 Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . .182  
15-3 COP Control Register (COPCTL). . . . . . . . . . . . . . . . . . . . . .183  
16-1 LVI Module Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . .186  
16-2 Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . .186  
16-3 Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . .187  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
19  
List of Figures  
List of Figures  
Figure  
Title  
Page  
17-1 Break Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . .191  
17-2 Break I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . .191  
17-3 Break Status and Control Register (BRKSCR). . . . . . . . . . . .193  
17-4 Break Address Register High (BRKH) . . . . . . . . . . . . . . . . . .194  
17-5 Break Address Register Low (BRKL) . . . . . . . . . . . . . . . . . . .194  
17-6 Break Status Register (BSR) . . . . . . . . . . . . . . . . . . . . . . . . .194  
17-7 Break Flag Control Register (BFCR) . . . . . . . . . . . . . . . . . . .196  
18-1 RC vs. Frequency (5V @25°C) . . . . . . . . . . . . . . . . . . . . . . .202  
18-2 RC vs. Frequency (3V @25°C) . . . . . . . . . . . . . . . . . . . . . . .205  
18-3 Typical Operating IDD (MC68HC908JL3E/JK3E/JK1E),  
with All Modules Turned On (25 °C) . . . . . . . . . . . . . . . . .206  
18-4 Typical Operating IDD (MC68HRC908JL3E/JK3E/JK1E),  
with All Modules Turned On (25 °C) . . . . . . . . . . . . . . . . .206  
18-5 Typical Wait Mode IDD (MC68HC908JL3E/JK3E/JK1E),  
with All Modules Turned Off (25 °C) . . . . . . . . . . . . . . . . .207  
18-6 Typical Wait Mode IDD (MC68HRC908JL3E/JK3E/JK1E),  
with All Modules Turned Off (25 °C) . . . . . . . . . . . . . . . . .207  
19-1 20-Pin PDIP (Case #738) . . . . . . . . . . . . . . . . . . . . . . . . . . . .212  
19-2 20-Pin SOIC (Case #751D) . . . . . . . . . . . . . . . . . . . . . . . . . .212  
19-3 28-Pin PDIP (Case #710) . . . . . . . . . . . . . . . . . . . . . . . . . . . .213  
19-4 28-Pin SOIC (Case #751F). . . . . . . . . . . . . . . . . . . . . . . . . . .213  
19-5 48-Pin LQFP (Case #932) . . . . . . . . . . . . . . . . . . . . . . . . . . .214  
Technical Data  
20  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
List of Figures  
MOTOROLA  
Technical Data – MC68H(R)C908JL3E/JK3E/JK1E  
List of Tables  
Table  
Title  
Page  
1-1  
1-2  
Summary of Device Variations . . . . . . . . . . . . . . . . . . . . . . . . .23  
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
2-1  
Vector Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
6-1  
6-2  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
7-1  
7-2  
7-3  
7-4  
Signal Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
PIN Bit Set Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82  
Interrupt Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97  
9-1  
9-2  
9-3  
9-4  
9-5  
9-6  
9-7  
9-8  
9-9  
Monitor Mode Entry Requirements and Options. . . . . . . . . . .110  
Monitor Mode Vector Differences . . . . . . . . . . . . . . . . . . . . . .113  
Monitor Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . .113  
READ (Read Memory) Command . . . . . . . . . . . . . . . . . . . . .116  
WRITE (Write Memory) Command. . . . . . . . . . . . . . . . . . . . .116  
IREAD (Indexed Read) Command . . . . . . . . . . . . . . . . . . . . .117  
IWRITE (Indexed Write) Command . . . . . . . . . . . . . . . . . . . .117  
READSP (Read Stack Pointer) Command. . . . . . . . . . . . . . .118  
RUN (Run User Program) Command. . . . . . . . . . . . . . . . . . .118  
10-1 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122  
10-2 Prescaler Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135  
10-3 Mode, Edge, and Level Selection. . . . . . . . . . . . . . . . . . . . . .140  
11-1 MUX Channel Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150  
11-2 ADC Clock Divide Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
21  
List of Tables  
List of Tables  
Table  
Title  
Page  
12-1 Port Control Register Bits Summary. . . . . . . . . . . . . . . . . . . .155  
12-2 Port A Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159  
12-3 Port B Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161  
12-4 Port D Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164  
18-1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . .198  
18-2 Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199  
18-3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199  
18-4 DC Electrical Characteristics (5V) . . . . . . . . . . . . . . . . . . . . .200  
18-5 Control Timing (5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201  
18-6 Oscillator Component Specifications (5V) . . . . . . . . . . . . . . .202  
18-7 DC Electrical Characteristics (3V) . . . . . . . . . . . . . . . . . . . . .203  
18-8 Control Timing (3V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204  
18-9 Oscillator Component Specifications (3V) . . . . . . . . . . . . . . .205  
18-10 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208  
18-11 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209  
20-1 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216  
A-1 Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218  
A-2 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . .219  
A-3 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220  
A-4 Oscillator Component Specifications . . . . . . . . . . . . . . . . . . .220  
A-5 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221  
A-6 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .222  
A-7 MC68HLC908JL3E/JK3E/JK1E Order Numbers . . . . . . . . . .223  
Technical Data  
22  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
List of Tables  
MOTOROLA  
Technical Data – MC68H(R)C908JL3E/JK3E/JK1E  
Section 1. General Description  
1.1 Contents  
1.2  
1.3  
1.4  
1.5  
1.6  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
1.2 Introduction  
The MC68H(R)C908JL3E is a member of the low-cost, high-  
performance M68HC08 Family of 8-bit microcontroller units (MCUs).  
The M68HC08 Family is based on the customer-specified integrated  
circuit (CSIC) design strategy. All MCUs in the family use the enhanced  
M68HC08 central processor unit (CPU08) and are available with a  
variety of modules, memory sizes and types, and package types.  
Table 1-1. Summary of Device Variations  
Device  
Oscillator Option  
FLASH Memory Size  
Pin Count  
MC68HC908JL3E  
MC68HRC908JL3E  
MC68HC908JK3E  
MC68HRC908JK3E  
MC68HC908JK1E  
MC68HRC908JK1E  
X-TAL  
RC  
4096 bytes  
28  
X-TAL  
RC  
4096 bytes  
1536 bytes  
20  
20  
X-TAL  
RC  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
23  
General Description  
General Description  
All references to the MC68H(R)C908JL3E in this data book apply  
equally to the MC68H(R)C908JK3E and MC68H(R)C908JK1E, unless  
otherwise stated.  
1.3 Features  
Features of the MC68H(R)C908JL3E include the following:  
• EMC enhanced version of MC68H(R)C908JL3/JK3/JK1  
• High-performance M68HC08 architecture  
• Fully upward-compatible object code with M6805, M146805, and  
M68HC05 Families  
• Low-power design; fully static with stop and wait modes  
• Maximum internal bus frequency:  
– 8-MHz at 5V operating voltage  
– 4-MHz at 3V operating voltage  
• Oscillator options:  
– Crystal oscillator for MC68HC908JL3E/JK3E/JK1E  
– RC oscillator for MC68HRC908JL3E/JK3E/JK1E  
• User program FLASH memory with security1 feature  
– 4,096 bytes for MC68H(R)C908JL3E/JK3E  
– 1,536 bytes for MC68H(R)C908JK1E  
• 128 bytes of on-chip RAM  
• 2-channel, 16-bit timer interface module (TIM)  
• 12-channel, 8-bit analog-to-digital converter (ADC)  
• 23 general purpose I/O ports for MC68H(R)C908JL3E:  
– 7 keyboard interrupt with internal pull-up  
(6 keyboard interrupt for MC68HC908JL3E)  
– 10 LED drivers (sink)  
– 2 × 25mA open-drain I/O with pull-up  
1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or  
copying the FLASH difficult for unauthorized users.  
Technical Data  
24  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
General Description  
MOTOROLA  
General Description  
Features  
• 15 general purpose I/O ports for MC68H(R)C908JK3E/JK1E:  
– 1 keyboard interrupt with internal pull-up  
(MC68HRC908JK3E/JK1E only)  
– 4 LED drivers (sink)  
– 2 × 25mA open-drain I/O with pull-up  
– 10-channel ADC  
• System protection features:  
– Optional computer operating properly (COP) reset  
– Optional low-voltage detection with reset and selectable trip  
points for 3V and 5V operation  
– Illegal opcode detection with reset  
– Illegal address detection with reset  
• Master reset pin with internal pull-up and power-on reset  
• IRQ1 with schmitt-trigger input and programmable pull-up  
• 28-pin PDIP, 28-pin SOIC, and 48-pin LQFP packages for  
MC68H(R)C908JL3E  
• 20-pin PDIP and 20-pin SOIC packages for  
MC68H(R)C908JK3E/JK1E  
Features of the CPU08 include the following:  
• Enhanced HC05 programming model  
• Extensive loop control functions  
• 16 addressing modes (eight more than the HC05)  
• 16-bit index register and stack pointer  
• Memory-to-memory data transfers  
• Fast 8 × 8 multiply instruction  
• Fast 16/8 divide instruction  
• Binary-coded decimal (BCD) instructions  
• Optimization for controller applications  
• Efficient C language support  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
25  
General Description  
General Description  
1.4 MCU Block Diagram  
Figure 1-1 shows the structure of the MC68H(R)C908JL3E.  
INTERNAL BUS  
M68HC08 CPU  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
KEYBOARD INTERRUPT  
MODULE  
¥
PTA6/KBI6**  
PTA5/KBI5**  
PTA4/KBI4**  
PTA3/KBI3**  
PTA2/KBI2**  
PTA1/KBI1**  
PTA0/KBI0**  
CONTROL AND STATUS REGISTERS — 64 BYTES  
8-BIT ANALOG-TO-DIGITAL  
CONVERTER MODULE  
#
USER FLASH:  
MC68H(R)C908JK3E/JL3E — 4,096 BYTES  
MC68H(R)C908JK1E — 1,536 BYTES  
USER RAM — 128 BYTES  
MONITOR ROM — 960 BYTES  
2-CHANNEL TIMER INTERFACE  
MODULE  
PTB7/ADC7  
PTB6/ADC6  
PTB5/ADC5  
PTB4/ADC4  
PTB3/ADC3  
PTB2/ADC2  
PTB1/ADC1  
PTB0/ADC0  
BREAK  
MODULE  
USER FLASH VECTOR SPACE — 48 BYTES  
MC68HC908JL3E/JK3E/JK1E  
OSC1  
X-TAL OSCILLATOR  
COMPUTER OPERATING  
PROPERLY MODULE  
¥
OSC2  
†‡  
PTD7**  
MC68HRC908JL3E/JK3E/JK1E  
RC OSCILLATOR  
†‡  
PTD6**  
PTD5/TCH1  
PTD4/TCH0  
POWER-ON RESET  
MODULE  
PTD3/ADC8  
PTD2/ADC9  
SYSTEM INTEGRATION  
MODULE  
PTD1/ADC10  
PTD0/ADC11  
* RST  
#
LOW-VOLTAGE INHIBIT  
MODULE  
EXTERNAL INTERRUPT  
MODULE  
* IRQ1  
* Pin contains integrated pull-up device.  
** Pin contains programmable pull-up device.  
25mA open-drain if output pin.  
VDD  
POWER  
LED direct sink pin.  
VSS  
# Pins available on MC68H(R)C908JL3E only.  
¥ Shared pin: MC68HC908JL3E/JK3E/JK1E — OSC2  
ADC REFERENCE  
MC68HRC908JL3E/JK3E/JK1E — RCCLK/PTA6/KBI6  
Figure 1-1. MCU Block Diagram  
Technical Data  
26  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
General Description  
General Description  
Pin Assignments  
1.5 Pin Assignments  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
IRQ1  
PTA0/KBI0  
VSS  
1
RST  
2
PTA5/KBI5  
PTD4/TCH0  
PTD5/TCH1  
PTD2/ADC9  
PTA4/KBI4  
PTD3/ADC8  
PTB0/ADC0  
PTB1/ADC1  
PTD1/ADC10  
PTB2/ADC2  
PTB3/ADC3  
PTD0/ADC11  
PTB4/ADC4  
3
OSC1  
4
OSC2/RCCLK/PTA6/KBI  
PTA1/KBI1  
VDD  
5
6
7
PTA2/KBI2  
PTA3/KBI3  
PTB7/ADC7  
PTB6/ADC6  
PTB5/ADC5  
PTD7  
8
9
10  
11  
12  
13  
14  
PTD6  
MC68H(R)C908JL3E  
Figure 1-2. 28-Pin PDIP/SOIC Pin Assignment  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1
2
3
4
5
6
7
8
9
10  
IRQ1  
RST  
VSS  
OSC1  
PTD4/TCH0  
PTD5/TCH1  
PTD2/ADC9  
PTD3/ADC8  
PTB0/ADC0  
PTB1/ADC1  
PTB2/ADC2  
PTB3/ADC3  
PTB4/ADC4  
Pins not available on 20-pin packages  
OSC2/RCCLK/PTA6/KBI  
VDD  
PTA0/KBI0  
PTA1/KBI1  
PTA2/KBI2  
PTA3/KBI3  
PTA4/KBI4  
PTA5/KBI5  
PTD0/ADC11  
PTD1/ADC10  
PTB7/ADC7  
PTB6/ADC6  
PTB5/ADC5  
PTD7  
PTD6  
Internal pads are unconnected.  
MC68H(R)C908JK3E/JK1E  
Figure 1-3. 20-Pin PDIP/SOIC Pin Assignment  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
27  
General Description  
General Description  
1
36  
NC  
NC  
NC  
2
3
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
NC  
OSC1  
NC  
4
PTD2/ADC9  
PTA4/KBI4  
PTD3/ADC8  
NC  
OSC2/RCCLK/PTA6/KBI6  
5
PTA1/KBI1  
NC  
6
MC68H(R)C908JL3E  
7
VDD  
8
PTB0/ADC0  
PTB1/ADC1  
PTD1/ADC10  
NC  
PTA2/KBI2  
PTA3KBI3  
PTB7/ADC7  
NC  
9
10  
11  
25  
NC 12  
NC  
NC: No connection  
Figure 1-4. 48-Pin LQFP Pin Assignment  
Technical Data  
28  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
General Description  
General Description  
Pin Functions  
1.6 Pin Functions  
Description of the pin functions are provided in Table 1-2.  
Table 1-2. Pin Functions  
PIN NAME  
PIN DESCRIPTION  
IN/OUT  
In  
VOLTAGE LEVEL  
5V or 3V  
VDD  
VSS  
Power supply.  
Power supply ground  
RESET input, active low.  
Out  
0V  
RST  
Input  
VDD  
With Internal pull-up and schmitt trigger input.  
External IRQ pin.  
With software programmable internal pull-up and  
schmitt trigger input.  
VDD to VDD+VHI  
IRQ1  
Input  
This pin is also used for mode entry selection.  
OSC1  
X-tal or RC oscillator input.  
In  
Analog  
Analog  
MC68HC908JL3E/JK3E/JK1E:  
X-tal oscillator output, this is the inverting OSC1  
signal.  
Out  
OSC2  
MC68HRC908JL3E/JK3E/JK1E:  
Default is RC oscillator clock output, RCCLK.  
Shared with PTA6/KBI6, with programmable pull-up.  
In/Out  
VDD  
7-bit general purpose I/O port.  
In/Out  
In  
VDD  
VDD  
Shared with 7 keyboard interrupts KBI[0:6].  
Each pin has programmable internal pull-up device.  
PTA[0:5] have LED direct sink capability  
8-bit general purpose I/O port.  
PTA[0:6]  
PTB[0:7]  
In  
VDD  
In  
VSS  
In/Out  
In  
VDD  
Shared with 8 ADC inputs, ADC[0:7].  
Analog  
VDD  
8-bit general purpose I/O port.  
In/Out  
Input  
In/Out  
In  
PTD[3:0] shared with 4 ADC inputs, ADC[8:11].  
PTD[4:5] shared with TIM channels, TCH0 and TCH1.  
PTD[2:3], PTD[6:7] have LED direct sink capability  
Analog  
VDD  
PTD[0:7]  
VSS  
PTD[6:7] can be configured as 25mA open-drain  
output with pull-up.  
In/Out  
VDD  
NOTE: On the MC68H(R)C908JK3E/JK1E, the following pins are not available:  
PTA0, PTA1, PTA2, PTA3, PTA4, PTA5, PTD0, and PTD1.  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
29  
General Description  
General Description  
Technical Data  
30  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
General Description  
Technical Data – MC68H(R)C908JL3E/JK3E/JK1E  
Section 2. Memory Map  
2.1 Contents  
2.2  
2.3  
2.4  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
I/O Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Monitor ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
2.2 Introduction  
The CPU08 can address 64 Kbytes of memory space. The memory  
map, shown in Figure 2-1, includes:  
• 4,096 bytes of user FLASH — MC68H(R)C908JL3E/JK3E  
1,536 bytes of user FLASH — MC68H(R)C908JK1E  
• 128 bytes of RAM  
• 48 bytes of user-defined vectors  
• 960 bytes of Monitor ROM  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
31  
Memory Map  
Memory Map  
$0000  
$003F  
I/O REGISTERS  
64 BYTES  
$0040  
$007F  
RESERVED  
64 BYTES  
$0080  
$00FF  
RAM  
128 BYTES  
$0100  
$EBFF  
UNIMPLEMENTED  
60,160 BYTES  
$0100  
$F5FF  
UNIMPLEMENTED  
62,720 BYTES  
$EC00  
$FBFF  
FLASH MEMORY  
MC68H(R)C908JL3E/JK3E  
4,096 BYTES  
FLASH MEMORY  
MC68H(R)C908JK1E  
1,536 BYTES  
$F600  
$FBFF  
$FC00  
$FDFF  
MONITOR ROM  
512 BYTES  
$FE00  
$FE01  
$FE02  
$FE03  
$FE04  
$FE05  
$FE06  
$FE07  
$FE08  
BREAK STATUS REGISTER (BSR)  
RESET STATUS REGISTER (RSR)  
RESERVED (UBAR)  
BREAK FLAG CONTROL REGISTER (BFCR)  
INTERRUPT STATUS REGISTER 1 (INT1)  
INTERRUPT STATUS REGISTER 2 (INT2)  
INTERRUPT STATUS REGISTER 3 (INT3)  
RESERVED  
FLASH CONTROL REGISTER (FLCR)  
$FE09  
$FE0A  
$FE0B  
$FE0C  
$FE0D  
$FE0E  
$FE0F  
FLASH BLOCK PROTECT REGISTER (FLBPR)  
RESERVED  
RESERVED  
BREAK ADDRESS HIGH REGISTER (BRKH)  
BREAK ADDRESS LOW REGISTER (BRKL)  
BREAK STATUS AND CONTROL REGISTER (BRKSCR)  
RESERVED  
$FE10  
$FFCF  
MONITOR ROM  
448 BYTES  
$FFD0  
$FFFF  
USER VECTORS  
48 BYTES  
Figure 2-1. Memory Map  
Technical Data  
32  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Memory Map  
Memory Map  
I/O Section  
2.3 I/O Section  
Addresses $0000–$003F, shown in Figure 2-2, contain most of the  
control, status, and data registers. Additional I/O registers have the  
following addresses:  
• $FE00; Break Status Register, BSR  
• $FE01; Reset Status Register, RSR  
• $FE02; Reserved  
• $FE03; Break Flag Control Register, BFCR  
• $FE04; Interrupt Status Register 1, INT1  
• $FE05; Interrupt Status Register 2, INT2  
• $FE06; Interrupt Status Register 3, INT3  
• $FE07; Reserved  
• $FE08; FLASH Control Register, FLCR  
• $FE09; FLASH Block Protect Register, FLBPR  
• $FE0A; Reserved  
• $FE0B; Reserved  
• $FE0C; Break Address Register High, BRKH  
• $FE0D; Break Address Register Low, BRKL  
• $FE0E; Break Status and Control Register, BRKSCR  
• $FE0F; Reserved  
• $FFFF; COP Control Register, COPCTL  
2.4 Monitor ROM  
The 960 bytes at addresses $FC00–$FDFF and $FE10–$FFCF are  
reserved ROM addresses that contain the instructions for the monitor  
functions. (See Section 9. Monitor ROM (MON).)  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
33  
Memory Map  
Memory Map  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
0
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
Port A Data Register  
(PTA)  
$0000  
Unaffected by reset  
PTB4 PTB3  
Unaffected by reset  
PTB7  
PTB6  
PTB5  
PTB2  
PTB1  
PTB0  
Port B Data Register  
(PTB)  
$0001  
$0002  
$0003  
$0004  
$0005  
$0006  
$0007  
Unimplemented Write:  
Read:  
Port D Data Register  
Write:  
PTD7  
0
PTD6  
PTD5  
PTD4  
PTD3  
PTD2  
PTD1  
PTD0  
(PTD)  
Reset:  
Read:  
Unaffected by reset  
DDRA6  
DDRA5  
DDRA4  
DDRA3  
DDRA2  
DDRA1  
DDRA0  
Data Direction Register A  
(DDRA)  
Write:  
Reset:  
Read:  
0
DDRB7  
0
0
DDRB6  
0
0
DDRB5  
0
0
DDRB4  
0
0
DDRB3  
0
0
DDRB2  
0
0
DDRB1  
0
0
DDRB0  
0
Data Direction Register B  
(DDRB)  
Write:  
Reset:  
Read:  
Unimplemented Write:  
Read:  
DDRD7  
0
DDRD6  
0
DDRD5  
0
DDRD4  
0
DDRD3 DDRD2 DDRD1 DDRD0  
Data Direction Register D  
(DDRD)  
Write:  
Reset:  
Read:  
0
0
0
0
$0008  
Unimplemented Write:  
$0009  
Read:  
Port D Control Register  
Write:  
0
0
0
0
0
0
0
0
SLOWD7 SLOWD6 PTDPU7 PTDPU6  
$000A  
(PDCR)  
Reset:  
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 1 of 5)  
Technical Data  
34  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Memory Map  
Memory Map  
Monitor ROM  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
$000B  
Unimplemented Write:  
$000C  
Read:  
Port A Input Pull-up  
Enable Register Write:  
PTA6EN PTAPUE6 PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0  
$000D  
(PTAPUE)  
Reset:  
0
0
0
0
0
0
0
0
$000E  
Read:  
Write:  
Read:  
Unimplemented  
$0019  
0
0
0
0
KEYF  
0
ACKK  
0
Keyboard Status and  
MODEK  
IMASKK  
$001A  
Control Register Write:  
(KBSCR)  
Reset:  
0
0
0
KBIE6  
0
0
KBIE5  
0
0
KBIE4  
0
0
KBIE3  
0
0
KBIE1  
0
0
KBIE0  
0
Read:  
Keyboard Interrupt  
Enable Register Write:  
KBIE2  
0
$001B  
$001C  
(KBIER)  
Reset:  
0
Read:  
Unimplemented Write:  
Read:  
0
0
0
0
IRQF1  
0
ACK1  
0
IRQ Status and Control  
IMASK1 MODE1  
$001D  
$001E  
$001F  
Register Write:  
(INTSCR)  
Reset:  
0
0
R
0
0
R
0
0
LVIT1  
0*  
0
LVIT0  
0*  
0
0
Read:  
Configuration Register 2  
Write:  
IRQPUD  
R
R
R
(CONFIG2)†  
Reset:  
0
COPRS  
0
0
SSREC  
0
0
STOP  
0
0
COPD  
0
Read:  
Configuration Register 1  
Write:  
R
R
LVID  
R
(CONFIG1)†  
Reset:  
0
0
0
0
† One-time writable register after each reset. * LVIT1 and LVIT0 reset to logic 0 by a power-on reset (POR) only.  
Read:  
TOF  
0
0
TRST  
0
0
TIM Status and Control  
TOIE  
0
TSTOP  
1
PS2  
PS1  
0
PS0  
0
$0020  
Register Write:  
(TSC)  
Reset:  
0
0
0
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 5)  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
35  
Memory Map  
Memory Map  
Addr.  
Register Name  
TIM Counter Register  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read: Bit15  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
Bit8  
$0021  
High Write:  
(TCNTH)  
Reset:  
Read:  
0
0
0
0
0
0
0
0
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
TIM Counter Register  
$0022  
$0023  
$0024  
$0025  
$0026  
$0027  
$0028  
$0029  
$002A  
Low Write:  
(TCNTL)  
Reset:  
Read:  
0
Bit15  
1
0
Bit14  
1
0
Bit13  
1
0
Bit12  
1
0
Bit11  
1
0
Bit10  
1
0
Bit9  
1
0
TIM Counter Modulo  
Bit8  
Register High Write:  
(TMODH)  
Reset:  
1
Read:  
TIM Counter Modulo  
Bit7  
Bit6  
1
Bit5  
1
Bit4  
1
Bit3  
1
Bit2  
1
Bit1  
1
Bit0  
Register Low Write:  
(TMODL)  
Reset:  
1
1
CH0MAX  
0
Read: CH0F  
TIM Channel 0 Status and  
(TSC0)  
CH0IE  
0
MS0B  
0
MS0A  
0
ELS0B  
0
ELS0A  
0
TOV0  
0
Control Register Write:  
0
0
Reset:  
Read:  
TIM Channel 0  
Bit15  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
Bit8  
Register High Write:  
(TCH0H)  
Reset:  
Indeterminate after reset  
Bit4 Bit3  
Indeterminate after reset  
Read:  
TIM Channel 0  
Register Low Write:  
Bit7  
Bit6  
Bit5  
0
Bit2  
Bit1  
Bit0  
(TCH0L)  
Reset:  
Read: CH1F  
TIM Channel 1 Status and  
(TSC1)  
CH1IE  
0
MS1A  
0
ELS1B  
0
ELS1A  
0
TOV1  
0
CH1MAX  
Control Register Write:  
0
0
Reset:  
Read:  
0
0
TIM Channel 1  
Bit15  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
Bit8  
Register High Write:  
(TCH1H)  
Reset:  
Indeterminate after reset  
Bit4 Bit3  
Read:  
TIM Channel 1  
Register Low Write:  
Bit7  
Bit6  
Bit5  
Bit2  
Bit1  
Bit0  
(TCH1L)  
Reset:  
Indeterminate after reset  
R
= Unimplemented  
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 5)  
Technical Data  
36  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Memory Map  
Memory Map  
Monitor ROM  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
$002B  
Read:  
Write:  
Unimplemented  
$003B  
Read: COCO  
ADC Status and Control  
Register Write:  
AIEN  
ADCO  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
$003C  
$003D  
(ADSCR)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
0
0
0
1
1
1
1
1
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
ADC Data Register  
(ADR)  
Indeterminate after reset  
0
0
0
0
0
0
0
0
ADIV2  
0
ADIV1  
0
ADIV0  
0
ADC Input Clock Register  
(ADICLK)  
$003E  
$003F  
0
0
Unimplemented Write:  
Read:  
SBSW  
See note  
0
R
R
R
R
R
R
R
0
Break Status Register  
(BSR)  
$FE00  
Write:  
Reset:  
Note: Writing a logic 0 clears SBSW.  
Read: POR  
Write:  
PIN  
COP  
ILOP  
ILAD  
MODRST  
LVI  
Reset Status Register  
$FE01  
(RSR)  
POR:  
Read:  
1
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
$FE02  
$FE03  
$FE04  
Reserved Write:  
Read:  
Break Flag Control  
BCFE  
R
R
R
R
R
R
R
Register Write:  
(BFCR)  
Reset:  
0
0
Read:  
IF5  
R
IF4  
R
IF3  
R
0
R
0
IF1  
0
R
0
0
R
0
Interrupt Status Register 1  
(INT1)  
Write:  
R
0
R
Reset:  
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 5)  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
37  
Memory Map  
Memory Map  
Addr.  
Register Name  
Bit 7  
IF14  
R
6
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Interrupt Status Register 2  
(INT2)  
$FE05  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
0
0
0
0
0
0
0
0
IF15  
R
Interrupt Status Register 3  
(INT3)  
$FE06  
$FE07  
$FE08  
$FE09  
R
R
0
R
0
R
0
R
0
R
0
R
0
0
0
R
R
R
R
R
R
R
R
Reserved Write:  
Read:  
0
0
0
0
HVEN  
MASS  
ERASE  
PGM  
FLASH Control Register  
(FLCR)  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
0
BPR7  
0
0
BPR6  
0
0
BPR5  
0
0
BPR4  
0
0
BPR3  
0
0
BPR2  
0
0
BPR1  
0
0
BPR0  
0
FLASH Block Protect  
Register (FLBPR)  
$FE0A  
$FE0B  
R
R
R
R
R
R
R
R
Reserved Write:  
Read:  
Break Address High  
Bit15  
0
Bit14  
0
Bit13  
0
Bit12  
0
Bit11  
0
Bit10  
0
Bit9  
0
Bit8  
0
$FE0C  
$FE0D  
$FE0E  
Register Write:  
(BRKH)  
Reset:  
Read:  
Break Address low  
Bit7  
0
Bit6  
0
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Register Write:  
(BRKL)  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
Read:  
Break Status and Control  
BRKE  
0
BRKA  
0
Register Write:  
(BRKSCR)  
Reset:  
0
0
0
0
0
0
Read:  
Low byte of reset vector  
COP Control Register  
(COPCTL)  
$FFFF  
Write:  
Writing clears COP counter (any value)  
Unaffected by reset  
Reset:  
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 5)  
Technical Data  
38  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Memory Map  
Memory Map  
Monitor ROM  
.
Table 2-1. Vector Addresses  
Vector Priority INT Flag Address  
Vector  
$FFD0  
$FFDD  
Lowest  
Not Used  
$FFDE  
$FFDF  
$FFE0  
$FFE1  
ADC Conversion Complete Vector (High)  
ADC Conversion Complete Vector (Low)  
Keyboard Vector (High)  
IF15  
IF14  
Keyboard Vector (Low)  
IF13  
IF6  
Not Used  
$FFF2  
$FFF3  
$FFF4  
$FFF5  
$FFF6  
$FFF7  
TIM Overflow Vector (High)  
TIM Overflow Vector (Low)  
TIM Channel 1 Vector (High)  
TIM Channel 1 Vector (Low)  
TIM Channel 0 Vector (High)  
TIM Channel 0 Vector (Low)  
Not Used  
IF5  
IF4  
IF3  
IF2  
IF1  
$FFFA  
$FFFB  
$FFFC  
$FFFD  
$FFFE  
$FFFF  
IRQ1 Vector (High)  
IRQ1 Vector (Low)  
SWI Vector (High)  
SWI Vector (Low)  
Reset Vector (High)  
Highest  
Reset Vector (Low)  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
39  
Memory Map  
Memory Map  
Technical Data  
40  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Memory Map  
Technical Data – MC68H(R)C908JL3E/JK3E/JK1E  
Section 3. Random-Access Memory (RAM)  
3.1 Contents  
3.2  
3.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
3.2 Introduction  
This section describes the 128 bytes of RAM.  
3.3 Functional Description  
Addresses $0080 through $00FF are RAM locations. The location of the  
stack RAM is programmable. The 16-bit stack pointer allows the stack to  
be anywhere in the 64-Kbyte memory space.  
NOTE: For correct operation, the stack pointer must point only to RAM  
locations.  
Within page zero are 128 bytes of RAM. Because the location of the  
stack RAM is programmable, all page zero RAM locations can be used  
for I/O control and user data or code. When the stack pointer is moved  
from its reset location at $00FF, direct addressing mode instructions can  
access efficiently all page zero RAM locations. Page zero RAM,  
therefore, provides ideal locations for frequently accessed global  
variables.  
Before processing an interrupt, the CPU uses five bytes of the stack to  
save the contents of the CPU registers.  
NOTE: For M6805 compatibility, the H register is not stacked.  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA Random-Access Memory (RAM)  
Technical Data  
41  
Random-Access Memory (RAM)  
During a subroutine call, the CPU uses two bytes of the stack to store  
the return address. The stack pointer decrements during pushes and  
increments during pulls.  
NOTE: Be careful when using nested subroutines. The CPU may overwrite data  
in the RAM during a subroutine or during the interrupt stacking  
operation.  
Technical Data  
42  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Random-Access Memory (RAM)  
MOTOROLA  
Technical Data – MC68H(R)C908JL3E/JK3E/JK1E  
Section 4. FLASH Memory (FLASH)  
4.1 Contents  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
FLASH Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . .46  
FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . .47  
FLASH Program Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
FLASH Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . . . .50  
4.2 Introduction  
This section describes the operation of the embedded FLASH memory.  
The FLASH memory can be read, programmed, and erased from a  
single external supply. The program and erase operations are enabled  
through the use of an internal charge pump.  
FLASH Memory Size  
Device  
Memory Address Range  
(Bytes)  
4,096  
4,096  
1,536  
MC68H(R)C908JL3E  
MC68H(R)C908JK3E  
MC68H(R)C908JK1E  
$EC00—$FBFF  
$EC00—$FBFF  
$F600—$FBFF  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
43  
FLASH Memory (FLASH)  
FLASH Memory (FLASH)  
Addr.  
Register Name  
Bit 7  
6
5
4
3
HVEN  
0
2
MASS  
0
1
ERASE  
0
Bit 0  
PGM  
0
Read:  
Write:  
Reset:  
Read:  
0
0
0
0
FLASH Control Register  
(FLCR)  
$FE08  
0
BPR7  
0
0
BPR6  
0
0
BPR5  
0
0
BPR4  
0
FLASH Block Protect  
BPR3  
0
BPR2  
0
BPR1  
0
BPR0  
0
$FE09  
Register Write:  
(FLBPR)  
Reset:  
= Unimplemented  
Figure 4-1. FLASH I/O Register Summary  
4.3 Functional Description  
The FLASH memory consists of an array of 4,096 or 1,536 bytes with an  
additional 48 bytes for user vectors. The minimum size of FLASH  
memory that can be erased is 64 bytes (a page); and the maximum size  
of FLASH memory that can be programmed in a program cycle is 32  
bytes (a row). Program and erase operations are facilitated through  
control bits in the Flash Control Register (FLCR). Details for these  
operations appear later in this section. The address ranges for the user  
memory and vectors are:  
• $EC00–$FBFF; user memory; 4,096 bytes;  
MC68H(R)C908JL3E/JK3E  
$F600–$FBFF; user memory; 1,536 bytes;  
MC68H(R)C908JK1E  
• $FFD0–$FFFF; user interrupt vectors; 48 bytes  
NOTE: An erased bit reads as logic 1 and a programmed bit reads as logic 0.  
A security feature prevents viewing of the FLASH contents.1  
1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or  
copying the FLASH difficult for unauthorized users.  
Technical Data  
44  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
FLASH Memory (FLASH)  
MOTOROLA  
FLASH Memory (FLASH)  
FLASH Control Register  
4.4 FLASH Control Register  
The FLASH Control Register controls FLASH program and erase  
operations.  
Address: $FE08  
Bit 7  
6
0
5
0
4
0
3
HVEN  
0
2
MASS  
0
1
ERASE  
0
Bit 0  
PGM  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
Figure 4-2. FLASH Control Register (FLCR)  
HVEN — High Voltage Enable Bit  
This read/write bit enables high voltage from the charge pump to the  
memory for either program or erase operation. It can only be set if  
either PGM=1 or ERASE=1 and the proper sequence for program or  
erase is followed.  
1 = High voltage enabled to array and charge pump on  
0 = High voltage disabled to array and charge pump off  
MASS — Mass Erase Control Bit  
This read/write bit configures the memory for mass erase operation or  
page erase operation when the ERASE bit is set.  
1 = Mass erase operation selected  
0 = Page erase operation selected  
ERASE — Erase Control Bit  
This read/write bit configures the memory for erase operation. This bit  
and the PGM bit should not be set to 1 at the same time.  
1 = Erase operation selected  
0 = Erase operation not selected  
PGM — Program Control Bit  
This read/write bit configures the memory for program operation. This  
bit and the ERASE bit should not be set to 1 at the same time.  
1 = Program operation selected  
0 = Program operation not selected  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA FLASH Memory (FLASH)  
Technical Data  
45  
FLASH Memory (FLASH)  
4.5 FLASH Page Erase Operation  
Use the following procedure to erase a page of FLASH memory. A page  
consists of 64 consecutive bytes starting from addresses $XX00,  
$XX40, $XX80 or $XXC0. The 48-byte user interrupt vectors area also  
forms a page. Any page within the 4K bytes user memory area  
($EC00–$FBFF) can be erased alone. The 48-byte user interrupt  
vectors cannot be erased by the page erase operation because of  
security reasons. Mass erase is required to erase this page.  
1. Set the ERASE bit and clear the MASS bit in the FLASH Control  
Register.  
2. Write any data to any FLASH address within the page address  
range desired.  
3. Wait for a time, tnvs (10µs).  
4. Set the HVEN bit.  
5. Wait for a time tErase (1ms).  
6. Clear the ERASE bit.  
7. Wait for a time, tnvh (5µs).  
8. Clear the HVEN bit.  
9. After time, trcv (1µs), the memory can be accessed in read mode  
again.  
NOTE: Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory. While these operations  
must be performed in the order as shown, but other unrelated operations  
may occur between the steps.  
Technical Data  
46  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
FLASH Memory (FLASH)  
MOTOROLA  
FLASH Memory (FLASH)  
FLASH Mass Erase Operation  
4.6 FLASH Mass Erase Operation  
Use the following procedure to erase the entire FLASH memory:  
1. Set both the ERASE bit and the MASS bit in the FLASH Control  
Register.  
2. Write any data to any FLASH location within the FLASH memory  
address range.  
3. Wait for a time, tnvs (10µs).  
4. Set the HVEN bit.  
5. Wait for a time tMErase (4ms).  
6. Clear the ERASE bit.  
7. Wait for a time, tnvh1 (100µs).  
8. Clear the HVEN bit.  
9. After time, trcv (1µs), the memory can be accessed in read mode  
again.  
NOTE: Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory. While these operations  
must be performed in the order as shown, but other unrelated operations  
may occur between the steps.  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA FLASH Memory (FLASH)  
Technical Data  
47  
FLASH Memory (FLASH)  
4.7 FLASH Program Operation  
Programming of the FLASH memory is done on a row basis. A row  
consists of 32 consecutive bytes starting from addresses $XX00,  
$XX20, $XX40, $XX60, $XX80, $XXA0, $XXC0 or $XXE0. Use this  
step-by-step procedure to program a row of FLASH memory:  
(Figure 4-3 shows a flowchart of the programming algorithm.)  
1. Set the PGM bit. This configures the memory for program  
operation and enables the latching of address and data for  
programming.  
2. Write any data to any FLASH location within the address range of  
the row to be programmed.  
3. Wait for a time, tnvs (10µs).  
4. Set the HVEN bit.  
5. Wait for a time, tpgs (5µs).  
6. Write data to the byte being programmed.  
7. Wait for time, tPROG (30µs).  
8. Repeat step 6 and 7 until all the bytes within the row are  
programmed.  
9. Clear the PGM bit.  
10. Wait for time, tnvh (5µs).  
11. Clear the HVEN bit.  
12. After time, trcv (1µs), the memory can be accessed in read mode  
again.  
This program sequence is repeated throughout the memory until all data  
is programmed.  
NOTE: The time between each FLASH address change (step 6 to step 6), or the  
time between the last FLASH addressed programmed to clearing the  
PGM bit (step 6 to step 10), must not exceed the maximum programming  
time, tPROG max.  
NOTE: Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory. While these operations  
must be performed in the order shown, other unrelated operations may  
occur between the steps.  
Technical Data  
48  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
FLASH Memory (FLASH)  
MOTOROLA  
FLASH Memory (FLASH)  
FLASH Program Operation  
1
2
Set PGM bit  
Algorithm for programming  
a row (32 bytes) of FLASH memory  
Write any data to any FLASH address  
within the row address range desired  
3
4
5
Wait for a time, tnvs  
Set HVEN bit  
Wait for a time, tpgs  
6
7
Write data to the FLASH address  
to be programmed  
Wait for a time, tPROG  
Completed  
Y
programming  
this row?  
N
9
Clear PGM bit  
Wait for a time, tnvh  
Clear HVEN bit  
NOTE:  
The time between each FLASH address change (step 6 to step 6), or  
the time between the last FLASH address programmed  
to clearing PGM bit (step 6 to step 9)  
10  
11  
12  
must not exceed the maximum programming  
time, tPROG max.  
This row program algorithm assumes the row/s  
to be programmed are initially erased.  
Wait for a time, trcv  
End of Programming  
Figure 4-3. FLASH Programming Flowchart  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA FLASH Memory (FLASH)  
Technical Data  
49  
FLASH Memory (FLASH)  
4.8 FLASH Protection  
Due to the ability of the on-board charge pump to erase and program the  
FLASH memory in the target application, provision is made to protect  
blocks of memory from unintentional erase or program operations due to  
system malfunction. This protection is done by use of a FLASH Block  
Protect Register (FLBPR). The FLBPR determines the range of the  
FLASH memory which is to be protected. The range of the protected  
area starts from a location defined by FLBPR and ends to the bottom of  
the FLASH memory ($FFFF). When the memory is protected, the HVEN  
bit cannot be set in either ERASE or PROGRAM operations.  
4.9 FLASH Block Protect Register  
The FLASH Block Protect Register is implemented as an 8-bit I/O  
register. The value in this register determines the starting address of the  
protected range within the FLASH memory.  
Address: $FE09  
Bit 7  
BPR7  
0
6
BPR6  
0
5
BPR5  
0
4
BPR4  
0
3
BPR3  
0
2
BPR2  
0
1
BPR1  
0
Bit 0  
BPR0  
0
Read:  
Write:  
Reset:  
Figure 4-4. FLASH Block Protect Register (FLBPR)  
BPR[7:0] — FLASH Block Protect Register Bit 7 to Bit 0  
BPR[7:1] represent bits [12:6] of a 16-bit memory address. Bits  
[15:13] are logic 1’s and bits [5:0] are logic 0’s.  
16-bit memory address  
Start address of FLASH block protect 1 1 1  
0 0 0 0 0 0  
BPR[7:1]  
BPR0 is used only for BPR[7:0] = $FF, for no block protection.  
Technical Data  
50  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
FLASH Memory (FLASH)  
MOTOROLA  
FLASH Memory (FLASH)  
FLASH Block Protect Register  
The resultant 16-bit address is used for specifying the start address  
of the FLASH memory for block protection. The FLASH is protected  
from this start address to the end of FLASH memory, at $FFFF. With  
this mechanism, the protect start address can be XX00, XX40, XX80,  
or XXC0 (at page boundaries — 64 bytes) within the FLASH memory.  
Examples of protect start address:  
BPR[7:0]  
Start of Address of Protect Range  
$00–$60  
The entire FLASH memory is protected.  
$62 or $63  
(0110 001x)  
$EC40 (1110 1100 0100 0000)  
$EC80 (1110 1100 1000 0000)  
$ED00 (1110 1101 0000 0000)  
$64 or $65  
(0110 010x)  
$68 or $69  
(0110 100x)  
and so on...  
$DE or $DF  
(1101 111x)  
$FBC0 (1111 1011 1100 0000)  
$FE  
(1111 1110)  
$FFC0 (1111 1111 1100 0000)  
$FF  
The entire FLASH memory is not protected.  
Note:  
The end address of the protected range is always $FFFF.  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA FLASH Memory (FLASH)  
Technical Data  
51  
FLASH Memory (FLASH)  
Technical Data  
52  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
FLASH Memory (FLASH)  
Technical Data – MC68H(R)C908JL3E/JK3E/JK1E  
Section 5. Configuration Register (CONFIG)  
5.1 Contents  
5.2  
5.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
5.2 Introduction  
This section describes the configuration registers (CONFIG1 and  
CONFIG2). The configuration registers enables or disables the following  
options:  
• Stop mode recovery time (32 × 2OSCOUT cycles or  
4096 × 2OSCOUT cycles)  
• STOP instruction  
• Computer operating properly module (COP)  
• COP reset period (COPRS), (213–24) × 2OSCOUT or  
(218–24) × 2OSCOUT  
• Enable LVI circuit  
• Select LVI trip voltage  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA Configuration Register (CONFIG)  
Technical Data  
53  
Configuration Register (CONFIG)  
5.3 Functional Description  
The configuration register is used in the initialization of various options.  
The configuration register can be written once after each reset. All of the  
configuration register bits are cleared during reset. Since the various  
options affect the operation of the MCU it is recommended that this  
register be written immediately after reset. The configuration register is  
located at $001E and $001F, and may be read at anytime.  
NOTE: The CONFIG registers are one-time writable by the user after each  
reset. Upon a reset, the CONFIG registers default to predetermined  
settings as shown in Figure 5-1 and Figure 5-2.  
Address:  
$001E  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
POR:  
IRQPUD  
R
R
LVIT1  
LVIT0  
R
R
Not affected Not affected  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
= Reserved  
Figure 5-1. Configuration Register 2 (CONFIG2)  
IRQPUD — IRQ1 Pin Pull-up control bit  
1 = Internal pull-up is disconnected  
0 = Internal pull-up is connected between IRQ1 pin and VDD  
LVIT1, LVIT0 — Low Voltage Inhibit trip voltage selection bits  
Detail description of the LVI control signals is given in Section 16.  
Low Voltage Inhibit (LVI)  
Technical Data  
54  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Configuration Register (CONFIG)  
MOTOROLA  
Configuration Register (CONFIG)  
Functional Description  
Address:  
$001F  
Bit 7  
6
5
R
0
4
LVID  
0
3
R
0
2
SSREC  
0
1
STOP  
0
Bit 0  
COPD  
0
Read:  
Write:  
Reset:  
COPRS  
R
0
0
R
= Reserved  
Figure 5-2. Configuration Register 1 (CONFIG1)  
COPRS — COP reset period selection bit  
1 = COP reset cycle is (213 – 24) × 2OSCOUT  
0 = COP reset cycle is (218 – 24) × 2OSCOUT  
LVID — Low Voltage Inhibit Disable Bit  
1 = Low Voltage Inhibit disabled  
0 = Low Voltage Inhibit enabled  
SSREC — Short Stop Recovery Bit  
SSREC enables the CPU to exit stop mode with a delay of  
32 × 2OSCOUT cycles instead of a 4096 × 2OSCOUT cycle delay.  
1 = Stop mode recovery after 32 × 2OSCOUT cycles  
0 = Stop mode recovery after 4096 × 2OSCOUT cycles  
NOTE: Exiting stop mode by pulling reset will result in the long stop recovery.  
If using an external crystal, do not set the SSREC bit.  
STOP — STOP Instruction Enable  
STOP enables the STOP instruction.  
1 = STOP instruction enabled  
0 = STOP instruction treated as illegal opcode  
COPD — COP Disable Bit  
COPD disables the COP module. (See Section 15. Computer  
Operating Properly (COP).)  
1 = COP module disabled  
0 = COP module enabled  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA Configuration Register (CONFIG)  
Technical Data  
55  
Configuration Register (CONFIG)  
Technical Data  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Configuration Register (CONFIG) MOTOROLA  
56  
Technical Data – MC68H(R)C908JL3E/JK3E/JK1E  
Section 6. Central Processor Unit (CPU)  
6.1 Contents  
6.2  
6.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
6.4  
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
6.4.1  
6.4.2  
6.4.3  
6.4.4  
6.4.5  
6.5  
Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
6.6  
6.6.1  
6.6.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
6.7  
6.8  
6.9  
CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .65  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
6.2 Introduction  
The M68HC08 CPU (central processor unit) is an enhanced and fully  
object-code-compatible version of the M68HC05 CPU. The CPU08  
Reference Manual (Motorola document order number CPU08RM/AD)  
contains a description of the CPU instruction set, addressing modes,  
and architecture.  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA Central Processor Unit (CPU)  
Technical Data  
57  
Central Processor Unit (CPU)  
6.3 Features  
• Object code fully upward-compatible with M68HC05 Family  
• 16-bit stack pointer with stack manipulation instructions  
• 16-bit index register with x-register manipulation instructions  
• 8-MHz CPU internal bus frequency  
• 64-Kbyte program/data memory space  
• 16 addressing modes  
• Memory-to-memory data moves without using accumulator  
• Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions  
• Enhanced binary-coded decimal (BCD) data handling  
• Modular architecture with expandable internal bus definition for  
extension of addressing range beyond 64 Kbytes  
• Low-power stop and wait modes  
6.4 CPU Registers  
Figure 6-1 shows the five CPU registers. CPU registers are not part of  
the memory map.  
Technical Data  
58  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Central Processor Unit (CPU)  
MOTOROLA  
Central Processor Unit (CPU)  
CPU Registers  
7
0
0
0
0
ACCUMULATOR (A)  
15  
15  
15  
H
X
INDEX REGISTER (H:X)  
STACK POINTER (SP)  
PROGRAM COUNTER (PC)  
CONDITION CODE REGISTER (CCR)  
7
0
V
1
1
H
I
N
Z
C
CARRY/BORROW FLAG  
ZERO FLAG  
NEGATIVE FLAG  
INTERRUPT MASK  
HALF-CARRY FLAG  
TWO’S COMPLEMENT OVERFLOW FLAG  
Figure 6-1. CPU Registers  
6.4.1 Accumulator  
The accumulator is a general-purpose 8-bit register. The CPU uses the  
accumulator to hold operands and the results of arithmetic/logic  
operations.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Unaffected by reset  
Figure 6-2. Accumulator (A)  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA Central Processor Unit (CPU)  
Technical Data  
59  
Central Processor Unit (CPU)  
6.4.2 Index Register  
The 16-bit index register allows indexed addressing of a 64-Kbyte  
memory space. H is the upper byte of the index register, and X is the  
lower byte. H:X is the concatenated 16-bit index register.  
In the indexed addressing modes, the CPU uses the contents of the  
index register to determine the conditional address of the operand.  
The index register can serve also as a temporary data storage location.  
Bit  
15  
Bit  
0
14 13 12 11 10  
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
X
X
X
X
X
X
X
X
X = Indeterminate  
Figure 6-3. Index Register (H:X)  
6.4.3 Stack Pointer  
The stack pointer is a 16-bit register that contains the address of the next  
location on the stack. During a reset, the stack pointer is preset to  
$00FF. The reset stack pointer (RSP) instruction sets the least  
significant byte to $FF and does not affect the most significant byte. The  
stack pointer decrements as data is pushed onto the stack and  
increments as data is pulled from the stack.  
In the stack pointer 8-bit offset and 16-bit offset addressing modes, the  
stack pointer can function as an index register to access data on the  
stack. The CPU uses the contents of the stack pointer to determine the  
conditional address of the operand.  
Technical Data  
60  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Central Processor Unit (CPU)  
MOTOROLA  
Central Processor Unit (CPU)  
CPU Registers  
Bit  
15  
Bit  
0
14 13 12 11 10  
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Figure 6-4. Stack Pointer (SP)  
NOTE: The location of the stack is arbitrary and may be relocated anywhere in  
RAM. Moving the SP out of page 0 ($0000 to $00FF) frees direct  
address (page 0) space. For correct operation, the stack pointer must  
point only to RAM locations.  
6.4.4 Program Counter  
The program counter is a 16-bit register that contains the address of the  
next instruction or operand to be fetched.  
Normally, the program counter automatically increments to the next  
sequential memory location every time an instruction or operand is  
fetched. Jump, branch, and interrupt operations load the program  
counter with an address other than that of the next sequential location.  
During reset, the program counter is loaded with the reset vector  
address located at $FFFE and $FFFF. The vector address is the  
address of the first instruction to be executed after exiting the reset state.  
Bit  
15  
Bit  
0
14 13 12 11 10  
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
Loaded with Vector from $FFFE and $FFFF  
Figure 6-5. Program Counter (PC)  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA Central Processor Unit (CPU)  
Technical Data  
61  
Central Processor Unit (CPU)  
6.4.5 Condition Code Register  
The 8-bit condition code register contains the interrupt mask and five  
flags that indicate the results of the instruction just executed. Bits 6 and  
5 are set permanently to logic 1. The following paragraphs describe the  
functions of the condition code register.  
Bit 7  
6
1
1
5
1
1
4
H
X
3
I
2
N
X
1
Z
X
Bit 0  
Read:  
Write:  
Reset:  
V
C
X
X
1
X = Indeterminate  
Figure 6-6. Condition Code Register (CCR)  
V — Overflow Flag  
The CPU sets the overflow flag when a two's complement overflow  
occurs. The signed branch instructions BGT, BGE, BLE, and BLT use  
the overflow flag.  
1 = Overflow  
0 = No overflow  
H — Half-Carry Flag  
The CPU sets the half-carry flag when a carry occurs between  
accumulator bits 3 and 4 during an add-without-carry (ADD) or add-  
with-carry (ADC) operation. The half-carry flag is required for binary-  
coded decimal (BCD) arithmetic operations. The DAA instruction  
uses the states of the H and C flags to determine the appropriate  
correction factor.  
1 = Carry between bits 3 and 4  
0 = No carry between bits 3 and 4  
I — Interrupt Mask  
When the interrupt mask is set, all maskable CPU interrupts are  
disabled. CPU interrupts are enabled when the interrupt mask is  
cleared. When a CPU interrupt occurs, the interrupt mask is set  
automatically after the CPU registers are saved on the stack, but  
before the interrupt vector is fetched.  
1 = Interrupts disabled  
0 = Interrupts enabled  
Technical Data  
62  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Central Processor Unit (CPU)  
MOTOROLA  
Central Processor Unit (CPU)  
CPU Registers  
NOTE: To maintain M6805 Family compatibility, the upper byte of the index  
register (H) is not stacked automatically. If the interrupt service routine  
modifies H, then the user must stack and unstack H using the PSHH and  
PULH instructions.  
After the I bit is cleared, the highest-priority interrupt request is  
serviced first.  
A return-from-interrupt (RTI) instruction pulls the CPU registers from  
the stack and restores the interrupt mask from the stack. After any  
reset, the interrupt mask is set and can be cleared only by the clear  
interrupt mask software instruction (CLI).  
N — Negative flag  
The CPU sets the negative flag when an arithmetic operation, logic  
operation, or data manipulation produces a negative result, setting  
bit 7 of the result.  
1 = Negative result  
0 = Non-negative result  
Z — Zero flag  
The CPU sets the zero flag when an arithmetic operation, logic  
operation, or data manipulation produces a result of $00.  
1 = Zero result  
0 = Non-zero result  
C — Carry/Borrow Flag  
The CPU sets the carry/borrow flag when an addition operation  
produces a carry out of bit 7 of the accumulator or when a subtraction  
operation requires a borrow. Some instructions — such as bit test and  
branch, shift, and rotate — also clear or set the carry/borrow flag.  
1 = Carry out of bit 7  
0 = No carry out of bit 7  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA Central Processor Unit (CPU)  
Technical Data  
63  
Central Processor Unit (CPU)  
6.5 Arithmetic/Logic Unit (ALU)  
The ALU performs the arithmetic and logic operations defined by the  
instruction set.  
Refer to the CPU08 Reference Manual (Motorola document order  
number CPU08RM/AD) for a description of the instructions and  
addressing modes and more detail about the architecture of the CPU.  
6.6 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes.  
6.6.1 Wait Mode  
The WAIT instruction:  
• Clears the interrupt mask (I bit) in the condition code register,  
enabling interrupts. After exit from wait mode by interrupt, the I bit  
remains clear. After exit by reset, the I bit is set.  
• Disables the CPU clock  
6.6.2 Stop Mode  
The STOP instruction:  
• Clears the interrupt mask (I bit) in the condition code register,  
enabling external interrupts. After exit from stop mode by external  
interrupt, the I bit remains clear. After exit by reset, the I bit is set.  
• Disables the CPU clock  
After exiting stop mode, the CPU clock begins running after the oscillator  
stabilization delay.  
Technical Data  
64  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Central Processor Unit (CPU)  
MOTOROLA  
Central Processor Unit (CPU)  
CPU During Break Interrupts  
6.7 CPU During Break Interrupts  
If a break module is present on the MCU, the CPU starts a break  
interrupt by:  
• Loading the instruction register with the SWI instruction  
• Loading the program counter with $FFFC:$FFFD or with  
$FEFC:$FEFD in monitor mode  
The break interrupt begins after completion of the CPU instruction in  
progress. If the break address register match occurs on the last cycle of  
a CPU instruction, the break interrupt begins immediately.  
A return-from-interrupt instruction (RTI) in the break routine ends the  
break interrupt and returns the MCU to normal operation if the break  
interrupt has been deasserted.  
6.8 Instruction Set Summary  
Table 6-1 provides a summary of the M68HC08 instruction set.  
6.9 Opcode Map  
The opcode map is provided in Table 6-2.  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA Central Processor Unit (CPU)  
Technical Data  
65  
Central Processor Unit (CPU)  
Table 6-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Operation  
Form  
Description  
V H  
I
N Z  
C
ADC #opr  
ADC opr  
ADC opr  
ADC opr,X  
ADC opr,X  
ADC ,X  
ADC opr,SP  
ADC opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A9  
B9  
C9  
D9  
E9  
F9  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Add with Carry  
A (A) + (M) + (C)  
SP1  
SP2  
9EE9 ff  
9ED9 ee ff  
ADD #opr  
ADD opr  
ADD opr  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
AB  
BB  
CB  
DB  
EB  
FB  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
ADD opr,X  
Add without Carry  
ADD opr,X  
A (A) + (M)  
ADD ,X  
ADD opr,SP  
ADD opr,SP  
SP1  
SP2  
9EEB ff  
9EDB ee ff  
AIS #opr  
AIX #opr  
Add Immediate Value (Signed) to SP  
Add Immediate Value (Signed) to H:X  
SP (SP) + (16 « M)  
H:X (H:X) + (16 « M)  
– IMM  
– IMM  
A7  
AF  
ii  
ii  
2
2
AND #opr  
AND opr  
AND opr  
AND opr,X  
AND opr,X  
AND ,X  
AND opr,SP  
AND opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
A4  
B4  
C4  
D4  
E4  
F4  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Logical AND  
A (A) & (M)  
0
↕ ↕  
9EE4 ff  
9ED4 ee ff  
ASL opr  
ASLA  
ASLX  
ASL opr,X  
ASL ,X  
ASL opr,SP  
DIR  
INH  
INH  
IX1  
IX  
38  
48  
58  
68  
78  
dd  
ff  
4
1
1
4
3
5
Arithmetic Shift Left  
(Same as LSL)  
↕ ↕ ↕  
C
0
b7  
b7  
b0  
b0  
SP1  
9E68 ff  
ASR opr  
ASRA  
ASRX  
ASR opr,X  
ASR opr,X  
ASR opr,SP  
DIR  
INH  
INH  
IX1  
IX  
37  
47  
57  
67  
77  
dd  
4
1
1
4
3
5
C
Arithmetic Shift Right  
ff  
SP1  
9E67 ff  
BCC rel  
Branch if Carry Bit Clear  
PC (PC) + 2 + rel ? (C) = 0  
– REL  
24  
rr  
3
DIR (b0)  
11  
13  
15  
17  
19  
1B  
1D  
1F  
dd  
dd  
dd  
dd  
dd  
dd  
dd  
dd  
4
4
4
4
4
4
4
4
DIR (b1)  
DIR (b2)  
DIR (b3)  
DIR (b4)  
DIR (b5)  
DIR (b6)  
DIR (b7)  
BCLR n, opr  
Clear Bit n in M  
Mn 0  
Technical Data  
66  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Central Processor Unit (CPU) MOTOROLA  
Central Processor Unit (CPU)  
Opcode Map  
Table 6-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H  
I
N Z  
C
BCS rel  
Branch if Carry Bit Set (Same as BLO)  
Branch if Equal  
PC (PC) + 2 + rel ? (C) = 1  
PC (PC) + 2 + rel ? (Z) = 1  
– REL  
– REL  
25  
27  
rr  
rr  
3
3
BEQ rel  
BGE opr  
Branch if Greater Than or Equal To  
(Signed Operands)  
PC (PC) + 2 + rel ? (N V) = 0  
– REL  
– REL  
90  
92  
rr  
rr  
3
Branch if Greater Than (Signed  
Operands)  
BGT opr  
PC (PC) + 2 +rel ? (Z) | (N V)=0 –  
3
3
BHCC rel  
BHCS rel  
BHI rel  
Branch if Half Carry Bit Clear  
Branch if Half Carry Bit Set  
Branch if Higher  
PC (PC) + 2 + rel ? (H) = 0  
PC (PC) + 2 + rel ? (H) = 1  
PC (PC) + 2 + rel ? (C) | (Z) = 0  
– REL  
– REL  
– REL  
28  
29  
22  
rr  
rr  
rr  
3
3
3
Branch if Higher or Same  
(Same as BCC)  
BHS rel  
PC (PC) + 2 + rel ? (C) = 0  
– REL  
24  
rr  
BIH rel  
BIL rel  
Branch if IRQ Pin High  
Branch if IRQ Pin Low  
PC (PC) + 2 + rel ? IRQ = 1  
PC (PC) + 2 + rel ? IRQ = 0  
– REL  
– REL  
2F  
2E  
rr  
rr  
3
3
BIT #opr  
BIT opr  
BIT opr  
BIT opr,X  
BIT opr,X  
BIT ,X  
BIT opr,SP  
BIT opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
A5  
B5  
C5  
D5  
E5  
F5  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Bit Test  
(A) & (M)  
0
9EE5 ff  
9ED5 ee ff  
Branch if Less Than or Equal To  
(Signed Operands)  
BLE opr  
PC (PC) + 2 + rel ? (Z) | (N V)=1 –  
– REL  
93  
rr  
3
BLO rel  
BLS rel  
BLT opr  
BMC rel  
BMI rel  
BMS rel  
BNE rel  
BPL rel  
BRA rel  
Branch if Lower (Same as BCS)  
Branch if Lower or Same  
PC (PC) + 2 + rel ? (C) = 1  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
25  
23  
91  
2C  
2B  
2D  
26  
2A  
20  
rr  
rr  
rr  
rr  
rr  
rr  
rr  
rr  
rr  
3
3
3
3
3
3
3
3
3
PC (PC) + 2 + rel ? (C) | (Z) = 1  
Branch if Less Than (Signed Operands) PC (PC) + 2 + rel ? (N V) = 1  
Branch if Interrupt Mask Clear  
Branch if Minus  
PC (PC) + 2 + rel ? (I) = 0  
PC (PC) + 2 + rel ? (N) = 1  
PC (PC) + 2 + rel ? (I) = 1  
PC (PC) + 2 + rel ? (Z) = 0  
PC (PC) + 2 + rel ? (N) = 0  
PC (PC) + 2 + rel  
Branch if Interrupt Mask Set  
Branch if Not Equal  
Branch if Plus  
Branch Always  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA Central Processor Unit (CPU)  
Technical Data  
67  
Central Processor Unit (CPU)  
Table 6-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Operation  
Form  
Description  
V H  
I
N Z  
C
DIR (b0)  
DIR (b1)  
DIR (b2)  
DIR (b3)  
DIR (b4)  
DIR (b5)  
DIR (b6)  
DIR (b7)  
01  
03  
05  
07  
09  
0B  
0D  
0F  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
5
5
5
5
5
5
5
5
BRCLR n,opr,rel Branch if Bit n in M Clear  
PC (PC) + 3 + rel ? (Mn) = 0  
BRN rel  
Branch Never  
PC (PC) + 2  
– REL  
DIR (b0)  
21  
rr  
3
00  
02  
04  
06  
08  
0A  
0C  
0E  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
5
5
5
5
5
5
5
5
DIR (b1)  
DIR (b2)  
DIR (b3)  
DIR (b4)  
DIR (b5)  
DIR (b6)  
DIR (b7)  
BRSET n,opr,rel Branch if Bit n in M Set  
PC (PC) + 3 + rel ? (Mn) = 1  
DIR (b0)  
DIR (b1)  
DIR (b2)  
DIR (b3)  
DIR (b4)  
DIR (b5)  
DIR (b6)  
DIR (b7)  
10  
12  
14  
16  
18  
1A  
1C  
1E  
dd  
dd  
dd  
dd  
dd  
dd  
dd  
dd  
4
4
4
4
4
4
4
4
BSET n,opr  
Set Bit n in M  
Mn 1  
PC (PC) + 2; push (PCL)  
SP (SP) – 1; push (PCH)  
SP (SP) – 1  
BSR rel  
Branch to Subroutine  
– REL  
AD  
rr  
4
PC (PC) + rel  
CBEQ opr,rel  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 3 + rel ? (X) – (M) = $00  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 2 + rel ? (A) – (M) = $00  
PC (PC) + 4 + rel ? (A) – (M) = $00  
DIR  
IMM  
31  
41  
51  
61  
71  
dd rr  
ii rr  
ii rr  
ff rr  
rr  
5
4
4
5
4
6
CBEQA #opr,rel  
CBEQX #opr,rel  
CBEQ opr,X+,rel  
CBEQ X+,rel  
IMM  
IX1+  
Compare and Branch if Equal  
IX+  
SP1  
CBEQ opr,SP,rel  
9E61 ff rr  
CLC  
CLI  
Clear Carry Bit  
C 0  
I 0  
0
0 INH  
– INH  
98  
9A  
1
2
Clear Interrupt Mask  
CLR opr  
CLRA  
CLRX  
CLRH  
CLR opr,X  
CLR ,X  
M $00  
A $00  
X $00  
H $00  
M $00  
M $00  
M $00  
DIR  
INH  
INH  
– INH  
IX1  
IX  
3F  
4F  
5F  
8C  
6F  
7F  
dd  
ff  
3
1
1
1
3
2
4
Clear  
0
0
1
CLR opr,SP  
SP1  
9E6F ff  
Technical Data  
68  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Central Processor Unit (CPU) MOTOROLA  
Central Processor Unit (CPU)  
Opcode Map  
Table 6-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H  
I
N Z  
C
CMP #opr  
CMP opr  
CMP opr  
CMP opr,X  
CMP opr,X  
CMP ,X  
CMP opr,SP  
CMP opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A1  
B1  
C1  
D1  
E1  
F1  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Compare A with M  
(A) – (M)  
SP1  
SP2  
9EE1 ff  
9ED1 ee ff  
COM opr  
COMA  
COMX  
COM opr,X  
COM ,X  
COM opr,SP  
M (M) = $FF – (M)  
A (A) = $FF – (M)  
X (X) = $FF – (M)  
M (M) = $FF – (M)  
M (M) = $FF – (M)  
M (M) = $FF – (M)  
DIR  
INH  
INH  
IX1  
IX  
33  
43  
53  
63  
73  
dd  
ff  
4
1
1
4
3
5
Complement (One’s Complement)  
Compare H:X with M  
0
1
SP1  
9E63 ff  
CPHX #opr  
CPHX opr  
IMM  
DIR  
65  
75  
ii ii+1  
dd  
3
4
(H:X) – (M:M + 1)  
CPX #opr  
CPX opr  
CPX opr  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A3  
B3  
C3  
D3  
E3  
F3  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
CPX ,X  
Compare X with M  
(X) – (M)  
CPX opr,X  
CPX opr,X  
CPX opr,SP  
CPX opr,SP  
SP1  
SP2  
9EE3 ff  
9ED3 ee ff  
DAA  
Decimal Adjust A  
(A)  
U –  
INH  
72  
2
10  
A (A)–1 or M (M)–1 or X (X)–1  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 4 + rel ? (result) 0  
5
3
3
5
4
6
DBNZ opr,rel  
DBNZA rel  
DBNZX rel  
DBNZ opr,X,rel  
DBNZ X,rel  
DBNZ opr,SP,rel  
DIR  
INH  
– INH  
IX1  
IX  
SP1  
3B  
4B  
5B  
6B  
7B  
dd rr  
rr  
rr  
ff rr  
rr  
Decrement and Branch if Not Zero  
9E6B ff rr  
DEC opr  
DECA  
DECX  
DEC opr,X  
DEC ,X  
DEC opr,SP  
M (M) – 1  
A (A) – 1  
X (X) – 1  
M (M) – 1  
M (M) – 1  
M (M) – 1  
DIR  
INH  
INH  
IX1  
IX  
3A  
4A  
5A  
6A  
7A  
dd  
ff  
4
1
1
4
3
5
Decrement  
Divide  
SP1  
9E6A ff  
A (H:A)/(X)  
H Remainder  
DIV  
INH  
52  
7
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA Central Processor Unit (CPU)  
Technical Data  
69  
Central Processor Unit (CPU)  
Table 6-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Operation  
Form  
Description  
V H  
I
N Z  
C
EOR #opr  
EOR opr  
EOR opr  
EOR opr,X  
EOR opr,X  
EOR ,X  
EOR opr,SP  
EOR opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A8  
B8  
C8  
D8  
E8  
F8  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Exclusive OR M with A  
A (A M)  
0
SP1  
SP2  
9EE8 ff  
9ED8 ee ff  
INC opr  
INCA  
INCX  
INC opr,X  
INC ,X  
INC opr,SP  
M (M) + 1  
A (A) + 1  
X (X) + 1  
M (M) + 1  
M (M) + 1  
M (M) + 1  
DIR  
INH  
INH  
IX1  
IX  
3C  
4C  
5C  
6C  
7C  
dd  
ff  
4
1
1
4
3
5
Increment  
SP1  
9E6C ff  
JMP opr  
JMP opr  
JMP opr,X  
JMP opr,X  
JMP ,X  
DIR  
EXT  
– IX2  
IX1  
IX  
BC  
CC  
DC  
EC  
FC  
dd  
2
3
4
3
2
hh ll  
ee ff  
ff  
Jump  
PC Jump Address  
JSR opr  
JSR opr  
JSR opr,X  
JSR opr,X  
JSR ,X  
DIR  
EXT  
– IX2  
IX1  
BD  
CD  
DD  
ED  
FD  
dd  
4
5
6
5
4
PC (PC) + n (n = 1, 2, or 3)  
Push (PCL); SP (SP) – 1  
Push (PCH); SP (SP) – 1  
PC Unconditional Address  
hh ll  
ee ff  
ff  
Jump to Subroutine  
IX  
LDA #opr  
LDA opr  
LDA opr  
LDA opr,X  
LDA opr,X  
LDA ,X  
LDA opr,SP  
LDA opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
A6  
B6  
C6  
D6  
E6  
F6  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Load A from M  
Load H:X from M  
Load X from M  
A (M)  
H:X (M:M + 1)  
X (M)  
0
0
0
9EE6 ff  
9ED6 ee ff  
LDHX #opr  
LDHX opr  
IMM  
45  
55  
ii jj  
dd  
3
4
DIR  
LDX #opr  
LDX opr  
LDX opr  
LDX opr,X  
LDX opr,X  
LDX ,X  
LDX opr,SP  
LDX opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
AE  
BE  
CE  
DE  
EE  
FE  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
9EEE ff  
9EDE ee ff  
LSL opr  
LSLA  
LSLX  
LSL opr,X  
LSL ,X  
LSL opr,SP  
DIR  
INH  
INH  
IX1  
IX  
38  
48  
58  
68  
78  
dd  
ff  
4
1
1
4
3
5
Logical Shift Left  
(Same as ASL)  
C
0
b7  
b0  
SP1  
9E68 ff  
Technical Data  
70  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Central Processor Unit (CPU) MOTOROLA  
Central Processor Unit (CPU)  
Opcode Map  
Table 6-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H  
I
N Z  
C
LSR opr  
LSRA  
LSRX  
LSR opr,X  
LSR ,X  
DIR  
INH  
INH  
IX1  
IX  
34  
44  
54  
64  
74  
dd  
ff  
4
1
1
4
3
5
0
C
Logical Shift Right  
0
b7  
b0  
LSR opr,SP  
SP1  
9E64 ff  
MOV opr,opr  
MOV opr,X+  
MOV #opr,opr  
MOV X+,opr  
DD  
4E  
5E  
6E  
7E  
dd dd  
dd  
ii dd  
dd  
5
4
4
4
(M)  
(M)  
Source  
Destination  
DIX+  
IMD  
IX+D  
Move  
0
0
H:X (H:X) + 1 (IX+D, DIX+)  
X:A (X) × (A)  
MUL  
Unsigned multiply  
0 INH  
42  
5
NEG opr  
NEGA  
NEGX  
NEG opr,X  
NEG ,X  
NEG opr,SP  
DIR  
INH  
INH  
IX1  
IX  
30  
40  
50  
60  
70  
dd  
ff  
4
1
1
4
3
5
M –(M) = $00 – (M)  
A –(A) = $00 – (A)  
X –(X) = $00 – (X)  
M –(M) = $00 – (M)  
M –(M) = $00 – (M)  
Negate (Two’s Complement)  
SP1  
9E60 ff  
NOP  
NSA  
No Operation  
Nibble Swap A  
None  
– INH  
– INH  
9D  
1
3
A (A[3:0]:A[7:4])  
62  
ORA #opr  
ORA opr  
ORA opr  
ORA opr,X  
ORA opr,X  
ORA ,X  
ORA opr,SP  
ORA opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
AA  
BA  
CA  
DA  
EA  
FA  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Inclusive OR A and M  
A (A) | (M)  
0
9EEA ff  
9EDA ee ff  
PSHA  
PSHH  
PSHX  
PULA  
PULH  
PULX  
Push A onto Stack  
Push H onto Stack  
Push X onto Stack  
Pull A from Stack  
Pull H from Stack  
Pull X from Stack  
Push (A); SP (SP) – 1  
Push (H); SP (SP) – 1  
Push (X); SP (SP) – 1  
SP (SP + 1); Pull (A)  
SP (SP + 1); Pull (H)  
SP (SP + 1); Pull (X)  
– INH  
– INH  
– INH  
– INH  
– INH  
– INH  
87  
8B  
89  
86  
8A  
88  
2
2
2
2
2
2
ROL opr  
ROLA  
ROLX  
ROL opr,X  
ROL ,X  
ROL opr,SP  
DIR  
INH  
INH  
IX1  
IX  
39  
49  
59  
69  
79  
dd  
ff  
4
1
1
4
3
5
C
Rotate Left through Carry  
b7  
b0  
SP1  
9E69 ff  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA Central Processor Unit (CPU)  
Technical Data  
71  
Central Processor Unit (CPU)  
Table 6-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Operation  
Form  
Description  
V H  
I
N Z  
C
ROR opr  
RORA  
DIR  
INH  
INH  
IX1  
IX  
36  
46  
56  
66  
76  
dd  
ff  
4
1
1
4
3
5
RORX  
C
Rotate Right through Carry  
ROR opr,X  
b7  
b0  
ROR ,X  
ROR opr,SP  
SP1  
9E66 ff  
RSP  
Reset Stack Pointer  
Return from Interrupt  
SP $FF  
– INH  
9C  
1
SP (SP) + 1; Pull (CCR)  
SP (SP) + 1; Pull (A)  
SP (SP) + 1; Pull (X)  
SP (SP) + 1; Pull (PCH)  
SP (SP) + 1; Pull (PCL)  
RTI  
INH  
80  
81  
7
SP SP + 1; Pull (PCH)  
SP SP + 1; Pull (PCL)  
RTS  
Return from Subroutine  
Subtract with Carry  
– INH  
4
SBC #opr  
SBC opr  
SBC opr  
SBC opr,X  
SBC opr,X  
SBC ,X  
SBC opr,SP  
SBC opr,SP  
IMM  
DIR  
EXT  
A2  
B2  
C2  
D2  
E2  
F2  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
IX2  
IX1  
A (A) – (M) – (C)  
IX  
SP1  
SP2  
9EE2 ff  
9ED2 ee ff  
SEC  
SEI  
Set Carry Bit  
C 1  
I 1  
1
1 INH  
– INH  
99  
9B  
1
2
Set Interrupt Mask  
STA opr  
STA opr  
DIR  
EXT  
IX2  
– IX1  
IX  
B7  
C7  
D7  
E7  
F7  
dd  
3
4
4
3
2
4
5
hh ll  
ee ff  
ff  
STA opr,X  
STA opr,X  
STA ,X  
STA opr,SP  
STA opr,SP  
Store A in M  
M (A)  
0
SP1  
SP2  
9EE7 ff  
9ED7 ee ff  
STHX opr  
Store H:X in M  
(M:M + 1) (H:X)  
0
0
– DIR  
– INH  
35  
8E  
dd  
4
1
STOP  
Enable IRQ Pin; Stop Oscillator  
I 0; Stop Oscillator  
STX opr  
STX opr  
DIR  
EXT  
IX2  
– IX1  
IX  
BF  
CF  
DF  
EF  
FF  
dd  
3
4
4
3
2
4
5
hh ll  
ee ff  
ff  
STX opr,X  
STX opr,X  
STX ,X  
STX opr,SP  
STX opr,SP  
Store X in M  
M (X)  
0
SP1  
SP2  
9EEF ff  
9EDF ee ff  
Technical Data  
72  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Central Processor Unit (CPU) MOTOROLA  
Central Processor Unit (CPU)  
Opcode Map  
Table 6-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H  
I
N Z  
C
SUB #opr  
SUB opr  
SUB opr  
SUB opr,X  
SUB opr,X  
SUB ,X  
SUB opr,SP  
SUB opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A0  
B0  
C0  
D0  
E0  
F0  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Subtract  
A (A) – (M)  
SP1  
SP2  
9EE0 ff  
9ED0 ee ff  
PC (PC) + 1; Push (PCL)  
SP (SP) – 1; Push (PCH)  
SP (SP) – 1; Push (X)  
SP (SP) – 1; Push (A)  
SP (SP) – 1; Push (CCR)  
SP (SP) – 1; I 1  
SWI  
Software Interrupt  
1
– INH  
83  
9
PCH Interrupt Vector High Byte  
PCL Interrupt Vector Low Byte  
TAP  
TAX  
TPA  
Transfer A to CCR  
Transfer A to X  
CCR (A)  
X (A)  
INH  
84  
97  
85  
2
1
1
– INH  
– INH  
Transfer CCR to A  
A (CCR)  
TST opr  
TSTA  
TSTX  
TST opr,X  
TST ,X  
TST opr,SP  
DIR  
INH  
INH  
IX1  
IX  
3D  
4D  
5D  
6D  
7D  
dd  
ff  
3
1
1
3
2
4
Test for Negative or Zero  
(A) – $00 or (X) – $00 or (M) – $00  
0
SP1  
9E6D ff  
TSX  
TXA  
TXS  
Transfer SP to H:X  
Transfer X to A  
H:X (SP) + 1  
A (X)  
– INH  
– INH  
– INH  
95  
9F  
94  
2
1
2
Transfer H:X to SP  
(SP) (H:X) – 1  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA Central Processor Unit (CPU)  
Technical Data  
73  
Central Processor Unit (CPU)  
Table 6-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Operation  
Form  
Description  
V H  
I N Z C  
A
C
Accumulator  
Carry/borrow bit  
n
Any bit  
opr Operand (one or two bytes)  
PC Program counter  
PCH Program counter high byte  
PCL Program counter low byte  
REL Relative addressing mode  
CCR Condition code register  
dd Direct address of operand  
dd rr Direct address of operand and relative offset of branch instruction  
DD  
DIR  
DIX+ Direct to indexed with post increment addressing mode  
ee ff High and low bytes of offset in indexed, 16-bit offset addressing  
EXT Extended addressing mode  
ff  
H
H
Direct to direct addressing mode  
Direct addressing mode  
rel  
rr  
Relative program counter offset byte  
Relative program counter offset byte  
SP1 Stack pointer, 8-bit offset addressing mode  
SP2 Stack pointer 16-bit offset addressing mode  
SP Stack pointer  
U
V
X
Z
Offset byte in indexed, 8-bit offset addressing  
Half-carry bit  
Index register high byte  
Undefined  
Overflow bit  
Index register low byte  
Zero bit  
hh ll High and low bytes of operand address in extended addressing  
I
Interrupt mask  
ii  
Immediate operand byte  
&
|
Logical AND  
Logical OR  
Logical EXCLUSIVE OR  
Contents of  
IMD Immediate source to direct destination addressing mode  
IMM Immediate addressing mode  
INH  
IX  
Inherent addressing mode  
Indexed, no offset addressing mode  
Indexed, no offset, post increment addressing mode  
( )  
–( ) Negation (two’s complement)  
#
«
?
IX+  
Immediate value  
Sign extend  
Loaded with  
If  
IX+D Indexed with post increment to direct addressing mode  
IX1 Indexed, 8-bit offset addressing mode  
IX1+ Indexed, 8-bit offset, post increment addressing mode  
IX2  
M
N
Indexed, 16-bit offset addressing mode  
Memory location  
Negative bit  
:
Concatenated with  
Set or cleared  
Not affected  
Technical Data  
74  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Central Processor Unit (CPU)  
MOTOROLA  
Table 6-2. Opcode Map  
Bit Manipulation Branch  
Read-Modify-Write  
Control  
Register/Memory  
DIR  
DIR  
REL  
DIR  
3
INH  
4
INH  
IX1  
SP1  
9E6  
IX  
7
INH  
INH  
IMM  
A
DIR  
B
EXT  
C
IX2  
SP2  
IX1  
E
SP1  
9EE  
IX  
F
MSB  
0
1
2
5
6
8
9
D
9ED  
LSB  
5
4
3
4
1
NEGA  
INH  
1
NEGX  
INH  
4
5
3
7
3
2
3
4
4
5
3
4
2
0
BRSET0 BSET0  
BRA  
NEG  
NEG  
NEG  
NEG  
IX  
RTI  
BGE  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
IX  
3
DIR  
5
2
DIR  
4
2
2
2
2
2
2
2
2
REL 2 DIR  
1
1
2
IX1 3 SP1  
5
1
2
1
1
1
2
1
1
1
1
1
2
1
1
2
1
1
1
INH  
2
2
2
2
1
1
REL 2 IMM 2 DIR  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
EXT 3 IX2  
4
4
4
4
4
4
4
4
4
4
4
4
SP2  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
IX1  
3
3
3
3
3
3
3
3
3
3
3
3
SP1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
BRN  
REL 3 DIR  
5
4
4
6
CBEQ  
SP1  
4
CBEQ  
IX+  
2
DAA  
INH  
3
COM  
IX  
3
LSR  
IX  
4
CPHX  
DIR  
3
ROR  
IX  
3
ASR  
IX  
3
LSL  
IX  
3
ROL  
IX  
3
DEC  
IX  
4
DBNZ  
IX  
3
INC  
IX  
4
3
BLT  
2
CMP  
3
4
4
5
3
4
2
CMP  
IX  
2
SBC  
IX  
2
CPX  
IX  
2
AND  
IX  
2
BIT  
IX  
2
LDA  
IX  
2
STA  
IX  
2
EOR  
IX  
2
ADC  
IX  
2
ORA  
IX  
2
ADD  
IX  
2
JMP  
IX  
4
JSR  
IX  
2
LDX  
IX  
2
STX  
IX  
1
2
BRCLR0 BCLR0  
CBEQ CBEQA CBEQX CBEQ  
RTS  
CMP  
CMP  
CMP  
CMP  
CMP  
CMP  
3
DIR  
5
2
DIR  
4
3
IMM 3 IMM 3 IX1+  
4
INH  
REL 2 IMM 2 DIR  
EXT 3 IX2  
SP2  
IX1  
SP1  
3
5
7
3
3
BGT  
2
SBC  
3
SBC  
4
SBC  
EXT 3 IX2  
4
CPX  
EXT 3 IX2  
4
AND  
EXT 3 IX2  
4
BIT  
EXT 3 IX2  
4
LDA  
EXT 3 IX2  
4
STA  
EXT 3 IX2  
4
EOR  
EXT 3 IX2  
4
ADC  
EXT 3 IX2  
4
ORA  
EXT 3 IX2  
4
ADD  
EXT 3 IX2  
3
JMP  
EXT 3 IX2  
5
JSR  
EXT 3 IX2  
4
LDX  
EXT 3 IX2  
4
STX  
EXT 3 IX2  
4
SBC  
5
3
4
BRSET1 BSET1  
BHI  
MUL  
INH  
DIV  
INH  
NSA  
SBC  
SBC  
SBC  
3
DIR  
5
2
DIR  
4
REL  
1
1
1
2
2
3
2
2
2
2
2
INH  
REL 2 IMM 2 DIR  
SP2  
IX1  
SP1  
3
BLS  
REL 2 DIR  
3
BCC  
REL 2 DIR  
3
BCS  
REL 2 DIR  
3
BNE  
REL 2 DIR  
4
1
1
4
COM  
IX1  
4
LSR  
IX1  
3
CPHX  
IMM  
4
ROR  
IX1  
4
ASR  
IX1  
4
LSL  
IX1  
4
ROL  
IX1  
4
DEC  
IX1  
5
COM  
SP1  
5
LSR  
SP1  
9
3
BLE  
2
CPX  
3
CPX  
4
CPX  
5
3
4
3
BRCLR1 BCLR1  
COM  
COMA  
COMX  
SWI  
CPX  
CPX  
CPX  
3
DIR  
5
2
DIR  
4
1
INH  
1
INH  
3
3
1
1
1
1
1
1
1
1
1
1
INH  
REL 2 IMM 2 DIR  
SP2  
IX1  
SP1  
4
LSR  
1
LSRA  
INH  
1
LSRX  
INH  
2
2
2
AND  
IMM 2 DIR  
3
AND  
4
AND  
5
3
4
4
BRSET2 BSET2  
TAP  
TXS  
AND  
AND  
AND  
3
DIR  
5
2
DIR  
4
1
3
1
1
1
1
1
1
INH  
INH  
2
2
2
2
2
2
2
2
SP2  
IX1  
SP1  
4
3
4
1
2
2
BIT  
3
BIT  
4
BIT  
5
BIT  
SP2  
3
4
BIT  
SP1  
5
BRCLR2 BCLR2  
STHX  
LDHX  
LDHX  
TPA  
TSX  
BIT  
3
DIR  
5
2
DIR  
4
IMM 2 DIR  
INH  
INH  
IMM 2 DIR  
IX1  
4
ROR  
1
RORA  
INH  
1
ASRA  
INH  
1
LSLA  
INH  
1
ROLA  
INH  
1
5
ROR  
SP1  
5
ASR  
SP1  
5
LSL  
SP1  
5
ROL  
SP1  
5
DEC  
SP1  
6
DBNZ  
SP1  
5
INC  
SP1  
4
TST  
SP1  
2
PULA  
INH  
2
PSHA  
INH  
2
PULX  
INH  
2
PSHX  
INH  
2
PULH  
INH  
2
PSHH  
INH  
1
CLRH  
INH  
2
LDA  
IMM 2 DIR  
2
AIS  
IMM 2 DIR  
2
EOR  
IMM 2 DIR  
2
ADC  
IMM 2 DIR  
2
ORA  
IMM 2 DIR  
2
ADD  
IMM 2 DIR  
3
LDA  
4
LDA  
5
3
4
6
BRSET3 BSET3  
RORX  
LDA  
LDA  
LDA  
3
DIR  
5
2
DIR  
4
1
INH  
3
3
3
3
3
4
3
3
SP2  
IX1  
SP1  
3
BEQ  
REL 2 DIR  
3
4
ASR  
1
ASRX  
INH  
1
LSLX  
INH  
1
ROLX  
INH  
1
DECX  
INH  
1
3
STA  
4
STA  
5
3
4
7
BRCLR3 BCLR3  
TAX  
STA  
STA  
STA  
3
DIR  
5
2
DIR  
4
1
1
1
1
1
1
1
1
1
1
1
INH  
SP2  
IX1  
SP1  
4
LSL  
1
3
EOR  
4
EOR  
5
3
4
8
BRSET4 BSET4 BHCC  
CLC  
EOR  
EOR  
EOR  
3
DIR  
5
2
DIR  
4
2
REL 2 DIR  
3
INH  
SP2  
IX1  
SP1  
4
ROL  
1
3
ADC  
4
ADC  
5
3
4
9
BRCLR4 BCLR4 BHCS  
SEC  
ADC  
ADC  
ADC  
3
DIR  
5
2
DIR  
4
2
2
2
2
2
2
2
REL 2 DIR  
INH  
SP2  
IX1  
SP1  
3
BPL  
REL 2 DIR  
3
BMI  
REL 3 DIR  
4
DEC  
1
DECA  
INH  
2
3
ORA  
4
ORA  
5
3
4
A
B
C
D
E
F
BRSET5 BSET5  
CLI  
ORA  
ORA  
ORA  
3
DIR  
5
2
DIR  
4
INH  
SP2  
IX1  
SP1  
5
3
3
5
2
3
ADD  
4
ADD  
5
3
4
BRCLR5 BCLR5  
DBNZ DBNZA DBNZX DBNZ  
SEI  
ADD  
ADD  
ADD  
3
DIR  
5
2
DIR  
4
2
1
1
3
1
INH  
1
2
1
1
2
1
INH  
1
3
2
2
3
2
IX1  
4
INH  
SP2  
IX1  
SP1  
3
4
INC  
1
2
JMP  
4
JMP  
3
BRSET6 BSET6  
BMC  
INCA  
INCX  
INC  
RSP  
JMP  
3
DIR  
5
2
DIR  
4
REL 2 DIR  
INH  
1
INH  
1
IX1  
3
INH  
2
DIR  
4
IX1  
3
BMS  
3
TST  
2
TST  
IX  
1
4
BSR  
REL 2 DIR  
2
LDX  
IMM 2 DIR  
2
AIX  
IMM 2 DIR  
6
JSR  
5
BRCLR6 BCLR6  
TSTA  
TSTX  
TST  
NOP  
JSR  
JSR  
3
DIR  
5
2
DIR  
4
REL 2 DIR  
3
INH  
5
INH  
4
IX1  
4
INH  
2
2
2
IX1  
4
1
STOP  
INH  
1
WAIT  
INH  
3
LDX  
4
LDX  
5
3
4
BRSET7 BSET7  
BIL  
MOV  
MOV  
MOV  
MOV  
IX+D  
LDX  
LDX  
LDX  
*
1
TXA  
INH  
3
DIR  
5
2
DIR  
4
REL  
3
DD  
DIX+  
IMD  
3
1
1
4
4
SP2  
IX1  
3
3
SP1  
3
CLR  
1
CLRA  
INH  
1
CLRX  
INH  
4
CLR  
SP1  
2
CLR  
IX  
3
STX  
4
STX  
5
3
4
BRCLR7 BCLR7  
BIH  
CLR  
STX  
STX  
STX  
3
DIR  
2
DIR  
REL 2 DIR  
IX1  
3
1
SP2  
IX1  
SP1  
INH Inherent  
REL Relative  
SP1 Stack Pointer, 8-Bit Offset  
SP2 Stack Pointer, 16-Bit Offset  
IX+ Indexed, No Offset with  
Post Increment  
IX1+ Indexed, 1-Byte Offset with  
Post Increment  
MSB  
LSB  
0
High Byte of Opcode in Hexadecimal  
Cycles  
IMM Immediate  
DIR Direct  
IX  
Indexed, No Offset  
IX1 Indexed, 8-Bit Offset  
IX2 Indexed, 16-Bit Offset  
IMD Immediate-Direct  
EXT Extended  
DD Direct-Direct  
IX+D Indexed-Direct DIX+ Direct-Indexed  
*Pre-byte for stack pointer indexed instructions  
5
Low Byte of Opcode in Hexadecimal  
0
BRSET0 Opcode Mnemonic  
DIR Number of Bytes / Addressing Mode  
3
Central Processor Unit (CPU)  
Technical Data  
76  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Central Processor Unit (CPU) MOTOROLA  
Technical Data – MC68H(R)C908JL3E/JK3E/JK1E  
Section 7. System Integration Module (SIM)  
7.1 Contents  
7.2  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78  
7.3  
SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . .81  
Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81  
Clock Start-Up from POR. . . . . . . . . . . . . . . . . . . . . . . . . . .81  
Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . .81  
7.3.1  
7.3.2  
7.3.3  
7.4  
7.4.1  
7.4.2  
7.4.2.1  
7.4.2.2  
7.4.2.3  
7.4.2.4  
7.4.2.5  
Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . .82  
External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82  
Active Resets from Internal Sources . . . . . . . . . . . . . . . . . .83  
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84  
Computer Operating Properly (COP) Reset. . . . . . . . . . .85  
Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
LVI Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
7.5  
SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . .86  
SIM Counter During Stop Mode Recovery. . . . . . . . . . . . . .86  
SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . .87  
7.5.1  
7.5.2  
7.5.3  
7.6  
7.6.1  
Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87  
Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
Interrupt Status Registers. . . . . . . . . . . . . . . . . . . . . . . . . . .91  
Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . .92  
Interrupt Status Register 2. . . . . . . . . . . . . . . . . . . . . . . .92  
Interrupt Status Register 3. . . . . . . . . . . . . . . . . . . . . . . .93  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . .94  
7.6.1.1  
7.6.1.2  
7.6.2  
7.6.2.1  
7.6.2.2  
7.6.2.3  
7.6.3  
7.6.4  
7.6.5  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA System Integration Module (SIM)  
Technical Data  
77  
System Integration Module (SIM)  
7.7  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
7.7.1  
7.7.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
7.8  
SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97  
Break Status Register (BSR) . . . . . . . . . . . . . . . . . . . . . . . .97  
Reset Status Register (RSR) . . . . . . . . . . . . . . . . . . . . . . . .98  
Break Flag Control Register (BFCR) . . . . . . . . . . . . . . . . .100  
7.8.1  
7.8.2  
7.8.3  
7.2 Introduction  
This section describes the system integration module (SIM), which  
supports up to 24 external and/or internal interrupts. Together with the  
CPU, the SIM controls all MCU activities. A block diagram of the SIM is  
shown in Figure 7-1. Figure 7-2 is a summary of the SIM I/O registers.  
The SIM is a system state controller that coordinates CPU and exception  
timing. The SIM is responsible for:  
• Bus clock generation and control for CPU and peripherals  
– Stop/wait/reset/break entry and recovery  
– Internal clock control  
• Master reset control, including power-on reset (POR) and COP  
timeout  
• Interrupt control:  
– Acknowledge timing  
– Arbitration control timing  
– Vector address generation  
• CPU enable/disable timing  
• Modular architecture expandable to 128 interrupt sources  
Technical Data  
78  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
Introduction  
MODULE STOP  
MODULE WAIT  
CPU STOP (FROM CPU)  
CPU WAIT (FROM CPU)  
STOP/WAIT  
CONTROL  
SIMOSCEN (TO OSCILLATOR)  
SIM  
COUNTER  
COP CLOCK  
2OSCOUT (FROM OSCILLATOR)  
OSCOUT (FROM OSCILLATOR)  
÷2  
VDD  
CLOCK  
CONTROL  
CLOCK GENERATORS  
INTERNAL CLOCKS  
INTERNAL  
PULL-UP  
ILLEGAL OPCODE (FROM CPU)  
ILLEGAL ADDRESS (FROM ADDRESS  
MAP DECODERS)  
RESET  
PIN LOGIC  
POR CONTROL  
RESET PIN CONTROL  
MASTER  
RESET  
CONTROL  
COP TIMEOUT (FROM COP MODULE)  
USB RESET (FROM USB MODULE)  
SIM RESET STATUS REGISTER  
RESET  
INTERRUPT SOURCES  
CPU INTERFACE  
INTERRUPT CONTROL  
AND PRIORITY DECODE  
Figure 7-1. SIM Block Diagram  
Table 7-1. Signal Name Conventions  
Signal Name  
Description  
2OSCOUT  
Buffered clock from the X-tal oscillator circuit or the RC oscillator circuit.  
The 2OSCOUT frequency divided by two. This signal is again divided by two in the  
SIM to generate the internal bus clocks. (Bus clock = 2OSCOUT ÷ 4)  
OSCOUT  
IAB  
IDB  
Internal address bus  
Internal data bus  
PORRST  
IRST  
Signal from the power-on reset module to the SIM  
Internal reset signal  
R/W  
Read/write signal  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA System Integration Module (SIM)  
Technical Data  
79  
System Integration Module (SIM)  
Addr.  
Register Name  
Bit 7  
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
Bit 0  
Read:  
Write:  
Reset:  
SBSW  
NOTE  
0
R
0
R
0
Break Status Register  
(BSR)  
$FE00  
Note: Writing a logic 0 clears SBSW.  
Read: POR  
Write:  
PIN  
COP  
ILOP  
ILAD  
MODRST  
LVI  
0
Reset Status Register  
$FE01  
(RSR)  
POR:  
Read:  
1
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
$FE02  
$FE03  
$FE04  
$FE05  
$FE06  
Reserved Write:  
Reset:  
Read:  
Break Flag Control  
BCFE  
R
R
R
R
R
R
R
Register Write:  
(BFCR)  
Reset:  
0
0
Read:  
IF5  
R
0
IF4  
R
0
IF3  
R
0
0
R
0
IF1  
0
R
0
0
R
Interrupt Status Register 1  
(INT1)  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
R
R
0
0
0
IF14  
R
0
0
0
0
0
0
0
Interrupt Status Register 2  
(INT2)  
R
0
R
0
R
0
R
0
R
R
0
R
0
0
0
0
0
0
0
0
0
0
IF15  
R
Interrupt Status Register 3  
(INT3)  
R
R
0
R
0
R
0
R
0
R
R
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 7-2. SIM I/O Register Summary  
Technical Data  
80  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
System Integration Module (SIM) MOTOROLA  
System Integration Module (SIM)  
SIM Bus Clock Control and Generation  
7.3 SIM Bus Clock Control and Generation  
The bus clock generator provides system clock signals for the CPU and  
peripherals on the MCU. The system clocks are generated from an  
incoming clock, OSCOUT, as shown in Figure 7-3.  
From  
OSCILLATOR  
2OSCOUT  
OSCOUT  
SIM COUNTER  
From  
OSCILLATOR  
BUS CLOCK  
GENERATORS  
÷ 2  
SIM  
Figure 7-3. SIM Clock Signals  
7.3.1 Bus Timing  
In user mode, the internal bus frequency is the oscillator frequency  
(2OSCOUT) divided by four.  
7.3.2 Clock Start-Up from POR  
When the power-on reset module generates a reset, the clocks to the  
CPU and peripherals are inactive and held in an inactive phase until after  
the 4096 2OSCOUT cycle POR time-out has completed. The RST pin is  
driven low by the SIM during this entire period. The IBUS clocks start  
upon completion of the time-out.  
7.3.3 Clocks in Stop Mode and Wait Mode  
Upon exit from stop mode by an interrupt, break, or reset, the SIM allows  
2OSCOUT to clock the SIM counter. The CPU and peripheral clocks do  
not become active until after the stop delay time-out. This time-out is  
selectable as 4096 or 32 2OSCOUT cycles. (See 7.7.2 Stop Mode.)  
In wait mode, the CPU clocks are inactive. The SIM also produces two  
sets of clocks for other modules. Refer to the wait mode subsection of  
each module to see if the module is active or inactive in wait mode.  
Some modules can be programmed to be active in wait mode.  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA System Integration Module (SIM)  
Technical Data  
81  
System Integration Module (SIM)  
7.4 Reset and System Initialization  
The MCU has these reset sources:  
• Power-on reset module (POR)  
• External reset pin (RST)  
• Computer operating properly module (COP)  
• Low-voltage inhibit module (LVI)  
• Illegal opcode  
• Illegal address  
All of these resets produce the vector $FFFE–$FFFF ($FEFE–$FEFF in  
Monitor mode) and assert the internal reset signal (IRST). IRST causes  
all registers to be returned to their default values and all modules to be  
returned to their reset states.  
An internal reset clears the SIM counter (see 7.5 SIM Counter), but an  
external reset does not. Each of the resets sets a corresponding bit in  
the reset status register (RSR). (See 7.8 SIM Registers.)  
7.4.1 External Pin Reset  
The RST pin circuits include an internal pull-up device. Pulling the  
asynchronous RST pin low halts all processing. The PIN bit of the reset  
status register (RSR) is set as long as RST is held low for a minimum of  
67 2OSCOUT cycles, assuming that the POR was not the source of the  
reset. See Table 7-2 for details. Figure 7-4 shows the relative timing.  
Table 7-2. PIN Bit Set Timing  
Reset Type  
POR  
Number of Cycles Required to Set PIN  
4163 (4096 + 64 + 3)  
All others  
67 (64 + 3)  
2OSCOUT  
RST  
IAB  
VECT H VECT L  
PC  
Figure 7-4. External Reset Timing  
Technical Data  
82  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
System Integration Module (SIM) MOTOROLA  
System Integration Module (SIM)  
Reset and System Initialization  
7.4.2 Active Resets from Internal Sources  
All internal reset sources actively pull the RST pin low for 32 2OSCOUT  
cycles to allow resetting of external peripherals. The internal reset signal  
IRST continues to be asserted for an additional 32 cycles (Figure 7-5).  
An internal reset can be caused by an illegal address, illegal opcode,  
COP time-out, or POR. (See Figure 7-6 . Sources of Internal Reset.)  
Note that for POR resets, the SIM cycles through 4096 2OSCOUT  
cycles during which the SIM forces the RST pin low. The internal reset  
signal then follows the sequence from the falling edge of RST shown in  
Figure 7-5.  
IRST  
RST PULLED LOW BY MCU  
32 CYCLES  
RST  
32 CYCLES  
2OSCOUT  
IAB  
VECTOR HIGH  
Figure 7-5. Internal Reset Timing  
The COP reset is asynchronous to the bus clock.  
ILLEGAL ADDRESS RST  
ILLEGAL OPCODE RST  
COPRST  
POR  
INTERNAL RESET  
LVI  
Figure 7-6. Sources of Internal Reset  
The active reset feature allows the part to issue a reset to peripherals  
and other chips within a system built around the MCU.  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA System Integration Module (SIM)  
Technical Data  
83  
System Integration Module (SIM)  
7.4.2.1 Power-On Reset  
When power is first applied to the MCU, the power-on reset module  
(POR) generates a pulse to indicate that power-on has occurred. The  
external reset pin (RST) is held low while the SIM counter counts out  
4096 2OSCOUT cycles. Sixty-four 2OSCOUT cycles later, the CPU and  
memories are released from reset to allow the reset vector sequence to  
occur.  
At power-on, the following events occur:  
• A POR pulse is generated.  
• The internal reset signal is asserted.  
• The SIM enables the oscillator to drive 2OSCOUT.  
• Internal clocks to the CPU and modules are held inactive for 4096  
2OSCOUT cycles to allow stabilization of the oscillator.  
• The RST pin is driven low during the oscillator stabilization time.  
• The POR bit of the reset status register (RSR) is set and all other  
bits in the register are cleared.  
OSC1  
PORRST  
4096  
CYCLES  
32  
CYCLES  
32  
CYCLES  
2OSCOUT  
OSCOUT  
RST  
IAB  
$FFFE  
$FFFF  
Figure 7-7. POR Recovery  
Technical Data  
84  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
System Integration Module (SIM) MOTOROLA  
System Integration Module (SIM)  
Reset and System Initialization  
7.4.2.2 Computer Operating Properly (COP) Reset  
An input to the SIM is reserved for the COP reset signal. The overflow of  
the COP counter causes an internal reset and sets the COP bit in the  
reset status register (RSR). The SIM actively pulls down the RST pin for  
all internal reset sources.  
To prevent a COP module time-out, write any value to location $FFFF.  
Writing to location $FFFF clears the COP counter and stages 12 through  
5 of the SIM counter. The SIM counter output, which occurs at least  
every (212 – 24) 2OSCOUT cycles, drives the COP counter. The COP  
should be serviced as soon as possible out of reset to guarantee the  
maximum amount of time before the first time-out.  
The COP module is disabled if the RST pin or the IRQ1 pin is held at  
V
DD + VHI while the MCU is in monitor mode. The COP module can be  
disabled only through combinational logic conditioned with the high  
voltage signal on the RST or the IRQ1 pin. This prevents the COP from  
becoming disabled as a result of external noise. During a break state,  
V
DD + VHI on the RST pin disables the COP module.  
7.4.2.3 Illegal Opcode Reset  
The SIM decodes signals from the CPU to detect illegal instructions. An  
illegal instruction sets the ILOP bit in the reset status register (RSR) and  
causes a reset.  
If the stop enable bit, STOP, in the mask option register is logic zero, the  
SIM treats the STOP instruction as an illegal opcode and causes an  
illegal opcode reset. The SIM actively pulls down the RST pin for all  
internal reset sources.  
7.4.2.4 Illegal Address Reset  
An opcode fetch from an unmapped address generates an illegal  
address reset. The SIM verifies that the CPU is fetching an opcode prior  
to asserting the ILAD bit in the reset status register (RSR) and resetting  
the MCU. A data fetch from an unmapped address does not generate a  
reset. The SIM actively pulls down the RST pin for all internal reset  
sources.  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA System Integration Module (SIM)  
Technical Data  
85  
System Integration Module (SIM)  
7.4.2.5 LVI Reset  
The low-voltage inhibit module (LVI) asserts its output to the SIM when  
the VDD voltage falls to the LVI trip voltage VTRIP. The LVI bit in the SIM  
reset status register (SRSR) is set, and the external reset pin (RSTB) is  
held low while the SIM counter counts out 4096 2OSCOUT cycles. Sixty-  
four 2OSCOUT cycles later, the CPU and memories are released from  
reset to allow the reset vector sequence to occur. The SIM actively pulls  
down the (RSTB) pin for all internal reset sources.  
7.5 SIM Counter  
The SIM counter is used by the power-on reset module (POR) and in  
stop mode recovery to allow the oscillator time to stabilize before  
enabling the internal bus (IBUS) clocks. The SIM counter also serves as  
a prescaler for the computer operating properly module (COP). The SIM  
counter uses 12 stages for counting, followed by a 13th stage that  
triggers a reset of SIM counters and supplies the clock for the COP  
module. The SIM counter is clocked by the falling edge of 2OSCOUT.  
7.5.1 SIM Counter During Power-On Reset  
The power-on reset module (POR) detects power applied to the MCU.  
At power-on, the POR circuit asserts the signal PORRST. Once the SIM  
is initialized, it enables the oscillator to drive the bus clock state machine.  
7.5.2 SIM Counter During Stop Mode Recovery  
The SIM counter also is used for stop mode recovery. The STOP  
instruction clears the SIM counter. After an interrupt, break, or reset, the  
SIM senses the state of the short stop recovery bit, SSREC, in the mask  
option register. If the SSREC bit is a logic one, then the stop recovery is  
reduced from the normal delay of 4096 2OSCOUT cycles down to 32  
2OSCOUT cycles. This is ideal for applications using canned oscillators  
that do not require long start-up times from stop mode. External crystal  
applications should use the full stop recovery time, that is, with SSREC  
cleared in the configuration register (CONFIG).  
Technical Data  
86  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
Exception Control  
7.5.3 SIM Counter and Reset States  
External reset has no effect on the SIM counter. (See 7.7.2 Stop Mode  
for details.) The SIM counter is free-running after all reset states. (See  
7.4.2 Active Resets from Internal Sources for counter control and  
internal reset recovery sequences.)  
7.6 Exception Control  
Normal, sequential program execution can be changed in three different  
ways:  
• Interrupts  
– Maskable hardware CPU interrupts  
– Non-maskable software interrupt instruction (SWI)  
• Reset  
• Break interrupts  
7.6.1 Interrupts  
An interrupt temporarily changes the sequence of program execution to  
respond to a particular event. Figure 7-8 flow charts the handling of  
system interrupts.  
Interrupts are latched, and arbitration is performed in the SIM at the start  
of interrupt processing. The arbitration result is a constant that the CPU  
uses to determine which vector to fetch. Once an interrupt is latched by  
the SIM, no other interrupt can take precedence, regardless of priority,  
until the latched interrupt is serviced (or the I bit is cleared).  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA System Integration Module (SIM)  
Technical Data  
87  
System Integration Module (SIM)  
FROM RESET  
YES  
BREAK INTERRUPT?  
NO  
YES  
I BIT SET?  
NO  
YES  
YES  
IRQ  
INTERRUPT?  
NO  
TIMER  
INTERRUPT?  
NO  
STACK CPU REGISTERS.  
SET I BIT.  
LOAD PC WITH INTERRUPT VECTOR.  
(As many interrupts as exist on chip)  
FETCH NEXT  
INSTRUCTION  
SWI  
INSTRUCTION?  
YES  
YES  
NO  
RTI  
INSTRUCTION?  
UNSTACK CPU REGISTERS.  
EXECUTE INSTRUCTION.  
NO  
Figure 7-8. Interrupt Processing  
Technical Data  
88  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
System Integration Module (SIM) MOTOROLA  
System Integration Module (SIM)  
Exception Control  
At the beginning of an interrupt, the CPU saves the CPU register  
contents on the stack and sets the interrupt mask (I bit) to prevent  
additional interrupts. At the end of an interrupt, the RTI instruction  
recovers the CPU register contents from the stack so that normal  
processing can resume. Figure 7-9 shows interrupt entry timing.  
Figure 7-10 shows interrupt recovery timing.  
MODULE  
INTERRUPT  
I BIT  
IAB  
DUMMY  
SP  
SP – 1  
SP – 2  
SP – 3  
SP – 4  
VECT H  
VECT L START ADDR  
IDB  
R/W  
DUMMY PC – 1[7:0] PC – 1[15:8]  
X
A
CCR  
V DATA H V DATA L OPCODE  
Figure 7-9. Interrupt Entry  
MODULE  
INTERRUPT  
I BIT  
IAB  
SP – 4  
SP – 3  
SP – 2  
SP – 1  
SP  
PC  
PC + 1  
IDB  
R/W  
CCR  
A
X
PC – 1[15:8] PC – 1[7:0] OPCODE OPERAND  
Figure 7-10. Interrupt Recovery  
7.6.1.1 Hardware Interrupts  
A hardware interrupt does not stop the current instruction. Processing of  
a hardware interrupt begins after completion of the current instruction.  
When the current instruction is complete, the SIM checks all pending  
hardware interrupts. If interrupts are not masked (I bit clear in the  
condition code register), and if the corresponding interrupt enable bit is  
set, the SIM proceeds with interrupt processing; otherwise, the next  
instruction is fetched and executed.  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA System Integration Module (SIM)  
Technical Data  
89  
System Integration Module (SIM)  
If more than one interrupt is pending at the end of an instruction  
execution, the highest priority interrupt is serviced first. Figure 7-11  
demonstrates what happens when two interrupts are pending. If an  
interrupt is pending upon exit from the original interrupt service routine,  
the pending interrupt is serviced before the LDA instruction is executed.  
CLI  
LDA #$FF  
BACKGROUND ROUTINE  
INT1  
PSHH  
INT1 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
INT2  
PSHH  
INT2 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
Figure 7-11. Interrupt Recognition Example  
The LDA opcode is prefetched by both the INT1 and INT2 RTI  
instructions. However, in the case of the INT1 RTI prefetch, this is a  
redundant operation.  
NOTE: To maintain compatibility with the M6805 Family, the H register is not  
pushed on the stack during interrupt entry. If the interrupt service routine  
modifies the H register or uses the indexed addressing mode, software  
should save the H register and then restore it prior to exiting the routine.  
Technical Data  
90  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
Exception Control  
7.6.1.2 SWI Instruction  
The SWI instruction is a non-maskable instruction that causes an  
interrupt regardless of the state of the interrupt mask (I bit) in the  
condition code register.  
NOTE: A software interrupt pushes PC onto the stack. A software interrupt does  
not push PC – 1, as a hardware interrupt does.  
7.6.2 Interrupt Status Registers  
The flags in the interrupt status registers identify maskable interrupt  
sources. Table 7-3 summarizes the interrupt sources and the interrupt  
status register flags that they set. The interrupt status registers can be  
useful for debugging.  
Table 7-3. Interrupt Sources  
INT  
Register  
Flag  
Mask1(1)  
Source  
Flag  
Vector Address  
Priority  
Highest  
Reset  
$FFFE–$FFFF  
$FFFC–$FFFD  
$FFFA–$FFFB  
$FFF6–$FFF7  
$FFF4–$FFF5  
$FFF2–$FFF3  
$FFE0–$FFE1  
$FFDE–$FFDF  
SWI Instruction  
IRQ1 Pin  
IRQF1  
CH0F  
CH1F  
TOF  
IMASK1  
CH0IE  
CH1IE  
TOIE  
IF1  
IF3  
IF4  
IF5  
IF14  
IF15  
Timer Channel 0 Interrupt  
Timer Channel 1 Interrupt  
Timer Overflow Interrupt  
Keyboard Interrupt  
KEYF  
COCO  
IMASKK  
AIEN  
Lowest  
ADC Conversion Complete Interrupt  
Notes:  
1. The I bit in the condition code register is a global mask for all interrupts sources except the SWI instruction.  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA System Integration Module (SIM)  
Technical Data  
91  
System Integration Module (SIM)  
7.6.2.1 Interrupt Status Register 1  
Address: $FE04  
Bit 7  
6
5
IF4  
R
4
IF3  
R
3
0
2
IF1  
R
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
0
R
0
IF5  
R
R
0
R
0
R
0
0
0
0
0
R
= Reserved  
Figure 7-12. Interrupt Status Register 1 (INT1)  
IF1, IF3 to IF5 — Interrupt Flags  
These flags indicate the presence of interrupt requests from the  
sources shown in Table 7-3.  
1 = Interrupt request present  
0 = No interrupt request present  
Bit 0, 1, 3 and 7 — Always read 0  
7.6.2.2 Interrupt Status Register 2  
Address: $FE05  
Bit 7  
6
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
IF14  
R
0
R
R
0
R
0
R
0
R
0
R
0
R
0
0
0
R
= Reserved  
Figure 7-13. Interrupt Status Register 2 (INT2)  
IF14 — Interrupt Flags  
This flag indicates the presence of interrupt requests from the sources  
shown in Table 7-3.  
1 = Interrupt request present  
0 = No interrupt request present  
Bit 0 to 6 — Always read 0  
Technical Data  
92  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
Exception Control  
7.6.2.3 Interrupt Status Register 3  
Address: $FE06  
Bit 7  
6
5
0
4
0
3
0
2
0
1
0
Bit 0  
IF15  
R
Read:  
Write:  
Reset:  
0
R
0
0
R
R
0
R
0
R
0
R
0
R
0
0
0
R
= Reserved  
Figure 7-14. Interrupt Status Register 3 (INT3)  
IF15 — Interrupt Flags  
These flags indicate the presence of interrupt requests from the  
sources shown in Table 7-3.  
1 = Interrupt request present  
0 = No interrupt request present  
Bit 1 to 7 — Always read 0  
7.6.3 Reset  
All reset sources always have equal and highest priority and cannot be  
arbitrated.  
7.6.4 Break Interrupts  
The break module can stop normal program flow at a software-  
programmable break point by asserting its break interrupt output. (See  
Section 17. Break Module (BREAK).) The SIM puts the CPU into the  
break state by forcing it to the SWI vector location. Refer to the break  
interrupt subsection of each module to see how each module is affected  
by the break state.  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA System Integration Module (SIM)  
Technical Data  
93  
System Integration Module (SIM)  
7.6.5 Status Flag Protection in Break Mode  
The SIM controls whether status flags contained in other modules can  
be cleared during break mode. The user can select whether flags are  
protected from being cleared by properly initializing the break clear flag  
enable bit (BCFE) in the break flag control register (BFCR).  
Protecting flags in break mode ensures that set flags will not be cleared  
while in break mode. This protection allows registers to be freely read  
and written during break mode without losing status flag information.  
Setting the BCFE bit enables the clearing mechanisms. Once cleared in  
break mode, a flag remains cleared even when break mode is exited.  
Status flags with a two-step clearing mechanism — for example, a read  
of one register followed by the read or write of another — are protected,  
even when the first step is accomplished prior to entering break mode.  
Upon leaving break mode, execution of the second step will clear the flag  
as normal.  
7.7 Low-Power Modes  
Executing the WAIT or STOP instruction puts the MCU in a low-power-  
consumption mode for standby situations. The SIM holds the CPU in a  
non-clocked state. The operation of each of these modes is described  
below. Both STOP and WAIT clear the interrupt mask (I) in the condition  
code register, allowing interrupts to occur.  
7.7.1 Wait Mode  
In wait mode, the CPU clocks are inactive while the peripheral clocks  
continue to run. Figure 7-15 shows the timing for wait mode entry.  
A module that is active during wait mode can wake up the CPU with an  
interrupt if the interrupt is enabled. Stacking for the interrupt begins one  
cycle after the WAIT instruction during which the interrupt occurred. In  
wait mode, the CPU clocks are inactive. Refer to the wait mode  
subsection of each module to see if the module is active or inactive in  
wait mode. Some modules can be programmed to be active in wait  
mode.  
Technical Data  
94  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
Low-Power Modes  
Wait mode can also be exited by a reset or break. A break interrupt  
during wait mode sets the SIM break stop/wait bit, SBSW, in the break  
status register (BSR). If the COP disable bit, COPD, in the mask option  
register is logic zero, then the computer operating properly module  
(COP) is enabled and remains active in wait mode.  
IAB  
IDB  
R/W  
WAIT ADDR  
WAIT ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
NOTE: Previous data can be operand data or the WAIT opcode, depending on the  
last instruction.  
Figure 7-15. Wait Mode Entry Timing  
Figure 7-16 and Figure 7-17 show the timing for WAIT recovery.  
IAB  
$6E0B  
$A6  
$6E0C  
$00FF  
$00FE  
$00FD  
$00FC  
IDB $A6  
$A6  
$01  
$0B  
$6E  
EXITSTOPWAIT  
NOTE: EXITSTOPWAIT = RST pin OR CPU interrupt OR break interrupt  
Figure 7-16. Wait Recovery from Interrupt or Break  
32  
Cycles  
32  
Cycles  
IAB  
IDB  
RST  
$6E0B  
$A6  
RSTVCTH RSTVCTL  
$A6  
$A6  
2OSCOUT  
Figure 7-17. Wait Recovery from Internal Reset  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA System Integration Module (SIM)  
Technical Data  
95  
System Integration Module (SIM)  
7.7.2 Stop Mode  
In stop mode, the SIM counter is reset and the system clocks are  
disabled. An interrupt request from a module can cause an exit from stop  
mode. Stacking for interrupts begins after the selected stop recovery  
time has elapsed. Reset or break also causes an exit from stop mode.  
The SIM disables the oscillator signals (OSCOUT and 2OSCOUT) in  
stop mode, stopping the CPU and peripherals. Stop recovery time is  
selectable using the SSREC bit in the configuration register (CONFIG).  
If SSREC is set, stop recovery is reduced from the normal delay of 4096  
2OSCOUT cycles down to 32. This is ideal for applications using canned  
oscillators that do not require long start-up times from stop mode.  
NOTE: External crystal applications should use the full stop recovery time by  
clearing the SSREC bit.  
A break interrupt during stop mode sets the SIM break stop/wait bit  
(SBSW) in the break status register (BSR).  
The SIM counter is held in reset from the execution of the STOP  
instruction until the beginning of stop recovery. It is then used to time the  
recovery period. Figure 7-18 shows stop mode entry timing.  
NOTE: To minimize stop current, all pins configured as inputs should be driven  
to a logic 1 or logic 0.  
CPUSTOP  
IAB  
IDB  
R/W  
STOP ADDR  
STOP ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
NOTE: Previous data can be operand data or the STOP opcode, depending on the last  
instruction.  
Figure 7-18. Stop Mode Entry Timing  
Technical Data  
96  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
SIM Registers  
STOP RECOVERY PERIOD  
2OSCOUT  
INT/BREAK  
IAB  
STOP +1  
STOP + 2  
STOP + 2  
SP  
SP – 1  
SP – 2  
SP – 3  
Figure 7-19. Stop Mode Recovery from Interrupt or Break  
7.8 SIM Registers  
The SIM has three memory mapped registers. Table 7-4 shows the  
mapping of these registers.  
Table 7-4. SIM Registers  
Address  
$FE00  
$FE01  
$FE03  
Register  
BSR  
Access Mode  
User  
RSR  
User  
BFCR  
User  
7.8.1 Break Status Register (BSR)  
The break status register contains a flag to indicate that a break caused  
an exit from stop or wait mode.  
Address: $FE00  
Bit 7  
R
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
SBSW  
Note(1)  
0
R
R
R
R
R
R
= Reserved  
1. Writing a logic zero clears SBSW.  
Figure 7-20. Break Status Register (BSR)  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA System Integration Module (SIM)  
Technical Data  
97  
System Integration Module (SIM)  
SBSW — SIM Break Stop/Wait  
This status bit is useful in applications requiring a return to wait or stop  
mode after exiting from a break interrupt. Clear SBSW by writing a  
logic zero to it. Reset clears SBSW.  
1 = Stop mode or wait mode was exited by break interrupt  
0 = Stop mode or wait mode was not exited by break interrupt  
SBSW can be read within the break state SWI routine. The user can  
modify the return address on the stack by subtracting one from it. The  
following code is an example of this. Writing zero to the SBSW bit clears  
it.  
; This code works if the H register has been pushed onto the stack in the break  
; service routine software. This code should be executed at the end of the  
; break service routine software.  
HIBYTE EQU  
LOBYTE EQU  
5
6
;
If not SBSW, do RTI  
BRCLR SBSW,BSR, RETURN ; See if wait mode or stop mode was exited  
; by break.  
TST  
BNE  
DEC  
DEC  
LOBYTE,SP  
DOLO  
; If RETURNLO is not zero,  
; then just decrement low byte.  
; Else deal with high byte, too.  
; Point to WAIT/STOP opcode.  
; Restore H register.  
HIBYTE,SP  
LOBYTE,SP  
DOLO  
RETURN PULH  
RTI  
7.8.2 Reset Status Register (RSR)  
This register contains six flags that show the source of the last reset.  
Clear the SIM reset status register by reading it. A power-on reset sets  
the POR bit and clears all other bits in the register.  
Technical Data  
98  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
SIM Registers  
Address: $FE01  
Bit 7  
6
5
4
3
2
1
Bit 0  
0
Read:  
Write:  
POR:  
POR  
PIN  
COP  
ILOP  
ILAD  
MODRST  
LVI  
1
0
0
0
0
0
0
0
= Unimplemented  
Figure 7-21. Reset Status Register (RSR)  
POR — Power-On Reset Bit  
1 = Last reset caused by POR circuit  
0 = Read of SRSR  
PIN — External Reset Bit  
1 = Last reset caused by external reset pin (RST)  
0 = POR or read of SRSR  
COP — Computer Operating Properly Reset Bit  
1 = Last reset caused by COP counter  
0 = POR or read of SRSR  
ILOP — Illegal Opcode Reset Bit  
1 = Last reset caused by an illegal opcode  
0 = POR or read of SRSR  
ILAD — Illegal Address Reset Bit (opcode fetches only)  
1 = Last reset caused by an opcode fetch from an illegal address  
0 = POR or read of SRSR  
MODRST — Monitor Mode Entry Module Reset bit  
1 = Last reset caused by monitor mode entry when vector locations  
$FFFE and $FFFF are $FF after POR while IRQ1 = VDD  
0 = POR or read of SRSR  
LVI — Low Voltage Inhibit Reset bit  
1 = Last reset caused by LVI circuit  
0 = POR or read of SRSR  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA System Integration Module (SIM)  
Technical Data  
99  
System Integration Module (SIM)  
7.8.3 Break Flag Control Register (BFCR)  
The break control register contains a bit that enables software to clear  
status bits while the MCU is in a break state.  
Address: $FE03  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
0
R
= Reserved  
Figure 7-22. Break Flag Control Register (BFCR)  
BCFE — Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing  
status registers while the MCU is in a break state. To clear status bits  
during the break state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
Technical Data  
100  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
System Integration Module (SIM)  
MOTOROLA  
Technical Data – MC68H(R)C908JL3E/JK3E/JK1E  
Section 8. Oscillator (OSC)  
8.1 Contents  
8.2  
8.3  
8.4  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101  
X-tal Oscillator (MC68HC908JL3E/JK3E/JK1E). . . . . . . . . . .102  
RC Oscillator (MC68HRC908JL3E/JK3E/JK1E) . . . . . . . . . .103  
8.5  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104  
Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . .104  
Crystal Amplifier Output Pin (OSC2/PTA6/RCCLK). . . . . .104  
Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . .104  
X-tal Oscillator Clock (XTALCLK). . . . . . . . . . . . . . . . . . . .104  
RC Oscillator Clock (RCCLK). . . . . . . . . . . . . . . . . . . . . . .105  
Oscillator Out 2 (2OSCOUT) . . . . . . . . . . . . . . . . . . . . . . .105  
Oscillator Out (OSCOUT). . . . . . . . . . . . . . . . . . . . . . . . . .105  
8.5.1  
8.5.2  
8.5.3  
8.5.4  
8.5.5  
8.5.6  
8.5.7  
8.6  
8.6.1  
8.6.2  
Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
8.7  
Oscillator During Break Mode. . . . . . . . . . . . . . . . . . . . . . . . .106  
8.2 Introduction  
The oscillator module provides the reference clock for the MCU system  
and bus. Two types of oscillator modules are available:  
• MC68HC908JL3E/JK3E/JK1E — built-in oscillator module (X-tal)  
that requires an external crystal or ceramic-resonator. This option  
also allows an external clock that can be driven directly into OSC1.  
• MC68HRC908JL3E/JK3E/JK1E — built-in oscillator module (RC)  
that requires an external RC connection only.  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
101  
Oscillator (OSC)  
Oscillator (OSC)  
8.3 X-tal Oscillator (MC68HC908JL3E/JK3E/JK1E)  
The X-tal oscillator circuit is designed for use with an external crystal or  
ceramic resonator to provide accurate clock source.  
In its typical configuration, the X-tal oscillator is connected in a Pierce  
oscillator configuration, as shown in Figure 8-1. This figure shows only  
the logical representation of the internal components and may not  
represent actual circuitry. The oscillator configuration uses five  
components:  
• Crystal, X1  
• Fixed capacitor, C1  
• Tuning capacitor, C2 (can also be a fixed capacitor)  
• Feedback resistor, RB  
• Series resistor, RS (optional)  
From SIM  
To SIM  
2OSCOUT  
To SIM  
OSCOUT  
XTALCLK  
÷ 2  
SIMOSCEN  
MCU  
OSC1  
OSC2  
R
B
RS*  
*RS can be zero (shorted) when used with higher-frequency crystals.  
Refer to manufacturer’s data.  
X
1
See Section 18. for component value requirements.  
C
C
2
1
Figure 8-1. X-tal Oscillator External Connections  
Technical Data  
102  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Oscillator (OSC)  
Oscillator (OSC)  
RC Oscillator (MC68HRC908JL3E/JK3E/JK1E)  
The series resistor (RS) is included in the diagram to follow strict Pierce  
oscillator guidelines and may not be required for all ranges of operation,  
especially with high frequency crystals. Refer to the crystal  
manufacturer’s data for more information.  
8.4 RC Oscillator (MC68HRC908JL3E/JK3E/JK1E)  
The RC oscillator circuit is designed for use with external R and C to  
provide a clock source with tolerance less than 10%.  
In its typical configuration, the RC oscillator requires two external  
components, one R and one C. Component values should have a  
tolerance of 1% or less, to obtain a clock source with less than 10%  
tolerance. The oscillator configuration uses two components:  
• CEXT  
• REXT  
From SIM  
To SIM  
2OSCOUT  
To SIM  
OSCOUT  
SIMOSCEN  
Ext-RC  
RCCLK  
EN  
÷ 2  
Oscillator  
0
1
PTA6  
I/O  
PTA6  
PTA6EN  
MCU  
OSC1  
PTA6/RCCLK (OSC2)  
V
DD  
See Section 18. for component value requirements.  
R
C
EXT  
EXT  
Figure 8-2. RC Oscillator External Connections  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
103  
Oscillator (OSC)  
Oscillator (OSC)  
8.5 I/O Signals  
The following paragraphs describe the oscillator I/O signals.  
8.5.1 Crystal Amplifier Input Pin (OSC1)  
OSC1 pin is an input to the crystal oscillator amplifier or the input to the  
RC oscillator circuit.  
8.5.2 Crystal Amplifier Output Pin (OSC2/PTA6/RCCLK)  
For the X-tal oscillator device, OSC2 pin is the output of the crystal  
oscillator inverting amplifier.  
For the RC oscillator device, OSC2 pin can be configured as a general  
purpose I/O pin PTA6, or the output of the internal RC oscillator clock,  
RCCLK.  
Device  
Oscillator  
OSC2 pin function  
MC68HC908JL3E/JK3E/JK1E  
X-tal  
Inverting OSC1  
Controlled by PTA6EN bit in PTAPUER ($0D)  
PTA6EN = 0: RCCLK output  
MC68HRC908JL3E/JK3E/JK1E  
RC  
PTA6EN = 1: PTA6 I/O  
8.5.3 Oscillator Enable Signal (SIMOSCEN)  
The SIMOSCEN signal comes from the system integration module (SIM)  
and enables/disables the X-tal oscillator circuit or the RC-oscillator.  
8.5.4 X-tal Oscillator Clock (XTALCLK)  
XTALCLK is the X-tal oscillator output signal. It runs at the full speed of  
the crystal (fXCLK) and comes directly from the crystal oscillator circuit.  
Figure 8-1 shows only the logical relation of XTALCLK to OSC1 and  
OSC2 and may not represent the actual circuitry. The duty cycle of  
XTALCLK is unknown and may depend on the crystal and other external  
factors. Also, the frequency and amplitude of XTALCLK can be unstable  
at start-up.  
Technical Data  
104  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Oscillator (OSC)  
MOTOROLA  
Oscillator (OSC)  
Low Power Modes  
8.5.5 RC Oscillator Clock (RCCLK)  
RCCLK is the RC oscillator output signal. Its frequency is directly  
proportional to the time constant of the external R and C. Figure 8-2  
shows only the logical relation of RCCLK to OSC1 and may not  
represent the actual circuitry.  
8.5.6 Oscillator Out 2 (2OSCOUT)  
2OSCOUT is same as the input clock (XTALCLK or RCCLK). This signal  
is driven to the SIM module and is used to determine the COP cycles.  
8.5.7 Oscillator Out (OSCOUT)  
The frequency of this signal is equal to half of the 2OSCOUT, this signal  
is driven to the SIM for generation of the bus clocks used by the CPU  
and other modules on the MCU. OSCOUT will be divided again in the  
SIM and results in the internal bus frequency being one fourth of the  
XTALCLK or RCCLK frequency.  
8.6 Low Power Modes  
The WAIT and STOP instructions put the MCU in low-power  
consumption standby modes.  
8.6.1 Wait Mode  
8.6.2 Stop Mode  
The WAIT instruction has no effect on the oscillator logic. OSCOUT and  
2OSCOUT continues to drive to the SIM module.  
The STOP instruction disables the XTALCLK or the RCCLK output,  
hence OSCOUT and 2OSCOUT.  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
105  
Oscillator (OSC)  
Oscillator (OSC)  
8.7 Oscillator During Break Mode  
The oscillator continues to drive OSCOUT and 2OSCOUT when the  
device enters the break state.  
Technical Data  
106  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Oscillator (OSC)  
Technical Data – MC68H(R)C908JL3E/JK3E/JK1E  
Section 9. Monitor ROM (MON)  
9.1 Contents  
9.2  
9.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108  
9.4  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108  
Entering Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . .110  
Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114  
Echoing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114  
Break Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115  
Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115  
9.4.1  
9.4.2  
9.4.3  
9.4.4  
9.4.5  
9.4.6  
9.5  
Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119  
9.2 Introduction  
This section describes the monitor ROM (MON) and the monitor mode  
entry methods. The monitor ROM allows complete testing of the MCU  
through a single-wire interface with a host computer. This mode is also  
used for programming and erasing of FLASH memory in the MCU.  
Monitor mode entry can be achieved without use of the higher test  
voltage, VDD + VHI, as long as vector addresses $FFFE and $FFFF are  
blank, thus reducing the hardware requirements for in-circuit  
programming.  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
107  
Monitor ROM (MON)  
Monitor ROM (MON)  
9.3 Features  
Features of the monitor ROM include the following:  
• Normal user-mode pin functionality  
• One pin dedicated to serial communication between monitor ROM  
and host computer  
• Standard mark/space non-return-to-zero (NRZ) communication  
with host computer  
• Execution of code in RAM or FLASH  
• FLASH memory security feature1  
• FLASH memory programming interface  
• 960 bytes monitor ROM code size  
• Monitor mode entry without high voltage, VDD + VHI, if reset vector  
is blank ($FFFE and $FFFF contain $FF)  
• Standard monitor mode entry if high voltage, VDD + VHI, is applied  
to IRQ1  
9.4 Functional Description  
The monitor ROM receives and executes commands from a host  
computer. Figure 9-1 shows a example circuit used to enter monitor  
mode and communicate with a host computer via a standard RS-232  
interface.  
Simple monitor commands can access any memory address. In monitor  
mode, the MCU can execute host-computer code in RAM while most  
MCU pins retain normal operating mode functions. All communication  
between the host computer and the MCU is through the PTB0 pin. A  
level-shifting and multiplexing interface is required between PTB0 and  
the host computer. PTB0 is used in a wired-OR configuration and  
requires a pull-up resistor.  
1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or  
copying the FLASH difficult for unauthorized users.  
Technical Data  
108  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Monitor ROM (MON)  
MOTOROLA  
Monitor ROM (MON)  
Functional Description  
RST  
RC CIRCUIT  
V
DD  
0.1 µF  
FOR MC68HRC908JL3E/JK3E/JK1E  
SW1 MUST BE AT POSITION B  
See Figure 18-1 for component  
values vs. frequency.  
H(R)C908JL3E  
H(R)C908JK3E  
H(R)C908JK1E  
OSC1  
V
DD  
OSC2  
V
DD  
0.1 µF  
V
SS  
EXT OSC  
V
DD  
FOR MC68HC908JL3E/JK3E/JK1E  
SW1 AT POSITION A OR B  
(50% DUTY)  
OSC1  
OSC2  
FOR MC68HRC908JL3E/JK3E/JK1E  
SW1 MUST BE AT POSITION A  
XTAL CIRCUIT  
9.8304MHz  
OSC1  
OSC2  
FOR MC68HC908JL3E/JK3E/JK1E  
SW1 AT POSITION A OR B 20 pF  
MAX232  
V
DD  
20 pF  
1
16  
15  
V
C1+  
CC  
+
+
+
1 µF  
1 µF  
1 µF  
3
4
1 µF  
C1–  
C2+  
GND  
+
V
+ V  
HI  
A
B
2
6
DD  
SW1  
10 k  
V+  
V–  
(SEE NOTE 1)  
V
1 k  
DD  
IRQ  
8.5 V  
V
DD  
5
C2–  
1 µF  
10 k  
+
74HC125  
6
DB9  
5
10  
9
2
3
7
8
PTB0  
74HC125  
3
4
V
2
DD  
V
DD  
1
5
10 k  
10 k  
PTB1  
PTB3  
PTB2  
SW2  
C
D
(SEE NOTE 2)  
NOTES:  
1. Monitor mode entry method:  
SW1: Position A — High voltage entry (V  
)
TST  
10 k  
10 k  
Clock source must be EXT OSC or XTAL CIRCUIT.  
Bus clock depends on SW2.  
SW1: Position B — Reset vector must be blank ($FFFE = $FFFF = $FF)  
Bus clock = OSC1 ÷ 4.  
2. Affects high voltage entry to monitor mode only (SW1 at position A):  
SW2: Position C — Bus clock = OSC1 ÷ 4  
SW2: Position D — Bus clock = OSC1 ÷ 2  
5. See Table 18-4 for V + V voltage level requirements.  
DD  
HI  
Figure 9-1. Monitor Mode Circuit  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
109  
Monitor ROM (MON)  
 
Monitor ROM (MON)  
9.4.1 Entering Monitor Mode  
Table 9-1 shows the pin conditions for entering monitor mode. As  
specified in the table, monitor mode may be entered after a POR and will  
allow communication at 9600 baud provided one of the following sets of  
conditions is met:  
1. If IRQ1 = VDD + VHI:  
– Clock on OSC1 is 4.9125MHz (EXT OSC or XTAL)  
– PTB3 = low  
2. If IRQ1 = VDD + VHI:  
– Clock on OSC1 is 9.8304MHz (EXT OSC or XTAL)  
– PTB3 = high  
3. If $FFFE & $FFFF is blank (contains $FF):  
– Clock on OSC1 is 9.8304MHz (EXT OSC or XTAL or RC)  
– IRQ1 = VDD  
Table 9-1. Monitor Mode Entry Requirements and Options  
Bus  
Frequency  
OSC1 Frequency  
Comments  
2.4576MHz  
(OSC1 ÷ 2)  
(2)  
High-voltage entry to  
monitor mode.(3)  
9600 baud communication  
on PTB0. COP disabled.  
VDD + VHI  
X
X
0
1
0
0
1
1
1
1
4.9152MHz  
9.8304MHz  
2.4576MHz  
(OSC1 ÷ 4)  
VDD + VHI  
Low-voltage entry to  
monitor mode.(4)  
9600 baud communication  
on PTB0. COP disabled.  
BLANK  
(contain  
$FF)  
2.4576MHz  
(OSC1 ÷ 4)  
VDD  
X
X
X
X
X
X
1
9.8304MHz  
NOT  
BLANK  
At desired  
frequency  
VDD  
X
OSC1 ÷ 4  
Enters User mode.  
Notes:  
1. PTB3 = 0: Bypasses the divide-by-two prescaler to SIM when using VDD + VHI for monitor mode entry.  
The OSC1 clock must be 50% duty cycle for this condition.  
2. See Table 18-4 for VDD + VHI voltage level requirements.  
3. For IRQ1 = VDD + VHI:  
MC68HRC908JL3E/JK3E/JK1E — clock must be EXT OSC.  
MC68HC908JL3E/JK3E/JK1E — clock can be EXT OSC or XTAL.  
4. For IRQ1 = VDD  
:
MC68HRC908JL3E/JK3E/JK1E — clock must be RC OSC.  
MC68HC908JL3E/JK3E/JK1E — clock can be EXT OSC or XTAL.  
Technical Data  
110  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Monitor ROM (MON)  
 
Monitor ROM (MON)  
Functional Description  
If VDD +VHI is applied to IRQ1 and PTB3 is low upon monitor mode entry  
(Table 9-1 condition set 1), the bus frequency is a divide-by-two of the  
clock input to OSC1. If PTB3 is high with VDD +VHI applied to IRQ1 upon  
monitor mode entry (Table 9-1 condition set 2), the bus frequency is a  
divide-by-four of the clock input to OSC1. Holding the PTB3 pin low  
when entering monitor mode causes a bypass of a divide-by-two stage  
at the oscillator only if VDD +VHI is applied to IRQ1. In this event, the  
OSCOUT frequency is equal to the 2OSCOUT frequency, and OSC1  
input directly generates internal bus clocks. In this case, the OSC1  
signal must have a 50% duty cycle at maximum bus frequency.  
Entering monitor mode with VDD + VHI on IRQ1, the COP is disabled as  
long as VDD + VHI is applied to either the IRQ1 or the RST. (See Section  
7. System Integration Module (SIM) for more information on modes of  
operation.)  
If entering monitor mode without high voltage on IRQ1 and reset vector  
being blank ($FFFE and $FFFF) (Table 9-1 condition set 3, where  
applied voltage is VDD), then all port B pin requirements and conditions,  
including the PTB3 frequency divisor selection, are not in effect. This is  
to reduce circuit requirements when performing in-circuit programming.  
Entering monitor mode with the reset vector being blank, the COP is  
always disabled regardless of the state of IRQ1 or the RST.  
Figure 9-2. shows a simplified diagram of the monitor mode entry when  
the reset vector is blank and IRQ1 = VDD. An OSC1 frequency of  
9.8304MHz is required for a baud rate of 9600.  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
111  
Monitor ROM (MON)  
Monitor ROM (MON)  
POR RESET  
NO  
IS VECTOR  
BLANK?  
NORMAL USER  
MODE  
YES  
MONITOR MODE  
EXECUTE  
MONITOR  
CODE  
NO  
POR  
TRIGGERED?  
YES  
Figure 9-2. Low-Voltage Monitor Mode Entry Flowchart  
Enter monitor mode with the pin configuration shown above by pulling  
RST low and then high. The rising edge of RST latches monitor mode.  
Once monitor mode is latched, the values on the specified pins can  
change.  
Once out of reset, the MCU waits for the host to send eight security  
bytes. (See 9.5 Security.) After the security bytes, the MCU sends a  
break signal (10 consecutive logic zeros) to the host, indicating that it is  
ready to receive a command. The break signal also provides a timing  
reference to allow the host to determine the necessary baud rate.  
In monitor mode, the MCU uses different vectors for reset, SWI, and  
break interrupt. The alternate vectors are in the $FE page instead of the  
$FF page and allow code execution from the internal monitor firmware  
instead of user code.  
Technical Data  
112  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Monitor ROM (MON)  
MOTOROLA  
Monitor ROM (MON)  
Functional Description  
Table 9-2 is a summary of the vector differences between user mode  
and monitor mode.  
Table 9-2. Monitor Mode Vector Differences  
Functions  
Reset  
Vector Vector Vector Vector Vector Vector  
High Low High Low High Low  
Reset  
Break  
Break  
SWI  
SWI  
Modes  
COP  
User  
Enabled  
$FFFE $FFFF $FFFC $FFFD $FFFC $FFFD  
Monitor Disabled(1) $FEFE $FEFF $FEFC $FEFD $FEFC $FEFD  
Notes:  
1. If the high voltage (VDD + VHI) is removed from the IRQ1 pin or the RST pin, the SIM  
asserts its COP enable output. The COP is a mask option enabled or disabled by the  
COPD bit in the configuration register.  
When the host computer has completed downloading code into the MCU  
RAM, the host then sends a RUN command, which executes an RTI,  
which sends control to the address on the stack pointer.  
9.4.2 Baud Rate  
The communication baud rate is dependant on oscillator frequency. The  
state of PTB3 also affects baud rate if entry to monitor mode is by IRQ1 =  
VDD + VHI. When PTB3 is high, the divide by ratio is 1024. If the PTB3  
pin is at logic zero upon entry into monitor mode, the divide by ratio is  
512.  
Table 9-3. Monitor Baud Rate Selection  
Monitor Mode  
Entry By:  
Input Clock  
Frequency  
PTB3  
Baud Rate  
4.9152 MHz  
9.8304 MHz  
4.9152 MHz  
9.8304 MHz  
4.9152 MHz  
0
1
9600 bps  
9600 bps  
4800 bps  
9600 bps  
4800 bps  
IRQ1 = VDD + VHI  
1
X
X
Blank reset vector,  
IRQ1 = VDD  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
113  
Monitor ROM (MON)  
Monitor ROM (MON)  
9.4.3 Data Format  
Communication with the monitor ROM is in standard non-return-to-zero  
(NRZ) mark/space data format. (See Figure 9-3 and Figure 9-4.)  
NEXT  
START  
BIT  
START  
BIT  
STOP  
BIT  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
Figure 9-3. Monitor Data Format  
NEXT  
START  
BIT  
START  
BIT  
STOP  
BIT  
$A5  
BIT 0  
BIT 0  
BIT 1  
BIT 1  
BIT 2  
BIT 2  
BIT 3  
BIT 3  
BIT 4  
BIT 4  
BIT 5  
BIT 5  
BIT 6  
BIT 6  
BIT 7  
BIT 7  
STOP  
BIT  
START  
BIT  
NEXT  
START  
BIT  
BREAK  
Figure 9-4. Sample Monitor Waveforms  
The data transmit and receive rate can be anywhere from 4800 baud to  
28.8k-baud. Transmit and receive baud rates must be identical.  
9.4.4 Echoing  
As shown in Figure 9-5, the monitor ROM immediately echoes each  
received byte back to the PTB0 pin for error checking.  
SENT TO  
MONITOR  
READ  
READ  
ADDR. HIGH ADDR. HIGH ADDR. LOW ADDR. LOW  
DATA  
ECHO  
RESULT  
Figure 9-5. Read Transaction  
Any result of a command appears after the echo of the last byte of the  
command.  
Technical Data  
114  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Monitor ROM (MON)  
MOTOROLA  
Monitor ROM (MON)  
Functional Description  
9.4.5 Break Signal  
A start bit followed by nine low bits is a break signal. (See Figure 9-6.)  
When the monitor receives a break signal, it drives the PTB0 pin high for  
the duration of two bits before echoing the break signal.  
MISSING STOP BIT  
TWO-STOP-BIT DELAY BEFORE ZERO ECHO  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
Figure 9-6. Break Transaction  
9.4.6 Commands  
The monitor ROM uses the following commands:  
• READ (read memory)  
• WRITE (write memory)  
• IREAD (indexed read)  
• IWRITE (indexed write)  
• READSP (read stack pointer)  
• RUN (run user program)  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
115  
Monitor ROM (MON)  
Monitor ROM (MON)  
Table 9-4. READ (Read Memory) Command  
Description  
Read byte from memory  
Operand  
Specifies 2-byte address in high byte:low byte order  
Returns contents of specified address  
$4A  
Data Returned  
Opcode  
Command Sequence  
SENT TO  
MONITOR  
READ  
READ  
ADDR. HIGH  
ADDR. HIGH  
ADDR. LOW  
ADDR. LOW  
DATA  
ECHO  
RESULT  
Table 9-5. WRITE (Write Memory) Command  
Description  
Write byte to memory  
Operand  
Specifies 2-byte address in high byte:low byte order; low byte followed by data byte  
Data Returned  
Opcode  
None  
$49  
Command Sequence  
SENT TO  
MONITOR  
WRITE  
WRITE  
ADDR. HIGH  
ADDR. HIGH  
ADDR. LOW  
ADDR. LOW  
DATA  
DATA  
ECHO  
Technical Data  
116  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Monitor ROM (MON)  
Monitor ROM (MON)  
Functional Description  
Table 9-6. IREAD (Indexed Read) Command  
Description  
Read next 2 bytes in memory from last address accessed  
Specifies 2-byte address in high byte:low byte order  
Returns contents of next two addresses  
$1A  
Operand  
Data Returned  
Opcode  
Command Sequence  
SENT TO  
MONITOR  
IREAD  
IREAD  
DATA  
DATA  
RESULT  
ECHO  
Table 9-7. IWRITE (Indexed Write) Command  
Description  
Write to last address accessed + 1  
Operand  
Specifies single data byte  
Data Returned  
Opcode  
None  
$19  
Command Sequence  
SENT TO  
MONITOR  
IWRITE  
IWRITE  
DATA  
DATA  
ECHO  
NOTE: A sequence of IREAD or IWRITE commands can sequentially access a  
block of memory over the full 64-Kbyte memory map.  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
117  
Monitor ROM (MON)  
Monitor ROM (MON)  
Table 9-8. READSP (Read Stack Pointer) Command  
Description  
Reads stack pointer  
Operand  
None  
Data Returned  
Opcode  
Returns stack pointer in high byte:low byte order  
$0C  
Command Sequence  
SENT TO  
MONITOR  
READSP  
READSP  
SP HIGH  
SP LOW  
RESULT  
ECHO  
Table 9-9. RUN (Run User Program) Command  
Description  
Executes RTI instruction  
Operand  
None  
None  
$28  
Data Returned  
Opcode  
Command Sequence  
SENT TO  
MONITOR  
RUN  
RUN  
ECHO  
Technical Data  
118  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Monitor ROM (MON)  
Monitor ROM (MON)  
Security  
9.5 Security  
A security feature discourages unauthorized reading of FLASH locations  
while in monitor mode. The host can bypass the security feature at  
monitor mode entry by sending eight security bytes that match the bytes  
at locations $FFF6–$FFFD. Locations $FFF6–$FFFD contain user-  
defined data.  
NOTE: Do not leave locations $FFF6–$FFFD blank. For security reasons,  
program locations $FFF6–$FFFD even if they are not used for vectors.  
During monitor mode entry, the MCU waits after the power-on reset for  
the host to send the eight security bytes on pin PTB0. If the received  
bytes match those at locations $FFF6–$FFFD, the host bypasses the  
security feature and can read all FLASH locations and execute code  
from FLASH. Security remains bypassed until a power-on reset occurs.  
If the reset was not a power-on reset, security remains bypassed and  
security code entry is not required. (See Figure 9-7.)  
V
DD  
4096 + 32 OSCXCLK CYCLES  
24 BUS CYCLES  
RST  
FROM HOST  
FROM MCU  
PTB0  
1
4
1
1
2
4
1
NOTES:  
1 = Echo delay, 2 bit times  
2 = Data return delay, 2 bit times  
4 = Wait 1 bit time before sending next byte.  
Figure 9-7. Monitor Mode Entry Timing  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
119  
Monitor ROM (MON)  
Monitor ROM (MON)  
Upon power-on reset, if the received bytes of the security code do not  
match the data at locations $FFF6–$FFFD, the host fails to bypass the  
security feature. The MCU remains in monitor mode, but reading a  
FLASH location returns an invalid value and trying to execute code from  
FLASH causes an illegal address reset. After receiving the eight security  
bytes from the host, the MCU transmits a break character, signifying that  
it is ready to receive a command.  
NOTE: The MCU does not transmit a break character until after the host sends  
the eight security bytes.  
To determine whether the security code entered is correct, check to see  
if bit 6 of RAM address $40 is set. If it is, then the correct security code  
has been entered and FLASH can be accessed.  
If the security sequence fails, the device should be reset by a power-on  
reset and brought up in monitor mode to attempt another entry. After  
failing the security sequence, the FLASH module can also be mass  
erased by executing an erase routine that was downloaded into internal  
RAM. The mass erase operation clears the security code locations so  
that all eight security bytes become $FF (blank).  
Technical Data  
120  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Monitor ROM (MON)  
MOTOROLA  
Technical Data – MC68H(R)C908JL3E/JK3E/JK1E  
Section 10. Timer Interface Module (TIM)  
10.1 Contents  
10.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122  
10.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122  
10.4 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122  
10.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123  
10.5.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . .125  
10.5.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125  
10.5.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125  
10.5.3.1  
10.5.3.2  
Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . .126  
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .127  
10.5.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . .127  
10.5.4.1  
10.5.4.2  
10.5.4.3  
Unbuffered PWM Signal Generation . . . . . . . . . . . . . . .128  
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . .129  
PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130  
10.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131  
10.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131  
10.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132  
10.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132  
10.8 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .132  
10.9 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133  
10.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133  
10.10.1 TIM Status and Control Register (TSC) . . . . . . . . . . . . . . .134  
10.10.2 TIM Counter Registers (TCNTH:TCNTL). . . . . . . . . . . . . .136  
10.10.3 TIM Counter Modulo Registers (TMODH:TMODL) . . . . . .137  
10.10.4 TIM Channel Status and Control Registers (TSC0:TSC1).138  
10.10.5 TIM Channel Registers (TCH0H/L:TCH1H/L) . . . . . . . . . .142  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA Timer Interface Module (TIM)  
Technical Data  
121  
Timer Interface Module (TIM)  
10.2 Introduction  
This section describes the timer interface module (TIM2, Version B). The  
TIM is a two-channel timer that provides a timing reference with input  
capture, output compare, and pulse-width-modulation functions.  
Figure 10-1 is a block diagram of the TIM.  
10.3 Features  
Features of the TIM include the following:  
• Two input capture/output compare channels  
– Rising-edge, falling-edge, or any-edge input capture trigger  
– Set, clear, or toggle output compare action  
• Buffered and unbuffered pulse width modulation (PWM) signal  
generation  
• Programmable TIM clock input with 7-frequency internal bus clock  
prescaler selection  
• Free-running or modulo up-count operation  
• Toggle any channel pin on overflow  
• TIM counter stop and reset bits  
10.4 Pin Name Conventions  
The TIM share two I/O pins with two port D I/O pins. The full name of the  
TIM I/O pins are listed in Table 10-1. The generic pin name appear in the  
text that follows.  
Table 10-1. Pin Name Conventions  
TIM Generic Pin Names:  
Full TIM Pin Names:  
TCH0  
TCH1  
PTD4/TCH0  
PTD5/TCH1  
Technical Data  
122  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Timer Interface Module (TIM) MOTOROLA  
Timer Interface Module (TIM)  
Functional Description  
10.5 Functional Description  
Figure 10-1 shows the structure of the TIM. The central component of  
the TIM is the 16-bit TIM counter that can operate as a free-running  
counter or a modulo up-counter. The TIM counter provides the timing  
reference for the input capture and output compare functions. The TIM  
counter modulo registers, TMODH:TMODL, control the modulo value of  
the TIM counter. Software can read the TIM counter value at any time  
without affecting the counting sequence.  
The two TIM channels are programmable independently as input  
capture or output compare channels.  
PRESCALER SELECT  
INTERNAL  
BUS CLOCK  
PRESCALER  
TSTOP  
TRST  
PS2  
PS1  
PS0  
16-BIT COUNTER  
TOF  
INTERRUPT  
LOGIC  
TOIE  
16-BIT COMPARATOR  
TMODH:TMODL  
TOV0  
ELS0B  
ELS0A  
PORT  
LOGIC  
CHANNEL 0  
16-BIT COMPARATOR  
TCH0H:TCH0L  
CH0MAX  
TCH0  
CH0F  
INTERRUPT  
LOGIC  
16-BIT LATCH  
MS0A  
CH0IE  
MS0B  
CH1F  
TOV1  
ELS1B  
ELS1A  
PORT  
LOGIC  
CHANNEL 1  
16-BIT COMPARATOR  
TCH1H:TCH1L  
CH1MAX  
TCH1  
INTERRUPT  
LOGIC  
16-BIT LATCH  
MS1A  
CH1IE  
Figure 10-1. TIM Block Diagram  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA Timer Interface Module (TIM)  
Technical Data  
123  
Timer Interface Module (TIM)  
Addr.  
Register Name  
Bit 7  
6
5
4
0
3
2
1
Bit 0  
Read: TOF  
0
TIM Status and Control  
Register  
(TSC)  
TOIE  
TSTOP  
PS2  
PS1  
PS0  
$0020  
Write:  
0
0
TRST  
0
Reset:  
0
1
0
0
0
0
Read: Bit15  
Write:  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
Bit8  
TIM Counter Register High  
(TCNTH)  
$0021  
$0022  
$0023  
$0024  
$0025  
$0026  
$0027  
$0028  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
TIM Counter Register Low  
(TCNTL)  
0
Bit15  
1
0
Bit14  
1
0
Bit13  
1
0
Bit12  
1
0
Bit11  
1
0
Bit10  
1
0
Bit9  
1
0
Bit8  
1
TIM Counter Modulo  
Register High  
(TMODH)  
TIM Counter Modulo  
Register Low  
(TMODL)  
Bit7  
1
Bit6  
1
Bit5  
1
Bit4  
1
Bit3  
1
Bit2  
1
Bit1  
1
Bit0  
1
Read: CH0F  
TIM Channel 0 Status and  
Control Register  
(TSC0)  
CH0IE  
0
MS0B  
0
MS0A  
0
ELS0B ELS0A  
TOV0 CH0MAX  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
0
0
0
0
0
TIM Channel 0  
Register High  
(TCH0H)  
Bit15  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
Bit8  
Indeterminate after reset  
TIM Channel 0  
Register Low  
(TCH0L)  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Indeterminate after reset  
Read: CH1F  
0
0
TIM Channel 1 Status and  
Control Register  
(TSC1)  
CH1IE  
0
MS1A  
0
ELS1B ELS1A  
TOV1 CH1MAX  
Write:  
0
0
Reset:  
0
0
0
0
Figure 10-2. TIM I/O Register Summary  
Technical Data  
124  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Timer Interface Module (TIM) MOTOROLA  
Timer Interface Module (TIM)  
Functional Description  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
TIM Channel 1  
Register High  
(TCH1H)  
Bit15  
Bit7  
Bit14  
Bit6  
Bit13  
Bit5  
Bit12  
Bit11  
Bit10  
Bit2  
Bit9  
Bit1  
Bit8  
Bit0  
$0029  
$002A  
Indeterminate after reset  
TIM Channel 1  
Register Low  
(TCH1L)  
Bit4  
Bit3  
Indeterminate after reset  
= Unimplemented  
Figure 10-2. TIM I/O Register Summary  
10.5.1 TIM Counter Prescaler  
The TIM clock source is one of the seven prescaler outputs. The  
prescaler generates seven clock rates from the internal bus clock. The  
prescaler select bits, PS[2:0], in the TIM status and control register  
(TSC) select the TIM clock source.  
10.5.2 Input Capture  
With the input capture function, the TIM can capture the time at which an  
external event occurs. When an active edge occurs on the pin of an input  
capture channel, the TIM latches the contents of the TIM counter into the  
TIM channel registers, TCHxH:TCHxL. The polarity of the active edge is  
programmable. Input captures can generate TIM CPU interrupt  
requests.  
10.5.3 Output Compare  
With the output compare function, the TIM can generate a periodic pulse  
with a programmable polarity, duration, and frequency. When the  
counter reaches the value in the registers of an output compare channel,  
the TIM can set, clear, or toggle the channel pin. Output compares can  
generate TIM CPU interrupt requests.  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA Timer Interface Module (TIM)  
Technical Data  
125  
Timer Interface Module (TIM)  
10.5.3.1 Unbuffered Output Compare  
Any output compare channel can generate unbuffered output compare  
pulses as described in 10.5.3 Output Compare. The pulses are  
unbuffered because changing the output compare value requires writing  
the new value over the old value currently in the TIM channel registers.  
An unsynchronized write to the TIM channel registers to change an  
output compare value could cause incorrect operation for up to two  
counter overflow periods. For example, writing a new value before the  
counter reaches the old value but after the counter reaches the new  
value prevents any compare during that counter overflow period. Also,  
using a TIM overflow interrupt routine to write a new, smaller output  
compare value may cause the compare to be missed. The TIM may pass  
the new value before it is written.  
Use the following methods to synchronize unbuffered changes in the  
output compare value on channel x:  
• When changing to a smaller value, enable channel x output  
compare interrupts and write the new value in the output compare  
interrupt routine. The output compare interrupt occurs at the end  
of the current output compare pulse. The interrupt routine has until  
the end of the counter overflow period to write the new value.  
• When changing to a larger output compare value, enable TIM  
overflow interrupts and write the new value in the TIM overflow  
interrupt routine. The TIM overflow interrupt occurs at the end of  
the current counter overflow period. Writing a larger value in an  
output compare interrupt routine (at the end of the current pulse)  
could cause two output compares to occur in the same counter  
overflow period.  
Technical Data  
126  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Timer Interface Module (TIM)  
MOTOROLA  
Timer Interface Module (TIM)  
Functional Description  
10.5.3.2 Buffered Output Compare  
Channels 0 and 1 can be linked to form a buffered output compare  
channel whose output appears on the TCH0 pin. The TIM channel  
registers of the linked pair alternately control the output.  
Setting the MS0B bit in TIM channel 0 status and control register (TSC0)  
links channel 0 and channel 1. The output compare value in the TIM  
channel 0 registers initially controls the output on the TCH0 pin. Writing  
to the TIM channel 1 registers enables the TIM channel 1 registers to  
synchronously control the output after the TIM overflows. At each  
subsequent overflow, the TIM channel registers (0 or 1) that control the  
output are the ones written to last. TSC0 controls and monitors the  
buffered output compare function, and TIM channel 1 status and control  
register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin,  
TCH1, is available as a general-purpose I/O pin.  
NOTE: In buffered output compare operation, do not write new output compare  
values to the currently active channel registers. User software should  
track the currently active channel to prevent writing a new value to the  
active channel. Writing to the active channel registers is the same as  
generating unbuffered output compares.  
10.5.4 Pulse Width Modulation (PWM)  
By using the toggle-on-overflow feature with an output compare channel,  
the TIM can generate a PWM signal. The value in the TIM counter  
modulo registers determines the period of the PWM signal. The channel  
pin toggles when the counter reaches the value in the TIM counter  
modulo registers. The time between overflows is the period of the PWM  
signal.  
As Figure 10-3 shows, the output compare value in the TIM channel  
registers determines the pulse width of the PWM signal. The time  
between overflow and output compare is the pulse width. Program the  
TIM to clear the channel pin on output compare if the state of the PWM  
pulse is logic one. Program the TIM to set the pin if the state of the PWM  
pulse is logic zero.  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA Timer Interface Module (TIM)  
Technical Data  
127  
Timer Interface Module (TIM)  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
PULSE  
WIDTH  
TCHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
Figure 10-3. PWM Period and Pulse Width  
The value in the TIM counter modulo registers and the selected  
prescaler output determines the frequency of the PWM output. The  
frequency of an 8-bit PWM signal is variable in 256 increments. Writing  
$00FF (255) to the TIM counter modulo registers produces a PWM  
period of 256 times the internal bus clock period if the prescaler select  
value is 000 (see 10.10.1 TIM Status and Control Register (TSC)).  
The value in the TIM channel registers determines the pulse width of the  
PWM output. The pulse width of an 8-bit PWM signal is variable in 256  
increments. Writing $0080 (128) to the TIM channel registers produces  
a duty cycle of 128/256 or 50%.  
10.5.4.1 Unbuffered PWM Signal Generation  
Any output compare channel can generate unbuffered PWM pulses as  
described in 10.5.4 Pulse Width Modulation (PWM). The pulses are  
unbuffered because changing the pulse width requires writing the new  
pulse width value over the old value currently in the TIM channel  
registers.  
An unsynchronized write to the TIM channel registers to change a pulse  
width value could cause incorrect operation for up to two PWM periods.  
For example, writing a new value before the counter reaches the old  
value but after the counter reaches the new value prevents any compare  
during that PWM period. Also, using a TIM overflow interrupt routine to  
write a new, smaller pulse width value may cause the compare to be  
missed. The TIM may pass the new value before it is written.  
Technical Data  
128  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Timer Interface Module (TIM)  
MOTOROLA  
Timer Interface Module (TIM)  
Functional Description  
Use the following methods to synchronize unbuffered changes in the  
PWM pulse width on channel x:  
• When changing to a shorter pulse width, enable channel x output  
compare interrupts and write the new value in the output compare  
interrupt routine. The output compare interrupt occurs at the end  
of the current pulse. The interrupt routine has until the end of the  
PWM period to write the new value.  
• When changing to a longer pulse width, enable TIM overflow  
interrupts and write the new value in the TIM overflow interrupt  
routine. The TIM overflow interrupt occurs at the end of the current  
PWM period. Writing a larger value in an output compare interrupt  
routine (at the end of the current pulse) could cause two output  
compares to occur in the same PWM period.  
NOTE: In PWM signal generation, do not program the PWM channel to toggle  
on output compare. Toggling on output compare prevents reliable 0%  
duty cycle generation and removes the ability of the channel to self-  
correct in the event of software error or noise. Toggling on output  
compare also can cause incorrect PWM signal generation when  
changing the PWM pulse width to a new, much larger value.  
10.5.4.2 Buffered PWM Signal Generation  
Channels 0 and 1 can be linked to form a buffered PWM channel whose  
output appears on the TCH0 pin. The TIM channel registers of the linked  
pair alternately control the pulse width of the output.  
Setting the MS0B bit in TIM channel 0 status and control register (TSC0)  
links channel 0 and channel 1. The TIM channel 0 registers initially  
control the pulse width on the TCH0 pin. Writing to the TIM channel 1  
registers enables the TIM channel 1 registers to synchronously control  
the pulse width at the beginning of the next PWM period. At each  
subsequent overflow, the TIM channel registers (0 or 1) that control the  
pulse width are the ones written to last. TSC0 controls and monitors the  
buffered PWM function, and TIM channel 1 status and control register  
(TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1,  
is available as a general-purpose I/O pin.  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA Timer Interface Module (TIM)  
Technical Data  
129  
Timer Interface Module (TIM)  
NOTE: In buffered PWM signal generation, do not write new pulse width values  
to the currently active channel registers. User software should track the  
currently active channel to prevent writing a new value to the active  
channel. Writing to the active channel registers is the same as  
generating unbuffered PWM signals.  
10.5.4.3 PWM Initialization  
To ensure correct operation when generating unbuffered or buffered  
PWM signals, use the following initialization procedure:  
1. In the TIM status and control register (TSC):  
a. Stop the TIM counter by setting the TIM stop bit, TSTOP.  
b. Reset the TIM counter and prescaler by setting the TIM reset  
bit, TRST.  
2. In the TIM counter modulo registers (TMODH:TMODL), write the  
value for the required PWM period.  
3. In the TIM channel x registers (TCHxH:TCHxL), write the value for  
the required pulse width.  
4. In TIM channel x status and control register (TSCx):  
a. Write 0:1 (for unbuffered output compare or PWM signals) or  
1:0 (for buffered output compare or PWM signals) to the mode  
select bits, MSxB:MSxA. (See Table 10-3.)  
b. Write 1 to the toggle-on-overflow bit, TOVx.  
c. Write 1:0 (to clear output on compare) or 1:1 (to set output on  
compare) to the edge/level select bits, ELSxB:ELSxA. The  
output action on compare must force the output to the  
complement of the pulse width level. (See Table 10-3.)  
NOTE: In PWM signal generation, do not program the PWM channel to toggle  
on output compare. Toggling on output compare prevents reliable 0%  
duty cycle generation and removes the ability of the channel to self-  
correct in the event of software error or noise. Toggling on output  
compare can also cause incorrect PWM signal generation when  
changing the PWM pulse width to a new, much larger value.  
5. In the TIM status control register (TSC), clear the TIM stop bit,  
TSTOP.  
Technical Data  
130  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Timer Interface Module (TIM)  
MOTOROLA  
Timer Interface Module (TIM)  
Interrupts  
Setting MS0B links channels 0 and 1 and configures them for buffered  
PWM operation. The TIM channel 0 registers (TCH0H:TCH0L) initially  
control the buffered PWM output. TIM status control register 0 (TSC0)  
controls and monitors the PWM signal from the linked channels. MS0B  
takes priority over MS0A.  
Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIM  
overflows. Subsequent output compares try to force the output to a state  
it is already in and have no effect. The result is a 0% duty cycle output.  
Setting the channel x maximum duty cycle bit (CHxMAX) and setting the  
TOVx bit generates a 100% duty cycle output. (See 10.10.4 TIM  
Channel Status and Control Registers (TSC0:TSC1).)  
10.6 Interrupts  
The following TIM sources can generate interrupt requests:  
• TIM overflow flag (TOF) — The TOF bit is set when the TIM  
counter reaches the modulo value programmed in the TIM counter  
modulo registers. The TIM overflow interrupt enable bit, TOIE,  
enables TIM overflow CPU interrupt requests. TOF and TOIE are  
in the TIM status and control register.  
• TIM channel flags (CH1F:CH0F) — The CHxF bit is set when an  
input capture or output compare occurs on channel x. Channel x  
TIM CPU interrupt requests are controlled by the channel x  
interrupt enable bit, CHxIE. Channel x TIM CPU interrupt requests  
are enabled when CHxIE=1. CHxF and CHxIE are in the TIM  
channel x status and control register.  
10.7 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes.  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA Timer Interface Module (TIM)  
Technical Data  
131  
Timer Interface Module (TIM)  
10.7.1 Wait Mode  
The TIM remains active after the execution of a WAIT instruction. In wait  
mode, the TIM registers are not accessible by the CPU. Any enabled  
CPU interrupt request from the TIM can bring the MCU out of wait mode.  
If TIM functions are not required during wait mode, reduce power  
consumption by stopping the TIM before executing the WAIT instruction.  
10.7.2 Stop Mode  
The TIM is inactive after the execution of a STOP instruction. The STOP  
instruction does not affect register conditions or the state of the TIM  
counter. TIM operation resumes when the MCU exits stop mode after an  
external interrupt.  
10.8 TIM During Break Interrupts  
A break interrupt stops the TIM counter.  
The system integration module (SIM) controls whether status bits in  
other modules can be cleared during the break state. The BCFE bit in  
the break flag control register (BFCR) enables software to clear status  
bits during the break state. (See 7.8.3 Break Flag Control Register  
(BFCR).)  
To allow software to clear status bits during a break interrupt, write a  
logic one to the BCFE bit. If a status bit is cleared during the break state,  
it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a logic zero to the  
BCFE bit. With BCFE at logic zero (its default state), software can read  
and write I/O registers during the break state without affecting status  
bits. Some status bits have a two-step read/write clearing procedure. If  
software does the first step on such a bit before the break, the bit cannot  
change during the break state as long as BCFE is at logic zero. After the  
break, doing the second step clears the status bit.  
Technical Data  
132  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Timer Interface Module (TIM)  
MOTOROLA  
Timer Interface Module (TIM)  
I/O Signals  
10.9 I/O Signals  
Port D shares two of its pins with the TIM. The two TIM channel I/O pins  
are PTD4/TCH0 and PTD5/TCH1.  
Each channel I/O pin is programmable independently as an input  
capture pin or an output compare pin. PTD4/TCH0 can be configured as  
a buffered output compare or buffered PWM pin.  
10.10 I/O Registers  
The following I/O registers control and monitor operation of the TIM:  
• TIM status and control register (TSC)  
• TIM counter registers (TCNTH:TCNTL)  
• TIM counter modulo registers (TMODH:TMODL)  
• TIM channel status and control registers (TSC0 and TSC1)  
• TIM channel registers (TCH0H:TCH0L and TCH1H:TCH1L)  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA Timer Interface Module (TIM)  
Technical Data  
133  
Timer Interface Module (TIM)  
10.10.1 TIM Status and Control Register (TSC)  
The TIM status and control register does the following:  
• Enables TIM overflow interrupts  
• Flags TIM overflows  
• Stops the TIM counter  
• Resets the TIM counter  
• Prescales the TIM counter clock  
Address: $0020  
Bit 7  
TOF  
6
TOIE  
0
5
TSTOP  
1
4
0
3
0
2
PS2  
0
1
PS1  
0
Bit 0  
PS0  
0
Read:  
Write:  
Reset:  
0
0
TRST  
0
0
= Unimplemented  
Figure 10-4. TIM Status and Control Register (TSC)  
TOF — TIM Overflow Flag Bit  
This read/write flag is set when the TIM counter reaches the modulo  
value programmed in the TIM counter modulo registers. Clear TOF by  
reading the TIM status and control register when TOF is set and then  
writing a logic zero to TOF. If another TIM overflow occurs before the  
clearing sequence is complete, then writing logic zero to TOF has no  
effect. Therefore, a TOF interrupt request cannot be lost due to  
inadvertent clearing of TOF. Reset clears the TOF bit. Writing a logic  
one to TOF has no effect.  
1 = TIM counter has reached modulo value  
0 = TIM counter has not reached modulo value  
TOIE — TIM Overflow Interrupt Enable Bit  
This read/write bit enables TIM overflow interrupts when the TOF bit  
becomes set. Reset clears the TOIE bit.  
1 = TIM overflow interrupts enabled  
0 = TIM overflow interrupts disabled  
Technical Data  
134  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Timer Interface Module (TIM)  
MOTOROLA  
Timer Interface Module (TIM)  
I/O Registers  
TSTOP — TIM Stop Bit  
This read/write bit stops the TIM counter. Counting resumes when  
TSTOP is cleared. Reset sets the TSTOP bit, stopping the TIM  
counter until software clears the TSTOP bit.  
1 = TIM counter stopped  
0 = TIM counter active  
NOTE: Do not set the TSTOP bit before entering wait mode if the TIM is required  
to exit wait mode.  
TRST — TIM Reset Bit  
Setting this write-only bit resets the TIM counter and the TIM  
prescaler. Setting TRST has no effect on any other registers.  
Counting resumes from $0000. TRST is cleared automatically after  
the TIM counter is reset and always reads as logic zero. Reset clears  
the TRST bit.  
1 = Prescaler and TIM counter cleared  
0 = No effect  
NOTE: Setting the TSTOP and TRST bits simultaneously stops the TIM counter  
at a value of $0000.  
PS[2:0] — Prescaler Select Bits  
These read/write bits select one of the seven prescaler outputs as the  
input to the TIM counter as Table 10-2 shows. Reset clears the  
PS[2:0] bits.  
Table 10-2. Prescaler Selection  
PS2  
0
PS1  
0
PS0  
0
TIM Clock Source  
Internal Bus Clock ÷ 1  
Internal Bus Clock ÷ 2  
Internal Bus Clock ÷ 4  
Internal Bus Clock ÷ 8  
Internal Bus Clock ÷ 16  
Internal Bus Clock ÷ 32  
Internal Bus Clock ÷ 64  
Not available  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA Timer Interface Module (TIM)  
Technical Data  
135  
Timer Interface Module (TIM)  
10.10.2 TIM Counter Registers (TCNTH:TCNTL)  
The two read-only TIM counter registers contain the high and low bytes  
of the value in the TIM counter. Reading the high byte (TCNTH) latches  
the contents of the low byte (TCNTL) into a buffer. Subsequent reads of  
TCNTH do not affect the latched TCNTL value until TCNTL is read.  
Reset clears the TIM counter registers. Setting the TIM reset bit (TRST)  
also clears the TIM counter registers.  
NOTE: If you read TCNTH during a break interrupt, be sure to unlatch TCNTL  
by reading TCNTL before exiting the break interrupt. Otherwise, TCNTL  
retains the value latched during the break.  
Address: $0021  
Bit 7  
TCNTH  
6
5
4
3
2
1
Bit 0  
Bit8  
Read:  
Write:  
Reset:  
Bit15  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
0
0
0
0
0
0
0
0
Address: $0022  
Bit 7  
TCNTL  
6
5
4
3
2
1
Bit 0  
Bit0  
Read:  
Write:  
Reset:  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 10-5. TIM Counter Registers (TCNTH:TCNTL)  
Technical Data  
136  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Timer Interface Module (TIM) MOTOROLA  
Timer Interface Module (TIM)  
I/O Registers  
10.10.3 TIM Counter Modulo Registers (TMODH:TMODL)  
The read/write TIM modulo registers contain the modulo value for the  
TIM counter. When the TIM counter reaches the modulo value, the  
overflow flag (TOF) becomes set, and the TIM counter resumes counting  
from $0000 at the next timer clock. Writing to the high byte (TMODH)  
inhibits the TOF bit and overflow interrupts until the low byte (TMODL) is  
written. Reset sets the TIM counter modulo registers.  
Address: $0023  
Bit 7  
TMODH  
6
5
Bit13  
1
4
Bit12  
1
3
Bit11  
1
2
Bit10  
1
1
Bit9  
1
Bit 0  
Bit8  
1
Read:  
Bit15  
Write:  
Bit14  
1
Reset:  
1
Address: $0024  
Bit 7  
TMODL  
6
5
Bit5  
1
4
Bit4  
1
3
Bit3  
1
2
Bit2  
1
1
Bit1  
1
Bit 0  
Bit0  
1
Read:  
Bit7  
Write:  
Bit6  
1
Reset:  
1
Figure 10-6. TIM Counter Modulo Registers (TMODH:TMODL)  
NOTE: Reset the TIM counter before writing to the TIM counter modulo registers.  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA Timer Interface Module (TIM)  
Technical Data  
137  
Timer Interface Module (TIM)  
10.10.4 TIM Channel Status and Control Registers (TSC0:TSC1)  
Each of the TIM channel status and control registers does the following:  
• Flags input captures and output compares  
• Enables input capture and output compare interrupts  
• Selects input capture, output compare, or PWM operation  
• Selects high, low, or toggling output on output compare  
• Selects rising edge, falling edge, or any edge as the active input  
capture trigger  
• Selects output toggling on TIM overflow  
• Selects 0% and 100% PWM duty cycle  
• Selects buffered or unbuffered output compare/PWM operation  
Address: $0025  
TSC0  
6
Bit 7  
5
MS0B  
0
4
MS0A  
0
3
ELS0B  
0
2
ELS0A  
0
1
TOV0  
0
Bit 0  
CH0MAX  
0
Read: CH0F  
CH0IE  
0
Write:  
0
0
Reset:  
Address: $0028  
Bit 7  
TSC1  
6
5
0
4
MS1A  
0
3
ELS1B  
0
2
ELS1A  
0
1
TOV1  
0
Bit 0  
CH1MAX  
0
Read: CH1F  
CH1IE  
0
Write:  
0
0
Reset:  
0
= Unimplemented  
Figure 10-7. TIM Channel Status and Control Registers (TSC0:TSC1)  
Technical Data  
138  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Timer Interface Module (TIM)  
MOTOROLA  
Timer Interface Module (TIM)  
I/O Registers  
CHxF — Channel x Flag Bit  
When channel x is an input capture channel, this read/write bit is set  
when an active edge occurs on the channel x pin. When channel x is  
an output compare channel, CHxF is set when the value in the TIM  
counter registers matches the value in the TIM channel x registers.  
When TIM CPU interrupt requests are enabled (CHxIE=1), clear  
CHxF by reading the TIM channel x status and control register with  
CHxF set and then writing a logic zero to CHxF. If another interrupt  
request occurs before the clearing sequence is complete, then writing  
logic zero to CHxF has no effect. Therefore, an interrupt request  
cannot be lost due to inadvertent clearing of CHxF.  
Reset clears the CHxF bit. Writing a logic one to CHxF has no effect.  
1 = Input capture or output compare on channel x  
0 = No input capture or output compare on channel x  
CHxIE — Channel x Interrupt Enable Bit  
This read/write bit enables TIM CPU interrupt service requests on  
channel x. Reset clears the CHxIE bit.  
1 = Channel x CPU interrupt requests enabled  
0 = Channel x CPU interrupt requests disabled  
MSxB — Mode Select Bit B  
This read/write bit selects buffered output compare/PWM operation.  
MSxB exists only in the TIM channel 0 status and control register.  
Setting MS0B disables the channel 1 status and control register and  
reverts TCH1 to general-purpose I/O.  
Reset clears the MSxB bit.  
1 = Buffered output compare/PWM operation enabled  
0 = Buffered output compare/PWM operation disabled  
MSxA — Mode Select Bit A  
When ELSxB:ELSxA 0:0, this read/write bit selects either input  
capture operation or unbuffered output compare/PWM operation.  
See Table 10-3.  
1 = Unbuffered output compare/PWM operation  
0 = Input capture operation  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA Timer Interface Module (TIM)  
Technical Data  
139  
Timer Interface Module (TIM)  
When ELSxB:ELSxA = 0:0, this read/write bit selects the initial output  
level of the TCHx pin. (See Table 10-3.) Reset clears the MSxA bit.  
1 = Initial output level low  
0 = Initial output level high  
NOTE: Before changing a channel function by writing to the MSxB or MSxA bit,  
set the TSTOP and TRST bits in the TIM status and control register  
(TSC).  
ELSxB and ELSxA — Edge/Level Select Bits  
When channel x is an input capture channel, these read/write bits  
control the active edge-sensing logic on channel x.  
When channel x is an output compare channel, ELSxB and ELSxA  
control the channel x output behavior when an output compare  
occurs.  
When ELSxB and ELSxA are both clear, channel x is not connected  
to an I/O port, and pin TCHx is available as a general-purpose I/O pin.  
Table 10-3 shows how ELSxB and ELSxA work. Reset clears the  
ELSxB and ELSxA bits.  
Table 10-3. Mode, Edge, and Level Selection  
MSxB MSxA ELSxB ELSxA  
Mode  
Configuration  
Pin under Port Control;  
Initial Output Level High  
X
X
0
1
0
0
0
0
Output  
Preset  
Pin under Port Control;  
Initial Output Level Low  
0
0
0
0
0
0
1
1
0
0
0
1
1
1
X
X
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
Capture on Rising Edge Only  
Capture on Falling Edge Only  
Capture on Rising or Falling Edge  
Toggle Output on Compare  
Input  
Capture  
Output  
Compare Clear Output on Compare  
or PWM  
Set Output on Compare  
Buffered  
Output  
Compareor  
Buffered  
PWM  
Toggle Output on Compare  
Clear Output on Compare  
1
X
1
1
Set Output on Compare  
Technical Data  
140  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Timer Interface Module (TIM) MOTOROLA  
Timer Interface Module (TIM)  
I/O Registers  
NOTE: Before enabling a TIM channel register for input capture operation, make  
sure that the TCHx pin is stable for at least two bus clocks.  
TOVx — Toggle-On-Overflow Bit  
When channel x is an output compare channel, this read/write bit  
controls the behavior of the channel x output when the TIM counter  
overflows. When channel x is an input capture channel, TOVx has no  
effect. Reset clears the TOVx bit.  
1 = Channel x pin toggles on TIM counter overflow.  
0 = Channel x pin does not toggle on TIM counter overflow.  
NOTE: When TOVx is set, a TIM counter overflow takes precedence over a  
channel x output compare if both occur at the same time.  
CHxMAX — Channel x Maximum Duty Cycle Bit  
When the TOVx bit is at logic one, setting the CHxMAX bit forces the  
duty cycle of buffered and unbuffered PWM signals to 100%. As  
Figure 10-8 shows, the CHxMAX bit takes effect in the cycle after it  
is set or cleared. The output stays at the 100% duty cycle level until  
the cycle after CHxMAX is cleared.  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
TCHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
CHxMAX  
Figure 10-8. CHxMAX Latency  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA Timer Interface Module (TIM)  
Technical Data  
141  
Timer Interface Module (TIM)  
10.10.5 TIM Channel Registers (TCH0H/L:TCH1H/L)  
These read/write registers contain the captured TIM counter value of the  
input capture function or the output compare value of the output  
compare function. The state of the TIM channel registers after reset is  
unknown.  
In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the  
TIM channel x registers (TCHxH) inhibits input captures until the low  
byte (TCHxL) is read.  
In output compare mode (MSxB:MSxA 0:0), writing to the high byte of  
the TIM channel x registers (TCHxH) inhibits output compares until the  
low byte (TCHxL) is written.  
Address: $0026  
Bit 7  
TCH0H  
6
5
4
3
2
1
Bit 0  
Bit8  
Read:  
Bit15  
Write:  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
Reset:  
Indeterminate after reset  
Address: $0027  
Bit 7  
TCH0L  
6
5
4
3
2
1
Bit 0  
Bit0  
Read:  
Bit7  
Write:  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Reset:  
Indeterminate after reset  
Address: $0029  
Bit 7  
TCH1H  
6
5
4
3
2
1
Bit 0  
Bit8  
Read:  
Bit15  
Write:  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
Reset:  
Indeterminate after reset  
Address:  
$02A  
Bit 7  
TCH1L  
6
5
4
3
2
1
Bit 0  
Bit0  
Read:  
Write:  
Reset:  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Indeterminate after reset  
Figure 10-9. TIM Channel Registers (TCH0H/L:TCH1H/L)  
Technical Data  
142  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Timer Interface Module (TIM) MOTOROLA  
Technical Data – MC68H(R)C908JL3E/JK3E/JK1E  
Section 11. Analog-to-Digital Converter (ADC)  
11.1 Contents  
11.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143  
11.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144  
11.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144  
11.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145  
11.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146  
11.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146  
11.4.4 Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . .146  
11.4.5 Accuracy and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
11.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
11.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
11.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
11.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
11.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
11.7.1 ADC Voltage In (ADCVIN) . . . . . . . . . . . . . . . . . . . . . . . . .148  
11.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148  
11.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . .148  
11.8.2 ADC Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151  
11.8.3 ADC Input Clock Register . . . . . . . . . . . . . . . . . . . . . . . . .151  
11.2 Introduction  
This section describes the 12-channel, 8-bit linear successive  
approximation analog-to-digital converter (ADC).  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA Analog-to-Digital Converter (ADC)  
Technical Data  
143  
Analog-to-Digital Converter (ADC)  
11.3 Features  
Features of the ADC module include:  
• 12 channels with multiplexed input  
• Linear successive approximation with monotonicity  
• 8-bit resolution  
• Single or continuous conversion  
• Conversion complete flag or conversion complete interrupt  
• Selectable ADC clock  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read: COCO  
ADC Status and Control  
AIEN  
ADCO  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
$003C  
Register Write:  
(ADSCR)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
0
0
1
1
1
1
1
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
ADC Data Register  
(ADR)  
$003D  
$003E  
Indeterminate after reset  
0
0
0
0
0
0
0
0
ADIV2  
0
ADIV1  
0
ADIV0  
0
ADC Input Clock Register  
(ADICLK)  
0
0
Figure 11-1. ADC I/O Register Summary  
11.4 Functional Description  
Twelve ADC channels are available for sampling external sources at  
pins PTB0–PTB7 and PTD0–PTD3. An analog multiplexer allows the  
single ADC converter to select one of the 12 ADC channels as ADC  
voltage input (ADCVIN). ADCVIN is converted by the successive  
approximation register-based counters. The ADC resolution is 8 bits.  
When the conversion is completed, ADC puts the result in the ADC data  
register and sets a flag or generates an interrupt. Figure 11-2 shows a  
block diagram of the ADC.  
Technical Data  
144  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Analog-to-Digital Converter (ADC)  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
Functional Description  
INTERNAL  
DATA BUS  
READ DDRB/DDRD  
WRITE DDRB/DDRD  
DISABLE  
DDRBx/DDRDx  
PTBx/PTDx  
RESET  
WRITE PTB/PTD  
READ PTB/PTD  
ADCx  
DISABLE  
ADC CHANNEL x  
ADC DATA REGISTER  
ADC VOLTAGE IN  
ADCVIN  
CONVERSION  
COMPLETE  
CHANNEL  
SELECT  
INTERRUPT  
LOGIC  
ADCH[4:0]  
ADC  
(1 OF 12 CHANNELS)  
ADC CLOCK  
AIEN  
COCO  
CLOCK  
GENERATOR  
BUS CLOCK  
ADIV[2:0]  
ADICLK  
Figure 11-2. ADC Block Diagram  
11.4.1 ADC Port I/O Pins  
PTB0–PTB7 and PTD0–PTD3 are general-purpose I/O pins that are  
shared with the ADC channels. The channel select bits (ADC status and  
control register, $003C), define which ADC channel/port pin will be used  
as the input signal. The ADC overrides the port I/O logic by forcing that  
pin as input to the ADC. The remaining ADC channels/port pins are  
controlled by the port I/O logic and can be used as general-purpose I/O.  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA Analog-to-Digital Converter (ADC)  
Technical Data  
145  
Analog-to-Digital Converter (ADC)  
Writes to the port register or DDR will not have any affect on the port pin  
that is selected by the ADC. Read of a port pin which is in use by the  
ADC will return a logic 0 if the corresponding DDR bit is at logic 0. If the  
DDR bit is at logic 1, the value in the port data latch is read.  
11.4.2 Voltage Conversion  
When the input voltage to the ADC equals VDD, the ADC converts the  
signal to $FF (full scale). If the input voltage equals VSS, the ADC  
converts it to $00. Input voltages between VDD and VSS are a  
straight-line linear conversion. All other input voltages will result in $FF  
if greater than VDD and $00 if less than VSS.  
NOTE: Input voltage should not exceed the analog supply voltages.  
11.4.3 Conversion Time  
Fourteen ADC internal clocks are required to perform one conversion.  
The ADC starts a conversion on the first rising edge of the ADC internal  
clock immediately following a write to the ADSCR. If the ADC internal  
clock is selected to run at 1MHz, then one conversion will take 14µs to  
complete. With a 1MHz ADC internal clock the maximum sample rate is  
71.43kHz.  
14 ADC Clock Cycles  
Conversion Time =  
ADC Clock Frequency  
Number of Bus Cycles = Conversion Time × Bus Frequency  
11.4.4 Continuous Conversion  
In the continuous conversion mode, the ADC continuously converts the  
selected channel filling the ADC data register with new data after each  
conversion. Data from the previous conversion will be overwritten  
whether that data has been read or not. Conversions will continue until  
the ADCO bit is cleared. The COCO bit (ADC status and control register,  
$003C) is set after each conversion and can be cleared by writing the  
ADC status and control register or reading of the ADC data register.  
Technical Data  
146  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Analog-to-Digital Converter (ADC)  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
Interrupts  
11.4.5 Accuracy and Precision  
The conversion process is monotonic and has no missing codes.  
11.5 Interrupts  
When the AIEN bit is set, the ADC module is capable of generating a  
CPU interrupt after each ADC conversion. A CPU interrupt is generated  
if the COCO bit is at logic 0. The COCO bit is not used as a conversion  
complete flag when interrupts are enabled.  
11.6 Low-Power Modes  
The following subsections describe the ADC in low-power modes.  
11.6.1 Wait Mode  
The ADC continues normal operation during wait mode. Any enabled  
CPU interrupt request from the ADC can bring the MCU out of wait  
mode. If the ADC is not required to bring the MCU out of wait mode,  
power down the ADC by setting the ADCH[4:0] bits in the ADC status  
and control register to logic 1’s before executing the WAIT instruction.  
11.6.2 Stop Mode  
The ADC module is inactive after the execution of a STOP instruction.  
Any pending conversion is aborted. ADC conversions resume when the  
MCU exits stop mode. Allow one conversion cycle to stabilize the analog  
circuitry before attempting a new ADC conversion after exiting stop  
mode.  
11.7 I/O Signals  
The ADC module has 12 channels that are shared with I/O port B and  
port D.  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA Analog-to-Digital Converter (ADC)  
Technical Data  
147  
Analog-to-Digital Converter (ADC)  
11.7.1 ADC Voltage In (ADCVIN)  
ADCVIN is the input voltage signal from one of the 12 ADC channels to  
the ADC module.  
11.8 I/O Registers  
These I/O registers control and monitor ADC operation:  
• ADC status and control register (ADSCR)  
• ADC data register (ADR)  
• ADC clock register (ADICLK)  
11.8.1 ADC Status and Control Register  
The following paragraphs describe the function of the ADC status and  
control register.  
Address: $003C  
Bit 7  
6
AIEN  
0
5
ADCO  
0
4
ADCH4  
1
3
ADCH3  
1
2
ADCH2  
1
1
ADCH1  
1
Bit 0  
ADCH0  
1
Read: COCO  
Write:  
Reset:  
0
= Unimplemented  
Figure 11-3. ADC Status and Control Register (ADSCR)  
COCO — Conversions Complete Bit  
When the AIEN bit is a logic 0, the COCO is a read-only bit which is  
set each time a conversion is completed. This bit is cleared whenever  
the ADC status and control register is written or whenever the ADC  
data register is read. Reset clears this bit.  
1 = Conversion completed (AIEN = 0)  
0 = Conversion not completed (AIEN = 0)  
When the AIEN bit is a logic 1 (CPU interrupt enabled), the COCO is  
a read-only bit, and will always be logic 0 when read.  
Technical Data  
148  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Analog-to-Digital Converter (ADC)  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
I/O Registers  
AIEN — ADC Interrupt Enable Bit  
When this bit is set, an interrupt is generated at the end of an ADC  
conversion. The interrupt signal is cleared when the data register is  
read or the status/control register is written. Reset clears the AIEN bit.  
1 = ADC interrupt enabled  
0 = ADC interrupt disabled  
ADCO — ADC Continuous Conversion Bit  
When set, the ADC will convert samples continuously and update the  
ADR register at the end of each conversion. Only one conversion is  
allowed when this bit is cleared. Reset clears the ADCO bit.  
1 = Continuous ADC conversion  
0 = One ADC conversion  
ADCH[4:0] — ADC Channel Select Bits  
ADCH[4:0] form a 5-bit field which is used to select one of the ADC  
channels. The five channel select bits are detailed in the following  
table. Care should be taken when using a port pin as both an analog  
and a digital input simultaneously to prevent switching noise from  
corrupting the analog signal. (See Table 11-1.)  
The ADC subsystem is turned off when the channel select bits are all  
set to one. This feature allows for reduced power consumption for the  
MCU when the ADC is not used. Reset sets all of these bits to a  
logic 1.  
NOTE: Recovery from the disabled state requires one conversion cycle to  
stabilize.  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA Analog-to-Digital Converter (ADC)  
Technical Data  
149  
Analog-to-Digital Converter (ADC)  
Table 11-1. MUX Channel Select  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
ADC Channel  
Input Select  
0
0
0
0
0
0
0
0
0
1
1
1
1
1
:
0
0
0
0
1
1
1
1
0
0
0
0
1
:
0
0
1
1
0
0
1
1
0
0
1
1
0
:
0
1
0
1
0
1
0
1
0
1
0
1
0
:
ADC0  
ADC1  
ADC2  
ADC3  
ADC4  
ADC5  
ADC6  
ADC7  
ADC8  
ADC9  
ADC10  
ADC11  
PTB0  
PTB1  
PTB2  
PTB3  
PTB4  
PTB5  
PTB6  
PTB7  
PTD3  
PTD2  
PTD1  
PTD0  
0
0
0
0
0
0
0
0
0
0
0
0
Unused  
(see Note 1)  
:
1
1
1
1
1
1
1
0
0
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0
1
1
Reserved  
Unused  
1
1
VDDA (see Note 2)  
VSSA (see Note 2)  
ADC power off  
1
1
NOTES:  
1. If any unused channels are selected, the resulting ADC conversion will be unknown.  
2. The voltage levels supplied from internal reference nodes as specified in the table are used to verify the  
operation of the ADC converter both in production test and for user applications.  
Technical Data  
150  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Analog-to-Digital Converter (ADC) MOTOROLA  
Analog-to-Digital Converter (ADC)  
I/O Registers  
11.8.2 ADC Data Register  
One 8-bit result register is provided. This register is updated each time  
an ADC conversion completes.  
Address: $003D  
Bit 7  
AD7  
6
5
4
3
2
1
Bit 0  
AD0  
Read:  
Write:  
Reset:  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
Indeterminate after reset  
= Unimplemented  
Figure 11-4. ADC Data Register (ADR)  
11.8.3 ADC Input Clock Register  
This register selects the clock frequency for the ADC.  
Address: $003E  
Bit 7  
ADIV2  
0
6
ADIV1  
0
5
ADIV0  
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
= Unimplemented  
Figure 11-5. ADC Input Clock Register (ADICLK)  
ADIV[2:0] — ADC Clock Prescaler Bits  
ADIV[2:0] form a 3-bit field which selects the divide ratio used by the  
ADC to generate the internal ADC clock. Table 11-2 shows the  
available clock configurations. The ADC clock should be set to  
approximately 1MHz.  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA Analog-to-Digital Converter (ADC)  
Technical Data  
151  
Analog-to-Digital Converter (ADC)  
Table 11-2. ADC Clock Divide Ratio  
ADIV2  
ADIV1  
ADIV0  
ADC Clock Rate  
ADC Input Clock ÷ 1  
ADC Input Clock ÷ 2  
ADC Input Clock ÷ 4  
ADC Input Clock ÷ 8  
ADC Input Clock ÷ 16  
0
0
0
1
1
X
0
1
0
1
X
0
0
0
1
X = don’t care  
Technical Data  
152  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Analog-to-Digital Converter (ADC)  
MOTOROLA  
Technical Data – MC68H(R)C908JL3E/JK3E/JK1E  
Section 12. Input/Output (I/O) Ports  
12.1 Contents  
12.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153  
12.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156  
12.3.1 Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . .156  
12.3.2 Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . .157  
12.3.3 Port A Input Pull-up Enable Register (PTAPUE) . . . . . . . .158  
12.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159  
12.4.1 Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . .159  
12.4.2 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . .160  
12.5 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161  
12.5.1 Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . .162  
12.5.2 Data Direction Register D (DDRD). . . . . . . . . . . . . . . . . . .163  
12.5.3 Port D Control Register (PDCR). . . . . . . . . . . . . . . . . . . . .164  
12.2 Introduction  
Twenty three (23) bidirectional input-output (I/O) pins form three parallel  
ports. All I/O pins are programmable as inputs or outputs.  
NOTE: Connect any unused I/O pins to an appropriate logic level, either VDD or  
VSS. Although the I/O ports do not require termination for proper  
operation, termination reduces excess current consumption and the  
possibility of electrostatic damage.  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
153  
Input/Output (I/O) Ports  
Input/Output (I/O) Ports  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
0
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
Port A Data Register  
(PTA)  
$0000  
Unaffected by reset  
PTB7  
PTB6  
PTD6  
PTB5  
PTD5  
PTB4  
PTB3  
PTB2  
PTD2  
PTB1  
PTD1  
PTB0  
PTD0  
Port B Data Register  
(PTB)  
$0001  
$0003  
$0004  
$0005  
$0007  
$000A  
$000D  
Unaffected by reset  
PTD7  
PTD4  
PTD3  
Port D Data Register  
(PTD)  
Unaffected by reset  
0
DDRA6  
0
DDRA5  
0
DDRA4  
0
DDRA3  
DDRA2  
DDRA1  
DDRA0  
Data Direction Register A  
(DDRA)  
0
0
DDRB3  
0
0
DDRB2  
0
0
DDRB1  
0
0
DDRB0  
0
DDRB7  
0
DDRB6  
0
DDRB5  
0
DDRB4  
0
Data Direction Register B  
(DDRB)  
DDRD7  
DDRD6  
DDRD5  
DDRD4  
DDRD3 DDRD2 DDRD1 DDRD0  
Data Direction Register D  
(DDRD)  
0
0
0
0
0
0
0
0
0
0
0
0
SLOWD7 SLOWD6 PTDPU7 PTDPU6  
Port D Control Register  
(PDCR)  
0
0
0
0
0
0
0
0
Port A Input Pull-up  
PTA6EN PTAPUE6 PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0  
Enable Register Write:  
(PTAPUE)  
Reset:  
0
0
0
0
0
0
0
0
Figure 12-1. I/O Port Register Summary  
Technical Data  
154  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Input/Output (I/O) Ports  
Input/Output (I/O) Ports  
Introduction  
Table 12-1. Port Control Register Bits Summary  
Module Control  
DDR  
Port  
Bit  
Pin  
Module  
Register  
Control Bit  
KBIE0  
0
1
2
3
4
5
DDRA0  
DDRA1  
DDRA2  
DDRA3  
DDRA4  
DDRA5  
PTA0/KBI0  
PTA1/KBI1  
PTA2/KBI2  
PTA3/KBI3  
PTA4/KBI4  
PTA5/KBI5  
KBIE1  
KBIE2  
KBI  
KBIER ($001B)  
KBIE3  
A
KBIE4  
KBIE5  
OSC  
KBI  
PTAPUE ($000D)  
KBIER ($001B)  
PTA6EN  
KBIE6  
6
DDRA6  
RCCLK/PTA6/KBI6(1)  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
DDRB0  
DDRB1  
DDRB2  
DDRB3  
DDRB4  
DDRB5  
DDRB6  
DDRB7  
DDRD0  
DDRD1  
DDRD2  
DDRD3  
DDRD4  
DDRD5  
DDRD6  
DDRD7  
PTB0/ADC0  
PTB1/ADC1  
PTB2/ADC2  
PTB3/ADC3  
PTB4/ADC4  
PTB5/ADC5  
PTB6/ADC6  
PTB7/ADC7  
PTD0/ADC11  
PTD1/ADC10  
PTD2/ADC9  
PTD3/ADC8  
PTD4/TCH0  
PTD5/TCH1  
PTD6  
B
ADC  
ADSCR ($003C)  
ADCH[4:0]  
ADC  
TIM  
ADSCR ($003C)  
ADCH[4:0]  
D
TSC0 ($0025)  
ELS0B:ELS0A  
TSC1 ($0028)  
ELS1B:ELS1A  
PTD7  
Notes:  
1. RCCLK/PTA6/KBI6 pin is only available on MC68HRC908JL3E/JK3E/JK1E devices (RC option);  
PTAPUE register has priority control over the port pin.  
RCCLK/PTA6/KBI6 is the OSC2 pin on MC68HC908JL3E/JK3E/JK1E devices (X-TAL option).  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Technical Data  
155  
MOTOROLA  
Input/Output (I/O) Ports  
Input/Output (I/O) Ports  
12.3 Port A  
Port A is an 7-bit special function port that shares all seven of its pins  
with the keyboard interrupt (KBI) module (see Section 14. Keyboard  
Interrupt Module (KBI)). Each port A pin also has software configurable  
pull-up device if the corresponding port pin is configured as input port.  
PTA0 to PTA5 has direct LED drive capability.  
NOTE: PTA0–PTA5 pins are available on MC68H(R)C908JL3E only.  
PTA6 pin is available on MC68HRC908JL3E/JK3E/JK1E only.  
12.3.1 Port A Data Register (PTA)  
The port A data register (PTA) contains a data latch for each of the seven  
port A pins.  
Address: $0000  
Bit 7  
0
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
Unaffected by Reset  
LED  
(Sink)  
LED  
(Sink)  
LED  
(Sink)  
LED  
(Sink)  
LED  
(Sink)  
LED  
(Sink)  
Additional Functions:  
30k pull-up 30k pull-up 30k pull-up 30k pull-up 30k pull-up 30k pull-up 30k pull-up  
Keyboard Keyboard Keyboard Keyboard Keyboard Keyboard Keyboard  
Interrupt Interrupt Interrupt Interrupt Interrupt Interrupt Interrupt  
Figure 12-2. Port A Data Register (PTA)  
PTA[6:0] — Port A Data Bits  
These read/write bits are software programmable. Data direction of  
each port A pin is under the control of the corresponding bit in data  
direction register A. Reset has no effect on port A data.  
KBI[6:0] — Port A Keyboard Interrupts  
The keyboard interrupt enable bits, KBIE[6:0], in the keyboard  
interrupt control register (KBIER) enable the port A pins as external  
interrupt pins, (see Section 14. Keyboard Interrupt Module (KBI)).  
Technical Data  
156  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Input/Output (I/O) Ports  
MOTOROLA  
Input/Output (I/O) Ports  
Port A  
12.3.2 Data Direction Register A (DDRA)  
Data direction register A determines whether each port A pin is an input  
or an output. Writing a logic one to a DDRA bit enables the output buffer  
for the corresponding port A pin; a logic zero disables the output buffer.  
Address:  
$0004  
Bit 7  
0
6
DDRA6  
0
5
DDRA5  
0
4
DDRA4  
0
3
DDRA3  
0
2
DDRA2  
0
1
DDRA1  
0
Bit 0  
DDRA0  
0
Read:  
Write:  
Reset:  
0
Figure 12-3. Data Direction Register A (DDRA)  
DDRA[6:0] — Data Direction Register A Bits  
These read/write bits control port A data direction. Reset clears  
DDRA[6:0], configuring all port A pins as inputs.  
1 = Corresponding port A pin configured as output  
0 = Corresponding port A pin configured as input  
NOTE: Avoid glitches on port A pins by writing to the port A data register before  
changing data direction register A bits from 0 to 1.  
Figure 12-4 shows the port A I/O logic.  
READ DDRA ($0004)  
PTAPUEx  
WRITE DDRA ($0004)  
DDRAx  
RESET  
30k  
WRITE PTA ($0000)  
PTAx  
PTAx  
READ PTA ($0000)  
To Keyboard Interrupt Circuit  
Figure 12-4. Port A I/O Circuit  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
157  
Input/Output (I/O) Ports  
Input/Output (I/O) Ports  
When DDRAx is a logic 1, reading address $0000 reads the PTAx data  
latch. When DDRAx is a logic 0, reading address $0000 reads the  
voltage level on the pin. The data latch can always be written, regardless  
of the state of its data direction bit.  
12.3.3 Port A Input Pull-up Enable Register (PTAPUE)  
The port A input pull-up enable register (PTAPUE) contains a software  
configurable pull-up device for each of the seven port A pins. Each bit is  
individually configurable and requires the corresponding data direction  
register, DDRAx be configured as input. Each pull-up device is  
automatically and dynamically disabled when its corresponding DDRAx  
bit is configured as output.  
Address: $000D  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTA6EN PTAPUE6 PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0  
0
0
0
0
0
0
0
0
Figure 12-5. Port A Input Pull-up Enable Register (PTAPUE)  
PTA6EN — Enable PTA6 on OSC2  
This read/write bit configures the OSC2 pin function when RC  
oscillator option is selected. This bit has no effect for X-tal oscillator  
option.  
1 = OSC2 pin configured for PTA6 I/O, and has all the interrupt and  
pull-up functions  
0 = OSC2 pin outputs the RC oscillator clock (RCCLK)  
PTAPUE[6:0] — Port A Input Pull-up Enable Bits  
These read/write bits are software programmable to enable pull-up  
devices on port A pins  
1 = Corresponding port A pin configured to have internal pull-up if  
its DDRA bit is set to 0  
0 = Pull-up device is disconnected on the corresponding port A pin  
regardless of the state of its DDRA bit  
Technical Data  
158  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Input/Output (I/O) Ports  
MOTOROLA  
Input/Output (I/O) Ports  
Port B  
Table 12-2 summarizes the operation of the port A pins.  
Table 12-2. Port A Pin Functions  
Accesses to DDRA  
Accesses to PTA  
DDRA  
Bit  
PTAPUE Bit  
PTA Bit  
I/O Pin Mode  
Read/Write  
DDRA[6:0]  
DDRA[6:0]  
DDRA[6:0]  
Read  
Write  
X(1)  
X
Input, VDD  
Pin  
Pin  
PTA[6:0](3)  
PTA[6:0](3)  
PTA[6:0]  
(2)  
1
0
0
1
0
X
Input, Hi-Z(4)  
Output  
X
PTA[6:0]  
Notes:  
1. X = Don’t care.  
2. I/O pin pulled to VDD by internal pull-up.  
3. Writing affects data register, but does not affect input.  
4. Hi-Z = High Impedance.  
12.4 Port B  
Port B is an 8-bit special function port that shares all eight of its port pins  
with the analog-to-digital converter (ADC) module, see Section 11.  
12.4.1 Port B Data Register (PTB)  
The port B data register contains a data latch for each of the eight port B  
pins.  
Address: $0001  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
PTB7  
Write:  
PTB6  
PTB5  
PTB4  
PTB3  
PTB2  
PTB1  
PTB0  
Reset:  
Unaffected by reset  
ADC4 ADC3  
Alternative Function: ADC7  
ADC6  
ADC5  
ADC2  
ADC2  
ADC0  
Figure 12-6. Port B Data Register (PTB)  
PTB[7:0] — Port B Data Bits  
These read/write bits are software programmable. Data direction of  
each port B pin is under the control of the corresponding bit in data  
direction register B. Reset has no effect on port B data.  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
159  
Input/Output (I/O) Ports  
Input/Output (I/O) Ports  
ADC[7:0] — ADC channels 7 to 0  
ADC[7:0] are pins used for the input channels to the analog-to-digital  
converter module. The channel select bits, ADCH[4:0], in the ADC  
status and control register define which port pin will be used as an  
ADC input and overrides any control from the port I/O logic. See  
Section 11. Analog-to-Digital Converter (ADC).  
12.4.2 Data Direction Register B (DDRB)  
Data direction register B determines whether each port B pin is an input  
or an output. Writing a logic one to a DDRB bit enables the output buffer  
for the corresponding port B pin; a logic zero disables the output buffer.  
Address:  
$0005  
Bit 7  
6
DDRB6  
0
5
DDRB5  
0
4
DDRB4  
0
3
DDRB3  
0
2
DDRB2  
0
1
DDRB1  
0
Bit 0  
DDRB0  
0
Read:  
Write:  
Reset:  
DDRB7  
0
Figure 12-7. Data Direction Register B (DDRB)  
DDRB[7:0] — Data Direction Register B Bits  
These read/write bits control port B data direction. Reset clears  
DDRB[7:0], configuring all port B pins as inputs.  
1 = Corresponding port B pin configured as output  
0 = Corresponding port B pin configured as input  
NOTE: Avoid glitches on port B pins by writing to the port B data register before  
changing data direction register B bits from 0 to 1. Figure 12-8 shows  
the port B I/O logic.  
Technical Data  
160  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Input/Output (I/O) Ports  
MOTOROLA  
Input/Output (I/O) Ports  
Port D  
READ DDRB ($0005)  
WRITE DDRB ($0005)  
DDRBx  
PTBx  
RESET  
WRITE PTB ($0001)  
READ PTB ($0001)  
PTBx  
To Analog-To-Digital Converter  
Figure 12-8. Port B I/O Circuit  
When DDRBx is a logic 1, reading address $0001 reads the PTBx data  
latch. When DDRBx is a logic 0, reading address $0001 reads the  
voltage level on the pin. The data latch can always be written, regardless  
of the state of its data direction bit. Table 12-3 summarizes the operation  
of the port B pins.  
Table 12-3. Port B Pin Functions  
Accesses to DDRB Accesses to PTB  
DDRB Bit PTB Bit I/O Pin Mode  
Read/Write  
DDRB[7:0]  
DDRB[7:0]  
Read  
Write  
0
1
X(1)  
X
Input, Hi-Z(2)  
Output  
Pin  
PTB[7:0](3)  
Pin  
PTB[7:0]  
Notes:  
1. X = don’t care.  
2. Hi-Z = high impedance.  
3. Writing affects data register, but does not affect the input.  
12.5 Port D  
Port D is an 8-bit special function port that shares two of its pins with  
timer interface module, (see Section 10.) and shares four of its pins with  
analog-to-digital converter module (see Section 11.). PTD6 and PTD7  
each has high current drive (25mA sink) and programmable pull-up.  
PTD2, PTD3, PTD6 and PTD7 each has LED driving (sink) capability.  
NOTE: PTD0–PTD1 are available on MC68H(R)C908JL3E only.  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
161  
Input/Output (I/O) Ports  
Input/Output (I/O) Ports  
12.5.1 Port D Data Register (PTD)  
The port D data register contains a data latch for each of the eight port D  
pins.  
Address: $0003  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
PTD7  
Write:  
PTD6  
PTD5  
PTD4  
PTD3  
PTD2  
PTD1  
PTD0  
Reset:  
Unaffected by reset  
LED  
(Sink)  
LED  
(Sink)  
LED  
(Sink)  
LED  
(Sink)  
Additional Functions  
ADC8  
TCH0  
ADC9  
ADC10  
ADC11  
TCH1  
25mA sink 25mA sink  
(Slow Edge) (Slow Edge)  
5k pull-up 5k pull-up  
Figure 12-9. Port D Data Register (PTD)  
PTD[7:0] — Port D Data Bits  
These read/write bits are software programmable. Data direction of  
each port D pin is under the control of the corresponding bit in data  
direction register D. Reset has no effect on port D data.  
ADC[11:8] — ADC channels 11 to 8  
ADC[11:8] are pins used for the input channels to the analog-to-digital  
converter module. The channel select bits, ADCH[4:0], in the ADC  
status and control register define which port pin will be used as an  
ADC input and overrides any control from the port I/O logic. See  
Section 11. Analog-to-Digital Converter (ADC).  
TCH[1:0] — Timer Channel I/O  
The TCH1 and TCH0 pins are the TIM input capture/output compare  
pins. The edge/level select bits, ELSxB:ELSxA, determine whether  
the PTD4/TCH0 and PTD5/TCH1 pins are timer channel I/O pins or  
general-purpose I/O pins. See Section 10. Timer Interface Module  
(TIM).  
Technical Data  
162  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Input/Output (I/O) Ports  
MOTOROLA  
Input/Output (I/O) Ports  
Port D  
12.5.2 Data Direction Register D (DDRD)  
Data direction register D determines whether each port D pin is an input  
or an output. Writing a logic one to a DDRD bit enables the output buffer  
for the corresponding port D pin; a logic zero disables the output buffer.  
Address:  
$0007  
Bit 7  
6
DDRD6  
0
5
4
3
2
DDRD2  
0
1
DDRD1  
0
Bit 0  
DDRD0  
0
Read:  
Write:  
Reset:  
DDRD7  
0
DDRD5 DDRD4 DDRD3  
0
0
0
Figure 12-10. Data Direction Register D (DDRD)  
DDRD[7:0] — Data Direction Register D Bits  
These read/write bits control port D data direction. Reset clears  
DDRD[7:0], configuring all port D pins as inputs.  
1 = Corresponding port D pin configured as output  
0 = Corresponding port D pin configured as input  
NOTE: Avoid glitches on port D pins by writing to the port D data register before  
changing data direction register D bits from 0 to 1. Figure 12-11 shows  
the port D I/O logic.  
READ DDRD ($0007)  
PTDPU[6:7]  
WRITE DDRD ($0007)  
DDRDx  
RESET  
5k  
WRITE PTD ($0003)  
PTDx  
PTDx  
READ PTD ($0003)  
PTD[0:3] To Analog-To-Digital Converter  
PTD[4:5] To Timer  
Figure 12-11. Port D I/O Circuit  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
163  
Input/Output (I/O) Ports  
Input/Output (I/O) Ports  
When DDRDx is a logic 1, reading address $0003 reads the PTDx data  
latch. When DDRDx is a logic 0, reading address $0003 reads the  
voltage level on the pin. The data latch can always be written, regardless  
of the state of its data direction bit. Table 12-4 summarizes the operation  
of the port D pins.  
Table 12-4. Port D Pin Functions  
Accesses  
Accesses to PTD  
DDRD  
Bit  
I/O Pin  
Mode  
to DDRD  
PTD Bit  
Read/Write  
Input, Hi-Z(2) DDRD[7:0]  
Read  
Pin  
Write  
PTD[7:0](3)  
0
1
X(1)  
X
Output DDRD[7:0]  
Pin  
PTD[7:0]  
Notes:  
1. X = don’t care.  
2. Hi-Z = high impedance.  
3. Writing affects data register, but does not affect the input.  
12.5.3 Port D Control Register (PDCR)  
The port D control register enables/disables the pull-up resistor and  
slow-edge high current capability of pins PTD6 and PTD7.  
Address:  
$000A  
Bit 7  
0
6
0
5
0
4
0
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
SLOWD7 SLOWD6 PTDPU7 PTDPU6  
0
0
0
0
0
0
0
0
Figure 12-12. Port D Control Register (PDCR)  
SLOWDx — Slow Edge Enable  
The SLOWD6 and SLOWD7 bits enable the Slow-edge, open-drain,  
high current output (25mA sink) of port pins PTD6 and PTD7  
respectively. DDRDx bit is not affected by SLOWDx.  
1 = Slow edge enabled; pin is open-drain output  
0 = Slow edge disabled; pin is push-pull  
PTDPUx — Pull-up Enable  
The PTDPU6 and PTDPU7 bits enable the 5kpull-up on PTD6 and  
PTD7 respectively, regardless the status of DDRDx bit.  
1 = Enable 5kpull-up  
0 = Disable 5kpull-up  
Technical Data  
164  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Input/Output (I/O) Ports  
MOTOROLA  
Technical Data – MC68H(R)C908JL3E/JK3E/JK1E  
Section 13. External Interrupt (IRQ)  
13.1 Contents  
13.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165  
13.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165  
13.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166  
13.4.1 IRQ1 Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167  
13.5 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . .169  
13.6 IRQ Status and Control Register (INTSCR) . . . . . . . . . . . . . .169  
13.2 Introduction  
13.3 Features  
The IRQ (external interrupt) module provides a maskable interrupt input.  
Features of the IRQ module include the following:  
• A dedicated external interrupt pin, IRQ1  
• IRQ1 interrupt control bits  
• Hysteresis buffer  
• Programmable edge-only or edge and level interrupt sensitivity  
• Automatic interrupt acknowledge  
• Selectable internal pullup resistor  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
165  
External Interrupt (IRQ)  
External Interrupt (IRQ)  
13.4 Functional Description  
A logic zero applied to the external interrupt pin can latch a CPU interrupt  
request. Figure 13-1 shows the structure of the IRQ module.  
Interrupt signals on the IRQ1 pin are latched into the IRQ1 latch. An  
interrupt latch remains set until one of the following actions occurs:  
• Vector fetch — A vector fetch automatically generates an interrupt  
acknowledge signal that clears the IRQ latch.  
• Software clear — Software can clear the interrupt latch by writing  
to the acknowledge bit in the interrupt status and control register  
(INTSCR). Writing a logic one to the ACK1 bit clears the IRQ1  
latch.  
• Reset — A reset automatically clears the interrupt latch.  
The external interrupt pin is falling-edge-triggered and is software-  
configurable to be either falling-edge or falling-edge and low-level-  
triggered. The MODE1 bit in the INTSCR controls the triggering  
sensitivity of the IRQ1 pin.  
When the interrupt pin is edge-triggered only, the CPU interrupt request  
remains set until a vector fetch, software clear, or reset occurs.  
When the interrupt pin is both falling-edge and low-level-triggered, the  
CPU interrupt request remains set until both of the following occur:  
• Vector fetch or software clear  
• Return of the interrupt pin to logic one  
The vector fetch or software clear may occur before or after the interrupt  
pin returns to logic one. As long as the pin is low, the interrupt request  
remains pending. A reset will clear the latch and the MODE1 control bit,  
thereby clearing the interrupt even if the pin stays low.  
When set, the IMASK1 bit in the INTSCR mask all external interrupt  
requests. A latched interrupt request is not presented to the interrupt  
priority logic unless the IMASK1 bit is clear.  
Technical Data  
166  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
External Interrupt (IRQ)  
MOTOROLA  
External Interrupt (IRQ)  
Functional Description  
NOTE: The interrupt mask (I) in the condition code register (CCR) masks all  
interrupt requests, including external interrupt requests.(See 7.6  
Exception Control.)  
ACK1  
RESET  
TO CPU FOR  
BIL/BIH  
INSTRUCTIONS  
VECTOR  
FETCH  
DECODER  
VDD  
IRQPUD  
VDD  
INTERNAL  
IRQF1  
PULLUP  
DEVICE  
CLR  
D
Q
SYNCHRO-  
NIZER  
IRQ1  
INTERRUPT  
REQUEST  
CK  
IRQ1  
IRQ1  
FF  
IMASK1  
MODE1  
HIGH  
VOLTAGE  
DETECT  
TO MODE  
SELECT  
LOGIC  
Figure 13-1. IRQ Module Block Diagram  
Addr.  
Register Name  
IRQ Status and Control  
Bit 7  
6
5
4
3
2
0
1
Bit 0  
Read:  
0
0
0
0
IRQF1  
IMASK1 MODE1  
$001D  
Register Write:  
(INTSCR)  
Reset:  
ACK1  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 13-2. IRQ I/O Register Summary  
13.4.1 IRQ1 Pin  
A logic zero on the IRQ1 pin can latch an interrupt request into the IRQ1  
latch. A vector fetch, software clear, or reset clears the IRQ1 latch.  
If the MODE1 bit is set, the IRQ1 pin is both falling-edge-sensitive and  
low-level-sensitive. With MODE1 set, both of the following actions must  
occur to clear IRQ1:  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
167  
External Interrupt (IRQ)  
External Interrupt (IRQ)  
• Vector fetch or software clear — A vector fetch generates an  
interrupt acknowledge signal to clear the latch. Software may  
generate the interrupt acknowledge signal by writing a logic one to  
the ACK1 bit in the interrupt status and control register (INTSCR).  
The ACK1 bit is useful in applications that poll the IRQ1 pin and  
require software to clear the IRQ1 latch. Writing to the ACK1 bit  
prior to leaving an interrupt service routine can also prevent  
spurious interrupts due to noise. Setting ACK1 does not affect  
subsequent transitions on the IRQ1 pin. A falling edge that occurs  
after writing to the ACK1 bit latches another interrupt request. If  
the IRQ1 mask bit, IMASK1, is clear, the CPU loads the program  
counter with the vector address at locations $FFFA and $FFFB.  
• Return of the IRQ1 pin to logic one — As long as the IRQ1 pin is  
at logic zero, IRQ1 remains active.  
The vector fetch or software clear and the return of the IRQ1 pin to logic  
one may occur in any order. The interrupt request remains pending as  
long as the IRQ1 pin is at logic zero. A reset will clear the latch and the  
MODE1 control bit, thereby clearing the interrupt even if the pin stays  
low.  
If the MODE1 bit is clear, the IRQ1 pin is falling-edge-sensitive only. With  
MODE1 clear, a vector fetch or software clear immediately clears the  
IRQ1 latch.  
The IRQF1 bit in the INTSCR register can be used to check for pending  
interrupts. The IRQF1 bit is not affected by the IMASK1 bit, which makes  
it useful in applications where polling is preferred.  
Use the BIH or BIL instruction to read the logic level on the IRQ1 pin.  
NOTE: When using the level-sensitive interrupt trigger, avoid false interrupts by  
masking interrupt requests in the interrupt routine.  
NOTE: An internal pull-up resistor to VDD is connected to the IRQ1 pin; this can  
be disabled by setting the IRQPUD bit in the CONFIG2 register ($001E).  
Technical Data  
168  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
External Interrupt (IRQ)  
MOTOROLA  
External Interrupt (IRQ)  
IRQ Module During Break Interrupts  
13.5 IRQ Module During Break Interrupts  
The system integration module (SIM) controls whether the IRQ1 latch  
can be cleared during the break state. The BCFE bit in the break flag  
control register (BFCR) enables software to clear the latches during the  
break state. (See Section 7. System Integration Module (SIM).)  
To allow software to clear the IRQ1 latch during a break interrupt, write  
a logic one to the BCFE bit. If a latch is cleared during the break state, it  
remains cleared when the MCU exits the break state.  
To protect the latches during the break state, write a logic zero to the  
BCFE bit. With BCFE at logic zero (its default state), writing to the ACK1  
bit in the IRQ status and control register during the break state has no  
effect on the IRQ latch.  
13.6 IRQ Status and Control Register (INTSCR)  
The IRQ status and control register (INTSCR) controls and monitors  
operation of the IRQ module. The INTSCR has the following functions:  
• Shows the state of the IRQ1 flag  
• Clears the IRQ1 latch  
• Masks IRQ1 and interrupt request  
• Controls triggering sensitivity of the IRQ1 interrupt pin  
Address: $001D  
Bit 7  
0
6
0
5
0
4
0
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
IRQF1  
IMASK1 MODE1  
ACK1  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 13-3. IRQ Status and Control Register (INTSCR)  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
169  
External Interrupt (IRQ)  
External Interrupt (IRQ)  
IRQF1 — IRQ1 Flag  
This read-only status bit is high when the IRQ1 interrupt is pending.  
1 = IRQ1 interrupt pending  
0 = IRQ1 interrupt not pending  
ACK1 — IRQ1 Interrupt Request Acknowledge Bit  
Writing a logic one to this write-only bit clears the IRQ1 latch. ACK1  
always reads as logic zero. Reset clears ACK1.  
IMASK1 — IRQ1 Interrupt Mask Bit  
Writing a logic one to this read/write bit disables IRQ1 interrupt  
requests. Reset clears IMASK1.  
1 = IRQ1 interrupt requests disabled  
0 = IRQ1 interrupt requests enabled  
MODE1 — IRQ1 Edge/Level Select Bit  
This read/write bit controls the triggering sensitivity of the IRQ1 pin.  
Reset clears MODE1.  
1 = IRQ1 interrupt requests on falling edges and low levels  
0 = IRQ1 interrupt requests on falling edges only  
Address:  
$001E  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
POR:  
IRQPUD  
R
R
LVIT1  
LVIT0  
R
R
Not affected Not affected  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
= Reserved  
Figure 13-4. Configuration Register 2 (CONFIG2)  
IRQPUD — IRQ1 Pin Pull-up control bit  
1 = Internal pull-up is disconnected  
0 = Internal pull-up is connected between IRQ1 pin and VDD  
Technical Data  
170  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
External Interrupt (IRQ)  
Technical Data – MC68H(R)C908JL3E/JK3E/JK1E  
Section 14. Keyboard Interrupt Module (KBI)  
14.1 Contents  
14.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171  
14.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171  
14.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172  
14.4.1 Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . .174  
14.4.2 Keyboard Status and Control Register. . . . . . . . . . . . . . . .175  
14.4.3 Keyboard Interrupt Enable Register. . . . . . . . . . . . . . . . . .176  
14.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177  
14.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177  
14.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177  
14.6 Keyboard Module During Break Interrupts . . . . . . . . . . . . . . .177  
14.2 Introduction  
14.3 Features  
The keyboard interrupt module (KBI) provides seven independently  
maskable external interrupts which are accessible via PTA0–PTA6 pins.  
Features of the keyboard interrupt module include the following:  
• Seven keyboard interrupt pins with separate keyboard interrupt  
enable bits and one keyboard interrupt mask  
• Software configurable pull-up device if input pin is configured as  
input port bit  
• Programmable edge-only or edge- and level- interrupt sensitivity  
• Exit from low-power modes  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA Keyboard Interrupt Module (KBI)  
Technical Data  
171  
Keyboard Interrupt Module (KBI)  
Addr.  
Register Name  
Keyboard Status  
and Control Register Write:  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
0
0
0
0
KEYF  
0
ACKK  
0
IMASKK MODEK  
$001A  
(KBSCR)  
Reset:  
0
0
0
KBIE6  
0
0
KBIE5  
0
0
KBIE4  
0
0
KBIE3  
0
0
KBIE1  
0
0
KBIE0  
0
Read:  
Keyboard Interrupt  
Enable Register Write:  
KBIE2  
0
$001B  
(KBIER)  
Reset:  
0
= Unimplemented  
Figure 14-1. KBI I/O Register Summary  
14.4 Functional Description  
INTERNAL BUS  
VECTOR FETCH  
DECODER  
KBI0  
ACKK  
V
DD  
KEYF  
RESET  
CLR  
.
D
Q
SYNCHRONIZER  
Keyboard  
Interrupt  
Request  
KBIE0  
.
CK  
TO PULLUP ENABLE  
.
KEYBOARD  
INTERRUPT FF  
IMASKK  
KBI6  
MODEK  
KBIE6  
TO PULLUP ENABLE  
Figure 14-2. Keyboard Interrupt Block Diagram  
Writing to the KBIE6–KBIE0 bits in the keyboard interrupt enable register  
independently enables or disables each port A pin as a keyboard  
interrupt pin. Enabling a keyboard interrupt pin in port A also enables its  
internal pull-up device irrespective of PTAPUEx bits in the port A input  
pull-up enable register (see 12.3.3 Port A Input Pull-up Enable  
Register (PTAPUE)). A logic 0 applied to an enabled keyboard interrupt  
pin latches a keyboard interrupt request.  
Technical Data  
172  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Keyboard Interrupt Module (KBI)  
MOTOROLA  
Keyboard Interrupt Module (KBI)  
Functional Description  
A keyboard interrupt is latched when one or more keyboard pins goes  
low after all were high. The MODEK bit in the keyboard status and  
control register controls the triggering mode of the keyboard interrupt.  
• If the keyboard interrupt is edge-sensitive only, a falling edge on a  
keyboard pin does not latch an interrupt request if another  
keyboard pin is already low. To prevent losing an interrupt request  
on one pin because another pin is still low, software can disable  
the latter pin while it is low.  
• If the keyboard interrupt is falling edge- and low level-sensitive, an  
interrupt request is present as long as any keyboard pin is low.  
If the MODEK bit is set, the keyboard interrupt pins are both falling edge-  
and low level-sensitive, and both of the following actions must occur to  
clear a keyboard interrupt request:  
• Vector fetch or software clear — A vector fetch generates an  
interrupt acknowledge signal to clear the interrupt request.  
Software may generate the interrupt acknowledge signal by  
writing a logic 1 to the ACKK bit in the keyboard status and control  
register KBSCR. The ACKK bit is useful in applications that poll  
the keyboard interrupt pins and require software to clear the  
keyboard interrupt request. Writing to the ACKK bit prior to leaving  
an interrupt service routine can also prevent spurious interrupts  
due to noise. Setting ACKK does not affect subsequent transitions  
on the keyboard interrupt pins. A falling edge that occurs after  
writing to the ACKK bit latches another interrupt request. If the  
keyboard interrupt mask bit, IMASKK, is clear, the CPU loads the  
program counter with the vector address at locations $FFE0 and  
$FFE1.  
• Return of all enabled keyboard interrupt pins to logic 1 — As long  
as any enabled keyboard interrupt pin is at logic 0, the keyboard  
interrupt remains set.  
The vector fetch or software clear and the return of all enabled keyboard  
interrupt pins to logic 1 may occur in any order.  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA Keyboard Interrupt Module (KBI)  
Technical Data  
173  
Keyboard Interrupt Module (KBI)  
If the MODEK bit is clear, the keyboard interrupt pin is falling-edge-  
sensitive only. With MODEK clear, a vector fetch or software clear  
immediately clears the keyboard interrupt request.  
Reset clears the keyboard interrupt request and the MODEK bit, clearing  
the interrupt request even if a keyboard interrupt pin stays at logic 0.  
The keyboard flag bit (KEYF) in the keyboard status and control register  
can be used to see if a pending interrupt exists. The KEYF bit is not  
affected by the keyboard interrupt mask bit (IMASKK) which makes it  
useful in applications where polling is preferred.  
To determine the logic level on a keyboard interrupt pin, disable the pull-  
up device, use the data direction register to configure the pin as an input  
and then read the data register.  
NOTE: Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding  
keyboard interrupt pin to be an input, overriding the data direction  
register. However, the data direction register bit must be a logic 0 for  
software to read the pin.  
14.4.1 Keyboard Initialization  
When a keyboard interrupt pin is enabled, it takes time for the internal  
pull-up to reach a logic 1. Therefore a false interrupt can occur as soon  
as the pin is enabled.  
To prevent a false interrupt on keyboard initialization:  
1. Mask keyboard interrupts by setting the IMASKK bit in the  
keyboard status and control register.  
2. Enable the KBI pins by setting the appropriate KBIEx bits in the  
keyboard interrupt enable register.  
3. Write to the ACKK bit in the keyboard status and control register  
to clear any false interrupts.  
4. Clear the IMASKK bit.  
An interrupt signal on an edge-triggered pin can be acknowledged  
immediately after enabling the pin. An interrupt signal on an edge- and  
Technical Data  
174  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Keyboard Interrupt Module (KBI)  
MOTOROLA  
Keyboard Interrupt Module (KBI)  
Functional Description  
level-triggered interrupt pin must be acknowledged after a delay that  
depends on the external load.  
Another way to avoid a false interrupt:  
1. Configure the keyboard pins as outputs by setting the appropriate  
DDRA bits in the data direction register A.  
2. Write logic 1s to the appropriate port A data register bits.  
3. Enable the KBI pins by setting the appropriate KBIEx bits in the  
keyboard interrupt enable register.  
14.4.2 Keyboard Status and Control Register  
• Flags keyboard interrupt requests  
• Acknowledges keyboard interrupt requests  
• Masks keyboard interrupt requests  
• Controls keyboard interrupt triggering sensitivity  
Address: $001A  
Bit 7  
6
0
5
0
4
0
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
0
KEYF  
0
ACKK  
0
IMASKK MODEK  
0
0
0
0
0
0
0
= Unimplemented  
Figure 14-3. Keyboard Status and Control Register (KBSCR)  
Bits 7–4 — Not used  
These read-only bits always read as logic 0’s.  
KEYF — Keyboard Flag Bit  
This read-only bit is set when a keyboard interrupt is pending on port-  
A. Reset clears the KEYF bit.  
1 = Keyboard interrupt pending  
0 = No keyboard interrupt pending  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA Keyboard Interrupt Module (KBI)  
Technical Data  
175  
Keyboard Interrupt Module (KBI)  
ACKK — Keyboard Acknowledge Bit  
Writing a logic 1 to this write-only bit clears the keyboard interrupt  
request on port-A. ACKK always reads as logic 0. Reset clears ACKK.  
IMASKK— Keyboard Interrupt Mask Bit  
Writing a logic 1 to this read/write bit prevents the output of the  
keyboard interrupt mask from generating interrupt requests on port-A.  
Reset clears the IMASKK bit.  
1 = Keyboard interrupt requests masked  
0 = Keyboard interrupt requests not masked  
MODEK — Keyboard Triggering Sensitivity Bit  
This read/write bit controls the triggering sensitivity of the keyboard  
interrupt pins on port-A. Reset clears MODEK.  
1 = Keyboard interrupt requests on falling edges and low levels  
0 = Keyboard interrupt requests on falling edges only  
14.4.3 Keyboard Interrupt Enable Register  
The port-A keyboard interrupt enable register enables or disables each  
port-A pin to operate as a keyboard interrupt pin.  
Address: $001B  
Bit 7  
0
6
KBIE6  
0
5
KBIE5  
0
4
KBIE4  
0
3
KBIE3  
0
2
KBIE2  
0
1
KBIE1  
0
Bit 0  
KBIE0  
0
Read:  
Write:  
Reset:  
0
Figure 14-4. Keyboard Interrupt Enable Register (KBIER)  
KBIE6–KBIE0 — Port-A Keyboard Interrupt Enable Bits  
Each of these read/write bits enables the corresponding keyboard  
interrupt pin on port-A to latch interrupt requests. Reset clears the  
keyboard interrupt enable register.  
1 = KBIx pin enabled as keyboard interrupt pin  
0 = KBIx pin not enabled as keyboard interrupt pin  
Technical Data  
176  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Keyboard Interrupt Module (KBI)  
MOTOROLA  
Keyboard Interrupt Module (KBI)  
Low-Power Modes  
14.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes.  
14.5.1 Wait Mode  
14.5.2 Stop Mode  
The keyboard modules remain active in wait mode. Clearing the  
IMASKK bit in the keyboard status and control register enables keyboard  
interrupt requests to bring the MCU out of wait mode.  
The keyboard module remains active in stop mode. Clearing the  
IMASKK bit in the keyboard status and control register enables keyboard  
interrupt requests to bring the MCU out of stop mode.  
14.6 Keyboard Module During Break Interrupts  
The system integration module (SIM) controls whether the keyboard  
interrupt latch can be cleared during the break state. The BCFE bit in the  
break flag control register (BFCR) enables software to clear status bits  
during the break state.  
To allow software to clear the keyboard interrupt latch during a break  
interrupt, write a logic 1 to the BCFE bit. If a latch is cleared during the  
break state, it remains cleared when the MCU exits the break state.  
To protect the latch during the break state, write a logic 0 to the BCFE  
bit. With BCFE at logic 0 (its default state), writing to the keyboard  
acknowledge bit (ACKK) in the keyboard status and control register  
during the break state has no effect.  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA Keyboard Interrupt Module (KBI)  
Technical Data  
177  
Keyboard Interrupt Module (KBI)  
Technical Data  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Keyboard Interrupt Module (KBI) MOTOROLA  
178  
Technical Data – MC68H(R)C908JL3E/JK3E/JK1E  
Section 15. Computer Operating Properly (COP)  
15.1 Contents  
15.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179  
15.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180  
15.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181  
15.4.1 2OSCOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181  
15.4.2 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181  
15.4.3 Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181  
15.4.4 Internal Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181  
15.4.5 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182  
15.4.6 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . .182  
15.4.7 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . .182  
15.5 COP Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183  
15.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183  
15.7 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183  
15.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183  
15.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183  
15.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184  
15.9 COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . .184  
15.2 Introduction  
The computer operating properly (COP) module contains a free-running  
counter that generates a reset if allowed to overflow. The COP module  
helps software recover from runaway code. Prevent a COP reset by  
clearing the COP counter periodically. The COP module can be disabled  
through the COPD bit in the CONFIG1 register.  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA Computer Operating Properly (COP)  
Technical Data  
179  
Computer Operating Properly (COP)  
15.3 Functional Description  
Figure 15-1 shows the structure of the COP module.  
SIM  
2OSCOUT  
SIM RESET CIRCUIT  
12-BIT SIM COUNTER  
RESET STATUS REGISTER  
(1)  
INTERNAL RESET SOURCES  
RESET VECTOR FETCH  
COPCTL WRITE  
COP CLOCK  
COP MODULE  
6-BIT COP COUNTER  
COPEN (FROM SIM)  
COPD (FROM CONFIG1)  
RESET  
CLEAR  
COP COUNTER  
COPCTL WRITE  
COP RATE SEL  
(COPRS FROM CONFIG1)  
NOTE:  
1. See SIM section for more details.  
Figure 15-1. COP Block Diagram  
The COP counter is a free-running 6-bit counter preceded by the 12-bit  
system integration module (SIM) counter. If not cleared by software, the  
COP counter overflows and generates an asynchronous reset after  
218 – 24 or 213 – 24 2OSCOUT cycles; depending on the state of the  
COP rate select bit, COPRS, in configuration register 1. With a 218 – 24  
2OSCOUT cycle overflow option, a 8MHz crystal gives a COP timeout  
period of 32.766 ms. Writing any value to location $FFFF before an  
overflow occurs prevents a COP reset by clearing the COP counter and  
stages 12 through 5 of the SIM counter.  
Technical Data  
180  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Computer Operating Properly (COP)  
MOTOROLA  
Computer Operating Properly (COP)  
I/O Signals  
NOTE: Service the COP immediately after reset and before entering or after  
exiting stop mode to guarantee the maximum time before the first COP  
counter overflow.  
A COP reset pulls the RST pin low for 32 × 2OSCOUT cycles and sets  
the COP bit in the reset status register (RSR). (See 7.8.2 Reset Status  
Register (RSR).).  
NOTE: Place COP clearing instructions in the main program and not in an  
interrupt subroutine. Such an interrupt subroutine could keep the COP  
from generating a reset even while the main program is not working  
properly.  
15.4 I/O Signals  
The following paragraphs describe the signals shown in Figure 15-1.  
15.4.1 2OSCOUT  
2OSCOUT is the oscillator output signal. 2OSCOUT frequency is equal  
to the crystal frequency or the RC-oscillator frequency.  
15.4.2 COPCTL Write  
Writing any value to the COP control register (COPCTL) (see 15.5 COP  
Control Register) clears the COP counter and clears bits 12 through 5  
of the SIM counter. Reading the COP control register returns the low  
byte of the reset vector.  
15.4.3 Power-On Reset  
The power-on reset (POR) circuit in the SIM clears the SIM counter  
4096 × 2OSCOUT cycles after power-up.  
15.4.4 Internal Reset  
An internal reset clears the SIM counter and the COP counter.  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA Computer Operating Properly (COP)  
Technical Data  
181  
Computer Operating Properly (COP)  
15.4.5 Reset Vector Fetch  
A reset vector fetch occurs when the vector address appears on the data  
bus. A reset vector fetch clears the SIM counter.  
15.4.6 COPD (COP Disable)  
The COPD signal reflects the state of the COP disable bit (COPD) in the  
configuration register (CONFIG). (See Section 5. Configuration  
Register (CONFIG).)  
15.4.7 COPRS (COP Rate Select)  
The COPRS signal reflects the state of the COP rate select bit (COPRS)  
in the configuration register 1.  
Address: $001F  
Bit 7  
6
5
R
0
4
LVID  
0
3
R
0
2
SSREC  
0
1
STOP  
0
Bit 0  
COPD  
0
Read:  
Write:  
Reset:  
COPRS  
R
0
0
R
= Reserved  
Figure 15-2. Configuration Register 1 (CONFIG1)  
COPRS — COP Rate Select Bit  
COPRS selects the COP timeout period. Reset clears COPRS.  
1 = COP timeout period is (213 – 24) × 2OSCOUT cycles  
0 = COP timeout period is (218 – 24) × 2OSCOUT cycles  
COPD — COP Disable Bit  
COPD disables the COP module.  
1 = COP module disabled  
0 = COP module enabled  
Technical Data  
182  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Computer Operating Properly (COP)  
MOTOROLA  
Computer Operating Properly (COP)  
COP Control Register  
15.5 COP Control Register  
The COP control register is located at address $FFFF and overlaps the  
reset vector. Writing any value to $FFFF clears the COP counter and  
starts a new timeout period. Reading location $FFFF returns the low  
byte of the reset vector.  
Address: $FFFF  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Low byte of reset vector  
Clear COP counter  
Unaffected by reset  
Figure 15-3. COP Control Register (COPCTL)  
15.6 Interrupts  
The COP does not generate CPU interrupt requests.  
15.7 Monitor Mode  
The COP is disabled in monitor mode when VDD + VHI is present on the  
IRQ1 pin or on the RST pin.  
15.8 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low-power  
consumption standby modes.  
15.8.1 Wait Mode  
The COP continues to operate during wait mode. To prevent a COP  
reset during wait mode, periodically clear the COP counter in a CPU  
interrupt routine.  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA Computer Operating Properly (COP)  
Technical Data  
183  
Computer Operating Properly (COP)  
15.8.2 Stop Mode  
Stop mode turns off the 2OSCOUT input to the COP and clears the SIM  
counter. Service the COP immediately before entering or after exiting  
stop mode to ensure a full COP timeout period after entering or exiting  
stop mode.  
15.9 COP Module During Break Mode  
The COP is disabled during a break interrupt when VDD + VHI is present  
on the RST pin.  
Technical Data  
184  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Computer Operating Properly (COP)  
MOTOROLA  
Technical Data – MC68H(R)C908JL3E/JK3E/JK1E  
Section 16. Low Voltage Inhibit (LVI)  
16.1 Contents  
16.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185  
16.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185  
16.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186  
16.5 LVI Control Register (CONFIG2/CONFIG1). . . . . . . . . . . . . .186  
16.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187  
16.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187  
16.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187  
16.2 Introduction  
16.3 Features  
This section describes the low-voltage inhibit module (LVI), which  
monitors the voltage on the VDD pin and generates a reset when the VDD  
voltage falls to the LVI trip (LVITRIP) voltage.  
Features of the LVI module include the following:  
• Selectable LVI trip voltage  
• Selectable LVI circuit disable  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
185  
Low Voltage Inhibit (LVI)  
Low Voltage Inhibit (LVI)  
16.4 Functional Description  
Figure 16-1 shows the structure of the LVI module. The LVI is enabled  
after a reset. The LVI module contains a bandgap reference circuit and  
comparator. Setting LVI disable bit (LVID) disables the LVI to monitor  
VDD voltage. The LVI trip voltage selection bits (LVIT1, LVIT0) determine  
at which VDD level the LVI module should take actions.  
The LVI module generates one output signal:  
LVI Reset — an reset signal will be generated to reset the CPU when  
VDD drops to below the set trip point.  
V
DD  
LVID  
VDD > LVI  
VDD < LVI  
= 0  
= 1  
TRIP  
TRIP  
LVI RESET  
LOW V  
DD  
DETECTOR  
LVIT1  
LVIT0  
Figure 16-1. LVI Module Block Diagram  
16.5 LVI Control Register (CONFIG2/CONFIG1)  
Address:  
$001E  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
POR:  
IRQPUD  
R
R
LVIT1  
LVIT0  
R
R
Not affected Not affected  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
= Reserved  
Figure 16-2. Configuration Register 2 (CONFIG2)  
Technical Data  
186  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Low Voltage Inhibit (LVI)  
Low Voltage Inhibit (LVI)  
Low-Power Modes  
Address:  
$001F  
Bit 7  
6
5
R
0
4
LVID  
0
3
R
0
2
SSREC  
0
1
STOP  
0
Bit 0  
COPD  
0
Read:  
Write:  
Reset:  
COPRS  
R
0
0
R
= Reserved  
Figure 16-3. Configuration Register 1 (CONFIG1)  
LVID — Low Voltage Inhibit Disable Bit  
1 = Low voltage inhibit disabled  
0 = Low voltage inhibit enabled  
LVIT1, LVIT0 — LVI Trip Voltage Selection  
These two bits determine at which level of VDD the LVI module will  
come into action. LVIT1 and LVIT0 are cleared by a Power-On Reset  
only.  
Trip Voltage(1)  
LVIT1  
LVIT0  
Comments  
0
0
1
1
0
1
0
1
VLVR3 (2.4V)  
For VDD=3V operation  
For VDD=3V operation  
For VDD=5V operation  
V
LVR3 (2.4V)  
LVR5 (4.0V)  
V
Reserved  
1. See Section 18. Electrical Specifications for full parameters.  
16.6 Low-Power Modes  
The STOP and WAIT instructions put the MCU in low-power-  
consumption standby modes.  
16.6.1 Wait Mode  
16.6.2 Stop Mode  
The LVI module, when enabled, will continue to operate in WAIT Mode.  
The LVI module, when enabled, will continue to operate in STOP Mode.  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
187  
Low Voltage Inhibit (LVI)  
Low Voltage Inhibit (LVI)  
Technical Data  
188  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Low Voltage Inhibit (LVI)  
Technical Data – MC68H(R)C908JL3E/JK3E/JK1E  
Section 17. Break Module (BREAK)  
17.1 Contents  
17.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189  
17.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190  
17.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190  
17.4.1 Flag Protection During Break Interrupts. . . . . . . . . . . . . . .192  
17.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .192  
17.4.3 TIM During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . .192  
17.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .192  
17.5 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192  
17.5.1 Break Status and Control Register (BRKSCR) . . . . . . . . .193  
17.5.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . .194  
17.5.3 Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .194  
17.5.4 Break Flag Control Register (BFCR) . . . . . . . . . . . . . . . . .196  
17.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196  
17.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196  
17.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196  
17.2 Introduction  
This section describes the break module. The break module can  
generate a break interrupt that stops normal program flow at a defined  
address to enter a background program.  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
189  
Break Module (BREAK)  
Break Module (BREAK)  
17.3 Features  
Features of the break module include the following:  
• Accessible I/O registers during the break Interrupt  
• CPU-generated break interrupts  
• Software-generated break interrupts  
• COP disabling during break interrupts  
17.4 Functional Description  
When the internal address bus matches the value written in the break  
address registers, the break module issues a breakpoint signal (BKPT)  
to the SIM. The SIM then causes the CPU to load the instruction register  
with a software interrupt instruction (SWI) after completion of the current  
CPU instruction. The program counter vectors to $FFFC and $FFFD  
($FEFC and $FEFD in monitor mode).  
The following events can cause a break interrupt to occur:  
• A CPU-generated address (the address in the program counter)  
matches the contents of the break address registers.  
• Software writes a logic one to the BRKA bit in the break status and  
control register.  
When a CPU generated address matches the contents of the break  
address registers, the break interrupt begins after the CPU completes its  
current instruction. A return from interrupt instruction (RTI) in the break  
routine ends the break interrupt and returns the MCU to normal  
operation. Figure 17-1 shows the structure of the break module.  
Technical Data  
190  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Break Module (BREAK)  
MOTOROLA  
Break Module (BREAK)  
Functional Description  
IAB[15:8]  
BREAK ADDRESS REGISTER HIGH  
8-BIT COMPARATOR  
IAB[15:0]  
CONTROL  
BKPT  
(TO SIM)  
8-BIT COMPARATOR  
BREAK ADDRESS REGISTER LOW  
IAB[7:0]  
Figure 17-1. Break Module Block Diagram  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
SBSW  
See note  
0
R
R
R
R
R
R
R
Break Status Register  
(BSR)  
$FE00  
Break Flag Control  
BCFE  
0
R
R
R
R
R
R
R
$FE03  
$FE0C  
$FE0D  
$FE0E  
Register Write:  
(BFCR)  
Reset:  
Read:  
Break Address High  
Bit15  
0
Bit14  
0
Bit13  
0
Bit12  
0
Bit11  
0
Bit10  
0
Bit9  
0
Bit8  
0
Register Write:  
(BRKH)  
Reset:  
Read:  
Break Address low  
Bit7  
0
Bit6  
0
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Register Write:  
(BRKL)  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
Read:  
Break Status and Control  
BRKE  
0
BRKA  
0
Register Write:  
(BRKSCR)  
Reset:  
0
0
0
0
0
0
Note: Writing a logic 0 clears SBSW.  
= Unimplemented  
R
= Reserved  
Figure 17-2. Break I/O Register Summary  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
191  
Break Module (BREAK)  
Break Module (BREAK)  
17.4.1 Flag Protection During Break Interrupts  
The system integration module (SIM) controls whether or not module  
status bits can be cleared during the break state. The BCFE bit in the  
break flag control register (BFCR) enables software to clear status bits  
during the break state. (See 7.8.3 Break Flag Control Register (BFCR)  
and see the Break Interrupts subsection for each module.)  
17.4.2 CPU During Break Interrupts  
The CPU starts a break interrupt by:  
• Loading the instruction register with the SWI instruction  
• Loading the program counter with $FFFC:$FFFD  
($FEFC:$FEFD in monitor mode)  
The break interrupt begins after completion of the CPU instruction in  
progress. If the break address register match occurs on the last cycle of  
a CPU instruction, the break interrupt begins immediately.  
17.4.3 TIM During Break Interrupts  
A break interrupt stops the timer counter.  
17.4.4 COP During Break Interrupts  
The COP is disabled during a break interrupt when VDD + VHI is present  
on the RST pin.  
17.5 Break Module Registers  
These registers control and monitor operation of the break module:  
• Break status and control register (BRKSCR)  
• Break address register high (BRKH)  
• Break address register low (BRKL)  
• Break status register (BSR)  
• Break flag control register (BFCR)  
Technical Data  
192  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Break Module (BREAK)  
MOTOROLA  
Break Module (BREAK)  
Break Module Registers  
17.5.1 Break Status and Control Register (BRKSCR)  
The break status and control register contains break module enable and  
status bits.  
Address: $FE0E  
Bit 7  
BRKE  
0
6
BRKA  
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
0
= Unimplemented  
Figure 17-3. Break Status and Control Register (BRKSCR)  
BRKE — Break Enable Bit  
This read/write bit enables breaks on break address register matches.  
Clear BRKE by writing a logic zero to bit 7. Reset clears the BRKE bit.  
1 = Breaks enabled on 16-bit address match  
0 = Breaks disabled  
BRKA — Break Active Bit  
This read/write status and control bit is set when a break address  
match occurs. Writing a logic one to BRKA generates a break  
interrupt. Clear BRKA by writing a logic zero to it before exiting the  
break routine. Reset clears the BRKA bit.  
1 = Break address match  
0 = No break address match  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
193  
Break Module (BREAK)  
Break Module (BREAK)  
17.5.2 Break Address Registers  
The break address registers contain the high and low bytes of the  
desired breakpoint address. Reset clears the break address registers.  
Address: $FE0C  
Bit 7  
Bit 15  
0
6
14  
0
5
13  
0
4
12  
0
3
11  
0
2
10  
0
1
9
0
Bit 0  
Bit 8  
0
Read:  
Write:  
Reset:  
Figure 17-4. Break Address Register High (BRKH)  
Address: $FE0D  
Bit 7  
6
6
0
5
5
0
4
4
0
3
3
0
2
2
0
1
1
0
Bit 0  
Bit 0  
0
Read:  
Bit 7  
Write:  
Reset:  
0
Figure 17-5. Break Address Register Low (BRKL)  
17.5.3 Break Status Register  
The break status register contains a flag to indicate that a break caused  
an exit from stop or wait mode.  
Address: $FE00  
Bit 7  
R
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
SBSW  
Note(1)  
0
R
R
R
R
R
R
= Reserved  
1. Writing a logic zero clears SBSW.  
Figure 17-6. Break Status Register (BSR)  
Technical Data  
194  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Break Module (BREAK)  
Break Module (BREAK)  
Break Module Registers  
SBSW — SIM Break Stop/Wait  
This status bit is useful in applications requiring a return to wait or stop  
mode after exiting from a break interrupt. Clear SBSW by writing a  
logic zero to it. Reset clears SBSW.  
1 = Stop mode or wait mode was exited by break interrupt  
0 = Stop mode or wait mode was not exited by break interrupt  
SBSW can be read within the break state SWI routine. The user can  
modify the return address on the stack by subtracting one from it. The  
following code is an example of this.  
; This code works if the H register has been pushed onto the stack in the break  
; service routine software. This code should be executed at the end of the  
; break service routine software.  
HIBYTE EQU  
LOBYTE EQU  
5
6
;
If not SBSW, do RTI  
BRCLR SBSW,BSR, RETURN ; See if wait mode or stop mode was exited  
; by break.  
TST  
BNE  
DEC  
DEC  
LOBYTE,SP  
DOLO  
; If RETURNLO is not zero,  
; then just decrement low byte.  
; Else deal with high byte, too.  
; Point to WAIT/STOP opcode.  
; Restore H register.  
HIBYTE,SP  
LOBYTE,SP  
DOLO  
RETURN PULH  
RTI  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
195  
Break Module (BREAK)  
Break Module (BREAK)  
17.5.4 Break Flag Control Register (BFCR)  
The break control register contains a bit that enables software to clear  
status bits while the MCU is in a break state.  
Address: $FE03  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
0
R
= Reserved  
Figure 17-7. Break Flag Control Register (BFCR)  
BCFE — Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing  
status registers while the MCU is in a break state. To clear status bits  
during the break state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
17.6 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low-power-  
consumption standby modes.  
17.6.1 Wait Mode  
17.6.2 Stop Mode  
If enabled, the break module is active in wait mode. In the break routine,  
the user can subtract one from the return address on the stack if SBSW  
is set (see 7.7 Low-Power Modes). Clear the SBSW bit by writing logic  
zero to it.  
A break interrupt causes exit from stop mode and sets the SBSW bit in  
the break status register. See 7.8 SIM Registers.  
Technical Data  
196  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Break Module (BREAK)  
MOTOROLA  
Technical Data – MC68H(R)C908JL3E/JK3E/JK1E  
Section 18. Electrical Specifications  
18.1 Contents  
18.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197  
18.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . .198  
18.4 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . .199  
18.5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199  
18.6 5V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . .200  
18.7 5V Control Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201  
18.8 5V Oscillator Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . .202  
18.9 3V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . .203  
18.10 3V Control Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204  
18.11 3V Oscillator Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . .205  
18.12 Typical Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206  
18.13 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208  
18.14 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209  
18.2 Introduction  
This section contains electrical and timing specifications.  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
197  
Electrical Specifications  
Electrical Specifications  
18.3 Absolute Maximum Ratings  
Maximum ratings are the extreme limits to which the MCU can be  
exposed without permanently damaging it.  
NOTE: This device is not guaranteed to operate properly at the maximum  
ratings. Refer to Sections 18.6 and 18.9 for guaranteed operating  
conditions.  
Table 18-1. Absolute Maximum Ratings  
Characteristic(1)  
Supply voltage  
Symbol  
VDD  
Value  
Unit  
V
–0.3 to +6.0  
VIN  
VSS–0.3 to VDD +0.3  
VSS–0.3 to +8.5  
Input voltage  
V
VDD+VHI  
Mode entry voltage, IRQ1 pin  
V
Maximum current per pin  
excluding VDD and VSS  
I
25  
mA  
TSTG  
IMVSS  
IMVDD  
Storage temperature  
Maximum current out of VSS  
Maximum current into VDD  
NOTES:  
–55 to +150  
100  
°C  
mA  
mA  
100  
1. Voltages referenced to VSS  
.
NOTE: This device contains circuitry to protect the inputs against damage due  
to high static voltages or electric fields; however, it is advised that normal  
precautions be taken to avoid application of any voltage higher than  
maximum-rated voltages to this high-impedance circuit. For proper  
operation, it is recommended that VIN and VOUT be constrained to the  
range VSS (VIN or VOUT) VDD. Reliability of operation is enhanced if  
unused inputs are connected to an appropriate logic voltage level (for  
example, either VSS or VDD.)  
Technical Data  
198  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Electrical Specifications  
MOTOROLA  
Electrical Specifications  
Functional Operating Range  
18.4 Functional Operating Range  
Table 18-2. Operating Range  
Characteristic  
Symbol  
Value  
– 40 to +125  
Unit  
°C  
TA  
Operating temperature range  
Operating voltage range  
– 40 to +85  
3 10%  
VDD  
5 10%  
V
18.5 Thermal Characteristics  
Table 18-3. Thermal Characteristics  
Characteristic  
Symbol  
Value  
Unit  
Thermal resistance  
20-pin PDIP  
20-pin SOIC  
28-pin PDIP  
28-pin SOIC  
48-pin LQFP  
70  
70  
70  
70  
80  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
θJA  
PI/O  
PD  
I/O pin power dissipation  
Power dissipation(1)  
User determined  
W
PD = (IDD × VDD) + PI/O  
K/(TJ + 273 °C)  
=
W
PD x (TA + 273 °C)  
+ PD2 × θJA  
Constant(2)  
K
W/°C  
°C  
TJ  
TA + (PD × θJA)  
Average junction temperature  
NOTES:  
1. Power dissipation is a function of temperature.  
2. K constant unique to the device. K can be determined for a known TA and measured PD.  
With this value of K, PD and TJ can be determined for any value of TA.  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
199  
Electrical Specifications  
Electrical Specifications  
18.6 5V DC Electrical Characteristics  
Table 18-4. DC Electrical Characteristics (5V)  
Characteristic(1)  
Typ(2)  
Symbol  
Min  
Max  
Unit  
Output high voltage (ILOAD = –2.0mA)  
PTA0–PTA6, PTB0–PTB7, PTD0–PTD7  
VOH  
VDD–0.8  
V
Output low voltage (ILOAD = 1.6mA)  
VOL  
VOL  
IOL  
10  
16  
0.4  
0.5  
22  
V
V
PTA6, PTB0–PTB7, PTD0, PTD1, PTD4, PTD5  
Output low voltage (ILOAD = 25mA)  
PTD6, PTD7  
LED drives (VOL = 3V)  
mA  
PTA0–PTA5, PTD2, PTD3, PTD6, PTD7  
Input high voltage  
VIH  
0.7 × VDD  
VDD  
PTA0–PTA6, PTB0–PTB7, PTD0–PTD7,  
RST, IRQ1, OSC1  
V
V
Input low voltage  
VIL  
VSS  
0.3 × VDD  
PTA0–PTA6, PTB0–PTB7, PTD0–PTD7,  
RST, IRQ1, OSC1  
V
DD supply current, fOP = 4MHz  
Run(3)  
MC68HC908JL3E/JK3E/JK1E  
MC68HRC908JL3E/JK3E/JK1E  
Wait(4)  
10  
4.5  
11  
5
mA  
mA  
MC68HC908JL3E/JK3E/JK1E  
MC68HRC908JL3E/JK3E/JK1E  
Stop(5)  
6
1
6.5  
1.5  
mA  
mA  
IDD  
(–40°C to 85°C)  
MC68HC908JL3E/JK3E/JK1E  
MC68HRC908JL3E/JK3E/JK1E  
(40°C to 125°C)  
2
2
5
5
µA  
µA  
MC68HC908JL3E/JK3E/JK1E  
MC68HRC908JL3E/JK3E/JK1E  
2
2
10  
10  
µA  
µA  
IIL  
Digital I/O ports Hi-Z leakage current  
Input current  
10  
1
µA  
µA  
IIN  
COUT  
CIN  
Capacitance  
12  
8
pF  
Ports (as input or output)  
POR rearm voltage(6)  
VPOR  
RPOR  
0
100  
mV  
V/ms  
V
POR rise time ramp rate(7)  
Monitor mode entry voltage  
0.035  
VDD+VHI  
1.5 × VDD  
8.5  
Technical Data  
200  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Electrical Specifications  
Electrical Specifications  
5V Control Timing  
Table 18-4. DC Electrical Characteristics (5V)  
Characteristic(1)  
Typ(2)  
Symbol  
Min  
Max  
Unit  
Pullup resistors(8)  
RPU1  
RPU2  
1.8  
16  
3.3  
26  
4.8  
36  
kΩ  
kΩ  
PTD6, PTD7  
RST, IRQ1, PTA0–PTA6  
VLVR5  
LVI reset voltage  
NOTES:  
3.6  
4.0  
4.4  
V
1. VDD = 4.5 to 5.5 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.  
2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.  
3. Run (operating) IDD measured using external square wave clock source (fOP = 4MHz). All inputs 0.2V from rail. No dc  
loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly  
affects run IDD. Measured with all modules enabled.  
4. Wait IDD measured using external square wave clock source (fOP = 4MHz). All inputs 0.2V from rail. No dc loads. Less  
than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects  
wait IDD  
.
5. Stop IDD measured with OSC1 grounded; no port pins sourcing current. LVI is disabled.  
6. Maximum is highest voltage that POR is guaranteed.  
7. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until  
minimum VDD is reached.  
8. RPU1 and RPU2 are measured at VDD = 5.0V.  
18.7 5V Control Timing  
Table 18-5. Control Timing (5V)  
Characteristic(1)  
Internal operating frequency(2)  
Symbol  
fOP  
Min  
Max  
8
Unit  
MHz  
ns  
RST input pulse width low(3)  
tIRL  
750  
NOTES:  
1. VDD = 4.5 to 5.5 Vdc, VSS = 0 Vdc, TA = TL to TH; timing shown with respect to 20% VDD and 70% VSS, unless otherwise  
noted.  
2. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this  
information.  
3. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset.  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
201  
Electrical Specifications  
Electrical Specifications  
18.8 5V Oscillator Characteristics  
Table 18-6. Oscillator Component Specifications (5V)  
Characteristic  
Symbol  
Min  
2
Typ  
10  
Max  
32  
Unit  
MHz  
MHz  
fOSCXCLK  
Crystal frequency, XTALCLK  
RC oscillator frequency, RCCLK  
fRCCLK  
10  
12  
External clock  
reference frequency(1)  
fOSCXCLK  
dc  
32  
MHz  
Crystal load capacitance(2)  
Crystal fixed capacitance(2)  
CL  
C1  
2 × CL  
2 × CL  
10 MΩ  
Crystal tuning capacitance(2)  
Feedback bias resistor  
C2  
RB  
Series resistor(2), (3)  
RS  
REXT  
CEXT  
RC oscillator external R  
See Figure 18-1  
10  
RC oscillator external C  
NOTES:  
pF  
1. No more than 10% duty cycle deviation from 50%.  
2. Consult crystal vendor data sheet.  
3. Not required for high frequency crystals.  
14  
12  
10  
8
C
= 10 pF  
EXT  
MCU  
5V @ 25°C  
OSC1  
6
V
DD  
4
REXT  
CEXT  
2
0
0
10  
20  
30  
(k  
40  
50  
Resistor, R  
)  
EXT  
Figure 18-1. RC vs. Frequency (5V @25°C)  
Technical Data  
202  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Electrical Specifications  
Electrical Specifications  
3V DC Electrical Characteristics  
18.9 3V DC Electrical Characteristics  
Table 18-7. DC Electrical Characteristics (3V)  
Characteristic(1)  
Typ(2)  
Symbol  
Min  
Max  
Unit  
Output high voltage (ILOAD = –1.0mA)  
PTA0–PTA6, PTB0–PTB7, PTD0–PTD7  
VOH  
VDD– 0.4  
V
Output low voltage (ILOAD = 0.8mA)  
VOL  
VOL  
IOL  
3
6
0.4  
0.5  
10  
V
V
PTA6, PTB0–PTB7, PTD0, PTD1, PTD4, PTD5  
Output low voltage (ILOAD = 20mA)  
PTD6, PTD7  
LED drives (VOL = 1.8V)  
mA  
PTA0–PTA5, PTD2, PTD3, PTD6, PTD7  
Input high voltage  
VIH  
0.7 × VDD  
VDD  
PTA0–PTA6, PTB0–PTB7, PTD0–PTD7,  
RST, IRQ1, OSC1  
V
V
Input low voltage  
VIL  
VSS  
0.3 × VDD  
PTA0–PTA6, PTB0–PTB7, PTD0–PTD7,  
RST, IRQ1, OSC1  
V
DD supply current, fOP = 2MHz  
Run(3)  
MC68HC908JL3E/JK3E/JK1E  
MC68HRC908JL3E/JK3E/JK1E  
Wait(4)  
MC68HC908JL3E/JK3E/JK1E  
MC68HRC908JL3E/JK3E/JK1E  
Stop(5)  
3
1.5  
3.5  
2
mA  
mA  
IDD  
1.5  
0.2  
2
0.3  
mA  
mA  
(40°C to 85°C)  
MC68HC908JL3E/JK3E/JK1E  
MC68HRC908JL3E/JK3E/JK1E  
1
1
5
5
µA  
µA  
IIL  
Digital I/O ports Hi-Z leakage current  
Input current  
10  
1
µA  
µA  
IIN  
COUT  
CIN  
Capacitance  
12  
8
pF  
Ports (as input or output)  
POR rearm voltage(6)  
VPOR  
RPOR  
0
100  
mV  
V/ms  
V
POR rise time ramp rate(7)  
Monitor mode entry voltage  
0.035  
VDD+VHI  
1.5 × VDD  
8.5  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
203  
Electrical Specifications  
Electrical Specifications  
Table 18-7. DC Electrical Characteristics (3V)  
Characteristic(1)  
Typ(2)  
Symbol  
Min  
Max  
Unit  
Pullup resistors(8)  
PTD6, PTD7  
RPU1  
RPU2  
1.8  
16  
3.3  
26  
4.8  
36  
kΩ  
kΩ  
RST, IRQ1, PTA0–PTA6  
VLVR3  
LVI reset voltage  
NOTES:  
2.0  
2.4  
2.69  
V
1. VDD = 2.7 to 3.3 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.  
2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.  
3. Run (operating) IDD measured using external square wave clock source (fOP = 2MHz). All inputs 0.2V from rail. No dc  
loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly  
affects run IDD. Measured with all modules enabled.  
4. Wait IDD measured using external square wave clock source (fOP = 2MHz). All inputs 0.2V from rail. No dc loads. Less  
than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects  
wait IDD  
.
5. Stop IDD measured with OSC1 grounded; no port pins sourcing current. LVI is disabled.  
6. Maximum is highest voltage that POR is guaranteed.  
7. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until  
minimum VDD is reached.  
8. RPU1 and RPU2 are measured at VDD = 5.0V.  
18.10 3V Control Timing  
Table 18-8. Control Timing (3V)  
Characteristic(1)  
Internal operating frequency(2)  
Symbol  
fOP  
Min  
Max  
4
Unit  
MHz  
µs  
RST input pulse width low(3)  
tIRL  
1.5  
NOTES:  
1. VDD = 2.7 to 3.3 Vdc, VSS = 0 Vdc, TA = TL to TH; timing shown with respect to 20% VDD and 70% VDD, unless otherwise  
noted.  
2. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this infor-  
mation.  
3. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset.  
Technical Data  
204  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Electrical Specifications  
Electrical Specifications  
3V Oscillator Characteristics  
18.11 3V Oscillator Characteristics  
Table 18-9. Oscillator Component Specifications (3V)  
Characteristic  
Symbol  
Min  
2
Typ  
8
Max  
16  
Unit  
MHz  
MHz  
fOSCXCLK  
Crystal frequency, XTALCLK  
RC oscillator frequency, RCCLK  
fRCCLK  
8
12  
External clock  
reference frequency(1)  
fOSCXCLK  
dc  
16  
MHz  
Crystal load capacitance(2)  
Crystal fixed capacitance(2)  
CL  
C1  
2 × CL  
2 × CL  
10 MΩ  
Crystal tuning capacitance(2)  
Feedback bias resistor  
C2  
RB  
Series resistor(2), (3)  
RS  
REXT  
CEXT  
RC oscillator external R  
See Figure 18-2  
10  
RC oscillator external C  
NOTES:  
pF  
1. No more than 10% duty cycle deviation from 50%.  
2. Consult crystal vendor data sheet.  
3. Not required for high frequency crystals.  
14  
12  
10  
8
CEXT = 10 pF  
MCU  
3V @ 25°C  
OSC1  
6
V
DD  
REXT  
CEXT  
4
2
0
0
10  
20  
30  
40  
50  
Resistor, REXT (k)  
Figure 18-2. RC vs. Frequency (3V @25°C)  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
205  
Electrical Specifications  
Electrical Specifications  
18.12 Typical Supply Currents  
14  
12  
10  
8
6
MC68HC908JL3E/JK3E/JK1E  
4
5.5 V  
3.3 V  
2
0
0
1
2
3
4
5
6
7
8
9
f
or f  
(MHz)  
BUS  
OP  
Figure 18-3. Typical Operating IDD (MC68HC908JL3E/JK3E/JK1E),  
with All Modules Turned On (25 °C)  
10  
MC68HRC908JL3E/JK3E/JK1E  
8
5.5 V  
3.3 V  
6
4
2
0
0
1
2
3
4
5
6
7
8
9
f
or f  
(MHz)  
BUS  
OP  
Figure 18-4. Typical Operating IDD (MC68HRC908JL3E/JK3E/JK1E),  
with All Modules Turned On (25 °C)  
Technical Data  
206  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Electrical Specifications  
Electrical Specifications  
Typical Supply Currents  
10  
8
MC68HC908JL3E/JK3E/JK1E  
5.5 V  
3.3 V  
6
4
2
0
0
1
2
3
4
5
6
7
8
9
f
or f  
(MHz)  
BUS  
OP  
Figure 18-5. Typical Wait Mode IDD (MC68HC908JL3E/JK3E/JK1E),  
with All Modules Turned Off (25 °C)  
2
1.75  
1.50  
1.25  
1
MC68HRC908JL3E/JK3E/JK1E  
5.5 V  
3.3 V  
0.75  
0.5  
0.25  
0
0
1
2
3
4
5
6
7
8
f
or f  
(MHz)  
OP  
BUS  
Figure 18-6. Typical Wait Mode IDD (MC68HRC908JL3E/JK3E/JK1E),  
with All Modules Turned Off (25 °C)  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
207  
Electrical Specifications  
Electrical Specifications  
18.13 ADC Characteristics  
Table 18-10. ADC Characteristics  
Characteristic  
Supply voltage  
Symbol  
Min  
Max  
Unit  
Comments  
2.7  
(VDD min)  
5.5  
(VDD max)  
VDDAD  
V
VADIN  
BAD  
VSS  
8
VDD  
8
Input voltages  
Resolution  
V
Bits  
LSB  
AAD  
Absolute accuracy  
0.5  
1.5  
Includes quantization  
tAIC = 1/fADIC, tested  
only at 1 MHz  
fADIC  
ADC internal clock  
0.5  
1.048  
VDD  
MHz  
RAD  
tADPU  
tADC  
tADS  
ZADI  
FADI  
CADI  
VSS  
16  
14  
5
Conversion range  
Power-up time  
V
t
t
t
AIC cycles  
AIC cycles  
AIC cycles  
Conversion time  
Sample time(1)  
15  
Zero input reading(2)  
Full-scale reading(3)  
Input capacitance  
00  
FE  
01  
Hex  
Hex  
pF  
V
IN = VSS  
IN = VDD  
Not tested  
V
FF  
(20) 8  
Input leakage(3)  
Port B/port D  
1
µA  
NOTES:  
1. Source impedances greater than 10 kadversely affect internal RC charging time during input sampling.  
2. Zero-input/full-scale reading requires sufficient decoupling measures for accurate conversions.  
3. The external system error caused by input leakage current is approximately equal to the product of R source and input  
current.  
Technical Data  
208  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Electrical Specifications  
Electrical Specifications  
Memory Characteristics  
18.14 Memory Characteristics  
Table 18-11. Memory Characteristics  
Characteristic  
RAM data retention voltage  
Symbol  
Min  
1.3  
1
Max  
Unit  
V
VRDR  
FLASH program bus clock frequency  
FLASH read bus clock frequency  
MHz  
Hz  
(1)  
32k  
8M  
fRead  
(2)  
FLASH page erase time  
1
ms  
tErase  
(3)  
FLASH mass erase time  
4
10  
5
40  
ms  
µs  
µs  
µs  
µs  
µs  
µs  
tMErase  
tnvs  
tnvh  
tnvh1  
tpgs  
FLASH PGM/ERASE to HVEN set up time  
FLASH high-voltage hold time  
FLASH high-voltage hold time (mass erase)  
FLASH program hold time  
100  
5
tPROG  
FLASH program time  
30  
1
(4)  
FLASH return to read time  
trcv  
(5)  
FLASH cumulative program hv period  
4
ms  
tHV  
FLASH row erase endurance(6)  
FLASH row program endurance(7)  
FLASH data retention time(8)  
NOTES:  
10k  
10k  
10  
cycles  
cycles  
years  
1. fRead is defined as the frequency range for which the FLASH memory can be read.  
2. If the page erase time is longer than tErase (Min), there is no erase-disturb, but it reduces the endurance of the  
FLASH memory.  
3. If the mass erase time is longer than tMErase (Min), there is no erase-disturb, but it reduces the endurance of  
the FLASH memory.  
4. trcv is defined as the time it needs before the FLASH can be read after turning off the high voltage charge pump,  
by clearing HVEN to logic 0.  
5. tHV is defined as the cumulative high voltage programming time to the same row before next erase.  
tHV must satisfy this condition: tnvs + tnvh + tpgs + (tPROG × 32) tHV max.  
6. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least  
this many erase / program cycles.  
7. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least  
this many erase / program cycles.  
8. The FLASH is guaranteed to retain data over the entire operating temperature range for at least the minimum  
time specified.  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
209  
Electrical Specifications  
Electrical Specifications  
Technical Data  
210  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Electrical Specifications  
Technical Data – MC68H(R)C908JL3E/JK3E/JK1E  
Section 19. Mechanical Specifications  
19.1 Contents  
19.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211  
19.3 20-Pin PDIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212  
19.4 20-Pin SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212  
19.5 28-Pin PDIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213  
19.6 28-Pin SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213  
19.7 48-Pin LQFP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .214  
19.2 Introduction  
This section gives the dimensions for:  
• 20-pin plastic dual in-line package (case #738)  
• 20-pin small outline integrated circuit package (case #751D)  
• 28-pin plastic dual in-line package (case #710)  
• 28-pin small outline integrated circuit package (case #751F)  
• 48-pin low-profile quad flat pack (case #932)  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
211  
Mechanical Specifications  
Mechanical Specifications  
19.3 20-Pin PDIP  
–A–  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
20  
1
11  
10  
B
4. DIMENSION B DOES NOT INCLUDE MOLD  
FLASH.  
L
C
INCHES  
DIM MIN MAX  
1.070 25.66  
MILLIMETERS  
MIN  
MAX  
27.17  
6.60  
4.57  
0.55  
A
B
C
D
E
F
1.010  
0.240  
0.150  
0.015  
0.260  
0.180  
0.022  
6.10  
3.81  
0.39  
–T–  
SEATING  
PLANE  
K
0.050 BSC  
1.27 BSC  
M
0.050  
0.070  
1.27  
1.77  
N
E
G
J
K
L
0.100 BSC  
2.54 BSC  
0.008  
0.110  
0.015  
0.140  
0.21  
2.80  
0.38  
3.55  
G
F
J 20 PL  
0.300 BSC  
7.62 BSC  
D 20 PL  
0.25 (0.010)  
M
M
T B  
0.25 (0.010)  
M
N
0
0.020  
15  
0.040  
0
0.51  
15  
1.01  
M
M
T A  
Figure 19-1. 20-Pin PDIP (Case #738)  
19.4 20-Pin SOIC  
NOTES:  
A–  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
20  
11  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.150  
(0.006) PER SIDE.  
10X P  
B–  
5. DIMENSION D DOES NOT INCLUDE  
DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.13  
(0.005) TOTAL IN EXCESS OF D DIMENSION  
AT MAXIMUM MATERIAL CONDITION.  
M
M
B
0.010 (0.25)  
1
10  
MILLIMETERS  
INCHES  
20X D  
DIM MIN  
MAX  
12.95  
7.60  
2.65  
0.49  
0.90  
MIN  
MAX  
0.510  
0.299  
0.104  
0.019  
0.035  
J
A
B
C
D
F
12.65  
7.40  
2.35  
0.35  
0.50  
0.499  
0.292  
0.093  
0.014  
0.020  
M
S
S
B
0.010 (0.25)  
T A  
F
G
J
K
M
P
R
1.27 BSC  
0.050 BSC  
0.25  
0.10  
0
0.32  
0.25  
7
0.010  
0.004  
0
0.012  
0.009  
7
R X 45  
10.05  
0.25  
10.55  
0.75  
0.395  
0.010  
0.415  
0.029  
C
SEATING  
PLANE  
T–  
M
18X G  
K
Figure 19-2. 20-Pin SOIC (Case #751D)  
Technical Data  
212  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Mechanical Specifications  
Mechanical Specifications  
28-Pin PDIP  
19.5 28-Pin PDIP  
NOTES:  
1. POSITIONAL TOLERANCE OF LEADS (D), SHALL  
BE WITHIN 0.25 (0.010) AT MAXIMUM MATERIAL  
CONDITION, IN RELATION TO SEATING PLANE  
AND EACH OTHER.  
2. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
28  
1
15  
14  
3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.  
B
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
F
MIN  
36.45  
13.72  
3.94  
0.36  
1.02  
MAX  
37.21  
14.22  
5.08  
0.56  
1.52  
MIN  
MAX  
1.465  
0.560  
0.200  
0.022  
0.060  
1.435  
0.540  
0.155  
0.014  
0.040  
L
C
A
N
G
H
J
K
L
2.54 BSC  
0.100 BSC  
1.65  
0.20  
2.92  
2.16  
0.38  
3.43  
0.065  
0.008  
0.115  
0.085  
0.015  
0.135  
J
G
H
F
M
K
15.24 BSC  
0.600 BSC  
D
SEATING  
M
N
0°  
0.51  
15°  
1.02  
0°  
0.020  
15°  
0.040  
PLANE  
Figure 19-3. 28-Pin PDIP (Case #710)  
19.6 28-Pin SOIC  
NOTES:  
-A-  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
15  
28  
14X  
P
M
M
0.010 (0.25)  
B
-B-  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE  
1
14  
DAMBAR PROTRUSION SHALL BE 0.13  
(0.005) TOTAL IN EXCESS OF D DIMENSION  
AT MAXIMUM MATERIAL CONDITION.  
28X  
D
M
MILLIMETERS  
INCHES  
M
S
S
0.010 (0.25)  
T
A
B
DIM  
A
B
C
D
MIN  
17.80  
7.40  
2.35  
0.35  
0.41  
MAX  
18.05  
7.60  
2.65  
0.49  
0.90  
MIN  
MAX  
0.711  
0.299  
0.104  
0.019  
0.035  
R
X 45  
0.701  
0.292  
0.093  
0.014  
0.016  
C
-T-  
SEATING  
PLANE  
F
26X  
G
G
J
K
M
P
R
1.27 BSC  
0.050 BSC  
0.23  
0.13  
0°  
0.32  
0.29  
8°  
10.55  
0.75  
0.009  
0.005  
0°  
0.013  
0.011  
8°  
0.415  
0.029  
K
F
10.01  
0.25  
0.395  
0.010  
J
Figure 19-4. 28-Pin SOIC (Case #751F)  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA  
Technical Data  
213  
Mechanical Specifications  
Mechanical Specifications  
19.7 48-Pin LQFP  
4X  
NOTES:  
0.200 AB TU  
Z
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLANE AB IS LOCATED AT BOTTOM OF  
LEAD AND IS COINCIDENT WITH THE LEAD  
WHERE THE LEAD EXITS THE PLASTIC BODY AT  
THE BOTTOM OF THE PARTING LINE.  
4. DATUMS T, U, AND Z TO BE DETERMINED AT  
DATUM PLANE AB.  
DETAIL Y  
9
A
P
A1  
48  
37  
5. DIMENSIONS S AND V TO BE DETERMINED AT  
SEATING PLANE AC.  
1
36  
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS  
0.250 PER SIDE. DIMENSIONS A AND B DO  
INCLUDE MOLD MISMATCH AND ARE  
DETERMINED AT DATUM PLANE AB.  
7. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. DAMBAR PROTRUSION SHALL  
NOT CAUSE THE D DIMENSION TO EXCEED  
0.350.  
T
U
B
V
AE  
AE  
B1  
V1  
8. MINIMUM SOLDER PLATE THICKNESS SHALL BE  
0.0076.  
12  
25  
9. EXACT SHAPE OF EACH CORNER IS OPTIONAL.  
MILLIMETERS  
13  
24  
DIM  
A
MIN  
MAX  
Z
7.000 BSC  
A1  
B
B1  
C
D
E
3.500 BSC  
7.000 BSC  
3.500 BSC  
S1  
T, U, Z  
1.400  
1.600  
0.270  
1.450  
0.230  
S
0.170  
1.350  
0.170  
DETAIL Y  
4X  
F
G
0.200 AC TU  
Z
0.500 BSC  
H
J
K
L
M
N
0.050  
0.090  
0.500  
1°  
0.150  
0.200  
0.700  
5°  
0.080 AC  
12° REF  
G
AB  
AC  
0.090  
0.160  
P
0.250 BSC  
R
0.150  
0.250  
S
9.000 BSC  
S1  
V
V1  
W
AA  
4.500 BSC  
9.000 BSC  
4.500 BSC  
0.200 REF  
1.000 REF  
AD  
M°  
BASE METAL  
TOP & BOTTOM  
R
N
J
E
C
H
F
D
M
0.080  
AC TU Z  
SECTION AEAE  
W
L°  
K
DETAIL AD  
AA  
Figure 19-5. 48-Pin LQFP (Case #932)  
Technical Data  
214  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Mechanical Specifications  
MOTOROLA  
Technical Data – MC68H(R)C908JL3E/JK3E/JK1E  
Section 20. Ordering Information  
20.1 Contents  
20.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215  
20.3 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216  
20.2 Introduction  
This section contains ordering numbers for the MC68H(R)C908JL3E,  
MC68H(R)C908JK3E, and MC68H(R)C908JK1E.  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Technical Data  
215  
MOTOROLA  
Ordering Information  
Ordering Information  
20.3 MC Order Numbers  
Table 20-1. MC Order Numbers  
MC order number  
Oscillator type  
FLASH memory  
Package  
MC68HC908JL3ECFA  
MC68HC908JL3EMFA  
Crystal oscillator  
4096 Bytes  
48-pin LQFP  
MC68HRC98JL3ECFA  
MC68HRC98JL3EMFA  
RC oscillator  
MC68HC908JL3ECP  
MC68HC908JL3EMP  
MC68HC908JL3ECDW  
MC68HC908JL3EMDW  
Crystal oscillator  
4096 Bytes  
4096 Bytes  
1536 Bytes  
28-pin package  
MC68HRC98JL3ECP  
MC68HRC98JL3EMP  
MC68HRC98JL3ECDW  
MC68HRC98JL3EMDW  
RC oscillator  
Crystal oscillator  
RC oscillator  
MC68HC908JK3ECP  
MC68HC908JK3EMP  
MC68HC908JK3ECDW  
MC68HC908JK3EMDW  
MC68HRC98JK3ECP  
MC68HRC98JK3EMP  
MC68HRC98JK3ECDW  
MC68HRC98JK3EMDW  
20-pin package  
MC68HC908JK1ECP  
MC68HC908JK1EMP  
MC68HC908JK1ECDW  
MC68HC908JK1EMDW  
Crystal oscillator  
RC oscillator  
MC68HRC98JK1ECP  
MC68HRC98JK1EMP  
MC68HRC98JK1ECDW  
MC68HRC98JK1EMDW  
Notes:  
C = 40 °C to +85 °C  
M = 40 °C to +125 °C (available for VDD = 5V only)  
P = Plastic dual in-line package (PDIP)  
DW = Small outline integrated circuit package (SOIC)  
FA = Low-Profile Quad Flat Pack (LQFP)  
Technical Data  
216  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
Ordering Information  
MOTOROLA  
Technical Data – MC68H(R)C908JL3E/JK3E/JK1E  
Appendix A. MC68HLC908JL3E/JK3E/JK1E  
A.1 Contents  
A.2  
A.3  
A.4  
A.5  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .217  
FLASH Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218  
Low-Voltage Inhibit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218  
Oscillator Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218  
A.6  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218  
Functional Operating Range . . . . . . . . . . . . . . . . . . . . . . .218  
DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . .219  
Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220  
Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . .220  
ADC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221  
Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . .222  
A.6.1  
A.6.2  
A.6.3  
A.6.4  
A.6.5  
A.6.6  
A.7  
MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223  
A.2 Introduction  
This appendix introduces three devices, that are low-voltage versions of  
MC68HC908JL3E/JK3E/JK1E:  
MC68HLC908JL3E  
MC68HLC908JK3E  
MC68HLC908JK1E  
The entire data book apply to these low-voltage devices, with exceptions  
outlined in this appendix.  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA MC68HLC908JL3E/JK3E/JK1E  
Technical Data  
217  
 
MC68HLC908JL3E/JK3E/JK1E  
A.3 FLASH Memory  
The FLASH memory can be read at minimum VDD of 2.2V.  
Program or erase operations require a minimum VDD of 2.7V.  
A.4 Low-Voltage Inhibit  
There is no low-voltage inhibit circuit. Therefore, no low-voltage reset.  
The associated register bits are reserved bits.  
A.5 Oscillator Options  
Only crystal oscillator or direct clock input is supported.  
A.6 Electrical Specifications  
Electrical specifications for low-voltage devices are given in the following  
tables.  
A.6.1 Functional Operating Range  
Table A-1. Operating Range  
Characteristic  
Symbol  
Value  
Unit  
°C  
TA  
Operating temperature range  
Operating voltage range  
0 to +85  
2.2 to 5.5  
VDD  
VDD  
V
Operating voltage for FLASH memory  
program and erase operations  
2.7 to 5.5  
V
Technical Data  
218  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MC68HLC908JL3E/JK3E/JK1E MOTOROLA  
MC68HLC908JL3E/JK3E/JK1E  
A.6.2 DC Electrical Characteristics  
Table A-2. DC Electrical Characteristics  
Characteristic(1)  
Typ(2)  
Symbol  
Min  
Max  
Unit  
Output high voltage (ILOAD = 1.0mA)  
PTA0PTA6, PTB0PTB7, PTD0PTD7  
VOH  
VDD0.4  
V
Output low voltage (ILOAD = 0.8mA)  
VOL  
VOL  
0.4  
0.5  
V
V
PTA6, PTB0PTB7, PTD0, PTD1, PTD4, PTD5  
Output low voltage (ILOAD = 15mA)  
PTD6, PTD7  
Input high voltage  
VIH  
0.7 × VDD  
VDD  
PTA0PTA6, PTB0PTB7, PTD0PTD7,  
RST, IRQ1, OSC1  
V
V
Input low voltage  
VIL  
VSS  
0.2 × VDD  
PTA0PTA6, PTB0PTB7, PTD0PTD7,  
RST, IRQ1, OSC1  
VDD supply current (VDD = 2.4V, fOP = 2MHz)  
Run(3)  
2
1
1
3.5  
1.5  
3
mA  
mA  
µA  
IDD  
Wait(4)  
Stop(5) 0°C to 85°C  
IIL  
Digital I/O ports Hi-Z leakage current  
Input current  
10  
1
µA  
µA  
IIN  
COUT  
CIN  
Capacitance  
12  
8
pF  
Ports (as input or output)  
POR rearm voltage(6)  
VPOR  
RPOR  
0
100  
mV  
POR rise time ramp rate(7)  
0.02  
V/ms  
Pullup resistors(8)  
PTD6, PTD7  
RPU1  
RPU2  
1.8  
16  
3.3  
26  
4.8  
36  
kΩ  
kΩ  
RST, IRQ1, PTA0PTA6  
NOTES:  
1. VDD = 2.4 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.  
2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.  
3. Run (operating) IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less  
than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run  
IDD. Measured with all modules enabled.  
4. Wait IDD measured using external square wave clock source; all inputs 0.2 V from rail; no dc loads; less than 100 pF  
on all outputs. CL = 20 pF on OSC2; all ports configured as inputs; OSC2 capacitance linearly affects wait IDD  
5. STOP IDD measured with OSC1 grounded, no port pins sourcing current. LVI is disabled.  
6. Maximum is highest voltage that POR is guaranteed.  
.
7. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until min-  
imum VDD is reached.  
8. RPU1 and RPU2 are measured at VDD = 5.0V  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA MC68HLC908JL3E/JK3E/JK1E  
Technical Data  
219  
MC68HLC908JL3E/JK3E/JK1E  
A.6.3 Control Timing  
Table A-3. Control Timing  
Characteristic(1)  
Internal operating frequency(2)  
Symbol  
fOP  
Min  
Max  
2
Unit  
MHz  
µs  
RST input pulse width low(3)  
tIRL  
1.5  
NOTES:  
1. VDD = 2.2 Vdc, VSS = 0 Vdc, TA = TL to TH; timing shown with respect to 20% VDD and 70% VDD, unless otherwise noted.  
2. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this infor-  
mation.  
3. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset.  
A.6.4 Oscillator Characteristics  
Table A-4. Oscillator Component Specifications  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
fOSCXCLK  
Crystal frequency, XTALCLK  
8
MHz  
External clock  
reference frequency(1)  
fOSCXCLK  
dc  
8
MHz  
Crystal load capacitance(2)  
Crystal fixed capacitance(2)  
CL  
C1  
C2  
RB  
RS  
2 × CL  
2 × CL  
10 MΩ  
Crystal tuning capacitance(2)  
Feedback bias resistor  
Series resistor(2), (3)  
NOTES:  
1. No more than 10% duty cycle deviation from 50%  
2. Consult crystal vendor data sheet  
3. Not Required for high frequency crystals  
Technical Data  
220  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MC68HLC908JL3E/JK3E/JK1E MOTOROLA  
MC68HLC908JL3E/JK3E/JK1E  
A.6.5 ADC Characteristics  
Table A-5. ADC Characteristics  
Characteristic  
Symbol  
Min  
Max  
Unit  
Comments  
2.2  
(VDD min)  
5.5  
(VDD max)  
VDDAD  
Supply voltage  
V
VADIN  
BAD  
VSS  
8
VDD  
8
Input voltages  
Resolution  
V
Bits  
LSB  
AAD  
Absolute accuracy  
0.5  
2
Includes quantization  
tAIC = 1/fADIC, tested  
only at 1 MHz  
fADIC  
ADC internal clock  
0.5  
1.048  
MHz  
RAD  
tADPU  
tADC  
tADS  
ZADI  
FADI  
CADI  
VSS  
14  
14  
5
VDD  
Conversion range  
Power-up time  
V
t
t
t
AIC cycles  
AIC cycles  
AIC cycles  
Conversion time  
Sample time(1)  
15  
Zero input reading(2)  
Full-scale reading(3)  
Input capacitance  
00  
FE  
01  
Hex  
Hex  
pF  
V
IN = VSS  
IN = VDD  
Not tested  
V
FF  
(20) 8  
Input leakage(3)  
Port B/port D  
1
µA  
NOTES:  
1. Source impedances greater than 10 kadversely affect internal RC charging time during input sampling.  
2. Zero-input/full-scale reading requires sufficient decoupling measures for accurate conversions.  
3. The external system error caused by input leakage current is approximately equal to the product of R source and input  
current.  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA MC68HLC908JL3E/JK3E/JK1E  
Technical Data  
221  
MC68HLC908JL3E/JK3E/JK1E  
A.6.6 Memory Characteristics  
The FLASH memory can only be read at an operating voltage of 2.2 to  
5.5V. Program and erase are achieved at an operating voltage of 2.7 to  
5.5V. The program and erase parameters in Table A-6 are for  
VDD = 2.7 to 5.5V only.  
Table A-6. Memory Characteristics  
Characteristic  
RAM data retention voltage  
Symbol  
Min  
1.3  
1
Max  
Unit  
V
VRDR  
FLASH program bus clock frequency  
FLASH read bus clock frequency  
MHz  
Hz  
(1)  
32k  
8M  
fRead  
(2)  
FLASH page erase time  
1
ms  
tErase  
(3)  
FLASH mass erase time  
4
10  
5
40  
ms  
µs  
µs  
µs  
µs  
µs  
µs  
tMErase  
tnvs  
tnvh  
tnvhl  
tpgs  
FLASH PGM/ERASE to HVEN set up time  
FLASH high-voltage hold time  
FLASH high-voltage hold time (mass erase)  
FLASH program hold time  
100  
5
tPROG  
FLASH program time  
30  
1
(4)  
FLASH return to read time  
trcv  
(5)  
FLASH cumulative program hv period  
4
ms  
tHV  
FLASH row erase endurance(6)  
FLASH row program endurance(7)  
FLASH data retention time(8)  
NOTES:  
10k  
10k  
10  
cycles  
cycles  
years  
1. fRead is defined as the frequency range for which the FLASH memory can be read.  
2. If the page erase time is longer than tErase (Min), there is no erase-disturb, but it reduces the endurance of the  
FLASH memory.  
3. If the mass erase time is longer than tMErase (Min), there is no erase-disturb, but it reduces the endurance of  
the FLASH memory.  
4. trcv is defined as the time it needs before the FLASH can be read after turning off the high voltage charge pump,  
by clearing HVEN to logic 0.  
5. tHV is defined as the cumulative high voltage programming time to the same row before next erase.  
tHV must satisfy this condition: tnvs + tnvh + tpgs + (tPROG × 32) tHV max.  
6. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least  
this many erase / program cycles.  
7. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least  
this many erase / program cycles.  
8. The FLASH is guaranteed to retain data over the entire operating temperature range for at least the minimum  
time specified.  
Technical Data  
222  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MC68HLC908JL3E/JK3E/JK1E MOTOROLA  
MC68HLC908JL3E/JK3E/JK1E  
A.7 MC Order Numbers  
Table A-7 shows the ordering numbers for the low-voltage devices.  
Table A-7. MC68HLC908JL3E/JK3E/JK1E Order Numbers  
MC order number  
Oscillator type  
FLASH memory  
Package  
MC68HLC98JL3EIFA  
Crystal oscillator  
4096 Bytes  
48-pin LQFP  
MC68HLC98JL3EIP  
MC68HLC98JL3EIDW  
Crystal oscillator  
Crystal oscillator  
Crystal oscillator  
4096 Bytes  
4096 Bytes  
1536 Bytes  
28-pin package  
20-pin package  
MC68HLC98JK3EIP  
MC68HLC98JK3EIDW  
MC68HLC98JK1EIP  
MC68HLC98JK1EIDW  
Notes:  
I = 0 °C to +85 °C  
P = Plastic dual in-line package (PDIP)  
DW = Small outline integrated circuit package (SOIC)  
FA = Low-Profile Quad Flat Pack (LQFP)  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
MOTOROLA MC68HLC908JL3E/JK3E/JK1E  
Technical Data  
223  
MC68HLC908JL3E/JK3E/JK1E  
Technical Data  
MC68H(R)C908JL3E/JK3E/JK1E Rev. 2.0  
224  
MC68HLC908JL3E/JK3E/JK1E  
MOTOROLA  
HOW TO REACH US:  
USA/EUROPE/LOCATIONS NOT LISTED:  
Motorola Literature Distribution;  
P.O. Box 5405, Denver, Colorado 80217  
1-303-675-2140 or 1-800-441-2447  
JAPAN:  
Motorola Japan Ltd.; SPS, Technical Information Center,  
3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan  
81-3-3440-3569  
ASIA/PACIFIC:  
Information in this document is provided solely to enable system and software  
implementers to use Motorola products. There are no express or implied copyright  
licenses granted hereunder to design or fabricate any integrated circuits or  
integrated circuits based on the information in this document.  
Motorola Semiconductors H.K. Ltd.;  
Silicon Harbour Centre, 2 Dai King Street,  
Tai Po Industrial Estate, Tai Po, N.T., Hong Kong  
852-26668334  
Motorola reserves the right to make changes without further notice to any products  
herein. Motorola makes no warranty, representation or guarantee regarding the  
suitability of its products for any particular purpose, nor does Motorola assume any  
liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or incidental  
damages. Typicalparameters which may be provided in Motorola data sheets  
and/or specifications can and do vary in different applications and actual  
performance may vary over time. All operating parameters, including Typicals”  
must be validated for each customer application by customers technical experts.  
Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as  
components in systems intended for surgical implant into the body, or other  
applications intended to support or sustain life, or for any other application in which  
the failure of the Motorola product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use Motorola products for any such  
unintended or unauthorized application, Buyer shall indemnify and hold Motorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated  
with such unintended or unauthorized use, even if such claim alleges that Motorola  
was negligent regarding the design or manufacture of the part.  
TECHNICAL INFORMATION CENTER:  
1-800-521-6274  
HOME PAGE:  
http://motorola.com/semiconductors  
Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark  
Office. digital dna is a trademark of Motorola, Inc. All other product or service  
names are the property of their respective owners. Motorola, Inc. is an Equal  
Opportunity/Affirmative Action Employer.  
© Motorola, Inc. 2002  
MC68HC908JL3E/D  
Rev. 2.0  
12/2002  

相关型号:

MC68HRC98JK1EMDW

Microcontrollers
MOTOROLA

MC68HRC98JK1EMDW

Microcontrollers
FREESCALE

MC68HRC98JK1EMDW

IC,MICROCONTROLLER,8-BIT,68HC08 CPU,SOP,20PIN,PLASTIC
NXP

MC68HRC98JK1EMP

Microcontrollers
MOTOROLA

MC68HRC98JK1EMP

Microcontrollers
FREESCALE

MC68HRC98JK1EMP

8-BIT, FLASH, 8MHz, MICROCONTROLLER, PDIP20, PLASTIC, DIP-20
NXP

MC68HRC98JK3ECDW

Microcontrollers
MOTOROLA

MC68HRC98JK3ECDW

Microcontrollers
FREESCALE

MC68HRC98JK3ECP

Microcontrollers
MOTOROLA

MC68HRC98JK3ECP

Microcontrollers
FREESCALE

MC68HRC98JK3EMDW

Microcontrollers
MOTOROLA

MC68HRC98JK3EMDW

Microcontrollers
FREESCALE