MC74HC4538AN [MOTOROLA]

Dual Precision Monostable Multivibrator(Retiggerable, Resettable); 双精密单稳多谐振荡器( Retiggerable ,复式)
MC74HC4538AN
型号: MC74HC4538AN
厂家: MOTOROLA    MOTOROLA
描述:

Dual Precision Monostable Multivibrator(Retiggerable, Resettable)
双精密单稳多谐振荡器( Retiggerable ,复式)

振荡器
文件: 总13页 (文件大小:371K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SEMICONDUCTOR TECHNICAL DATA  
J SUFFIX  
CERAMIC PACKAGE  
CASE 620–10  
16  
16  
The MC54/74HC4538A is identical in pinout to the MC14538B. The device  
inputs are compatible with standard CMOS outputs; with pullup resistors,  
they are compatible with LSTTL outputs.  
This dual monostable multivibrator may be triggered by either the positive  
or the negative edge of an input pulse, and produces a precision output  
pulse over a wide range of pulse widths. Because the device has conditioned  
trigger inputs, there are no trigger–input rise and fall time restrictions. The  
1
N SUFFIX  
PLASTIC PACKAGE  
CASE 648–08  
1
output pulse width is determined by the external timing components, R and  
x
C . The device has a reset function which forces the Q output low and the Q  
output high, regardless of the state of the output pulse circuitry.  
x
D SUFFIX  
SOIC PACKAGE  
CASE 751B–05  
16  
Unlimited Rise and Fall Times Allowed on the Trigger Inputs  
Output Pulse is Independent of the Trigger Pulse Width  
± 10% Guaranteed Pulse Width Variation from Part to Part (Using the  
Same Test Jig)  
1
ORDERING INFORMATION  
MC54HCXXXXAJ  
MC74HCXXXXAN  
MC74HCXXXXAD  
Ceramic  
Plastic  
SOIC  
Output Drive Capability: 10 LSTTL Loads  
Outputs Directly Interface to CMOS, NMOS and TTL  
Operating Voltage Range: 3.0 to 6.0 V  
Low Input Current: 1.0 µA  
High Noise Immunity Characteristic of CMOS Devices  
In Compliance with the Requirements Defined by JEDEC Standard  
No. 7A  
PIN ASSIGNMENT  
GND  
1/R  
1
2
16  
15  
V
CC  
GND  
Chip Complexity: 145 FETs or 36 Equivalent Gates  
C
1
X
X
RESET 1  
A1  
3
4
5
6
7
8
14  
13  
12  
11  
10  
9
C 2/R 2  
X X  
RESET 2  
A2  
LOGIC DIAGRAM  
B1  
C
1
R 1  
X
X
Q1  
B2  
V
CC  
Q1  
Q2  
1
2
GND  
Q2  
6
7
4
5
Q1  
Q1  
A1  
B1  
TRIGGER  
INPUTS  
C
2
R 2  
X
X
V
CC  
FUNCTION TABLE  
3
RESET 1  
Inputs  
Outputs  
15  
14  
Reset  
A
B
Q
Q
10  
12  
11  
Q2  
Q2  
A2  
B2  
H
H
H
TRIGGER  
INPUTS  
L
9
H
H
X
H
L
X
Not Triggered  
Not Triggered  
13  
RESET 2  
H
H
L,H,  
L
H
L,H,  
Not Triggered  
Not Triggered  
PIN 16 = V  
CC  
PIN 8 = GND  
AND C ARE EXTERNAL COMPONENTS  
PIN 1 AND PIN 15 MUST BE HARD WIRED TO GND  
L
X
X
X
X
L
H
R
X
X
Not Triggered  
10/95  
Motorola, Inc. 1995  
REV 6  
MC54/74HC4538A  
MAXIMUM RATINGS*  
Symbol  
Parameter  
Value  
Unit  
V
This device contains protection  
circuitry to guard against damage  
due to high static voltages or electric  
fields. However, precautions must  
be taken to avoid applications of any  
voltage higher than maximum rated  
voltages to this high–impedance cir-  
V
DC Supply Voltage (Referenced to GND)  
DC Input Voltage (Referenced to GND)  
DC Output Voltage (Referenced to GND)  
DC Input Current, per Pin  
– 0.5 to + 7.0  
CC  
V
– 1.5 to V  
+ 1.5  
V
in  
CC  
V
out  
– 0.5 to V  
+ 0.5  
CC  
I
A, B, Reset  
C , R  
± 20  
mA  
in  
± 30  
± 25  
± 50  
cuit. For proper operation, V and  
in  
x
x
V
should be constrained to the  
out  
I
DC Output Current, per Pin  
mA  
mA  
mW  
out  
range GND (V or V  
)
V
CC  
.
in out  
Unused inputs must always be  
tied to an appropriate logic voltage  
I
DC Supply Current, V and GND Pins  
CC  
CC  
P
D
Power Dissipation in Still Air, Plastic or Ceramic DIP†  
SOIC Package†  
750  
500  
level (e.g., either GND or V ).  
CC  
Unused outputs must be left open.  
T
Storage Temperature  
– 65 to + 150  
C
C
stg  
T
Lead Temperature, 1 mm from Case for 10 Seconds  
(Plastic DIP or SOIC Package)  
(Ceramic DIP)  
L
260  
300  
* Maximum Ratings are those values beyond which damage to the device may occur.  
Functional operation should be restricted to the Recommended Operating Conditions.  
†Derating — Plastic DIP: – 10 mW/ C from 65 to 125 C  
Ceramic DIP: – 10 mW/ C from 100 to 125 C  
SOIC Package: – 7 mW/ C from 65 to 125 C  
For high frequency or heavy load considerations, see Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
DC Supply Voltage (Referenced to GND)  
Min  
3.0**  
0
Max  
Unit  
V
V
CC  
6.0  
V , V  
in out  
DC Input Voltage, Output Voltage (Referenced to GND)  
Operating Temperature, All Package Types  
V
CC  
V
T
A
– 55  
+ 125  
C
t , t  
r f  
Input Rise and Fall Time  
(Figure 7)  
V
CC  
V
CC  
V
CC  
= 2.0 V  
= 4.5 V  
= 6.0 V  
0
0
0
1000  
500  
400  
ns  
A or B (Figure 5)  
No Limit  
R
C
External Timing Resistor  
V
< 4.5 V  
4.5 V  
1.0  
2.0  
*
*
kΩ  
µF  
x
x
CC  
V
CC  
External Timing Capacitor  
0
*
*The maximum allowable values of R and C are a function of the leakage of capacitor C , the leakage of the HC4538A, and leakage due to  
x
x
x
boardlayout and surface resistance. For most applications, C /R should be limited to a maximum value of 10 µF/1.0M. Values of C > 1.0 µF  
x
x
x
may cause a problem during power down (see Power Down Considerations). Susceptibility to externally induced noise signals may occur for  
> 1.0 M.  
R
x
**The HC4538A will function at 2.0 V but for optimum pulse width stability, V  
should be above 3.0 V.  
NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).  
CC  
MOTOROLA  
3–2  
MC54/74HC4538A  
DC CHARACTERISTICS FOR THE MC54/74HC4538A  
Guaranteed Limits  
– 55 to  
25 C  
85 C  
Max  
125 C  
Max  
V
Volts  
CC  
Symbol  
Parameter  
Test Conditions  
Unit  
Min  
Max  
Min  
Min  
V
IH  
Minimum High–Level  
Input Voltage  
V
= 0.1 V or V  
– 0.1 V  
2.0  
4.5  
6.0  
1.5  
3.15  
4.2  
1.5  
3.15  
4.2  
1.5  
3.15  
4.2  
V
out  
CC  
|I  
|
20 µA  
out  
V
Maximum Low–Level  
Input Voltage  
V
= 0.1 V or V  
– 0.1 V  
2.0  
4.5  
6.0  
0.5  
1.35  
1.8  
0.5  
1.35  
1.8  
0.5  
1.35  
1.8  
V
V
IL  
out  
CC  
|I  
|
20 µA  
out  
V
OH  
Minimum High–Level  
Output Voltage  
V
= V or V  
IH  
2.0  
4.5  
6.0  
1.9  
4.4  
5.9  
1.9  
4.4  
5.9  
1.9  
4.4  
5.9  
in  
IL  
|I  
|
20 µA  
out  
V
= V or V  
in  
IH  
IL  
|I  
|I  
|
|
4.0 mA  
5.2 mA  
4.5  
6.0  
3.98  
5.48  
3.84  
5.34  
3.7  
5.2  
out  
out  
V
OL  
Maximum Low–Level  
Output Voltage  
V
= V or V  
IH  
2.0  
4.5  
6.0  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
V
in  
IL  
|I  
|
20 µA  
out  
V
= V or V  
in  
IH  
IL  
|I  
|I  
|
|
4.0 mA  
5.2 mA  
4.5  
6.0  
0.26  
0.26  
0.33  
0.33  
0.4  
0.4  
out  
out  
I
Maximum Input  
Leakage Current  
(A, B, Reset)  
V
V
V
= V  
= V  
= V  
or GND  
6.0  
6.0  
6.0  
± 0.1  
± 50  
130  
± 1.0  
± 500  
220  
± 1.0  
± 500  
350  
µA  
nA  
µA  
in  
in  
in  
in  
CC  
CC  
CC  
I
in  
Maximum Input  
Leakage Current  
or GND  
or GND  
(R , C )  
x
x
I
I
Maximum Quiescent  
Supply Current  
(per package)  
CC  
Q1 and Q2 = Low  
= 0 µA  
I
out  
Standby State  
Maximum Supply Current  
(per package)  
Active State  
V
= V or GND  
CC  
CC  
in  
– 45 C to  
85 C  
– 55 C to  
125 C  
Q1 and Q2 = High  
= 0 µA  
25 C  
400  
I
out  
Pins 2 and 14 = 0.5 V  
6.0  
600  
800  
µA  
CC  
3–3  
MOTOROLA  
MC54/74HC4538A  
AC CHARACTERISTICS FOR THE MC54/74HC4538A (C = 50 pF, Input t = t = 6.0 ns)  
L
r
f
Guaranteed Limits  
85 C  
– 55 to  
25 C  
125 C  
Min Max  
V
Volts  
CC  
Symbol  
Parameter  
Maximum Propagation Delay  
Input A or B to Q  
(Figures 6 and 8)  
Unit  
Min  
Max  
Min  
Max  
t
t
t
t
2.0  
4.5  
6.0  
175  
35  
30  
220  
44  
37  
265  
53  
45  
ns  
PLH  
PHL  
PHL  
PLH  
Maximum Propagation Delay  
Input A or B to NQ  
(Figures 6 and 8)  
2.0  
4.5  
6.0  
195  
39  
33  
245  
49  
42  
295  
59  
50  
ns  
ns  
ns  
ns  
pF  
Maximum Propagation Delay  
Reset to Q  
(Figures 7 and 8)  
2.0  
4.5  
6.0  
175  
35  
30  
220  
44  
37  
265  
53  
45  
Maximum Propagation Delay  
Reset to NQ  
(Figures 7 and 8)  
2.0  
4.5  
6.0  
175  
35  
30  
220  
44  
37  
265  
53  
45  
t
t
Maximum Output Transition Time, Any Output  
(Figures 7 and 8)  
2.0  
4.5  
6.0  
75  
15  
13  
95  
19  
16  
110  
22  
19  
TLH  
THL  
C
Maximum Input Capacitance  
(A. B, Reset)  
10  
25  
10  
25  
10  
25  
in  
(C , R )  
x
x
NOTE: For propagation delays with loads other than 50 pF, and information on typical parametric values, see Chapter 2 of the Motorola High–  
Speed CMOS Data Book (DL129/D).  
Typical @ 25°C, V  
= 5.0 V  
CC  
C
Power Dissipation Capacitance (Per Multivibrator)*  
pF  
150  
PD  
2
* Used to determine the no–load dynamic power consumption: P = C  
D
Motorola High–Speed CMOS Data Book (DL129/D).  
V
f + I  
V . For load considerations, see Chapter 2 of the  
CC CC  
PD CC  
TIMING CHARACTERISTICS FOR THE MC54/74HC4538A (Input t = t = 6.0 ns)  
r
f
Guaranteed Limits  
– 55 to  
25 C  
85 C  
Max  
125 C  
Max  
V
Volts  
CC  
Symbol  
Parameter  
Unit  
Min  
Max  
Min  
Min  
t
Minimum Recovery Time, Inactive to A or B  
(Figure 7)  
2.0  
4.5  
6.0  
0
0
0
0
0
0
0
0
0
ns  
rec  
t
t
Minimum Pulse Width, Input A or B  
(Figure 6)  
2.0  
4.5  
6.0  
60  
12  
10  
75  
15  
13  
90  
18  
15  
ns  
ns  
ns  
w
Minimum Pulse Width, Reset  
(Figure 7)  
2.0  
4.5  
6.0  
60  
12  
10  
75  
15  
13  
90  
18  
15  
w
t , t  
r
Maximum Input Rise and Fall Times, Reset  
(Figure 7)  
2.0  
4.5  
6.0  
1000  
500  
400  
1000  
500  
400  
1000  
500  
400  
f
A or B  
(Figure 7)  
2.0  
4.5  
6.0  
No Limit  
MOTOROLA  
3–4  
MC54/74HC4538A  
OUTPUT PULSE WIDTH CHARACTERISTICS (C = 50 pF)t  
L
Conditions  
Guaranteed Limits  
– 55 to  
25 C  
85 C  
Max  
0.8  
125 C  
Max  
0.81  
V
Volts  
CC  
Symbol  
Parameter  
Timing Components  
Unit  
Min  
0.63  
Max  
Min  
Min  
τ
Output Pulse Width*  
(Figures 6 and 8)  
R
= 10 k, C = 0.1 µF  
5.0  
0.77  
0.6  
0.59  
ms  
x
x
Pulse Width Match  
Between Circuits in the  
same Package  
± 5.0  
%
%
Pulse Width Match  
± 10  
Variation (Part to Part)  
* For output pulse widths greater than 100 µs, typically τ = kR C , where the value of k may be found in Figure 1.  
x x  
10 s  
1 s  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
T
= 25°C  
A
V
= 5 V, T = 25°C  
A
CC  
100 ms  
10 ms  
1 ms  
1 M  
100  
10  
1
µs  
µs  
µs  
100 k  
10 k  
1 k  
100 ns  
1
2
3
4
5
6
7
0.00001 0.0001  
0.001  
0.01  
0.1  
1
10  
100  
V
, POWER SUPPLY VOLTAGE (VOLTS)  
CAPACITANCE (µF)  
CC  
Figure 2. Output Pulse Width versus  
Timing Capacitance  
Figure 1. Typical Output Pulse Width Constant, k,  
versus Supply Voltage  
(For output pulse widths > 100 µs: τ = kR C )  
x x  
1.1  
T
A
= 25°C  
R
C
= 100 k  
= 1000 pF  
x
x
1
0.9  
0.8  
0.7  
R
C
= 1 M  
F
x
x
= 0.1  
µ
0.6  
0.5  
1
2
3
4
5
6
7
V
, POWER SUPPLY VOLTAGE (VOLTS)  
CC  
Figure 3. Normalized Output Pulse Width  
versus Power Supply Voltage  
3–5  
MOTOROLA  
MC54/74HC4538A  
1.1  
1.05  
1
V
= 6 V  
R
C
= 10 kΩ  
= 0.1 µF  
CC  
x
x
0.95  
0.9  
0.85  
0.8  
V
= 3 V  
CC  
75 50  
25  
0
25  
50  
75  
100  
125  
150  
T , AMBIENT TEMPERATURE (  
°C)  
A
Figure 4. Normalized Output Pulse Width  
versus Power Supply Voltage  
1.03  
1.02  
1.01  
1
R
C
= 10 kΩ  
= 0.1 µF  
x
x
V
= 5.5 V  
CC  
0.99  
V
= 5 V  
CC  
0.98  
0.97  
V
= 4.5 V  
CC  
75 50  
25  
0
25  
50  
75  
100  
125  
150  
T , AMBIENT TEMPERATURE (  
°C)  
A
Figure 5. Normalized Output Pulse Width  
versus Power Supply Voltage  
MOTOROLA  
3–6  
MC54/74HC4538A  
SWITCHING WAVEFORMS  
t
w(H)  
V
CC  
50%  
A
B
GND  
t
w(L)  
V
CC  
50%  
GND  
t
PLH  
t
PLH  
τ
τ
50%  
Q
Q
t
PHL  
t
τ
τ
PHL  
50%  
Figure 6.  
t
t
f
r
V
CC  
90%  
10%  
GND  
A
t
rr  
V
CC  
50%  
GND  
B
t
t
f
f
V
CC  
90%  
10%  
50%  
RESET  
GND  
t
t
w(L)  
rec  
t
τ
+ t  
rr  
TLH  
t
PHL  
90%  
10%  
(RETRIGGERED PULSE)  
50%  
50%  
Q
Q
t
t
PLH  
THL  
90%  
10%  
50%  
Figure 7.  
TEST POINT  
OUTPUT  
DEVICE  
UNDER  
TEST  
C *  
L
* Includes all probe and jig capacitance  
Figure 8. Test Circuit  
3–7  
MOTOROLA  
MC54/74HC4538A  
PIN DESCRIPTIONS  
INPUTS  
tors (see the Block Diagram). Polystyrene capacitors are  
recommended for optimum pulse width control. Electrolytic  
capacitors are not recommended due to high leakages  
associated with these type capacitors.  
A1, A2 (Pins 4, 12)  
Positive–edge trigger inputs. A rising–edge signal on  
either of these pins triggers the corresponding multivibrator  
when there is a high level on the B1 or B2 input.  
GND (Pins 1 and 15)  
External ground. The external timing capacitors discharge  
to ground through these pins.  
B1, B2 (Pins 5, 11)  
Negative–edge trigger inputs. A falling–edge signal on  
either of these pins triggers the corresponding multivibrator  
when there is a low level on the A1 or A2 input.  
OUTPUTS  
Q1, Q2 (Pins 6, 10)  
Reset 1, Reset 2 (Pins 3, 13)  
Noninverted monostable outputs. These pins (normally  
low) pulse high when the multivibrator is triggered at either  
the A or the B input. The width of the pulse is determined by  
the external timing components, R and C .  
Reset inputs (active low). When a low level is applied to  
one of these pins, the Q output of the corresponding multi-  
vibrator is reset to a low level and the Q output is set to a high  
level.  
X
X
Q1, Q2 (Pins 7, 9)  
C 1/R 1 and C 2/R 2 (Pins 2 and 14)  
X
X
X
X
Inverted monostable outputs. These pins (normally high)  
pulse low when the multivibrator is triggered at either the A or  
the B input. These outputs are the inverse of Q1 and Q2.  
External timing components. These pins are tied to the  
common points of the external timing resistors and capaci-  
LOGIC DETAIL  
(1/2 THE DEVICE)  
RxCx  
UPPER  
REFERENCE  
CIRCUIT  
OUTPUT  
LATCH  
+
V
CC  
V
, UPPER  
re  
LOWER  
REFERENCE  
CIRCUIT  
M1  
V
CC  
2 k  
+
M2  
Q
Q
V
, LOWER  
re  
M3  
TRIGGER CONTROL  
CIRCUIT  
A
B
C
Q
TRIGGER CONTROL  
RESET CIRCUIT  
CB  
R
RESET  
POWER  
ON  
RESET  
RESET LATCH  
Figure 9.  
MOTOROLA  
3–8  
MC54/74HC4538A  
CIRCUIT OPERATION  
Figure 12 shows the HC4538A configured in the retrigger-  
TRIGGER OPERATION  
able mode. Briefly, the device operates as follows (refer to  
Figure 10): In the quiescent state, the external timing capac-  
The HC4538A is triggered by either a rising–edge signal at  
input A (#7) or a falling–edge signal at input B (#8), with the  
unused trigger input and the Reset input held at the voltage  
levels shown in the Function Table. Either trigger signal will  
cause the output of the trigger–control circuit to go high (#9).  
The trigger–control circuit going high simultaneously initi-  
ates two events. First, the output latch goes low, thus taking  
the Q output of the HC4538A to a high state (#10). Second,  
transistor M3 is turned on, which allows the external timing  
itor, C , is charged to V  
put goes high and C discharges quickly to the lower  
. When a trigger occurs, the Q out-  
x
CC  
x
reference voltage (V  
ref  
Lower 1/3 V  
). C then charges,  
CC x  
through R , back up to the upper reference voltage (V  
Up-  
), at which point the one–shot has timed out  
and the Q output goes low.  
x
ref  
per  
2/3 V  
CC  
The following, more detailed description of the circuit op-  
eration refers to both the logic detail (Figure 9) and the timing  
diagram (Figure 10).  
capacitor, C , to rapidly discharge toward ground (#11).  
x
(Note that the voltage across C appears at the input of both  
QUIESCENT STATE  
x
the upper and lower reference circuit comparator).  
In the quiescent state, before an input trigger appears, the  
output latch is high and the reset latch is high (#1 in Fig-  
ure 10). Thus the Q output (pin 6 or 10) of the monostable  
multivibrator is low (#2, Figure 10).  
The output of the trigger–control circuit is low (#3), and  
transistors M1, M2, and M3 are turned off. The external tim-  
When C discharges to the reference voltage of the lower  
x
reference circuit (#12), the outputs of both reference circuits  
will be high (#13). The trigger–control reset circuit goes high,  
resetting the trigger–control circuit flip–flop to a low state  
(#14). This turns transistor M3 off again, allowing C to begin  
x
to charge back up toward V , with a time constant t = R C  
ing capacitor, C , is charged to V  
(#4), and both the upper  
CC  
x x  
x
CC  
(#15). Once the voltage across C charges to above the low-  
and lower reference circuit has a low output (#5).  
In addition, the output of the trigger–control reset circuit is  
low.  
x
er reference voltage, the lower reference circuit will go low  
allowing the monostable multivibrator to be retriggered.  
QUIESCENT  
STATE  
TRIGGER CYCLE  
(A INPUT)  
TRIGGER CYCLE  
(B INPUT)  
RESET  
RETRIGGER  
t
rr  
7
TRIGGER INPUT A  
(PIN 4 OR 12)  
TRIGGER INPUT B  
(PIN 5 OR 11)  
8
24  
9
TRIGGER-CONTROL  
CIRCUIT OUTPUT  
3
14  
11  
21  
4
23  
15  
17  
18  
R
/C INPUT  
X
12  
X
(PIN 2 OR 14)  
V
UPPER  
25  
ref  
13  
V
LOWER  
ref  
5
UPPER REFERENCE  
CIRCUIT  
13  
6
16  
LOWER REFERENCE  
CIRCUIT  
RESET INPUT  
(PIN 3 OR 13)  
20  
1
22  
RESET LATCH  
10  
2
19  
Q OUTPUT  
(PIN 6 OR 10)  
τ
τ
τ + t  
rr  
Figure 10. Timing Diagram  
3–9  
MOTOROLA  
MC54/74HC4538A  
When C charges up to the reference voltage of the upper  
x
occurs, the output of the reset latch goes low (#22), turning  
on transistor M1. Thus C is allowed to quickly charge up to  
reference circuit (#17), the output of the upper reference cir-  
cuit goes low (#18). This causes the output latch to toggle,  
taking the Q output of the HC4538A to a low state (#19), and  
completing the time–out cycle.  
x
V
(#23) to await the next trigger signal.  
CC  
On power up of the HC4538A the power–on reset circuit  
will be high causing a reset condition. This will prevent the  
trigger–control circuit from accepting a trigger input during  
this state. The HC4538A’s Q outputs are low and the Q not  
outputs are high.  
POWER–DOWN CONSIDERATIONS  
Large values of C may cause problems when powering  
x
down the HC4538A because of the amount of energy stored  
in the capacitor. When a system containing this device is  
RETRIGGER OPERATION  
powered down, the capacitor may discharge from V  
through the input protection diodes at pin 2 or pin 14. Current  
through the protection diodes must be limited to 30 mA;  
When used in the retriggerable mode (Figure 12), the  
HC4538A may be retriggered during timing out of the output  
pulse at any time after the trigger–control circuit flip–flop has  
CC  
therefore, the turn–off time of the V  
power supply must not  
been reset (#24), and the voltage across C is above the low-  
er reference voltage. As long as the C voltage is below the  
x
lower reference voltage, the reset of the flip–flop is high, dis-  
abling any trigger pulse. This prevents M3 from turning on  
during this period resulting in an output pulse width that is  
predictable.  
CC  
C /(30 mA). For example, if  
x
be faster than t = V  
CC  
= 5.0 V and C = 15 µF, the V supply must turn off no  
CC  
x
V
CC  
x
faster than t = (5.0 V) (15 µF)/30 mA = 2.5 ms. This is usually  
not a problem because power supplies are heavily filtered  
and cannot discharge at this rate.  
When a more rapid decrease of V  
the HC4538A may sustain damage. To avoid this possibility,  
to zero volts occurs,  
The amount of undershoot voltage on R C during the  
trigger mode is a function of loop delay, M3 conductivity, and  
CC  
x x  
use an external damping diode, D , connected as shown in  
V
. Minimum retrigger time, trr (Figure 7), is a function of  
x
DD  
1) time to discharge R C from V  
Figure 11. Best results can be achieved if diode D is chosen  
x
to be a germanium or Schottky type diode able to withstand  
large current surges.  
to lower reference  
);3)timetocharge  
x x  
);2)loopdelay(T  
DD  
delay  
R C from the undershoot voltage back to the lower refer-  
voltage(T  
discharge  
x x  
ence voltage (T  
).  
charge  
RESET AND POWER ON RESET OPERATION  
Figure 13 shows the device configured in the non–retrig-  
gerable mode.  
An Application Note (AN1558/D) titled Characterization of  
Retrigger Time in the HC4538A Dual Precision Monstable  
Multivibrator is being prepared. Please consult the factory for  
its availability.  
A low voltage applied to the Reset pin always forces the Q  
output of the HC4538A to a low state.  
The timing diagram illustrates the case in which reset oc-  
curs (#20) while C is charging up toward the reference volt-  
x
age of the upper reference circuit (#21). When a reset  
D
R
X
C
X
V
CC  
X
Q
Q
A
B
RESET  
Figure 11. Discharge Protection During Power Down  
MOTOROLA  
3–10  
MC54/74HC4538A  
TYPICAL APPLICATIONS  
C
R
C
X
R
X
X
X
RISING–EDGE  
TRIGGER  
RISING–EDGE  
TRIGGER  
V
CC  
V
CC  
Q
Q
A
B
A
B
Q
Q
B = V  
CC  
RESET = V  
CC  
RESET = V  
CC  
C
R
C
X
R
X
X
X
V
V
CC  
CC  
A = GND  
B
Q
Q
Q
A
B
Q
FALLING–EDGE  
TRIGGER  
FALLING–EDGE  
TRIGGER  
RESET = V  
CC  
RESET = V  
CC  
Figure 12. Retriggerable Monostable Circuitry  
Figure 13. Non–retriggerable Monostable Circuitry  
ONE–SHOT SELECTION GUIDE  
100 ns  
MC14528B  
1
µs  
10  
µs  
100  
µs  
1 ms 10 ms 100 ms 1 s  
10 s  
MC14536B  
MC14538B  
MC14541B  
HC4538A*  
23 HR  
5 MIN  
* Limited operating voltage (2–6 V)  
TOTAL OUTPUT PULSE WIDTH RANGE  
RECOMMENDED PULSE WIDTH RANGE  
3–11  
MOTOROLA  
MC54/74HC4538A  
OUTLINE DIMENSIONS  
J SUFFIX  
CERAMIC PACKAGE  
CASE 620–10  
ISSUE V  
–A  
NOTES:  
16  
1
9
8
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
–B  
4. DIM F MAY NARROW TO 0.76 (0.030) WHERE  
THE LEAD ENTERS THE CERAMIC BODY.  
L
C
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
E
MIN  
MAX  
0.785  
0.295  
0.200  
0.020  
MIN  
19.05  
6.10  
0.39  
1.27 BSC  
MAX  
19.93  
7.49  
5.08  
0.50  
0.750  
0.240  
0.015  
0.050 BSC  
–T  
SEAT  
ING  
N
K
PLANE  
F
G
J
K
L
M
N
0.055  
0.100 BSC  
0.008  
0.125  
0.065  
1.40  
2.54 BSC  
0.21  
3.18  
1.65  
E
M
0.015  
0.170  
0.38  
4.31  
J 16 PL  
F
G
0.300 BSC  
15  
0.040  
7.62 BSC  
15  
1.01  
0.51  
M
S
0.25 (0.010)  
T
B
D 16 PL  
°
°
0°  
0°  
M
S
0.25 (0.010)  
T
A
0.020  
N SUFFIX  
PLASTIC PACKAGE  
CASE 648–08  
ISSUE R  
NOTES:  
–A  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
16  
9
B
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.  
5. ROUNDED CORNERS OPTIONAL.  
1
8
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
F
G
H
J
K
L
MIN  
MAX  
0.770  
0.270  
0.175  
0.021  
MIN  
18.80  
6.35  
3.69  
0.39  
1.02  
MAX  
19.55  
6.85  
4.44  
0.53  
F
C
L
0.740  
0.250  
0.145  
0.015  
0.040  
S
0.070  
1.77  
SEATING  
PLANE  
–T  
0.100 BSC  
0.050 BSC  
0.015  
0.130  
0.305  
2.54 BSC  
1.27 BSC  
0.38  
3.30  
7.74  
M
K
0.008  
0.110  
0.295  
0.21  
2.80  
7.50  
H
J
G
D 16 PL  
M
S
0°  
10°  
0°  
10°  
M
M
0.25 (0.010)  
T
A
0.020  
0.040  
0.51  
1.01  
D SUFFIX  
PLASTIC SOIC PACKAGE  
CASE 751B–05  
ISSUE J  
–A  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
16  
9
8
–B  
P 8 PL  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
M
M
0.25 (0.010)  
B
1
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
G
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
F
G
J
MIN  
9.80  
3.80  
1.35  
0.35  
0.40  
MAX  
10.00  
4.00  
1.75  
0.49  
MIN  
MAX  
0.393  
0.157  
0.068  
0.019  
0.049  
0.386  
0.150  
0.054  
0.014  
0.016  
0.050 BSC  
0.008  
0.004  
F
K
R X 45°  
C
1.25  
1.27 BSC  
–T  
0.19  
0.10  
0.25  
0.25  
0.009  
0.009  
J
SEAT  
ING  
M
K
PLANE  
D 16 PL  
M
P
R
0
5.80  
0.25  
°
7
6.20  
0.50  
°
0
°
7°  
0.244  
0.019  
0.229  
0.010  
M
S
S
0.25 (0.010)  
T
B
A
MOTOROLA  
3–12  
MC54/74HC4538A  
Motorolareserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representationorguaranteeregarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,  
andspecifically disclaims any and all liability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters can and do vary in different  
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does  
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in  
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of  
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintendedor unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
How to reach us:  
USA/EUROPE: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447  
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315  
MFAX: RMFAX0@email.sps.mot.com –TOUCHTONE (602) 244–6609  
INTERNET: http://Design–NET.com  
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
CODELINE  
MC54/74HC4538A/D  

相关型号:

MC74HC4538ANG

Dual Precision Monostable Multivibrator (Retriggerable,Resettable)
ONSEMI

MC74HC4538A_05

Dual Precision Monostable Multivibrator (Retriggerable,Resettable)
ONSEMI

MC74HC4538J

Monostable Multivibrator
ROCHESTER

MC74HC4538JDS

Monostable Multivibrator
ROCHESTER

MC74HC4538N

暂无描述
MOTOROLA

MC74HC4538NDS

Monostable Multivibrator, CMOS, PDIP16
MOTOROLA

MC74HC4538NS

Monostable Multivibrator, CMOS, PDIP16
MOTOROLA

MC74HC4538NS

Monostable Multivibrator
ROCHESTER

MC74HC4543D

Interface Circuit, CMOS, PDSO16
MOTOROLA

MC74HC4543DD

Interface Circuit, CMOS, PDSO16
MOTOROLA

MC74HC4543J

Interface Circuit, CMOS, CDIP16
MOTOROLA

MC74HC4543JDS

Interface Circuit, CMOS, CDIP16
MOTOROLA