MC908QL2C [MOTOROLA]

Microcontrollers; 微控制器
MC908QL2C
型号: MC908QL2C
厂家: MOTOROLA    MOTOROLA
描述:

Microcontrollers
微控制器

微控制器
文件: 总222页 (文件大小:2876K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC68HC908QL4  
MC68HC908QL3  
MC68HC908QL2  
Data Sheet  
M68HC08  
Microcontrollers  
MC68HC908QL4  
Rev. 4  
12/2004  
freescale.com  
MC68HC908QL4  
MC68HC908QL3  
MC68HC908QL2  
Data Sheet  
To provide the most up-to-date information, the revision of our documents on the World Wide Web will be  
the most current. Your printed copy may be an earlier revision. To verify you have the latest information  
available, refer to:  
http://www.freescale.com  
The following revision history table summarizes changes contained in this document. For your  
convenience, the page number designators have been linked to the appropriate location.  
Revision History (Sheet 1 of 2)  
Revision  
Level  
Page  
Number(s)  
Date  
Description  
September,  
2003  
N/A  
Initial release  
N/A  
226  
228  
17.3 Functional Operating Range — Corrected operating voltage range  
17.6 Control Timing — Corrected values for internal operating frequency  
and internal clock period  
November,  
2003  
1.0  
17.14 5.0-Volt ADC Characteristics — Replaced ADC characteristic table  
found in initial release  
236  
237  
17.15 3.3-Volt ADC Characteristics — Added  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
This product incorporates SuperFlash® technology licensed from SST.  
© Freescale Semiconductor, Inc., 2004. All rights reserved.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
3
Revision History  
Revision History (Sheet 2 of 2)  
Revision  
Level  
Page  
Number(s)  
Date  
Description  
Figure 2-2. Control, Status, and Data Registers  
Corrected reset state for the FLASH Block Protect Register.  
Corrected reset value for the Internal Oscillator Time Value  
33  
34  
Table 7-1. Instruction Set Summary — Added WAIT instruction  
83  
11.8.1 Oscillator Status and Control Register — Revised description of  
ECGON bit for clarity  
117  
Table 13-3. Interrupt Sources — Corrected address locations for SLIC,  
KBI, and ADC  
140  
14.3.5 SLIC Wait (Core Specific) — Revised description for clarity  
14.3.7 SLIC Stop (Core Specific) — Revised description for clarity  
144  
144  
14.6.6.2 Byte Transfer Mode Operation — Revised definition of Receiver  
Buffer Overrun Error  
156  
161  
174  
196  
196  
March,  
2004  
2.0  
14.7.1 LIN Message Frame Header — Revised third paragraph of  
description  
14.14 Sleep and Wakeup Operation — Revised second paragraph of  
description  
15.8 Input/Output Signals — Corrected reference from PTA0/TCH) to  
PTB0/TCH0  
15.8.2 TIM Channel I/O Pins (PTB0/TCH0 and PTA1/TCH1) —  
Corrected reference to from PTA0/TCH) to PTB0/TCH0  
Figure 16-1. Block Diagram Highlighting BRK and MON Blocks — Added  
17.5 5-V DC Electrical Characteristics — Updated table notes  
17.8 5-V Oscillator Characteristics — Updated table notes  
206  
227  
230  
231  
17.9 3.3-V DC Electrical Characteristics — Updated table notes  
June,  
2004  
3.0  
4.0  
Modular sections reworked for clarity.  
Throughout  
Updated to final Freescale format. Corrections per email review.  
Replaced ADC chapter with latest.  
Throughout  
Table 1-3. Function Priority in Shared Pins — Updated entry for PTA2  
23  
21  
Figure 1-2. MCU Pin Assignments — Corrected pin assignments for the  
TSSOP packages.  
December,  
2004  
17.11 Oscillator Characteristics — Updated deviation from trimmed  
internal oscillator specifications.  
210  
17.8 3.3-V DC Electrical Characteristics — Corrected capacitance values  
17.11 Oscillator Characteristics — Corrected Note 8  
208  
211  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
4
Freescale Semiconductor  
List of Chapters  
Chapter 1 General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Chapter 2 Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Chapter 3 Analog-to-Digital Converter (ADC10) Module. . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Chapter 4 Auto Wakeup Module (AWU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Chapter 5 Configuration Register (CONFIG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
Chapter 6 Computer Operating Properly (COP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
Chapter 7 Central Processor Unit (CPU). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Chapter 8 External Interrupt (IRQ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83  
Chapter 9 Keyboard Interrupt Module (KBI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
Chapter 10 Low-Voltage Inhibit (LVI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97  
Chapter 11 Oscillator Module (OSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101  
Chapter 12 Input/Output Ports (PORTS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111  
Chapter 13 System Integration Module (SIM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117  
Chapter 14 Slave LIN Interface Controller (SLIC) Module . . . . . . . . . . . . . . . . . . . . . . . . .133  
Chapter 15 Timer Interface Module (TIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173  
Chapter 16 Development Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187  
Chapter 17 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203  
Chapter 18 Ordering Information and Mechanical Specifications . . . . . . . . . . . . . . . . . .219  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
5
List of Chapters  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
6
Table of Contents  
Chapter 1  
General Description  
1.1  
1.2  
1.3  
1.4  
1.5  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Pin Function Priority. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Chapter 2  
Memory  
2.1  
2.2  
2.3  
2.4  
2.5  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Direct Page Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Random-Access Memory (RAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
2.6  
FLASH Memory (FLASH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
FLASH Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
FLASH Page Erase Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
FLASH Mass Erase Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
FLASH Program Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
FLASH Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
FLASH Block Protect Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
2.6.1  
2.6.2  
2.6.3  
2.6.4  
2.6.5  
2.6.6  
Chapter 3  
Analog-to-Digital Converter (ADC10) Module  
3.1  
3.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
3.3  
3.3.1  
3.3.2  
3.3.3  
3.3.3.1  
3.3.3.2  
3.3.3.3  
3.3.3.4  
3.3.4  
3.3.4.1  
3.3.4.2  
3.3.4.3  
3.3.4.4  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Clock Select and Divide Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Input Select and Pin Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Conversion Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Initiating Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Completing Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Aborting Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Total Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Sources of Error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Sampling Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Pin Leakage Error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Noise-Induced Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Code Width and Quantization Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
7
Table of Contents  
3.3.4.5  
3.3.4.6  
Linearity Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Code Jitter, Non-Monotonicity and Missing Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
3.4  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
3.5  
3.5.1  
3.5.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
3.6  
ADC10 During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
3.7  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
ADC10 Analog Power Pin (VDDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
ADC10 Analog Ground Pin (VSSA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
ADC10 Voltage Reference High Pin (VREFH). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
ADC10 Voltage Reference Low Pin (VREFL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
ADC10 Channel Pins (ADn). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
3.7.1  
3.7.2  
3.7.3  
3.7.4  
3.7.5  
3.8  
Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
ADC10 Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
ADC10 Result High Register (ADRH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
ADC10 Result Low Register (ADRL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
ADC10 Clock Register (ADCLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
3.8.1  
3.8.2  
3.8.3  
3.8.4  
Chapter 4  
Auto Wakeup Module (AWU)  
4.1  
4.2  
4.3  
4.4  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
4.5  
4.5.1  
4.5.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
4.6  
Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Port A I/O Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Keyboard Status and Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Keyboard Interrupt Enable Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Configuration Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Configuration Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
4.6.1  
4.6.2  
4.6.3  
4.6.4  
4.6.5  
Chapter 5  
Configuration Register (CONFIG)  
5.1  
5.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Chapter 6  
Computer Operating Properly (COP)  
6.1  
6.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
8
Freescale Semiconductor  
6.3  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
BUSCLKX4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Internal Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
6.3.5  
6.3.6  
6.3.7  
6.4  
6.5  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
6.6  
6.6.1  
6.6.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
6.7  
6.8  
COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Chapter 7  
Central Processor Unit (CPU)  
7.1  
7.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
7.3  
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
7.3.1  
7.3.2  
7.3.3  
7.3.4  
7.3.5  
7.4  
Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
7.5  
7.5.1  
7.5.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
7.6  
7.7  
7.8  
CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Chapter 8  
External Interrupt (IRQ)  
8.1  
8.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
8.3  
8.3.1  
8.3.2  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
MODE = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
MODE = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
8.4  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
8.5  
8.5.1  
8.5.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
9
Table of Contents  
8.6  
IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
8.7  
8.7.1  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
IRQ Input Pins (IRQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
8.8  
Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Chapter 9  
Keyboard Interrupt Module (KBI)  
9.1  
9.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
9.3  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Keyboard Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
MODEK = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
MODEK = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
9.3.1  
9.3.1.1  
9.3.1.2  
9.3.2  
9.4  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
9.5  
9.5.1  
9.5.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
9.6  
KBI During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
9.7  
9.7.1  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
KBI Input Pins (KBI5:KBI0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
9.8  
Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Keyboard Status and Control Register (KBSCR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Keyboard Interrupt Enable Register (KBIER). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Keyboard Interrupt Polarity Register (KBIPR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
9.8.1  
9.8.2  
9.8.3  
Chapter 10  
Low-Voltage Inhibit (LVI)  
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
10.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
10.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
10.3.1  
10.3.2  
10.3.3  
10.3.4  
Polled LVI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Forced Reset Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
LVI Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
LVI Trip Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
10.4 LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
10.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
10.5.1  
10.5.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
10.6 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Chapter 11  
Oscillator Module (OSC)  
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
11.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
11.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
10  
Freescale Semiconductor  
11.3.1  
Internal Signal Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
XTAL Oscillator Clock (XTALCLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
RC Oscillator Clock (RCCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Internal Oscillator Clock (INTCLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Bus Clock Times 4 (BUSCLKX4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Bus Clock Times 2 (BUSCLKX2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Internal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Internal Oscillator Trimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Internal to External Clock Switching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
External to Internal Clock Switching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
External Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
XTAL Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
RC Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
11.3.1.1  
11.3.1.2  
11.3.1.3  
11.3.1.4  
11.3.1.5  
11.3.1.6  
11.3.2  
11.3.2.1  
11.3.2.2  
11.3.2.3  
11.3.3  
11.3.4  
11.3.5  
11.4 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
11.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
11.5.1  
11.5.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
11.6 OSC During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
11.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
11.7.1  
11.7.2  
Oscillator Input Pin (OSC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Oscillator Output Pin (OSC2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
11.8 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
11.8.1  
11.8.2  
Oscillator Status and Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Oscillator Trim Register (OSCTRIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Chapter 12  
Input/Output Ports (PORTS)  
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
12.2 Port A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
12.2.1  
12.2.2  
12.2.3  
12.2.4  
Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Data Direction Register A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Port A Input Pullup/Down Enable Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Port A Summary Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
12.3 Port B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
12.3.1  
12.3.2  
12.3.3  
12.3.4  
Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Data Direction Register B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Port B Input Pullup Enable Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Port B Summary Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Chapter 13  
System Integration Module (SIM)  
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
13.2 RST and IRQ Pins Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
13.3 SIM Bus Clock Control and Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
13.3.1  
13.3.2  
Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Clock Start-Up from POR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
11  
Table of Contents  
13.3.3  
Clocks in Stop Mode and Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
13.4 Reset and System Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
13.4.1  
13.4.2  
External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Active Resets from Internal Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Computer Operating Properly (COP) Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
13.4.2.1  
13.4.2.2  
13.4.2.3  
13.4.2.4  
13.4.2.5  
13.5 SIM Counter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
13.5.1  
13.5.2  
13.5.3  
SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
SIM Counter During Stop Mode Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
SIM Counter and Reset States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
13.6 Exception Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
13.6.1  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
SWI Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Interrupt Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Interrupt Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Interrupt Status Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
13.6.1.1  
13.6.1.2  
13.6.2  
13.6.2.1  
13.6.2.2  
13.6.3  
13.6.4  
13.6.5  
13.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
13.7.1  
13.7.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
13.8 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
13.8.1  
13.8.2  
SIM Reset Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
Break Flag Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
Chapter 14  
Slave LIN Interface Controller (SLIC) Module  
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
14.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
14.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
14.4 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
14.5 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
14.5.1  
14.5.2  
14.5.3  
14.5.4  
14.5.5  
14.5.6  
14.5.7  
14.5.8  
14.5.9  
14.5.10  
Power Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
SLIC Disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
SLIC Run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
SLIC Wait. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Wakeup from SLIC Wait with CPU in WAIT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
SLIC Stop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Normal and Emulation Mode Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Special Mode Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Low-Power Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
12  
Freescale Semiconductor  
14.6 SLIC During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
14.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
14.7.1  
14.7.2  
SLCTX — SLIC Transmit Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
SLCRX — SLIC Receive Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
14.8 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
14.8.1  
14.8.2  
14.8.3  
14.8.4  
14.8.5  
14.8.6  
14.8.6.1  
14.8.6.2  
14.8.7  
14.8.8  
SLIC Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
SLIC Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
SLIC Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
SLIC Prescaler Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
SLIC Bit Time Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
SLIC State Vector Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
LIN Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
Byte Transfer Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
SLIC Data Length Code Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
SLIC Identifier and Data Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
14.9 Initialization/Application Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
14.9.1  
14.9.2  
14.9.3  
14.9.4  
14.9.5  
14.9.6  
LIN Message Frame Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
LIN Data Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
LIN Checksum Field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
SLIC Module Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
SLCSV Interrupt Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
SLIC Module Initialization Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
LIN Mode Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
Byte Transfer Mode Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
Handling LIN Message Headers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
LIN Message Headers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Possible Errors on Message Headers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Handling Command Message Frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Standard Command Message Frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Extended Command Message Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
Possible Errors on Command Message Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
Handling Request LIN Message Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
Standard Request Message Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
Extended Request Message Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
Transmit Abort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Possible Errors on Request Message Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Handling IMSG to Minimize Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Sleep and Wakeup Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Polling Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
LIN Data Integrity Checking Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
High-Speed LIN Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
Byte Transfer Mode Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
Oscillator Trimming with SLIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
Digital Receive Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
Digital Filter Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
Digital Filter Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
14.9.6.1  
14.9.6.2  
14.9.7  
14.9.7.1  
14.9.7.2  
14.9.8  
14.9.8.1  
14.9.8.2  
14.9.8.3  
14.9.9  
14.9.9.1  
14.9.9.2  
14.9.9.3  
14.9.9.4  
14.9.10  
14.9.11  
14.9.12  
14.9.13  
14.9.14  
14.9.15  
14.9.16  
14.9.17  
14.9.17.1  
14.9.17.2  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
13  
Table of Contents  
Chapter 15  
Timer Interface Module (TIM)  
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
15.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
15.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
15.3.1  
15.3.2  
15.3.3  
15.3.3.1  
15.3.3.2  
15.3.4  
15.3.4.1  
15.3.4.2  
15.3.4.3  
TIM Counter Prescaler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
PWM Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
15.4 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
15.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
15.5.1  
15.5.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
15.6 TIM During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
15.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
15.7.1  
15.7.2  
TIM Channel I/O Pins (TCH1:TCH0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
TIM Clock Pin (TCLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
15.8 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
15.8.1  
15.8.2  
15.8.3  
15.8.4  
15.8.5  
TIM Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
TIM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
TIM Channel Status and Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
TIM Channel Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
Chapter 16  
Development Support  
16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
16.2 Break Module (BRK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
16.2.1  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
Flag Protection During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
Break Module Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190  
Break Status and Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190  
Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190  
Break Auxiliary Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
Break Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
16.2.1.1  
16.2.1.2  
16.2.1.3  
16.2.2  
16.2.2.1  
16.2.2.2  
16.2.2.3  
16.2.2.4  
16.2.2.5  
16.2.3  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
14  
Freescale Semiconductor  
16.3 Monitor Module (MON) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
16.3.1  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
Normal Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
Forced Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
Monitor Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
Baud Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
16.3.1.1  
16.3.1.2  
16.3.1.3  
16.3.1.4  
16.3.1.5  
16.3.1.6  
16.3.1.7  
16.3.2  
Chapter 17  
Electrical Specifications  
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
17.2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
17.3 Functional Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
17.4 Thermal Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
17.5 5-V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
17.6 Typical 5-V Output Drive Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206  
17.7 5-V Control Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
17.8 3.3-V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208  
17.9 Typical 3.3-V Output Drive Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209  
17.10 3.3-V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
17.11 Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
17.12 Supply Current Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213  
17.13 ADC10 Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215  
17.14 Timer Interface Module Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
17.15 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218  
Chapter 18  
Ordering Information and Mechanical Specifications  
18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
18.2 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
18.3 16-Pin Small Outline Integrated Circuit Package (Case #751G) . . . . . . . . . . . . . . . . . . . . . . . 220  
18.4 16-Pin Thin Shrink Small Outline Package (Case #948F). . . . . . . . . . . . . . . . . . . . . . . . . . . . 220  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
15  
Table of Contents  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
16  
Chapter 1  
General Description  
1.1 Introduction  
The MC68HC908QL4 is a member of the low-cost, high-performance M68HC08 Family of 8-bit  
microcontroller units (MCUs). All MCUs in the family use the enhanced M68HC08 central processor unit  
(CPU08) and are available with a variety of modules, memory sizes and types, and package types.  
0.4  
Table 1-1. Summary of Device Variations  
FLASH  
Memory Size  
RAM  
Memory Size  
Analog-to-Digital  
Converter  
Device  
MC68HC908QL4  
MC68HC908QL3  
MC68HC908QL2  
4096 bytes  
4096 bytes  
2048 bytes  
128 bytes  
128 bytes  
128 bytes  
6 ch, 10 bit  
6 ch, 10 bit  
1.2 Features  
Features include:  
High-performance M68HC08 CPU core  
Fully upward-compatible object code with M68HC05 Family  
5-V and 3.3-V operating voltages (VDD  
8-MHz internal bus operation at 5 V, 4-MHz at 3.3 V  
)
Software configurable input clock from either internal or external source  
Trimmable internal oscillator  
Selectable 1 MHz, 2 MHz, or 3.2MHz or 6.4 MHz internal bus operation  
8-bit trim capability  
Trimmable to approximately 0.4%(1)  
25% untrimmed  
Software selectable crystal oscillator range, 32–100 kHz, 1–8 MHz, and 8–32 MHz  
Auto wakeup from STOP capability using dedicated internal 32-kHz RC or bus clock source  
On-chip in-application programmable FLASH memory  
Internal program/erase voltage generation  
Monitor ROM containing user callable program/erase routines  
FLASH security(2)  
1. See 17.11 Oscillator Characteristics for internal oscillator specifications  
2. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or copying the FLASH difficult for  
unauthorized users.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
17  
General Description  
On-chip random-access memory (RAM)  
Slave LIN interface controller (SLIC) module  
Full LIN messaging buffering of Identifier and 8 data bytes  
Automatic baud rate and LIN message frame synchronization:  
No prior programming of bit rate required, 1–20 kbps LIN bus speed operation  
All LIN messages will be received (no message loss due to synchronization process)  
Input clock tolerance as high as ±±0%, allowing internal oscillator to remain untrimmed  
Incoming break symbols allowed to be 10 to 20 bit times without message loss  
Supports automatic software trimming of internal oscillator using LIN synchronization data  
Automatic processing and verification of LIN SYNCH BREAK and SYNCH BYTE  
Automatic checksum calculation and verification with error reporting  
Maximum of 2 interrupts per LIN message frame  
Full LIN error checking and reporting  
High-speed LIN capability up to 83.33 kbps to 120.00 kbps  
Switchable UART-like byte transfer mode for processing bytes one at a time without LIN  
message framing constraints  
Configurable digital receive filter  
2-channel, 16-bit timer interface module (TIM) with external clock source input  
6-channel, 10-bit analog-to-digital converter (ADC) with internal bandgap reference channel  
(ADC10)  
6-bit keyboard interrupt with wakeup feature (KBI)  
Programmable for rising/falling or high/low level detect  
Software selectable to use internal or external pullup/pulldown device  
External asynchronous interrupt pin with internal pullup (IRQ)  
Master asynchronous reset pin with internal pullup (RST)  
13 bidirectional input/output (I/O) lines and one input only:  
Six shared with keyboard interrupt function  
Six shared with ADC10  
Two shared with TIM  
Two shared with SLIC  
One shared with reset  
One input only shared with external interrupt (IRQ)  
High current sink/source capability  
Selectable pullups on all ports (pullup/down on port A), selectable on an individual bit basis  
Three-state ability on all port pins  
Low-voltage inhibit (LVI) module features:  
Software selectable trip point in CONFIG register  
System protection features:  
Computer operating properly (COP) watchdog  
Low-voltage detection with reset  
Illegal opcode detection with reset  
Illegal address detection with reset  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
18  
Freescale Semiconductor  
MCU Block Diagram  
Power-on reset  
Memory mapped I/O registers  
Power saving stop and wait modes  
Available packages:  
16-pin small outline integrated circuit (SOIC) package  
16-pin thin shrink small outline package (TSSOP)  
Features of the CPU08 include the following:  
Enhanced HC05 programming model  
Extensive loop control functions  
16 addressing modes (eight more than the HC05)  
16-bit index register and stack pointer  
Memory-to-memory data transfers  
Fast 8 × 8 multiply instruction  
Fast 16/8 divide instruction  
Binary-coded decimal (BCD) instructions  
Optimization for controller applications  
Efficient C language support  
1.3 MCU Block Diagram  
Figure 1-1 shows the structure of the MC68HC908QL4.  
1.4 Pin Functions  
Table 1-2 provides a description of the pin functions.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
19  
General Description  
PTA0/AD0/KBI0  
PTA1/AD1/TCH1/KBI1  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
INTERNAL OSC  
INTERNAL CLOCK SOURCE  
4, 8, 12.8, or 25.6 MHz  
KEYBOARD INTERRUPT  
MODULE  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
EXTERNAL INTERRUPT  
MODULE  
M68HC08 CPU  
PTB0/TCH0  
PTB1  
AUTO WAKEUP  
MODULE  
PTB2/AD4  
PTB3/AD5  
PTB4/SLCRX  
PTB5/SLCTX  
PTB6  
LOW-VOLTAGE  
INHIBIT  
2-CHANNEL 16-BIT  
TIMER MODULE  
PTB7  
COP  
MODULE  
MC68HC908QL4  
4096 BYTES  
MC68HC908QL4  
128 BYTES  
USER RAM  
USER FLASH  
6-CHANNEL  
10-BIT ADC  
SLAVE LIN INTERFACE  
CONTROLLER  
VDD  
VSS  
POWER SUPPLY  
DEVELOPMENT SUPPORT  
MONITOR ROM  
BREAK MODULE  
RST, IRQ: Pins have internal pull up device  
All port pins have programmable pull up device (pullup/down on port A)  
PTA[0:5]: Higher current sink and source capability  
Figure 1-1. Block Diagram  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
20  
Freescale Semiconductor  
Pin Functions  
VDD  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VSS  
PTA1/TCH1/KBI1  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
PTA0/KBI0  
PTA5/OSC1/KBI5  
PTA4/OSC2/KBI4  
PTB4/SLCRx  
PTA4/OSC2/KBI4  
PTA5/OSC1/KBI5  
PTA0/KBI0  
PTB4/SLCRx  
PTB5/SLCTx  
PTB6  
PTB7  
PTB1  
PTB2  
PTB3  
PTB0/TCH0  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
PTB0/TCH0  
VSS  
PTB3  
PTB2  
PTB5/SLCTx  
PTB6  
VDD  
PTA1/TCH1/KBI1  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
PTB7  
PTB1  
16-PIN ASSIGNMENT  
MC68HC908QL3 SOIC  
16-PIN ASSIGNMENT  
MC68HC908QL3 TSSOP  
VDD  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VSS  
PTA1/AD1/TCH1/KBI1  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
PTA0/AD0/KBI0  
PTA5/OSC1/AD3/KBI5  
PTA4/OSC2/AD2/KBI4  
PTB4/SLCRx  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
PTA0/AD0/KBI0  
VSS  
PTB4/SLCRx  
PTB5/SLCTx  
PTB6  
PTB7  
PTB1  
PTB2/AD4  
PTB3/AD5  
PTB0/TCH0  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
PTB0/TCH0  
PTB3/AD5  
PTB2/AD4  
PTB5/SLCTx  
PTB6  
VDD  
PTA1/AD1/TCH1/KBI1  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
PTB1  
PTB7  
16-PIN ASSIGNMENT  
MC68HC908QL4 AND MC68HC908QL2 SOIC  
16-PIN ASSIGNMENT  
MC68HC908QL4 AND MC68HC908QL2 TSSOP  
Figure 1-2. MCU Pin Assignments  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
21  
General Description  
Table 1-2. Pin Functions  
Pin  
Name  
Description  
Input/Output  
VDD  
VSS  
Power supply  
Power supply ground  
Power  
Power  
PTA0 — General purpose I/O port  
Input/Output  
Input  
PTA0  
AD0 — A/D channel 0 input  
KBI0 — Keyboard interrupt input 0  
Input  
PTA1 — General purpose I/O port  
Input/Output  
Input  
AD1 — A/D channel 1 input  
PTA1  
TCH1 — Timer Channel 1 I/O  
Input/Output  
Input  
KBI1— Keyboard interrupt input 1  
PTA2 — General purpose input-only port  
IRQ — External interrupt with programmable pullup and Schmitt trigger input  
KBI2 — Keyboard interrupt input 2  
Input  
Input  
PTA2  
PTA3  
Input  
TCLK — External clock source input for the TIM module  
PTA3 — General purpose I/O port  
Input  
Input/Output  
Input  
RST — Reset input, active low with internal pullup and Schmitt trigger input  
KBI3 — Keyboard interrupt input 3  
Input  
PTA4 — General purpose I/O port  
Input/Output  
OSC2 — XTAL oscillator output (XTAL option only)  
Output  
Output  
RC or internal oscillator output (OSC2EN = 1 in PTAPUE register)  
PTA4  
PTA5  
AD2 — A/D channel 2 input  
Input  
Input  
KBI4 — Keyboard interrupt input 4  
PTA5 — General purpose I/O port  
OSC1 — XTAL, RC, or external oscillator input  
AD3 — A/D channel 3 input  
Input/Output  
Input  
Input  
KBI5 — Keyboard interrupt input 5  
PTB0 — General purpose I/O port  
TCH0 — Timer Channel 0 I/O  
PTB1 — General purpose I/O port  
PTB2 — General purpose I/O port  
AD4 — A/D channel 4 input  
Input  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input  
PTB0  
PTB1  
PTB2  
PTB3 — General purpose I/O port  
AD5 — A/D channel 5 input  
Input/Output  
Input  
PTB3  
PTB4  
PTB5  
PTB4 — General purpose I/O port  
SLCRx — SLC receive input  
Input/Output  
Input  
PTB5 — General purpose I/O port  
SLCTx — SLC transmit output  
Input/Output  
Output  
PTB6, PTB7 General-purpose I/O port  
Input/Output  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
22  
Freescale Semiconductor  
Pin Function Priority  
1.5 Pin Function Priority  
Table 1-3 defines the priority of a shared pin if multiple functions are enabled. Only the shared pins are  
shown in the table.  
Table 1-3. Function Priority in Shared Pins  
Pin Name  
PTA0(1)  
PTA1(1)  
PTA2  
Highest-to-Lowest Priority Sequence  
AD0 TCH1 KBI0 PTA0  
AD1 KBI1 PTA1  
TCLK IRQ KBI2 PTA2(2)  
RST KBI3 PTA3  
OSC2 AD2 KBI4 PTA4  
OSC1 AD3 KBI5 PTA5  
TCH0 PTB0  
PTA3  
PTA4(1)  
PTA5(1)  
PTB0  
PTB1  
PTB1  
PTB2(1)  
PTB3(1)  
PTB4  
AD4 PTB2  
AD5 PTB3  
SLCRx PTB4  
PTB5  
SLCTx PTB5  
1. When a pin is to be used as an ADC pin, the I/O port function should be  
left as an input. The ADC does not override the port data direction  
register.  
2. TCLK is not included in the priority scheme. When TCLK is enabled the  
other shared functions in the pin should be disabled.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
23  
General Description  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
24  
Chapter 2  
Memory  
2.1 Introduction  
The central processor unit (CPU08) can address 64 Kbytes of memory space. The memory map is shown  
in Figure 2-1.  
2.2 Unimplemented Memory Locations  
Executing code from an unimplemented location will cause an illegal address reset. In Figure 2-1,  
unimplemented locations are shaded.  
2.3 Reserved Memory Locations  
Accessing a reserved location can have unpredictable effects on MCU operation. In Figure 2-1, reserved  
locations are marked with the word reserved or with the letter R.  
2.4 Direct Page Registers  
Figure 2-2 shows the memory mapped registers of the MC68HC908QL4. Registers with addresses  
between $0000 and $00FF are considered direct page registers and all instructions including those with  
direct page addressing modes can access them. Registers between $0100 and $FFFF require non-direct  
page addressing modes. See Chapter 7 Central Processor Unit (CPU) for more information on  
addressing modes.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
25  
Memory  
$0000  
$0051  
DIRECT PAGE REGISTERS  
81 BYTES  
$0052  
$007F  
UNIMPLEMENTED  
47 BYTES  
$0080  
$00FF  
RAM  
128 BYTES  
$0100  
$2B7D  
UNIMPLEMENTED  
10,878 BYTES  
$2B7E  
$2E1F  
AUXILIARY ROM  
674 BYTES  
$2E20  
$EDFF  
UNIMPLEMENTED  
49120 BYTES  
$EE00  
$EE00  
$F5FF  
RESERVED  
2048 BYTES  
FLASH MEMORY  
4096 BYTES  
$F600  
$FDFF  
FLASH MEMORY  
2048 BYTES  
$FDFF  
$FE00  
$FE0F  
MISCELLANEOUS REGISTERS  
16 BYTES  
$FE00  
$FE0F  
UNIMPLEMENTED  
16 BYTES  
$FE10  
$FF7D  
MONITOR ROM  
350 BYTES  
$FF7E  
$FFBD  
UNIMPLEMENTED  
64 BYTES  
$FFBE  
$FFC1  
MISCELLANEOUS REGISTERS  
4 BYTES  
$FFC2  
$FFCF  
UNIMPLEMENTED  
14 BYTES  
$FFD0  
$FFFF  
USER VECTORS  
48 BYTES  
MC68HC908QL4, MC68HC908QL3  
Memory Map  
MC68HC908QL2  
Memory Map  
Figure 2-1. Memory Map  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
26  
Freescale Semiconductor  
Direct Page Registers  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
PTA0  
U
Read:  
0
AWUL  
PTA2  
Port A Data Register  
PTA5  
U
PTA4  
U
PTA3  
U
PTA1  
U
$0000  
(PTA) Write:  
See page 112.  
Reset:  
Read:  
U
0
U
Port B Data Register  
PTB7  
PTB6  
PTB5  
PTB4  
PTB3  
PTB2  
PTB1  
PTB0  
$0001  
(PTB) Write:  
See page 114.  
Reset:  
Unaffected by reset  
$0002  
Reserved  
$0003  
Read:  
0
0
0
Data Direction Register A  
DDRA5  
DDRA4  
DDRA3  
DDRA1  
DDRA0  
$0004  
$0005  
(DDRA) Write:  
See page 112.  
Reset:  
Read:  
0
DDRB7  
0
0
DDRB6  
0
0
DDRB5  
0
0
DDRB4  
0
0
DDRB3  
0
0
DDRB2  
0
0
DDRB1  
0
0
DDRB0  
0
Data Direction Register B  
(DDRB) Write:  
See page 115.  
Reset:  
$0006  
Reserved  
$000A  
Read:  
0
0
Port A Input Pullup/Down  
Enable Register (PTAPUE) Write:  
OSC2EN  
0
PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0  
$000B  
$000C  
See page 113.  
Reset:  
0
0
0
0
0
0
Read:  
Port B Input Pullup Enable  
PTBPUE7 PTBPUE6 PTBPUE5 PTBPUE4 PTBPUE3 PTBPUE2 PTBPUE1 PTBPUE0  
Register (PTBPUE) Write:  
See page 116.  
Reset:  
0
0
0
0
0
0
0
0
$000D  
$0019  
Reserved  
Read:  
0
0
0
0
KEYF  
0
ACKK  
0
Keyboard Status and  
Control Register (KBSCR) Write:  
IMASKK  
MODEK  
$001A  
$001B  
See page 94.  
Reset:  
0
0
0
AWUIE  
0
0
KBIE5  
0
0
0
0
KBIE1  
0
0
KBIE0  
0
Read:  
Keyboard Interrupt  
Enable Register (KBIER) Write:  
KBIE4  
KBIE3  
KBIE2  
0
See page 95.  
Reset:  
0
0
0
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 1 of 7)  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
27  
Memory  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
KBIP1  
0
Bit 0  
KBIP0  
0
Read:  
0
0
Keyboard Interrupt  
Polarity Register (KBIPR) Write:  
KBIP5  
KBIP4  
KBIP3  
KBIP2  
$001C  
$001D  
$001E  
See page 95.  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
Read:  
IRQF  
IRQ Status and Control  
Register (INTSCR) Write:  
IMASK  
0
MODE  
0
ACK  
0
See page 87.  
Reset:  
0
IRQPUD  
0
0
IRQEN  
0
0
R
0
0
R
0
0
R
0
Read:  
OSCENIN-  
STOP  
Configuration Register 2  
R
0
RSTEN  
0(2)  
(CONFIG2)(1) Write:  
See page 63.  
Reset:  
0
1. One-time writable register after each reset.  
2. RSTEN reset to 0 by a power-on reset (POR) only.  
Read:  
Configuration Register 1  
COPRS  
0
LVISTOP LVIRSTD LVIPWRD LVITRIP  
0(2)  
SSREC  
0
STOP  
0
COPD  
0
$001F  
(CONFIG1)(1) Write:  
See page 64.  
Reset:  
0
0
0
1. One-time writable register after each reset.  
2. LVITRIP reset to 0 by a power-on reset (POR) only.  
Read:  
TOF  
0
0
0
TIM Status and Control  
TOIE  
TSTOP  
PS2  
PS1  
PS0  
$0020  
$0021  
$0022  
$0023  
$0024  
$0025  
Register (TSC) Write:  
See page 180.  
Reset:  
TRST  
0
0
0
1
0
0
0
0
Read:  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
TIM Counter Register High  
(TCNTH) Write:  
See page 182.  
Reset:  
0
0
0
0
0
0
0
0
Read:  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TIM Counter Register  
Low (TCNTL) Write:  
See page 182.  
Reset:  
0
Bit 15  
1
0
Bit 14  
1
0
Bit 13  
1
0
Bit 12  
1
0
Bit 11  
1
0
Bit 10  
1
0
Bit 9  
1
0
Read:  
TIM Counter Modulo  
Register High (TMODH) Write:  
Bit 8  
See page 182.  
Reset:  
1
Read:  
TIM Counter Modulo  
Register Low (TMODL) Write:  
Bit 7  
Bit 6  
1
Bit 5  
1
Bit 4  
1
Bit 3  
1
Bit 2  
1
Bit 1  
1
Bit 0  
See page 182.  
Reset:  
1
CH0F  
0
1
CH0MAX  
0
Read:  
TIM Channel 0 Status and  
Control Register (TSC0) Write:  
CH0IE  
MS0B  
MS0A  
ELS0B  
ELS0A  
TOV0  
See page 183.  
Reset:  
0
0
0
0
0
0
0
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 7)  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
28  
Freescale Semiconductor  
Direct Page Registers  
Addr.  
Register Name  
TIM Channel 0  
Register High (TCH0H) Write:  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
$0026  
See page 185.  
Reset:  
Indeterminate after reset  
Bit 4 Bit 3  
Indeterminate after reset  
Read:  
TIM Channel 0  
Register Low (TCH0L) Write:  
Bit 7  
Bit 6  
Bit 5  
Bit 2  
Bit 1  
Bit 0  
$0027  
$0028  
$0029  
$002A  
See page 185.  
Reset:  
Read:  
CH1F  
0
TIM Channel 1 Status and  
Control Register (TSC1) Write:  
CH1IE  
0
MS1A  
0
ELS1B  
0
ELS1A  
0
TOV1  
0
CH1MAX  
0
0
See page 183.  
Reset:  
0
0
Read:  
TIM Channel 1  
Register High (TCH1H) Write:  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
See page 185.  
Reset:  
Indeterminate after reset  
Bit 4 Bit 3  
Indeterminate after reset  
Read:  
TIM Channel 1  
Register Low (TCH1L) Write:  
Bit 7  
Bit 6  
Bit 5  
Bit 2  
Bit 1  
Bit 0  
See page 185.  
Reset:  
$002B  
$0035  
Reserved  
Read:  
ECGST  
0
Oscillator Status and Control  
OSCOPT1 OSCOPT0  
ICFS1  
1
ICFS0  
0
ECFS1  
0
ECFS0  
0
ECGON  
0
$0036  
$0037  
Register (OSCSC) Write:  
See page 108.  
Reset:  
0
0
Reserved  
Oscillator Trim Register Read:  
TRIM7  
1
TRIM6  
0
TRIM5  
0
TRIM4  
0
TRIM3  
0
TRIM2  
0
TRIM1  
0
TRIM0  
0
(OSCTRIM)  
Write:  
See page 109.  
$0038  
Reset:  
$0039  
Reserved  
$003B  
Read: COCO  
ADC10 Status and Control  
Register (ADSCR) Write:  
AIEN  
ADCO  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
$003C  
$003D  
See page 52.  
Reset:  
Read:  
0
0
0
0
0
0
1
0
1
1
0
1
AD9  
R
1
AD8  
R
0
ADC10 Data Register High  
(ADRH) Write:  
See page 54.  
R
0
R
0
R
0
R
0
R
R
0
Reset:  
0
0
0
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 7)  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
29  
Memory  
Addr.  
Register Name  
Bit 7  
AD7  
R
6
AD6  
R
5
AD5  
R
4
AD4  
R
3
AD3  
R
2
AD2  
R
1
AD1  
R
Bit 0  
AD0  
R
Read:  
ADC10 Data Register Low  
$003E  
$003F  
$0040  
$0041  
$0042  
$0043  
$0044  
$0045  
$0046  
$0047  
$0048  
$0049  
(ADRL) Write:  
See page 54.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
ADC10 Clock Register  
ADLPC  
ADIV1  
ADIV0  
0
ADICLK  
MODE1  
0
MODE0  
0
ADLSMP ADACKEN  
(ADCLK) Write:  
See page 55.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
SLCIE  
0
SLIC Control Register 1  
INITREQ  
WAKETX TXABRT  
IMSG  
(SLCC1) Write:  
See page 139.  
Reset:  
Read:  
0
0
0
0
1
0
0
0
0
0
0
0
SLIC Control Register 2  
SLCWCM  
BTM  
SLCE  
0
(SLCC2) Write:  
See page 140.  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
Read: SLCACT  
INITACK  
SLIC Status Register  
(SLCS) Write:  
SLCF  
See page 141.  
Reset:  
Read:  
0
0
1
0
0
0
0
0
0
0
0
0
0
0
SLIC Prescale Register  
RXFP1  
RXFP0  
(SLCP) Write:  
See page 142.  
Reset:  
Read:  
1
0
0
0
0
0
0
BT12  
0
0
BT11  
0
0
BT10  
0
0
0
SLIC Bit Time Register High  
BT9  
0
BT8  
(SLCBTH) Write:  
See page 143.  
Reset:  
Read:  
0
0
0
0
0
SLIC Bit Time Register Low  
BT7  
BT6  
BT5  
BT4  
BT3  
BT2  
BT1  
(SLCBTL) Write:  
See page 143.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
0
0
0
I3  
I2  
I1  
I0  
SLIC State Vector Register  
(SLCSV) Write:  
See page 144.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
SLIC Data Length Code  
TXGO  
CHKMOD  
DLC5  
DLC4  
DLC3  
DLC2  
DLC1  
DLC0  
Register (SLCDLC) Write:  
See page 148.  
Reset:  
0
R7  
T7  
0
0
R6  
T6  
0
0
R5  
T5  
0
0
R4  
T4  
0
0
0
R2  
T2  
0
0
R1  
T1  
0
0
R0  
T0  
0
Read:  
R3  
SLIC Identifier Register  
(SLCID) Write:  
See page 149.  
Reset:  
T3  
0
Read:  
R7  
T7  
0
R6  
T6  
0
R5  
T5  
0
R4  
T4  
0
R3  
R2  
T2  
0
R1  
T1  
0
R0  
T0  
0
SLIC Data Register 7  
(SLCD7) Write:  
See page 149.  
Reset:  
T3  
0
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 7)  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
30  
Freescale Semiconductor  
Direct Page Registers  
Addr.  
Register Name  
Bit 7  
R7  
T7  
0
6
R6  
T6  
0
5
R5  
T5  
0
4
R4  
T4  
0
3
R3  
T3  
0
2
R2  
T2  
0
1
R1  
T1  
0
Bit 0  
R0  
T0  
0
Read:  
SLIC Data Register 6  
$004A  
(SLCD6) Write:  
See page 149.  
Reset:  
Read:  
R7  
T7  
0
R6  
T6  
0
R5  
T5  
0
R4  
T4  
0
R3  
T3  
0
R2  
T2  
0
R1  
T1  
0
R0  
T0  
0
SLIC Data Register 5  
$004B  
$004C  
$004D  
$004E  
$004F  
$0050  
(SLCD5) Write:  
See page 149.  
Reset:  
Read:  
R7  
T7  
0
R6  
T6  
0
R5  
T5  
0
R4  
T4  
0
R3  
T3  
0
R2  
T2  
0
R1  
T1  
0
R0  
T0  
0
SLIC Data Register 4  
(SLCD4) Write:  
See page 149.  
Reset:  
Read:  
R7  
T7  
0
R6  
T6  
0
R5  
T5  
0
R4  
T4  
0
R3  
T3  
0
R2  
T2  
0
R1  
T1  
0
R0  
T0  
0
SLIC Data Register 3  
(SLCD3) Write:  
See page 149.  
Reset:  
Read:  
R7  
T7  
0
R6  
T6  
0
R5  
T5  
0
R4  
T4  
0
R3  
T3  
0
R2  
T2  
0
R1  
T1  
0
R0  
T0  
0
SLIC Data Register 2  
(SLCD2) Write:  
See page 149.  
Reset:  
Read:  
R7  
T7  
0
R6  
T6  
0
R5  
T5  
0
R4  
T4  
0
R3  
T3  
0
R2  
T2  
0
R1  
T1  
0
R0  
T0  
0
SLIC Data Register 1  
(SLCD1) Write:  
See page 149.  
Reset:  
Read:  
R7  
T7  
0
R6  
T6  
0
R5  
T5  
0
R4  
T4  
0
R3  
T3  
0
R2  
T2  
0
R1  
T1  
0
R0  
T0  
0
SLIC Data Register 0  
(SLCD0) Write:  
See page 149.  
Reset:  
$0051  
Reserved  
$005F  
Read:  
SBSW  
See note 1  
0
Break Status Register  
R
R
R
R
R
R
R
$FE00  
(BSR) Write:  
See page 191.  
Reset:  
1. Writing a 0 clears SBSW.  
Read:  
POR  
PIN  
COP  
ILOP  
ILAD  
MODRST  
LVI  
0
SIM Reset Status Register  
$FE01  
$FE02  
(SRSR) Write:  
See page 131.  
POR:  
Read:  
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BDCOP  
0
Break Auxiliary  
Register (BRKAR) Write:  
See page 191.  
Reset:  
0
0
0
0
0
0
0
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 7)  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
31  
Memory  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Break Flag Control  
Register (BFCR) Write:  
BCFE  
R
R
R
R
R
R
R
$FE03  
$FE04  
$FE05  
See page 191.  
Reset:  
0
IF6  
R
Read:  
IF5  
R
IF4  
R
IF3  
R
IF2  
R
IF1  
R
0
R
0
R
Interrupt Status Register 1  
(INT1) Write:  
See page 127.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
IF14  
R
IF13  
R
IF12  
R
IF11  
R
IF10  
R
IF9  
R
IF8  
R
IF7  
R
Interrupt Status Register 2  
(INT2) Write:  
See page 127.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
IF22  
R
IF21  
R
IF20  
R
IF19  
R
IF18  
R
IF17  
R
IF16  
R
IF15  
R
Interrupt Status Register 3  
$FE06  
$FE07  
(INT3) Write:  
See page 128.  
Reset:  
0
0
0
0
0
0
0
0
Reserved  
Read:  
0
0
0
0
FLASH Control Register  
HVEN  
0
MASS  
0
ERASE  
0
PGM  
0
$FE08  
$FE09  
$FE0A  
$FE0B  
$FE0C  
(FLCR) Write:  
See page 35.  
Reset:  
Read:  
0
Bit 15  
0
0
Bit 14  
0
0
Bit 13  
0
0
Bit 12  
0
Break Address High  
Bit 11  
0
Bit 10  
0
Bit 9  
0
Bit 8  
0
Register (BRKH) Write:  
See page 190.  
Reset:  
Read:  
Break Address Low  
Register (BRKL) Write:  
Bit 7  
0
Bit 6  
0
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
See page 190.  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
Read:  
Break Status and Control  
Register (BRKSCR) Write:  
BRKE  
0
BRKA  
See page 191.  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
0
Read: LVIOUT  
R
LVI Status Register  
(LVISR) Write:  
See page 99.  
Reset:  
0
0
0
0
0
0
0
0
0
$FE0D  
$FE0F  
Reserved  
Read:  
FLASH Block Protect  
Register (FLBPR) Write:  
BPR7  
BPR6  
BPR5  
BPR4  
BPR3  
BPR2  
BPR1  
$FFBE  
See page 40.  
Reset:  
Unaffected by reset  
= Reserved  
= Unimplemented  
R
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 6 of 7)  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
32  
Freescale Semiconductor  
Direct Page Registers  
Addr.  
Register Name  
Reserved  
Bit 7  
6
5
4
3
2
1
Bit 0  
$FFBF  
Read:  
Write:  
Reset:  
TRIM7  
TRIM6  
TRIM5  
TRIM4  
TRIM3  
TRIM2  
TRIM1  
TRIM0  
Internal Oscillator Trim  
Value (Optional)  
$FFC0  
$FFC1  
Resets to factory programmed value  
Reserved  
Read:  
LOW BYTE OF RESET VECTOR  
WRITING CLEARS COP COUNTER (ANY VALUE)  
Unaffected by reset  
COP Control Register  
$FFFF  
(COPCTL) Write:  
See page 69.  
Reset:  
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 7 of 7)  
Table 2-1. Vector Addresses  
Vector Priority  
Vector  
IF22–IF16  
IF15  
IF14  
IF13  
IF12  
IF11  
IF10  
IF9  
Address  
Vector  
$FFD0,1–$FFDC,D Unused vectors  
Lowest  
$FFDE,F  
$FFE0,1  
$FFE2,3  
$FFE4,5  
$FFE6,7  
$FFE8,9  
$FFEA,B  
$FFFC,D  
$FFEE,F  
$FFF0,1  
$FFF2,3  
$FFF4,5  
$FFF6,7  
$FFF8,9  
$FFFA,B  
$FFFC,D  
$FFFE,F  
ADC conversion complete vector  
Keyboard vector  
Unused vector  
Unused vector  
Unused vector  
Unused vector  
SLIC vector  
IF8  
Unused vector  
IF7  
Unused vector  
IF6  
Unused vector  
IF5  
TIM overflow vector  
TIM channel 1 vector  
TIM channel 0 vector  
Unused vector  
IF4  
IF3  
IF2  
IF1  
IRQ vector  
SWI vector  
Highest  
Reset vector  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
33  
Memory  
2.5 Random-Access Memory (RAM)  
This MCU includes static RAM. The locations in RAM below $0100 can be accessed using the more  
efficient direct addressing mode, and any single bit in this area can be accessed with the bit manipulation  
instructions (BCLR, BSET, BRCLR, and BRSET). Locating the most frequently accessed program  
variables in this area of RAM is preferred.  
The RAM retains data when the MCU is in low-power wait or stop mode. At power-on, the contents of  
RAM are uninitialized. RAM data is unaffected by any reset provided that the supply voltage does not drop  
below the minimum value for RAM retention.  
For compatibility with older M68HC05 MCUs, the HC08 resets the stack pointer to $00FF. In the devices  
that have RAM above $00FF, it is usually best to reinitialize the stack pointer to the top of the RAM so the  
direct page RAM can be used for frequently accessed RAM variables and bit-addressable program  
variables.  
Include the following 2-instruction sequence in your reset initialization routine (where RamLast is equated  
to the highest address of the RAM).  
LDHX  
TXS  
#RamLast+1  
;point one past RAM  
;SP<-(H:X-1)  
2.6 FLASH Memory (FLASH)  
The FLASH memory is intended primarily for program storage. In-circuit programming allows the  
operating program to be loaded into the FLASH memory after final assembly of the application product.  
It is possible to program the entire array through the single-wire monitor mode interface. Because no  
special voltages are needed for FLASH erase and programming operations, in-application programming  
is also possible through other software-controlled communication paths.  
This subsection describes the operation of the embedded FLASH memory. The FLASH memory can be  
read, programmed, and erased from the internal VDD supply. The program and erase operations are  
enabled through the use of an internal charge pump.  
The minimum size of FLASH memory that can be erased is 64 bytes; and the maximum size of FLASH  
memory that can be programmed in a program cycle is 32 bytes (a row). Program and erase operations  
are facilitated through control bits in the FLASH control register (FLCR). Details for these operations  
appear later in this section.  
NOTE  
An erased bit reads as a 1 and a programmed bit reads as a 0. A security  
feature prevents viewing of the FLASH contents.(1)  
1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or copying the FLASH difficult  
for unauthorized users.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
34  
Freescale Semiconductor  
FLASH Memory (FLASH)  
2.6.1 FLASH Control Register  
The FLASH control register (FLCR) controls FLASH program and erase operations.  
Bit 7  
0
6
0
5
0
4
0
3
HVEN  
0
2
MASS  
0
1
ERASE  
0
Bit 0  
PGM  
0
Read:  
Write:  
Reset:  
0
0
0
0
= Unimplemented  
Figure 2-3. FLASH Control Register (FLCR)  
HVEN — High Voltage Enable Bit  
This read/write bit enables high voltage from the charge pump to the memory for either program or  
erase operation. It can only be set if either PGM =1 or ERASE =1 and the proper sequence for  
program or erase is followed.  
1 = High voltage enabled to array and charge pump on  
0 = High voltage disabled to array and charge pump off  
MASS — Mass Erase Control Bit  
This read/write bit configures the memory for mass erase operation.  
1 = Mass erase operation selected  
0 = Mass erase operation unselected  
ERASE — Erase Control Bit  
This read/write bit configures the memory for erase operation. ERASE is interlocked with the PGM bit  
such that both bits cannot be equal to 1 or set to 1 at the same time.  
1 = Erase operation selected  
0 = Erase operation unselected  
PGM — Program Control Bit  
This read/write bit configures the memory for program operation. PGM is interlocked with the ERASE  
bit such that both bits cannot be equal to 1 or set to 1 at the same time.  
1 = Program operation selected  
0 = Program operation unselected  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
35  
Memory  
2.6.2 FLASH Page Erase Operation  
Use the following procedure to erase a page of FLASH memory. A page consists of 64 consecutive bytes  
starting from addresses $XX00, $XX40, $XX80, or $XXC0. The 48-byte user interrupt vectors area also  
forms a page. Any FLASH memory page can be erased alone.  
1. Set the ERASE bit and clear the MASS bit in the FLASH control register.  
2. Read the FLASH block protect register.  
3. Write any data to any FLASH location within the address range of the block to be erased.  
4. Wait for a time, tNVS  
5. Set the HVEN bit.  
.
6. Wait for a time, tErase  
7. Clear the ERASE bit.  
.
8. Wait for a time, tNVH  
9. Clear the HVEN bit.  
.
10. After time, tRCV, the memory can be accessed in read mode again.  
NOTE  
The COP register at location $FFFF should not be written between steps  
5-9, when the HVEN bit is set. Since this register is located at a valid  
FLASH address, unpredictable behavior may occur if this location is written  
while HVEN is set.  
NOTE  
Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory. While these operations  
must be performed in the order as shown, other unrelated operations may  
occur between the steps.  
CAUTION  
A page erase of the vector page will erase the internal oscillator trim value at $FFC0.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
36  
Freescale Semiconductor  
FLASH Memory (FLASH)  
2.6.3 FLASH Mass Erase Operation  
Use the following procedure to erase the entire FLASH memory to read as a 1:  
1. Set both the ERASE bit and the MASS bit in the FLASH control register.  
2. Read the FLASH block protect register.  
3. Write any data to any FLASH address(1) within the FLASH memory address range.  
4. Wait for a time, tNVS  
5. Set the HVEN bit.  
.
6. Wait for a time, tMErase  
.
7. Clear the ERASE and MASS bits.  
NOTE  
Mass erase is disabled whenever any block is protected (FLBPR does not  
equal $FF).  
8. Wait for a time, tNVHL  
9. Clear the HVEN bit.  
.
10. After time, tRCV, the memory can be accessed in read mode again.  
NOTE  
Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory. While these operations  
must be performed in the order as shown, other unrelated operations may  
occur between the steps.  
CAUTION  
A mass erase will erase the internal oscillator trim value at $FFC0.  
1. When in monitor mode, with security sequence failed (see 16.3.2 Security), write to the FLASH block protect register  
instead of any FLASH address.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
37  
Memory  
2.6.4 FLASH Program Operation  
Programming of the FLASH memory is done on a row basis. A row consists of 32 consecutive bytes  
starting from addresses $XX00, $XX20, $XX40, $XX60, $XX80, $XXA0, $XXC0, or $XXE0. Use the  
following step-by-step procedure to program a row of FLASH memory  
Figure 2-4 shows a flowchart of the programming algorithm.  
NOTE  
Do not program any byte in the FLASH more than once after a successful  
erase operation. Reprogramming bits to a byte which is already  
programmed is not allowed without first erasing the page in which the byte  
resides or mass erasing the entire FLASH memory. Programming without  
first erasing may disturb data stored in the FLASH.  
1. Set the PGM bit. This configures the memory for program operation and enables the latching of  
address and data for programming.  
2. Read the FLASH block protect register.  
3. Write any data to any FLASH location within the address range desired.  
4. Wait for a time, tNVS  
5. Set the HVEN bit.  
.
6. Wait for a time, tPGS  
7. Write data to the FLASH address being programmed(1).  
8. Wait for time, tPROG  
9. Repeat step 7 and 8 until all desired bytes within the row are programmed.  
10. Clear the PGM bit (1)  
11. Wait for time, tNVH  
12. Clear the HVEN bit.  
.
.
.
.
13. After time, tRCV, the memory can be accessed in read mode again.  
NOTE  
The COP register at location $FFFF should not be written between steps  
5-12, when the HVEN bit is set. Since this register is located at a valid  
FLASH address, unpredictable behavior may occur if this location is written  
while HVEN is set.  
This program sequence is repeated throughout the memory until all data is programmed.  
NOTE  
Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory. While these operations  
must be performed in the order shown, other unrelated operations may  
occur between the steps. Do not exceed tPROG maximum, see 17.15  
Memory Characteristics.  
1. The time between each FLASH address change, or the time between the last FLASH address programmed to clearing  
PGM bit, must not exceed the maximum programming time, tPROG maximum.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
38  
Freescale Semiconductor  
FLASH Memory (FLASH)  
Algorithm for Programming  
a Row (32 Bytes) of FLASH Memory  
1
2
3
SET PGM BIT  
READ THE FLASH BLOCK PROTECT REGISTER  
WRITE ANY DATA TO ANY FLASH ADDRESS  
WITHIN THE ROW ADDRESS RANGE DESIRED  
4
5
6
WAIT FOR A TIME, tNVS  
SET HVEN BIT  
WAIT FOR A TIME, tPGS  
7
8
WRITE DATA TO THE FLASH ADDRESS  
TO BE PROGRAMMED  
WAIT FOR A TIME, tPROG  
COMPLETED  
Y
PROGRAMMING  
THIS ROW?  
9
N
10  
CLEAR PGM BIT  
WAIT FOR A TIME, tNVH  
CLEAR HVEN BIT  
11  
12  
13  
NOTES:  
The time between each FLASH address change (step 7 to step 7 loop),  
,
or the time between the last FLASH address programmed  
WAIT FOR A TIME, tRCV  
END OF PROGRAMMING  
to clearing PGM bit (step 7 to step 10)  
must not exceed the maximum programming  
time, tPROG max.  
This row program algorithm assumes the row/s  
to be programmed is initially erased.  
Figure 2-4. FLASH Programming Flowchart  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
39  
Memory  
2.6.5 FLASH Protection  
Due to the ability of the on-board charge pump to erase and program the FLASH memory in the target  
application, a provision is made to protect blocks of memory from unintentional erase or program  
operations due to system malfunction. This protection is done by use of a FLASH block protect register  
(FLBPR). The FLBPR determines the range of the FLASH memory which is to be protected. The range  
of the protected area starts from a location defined by FLBPR and ends to the bottom of the FLASH  
memory ($FFFF). When the memory is protected, the HVEN bit cannot be set in either erase or program  
operations.  
NOTE  
In performing a program or erase operation, the FLASH block protect  
register must be read after setting the PGM or ERASE bit and before  
asserting the HVEN bit.  
When the FLBPR is programmed with all 0 s, the entire memory is protected from being programmed and  
erased. When all the bits are erased (all 1’s), the entire memory is accessible for program and erase.  
When bits within the FLBPR are programmed, they lock a block of memory. The address ranges are  
shown in 2.6.6 FLASH Block Protect Register. Once the FLBPR is programmed with a value other than  
$FF, any erase or program of the FLBPR or the protected block of FLASH memory is prohibited. Mass  
erase is disabled whenever any block is protected (FLBPR does not equal $FF). The FLBPR itself can be  
erased or programmed only with an external voltage, VTST, present on the IRQ pin. This voltage also  
allows entry from reset into monitor mode.  
2.6.6 FLASH Block Protect Register  
The FLASH block protect register is implemented as a byte within the FLASH memory, and therefore can  
only be written during a programming sequence of the FLASH memory. The value in this register  
determines the starting address of the protected range within the FLASH memory.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
BPR7  
BPR6  
BPR5  
BPR4  
BPR3  
BPR2  
BPR1  
BPR0  
Unaffected by reset. Initial value from factory is $FF.  
Write to this register is by a programming sequence to the FLASH memory.  
Figure 2-5. FLASH Block Protect Register (FLBPR)  
BPR[7:0] — FLASH Protection Register Bits [7:0]  
These eight bits in FLBPR represent bits [13:6] of a 16-bit memory address. Bits [15:14] are 1s and  
bits [5:0] are 0s.  
The resultant 16-bit address is used for specifying the start address of the FLASH memory for block  
protection. The FLASH is protected from this start address to the end of FLASH memory, at $FFFF.  
With this mechanism, the protect start address can be $XX00, $XX40, $XX80, or $XXC0 within the  
FLASH memory. See Figure 2-6 and Table 2-2.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
40  
Freescale Semiconductor  
FLASH Memory (FLASH)  
16-BIT MEMORY ADDRESS  
FLBPR VALUE  
START ADDRESS OF  
1
1
0
0
0
0
0
0
FLASH BLOCK PROTECT  
Figure 2-6. FLASH Block Protect Start Address  
Table 2-2. Examples of Protect Start Address  
Start of Address of Protect Range(1)  
The entire FLASH memory is protected.  
$EE40 (1110 1110 0100 0000)  
$EE80 (1110 1110 1000 0000)  
$EEC0 (1110 1110 1100 0000)  
$EF00 (1110 1111 0000 0000)  
and so on...  
BPR[7:0]  
$00–$B8  
$B9 (1011 1001)  
$BA (1011 1010)  
$BB (1011 1011)  
$BC (1011 1100)  
$DE (1101 1110)  
$DF (1101 1111)  
$F780 (1111 0111 1000 0000)  
$F7C0 (1111 0111 1100 0000)  
$FF80 (1111 1111 1000 0000)  
FLBPR, OSCTRIM, and vectors are protected  
$FE (1111 1110)  
$FF  
The entire FLASH memory is not protected.  
1. The end address of the protected range is always $FFFF.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
41  
Memory  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
42  
Chapter 3  
Analog-to-Digital Converter (ADC10) Module  
3.1 Introduction  
This section describes the 10-bit successive approximation analog-to-digital converter (ADC10).  
The ADC10 module shares its pins with general-purpose input/output (I/O) port pins. See Figure 3-1 for  
port location of these shared pins. The ADC10 on this MCU uses VDD and VSS as its supply and reference  
pins. This MCU uses BUSCLKX4 as its alternate clock source for the ADC. This MCU does not have a  
hardware conversion trigger.  
3.2 Features  
Features of the ADC10 module include:  
Linear successive approximation algorithm with 10-bit resolution  
Output formatted in 10- or 8-bit right-justified format  
Single or continuous conversion (automatic power-down in single conversion mode)  
Configurable sample time and conversion speed (to save power)  
Conversion complete flag and interrupt  
Input clock selectable from up to three sources  
Operation in wait and stop modes for lower noise operation  
Selectable asynchronous hardware conversion trigger  
3.3 Functional Description  
The ADC10 uses successive approximation to convert the input sample taken from ADVIN to a digital  
representation. The approximation is taken and then rounded to the nearest 10- or 8-bit value to provide  
greater accuracy and to provide a more robust mechanism for achieving the ideal code-transition voltage.  
Figure 3-2 shows a block diagram of the ADC10  
For proper conversion, the voltage on ADVIN must fall between VREFH and VREFL. If ADVIN is equal to  
or exceeds VREFH, the converter circuit converts the signal to $3FF for a 10-bit representation or $FF for  
a 8-bit representation. If ADVIN is equal to or less than VREFL, the converter circuit converts it to $000.  
Input voltages between VREFH and VREFL are straight-line linear conversions.  
NOTE  
Input voltage must not exceed the analog supply voltages.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
43  
Analog-to-Digital Converter (ADC10) Module  
PTA0/AD0/KBI0  
PTA1/AD1/TCH1/KBI1  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
INTERNAL OSC  
INTERNAL CLOCK SOURCE  
4, 8, 12.8, or 25.6 MHz  
KEYBOARD INTERRUPT  
MODULE  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
EXTERNAL INTERRUPT  
MODULE  
M68HC08 CPU  
PTB0/TCH0  
PTB1  
AUTO WAKEUP  
MODULE  
PTB2/AD4  
PTB3/AD5  
PTB4/SLCRX  
PTB5/SLCTX  
PTB6  
LOW-VOLTAGE  
INHIBIT  
2-CHANNEL 16-BIT  
TIMER MODULE  
PTB7  
COP  
MODULE  
MC68HC908QL4  
4096 BYTES  
MC68HC908QL4  
128 BYTES  
USER FLASH  
USER RAM  
6-CHANNEL  
10-BIT ADC  
SLAVE LIN INTERFACE  
CONTROLLER  
VDD  
POWER SUPPLY  
VSS  
DEVELOPMENT SUPPORT  
MONITOR ROM  
BREAK MODULE  
RST, IRQ: Pins have internal pull up device  
All port pins have programmable pull up device (pullup/down on port A)  
PTA[0:5]: Higher current sink and source capability  
Figure 3-1. Block Diagram Highlighting ADC10 Block and Pins  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
44  
Functional Description  
ADCSC  
ADCLK  
ASYNC  
CLOCK  
GENERATOR  
ACLKEN  
ACLK  
1
2
ADCK  
MCU STOP  
ADHWT  
CLOCK  
DIVIDE  
BUS CLOCK  
CONTROL SEQUENCER  
ALTERNATE CLOCK SOURCE  
AD0  
ADn  
1
2
AIEN  
INTERRUPT  
COCO  
ADVIN  
SAR CONVERTER  
VREFH  
VREFL  
DATA REGISTERS ADRH:ADRL  
Figure 3-2. ADC10 Block Diagram  
The ADC10 can perform an analog-to-digital conversion on one of the software selectable channels. The  
output of the input multiplexer (ADVIN) is converted by a successive approximation algorithm into a 10-bit  
digital result. When the conversion is completed, the result is placed in the data registers (ADRH and  
ADRL). In 8-bit mode, the result is rounded to 8 bits and placed in ADRL. The conversion complete flag  
is then set and an interrupt is generated if the interrupt has been enabled.  
3.3.1 Clock Select and Divide Circuit  
The clock select and divide circuit selects one of three clock sources and divides it by a configurable value  
to generate the input clock to the converter (ADCK). The clock can be selected from one of the following  
sources:  
The asynchronous clock source (ACLK) — This clock source is generated from a dedicated clock  
source which is enabled when the ADC10 is converting and the clock source is selected by setting  
the ACLKEN bit. When the ADLPC bit is clear, this clock operates from 1–2 MHz; when ADLPC is  
set it operates at 0.5–1 MHz. This clock is not disabled in STOP and allows conversions in stop  
mode for lower noise operation.  
Alternate Clock Source — This clock source is equal to the external oscillator clock or a four times  
the bus clock. The alternate clock source is MCU specific, see 3.1 Introduction to determine source  
and availability of this clock source option. This clock is selected when ADICLK and ACLKEN are  
both low.  
The bus clock — This clock source is equal to the bus frequency. This clock is selected when  
ADICLK is high and ACLKEN is low.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
45  
Analog-to-Digital Converter (ADC10) Module  
Whichever clock is selected, its frequency must fall within the acceptable frequency range for ADCK. If  
the available clocks are too slow, the ADC10 will not perform according to specifications. If the available  
clocks are too fast, then the clock must be divided to the appropriate frequency. This divider is specified  
by the ADIV[1:0] bits and can be divide-by 1, 2, 4, or 8.  
3.3.2 Input Select and Pin Control  
Only one analog input may be used for conversion at any given time. The channel select bits in ADCSC  
are used to select the input signal for conversion.  
3.3.3 Conversion Control  
Conversions can be performed in either 10-bit mode or 8-bit mode as determined by the MODE bits.  
Conversions can be initiated by either a software or hardware trigger. In addition, the ADC10 module can  
be configured for low power operation, long sample time, and continuous conversion.  
3.3.3.1 Initiating Conversions  
A conversion is initiated:  
Following a write to ADCSC (with ADCH bits not all 1s) if software triggered operation is selected.  
Following a hardware trigger event if hardware triggered operation is selected.  
Following the transfer of the result to the data registers when continuous conversion is enabled.  
If continuous conversions are enabled a new conversion is automatically initiated after the completion of  
the current conversion. In software triggered operation, continuous conversions begin after ADCSC is  
written and continue until aborted. In hardware triggered operation, continuous conversions begin after a  
hardware trigger event and continue until aborted.  
3.3.3.2 Completing Conversions  
A conversion is completed when the result of the conversion is transferred into the data result registers,  
ADRH and ADRL. This is indicated by the setting of the COCO bit. An interrupt is generated if AIEN is  
high at the time that COCO is set.  
A blocking mechanism prevents a new result from overwriting previous data in ADRH and ADRL if the  
previous data is in the process of being read while in 10-bit mode (ADRH has been read but ADRL has  
not). In this case the data transfer is blocked, COCO is not set, and the new result is lost. When a data  
transfer is blocked, another conversion is initiated regardless of the state of ADCO (single or continuous  
conversions enabled). If single conversions are enabled, this could result in several discarded  
conversions and excess power consumption. To avoid this issue, the data registers must not be read after  
initiating a single conversion until the conversion completes.  
3.3.3.3 Aborting Conversions  
Any conversion in progress will be aborted when:  
A write to ADCSC occurs (the current conversion will be aborted and a new conversion will be  
initiated, if ADCH are not all 1s).  
A write to ADCLK occurs.  
The MCU is reset.  
The MCU enters stop mode with ACLK not enabled.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
46  
Freescale Semiconductor  
Functional Description  
When a conversion is aborted, the contents of the data registers, ADRH and ADRL, are not altered but  
continue to be the values transferred after the completion of the last successful conversion. In the case  
that the conversion was aborted by a reset, ADRH and ADRL return to their reset states.  
Upon reset or when a conversion is otherwise aborted, the ADC10 module will enter a low power, inactive  
state. In this state, all internal clocks and references are disabled. This state is entered asynchronously  
and immediately upon aborting of a conversion.  
3.3.3.4 Total Conversion Time  
The total conversion time depends on many factors such as sample time, bus frequency, whether  
ACLKEN is set, and synchronization time. The total conversion time is summarized in Table 3-1.  
Table 3-1. Total Conversion Time versus Control Conditions  
Conversion Mode  
ACLKEN  
Maximum Conversion Time  
8-Bit Mode (short sample — ADLSMP = 0):  
Single or 1st continuous  
Single or 1st continuous  
0
1
X
18 ADCK + 3 bus clock  
18 ADCK + 3 bus clock + 5 µs  
16 ADCK  
Subsequent continuous (fBus fADCK  
)
8-Bit Mode (long sample — ADLSMP = 1):  
Single or 1st continuous  
Single or 1st continuous  
0
1
X
38 ADCK + 3 bus clock  
38 ADCK + 3 bus clock + 5 µs  
36 ADCK  
Subsequent continuous (fBus fADCK  
)
10-Bit Mode (short sample — ADLSMP = 0):  
Single or 1st continuous  
Single or 1st continuous  
0
1
X
21 ADCK + 3 bus clock  
21 ADCK + 3 bus clock + 5 µs  
19 ADCK  
Subsequent continuous (fBus fADCK  
)
10-Bit Mode (long sample — ADLSMP = 1):  
Single or 1st continuous  
Single or 1st continuous  
0
1
X
41 ADCK + 3 bus clock  
41 ADCK + 3 bus clock + 5 µs  
39 ADCK  
Subsequent continuous (fBus fADCK  
)
The maximum total conversion time for a single conversion or the first conversion in continuous  
conversion mode is determined by the clock source chosen and the divide ratio selected. The clock  
source is selectable by the ADICLK and ACLKEN bits, and the divide ratio is specified by the ADIV bits.  
For example, if the alternate clock source is 16 MHz and is selected as the input clock source, the input  
clock divide-by-8 ratio is selected and the bus frequency is 4 MHz, then the conversion time for a single  
10-bit conversion is:  
21 ADCK cycles  
16 MHz/8  
3 bus cycles  
4 MHz  
= 11.25 µs  
Maximum Conversion time =  
+
Number of bus cycles = 11.25 µs x 4 MHz = 45 cycles  
NOTE  
The ADCK frequency must be between fADCK minimum and fADCK  
maximum to meet A/D specifications.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
47  
Analog-to-Digital Converter (ADC10) Module  
3.3.4 Sources of Error  
Several sources of error exist for ADC conversions. These are discussed in the following sections.  
3.3.4.1 Sampling Error  
For proper conversions, the input must be sampled long enough to achieve the proper accuracy. Given  
the maximum input resistance of approximately 15 kand input capacitance of approximately 10 pF,  
sampling to within  
1/4LSB (at 10-bit resolution) can be achieved within the minimum sample window (3.5 cycles / 2 MHz  
maximum ADCK frequency) provided the resistance of the external analog source (RAS) is kept below 10  
k. Higher source resistances or higher-accuracy sampling is possible by setting ADLSMP (to increase  
the sample window to 23.5 cycles) or decreasing ADCK frequency to increase sample time.  
3.3.4.2 Pin Leakage Error  
Leakage on the I/O pins can cause conversion error if the external analog source resistance (RAS) is high.  
If this error cannot be tolerated by the application, keep RAS lower than VADVIN / (4096*ILeak) for less than  
1/4LSB leakage error (at 10-bit resolution).  
3.3.4.3 Noise-Induced Errors  
System noise which occurs during the sample or conversion process can affect the accuracy of the  
conversion. The ADC10 accuracy numbers are guaranteed as specified only if the following conditions  
are met:  
There is a 0.1µF low-ESR capacitor from VREFH to VREFL (if available).  
There is a 0.1µF low-ESR capacitor from VDDA to VSSA (if available).  
If inductive isolation is used from the primary supply, an additional 1µF capacitor is placed from  
VDDA to VSSA (if available).  
V
SSA and VREFL (if available) is connected to VSS at a quiet point in the ground plane.  
The MCU is placed in wait mode immediately after initiating the conversion (next instruction after  
write to ADCSC).  
There is no I/O switching, input or output, on the MCU during the conversion.  
There are some situations where external system activity causes radiated or conducted noise emissions  
or excessive VDD noise is coupled into the ADC10. In these cases, or when the MCU cannot be placed  
in wait or I/O activity cannot be halted, the following recommendations may reduce the effect of noise on  
the accuracy:  
Place a 0.01 µF capacitor on the selected input channel to VREFL or VSSA (if available). This will  
improve noise issues but will affect sample rate based on the external analog source resistance.  
Operate the ADC10 in stop mode by setting ACLKEN, selecting the channel in ADCSC, and  
executing a STOP instruction. This will reduce VDD noise but will increase effective conversion time  
due to stop recovery.  
Average the input by converting the output many times in succession and dividing the sum of the  
results. Four samples are required to eliminate the effect of a 1LSB, one-time error.  
Reduce the effect of synchronous noise by operating off the asynchronous clock (ACLKEN=1) and  
averaging. Noise that is synchronous to the ADCK cannot be averaged out.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
48  
Freescale Semiconductor  
Functional Description  
3.3.4.4 Code Width and Quantization Error  
The ADC10 quantizes the ideal straight-line transfer function into 1024 steps (in 10-bit mode). Each step  
ideally has the same height (1 code) and width. The width is defined as the delta between the transition  
points from one code to the next. The ideal code width for an N bit converter (in this case N can be 8 or  
10), defined as 1LSB, is:  
1LSB = (VREFH–VREFL) / 2N  
Because of this quantization, there is an inherent quantization error. Because the converter performs a  
conversion and then rounds to 8 or 10 bits, the code will transition when the voltage is at the midpoint  
between the points where the straight line transfer function is exactly represented by the actual transfer  
function. Therefore, the quantization error will be 1/2LSB in 8- or 10-bit mode. As a consequence,  
however, the code width of the first ($000) conversion is only 1/2LSB and the code width of the last ($FF  
or $3FF) is 1.5LSB.  
3.3.4.5 Linearity Errors  
The ADC10 may also exhibit non-linearity of several forms. Every effort has been made to reduce these  
errors but the user should be aware of them because they affect overall accuracy. These errors are:  
Zero-Scale Error (EZS) (sometimes called offset) — This error is defined as the difference between  
the actual code width of the first conversion and the ideal code width (1/2LSB). Note, if the first  
conversion is $001, then the difference between the actual $001 code width and its ideal (1LSB) is  
used.  
Full-Scale Error (EFS) — This error is defined as the difference between the actual code width of  
the last conversion and the ideal code width (1.5LSB). Note, if the last conversion is $3FE, then the  
difference between the actual $3FE code width and its ideal (1LSB) is used.  
Differential Non-Linearity (DNL) — This error is defined as the worst-case difference between the  
actual code width and the ideal code width for all conversions.  
Integral Non-Linearity (INL) — This error is defined as the highest-value the (absolute value of the)  
running sum of DNL achieves. More simply, this is the worst-case difference of the actual transition  
voltage to a given code and its corresponding ideal transition voltage, for all codes.  
Total Unadjusted Error (TUE) — This error is defined as the difference between the actual transfer  
function and the ideal straight-line transfer function, and therefore includes all forms of error.  
3.3.4.6 Code Jitter, Non-Monotonicity and Missing Codes  
Analog-to-digital converters are susceptible to three special forms of error. These are code jitter,  
non-monotonicity, and missing codes.  
Code jitter is when, at certain points, a given input voltage converts to one of two values when  
sampled repeatedly. Ideally, when the input voltage is infinitesimally smaller than the transition  
voltage, the converter yields the lower code (and vice-versa). However, even very small amounts  
of system noise can cause the converter to be indeterminate (between two codes) for a range of  
input voltages around the transition voltage. This range is normally around 1/2 LSB but will  
increase with noise.  
Non-monotonicity is defined as when, except for code jitter, the converter converts to a lower code  
for a higher input voltage.  
Missing codes are those which are never converted for any input value. In 8-bit or 10-bit mode, the  
ADC10 is guaranteed to be monotonic and to have no missing codes.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
49  
Analog-to-Digital Converter (ADC10) Module  
3.4 Interrupts  
When AIEN is set, the ADC10 is capable of generating a CPU interrupt after each conversion. A CPU  
interrupt is generated when the conversion completes (indicated by COCO being set). COCO will set at  
the end of a conversion regardless of the state of AIEN.  
3.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
3.5.1 Wait Mode  
The ADC10 will continue the conversion process and will generate an interrupt following a conversion if  
AIEN is set. If the ADC10 is not required to bring the MCU out of wait mode, ensure that the ADC10 is not  
in continuous conversion mode by clearing ADCO in the ADC10 status and control register before  
executing the WAIT instruction. In single conversion mode the ADC10 automatically enters a low-power  
state when the conversion is complete. It is not necessary to set the channel select bits (ADCH[4:0]) to  
all 1s to enter a low power state.  
3.5.2 Stop Mode  
If ACLKEN is clear, executing a STOP instruction will abort the current conversion and place the ADC10  
in a low-power state. Upon return from stop mode, a write to ADCSC is required to resume conversions,  
and the result stored in ADRH and ADRL will represent the last completed conversion until the new  
conversion completes.  
If ACLKEN is set, the ADC10 continues normal operation during stop mode. The ADC10 will continue the  
conversion process and will generate an interrupt following a conversion if AIEN is set. If the ADC10 is  
not required to bring the MCU out of stop mode, ensure that the ADC10 is not in continuous conversion  
mode by clearing ADCO in the ADC10 status and control register before executing the STOP instruction.  
In single conversion mode the ADC10 automatically enters a low-power state when the conversion is  
complete. It is not necessary to set the channel select bits (ADCH[4:0]) to all 1s to enter a low-power state.  
If ACLKEN is set, a conversion can be initiated while in stop using the external hardware trigger  
ADEXTCO when in external convert mode. The ADC10 will operate in a low-power mode until the trigger  
is asserted, at which point it will perform a conversion and assert the interrupt when complete (if AIEN is  
set).  
3.6 ADC10 During Break Interrupts  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. BCFE in the break flag control register (BFCR) enables software to clear status bits during  
the break state. See BFCR in the SIM section of this data sheet.  
To allow software to clear status bits during a break interrupt, write a 1 to BCFE. If a status bit is cleared  
during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a 0 to BCFE. With BCFE cleared (its default state),  
software can read and write registers during the break state without affecting status bits. Some status bits  
have a two-step read/write clearing procedure. If software does the first step on such a bit before the  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
50  
Freescale Semiconductor  
I/O Signals  
break, the bit cannot change during the break state as long as BCFE is cleared. After the break, doing the  
second step clears the status bit.  
3.7 I/O Signals  
The ADC10 module shares its pins with general-purpose input/output (I/O) port pins. See Figure 3-1 for  
port location of these shared pins. The ADC10 on this MCU uses VDD and VSS as its supply and reference  
pins. This MCU does not have an external trigger source.  
3.7.1 ADC10 Analog Power Pin (V  
)
DDA  
The ADC10 analog portion uses VDDA as its power pin. In some packages, VDDA is connected internally  
to VDD. If externally available, connect the VDDA pin to the same voltage potential as VDD. External filtering  
may be necessary to ensure clean VDDA for good results.  
NOTE  
If externally available, route VDDA carefully for maximum noise immunity  
and place bypass capacitors as near as possible to the package.  
3.7.2 ADC10 Analog Ground Pin (V  
)
SSA  
The ADC10 analog portion uses VSSA as its ground pin. In some packages, VSSA is connected internally  
to VSS. If externally available, connect the VSSA pin to the same voltage potential as VSS.  
In cases where separate power supplies are used for analog and digital power, the ground connection  
between these supplies should be at the VSSA pin. This should be the only ground connection between  
these supplies if possible. The VSSA pin makes a good single point ground location.  
3.7.3 ADC10 Voltage Reference High Pin (V  
)
REFH  
VREFH is the power supply for setting the high-reference voltage for the converter. In some packages,  
REFH is connected internally to VDDA. If externally available, VREFH may be connected to the same  
V
potential as VDDA, or may be driven by an external source that is between the minimum VDDA spec and  
the VDDA potential (VREFH must never exceed VDDA).  
NOTE  
Route VREFH carefully for maximum noise immunity and place bypass  
capacitors as near as possible to the package.  
AC current in the form of current spikes required to supply charge to the capacitor array at each  
successive approximation step is drawn through the VREFH and VREFL loop. The best external component  
to meet this current demand is a 0.1 µF capacitor with good high frequency characteristics. This capacitor  
is connected between VREFH and VREFL and must be placed as close as possible to the package pins.  
Resistance in the path is not recommended because the current will cause a voltage drop which could  
result in conversion errors. Inductance in this path must be minimum (parasitic only).  
3.7.4 ADC10 Voltage Reference Low Pin (V  
)
REFL  
VREFL is the power supply for setting the low-reference voltage for the converter. In some packages,  
VREFL is connected internally to VSSA. If externally available, connect the VREFL pin to the same voltage  
potential as VSSA. There will be a brief current associated with VREFL when the sampling capacitor is  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
51  
Analog-to-Digital Converter (ADC10) Module  
charging. If externally available, connect the VREFL pin to the same potential as VSSA at the single point  
ground location.  
3.7.5 ADC10 Channel Pins (ADn)  
The ADC10 has multiple input channels. Empirical data shows that capacitors on the analog inputs  
improve performance in the presence of noise or when the source impedance is high. 0.01 µF capacitors  
with good high-frequency characteristics are sufficient. These capacitors are not necessary in all cases,  
but when used they must be placed as close as possible to the package pins and be referenced to VSSA  
.
3.8 Registers  
These registers control and monitor operation of the ADC10:  
ADC10 status and control register, ADCSC  
ADC10 data registers, ADRH and ADRL  
ADC10 clock register, ADCLK  
3.8.1 ADC10 Status and Control Register  
This section describes the function of the ADC10 status and control register (ADCSC). Writing ADCSC  
aborts the current conversion and initiates a new conversion (if the ADCH[4:0] bits are equal to a value  
other than all 1s).  
Bit 7  
6
AIEN  
0
5
ADCO  
0
4
ADCH4  
1
3
ADCH3  
1
2
ADCH2  
1
1
ADCH1  
1
Bit 0  
ADCH0  
1
Read:  
Write:  
Reset:  
COCO  
0
= Unimplemented  
Figure 3-3. ADC10 Status and Control Register (ADCSC)  
COCO — Conversion Complete Bit  
COCO is a read-only bit which is set each time a conversion is completed. This bit is cleared whenever  
the status and control register is written or whenever the data register (low) is read.  
1 = Conversion completed  
0 = Conversion not completed  
AIEN — ADC10 Interrupt Enable Bit  
When this bit is set, an interrupt is generated at the end of a conversion. The interrupt signal is cleared  
when the data register is read or the status/control register is written.  
1 = ADC10 interrupt enabled  
0 = ADC10 interrupt disabled  
ADCO — ADC10 Continuous Conversion Bit  
When this bit is set, the ADC10 will begin to convert samples continuously (continuous conversion  
mode) and update the result registers at the end of each conversion, provided the ADCH[4:0] bits do  
not decode to all 1s. The ADC10 will continue to convert until the MCU enters reset, the MCU enters  
stop mode (if ACLKEN is clear), ADCLK is written, or until ADCSC is written again. If stop is entered  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
52  
Freescale Semiconductor  
Registers  
(with ACLKEN low), continuous conversions will cease and can be restarted only with a write to  
ADCSC. Any write to ADCSC with ADCO set and the ADCH bits not all 1s will abort the current  
conversion and begin continuous conversions.  
If the bus frequency is less than the ADCK frequency, precise sample time for continuous conversions  
cannot be guaranteed in short-sample mode (ADLSMP = 0). If the bus frequency is less than 1/11th  
of the ADCK frequency, precise sample time for continuous conversions cannot be guaranteed in  
long-sample mode (ADLSMP = 1).  
When clear, the ADC10 will perform a single conversion (single conversion mode) each time ADCSC  
is written (assuming the ADCH[4:0] bits do not decode all 1s).  
1 = Continuous conversion following a write to ADCSC  
0 = One conversion following a write to ADCSC  
ADCH[4:0] — Channel Select Bits  
The ADCH[4:0] bits form a 5-bit field that is used to select one of the input channels. The input  
channels are detailed in Table 3-2. The successive approximation converter subsystem is turned off  
when the channel select bits are all set to 1. This feature allows explicit disabling of the ADC10 and  
isolation of the input channel from the I/O pad. Terminating continuous conversion mode this way will  
prevent an additional, single conversion from being performed. It is not necessary to set the channel  
select bits to all 1s to place the ADC10 in a low-power state, however, because the module is  
automatically placed in a low-power state when a conversion completes.  
Table 3-2. Input Channel Select  
Input Select(1)  
AD0  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
0
1
0
1
0
1
0
0
AD1  
0
AD2  
0
AD3  
1
AD4  
1
AD5  
1
Unused  
Unused  
Unused  
BANDGAP REF(2)  
Reserved  
Reserved  
VREFH  
Continuing through  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
VREFL  
Low-power state  
1. If any unused or reserved channels are selected, the resulting conversion will be unknown.  
2. Requires LVI to be powered (LVIPWRD = 0, in CONFIG1)  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
53  
Analog-to-Digital Converter (ADC10) Module  
3.8.2 ADC10 Result High Register (ADRH)  
This register holds the MSBs of the result and is updated each time a conversion completes. All other bits  
read as 0s. Reading ADRH prevents the ADC10 from transferring subsequent conversion results into the  
result registers until ADRL is read. If ADRL is not read until the after next conversion is completed, then  
the intermediate conversion result will be lost. In 8-bit mode, this register contains no interlocking with  
ADRL.  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 3-4. ADC10 Data Register High (ADRH), 8-Bit Mode  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
Bit 0  
AD8  
Read:  
Write:  
Reset:  
AD9  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 3-5. ADC10 Data Register High (ADRH), 10-Bit Mode  
3.8.3 ADC10 Result Low Register (ADRL)  
This register holds the LSBs of the result. This register is updated each time a conversion completes.  
Reading ADRH prevents the ADC10 from transferring subsequent conversion results into the result  
registers until ADRL is read. If ADRL is not read until the after next conversion is completed, then the  
intermediate conversion result will be lost. In 8-bit mode, there is no interlocking with ADRH.  
Bit 7  
AD7  
6
5
4
3
2
1
Bit 0  
AD0  
Read:  
Write:  
Reset:  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 3-6. ADC10 Data Register Low (ADRL)  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
54  
Freescale Semiconductor  
Registers  
3.8.4 ADC10 Clock Register (ADCLK)  
This register selects the clock frequency for the ADC10 and the modes of operation.  
Bit 7  
ADLPC  
0
6
ADIV1  
0
5
ADIV0  
0
4
ADICLK  
0
3
MODE1  
0
2
MODE0  
0
1
Bit 0  
Read:  
Write:  
Reset:  
ADLSMP ACLKEN  
0
0
Figure 3-7. ADC10 Clock Register (ADCLK)  
ADLPC — ADC10 Low-Power Configuration Bit  
ADLPC controls the speed and power configuration of the successive approximation converter. This  
is used to optimize power consumption when higher sample rates are not required.  
1 = Low-power configuration: The power is reduced at the expense of maximum clock speed.  
0 = High-speed configuration  
ADIV[1:0] — ADC10 Clock Divider Bits  
ADIV1 and ADIV0 select the divide ratio used by the ADC10 to generate the internal clock ADCK.  
Table 3-3 shows the available clock configurations.  
Table 3-3. ADC10 Clock Divide Ratio  
ADIV1  
ADIV0  
Divide Ratio (ADIV)  
Clock Rate  
Input clock ÷ 1  
Input clock ÷ 2  
Input clock ÷ 4  
Input clock ÷ 8  
0
0
1
1
0
1
0
1
1
2
4
8
ADICLK — Input Clock Select Bit  
If ACLKEN is clear, ADICLK selects either the bus clock or an alternate clock source as the input clock  
source to generate the internal clock ADCK. If the alternate clock source is less than the minimum  
clock speed, use the internally-generated bus clock as the clock source. As long as the internal clock  
ADCK, which is equal to the selected input clock divided by ADIV, is at a frequency (fADCK) between  
the minimum and maximum clock speeds (considering ALPC), correct operation can be guaranteed.  
1 = The internal bus clock is selected as the input clock source  
0 = The alternate clock source IS SELECTED  
MODE[1:0] — 10- or 8-Bit or Hardware Triggered Mode Selection  
These bits select 10- or 8-bit operation. The successive approximation converter generates a result  
that is rounded to 8- or 10-bit value based on the mode selection. This rounding process sets the  
transfer function to transition at the midpoint between the ideal code voltages, causing a quantization  
error of 1/2LSB.  
Reset returns 8-bit mode.  
00 = 8-bit, right-justified, ADCSC software triggered mode enabled  
01 = 10-bit, right-justified, ADCSC software triggered mode enabled  
10 = Reserved  
11 = 10-bit, right-justified, hardware triggered mode enabled  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
55  
Analog-to-Digital Converter (ADC10) Module  
ADLSMP — Long Sample Time Configuration  
This bit configures the sample time of the ADC10 to either 3.5 or 23.5 ADCK clock cycles. This adjusts  
the sample period to allow higher impedance inputs to be accurately sampled or to maximize  
conversion speed for lower impedance inputs. Longer sample times can also be used to lower overall  
power consumption in continuous conversion mode if high conversion rates are not required.  
1 = Long sample time (23.5 cycles)  
0 = Short sample time (3.5 cycles)  
ACLKEN — Asynchronous Clock Source Enable  
This bit enables the asynchronous clock source as the input clock to generate the internal clock ADCK,  
and allows operation in stop mode. The asynchronous clock source will operate between 1 MHz and  
2 MHz if ADLPC is clear, and between 0.5 MHz and 1 MHz if ADLPC is set.  
1 = The asynchronous clock is selected as the input clock source (the clock generator is only  
enabled during the conversion)  
0 = ADICLK specifies the input clock source and conversions will not continue in stop mode  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
56  
Freescale Semiconductor  
Chapter 4  
Auto Wakeup Module (AWU)  
4.1 Introduction  
This section describes the auto wakeup module (AWU). The AWU generates a periodic interrupt during  
stop mode to wake the part up without requiring an external signal. Figure 4-1 is a block diagram of the  
AWU.  
COPRS (FROM CONFIG1)  
VDD  
AUTOWUGEN  
TO PTA READ, BIT 6  
1 = DIV 29  
D
E
AWUL  
Q
OSCENINSTOP (FROM CONFIG2)  
BUSCLKX4  
SHORT  
0 = DIV 214  
OVERFLOW  
AWUIREQ  
M
U
X
R
EN  
32 kHz  
CLK  
RST  
TO KBI INTERRUPT LOGIC  
(SEE Figure 9-2)  
INT RC OSC  
CLRLOGIC  
CLEAR  
RESET  
ACKK  
(CGMXCLK)  
BUSCLKX4  
CLK  
RST  
RESET  
ISTOP  
RESET  
AWUIE  
Figure 4-1. Auto Wakeup Interrupt Request Generation Logic  
4.2 Features  
Features of the auto wakeup module include:  
One internal interrupt with separate interrupt enable bit, sharing the same keyboard interrupt vector  
and keyboard interrupt mask bit  
Exit from low-power stop mode without external signals  
Selectable timeout periods  
Dedicated low-power internal oscillator separate from the main system clock sources  
Option to allow bus clock source to run the AWU if enabled in STOP  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
57  
Auto Wakeup Module (AWU)  
4.3 Functional Description  
The function of the auto wakeup logic is to generate periodic wakeup requests to bring the microcontroller  
unit (MCU) out of stop mode. The wakeup requests are treated as regular keyboard interrupt requests,  
with the difference that instead of a pin, the interrupt signal is generated by an internal logic.  
Writing the AWUIE bit in the keyboard interrupt enable register enables or disables the auto wakeup  
interrupt input (see Figure 4-1). A 1 applied to the AWUIREQ input with auto wakeup interrupt request  
enabled, latches an auto wakeup interrupt request.  
There exists two clock sources for the AWU. An internal RC oscillator (exclusive for the auto wakeup  
feature, AWU oscillator) drives the wakeup request generator provided the OSCENINSTOP bit in the  
CONFIG2 register Figure 4-1is cleared. If the application employs a crystal, for example, by setting the  
OSCENINSTOP bit the BUSCLKX4 will drive the wakeup request generator to allow a more accurate  
wakeup.  
Entering stop mode will enable the auto wakeup generation logic.  
Once the overflow count is reached in the generator counter, a wakeup request, AWUIREQ, is latched  
and sent to the KBI logic. See Figure 4-1.  
Wakeup interrupt requests will only be serviced if the associated interrupt enable bit, AWUIE, in KBIER  
is set. The AWU shares the keyboard interrupt vector.  
The overflow count can be selected from two options defined by the COPRS bit in CONFIG1. This bit was  
“borrowed” from the computer operating properly (COP) using the fact that the COP feature is idle (no  
MCU clock available) in stop mode.  
The auto wakeup RC oscillator is highly dependent on operating voltage and temperature. This feature is  
not recommended for use as a time-keeping function.  
The wakeup request is latched to allow the interrupt source identification. The latched value, AWUL, can  
be read directly from the bit 6 position of PTA data register. This is a read-only bit which is occupying an  
empty bit position on PTA. No PTA associated registers, such as PTA6 data, PTA6 direction, and PTA6  
pullup/down exist for this bit. The latch can be cleared by writing to the ACKK bit in the KBSCR register.  
Reset also clears the latch. AWUIE bit in KBI interrupt enable register (see Figure 4-1) has no effect on  
AWUL reading.  
The AWU oscillator and counters are inactive in normal operating mode and become active only upon  
entering stop mode.  
4.4 Interrupts  
The AWU can generate an interrupt requests:.  
AWU Latch (AWUL) — The AWUL bit is set when the AWU counter overflows. The auto wakeup interrupt  
mask bit, AWUIE, is used to enable or disable AWU interrupt requests.  
The AWU shares its interrupt with the KBI vector.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
58  
Freescale Semiconductor  
Low-Power Modes  
4.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
4.5.1 Wait Mode  
The AWU module remains inactive in wait mode.  
4.5.2 Stop Mode  
When the AWU module is enabled (AWUIE = 1 in the keyboard interrupt enable register) it is activated  
automatically upon entering stop mode. Clearing the IMASKK bit in the keyboard status and control  
register enables keyboard interrupt requests to bring the MCU out of stop mode. The AWU counters start  
from 0 each time stop mode is entered.  
4.6 Registers  
The AWU shares registers with the keyboard interrupt (KBI) module, the port A I/O module and  
configuration register 2. The following I/O registers control and monitor operation of the AWU:  
Port A data register (PTA)  
Keyboard interrupt status and control register (KBSCR)  
Keyboard interrupt enable register (KBIER)  
Configuration register 1 (CONFIG1)  
Configuration register 2 (CONFIG2)  
4.6.1 Port A I/O Register  
The port A data register (PTA) contains a data latch for the state of the AWU interrupt request, in addition  
to the data latches for port A.  
Bit 7  
0
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
AWUL  
PTA2  
PTA5  
PTA4  
PTA3  
PTA1  
PTA0  
0
0
Unaffected by reset  
= Unimplemented  
Figure 4-2. Port A Data Register (PTA)  
AWUL — Auto Wakeup Latch  
This is a read-only bit which has the value of the auto wakeup interrupt request latch. The wakeup  
request signal is generated internally. There is no PTA6 port or any of the associated bits such as  
PTA6 data direction or pullup/down bits.  
1 = Auto wakeup interrupt request is pending  
0 = Auto wakeup interrupt request is not pending  
NOTE  
PTA5–PTA0 bits are not used in conjuction with the auto wakeup feature.  
To see a description of these bits, see 12.2.1 Port A Data Register.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
59  
Auto Wakeup Module (AWU)  
4.6.2 Keyboard Status and Control Register  
The keyboard status and control register (KBSCR):  
Flags keyboard/auto wakeup interrupt requests  
Acknowledges keyboard/auto wakeup interrupt requests  
Masks keyboard/auto wakeup interrupt requests  
Bit 7  
0
6
0
5
0
4
0
3
2
1
IMASKK  
0
Bit 0  
MODEK  
0
Read:  
Write:  
Reset:  
KEYF  
0
ACKK  
0
0
0
0
0
0
= Unimplemented  
Figure 4-3. Keyboard Status and Control Register (KBSCR)  
Bits 7–4 — Not used  
These read-only bits always read as 0s.  
KEYF — Keyboard Flag Bit  
This read-only bit is set when a keyboard interrupt is pending on port A or auto wakeup. Reset clears  
the KEYF bit.  
1 = Keyboard/auto wakeup interrupt pending  
0 = No keyboard/auto wakeup interrupt pending  
ACKK — Keyboard Acknowledge Bit  
Writing a 1 to this write-only bit clears the keyboard/auto wakeup interrupt request on port A and auto  
wakeup logic. ACKK always reads as 0. Reset clears ACKK.  
IMASKK— Keyboard Interrupt Mask Bit  
Writing a 1 to this read/write bit prevents the output of the keyboard interrupt mask from generating  
interrupt requests on port A or auto wakeup. Reset clears the IMASKK bit.  
1 = Keyboard/auto wakeup interrupt requests masked  
0 = Keyboard/auto wakeup interrupt requests not masked  
NOTE  
MODEK is not used in conjuction with the auto wakeup feature. For a  
description of this bit, see 9.8.1 Keyboard Status and Control Register  
(KBSCR).  
4.6.3 Keyboard Interrupt Enable Register  
The keyboard interrupt enable register (KBIER) enables or disables the auto wakeup to operate as a  
keyboard/auto wakeup interrupt input.  
Bit 7  
0
6
AWUIE  
0
5
KBIE5  
0
4
KBIE4  
0
3
KBIE3  
0
2
KBIE2  
0
1
KBIE1  
0
Bit 0  
KBIE0  
0
Read:  
Write:  
Reset:  
0
= Unimplemented  
Figure 4-4. Keyboard Interrupt Enable Register (KBIER)  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
60  
Freescale Semiconductor  
Registers  
AWUIE — Auto Wakeup Interrupt Enable Bit  
This read/write bit enables the auto wakeup interrupt input to latch interrupt requests. Reset clears  
AWUIE.  
1 = Auto wakeup enabled as interrupt input  
0 = Auto wakeup not enabled as interrupt input  
NOTE  
KBIE5–KBIE0 bits are not used in conjuction with the auto wakeup feature.  
For a description of these bits, see 9.8.2 Keyboard Interrupt Enable  
Register (KBIER).  
4.6.4 Configuration Register 2  
The configuration register 2 (CONFIG2), is used to allow the bus clock source to run in STOP. In this case,  
the clock, BUSCLKX4 will be used to drive the AWU request generator.  
Bit 7  
IRQPUD  
0
6
IRQEN  
0
5
R
0
4
R
0
3
R
0
2
R
0
1
Bit 0  
Read:  
Write:  
Reset:  
OSCENINSTOP RSTEN  
0
0
Figure 4-5. Configuration Register 2 (CONFIG2)  
OSCENINSTOP — Oscillator Enable in Stop Mode Bit  
OSCENINSTOP, when set, will allow the bus clock source (BUSCLKX4) to generate clocks for the  
AWU in stop mode. See 11.8.1 Oscillator Status and Control Register for information on enabling the  
external clock sources.  
1 = Oscillator enabled to operate during stop mode  
0 = Oscillator disabled during stop mode  
NOTE  
IRQPUD, IRQEN, and RSTEN bits are not used in conjuction with the auto  
wakeup feature. For a description of these bits, see Chapter 5  
Configuration Register (CONFIG).  
4.6.5 Configuration Register 1  
The configuration register 1 (CONFIG1), is used to select the period for the AWU. The timeout will be  
based on the COPRS bit along with the clock source for the AWU.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
COPRS  
LVISTOP LVIRSTD LVIPWRD LVITRIP  
SSREC  
STOP  
COPD  
Reset:  
POR:  
0
0
0
0
0
0
0
0
U
0
0
0
0
0
0
0
U = Unaffected  
Figure 4-6. Configuration Register 1 (CONFIG1)  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
61  
Auto Wakeup Module (AWU)  
COPRS (In Stop Mode) — Auto Wakeup Period Selection Bit, depends on OSCSTOPEN in  
CONFIG2 and bus clock source (BUSCLKX4).  
1 = Auto wakeup short cycle = (29) × (INTRCOSC or BUSCLKX4)  
0 = Auto wakeup long cycle = (214) × (INTRCOSC or BUSCLKX4)  
NOTE  
LVISTOP, LVIRST, LVIPWRD, LVITRIP, SSREC and COPD bits are not  
used in conjuction with the auto wakeup feature. For a description of these  
bits, see Chapter 5 Configuration Register (CONFIG).  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
62  
Freescale Semiconductor  
Chapter 5  
Configuration Register (CONFIG)  
5.1 Introduction  
This section describes the configuration registers (CONFIG1 and CONFIG2). The configuration registers  
enable or disable the following options:  
Stop mode recovery time (32 × BUSCLKX4 cycles or 4096 × BUSCLKX4 cycles)  
STOP instruction  
Computer operating properly module (COP)  
COP reset period (COPRS): (213–24) × BUSCLKX4 or (218–24) × BUSCLKX4  
Low-voltage inhibit (LVI) enable and trip voltage selection  
Auto wakeup timeout period  
Allow clock source to remain enabled in STOP  
Enable IRQ pin  
Disable IRQ pin pullup device  
Enable RST pin  
5.2 Functional Description  
The configuration registers are used in the initialization of various options. The configuration registers can  
be written once after each reset. Most of the configuration register bits are cleared during reset. Since the  
various options affect the operation of the microcontroller unit (MCU) it is recommended that this register  
be written immediately after reset. The configuration registers are located at $001E and $001F, and may  
be read at anytime.  
NOTE  
The CONFIG registers are one-time writable by the user after each reset.  
Upon a reset, the CONFIG registers default to predetermined settings as  
shown in Figure 5-1 and Figure 5-2.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
POR:  
IRQPUD  
IRQEN  
R
R
R
R
OSCENINSTOP RSTEN  
0
0
0
0
0
0
0
0
0
0
0
0
U
0
0
0
= Reserved  
U = Unaffected  
R
Figure 5-1. Configuration Register 2 (CONFIG2)  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
63  
Configuration Register (CONFIG)  
IRQPUD — IRQ Pin Pullup Control Bit  
1 = Internal pullup is disconnected  
0 = Internal pullup is connected between IRQ pin and VDD  
IRQEN — IRQ Pin Function Selection Bit  
1 = Interrupt request function active in pin  
0 = Interrupt request function inactive in pin  
OSCENINSTOP— Oscillator Enable in Stop Mode Bit  
OSCENINSTOP, when set, will allow the clock source to continue to generate clocks in stop mode.  
This function can be used to keep the auto-wakeup running while the rest of the microcontroller stops.  
When clear, the clock source is disabled when the microcontroller enters stop mode.  
1 = Oscillator enabled to operate during stop mode  
0 = Oscillator disabled during stop mode  
RSTEN — RST Pin Function Selection  
1 = Reset function active in pin  
0 = Reset function inactive in pin  
NOTE  
The RSTEN bit is cleared by a power-on reset (POR) only. Other resets will  
leave this bit unaffected.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
POR:  
COPRS  
LVISTOP LVIRSTD LVIPWRD LVITRIP  
SSREC  
STOP  
COPD  
0
0
0
0
0
0
0
U
0
0
0
0
0
0
0
0
U = Unaffected  
Figure 5-2. Configuration Register 1 (CONFIG1)  
COPRS (Out of Stop Mode) — COP Reset Period Selection Bit  
1 = COP reset short cycle = (213 – 24) × BUSCLKX4  
0 = COP reset long cycle = (218 – 24) × BUSCLKX4  
COPRS (In Stop Mode) — Auto Wakeup Period Selection Bit, depends on OSCSTOPEN in  
CONFIG2 and external clock source  
1 = Auto wakeup short cycle = (29) × (INTRCOSC or BUSCLKX4)  
0 = Auto wakeup long cycle = (214) × (INTRCOSC or BUSCLKX4)  
LVISTOP — LVI Enable in Stop Mode Bit  
When the LVIPWRD bit is clear, setting the LVISTOP bit enables the LVI to operate during stop mode.  
Reset clears LVISTOP.  
1 = LVI enabled during stop mode  
0 = LVI disabled during stop mode  
LVIRSTD — LVI Reset Disable Bit  
LVIRSTD disables the reset signal from the LVI module.  
1 = LVI module resets disabled  
0 = LVI module resets enabled  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
64  
Freescale Semiconductor  
Functional Description  
LVIPWRD — LVI Power Disable Bit  
LVIPWRD disables the LVI module.  
1 = LVI module power disabled  
0 = LVI module power enabled  
LVITRIP — LVI Trip Point Selection Bit  
LVITRIP selects the voltage operating mode of the LVI module. The voltage mode selected for the LVI  
should match the operating VDD for the LVI’s voltage trip points for each of the modes.  
1 = LVI operates for a 5-V protection  
0 = LVI operates for a 3.3-V protection  
NOTE  
The LVITRIP bit is cleared by a power-on reset (POR) only. Other resets  
will leave this bit unaffected.  
SSREC — Short Stop Recovery Bit  
SSREC enables the CPU to exit stop mode with a delay of 32 BUSCLKX4 cycles instead of a 4096  
BUSCLKX4 cycle delay.  
1 = Stop mode recovery after 32 BUSCLKX4 cycles  
0 = Stop mode recovery after 4096 BUSCLKX4 cycles  
NOTE  
Exiting stop mode by an LVI reset will result in the long stop recovery.  
STOP — STOP Instruction Enable Bit  
STOP enables the STOP instruction.  
1 = STOP instruction enabled  
0 = STOP instruction treated as illegal opcode  
COPD — COP Disable Bit  
COPD disables the COP module.  
1 = COP module disabled  
0 = COP module enabled  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
65  
Configuration Register (CONFIG)  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
66  
Chapter 6  
Computer Operating Properly (COP)  
6.1 Introduction  
The computer operating properly (COP) module contains a free-running counter that generates a reset if  
allowed to overflow. The COP module helps software recover from runaway code. Prevent a COP reset  
by clearing the COP counter periodically. The COP module can be disabled through the COPD bit in the  
configuration 1 (CONFIG1) register.  
6.2 Functional Description  
SIM MODULE  
SIM RESET CIRCUIT  
12-BIT SIM COUNTER  
BUSCLKX4  
RESET STATUS REGISTER  
INTERNAL RESET SOURCES(1)  
STOP INSTRUCTION  
COPCTL WRITE  
COP CLOCK  
COP MODULE  
6-BIT COP COUNTER  
COPEN (FROM SIM)  
COPD (FROM CONFIG1)  
CLEAR  
COP COUNTER  
RESET  
COPCTL WRITE  
COP RATE SELECT  
(COPRS FROM CONFIG1)  
1. See Chapter 13 System Integration Module (SIM) for more details.  
Figure 6-1. COP Block Diagram  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
67  
Computer Operating Properly (COP)  
The COP counter is a free-running 6-bit counter preceded by the 12-bit system integration module (SIM)  
counter. If not cleared by software, the COP counter overflows and generates an asynchronous reset after  
218 – 24 or 213 – 24 BUSCLKX4 cycles; depending on the state of the COP rate select bit, COPRS, in  
configuration register 1. With a 218 – 24 BUSCLKX4 cycle overflow option, the internal 12.8-MHz oscillator  
gives a COP timeout period of 20.48 ms. Writing any value to location $FFFF before an overflow occurs  
prevents a COP reset by clearing the COP counter and stages 12–5 of the SIM counter.  
NOTE  
Service the COP immediately after reset and before entering or after exiting  
stop mode to guarantee the maximum time before the first COP counter  
overflow.  
A COP reset pulls the RST pin low (if the RSTEN bit is set in the CONFIG1 register) for 32 × BUSCLKX4  
cycles and sets the COP bit in the reset status register (RSR). See 13.8.1 SIM Reset Status Register.  
NOTE  
Place COP clearing instructions in the main program and not in an interrupt  
subroutine. Such an interrupt subroutine could keep the COP from  
generating a reset even while the main program is not working properly.  
6.3 I/O Signals  
The following paragraphs describe the signals shown in Figure 6-1.  
6.3.1 BUSCLKX4  
BUSCLKX4 is the oscillator output signal. BUSCLKX4 frequency is equal to the crystal frequency or the  
RC-oscillator frequency.  
6.3.2 STOP Instruction  
The STOP instruction clears the SIM counter.  
6.3.3 COPCTL Write  
Writing any value to the COP control register (COPCTL) (see Figure 6-2) clears the COP counter and  
clears stages 12–5 of the SIM counter. Reading the COP control register returns the low byte of the reset  
vector.  
6.3.4 Power-On Reset  
The power-on reset (POR) circuit in the SIM clears the SIM counter 4096 × BUSCLKX4 cycles after power  
up.  
6.3.5 Internal Reset  
An internal reset clears the SIM counter and the COP counter.  
6.3.6 COPD (COP Disable)  
The COPD signal reflects the state of the COP disable bit (COPD) in the configuration register (CONFIG).  
See Chapter 5 Configuration Register (CONFIG).  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
68  
Freescale Semiconductor  
Interrupts  
6.3.7 COPRS (COP Rate Select)  
The COPRS signal reflects the state of the COP rate select bit (COPRS) in the configuration register 1  
(CONFIG1). See Chapter 5 Configuration Register (CONFIG).  
6.4 Interrupts  
The COP does not generate CPU interrupt requests.  
6.5 Monitor Mode  
The COP is disabled in monitor mode when VTST is present on the IRQ pin.  
6.6 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
6.6.1 Wait Mode  
The COP continues to operate during wait mode. To prevent a COP reset during wait mode, periodically  
clear the COP counter.  
6.6.2 Stop Mode  
Stop mode turns off the BUSCLKX4 input to the COP and clears the SIM counter. Service the COP  
immediately before entering or after exiting stop mode to ensure a full COP timeout period after entering  
or exiting stop mode.  
6.7 COP Module During Break Mode  
The COP is disabled during a break interrupt with monitor mode when BDCOP bit is set in break auxiliary  
register (BRKAR).  
6.8 Register  
The COP control register (COPCTL) is located at address $FFFF and overlaps the reset vector. Writing  
any value to $FFFF clears the COP counter and starts a new timeout period. Reading location $FFFF  
returns the low byte of the reset vector.  
Address: $FFFF  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
LOW BYTE OF RESET VECTOR  
CLEAR COP COUNTER  
Unaffected by reset  
Figure 6-2. COP Control Register (COPCTL)  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
69  
Computer Operating Properly (COP)  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
70  
Chapter 7  
Central Processor Unit (CPU)  
7.1 Introduction  
The M68HC08 CPU (central processor unit) is an enhanced and fully object-code-compatible version of  
the M68HC05 CPU. The CPU08 Reference Manual (document order number CPU08RM/AD) contains a  
description of the CPU instruction set, addressing modes, and architecture.  
7.2 Features  
Features of the CPU include:  
Object code fully upward-compatible with M68HC05 Family  
16-bit stack pointer with stack manipulation instructions  
16-bit index register with x-register manipulation instructions  
8-MHz CPU internal bus frequency  
64-Kbyte program/data memory space  
16 addressing modes  
Memory-to-memory data moves without using accumulator  
Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions  
Enhanced binary-coded decimal (BCD) data handling  
Modular architecture with expandable internal bus definition for extension of addressing range  
beyond 64 Kbytes  
Low-power stop and wait modes  
7.3 CPU Registers  
Figure 7-1 shows the five CPU registers. CPU registers are not part of the memory map.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
71  
Central Processor Unit (CPU)  
7
0
0
0
0
ACCUMULATOR (A)  
15  
15  
15  
H
X
INDEX REGISTER (H:X)  
STACK POINTER (SP)  
PROGRAM COUNTER (PC)  
CONDITION CODE REGISTER (CCR)  
7
0
V
1
1
H
I
N
Z
C
CARRY/BORROW FLAG  
ZERO FLAG  
NEGATIVE FLAG  
INTERRUPT MASK  
HALF-CARRY FLAG  
TWO’S COMPLEMENT OVERFLOW FLAG  
Figure 7-1. CPU Registers  
7.3.1 Accumulator  
The accumulator is a general-purpose 8-bit register. The CPU uses the accumulator to hold operands and  
the results of arithmetic/logic operations.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Unaffected by reset  
Figure 7-2. Accumulator (A)  
7.3.2 Index Register  
The 16-bit index register allows indexed addressing of a 64-Kbyte memory space. H is the upper byte of  
the index register, and X is the lower byte. H:X is the concatenated 16-bit index register.  
In the indexed addressing modes, the CPU uses the contents of the index register to determine the  
conditional address of the operand.  
The index register can serve also as a temporary data storage location.  
Bit  
15 14 13 12 11 10  
Bit  
0
9
0
8
0
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
0
0
0
0
0
0
X
X
X
X
X
X
X
X
X = Indeterminate  
Figure 7-3. Index Register (H:X)  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
72  
CPU Registers  
7.3.3 Stack Pointer  
The stack pointer is a 16-bit register that contains the address of the next location on the stack. During a  
reset, the stack pointer is preset to $00FF. The reset stack pointer (RSP) instruction sets the least  
significant byte to $FF and does not affect the most significant byte. The stack pointer decrements as data  
is pushed onto the stack and increments as data is pulled from the stack.  
In the stack pointer 8-bit offset and 16-bit offset addressing modes, the stack pointer can function as an  
index register to access data on the stack. The CPU uses the contents of the stack pointer to determine  
the conditional address of the operand.  
Bit  
15 14 13 12 11 10  
Bit  
0
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Figure 7-4. Stack Pointer (SP)  
NOTE  
The location of the stack is arbitrary and may be relocated anywhere in  
random-access memory (RAM). Moving the SP out of page 0 ($0000 to  
$00FF) frees direct address (page 0) space. For correct operation, the  
stack pointer must point only to RAM locations.  
7.3.4 Program Counter  
The program counter is a 16-bit register that contains the address of the next instruction or operand to be  
fetched.  
Normally, the program counter automatically increments to the next sequential memory location every  
time an instruction or operand is fetched. Jump, branch, and interrupt operations load the program  
counter with an address other than that of the next sequential location.  
During reset, the program counter is loaded with the reset vector address located at $FFFE and $FFFF.  
The vector address is the address of the first instruction to be executed after exiting the reset state.  
Bit  
15 14 13 12 11 10  
Bit  
0
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
Loaded with vector from $FFFE and $FFFF  
Figure 7-5. Program Counter (PC)  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
73  
Central Processor Unit (CPU)  
7.3.5 Condition Code Register  
The 8-bit condition code register contains the interrupt mask and five flags that indicate the results of the  
instruction just executed. Bits 6 and 5 are set permanently to 1. The following paragraphs describe the  
functions of the condition code register.  
Bit 7  
6
1
1
5
1
1
4
H
X
3
2
N
X
1
Z
X
Bit 0  
Read:  
Write:  
Reset:  
V
I
C
X
1
X
X = Indeterminate  
Figure 7-6. Condition Code Register (CCR)  
V — Overflow Flag  
The CPU sets the overflow flag when a two's complement overflow occurs. The signed branch  
instructions BGT, BGE, BLE, and BLT use the overflow flag.  
1 = Overflow  
0 = No overflow  
H — Half-Carry Flag  
The CPU sets the half-carry flag when a carry occurs between accumulator bits 3 and 4 during an  
add-without-carry (ADD) or add-with-carry (ADC) operation. The half-carry flag is required for  
binary-coded decimal (BCD) arithmetic operations. The DAA instruction uses the states of the H and  
C flags to determine the appropriate correction factor.  
1 = Carry between bits 3 and 4  
0 = No carry between bits 3 and 4  
I — Interrupt Mask  
When the interrupt mask is set, all maskable CPU interrupts are disabled. CPU interrupts are enabled  
when the interrupt mask is cleared. When a CPU interrupt occurs, the interrupt mask is set  
automatically after the CPU registers are saved on the stack, but before the interrupt vector is fetched.  
1 = Interrupts disabled  
0 = Interrupts enabled  
NOTE  
To maintain M6805 Family compatibility, the upper byte of the index  
register (H) is not stacked automatically. If the interrupt service routine  
modifies H, then the user must stack and unstack H using the PSHH and  
PULH instructions.  
After the I bit is cleared, the highest-priority interrupt request is serviced first.  
A return-from-interrupt (RTI) instruction pulls the CPU registers from the stack and restores the  
interrupt mask from the stack. After any reset, the interrupt mask is set and can be cleared only by the  
clear interrupt mask software instruction (CLI).  
N — Negative Flag  
The CPU sets the negative flag when an arithmetic operation, logic operation, or data manipulation  
produces a negative result, setting bit 7 of the result.  
1 = Negative result  
0 = Non-negative result  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
74  
Freescale Semiconductor  
Arithmetic/Logic Unit (ALU)  
Z — Zero Flag  
The CPU sets the zero flag when an arithmetic operation, logic operation, or data manipulation  
produces a result of $00.  
1 = Zero result  
0 = Non-zero result  
C — Carry/Borrow Flag  
The CPU sets the carry/borrow flag when an addition operation produces a carry out of bit 7 of the  
accumulator or when a subtraction operation requires a borrow. Some instructions — such as bit test  
and branch, shift, and rotate — also clear or set the carry/borrow flag.  
1 = Carry out of bit 7  
0 = No carry out of bit 7  
7.4 Arithmetic/Logic Unit (ALU)  
The ALU performs the arithmetic and logic operations defined by the instruction set.  
Refer to the CPU08 Reference Manual (document order number CPU08RM/AD) for a description of the  
instructions and addressing modes and more detail about the architecture of the CPU.  
7.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
7.5.1 Wait Mode  
The WAIT instruction:  
Clears the interrupt mask (I bit) in the condition code register, enabling interrupts. After exit from  
wait mode by interrupt, the I bit remains clear. After exit by reset, the I bit is set.  
Disables the CPU clock  
7.5.2 Stop Mode  
The STOP instruction:  
Clears the interrupt mask (I bit) in the condition code register, enabling external interrupts. After  
exit from stop mode by external interrupt, the I bit remains clear. After exit by reset, the I bit is set.  
Disables the CPU clock  
After exiting stop mode, the CPU clock begins running after the oscillator stabilization delay.  
7.6 CPU During Break Interrupts  
If a break module is present on the MCU, the CPU starts a break interrupt by:  
Loading the instruction register with the SWI instruction  
Loading the program counter with $FFFC:$FFFD or with $FEFC:$FEFD in monitor mode  
The break interrupt begins after completion of the CPU instruction in progress. If the break address  
register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately.  
A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU  
to normal operation if the break interrupt has been deasserted.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
75  
Central Processor Unit (CPU)  
7.7 Instruction Set Summary  
Table 7-1 provides a summary of the M68HC08 instruction set.  
Table 7-1. Instruction Set Summary (Sheet 1 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
ADC #opr  
IMM  
DIR  
EXT  
IX2  
A9 ii  
B9 dd  
C9 hh ll  
D9 ee ff  
E9 ff  
2
3
4
4
3
2
4
5
ADC opr  
ADC opr  
ADC opr,X  
ADC opr,X  
ADC ,X  
Add with Carry  
A (A) + (M) + (C)  
IX1  
IX  
SP1  
SP2  
F9  
ADC opr,SP  
ADC opr,SP  
9EE9 ff  
9ED9 ee ff  
ADD #opr  
ADD opr  
ADD opr  
ADD opr,X  
ADD opr,X  
ADD ,X  
ADD opr,SP  
ADD opr,SP  
IMM  
DIR  
EXT  
IX2  
AB ii  
BB dd  
CB hh ll  
DB ee ff  
EB ff  
FB  
9EEB ff  
9EDB ee ff  
2
3
4
4
3
2
4
5
Add without Carry  
A (A) + (M)  
IX1  
IX  
SP1  
SP2  
AIS #opr  
AIX #opr  
Add Immediate Value (Signed) to SP  
Add Immediate Value (Signed) to H:X  
– IMM  
– IMM  
A7 ii  
AF ii  
2
2
SP (SP) + (16 « M)  
H:X (H:X) + (16 « M)  
AND #opr  
AND opr  
IMM  
DIR  
EXT  
A4 ii  
B4 dd  
C4 hh ll  
D4 ee ff  
E4 ff  
2
3
4
4
3
2
4
5
AND opr  
AND opr,X  
AND opr,X  
AND ,X  
AND opr,SP  
AND opr,SP  
IX2  
Logical AND  
A (A) & (M)  
0
IX1  
IX  
F4  
SP1  
SP2  
9EE4 ff  
9ED4 ee ff  
ASL opr  
ASLA  
DIR  
INH  
38 dd  
48  
4
1
1
4
3
5
ASLX  
Arithmetic Shift Left  
(Same as LSL)  
INH  
58  
C
0
ASL opr,X  
ASL ,X  
IX1  
68 ff  
78  
b7  
b7  
b0  
b0  
IX  
ASL opr,SP  
SP1  
9E68 ff  
ASR opr  
ASRA  
ASRX  
ASR opr,X  
ASR opr,X  
ASR opr,SP  
DIR  
INH  
37 dd  
47  
4
1
1
4
3
5
INH  
57  
C
Arithmetic Shift Right  
IX1  
67 ff  
77  
IX  
SP1  
9E67 ff  
BCC rel  
Branch if Carry Bit Clear  
PC (PC) + 2 + rel ? (C) = 0  
– REL  
24 rr  
3
DIR (b0) 11 dd  
DIR (b1) 13 dd  
DIR (b2) 15 dd  
DIR (b3) 17 dd  
DIR (b4) 19 dd  
DIR (b5) 1B dd  
DIR (b6) 1D dd  
DIR (b7) 1F dd  
4
4
4
4
4
4
4
4
BCLR n, opr  
Clear Bit n in M  
Mn 0  
BCS rel  
BEQ rel  
Branch if Carry Bit Set (Same as BLO)  
Branch if Equal  
PC (PC) + 2 + rel ? (C) = 1  
PC (PC) + 2 + rel ? (Z) = 1  
– REL  
– REL  
25 rr  
27 rr  
3
3
Branch if Greater Than or Equal To  
(Signed Operands)  
BGE opr  
BGT opr  
– REL  
– REL  
90 rr  
92 rr  
3
PC (PC) + 2 + rel ? (N V) = 0  
Branch if Greater Than (Signed  
Operands)  
3
3
PC (PC) + 2 + rel ? (Z) | (N V) = 0  
BHCC rel  
BHCS rel  
BHI rel  
Branch if Half Carry Bit Clear  
Branch if Half Carry Bit Set  
Branch if Higher  
PC (PC) + 2 + rel ? (H) = 0  
PC (PC) + 2 + rel ? (H) = 1  
PC (PC) + 2 + rel ? (C) | (Z) = 0  
– REL  
– REL  
– REL  
28 rr  
29 rr  
22 rr  
3
3
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
76  
Instruction Set Summary  
Table 7-1. Instruction Set Summary (Sheet 2 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
Branch if Higher or Same  
(Same as BCC)  
BHS rel  
PC (PC) + 2 + rel ? (C) = 0  
– REL  
24 rr  
3
BIH rel  
BIL rel  
Branch if IRQ Pin High  
Branch if IRQ Pin Low  
PC (PC) + 2 + rel ? IRQ = 1  
PC (PC) + 2 + rel ? IRQ = 0  
– REL  
– REL  
2F rr  
2E rr  
3
3
BIT #opr  
BIT opr  
IMM  
DIR  
EXT  
A5 ii  
B5 dd  
C5 hh ll  
D5 ee ff  
E5 ff  
2
3
4
4
3
2
4
5
BIT opr  
BIT opr,X  
BIT opr,X  
BIT ,X  
BIT opr,SP  
BIT opr,SP  
IX2  
Bit Test  
(A) & (M)  
0
IX1  
IX  
F5  
SP1  
SP2  
9EE5 ff  
9ED5 ee ff  
Branch if Less Than or Equal To  
(Signed Operands)  
BLE opr  
– REL  
93 rr  
3
PC (PC) + 2 + rel ? (Z) | (N V) = 1  
BLO rel  
BLS rel  
BLT opr  
BMC rel  
BMI rel  
BMS rel  
BNE rel  
BPL rel  
BRA rel  
Branch if Lower (Same as BCS)  
Branch if Lower or Same  
Branch if Less Than (Signed Operands)  
Branch if Interrupt Mask Clear  
Branch if Minus  
PC (PC) + 2 + rel ? (C) = 1  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
25 rr  
23 rr  
91 rr  
2C rr  
2B rr  
2D rr  
26 rr  
2A rr  
20 rr  
3
3
3
3
3
3
3
3
3
PC (PC) + 2 + rel ? (C) | (Z) = 1  
PC (PC) + 2 + rel ? (N V) =1  
PC (PC) + 2 + rel ? (I) = 0  
PC (PC) + 2 + rel ? (N) = 1  
PC (PC) + 2 + rel ? (I) = 1  
PC (PC) + 2 + rel ? (Z) = 0  
PC (PC) + 2 + rel ? (N) = 0  
PC (PC) + 2 + rel  
Branch if Interrupt Mask Set  
Branch if Not Equal  
Branch if Plus  
Branch Always  
DIR (b0) 01 dd rr  
DIR (b1) 03 dd rr  
DIR (b2) 05 dd rr  
DIR (b3) 07 dd rr  
DIR (b4) 09 dd rr  
DIR (b5) 0B dd rr  
DIR (b6) 0D dd rr  
DIR (b7) 0F dd rr  
5
5
5
5
5
5
5
5
BRCLR n,opr,rel Branch if Bit n in M Clear  
PC (PC) + 3 + rel ? (Mn) = 0  
PC (PC) + 2  
BRN rel  
Branch Never  
– REL  
21 rr  
3
DIR (b0) 00 dd rr  
DIR (b1) 02 dd rr  
DIR (b2) 04 dd rr  
DIR (b3) 06 dd rr  
DIR (b4) 08 dd rr  
DIR (b5) 0A dd rr  
DIR (b6) 0C dd rr  
DIR (b7) 0E dd rr  
5
5
5
5
5
5
5
5
BRSET n,opr,rel Branch if Bit n in M Set  
PC (PC) + 3 + rel ? (Mn) = 1  
DIR (b0) 10 dd  
DIR (b1) 12 dd  
DIR (b2) 14 dd  
DIR (b3) 16 dd  
DIR (b4) 18 dd  
DIR (b5) 1A dd  
DIR (b6) 1C dd  
DIR (b7) 1E dd  
4
4
4
4
4
4
4
4
BSET n,opr  
BSR rel  
Set Bit n in M  
Mn 1  
PC (PC) + 2; push (PCL)  
SP (SP) – 1; push (PCH)  
SP (SP) – 1  
Branch to Subroutine  
– REL  
AD rr  
4
PC (PC) + rel  
CBEQ opr,rel  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 3 + rel ? (X) – (M) = $00  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 2 + rel ? (A) – (M) = $00  
PC (PC) + 4 + rel ? (A) – (M) = $00  
DIR  
31 dd rr  
41 ii rr  
51 ii rr  
61 ff rr  
71 rr  
5
4
4
5
4
6
CBEQA #opr,rel  
CBEQX #opr,rel  
CBEQ opr,X+,rel  
CBEQ X+,rel  
IMM  
IMM  
Compare and Branch if Equal  
IX1+  
IX+  
CBEQ opr,SP,rel  
SP1  
9E61 ff rr  
CLC  
CLI  
Clear Carry Bit  
C 0  
I 0  
0
0 INH  
– INH  
98  
9A  
1
2
Clear Interrupt Mask  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
77  
Central Processor Unit (CPU)  
Table 7-1. Instruction Set Summary (Sheet 3 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
CLR opr  
CLRA  
M $00  
A $00  
X $00  
H $00  
M $00  
M $00  
M $00  
DIR  
INH  
INH  
3F dd  
4F  
3
1
1
1
3
2
4
CLRX  
5F  
CLRH  
Clear  
0
0
1
– INH  
IX1  
8C  
CLR opr,X  
CLR ,X  
6F ff  
7F  
IX  
SP1  
CLR opr,SP  
9E6F ff  
CMP #opr  
CMP opr  
CMP opr  
CMP opr,X  
CMP opr,X  
CMP ,X  
CMP opr,SP  
CMP opr,SP  
IMM  
DIR  
EXT  
A1 ii  
B1 dd  
C1 hh ll  
D1 ee ff  
E1 ff  
2
3
4
4
3
2
4
5
IX2  
Compare A with M  
(A) – (M)  
IX1  
IX  
F1  
SP1  
SP2  
9EE1 ff  
9ED1 ee ff  
COM opr  
COMA  
M (M) = $FF – (M)  
A (A) = $FF – (M)  
X (X) = $FF – (M)  
M (M) = $FF – (M)  
M (M) = $FF – (M)  
M (M) = $FF – (M)  
DIR  
INH  
33 dd  
43  
4
1
1
4
3
5
COMX  
INH  
53  
Complement (One’s Complement)  
Compare H:X with M  
0
1
COM opr,X  
COM ,X  
COM opr,SP  
IX1  
63 ff  
73  
9E63 ff  
IX  
SP1  
CPHX #opr  
CPHX opr  
IMM  
65 ii ii+1  
75 dd  
3
4
(H:X) – (M:M + 1)  
DIR  
CPX #opr  
CPX opr  
IMM  
DIR  
EXT  
A3 ii  
B3 dd  
C3 hh ll  
D3 ee ff  
E3 ff  
2
3
4
4
3
2
4
5
CPX opr  
CPX ,X  
IX2  
Compare X with M  
(X) – (M)  
(A)10  
CPX opr,X  
CPX opr,X  
CPX opr,SP  
CPX opr,SP  
IX1  
IX  
F3  
SP1  
SP2  
9EE3 ff  
9ED3 ee ff  
DAA  
Decimal Adjust A  
U
INH  
72  
2
A (A) – 1 or M (M) – 1 or X (X) – 1  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 4 + rel ? (result) 0  
5
3
3
5
4
6
DBNZ opr,rel  
DBNZA rel  
DIR  
INH  
3B dd rr  
4B rr  
DBNZX rel  
Decrement and Branch if Not Zero  
– INH  
IX1  
5B rr  
DBNZ opr,X,rel  
DBNZ X,rel  
6B ff rr  
7B rr  
IX  
SP1  
DBNZ opr,SP,rel  
9E6B ff rr  
DEC opr  
DECA  
M (M) – 1  
A (A) – 1  
X (X) – 1  
M (M) – 1  
M (M) – 1  
M (M) – 1  
DIR  
INH  
3A dd  
4A  
4
1
1
4
3
5
DECX  
INH  
5A  
Decrement  
Divide  
DEC opr,X  
DEC ,X  
DEC opr,SP  
IX1  
6A ff  
7A  
9E6A ff  
IX  
SP1  
A (H:A)/(X)  
H Remainder  
DIV  
INH  
52  
7
EOR #opr  
EOR opr  
IMM  
DIR  
EXT  
A8 ii  
B8 dd  
C8 hh ll  
D8 ee ff  
E8 ff  
2
3
4
4
3
2
4
5
EOR opr  
EOR opr,X  
EOR opr,X  
EOR ,X  
EOR opr,SP  
EOR opr,SP  
IX2  
Exclusive OR M with A  
0
A (A M)  
IX1  
IX  
F8  
SP1  
SP2  
9EE8 ff  
9ED8 ee ff  
INC opr  
INCA  
M (M) + 1  
A (A) + 1  
X (X) + 1  
M (M) + 1  
M (M) + 1  
M (M) + 1  
DIR  
INH  
3C dd  
4C  
4
1
1
4
3
5
INCX  
INH  
5C  
Increment  
INC opr,X  
INC ,X  
IX1  
6C ff  
7C  
IX  
INC opr,SP  
SP1  
9E6C ff  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
78  
Instruction Set Summary  
Table 7-1. Instruction Set Summary (Sheet 4 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
JMP opr  
DIR  
BC dd  
CC hh ll  
DC ee ff  
EC ff  
2
3
4
3
2
JMP opr  
JMP opr,X  
JMP opr,X  
JMP ,X  
EXT  
Jump  
PC Jump Address  
– IX2  
IX1  
IX  
FC  
JSR opr  
JSR opr  
JSR opr,X  
JSR opr,X  
JSR ,X  
DIR  
EXT  
– IX2  
IX1  
BD dd  
CD hh ll  
DD ee ff  
ED ff  
4
5
6
5
4
PC (PC) + n (n = 1, 2, or 3)  
Push (PCL); SP (SP) – 1  
Push (PCH); SP (SP) – 1  
PC Unconditional Address  
Jump to Subroutine  
IX  
FD  
LDA #opr  
LDA opr  
IMM  
DIR  
EXT  
A6 ii  
B6 dd  
C6 hh ll  
D6 ee ff  
E6 ff  
2
3
4
4
3
2
4
5
LDA opr  
LDA opr,X  
LDA opr,X  
LDA ,X  
LDA opr,SP  
LDA opr,SP  
IX2  
Load A from M  
Load H:X from M  
Load X from M  
A (M)  
H:X ← (M:M + 1)  
X (M)  
0
0
0
IX1  
IX  
F6  
SP1  
SP2  
9EE6 ff  
9ED6 ee ff  
LDHX #opr  
LDHX opr  
IMM  
45 ii jj  
55 dd  
3
4
DIR  
LDX #opr  
LDX opr  
LDX opr  
LDX opr,X  
LDX opr,X  
LDX ,X  
LDX opr,SP  
LDX opr,SP  
IMM  
DIR  
EXT  
AE ii  
BE dd  
CE hh ll  
DE ee ff  
EE ff  
FE  
9EEE ff  
9EDE ee ff  
2
3
4
4
3
2
4
5
IX2  
IX1  
IX  
SP1  
SP2  
LSL opr  
LSLA  
DIR  
INH  
38 dd  
48  
4
1
1
4
3
5
LSLX  
Logical Shift Left  
(Same as ASL)  
INH  
58  
C
0
LSL opr,X  
LSL ,X  
LSL opr,SP  
IX1  
68 ff  
78  
9E68 ff  
b7  
b7  
b0  
b0  
IX  
SP1  
LSR opr  
LSRA  
DIR  
INH  
34 dd  
44  
4
1
1
4
3
5
LSRX  
INH  
54  
0
C
Logical Shift Right  
0
LSR opr,X  
LSR ,X  
IX1  
64 ff  
74  
IX  
LSR opr,SP  
SP1  
9E64 ff  
MOV opr,opr  
MOV opr,X+  
MOV #opr,opr  
MOV X+,opr  
DD  
4E dd dd  
5E dd  
5
4
4
4
(M)Destination (M)Source  
DIX+  
Move  
0
0
IMD  
IX+D  
6E ii dd  
7E dd  
H:X (H:X) + 1 (IX+D, DIX+)  
X:A (X) × (A)  
MUL  
Unsigned multiply  
0 INH  
42  
5
NEG opr  
NEGA  
DIR  
INH  
30 dd  
40  
4
1
1
4
3
5
M –(M) = $00 – (M)  
A –(A) = $00 – (A)  
X –(X) = $00 – (X)  
M –(M) = $00 – (M)  
M –(M) = $00 – (M)  
NEGX  
INH  
50  
Negate (Two’s Complement)  
NEG opr,X  
NEG ,X  
NEG opr,SP  
IX1  
60 ff  
70  
9E60 ff  
IX  
SP1  
NOP  
NSA  
No Operation  
Nibble Swap A  
None  
– INH  
– INH  
9D  
62  
1
3
A (A[3:0]:A[7:4])  
ORA #opr  
ORA opr  
IMM  
DIR  
EXT  
AA ii  
BA dd  
CA hh ll  
DA ee ff  
EA ff  
2
3
4
4
3
2
4
5
ORA opr  
ORA opr,X  
ORA opr,X  
ORA ,X  
ORA opr,SP  
ORA opr,SP  
IX2  
Inclusive OR A and M  
A (A) | (M)  
0
IX1  
IX  
FA  
SP1  
SP2  
9EEA ff  
9EDA ee ff  
PSHA  
PSHH  
PSHX  
Push A onto Stack  
Push H onto Stack  
Push X onto Stack  
Push (A); SP (SP) – 1  
Push (H); SP (SP) – 1  
Push (X); SP (SP) – 1  
– INH  
– INH  
– INH  
87  
8B  
89  
2
2
2
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
79  
Central Processor Unit (CPU)  
Table 7-1. Instruction Set Summary (Sheet 5 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
PULA  
PULH  
PULX  
Pull A from Stack  
Pull H from Stack  
Pull X from Stack  
SP (SP + 1); Pull (A)  
SP (SP + 1); Pull (H)  
SP (SP + 1); Pull (X)  
– INH  
– INH  
– INH  
86  
8A  
88  
2
2
2
ROL opr  
ROLA  
DIR  
INH  
39 dd  
49  
4
1
1
4
3
5
ROLX  
INH  
59  
C
Rotate Left through Carry  
Rotate Right through Carry  
ROL opr,X  
ROL ,X  
ROL opr,SP  
IX1  
69 ff  
79  
9E69 ff  
b7  
b0  
IX  
SP1  
ROR opr  
RORA  
DIR  
INH  
36 dd  
46  
4
1
1
4
3
5
RORX  
INH  
56  
C
ROR opr,X  
ROR ,X  
IX1  
66 ff  
76  
b7  
b0  
IX  
ROR opr,SP  
SP1  
9E66 ff  
RSP  
Reset Stack Pointer  
Return from Interrupt  
SP $FF  
– INH  
9C  
1
SP (SP) + 1; Pull (CCR)  
SP (SP) + 1; Pull (A)  
SP (SP) + 1; Pull (X)  
SP (SP) + 1; Pull (PCH)  
SP (SP) + 1; Pull (PCL)  
RTI  
INH  
80  
7
SP SP + 1; Pull (PCH)  
SP SP + 1; Pull (PCL)  
RTS  
Return from Subroutine  
Subtract with Carry  
– INH  
81  
4
SBC #opr  
SBC opr  
SBC opr  
SBC opr,X  
SBC opr,X  
SBC ,X  
SBC opr,SP  
SBC opr,SP  
IMM  
DIR  
EXT  
A2 ii  
B2 dd  
C2 hh ll  
D2 ee ff  
E2 ff  
2
3
4
4
3
2
4
5
IX2  
A (A) – (M) – (C)  
IX1  
IX  
SP1  
SP2  
F2  
9EE2 ff  
9ED2 ee ff  
SEC  
SEI  
Set Carry Bit  
C 1  
I 1  
1
1 INH  
– INH  
99  
9B  
1
2
Set Interrupt Mask  
STA opr  
DIR  
EXT  
IX2  
B7 dd  
C7 hh ll  
D7 ee ff  
E7 ff  
3
4
4
3
2
4
5
STA opr  
STA opr,X  
STA opr,X  
STA ,X  
STA opr,SP  
STA opr,SP  
Store A in M  
M (A)  
0
– IX1  
IX  
F7  
SP1  
SP2  
9EE7 ff  
9ED7 ee ff  
STHX opr  
Store H:X in M  
(M:M + 1) (H:X)  
0
0
– DIR  
35 dd  
4
Enable Interrupts, Stop Processing,  
Refer to MCU Documentation  
STOP  
I 0; Stop Processing  
– INH  
8E  
1
STX opr  
DIR  
EXT  
IX2  
BF dd  
CF hh ll  
DF ee ff  
EF ff  
3
4
4
3
2
4
5
STX opr  
STX opr,X  
STX opr,X  
STX ,X  
STX opr,SP  
STX opr,SP  
Store X in M  
M (X)  
0
– IX1  
IX  
FF  
SP1  
SP2  
9EEF ff  
9EDF ee ff  
SUB #opr  
SUB opr  
SUB opr  
SUB opr,X  
SUB opr,X  
SUB ,X  
SUB opr,SP  
SUB opr,SP  
IMM  
DIR  
EXT  
A0 ii  
B0 dd  
C0 hh ll  
D0 ee ff  
E0 ff  
2
3
4
4
3
2
4
5
IX2  
Subtract  
A (A) – (M)  
IX1  
IX  
F0  
SP1  
SP2  
9EE0 ff  
9ED0 ee ff  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
80  
Opcode Map  
Table 7-1. Instruction Set Summary (Sheet 6 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
PC (PC) + 1; Push (PCL)  
SP (SP) – 1; Push (PCH)  
SP (SP) – 1; Push (X)  
SP (SP) – 1; Push (A)  
SWI  
Software Interrupt  
1
– INH  
83  
9
SP (SP) – 1; Push (CCR)  
SP (SP) – 1; I 1  
PCH Interrupt Vector High Byte  
PCL Interrupt Vector Low Byte  
TAP  
TAX  
TPA  
Transfer A to CCR  
Transfer A to X  
CCR (A)  
X (A)  
INH  
– INH  
– INH  
84  
97  
85  
2
1
1
Transfer CCR to A  
A (CCR)  
TST opr  
TSTA  
DIR  
INH  
3D dd  
4D  
3
1
1
3
2
4
TSTX  
INH  
5D  
Test for Negative or Zero  
(A) – $00 or (X) – $00 or (M) – $00  
0
TST opr,X  
TST ,X  
TST opr,SP  
IX1  
6D ff  
7D  
9E6D ff  
IX  
SP1  
TSX  
TXA  
TXS  
Transfer SP to H:X  
Transfer X to A  
H:X (SP) + 1  
A (X)  
– INH  
– INH  
– INH  
95  
9F  
94  
2
1
2
Transfer H:X to SP  
(SP) (H:X) – 1  
I bit 0; Inhibit CPU clocking  
WAIT  
Enable Interrupts; Wait for Interrupt  
0
– INH  
8F  
1
until interrupted  
A
Accumulator  
n
Any bit  
C
Carry/borrow bit  
opr Operand (one or two bytes)  
PC Program counter  
CCR  
dd  
Condition code register  
Direct address of operand  
Direct address of operand and relative offset of branch instruction  
Direct to direct addressing mode  
Direct addressing mode  
Direct to indexed with post increment addressing mode  
High and low bytes of offset in indexed, 16-bit offset addressing  
Extended addressing mode  
Offset byte in indexed, 8-bit offset addressing  
Half-carry bit  
Index register high byte  
PCH Program counter high byte  
PCL Program counter low byte  
REL Relative addressing mode  
rel  
rr  
SP1 Stack pointer, 8-bit offset addressing mode  
SP2 Stack pointer 16-bit offset addressing mode  
SP Stack pointer  
U
V
X
Z
&
|
dd rr  
DD  
DIR  
DIX+  
ee ff  
EXT  
ff  
Relative program counter offset byte  
Relative program counter offset byte  
H
H
Undefined  
Overflow bit  
Index register low byte  
Zero bit  
hh ll  
I
High and low bytes of operand address in extended addressing  
Interrupt mask  
Immediate operand byte  
Immediate source to direct destination addressing mode  
ii  
Logical AND  
Logical OR  
IMD  
IMM  
INH  
IX  
Immediate addressing mode  
Inherent addressing mode  
Indexed, no offset addressing mode  
Indexed, no offset, post increment addressing mode  
Logical EXCLUSIVE OR  
Contents of  
( )  
–( ) Negation (two’s complement)  
#
IX+  
Immediate value  
IX+D  
IX1  
IX1+  
IX2  
M
Indexed with post increment to direct addressing mode  
Indexed, 8-bit offset addressing mode  
Indexed, 8-bit offset, post increment addressing mode  
Indexed, 16-bit offset addressing mode  
Memory location  
«
?
Sign extend  
Loaded with  
If  
Concatenated with  
Set or cleared  
Not affected  
:
N
Negative bit  
7.8 Opcode Map  
See Table 7-2.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
81  
Table 7-2. Opcode Map  
Bit Manipulation Branch  
Read-Modify-Write  
Control  
Register/Memory  
DIR  
DIR  
REL  
DIR  
3
INH  
4
INH  
IX1  
SP1  
9E6  
IX  
7
INH  
INH  
IMM  
A
DIR  
B
EXT  
C
IX2  
SP2  
IX1  
E
SP1  
9EE  
IX  
F
MSB  
0
1
2
5
6
8
9
D
9ED  
LSB  
5
4
3
4
1
NEGA  
INH  
1
NEGX  
INH  
4
5
3
7
3
2
3
4
4
5
3
4
2
0
BRSET0 BSET0  
BRA  
NEG  
NEG  
NEG  
NEG  
RTI  
BGE  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
3
DIR  
5
2
DIR  
4
2
2
2
2
2
2
2
2
REL 2 DIR  
1
1
2
IX1 3 SP1 1 IX  
5
1
1
INH  
2
2
2
2
1
1
REL 2 IMM 2 DIR  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
EXT 3 IX2  
4
4
4
4
4
4
4
4
4
4
4
4
SP2 2 IX1  
3
3
3
3
3
3
3
3
3
3
3
3
SP1 1 IX  
3
BRN  
REL 3 DIR  
5
4
4
6
4
4
3
BLT  
2
3
4
4
5
3
4
2
1
2
BRCLR0 BCLR0  
CBEQ CBEQA CBEQX CBEQ  
CBEQ  
CBEQ  
RTS  
CMP  
CMP  
CMP  
CMP  
CMP  
CMP  
CMP  
CMP  
3
DIR  
5
2
DIR  
4
3
IMM 3 IMM 3 IX1+  
4
SP1 2 IX+  
INH  
REL 2 IMM 2 DIR  
EXT 3 IX2  
SP2 2 IX1  
SP1 1 IX  
3
5
7
3
2
DAA  
3
BGT  
2
SBC  
3
SBC  
4
SBC  
EXT 3 IX2  
4
CPX  
EXT 3 IX2  
4
AND  
EXT 3 IX2  
4
BIT  
EXT 3 IX2  
4
LDA  
EXT 3 IX2  
4
STA  
EXT 3 IX2  
4
EOR  
EXT 3 IX2  
4
ADC  
EXT 3 IX2  
4
ORA  
EXT 3 IX2  
4
ADD  
EXT 3 IX2  
3
JMP  
EXT 3 IX2  
5
JSR  
EXT 3 IX2  
4
LDX  
EXT 3 IX2  
4
STX  
EXT 3 IX2  
4
SBC  
5
SBC  
SP2 2 IX1  
5
CPX  
SP2 2 IX1  
5
AND  
SP2 2 IX1  
5
BIT  
SP2 2 IX1  
5
LDA  
SP2 2 IX1  
5
STA  
SP2 2 IX1  
5
EOR  
SP2 2 IX1  
5
ADC  
SP2 2 IX1  
3
SBC  
4
SBC  
SP1 1 IX  
4
CPX  
SP1 1 IX  
4
AND  
SP1 1 IX  
4
BIT  
SP1 1 IX  
4
LDA  
SP1 1 IX  
4
STA  
SP1 1 IX  
4
EOR  
SP1 1 IX  
4
ADC  
SP1 1 IX  
2
SBC  
BRSET1 BSET1  
BHI  
MUL  
INH  
DIV  
INH  
NSA  
3
DIR  
5
2
DIR  
4
REL  
1
1
1
2
2
3
2
2
2
2
2
INH  
1
INH  
3
REL 2 IMM 2 DIR  
3
BLS  
REL 2 DIR  
3
BCC  
REL 2 DIR  
3
BCS  
REL 2 DIR  
3
BNE  
REL 2 DIR  
4
1
1
4
COM  
IX1  
4
LSR  
IX1  
3
CPHX  
IMM  
4
ROR  
IX1  
4
ASR  
IX1  
4
LSL  
IX1  
4
ROL  
IX1  
4
DEC  
IX1  
5
9
3
BLE  
2
CPX  
3
CPX  
4
CPX  
3
CPX  
2
CPX  
3
BRCLR1 BCLR1  
COM  
COMA  
COMX  
COM  
COM  
SWI  
3
DIR  
5
2
DIR  
4
1
INH  
1
INH  
3
3
SP1 1 IX  
1
1
1
1
1
1
1
1
1
1
INH  
REL 2 IMM 2 DIR  
4
LSR  
1
LSRA  
INH  
1
LSRX  
INH  
5
LSR  
SP1 1 IX  
3
LSR  
2
2
2
AND  
IMM 2 DIR  
3
AND  
4
AND  
3
AND  
2
AND  
4
BRSET2 BSET2  
TAP  
TXS  
3
DIR  
5
2
DIR  
4
1
3
1
INH  
INH  
2
2
2
2
2
2
2
2
4
3
4
4
1
2
2
BIT  
3
BIT  
4
BIT  
3
BIT  
2
BIT  
5
BRCLR2 BCLR2  
STHX  
LDHX  
LDHX  
CPHX  
TPA  
TSX  
3
DIR  
5
2
DIR  
4
IMM 2 DIR  
2
DIR  
3
INH  
INH  
IMM 2 DIR  
4
ROR  
1
1
5
2
PULA  
INH  
2
PSHA  
INH  
2
PULX  
INH  
2
PSHX  
INH  
2
PULH  
INH  
2
PSHH  
INH  
1
CLRH  
INH  
2
LDA  
IMM 2 DIR  
2
AIS  
IMM 2 DIR  
2
EOR  
IMM 2 DIR  
2
ADC  
IMM 2 DIR  
2
ORA  
IMM 2 DIR  
2
ADD  
IMM 2 DIR  
3
LDA  
4
LDA  
3
LDA  
2
LDA  
6
BRSET3 BSET3  
RORA  
RORX  
ROR  
SP1 1 IX  
5
ASR  
SP1 1 IX  
5
LSL  
SP1 1 IX  
5
ROL  
SP1 1 IX  
ROR  
3
DIR  
5
2
DIR  
4
1
INH  
1
INH  
3
3
3
3
3
4
3
3
3
BEQ  
REL 2 DIR  
3
4
ASR  
1
ASRA  
INH  
1
LSLA  
INH  
1
ROLA  
INH  
1
DECA  
INH  
1
ASRX  
INH  
1
LSLX  
INH  
1
ROLX  
INH  
1
DECX  
INH  
3
ASR  
1
3
STA  
4
STA  
3
STA  
2
STA  
7
BRCLR3 BCLR3  
TAX  
3
DIR  
5
2
DIR  
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
INH  
4
LSL  
3
LSL  
1
3
EOR  
4
EOR  
3
EOR  
2
EOR  
8
BRSET4 BSET4 BHCC  
CLC  
3
DIR  
5
2
DIR  
4
2
REL 2 DIR  
3
INH  
4
ROL  
3
ROL  
1
3
ADC  
4
ADC  
3
ADC  
2
ADC  
9
BRCLR4 BCLR4 BHCS  
SEC  
3
DIR  
5
2
DIR  
4
2
2
2
2
2
2
2
REL 2 DIR  
INH  
3
BPL  
REL 2 DIR  
3
BMI  
REL 3 DIR  
4
DEC  
5
DEC  
SP1 1 IX  
3
DEC  
2
3
ORA  
4
ORA  
5
ORA  
SP2 2 IX1  
5
ADD  
SP2 2 IX1  
3
ORA  
4
ORA  
SP1 1 IX  
4
ADD  
SP1 1 IX  
2
ORA  
A
B
C
D
E
F
BRSET5 BSET5  
CLI  
3
DIR  
5
2
DIR  
4
INH  
5
3
3
5
6
4
2
3
ADD  
4
ADD  
3
ADD  
2
ADD  
BRCLR5 BCLR5  
DBNZ DBNZA DBNZX DBNZ  
DBNZ  
DBNZ  
SEI  
3
DIR  
5
2
DIR  
4
2
1
1
3
1
INH  
1
2
1
1
2
1
INH  
1
3
2
2
3
2
IX1  
4
SP1 2 IX  
INH  
3
4
INC  
5
INC  
SP1 1 IX  
4
TST  
SP1 1 IX  
3
INC  
1
2
JMP  
4
JMP  
3
JMP  
2
BRSET6 BSET6  
BMC  
INCA  
INCX  
INC  
RSP  
JMP  
3
DIR  
5
2
DIR  
4
REL 2 DIR  
INH  
1
INH  
1
IX1  
3
INH  
2
DIR  
4
2
2
IX1  
5
1
1
IX  
3
BMS  
3
TST  
2
TST  
1
4
BSR  
REL 2 DIR  
2
LDX  
IMM 2 DIR  
2
AIX  
IMM 2 DIR  
6
JSR  
4
JSR  
IX  
2
LDX  
BRCLR6 BCLR6  
TSTA  
TSTX  
TST  
NOP  
JSR  
JSR  
3
DIR  
5
2
DIR  
4
REL 2 DIR  
3
INH  
5
INH  
4
IX1  
4
INH  
2
2
2
IX1  
3
4
1
STOP  
INH  
1
WAIT  
INH  
3
LDX  
4
LDX  
5
LDX  
SP2 2 IX1  
5
STX  
SP2 2 IX1  
4
LDX  
SP1 1 IX  
4
STX  
SP1 1 IX  
BRSET7 BSET7  
BIL  
MOV  
MOV  
MOV  
MOV  
LDX  
*
1
TXA  
INH  
3
DIR  
5
2
DIR  
4
REL  
3
DD  
DIX+  
IMD  
3
2
IX+D  
1
1
4
4
3
3
3
CLR  
1
CLRA  
INH  
1
CLRX  
INH  
4
CLR  
SP1 1 IX  
2
CLR  
3
STX  
4
STX  
3
STX  
2
STX  
BRCLR7 BCLR7  
BIH  
CLR  
IX1  
3
DIR  
2
DIR  
REL 2 DIR  
3
1
INH Inherent  
REL Relative  
SP1 Stack Pointer, 8-Bit Offset  
SP2 Stack Pointer, 16-Bit Offset  
IX+ Indexed, No Offset with  
Post Increment  
IX1+ Indexed, 1-Byte Offset with  
Post Increment  
MSB  
LSB  
0
High Byte of Opcode in Hexadecimal  
Cycles  
IMM Immediate  
DIR Direct  
IX  
Indexed, No Offset  
IX1 Indexed, 8-Bit Offset  
IX2 Indexed, 16-Bit Offset  
IMD Immediate-Direct  
EXT Extended  
DD Direct-Direct  
IX+D Indexed-Direct DIX+ Direct-Indexed  
*Pre-byte for stack pointer indexed instructions  
5
Low Byte of Opcode in Hexadecimal  
0
BRSET0 Opcode Mnemonic  
DIR Number of Bytes / Addressing Mode  
3
Chapter 8  
External Interrupt (IRQ)  
8.1 Introduction  
The IRQ (external interrupt) module provides a maskable interrupt input.  
IRQ functionality is enabled by setting configuration register 2 (CONFIG2) IRQEN bit accordingly. A zero  
disables the IRQ function and IRQ will assume the other shared functionalities. A one enables the IRQ  
function. See Chapter 5 Configuration Register (CONFIG) for more information on enabling the IRQ pin.  
The IRQ pin shares its pin with general-purpose input/output (I/O) port pins. See Figure 8-1 for port  
location of this shared pin.  
8.2 Features  
Features of the IRQ module include:  
A dedicated external interrupt pin IRQ  
IRQ interrupt control bits  
Programmable edge-only or edge and level interrupt sensitivity  
Automatic interrupt acknowledge  
Internal pullup device  
8.3 Functional Description  
A low level applied to the external interrupt request (IRQ) pin can latch a CPU interrupt request. Figure 8-2  
shows the structure of the IRQ module.  
Interrupt signals on the IRQ pin are latched into the IRQ latch. The IRQ latch remains set until one of the  
following actions occurs:  
IRQ vector fetch. An IRQ vector fetch automatically generates an interrupt acknowledge signal that  
clears the latch that caused the vector fetch.  
Software clear. Software can clear the IRQ latch by writing a 1 to the ACK bit in the interrupt status  
and control register (INTSCR).  
Reset. A reset automatically clears the IRQ latch.  
The external IRQ pin is falling edge sensitive out of reset and is software-configurable to be either falling  
edge or falling edge and low level sensitive. The MODE bit in INTSCR controls the triggering sensitivity  
of the IRQ pin.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
83  
External Interrupt (IRQ)  
PTA0/AD0/KBI0  
PTA1/AD1/TCH1/KBI1  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
INTERNAL OSC  
INTERNAL CLOCK SOURCE  
4, 8, 12.8, or 25.6 MHz  
KEYBOARD INTERRUPT  
MODULE  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
EXTERNAL INTERRUPT  
MODULE  
M68HC08 CPU  
PTB0/TCH0  
PTB1  
AUTO WAKEUP  
MODULE  
PTB2/AD4  
PTB3/AD5  
PTB4/SLCRX  
LOW-VOLTAGE  
INHIBIT  
PTB5/SLCTX  
PTB6  
2-CHANNEL 16-BIT  
TIMER MODULE  
PTB7  
COP  
MODULE  
MC68HC908QL4  
4096 BYTES  
MC68HC908QL4  
128 BYTES  
USER RAM  
USER FLASH  
6-CHANNEL  
10-BIT ADC  
SLAVE LIN INTERFACE  
CONTROLLER  
VDD  
VSS  
POWER SUPPLY  
DEVELOPMENT SUPPORT  
MONITOR ROM  
BREAK MODULE  
RST, IRQ: Pins have internal pull up device  
All port pins have programmable pull up device (pullup/down on port A)  
PTA[0:5]: Higher current sink and source capability  
Figure 8-1. Block Diagram Highlighting IRQ Block and Pin  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
84  
Freescale Semiconductor  
Functional Description  
RESET  
ACK  
TO CPU FOR  
BIL/BIH  
INSTRUCTIONS  
IRQ VECTOR  
FETCH  
DECODER  
VDD  
INTERNAL  
PULLUP  
DEVICE  
VDD  
IRQF  
CLR  
D
Q
IRQ  
INTERRUPT  
REQUEST  
SYNCHRONIZER  
CK  
IRQ  
IMASK  
IRQ LATCH  
MODE  
TO MODE  
SELECT  
LOGIC  
HIGH  
VOLTAGE  
DETECT  
Figure 8-2. IRQ Module Block Diagram  
8.3.1 MODE = 1  
If the MODE bit is set, the IRQ pin is both falling edge sensitive and low level sensitive. With MODE set,  
both of the following actions must occur to clear the IRQ interrupt request:  
Return of the IRQ pin to a high level. As long as the IRQ pin is low, the IRQ request remains active.  
IRQ vector fetch or software clear. An IRQ vector fetch generates an interrupt acknowledge signal  
to clear the IRQ latch. Software generates the interrupt acknowledge signal by writing a 1 to ACK  
in INTSCR. The ACK bit is useful in applications that poll the IRQ pin and require software to clear  
the IRQ latch. Writing to ACK prior to leaving an interrupt service routine can also prevent spurious  
interrupts due to noise. Setting ACK does not affect subsequent transitions on the IRQ pin. A falling  
edge that occurs after writing to ACK latches another interrupt request. If the IRQ mask bit, IMASK,  
is clear, the CPU loads the program counter with the IRQ vector address.  
The IRQ vector fetch or software clear and the return of the IRQ pin to a high level may occur in any order.  
The interrupt request remains pending as long as the IRQ pin is low. A reset will clear the IRQ latch and  
the MODE control bit, thereby clearing the interrupt even if the pin stays low.  
Use the BIH or BIL instruction to read the logic level on the IRQ pin.  
8.3.2 MODE = 0  
If the MODE bit is clear, the IRQ pin is falling edge sensitive only. With MODE clear, an IRQ vector fetch  
or software clear immediately clears the IRQ latch.  
The IRQF bit in INTSCR can be read to check for pending interrupts. The IRQF bit is not affected by  
IMASK, which makes it useful in applications where polling is preferred.  
NOTE  
When using the level-sensitive interrupt trigger, avoid false IRQ interrupts  
by masking interrupt requests in the interrupt routine.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
85  
External Interrupt (IRQ)  
8.4 Interrupts  
The following IRQ source can generate interrupt requests:  
Interrupt flag (IRQF) — The IRQF bit is set when the IRQ pin is asserted based on the IRQ mode..  
The IRQ interrupt mask bit, IMASK, is used to enable or disable IRQ interrupt requests.  
8.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
8.5.1 Wait Mode  
The IRQ module remains active in wait mode. Clearing IMASK in INTSCR enables IRQ interrupt requests  
to bring the MCU out of wait mode.  
8.5.2 Stop Mode  
The IRQ module remains active in stop mode. Clearing IMASK in INTSCR enables IRQ interrupt requests  
to bring the MCU out of stop mode.  
8.6 IRQ Module During Break Interrupts  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status  
bits during the break state. See BFCR in the SIM section of this data sheet.  
To allow software to clear status bits during a break interrupt, write a 1 to BCFE. If a status bit is cleared  
during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a 0 to BCFE. With BCFE cleared (its default state),  
software can read and write registers during the break state without affecting status bits. Some status bits  
have a two-step read/write clearing procedure. If software does the first step on such a bit before the  
break, the bit cannot change during the break state as long as BCFE is cleared. After the break, doing the  
second step clears the status bit.  
8.7 I/O Signals  
The IRQ module does not share its pin with any module on this MCU.  
8.7.1 IRQ Input Pins (IRQ)  
The IRQ pin provides a maskable external interrupt source. The IRQ pin contains an internal pullup  
device.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
86  
Freescale Semiconductor  
Registers  
8.8 Registers  
The IRQ status and control register (INTSCR) controls and monitors operation of the IRQ module. The  
INTSCR:  
Shows the state of the IRQ flag  
Clears the IRQ latch  
Masks the IRQ interrupt request  
Controls triggering sensitivity of the IRQ interrupt pin  
Bit 7  
0
6
0
5
0
4
0
3
2
0
1
IMASK  
0
Bit 0  
MODE  
0
Read:  
Write:  
Reset:  
IRQF  
ACK  
0
0
0
0
0
0
= Unimplemented  
Figure 8-3. IRQ Status and Control Register (INTSCR)  
IRQF — IRQ Flag Bit  
This read-only status bit is set when the IRQ interrupt is pending.  
1 = IRQ interrupt pending  
0 = IRQ interrupt not pending  
ACK — IRQ Interrupt Request Acknowledge Bit  
Writing a 1 to this write-only bit clears the IRQ latch. ACK always reads 0.  
IMASK — IRQ Interrupt Mask Bit  
Writing a 1 to this read/write bit disables the IRQ interrupt request.  
1 = IRQ interrupt request disabled  
0 = IRQ interrupt request enabled  
MODE — IRQ Edge/Level Select Bit  
This read/write bit controls the triggering sensitivity of the IRQ pin.  
1 = IRQ interrupt request on falling edges and low levels  
0 = IRQ interrupt request on falling edges only  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
87  
External Interrupt (IRQ)  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
88  
Chapter 9  
Keyboard Interrupt Module (KBI)  
9.1 Introduction  
The keyboard interrupt module (KBI) provides independently maskable external interrupts.  
The KBI shares its pins with general-purpose input/output (I/O) port pins. See Figure 9-1 for port location  
of these shared pins.  
9.2 Features  
Features of the keyboard interrupt module include:  
Keyboard interrupt pins with separate keyboard interrupt enable bits and one keyboard interrupt  
mask  
Programmable edge-only or edge and level interrupt sensitivity  
Edge sensitivity programmable for rising or falling edge  
Level sensitivity programmable for high or low level  
KBI can be configured to use either internal or external pullup/pulldown devices using PTAPUE,  
see 12.2.3 Port A Input Pullup/Down Enable Register  
When in internal device is enabled, pullup or pulldown device automatically configured based  
on the polarity of edge or level detect  
Exit from low-power modes  
9.3 Functional Description  
The keyboard interrupt module controls the enabling/disabling of interrupt functions on the KBI pins.  
These pins can be enabled/disabled independently of each other. See Figure 9-2.  
9.3.1 Keyboard Operation  
Writing to the KBIEx bits in the keyboard interrupt enable register (KBIER) independently enables or  
disables each KBI pin. The polarity of the keyboard interrupt is controlled using the KBIPx bits in the  
keyboard interrupt polarity register (KBIPR). Edge-only or edge and level sensitivity is controlled using the  
MODEK bit in the keyboard status and control register (KBISCR).  
Enabling a keyboard interrupt pin also enables its internal pullup or pulldown device based on the polarity  
enabled and the corresponding port pullup/down enable bit, PTAPUEx see 12.2.3 Port A Input  
Pullup/Down Enable Register. On falling edge or low level detection, a pullup device is configured. On  
rising edge or high level detection, a pulldown device is configured.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
89  
Keyboard Interrupt Module (KBI)  
PTA0/AD0/KBI0  
PTA1/AD1/TCH1/KBI1  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
INTERNAL OSC  
INTERNAL CLOCK SOURCE  
4, 8, 12.8, or 25.6 MHz  
KEYBOARD INTERRUPT  
MODULE  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
EXTERNAL INTERRUPT  
MODULE  
M68HC08 CPU  
PTB0/TCH0  
PTB1  
AUTO WAKEUP  
MODULE  
PTB2/AD4  
PTB3/AD5  
PTB4/SLCRX  
PTB5/SLCTX  
PTB6  
LOW-VOLTAGE  
INHIBIT  
2-CHANNEL 16-BIT  
TIMER MODULE  
PTB7  
COP  
MODULE  
MC68HC908QL4  
4096 BYTES  
MC68HC908QL4  
128 BYTES  
USER FLASH  
USER RAM  
6-CHANNEL  
10-BIT ADC  
SLAVE LIN INTERFACE  
CONTROLLER  
VDD  
POWER SUPPLY  
VSS  
DEVELOPMENT SUPPORT  
MONITOR ROM  
BREAK MODULE  
RST, IRQ: Pins have internal pull up device  
All port pins have programmable pull up device (pullup/down on port A)  
PTA[0:5]: Higher current sink and source capability  
Figure 9-1. Block Diagram Highlighting KBI Block and Pins  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
90  
Freescale Semiconductor  
Functional Description  
The keyboard interrupt latch is set when one or more enabled keyboard interrupt inputs are asserted.  
If the keyboard interrupt sensitivity is edge-only, for KBIPx = 0, a falling (for KBIPx = 1, a rising)  
edge on a keyboard interrupt input does not latch an interrupt request if another enabled keyboard  
pin is already asserted. To prevent losing an interrupt request on one input because another input  
remains asserted, software can disable the latter input while it is asserted.  
If the keyboard interrupt is edge and level sensitive, an interrupt request is present as long as any  
enabled keyboard interrupt input is asserted.  
INTERNAL BUS  
VECTOR FETCH  
DECODER  
ACKK  
RESET  
1
0
KBI0  
VDD  
S
KBIE0  
KEYF  
CLR  
TO PULLUP/  
PULLDOWN ENABLE  
(see Note)  
D
Q
SYNCHRONIZER  
KBIP0  
CK  
1
0
IMASKK  
KBI LATCH  
KBIx  
KEYBOARD  
INTERRUPT  
REQUEST  
S
KBIEx  
MODEK  
TO PULLUP/  
PULLDOWN ENABLE  
(see Note)  
KBIPx  
AWUIREQ  
(SEE Figure 4-1)  
NOTE:  
To enable internal pullup/pulldown, requires both the KBIPx and the corresponding PTAPUEN to both be set.  
Figure 9-2. Keyboard Interrupt Block Diagram  
9.3.1.1 MODEK = 1  
If the MODEK bit is set, the keyboard interrupt inputs are both edge and level sensitive. The KBIPx bit will  
determine whether a edge sensitive pin detects rising or falling edges and on level sensitive pins whether  
the pin detects low or high levels. With MODEK set, both of the following actions must occur to clear a  
keyboard interrupt request:  
Return of all enabled keyboard interrupt inputs to a deasserted level. As long as any enabled  
keyboard interrupt pin is asserted, the keyboard interrupt remains active.  
Vector fetch or software clear. A KBI vector fetch generates an interrupt acknowledge signal to  
clear the KBI latch. Software generates the interrupt acknowledge signal by writing a 1 to ACKK in  
KBSCR. The ACKK bit is useful in applications that poll the keyboard interrupt inputs and require  
software to clear the KBI latch. Writing to ACKK prior to leaving an interrupt service routine can  
also prevent spurious interrupts due to noise. Setting ACKK does not affect subsequent transitions  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
91  
Keyboard Interrupt Module (KBI)  
on the keyboard interrupt inputs. An edge detect that occurs after writing to ACKK latches another  
interrupt request. If the keyboard interrupt mask bit, IMASKK, is clear, the CPU loads the program  
counter with the KBI vector address.  
The KBI vector fetch or software clear and the return of all enabled keyboard interrupt pins to a deasserted  
level may occur in any order.  
Reset clears the keyboard interrupt request and the MODEK bit, clearing the interrupt request even if a  
keyboard interrupt input stays asserted.  
9.3.1.2 MODEK = 0  
If the MODEK bit is clear, the keyboard interrupt inputs are edge sensitive. The KBIPx bit will determine  
whether an edge sensitive pin detects rising or falling edges. A KBI vector fetch or software clear  
immediately clears the KBI latch.  
The keyboard flag bit (KEYF) in KBSCR can be read to check for pending interrupts. The KEYF bit is not  
affected by IMASKK, which makes it useful in applications where polling is preferred.  
NOTE  
Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding  
keyboard interrupt pin to be an input, overriding the data direction register.  
However, the data direction register bit must be a 0 for software to read the  
pin.  
9.3.2 Keyboard Initialization  
When a keyboard interrupt pin is enabled, it takes time for the internal pullup or pulldown device if selected  
to pull the pin to its deasserted level. Therefore a false interrupt can occur as soon as the pin is enabled.  
To prevent a false interrupt on keyboard initialization:  
1. Mask keyboard interrupts by setting IMASKK in KBSCR.  
2. Enable the KBI polarity by setting the appropriate KBIPx bits in KBIPR.  
3. Enable the KBI pins by setting the appropriate KBIEx bits in KBIER.  
4. Write to ACKK in KBSCR to clear any false interrupts.  
5. Clear IMASKK.  
An interrupt signal on an edge sensitive pin can be acknowledged immediately after enabling the pin. An  
interrupt signal on an edge and level sensitive pin must be acknowledged after a delay that depends on  
the external load.  
9.4 Interrupts  
The following KBI source can generate interrupt requests:  
Keyboard flag (KEYF) — The KEYF bit is set when any enabled KBI pin is asserted based on the  
KBI mode and pin polarity. The keyboard interrupt mask bit, IMASKK, is used to enable or disable  
KBI interrupt requests.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
92  
Freescale Semiconductor  
Low-Power Modes  
9.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
9.5.1 Wait Mode  
The KBI module remains active in wait mode. Clearing IMASKK in KBSCR enables keyboard interrupt  
requests to bring the MCU out of wait mode.  
9.5.2 Stop Mode  
The KBI module remains active in stop mode. Clearing IMASKK in KBSCR enables keyboard interrupt  
requests to bring the MCU out of stop mode.  
9.6 KBI During Break Interrupts  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status  
bits during the break state. See BFCR in the SIM section of this data sheet.  
To allow software to clear status bits during a break interrupt, write a 1 to BCFE. If a status bit is cleared  
during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a 0 to BCFE. With BCFE cleared (its default state),  
software can read and write registers during the break state without affecting status bits. Some status bits  
have a two-step read/write clearing procedure. If software does the first step on such a bit before the  
break, the bit cannot change during the break state as long as BCFE is cleared. After the break, doing the  
second step clears the status bit.  
9.7 I/O Signals  
The KBI module can share its pins with the general-purpose I/O pins. See Figure 9-1 for the port pins that  
are shared.  
9.7.1 KBI Input Pins (KBI5:KBI0)  
Each KBI pin is independently programmable as an external interrupt source. KBI pin polarity can be  
controlled independently. Each KBI pin when enabled can be configured to use an internal pullup/pulldown  
device using the corresponding PTAPUEx bit see 12.2.3 Port A Input Pullup/Down Enable Register. The  
selection of pullup or pulldown is automatically configured to match the polarity selected in KBIPR.  
9.8 Registers  
The following registers control and monitor operation of the KBI module:  
KBSCR (keyboard interrupt status and control register)  
KBIER (keyboard interrupt enable register)  
KBIPR (keyboard interrupt polarity register)  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
93  
Keyboard Interrupt Module (KBI)  
9.8.1 Keyboard Status and Control Register (KBSCR)  
Features of the KBSCR:  
Flags keyboard interrupt requests  
Acknowledges keyboard interrupt requests  
Masks keyboard interrupt requests  
Controls keyboard interrupt triggering sensitivity  
Bit 7  
0
6
0
5
0
4
0
3
2
1
IMASKK  
0
Bit 0  
MODEK  
0
Read:  
Write:  
Reset:  
KEYF  
0
ACKK  
0
0
0
0
0
0
= Unimplemented  
Figure 9-3. Keyboard Status and Control Register (KBSCR)  
Bits 7–4 — Not used  
KEYF — Keyboard Flag Bit  
This read-only bit is set when a keyboard interrupt is pending.  
1 = Keyboard interrupt pending  
0 = No keyboard interrupt pending  
ACKK — Keyboard Acknowledge Bit  
Writing a 1 to this write-only bit clears the KBI request. ACKK always reads 0.  
IMASKK— Keyboard Interrupt Mask Bit  
Writing a 1 to this read/write bit prevents the output of the KBI latch from generating interrupt requests.  
1 = Keyboard interrupt requests disabled  
0 = Keyboard interrupt requests enabled  
MODEK — Keyboard Triggering Sensitivity Bit  
This read/write bit controls the triggering sensitivity of the keyboard interrupt pins.  
1 = Keyboard interrupt requests on edge and level  
0 = Keyboard interrupt requests on edge only  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
94  
Freescale Semiconductor  
Registers  
9.8.2 Keyboard Interrupt Enable Register (KBIER)  
KBIER enables or disables each keyboard interrupt pin.  
Bit 7  
0
6
AWUIE  
0
5
KBIE5  
0
4
KBIE4  
0
3
KBIE3  
0
2
KBIE2  
0
1
KBIE1  
0
Bit 0  
KBIE0  
0
Read:  
Write:  
Reset:  
0
= Unimplemented  
Figure 9-4. Keyboard Interrupt Enable Register (KBIER)  
KBIE5–KBIE0 — Keyboard Interrupt Enable Bits  
Each of these read/write bits enables the corresponding keyboard interrupt pin to latch KBI interrupt  
requests.  
1 = KBIx pin enabled as keyboard interrupt pin  
0 = KBIx pin not enabled as keyboard interrupt pin  
NOTE  
KBIEx bit does not automatically enable the internal pullup/pulldown  
device. Internal pullup/pulldown device is selected using the corresponding  
PTAPUEx bit. Refer to PTAPUE bit description, see 12.2.3 Port A Input  
Pullup/Down Enable Register.  
AWUIE bit is not used in conjunction with the keyboard interrupt feature. To  
see a description of this bit, see Chapter 4 Auto Wakeup Module (AWU)  
9.8.3 Keyboard Interrupt Polarity Register (KBIPR)  
KBIPR determines the polarity of the enabled keyboard interrupt pin and enables the appropriate pullup  
or pulldown device.  
Bit 7  
0
6
0
5
KBIP5  
0
4
KBIP4  
0
3
KBIP3  
0
2
KBIP2  
0
1
KBIP1  
0
Bit 0  
KBIP0  
0
Read:  
Write:  
Reset:  
0
0
= Unimplemented  
Figure 9-5. Keyboard Interrupt Polarity Register (KBIPR)  
KBIP5–KBIP0 — Keyboard Interrupt Polarity Bits  
Each of these read/write bits enables the polarity of the keyboard interrupt detection.  
1 = Keyboard polarity is high level and/or rising edge. Port pulldown is enabled if the corresponding  
PTAPUE bit is set.  
0 = Keyboard polarity is low level and/or falling edge. Port pullup is enabled if the corresponding  
PTAPUE bit is set.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
95  
Keyboard Interrupt Module (KBI)  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
96  
Chapter 10  
Low-Voltage Inhibit (LVI)  
10.1 Introduction  
The low-voltage inhibit (LVI) module is provided as a system protection mechanism to prevent the MCU  
from operating below a certain operating supply voltage level. The module has several configuration  
options to allow functionality to be tailored to different system level demands.  
The configuration registers (see Chapter 5 Configuration Register (CONFIG)) contain control bits for this  
module.  
10.2 Features  
Features of the LVI module include:  
Programmable LVI reset  
Selectable LVI trip voltage  
Programmable stop mode operation  
10.3 Functional Description  
Figure 10-1 shows the structure of the LVI module. LVISTOP, LVIPWRD, LVITRIP, and LVIRSTD are  
user selectable options found in the configuration register.  
VDD  
STOP INSTRUCTION  
LVISTOP  
FROM CONFIGURATION REGISTER  
FROM CONFIGURATION REGISTER  
LVIRSTD  
LVIPWRD  
FROM CONFIGURATION REGISTER  
0 IF VDD > VTRIPR  
LVI RESET  
LOW VDD  
DETECTOR  
1 IF VDD VTRIPF  
LVIOUT  
LVITRIP  
FROM CONFIGURATION REGISTER  
Figure 10-1. LVI Module Block Diagram  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
97  
Low-Voltage Inhibit (LVI)  
The LVI module contains a bandgap reference circuit and comparator. When the LVITRIP bit is cleared,  
the default state at power-on reset, VTRIPF is configured for the lower VDD operating range. The actual  
trip points are specified in 17.5 5-V DC Electrical Characteristics and 17.8 3.3-V DC Electrical  
Characteristics.  
Because the default LVI trip point after power-on reset is configured for low voltage operation, a system  
requiring high voltage LVI operation must set the LVITRIP bit during system initialization. VDD must be  
above the LVI trip rising voltage, VTRIPR, for the high voltage operating range or the MCU will immediately  
go into LVI reset.  
After an LVI reset occurs, the MCU remains in reset until VDD rises above VTRIPR. See Chapter 13 System  
Integration Module (SIM) for the reset recovery sequence.  
The output of the comparator controls the state of the LVIOUT flag in the LVI status register (LVISR) and  
can be used for polling LVI operation when the LVI reset is disabled.  
The LVI is enabled out of reset. The following bits located in the configuration register can alter the default  
conditions.  
Setting the LVI power disable bit, LVIPWRD, disables the LVI.  
Setting the LVI reset disable bit, LVIRSTD, prevents the LVI module from generating a reset.  
Setting the LVI enable in stop mode bit, LVISTOP, enables the LVI to operate in stop mode.  
Setting the LVI trip point bit, LVITRIP, configures the trip point voltage (VTRIPF) for the higher VDD  
operating range.  
10.3.1 Polled LVI Operation  
In applications that can operate at VDD levels below the VTRIPF level, software can monitor VDD by polling  
the LVIOUT bit. In the configuration register, LVIPWRD must be cleared to enable the LVI module, and  
LVIRSTD must be set to disable LVI resets.  
10.3.2 Forced Reset Operation  
In applications that require VDD to remain above the VTRIPF level, enabling LVI resets allows the LVI  
module to reset the MCU when VDD falls below the VTRIPF level. In the configuration register, LVIPWRD  
and LVIRSTD must be cleared to enable the LVI module and to enable LVI resets.  
10.3.3 LVI Hysteresis  
The LVI has hysteresis to maintain a stable operating condition. After the LVI has triggered (by having  
VDD fall below VTRIPF), the MCU will remain in reset until VDD rises above the rising trip point voltage,  
VTRIPR. This prevents a condition in which the MCU is continually entering and exiting reset if VDD is  
approximately equal to VTRIPF. VTRIPR is greater than VTRIPF by the typical hysteresis voltage, VHYS  
.
10.3.4 LVI Trip Selection  
LVITRIP in the configuration register selects the LVI protection range. The default setting out of reset is  
for the low voltage range. Because LVITRIP is in a write-once configuration register, the protection range  
cannot be changed after initialization.  
NOTE  
The MCU is guaranteed to operate at a minimum supply voltage. The trip  
point (VTRIPF) may be lower than this. See Chapter 17 Electrical  
Specifications for the actual trip point voltages.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
98  
Freescale Semiconductor  
LVI Interrupts  
10.4 LVI Interrupts  
The LVI module does not generate interrupt requests.  
10.5 Low-Power Modes  
The STOP and WAIT instructions put the MCU in low power-consumption standby modes.  
10.5.1 Wait Mode  
If enabled, the LVI module remains active in wait mode. If enabled to generate resets, the LVI module can  
generate a reset and bring the MCU out of wait mode.  
10.5.2 Stop Mode  
If the LVIPWRD bit in the configuration register is cleared and the LVISTOP bit in the configuration  
register is set, the LVI module remains active. If enabled to generate resets, the LVI module can generate  
a reset and bring the MCU out of stop mode.  
10.6 Registers  
The LVI status register (LVISR) contains a status bit that is useful when the LVI is enabled and LVI reset  
is disabled.  
Bit 7  
Read: LVIOUT  
Write:  
6
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
R
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 10-2. LVI Status Register (LVISR)  
LVIOUT — LVI Output Bit  
This read-only flag becomes set when the VDD voltage falls below the VTRIPF trip voltage and is cleared  
when VDD voltage rises above VTRIPR. (See Table 10-1).  
Table 10-1. LVIOUT Bit Indication  
VDD  
LVIOUT  
VDD > VTRIPR  
0
VDD < VTRIPF  
1
VTRIPF < VDD < VTRIPR  
Previous value  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
99  
Low-Voltage Inhibit (LVI)  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
100  
Chapter 11  
Oscillator Module (OSC)  
11.1 Introduction  
The oscillator (OSC) module is used to provide a stable clock source for the MCU system and bus.  
The OSC shares its pins with general-purpose input/output (I/O) port pins. See Figure 11-1 for port  
location of these shared pins. The OSC2EN bit is located in the port A pull enable register (PTAPUEN)  
on this MCU. See Chapter 12 Input/Output Ports (PORTS) for information on PTAPUEN register.  
11.2 Features  
The bus clock frequency is one fourth of any of these clock source options:  
1. Internal oscillator: An internally generated, fixed frequency clock, trimmable to ± 0.4%. There are  
four choices for the internal oscillator, 25.6 MHz, 12.8 MHz, 8 MHz or 4 MHz. The 12.8-MHz  
internal oscillator is the default option out of reset.  
2. External oscillator: An external clock that can be driven directly into OSC1.  
3. External RC: A built-in oscillator module (RC oscillator) that requires an external R connection only.  
The capacitor is internal to the chip.  
4. External crystal: A built-in XTAL oscillator that requires an external crystal or ceramic-resonator.  
There are three crystal frequency ranges supported, 8–32 MHz, 1–8 MHz, and 32–100 kHz.  
11.3 Functional Description  
The oscillator contains these major subsystems:  
Internal oscillator circuit  
Internal or external clock switch control  
External clock circuit  
External crystal circuit  
External RC clock circuit  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
101  
Oscillator Module (OSC)  
PTA0/AD0/KBI0  
PTA1/AD1/TCH1/KBI1  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
INTERNAL OSC  
INTERNAL CLOCK SOURCE  
4, 8, 12.8, or 25.6 MHz  
KEYBOARD INTERRUPT  
MODULE  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
EXTERNAL INTERRUPT  
MODULE  
M68HC08 CPU  
PTB0/TCH0  
PTB1  
AUTO WAKEUP  
MODULE  
PTB2/AD4  
PTB3/AD5  
PTB4/SLCRX  
LOW-VOLTAGE  
INHIBIT  
PTB5/SLCTX  
PTB6  
2-CHANNEL 16-BIT  
TIMER MODULE  
PTB7  
COP  
MODULE  
MC68HC908QL4  
4096 BYTES  
MC68HC908QL4  
128 BYTES  
USER RAM  
USER FLASH  
6-CHANNEL  
10-BIT ADC  
SLAVE LIN INTERFACE  
CONTROLLER  
VDD  
VSS  
POWER SUPPLY  
DEVELOPMENT SUPPORT  
MONITOR ROM  
BREAK MODULE  
RST, IRQ: Pins have internal pull up device  
All port pins have programmable pull up device (pullup/down on port A)  
PTA[0:5]: Higher current sink and source capability  
Figure 11-1. Block Diagram Highlighting OSC Block and Pins  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
102  
Functional Description  
11.3.1 Internal Signal Definitions  
The following signals and clocks are used in the functional description and figures of the OSC module.  
11.3.1.1 Oscillator Enable Signal (SIMOSCEN)  
The SIMOSCEN signal comes from the system integration module (SIM) and disables the XTAL oscillator  
circuit, the RC oscillator, or the internal oscillator in stop mode. OSCENINSTOP in the configuration  
register can be used to override this signal.  
11.3.1.2 XTAL Oscillator Clock (XTALCLK)  
XTALCLK is the XTAL oscillator output signal. It runs at the full speed of the crystal (fXCLK) and comes  
directly from the crystal oscillator circuit. Figure 11-2 shows only the logical relation of XTALCLK to OSC1  
and OSC2 and may not represent the actual circuitry. The duty cycle of XTALCLK is unknown and may  
depend on the crystal and other external factors. The frequency of XTALCLK can be unstable at start up.  
11.3.1.3 RC Oscillator Clock (RCCLK)  
RCCLK is the RC oscillator output signal. Its frequency is directly proportional to the time constant of the  
external R (REXT) and internal C. Figure 11-3 shows only the logical relation of RCCLK to OSC1 and may  
not represent the actual circuitry.  
11.3.1.4 Internal Oscillator Clock (INTCLK)  
INTCLK is the internal oscillator output signal. INTCLK is software selectable to be nominally 25.6 MHz,  
12.8 MHz, 8.0 MHz, or 4.0 MHz. INTCLK can be digitally adjusted using the oscillator trimming feature of  
the OSCTRIM register (see 11.3.2.1 Internal Oscillator Trimming).  
11.3.1.5 Bus Clock Times 4 (BUSCLKX4)  
BUSCLKX4 is the same frequency as the input clock (XTALCLK, RCCLK, or INTCLK). This signal is  
driven to the SIM module and is used during recovery from reset and stop and is the clock source for the  
COP module.  
11.3.1.6 Bus Clock Times 2 (BUSCLKX2)  
The frequency of this signal is equal to half of the BUSCLKX4. This signal is driven to the SIM for  
generation of the bus clocks used by the CPU and other modules on the MCU. BUSCLKX2 will be divided  
by two in the SIM. The internal bus frequency is one fourth of the XTALCLK, RCCLK, or INTCLK  
frequency.  
11.3.2 Internal Oscillator  
The internal oscillator circuit is designed for use with no external components to provide a clock source  
with a tolerance of less than 25% untrimmed. An 8-bit register (OSCTRIM) allows the digital adjustment  
to a tolerance of ACCINT. See  
the oscillator characteristics in the Electrical section of this data sheet.  
The internal oscillator is capable of generating clocks of 25.6 MHz, 12.8 MHz, 8.0 MHz, or 4.0 MHz  
(INTCLK) resulting in a bus frequency (INTCLK divided by 4) of 6.4 MHz, 3.2 MHz, 2.0 MHz, or 1.0 MHz  
respectively. The bus clock is software selectable and defaults to the 3.2-MHz bus out of reset. Users can  
increase the bus frequency based on the voltage range of their application.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
103  
Oscillator Module (OSC)  
Figure 11-3 shows how BUSCLKX4 is derived from INTCLK and OSC2 can output BUSCLKX4 by setting  
OSC2EN.  
11.3.2.1 Internal Oscillator Trimming  
OSCTRIM allows a clock period adjustment of +127 and –128 steps. Increasing the OSCTRIM value  
increases the clock period, which decreases the clock frequency. Trimming allows the internal clock  
frequency to be fine tuned to the target frequency.  
All devices are factory programmed with a trim value in a reserved memory location. This value can be  
copied to the OSCTRIM register during reset initialization. For finer precision, the user can trim the  
internal oscillator in the application.  
11.3.2.2 Internal to External Clock Switching  
When external clock source (external OSC, RC, or XTAL) is desired, the user must perform the following  
steps:  
1. For external crystal circuits only, configure OSCOPT[1:0] to external crystal. To help precharge an  
external crystal oscillator, momentarily configure OSC2 as an output and drive it high for several  
cycles. This can help the crystal circuit start more robustly.  
2. Configure OSCOPT[1:0] and ECFS[1:0] according to 11.8.1 Oscillator Status and Control Register.  
The oscillator module control logic will then enable OSC1 as an external clock input and, if the  
external crystal option is selected, OSC2 will also be enabled as the clock output. If RC oscillator  
option is selected, enabling the OSC2 output may change the bus frequency.  
3. Create a software delay to provide the stabilization time required for the selected clock source  
(crystal, resonator, RC). A good rule of thumb for crystal oscillators is to wait 4096 cycles of the  
crystal frequency; i.e., for a 4-MHz crystal, wait approximately 1 ms.  
4. After the stabilization delay has elapsed, set ECGON.  
After ECGON set is detected, the OSC module checks for oscillator activity by waiting two external clock  
rising edges. The OSC module then switches to the external clock. Logic provides a coherent transition.  
The OSC module first sets ECGST and then stops the internal oscillator.  
11.3.2.3 External to Internal Clock Switching  
After following the procedures to switch to an external clock source, it is possible to go back to the internal  
source. By clearing the OSCOPT[1:0] bits and clearing the ECGON bit, the external circuit will be  
disengaged. The bus clock will be derived from the selected internal clock source based on the ICFS[1:0]  
bits.  
11.3.3 External Oscillator  
The external oscillator option is designed for use when a clock signal is available in the application to  
provide a clock source to the MCU. The OSC1 pin is enabled as an input by the oscillator module. The  
clock signal is used directly to create BUSCLKX4 and also divided by two to create BUSCLKX2.  
In this configuration, the OSC2 pin cannot output BUSCLKX4. The OSC2EN bit will be forced clear to  
enable alternative functions on the pin.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
104  
Freescale Semiconductor  
Functional Description  
11.3.4 XTAL Oscillator  
The XTAL oscillator circuit is designed for use with an external crystal or ceramic resonator to provide an  
accurate clock source. In this configuration, the OSC2 pin is dedicated to the external crystal circuit. The  
OSC2EN bit has no effect when this clock mode is selected.  
In its typical configuration, the XTAL oscillator is connected in a Pierce oscillator configuration, as shown  
in Figure 11-2. This figure shows only the logical representation of the internal components and may not  
represent actual circuitry.  
The oscillator configuration uses five components:  
Crystal, X1  
Fixed capacitor, C1  
Tuning capacitor, C2 (can also be a fixed capacitor)  
Feedback resistor, RB  
Series resistor, RS (optional)  
NOTE  
The series resistor (RS) is included in the diagram to follow strict Pierce  
oscillator guidelines and may not be required for all ranges of operation,  
especially with high frequency crystals. Refer to the oscillator  
characteristics table in the Electricals section for more information.  
SIMOSCEN (internal signal) OR  
OSCENINSTOP (bit located in  
configuration register))  
BUSCLKX4  
BUSCLKX2  
XTALCLK  
÷ 2  
MCU  
OSC1  
OSC2  
RS  
RB  
X1  
C1  
C2  
See the electrical section for details.  
Figure 11-2. XTAL Oscillator External Connections  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
105  
Oscillator Module (OSC)  
11.3.5 RC Oscillator  
The RC oscillator circuit is designed for use with an external resistor (REXT) to provide a clock source with  
a tolerance within 25% of the expected frequency. See Figure 11-3.  
The capacitor (C) for the RC oscillator is internal to the MCU. The REXT value must have a tolerance of  
1% or less to minimize its effect on the frequency.  
In this configuration, the OSC2 pin can be used as general-purpose input/output (I/O) port pins or other  
alternative pin function. The OSC2EN bit can be set to enable the OSC2 output function on the pin.  
Enabling the OSC2 output can affect the external RC oscillator frequency, fRCCLK  
.
OSCOPT = EXTERNAL RC SELECTED  
SIMOSCEN (internal signal) OR  
OSCENINSTOP (bit located in  
configuration register))  
BUSCLKX2  
BUSCLKX4  
INTCLK  
RCCLK  
0
1
EXTERNAL RC  
EN  
÷ 2  
OSCILLATOR  
1
0
ALTERNATIVE  
PIN FUNCTION  
OSC2EN  
MCU  
OSC1  
OSC2- available for alternative pin function  
VDD  
See the electricals section  
for component value.  
REXT  
Figure 11-3. RC Oscillator External Connections  
11.4 Interrupts  
There are no interrupts associated with the OSC module.  
11.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
11.5.1 Wait Mode  
The OSC module remains active in wait mode.  
11.5.2 Stop Mode  
The OSC module can be configured to remain active in stop mode by setting OSCENINSTOP located in  
a configuration register.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
106  
Freescale Semiconductor  
OSC During Break Interrupts  
11.6 OSC During Break Interrupts  
There are no status flags associated with the OSC module.  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status  
bits during the break state. See BFCR in the SIM section of this data sheet.  
To allow software to clear status bits during a break interrupt, write a 1 to BCFE. If a status bit is cleared  
during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a 0 to BCFE. With BCFE cleared (its default state),  
software can read and write registers during the break state without affecting status bits. Some status bits  
have a two-step read/write clearing procedure. If software does the first step on such a bit before the  
break, the bit cannot change during the break state as long as BCFE is cleared. After the break, doing the  
second step clears the status bit.  
11.7 I/O Signals  
The OSC shares its pins with general-purpose input/output (I/O) port pins. See Figure 11-1 for port  
location of these shared pins.  
11.7.1 Oscillator Input Pin (OSC1)  
The OSC1 pin is an input to the crystal oscillator amplifier, an input to the RC oscillator circuit, or an input  
from an external clock source.  
When the OSC is configured for internal oscillator, the OSC1 pin can be used as a general-purpose  
input/output (I/O) port pin or other alternative pin function.  
11.7.2 Oscillator Output Pin (OSC2)  
For the XTAL oscillator option, the OSC2 pin is the output of the crystal oscillator amplifier.  
When the OSC is configured for internal oscillator, external clock, or RC, the OSC2 pin can be used as a  
general-purpose I/O port pin or other alternative pin function. When the oscillator is configured for internal  
or RC, the OSC2 pin can be used to output BUSCLKX4.  
Table 11-1. OSC2 Pin Function  
Option  
OSC2 Pin Function  
XTAL oscillator  
External clock  
Inverting OSC1  
General-purpose I/O or alternative pin function  
Internal oscillator  
or  
RC oscillator  
Controlled by OSC2EN bit  
OSC2EN = 0: General-purpose I/O or alternative pin function  
OSC2EN = 1: BUSCLKX4 output  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
107  
Oscillator Module (OSC)  
11.8 Registers  
The oscillator module contains two registers:  
Oscillator status and control register (OSCSC)  
Oscillator trim register (OSCTRIM)  
11.8.1 Oscillator Status and Control Register  
The oscillator status and control register (OSCSC) contains the bits for switching between internal and  
external clock sources. If the application uses an external crystal, bits in this register are used to select  
the crystal oscillator amplifier necessary for the desired crystal. While running off the internal clock source,  
the user can use bits in this register to select the internal clock source frequency.  
Bit 7  
6
5
ICFS1  
1
4
ICFS0  
0
3
ECFS1  
0
2
ECFS0  
0
1
ECGON  
0
Bit 0  
Read:  
Write:  
Reset:  
ECGST  
OSCOPT1 OSCOPT0  
0
0
0
= Unimplemented  
Figure 11-4. Oscillator Status and Control Register (OSCSC)  
OSCOPT1:OSCOPT0 — OSC Option Bits  
These read/write bits allow the user to change the clock source for the MCU. The default reset  
condition has the bus clock being derived from the internal oscillator. See 11.3.2.2 Internal to External  
Clock Switching for information on changing clock sources.  
OSCOPT1  
OSCOPT0  
Oscillator Modes  
Internal oscillator (frequency selected using ICFSx bits)  
External oscillator clock  
0
0
1
1
0
1
0
1
External RC  
External crystal (range selected using ECFSx bits)  
ICFS1:ICFS0 — Internal Clock Frequency Select Bits  
These read/write bits enable the frequency to be increased for applications requiring a faster bus clock  
when running off the internal oscillator. The WAIT instruction has no effect on the oscillator logic.  
BUSCLKX2 and BUSCLKX4 continue to drive to the SIM module.  
ICFS1  
ICFS0  
Internal Clock Frequency  
0
0
1
1
0
1
0
1
4.0 MHz  
8.0 MHz  
12.8 MHz — default reset condition  
25.6 MHz  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
108  
Registers  
ECFS1:ECFS0 — External Crystal Frequency Select Bits  
These read/write bits enable the specific amplifier for the crystal frequency range. Refer to oscillator  
characteristics table in the Electricals section for information on maximum external clock frequency  
versus supply voltage.  
ECFS1  
ECFS0  
External Crystal Frequency  
8 MHz – 32 MHz  
0
0
1
1
0
1
0
1
1 MHz – 8 MHz  
32 kHz – 100 kHz  
Reserved  
ECGON — External Clock Generator On Bit  
This read/write bit enables the OSC1 pin as the clock input to the MCU, so that the switching process  
can be initiated. This bit is cleared by reset. This bit is ignored in monitor mode with the internal  
oscillator bypassed.  
1 = External clock enabled  
0 = External clock disabled  
ECGST — External Clock Status Bit  
This read-only bit indicates whether an external clock source is engaged to drive the system clock.  
1 = An external clock source engaged  
0 = An external clock source disengaged  
11.8.2 Oscillator Trim Register (OSCTRIM)  
Bit 7  
TRIM7  
1
6
TRIM6  
0
5
TRIM5  
0
4
TRIM4  
0
3
TRIM3  
0
2
TRIM2  
0
1
TRIM1  
0
Bit 0  
TRIM0  
0
Read:  
Write:  
Reset:  
Figure 11-5. Oscillator Trim Register (OSCTRIM)  
TRIM7–TRIM0 — Internal Oscillator Trim Factor Bits  
These read/write bits change the internal capacitance used by the internal oscillator. By measuring the  
period of the internal clock and adjusting this factor accordingly, the frequency of the internal clock can  
be fine tuned. Increasing (decreasing) this factor by one increases (decreases) the period by  
approximately 0.2% of the untrimmed oscillator period. The oscillator period is based on the oscillator  
frequency selected by the ICFS bits in OSCSC.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
109  
Oscillator Module (OSC)  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
110  
Chapter 12  
Input/Output Ports (PORTS)  
12.1 Introduction  
The MC68HC908QL4 has thirteen bidirectional input-output (I/O) pins and one input only pin. All I/O pins  
are programmable as inputs or outputs.  
NOTE  
Connect any unused I/O pins to an appropriate logic level, either VDD or VSS.  
Although the I/O ports do not require termination for proper operation,  
termination reduces excess current consumption and the possibility of  
electrostatic damage.  
12.2 Port A  
Port A is an 6-bit special function port that shares its pins with the keyboard interrupt (KBI) module (see  
Chapter 9 Keyboard Interrupt Module (KBI), the 2-channel timer interface module (TIM) (see Chapter 15  
Timer Interface Module (TIM)), the 10-bit ADC (see Chapter 3 Analog-to-Digital Converter (ADC10)  
Module), the external interrupt (IRQ) pin (see Chapter 8 External Interrupt (IRQ)), the reset (RST) pin  
enabled using a configuration register (see Chapter 5 Configuration Register (CONFIG)) and the  
oscillator pins (see Chapter 11 Oscillator Module (OSC)).  
Each port A pin also has a software configurable pullup/down device if the corresponding port pin is  
configured as an input port.  
NOTE  
PTA2 is input only.  
When the IRQ function is enabled in the configuration register 2  
(CONFIG2), bit 2 of the port A data register (PTA) will always read a logic 0.  
In this case, the BIH and BIL instructions can be used to read the logic level  
on the PTA2 pin. When the IRQ function is disabled, these instructions will  
behave as if the PTA2 pin is a logic 1. However, reading bit 2 of PTA will  
read the actual logic level on the pin.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
111  
Input/Output Ports (PORTS)  
12.2.1 Port A Data Register  
The port A data register (PTA) contains a data latch for each of the six port A pins.  
Bit 7  
R
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
AWUL  
PTA2  
PTA5  
PTA4  
PTA3  
PTA1  
PTA0  
Unaffected by reset  
= Unimplemented  
R
= Reserved  
Figure 12-1. Port A Data Register (PTA)  
PTA[5:0] — Port A Data Bits  
These read/write bits are software programmable. Data direction of each port A pin is under the control  
of the corresponding bit in data direction register A. Reset has no effect on port A data.  
AWUL — Auto Wakeup Latch Data Bit  
This is a read-only bit which has the value of the auto wakeup interrupt request latch. The wakeup  
request signal is generated internally (see Chapter 4 Auto Wakeup Module (AWU)). There is no PTA6  
port nor any of the associated bits such as PTA6 data register, pullup/down enable or direction.  
12.2.2 Data Direction Register A  
Data direction register A (DDRA) determines whether each port A pin is an input or an output. Writing a  
1 to a DDRA bit enables the output buffer for the corresponding port A pin; a 0 disables the output buffer.  
Bit 7  
R
6
5
DDRA5  
0
4
DDRA4  
0
3
DDRA3  
0
2
0
1
DDRA1  
0
Bit 0  
DDRA0  
0
Read:  
Write:  
Reset:  
R
0
0
0
R
= Reserved  
= Unimplemented  
Figure 12-2. Data Direction Register A (DDRA)  
DDRA[5:0] — Data Direction Register A Bits  
These read/write bits control port A data direction. Reset clears DDRA[5:0], configuring all port A pins  
as inputs.  
1 = Corresponding port A pin configured as output  
0 = Corresponding port A pin configured as input  
NOTE  
Avoid glitches on port A pins by writing to the port A data register before  
changing data direction register A bits from 0 to 1.  
Figure 12-3 shows the port A I/O logic.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
112  
Freescale Semiconductor  
Port A  
PTAPUEx  
KBIPx  
READ DDRA  
WRITE DDRA  
DDRAx  
PTAx  
RESET  
RPULL  
WRITE PTA  
READ PTA  
PTAx  
Figure 12-3. Port A I/O Circuit  
NOTE  
Figure 12-3 does not apply to PTA2  
When DDRAx is a 1, reading PTA reads the PTAx data latch. When DDRAx is a 0, reading PTA reads  
the logic level on the PTAx pin. The data latch can always be written, regardless of the state of its data  
direction bit.  
12.2.3 Port A Input Pullup/Down Enable Register  
The port A input pullup/down enable register (PTAPUE) contains a software configurable pullup/down  
device for each of the port A pins. Each bit is individually configurable and requires the corresponding  
data direction register, DDRAx, to be configured as input. Each pullup/down device is automatically and  
dynamically disabled when its corresponding DDRAx bit is configured as output. The pull device polarity  
is defined by the KBIPR register, see 9.8.3 Keyboard Interrupt Polarity Register (KBIPR).  
Bit 7  
OSC2EN  
0
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0  
0
0
0
0
0
0
0
= Unimplemented  
Figure 12-4. Port A Input Pullup/Down Enable Register (PTAPUE)  
OSC2EN — Enable PTA4 on OSC2 Pin  
This read/write bit configures the OSC2 pin function when internal oscillator or RC oscillator option is  
selected. This bit has no effect for the XTAL or external oscillator options.  
1 = OSC2 pin outputs the internal or RC oscillator clock (BUSCLKX4)  
0 = OSC2 pin configured for PTA4 I/O, having all the interrupt and pullup/down functions  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
113  
Input/Output Ports (PORTS)  
PTAPUE[5:0] — Port A Input Pullup/Down Enable Bits  
These read/write bits are software programmable to enable pullup/down devices on port A pins.  
1 = Corresponding port A pin configured to have internal pullup/down if its DDRA bit is set to 0  
0 = Pullup/down device is disconnected on the corresponding port A pin regardless of the state of  
its DDRA bit  
12.2.4 Port A Summary Table  
The following table summarizes the operation of the port A pins when used as a general-purpose  
input/output pins.  
Table 12-1. Port A Pin Functions  
Accesses to DDRA  
Read/Write  
Accesses to PTA  
PTAPUE  
Bit  
DDRA  
Bit  
PTA  
Bit  
I/O Pin  
Mode  
Read  
Write  
(2)  
X(1)  
X
PTA5–PTA0(3)  
PTA5–PTA0(3)  
PTA5–PTA0(5)  
1
0
X
0
0
1
DDRA5–DDRA0  
DDRA5–DDRA0  
DDRA5–DDRA0  
Pin  
Pin  
Input, VPull  
Input, Hi-Z(4)  
Output  
X
PTA5–PTA0  
1. X = don’t care  
2. I/O pin pulled to VPull (VDD or VSS) by internal pullup or pulldown.  
3. Writing affects data register, but does not affect input.  
4. Hi-Z = high impedance  
5. Output does not apply to PTA2  
12.3 Port B  
Port B is an 8-bit special function port that shares its pins with the 2-channel timer interface module (TIM)  
(see Chapter 15 Timer Interface Module (TIM)), the 10-bit ADC (see Chapter 3 Analog-to-Digital  
Converter (ADC10) Module), and the slave LIN interface controller (SLIC) module (see Chapter 14 Slave  
LIN Interface Controller (SLIC) Module).  
Each port B pin also has a software configurable pullup device if the corresponding port pin is configured  
as an input port.  
12.3.1 Port B Data Register  
The port B data register (PTB) contains a data latch for each of the port B pins.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTB7  
PTB6  
PTB5  
PTB4  
PTB3  
PTB2  
PTB1  
PTB0  
Unaffected by reset  
Figure 12-5. Port B Data Register (PTB)  
PTB[7:0] — Port B Data Bits  
These read/write bits are software programmable. Data direction of each port B pin is under the control  
of the corresponding bit in data direction register B. Reset has no effect on port B data.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
114  
Freescale Semiconductor  
Port B  
12.3.2 Data Direction Register B  
Data direction register B (DDRB) determines whether each port B pin is an input or an output. Writing a 1  
to a DDRB bit enables the output buffer for the corresponding port B pin; a 0 disables the output buffer.  
Bit 7  
DDRB7  
0
6
DDRB6  
0
5
DDRB5  
0
4
DDRB4  
0
3
DDRB3  
0
2
DDRB2  
0
1
DDRB1  
0
Bit 0  
DDRB0  
0
Read:  
Write:  
Reset:  
Figure 12-6. Data Direction Register B (DDRB)  
DDRB[7:0] — Data Direction Register B Bits  
These read/write bits control port B data direction. Reset clears DDRB[7:0], configuring all port B pins  
as inputs.  
1 = Corresponding port B pin configured as output  
0 = Corresponding port B pin configured as input  
NOTE  
Avoid glitches on port B pins by writing to the port B data register before  
changing data direction register B bits from 0 to 1. Figure 12-7 shows the  
port B I/O logic.  
READ DDRB  
PTBPUEx  
WRITE DDRB  
DDRBx  
RESET  
PULLUP  
WRITE PTB  
PTBx  
PTBx  
READ PTB  
Figure 12-7. Port B I/O Circuit  
When DDRBx is a 1, reading PTB reads the PTBx data latch. When DDRBx is a 0, reading PTB reads  
the logic level on the PTBx pin. The data latch can always be written, regardless of the state of its data  
direction bit.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
115  
Input/Output Ports (PORTS)  
12.3.3 Port B Input Pullup Enable Register  
The port B input pullup enable register (PTBPUE) contains a software configurable pullup device for each  
of the eight port B pins. Each bit is individually configurable and requires the corresponding data direction  
register, DDRBx, be configured as input. Each pullup device is automatically and dynamically disabled  
when its corresponding DDRBx bit is configured as output.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTBPUE7 PTBPUE6 PTBPUE5 PTBPUE4 PTBPUE3 PTBPUE2 PTBPUE2 PTBPUE0  
0
0
0
0
0
0
0
0
Figure 12-8. Port B Input Pullup Enable Register (PTBPUE)  
PTBPUE[7:0] — Port B Input Pullup Enable Bits  
These read/write bits are software programmable to enable pullup devices on port B pins  
1 = Corresponding port B pin configured to have internal pull if its DDRB bit is set to 0  
0 = Pullup device is disconnected on the corresponding port B pin regardless of the state of its  
DDRB bit.  
12.3.4 Port B Summary Table  
The following table summarizes the operation of the port A pins when used as a general-purpose  
input/output pins.  
Table 12-2. Port B Pin Functions  
Accesses to DDRB  
Read/Write  
Accesses to PTB  
DDRB  
Bit  
PTB  
Bit  
I/O Pin  
Mode  
Read  
Write  
X(1)  
X
Input, Hi-Z(2)  
Output  
PTB7–PTB0(3)  
PTB7–PTB0  
0
1
DDRB7–DDRB0  
DDRB7–DDRB0  
Pin  
Pin  
1. X = don’t care  
2. Hi-Z = high impedance  
3. Writing affects data register, but does not affect the input.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
116  
Chapter 13  
System Integration Module (SIM)  
13.1 Introduction  
This section describes the system integration module (SIM), which supports up to 24 external and/or  
internal interrupts. Together with the central processor unit (CPU), the SIM controls all microcontroller unit  
(MCU) activities. A block diagram of the SIM is shown in Figure 13-1. The SIM is a system state controller  
that coordinates CPU and exception timing.  
The SIM is responsible for:  
Bus clock generation and control for CPU and peripherals  
Stop/wait/reset/break entry and recovery  
Internal clock control  
Master reset control, including power-on reset (POR) and computer operating properly (COP)  
timeout  
Interrupt control:  
Acknowledge timing  
Arbitration control timing  
Vector address generation  
CPU enable/disable timing  
Table 13-1. Signal Name Conventions  
Signal Name  
Description  
BUSCLKX4  
Buffered clock from the internal, RC or XTAL oscillator circuit.  
The BUSCLKX4 frequency divided by two. This signal is again  
divided by two in the SIM to generate the internal bus clocks  
(bus clock = BUSCLKX4 ÷ 4).  
BUSCLKX2  
Address bus  
Data bus  
PORRST  
IRST  
Internal address bus  
Internal data bus  
Signal from the power-on reset module to the SIM  
Internal reset signal  
R/W  
Read/write signal  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
117  
System Integration Module (SIM)  
MODULE STOP  
MODULE WAIT  
CPU STOP (FROM CPU)  
CPU WAIT (FROM CPU)  
STOP/WAIT  
CONTROL  
SIMOSCEN (TO OSCILLATOR)  
SIM  
COUNTER  
COP CLOCK  
BUSCLKX4 (FROM OSCILLATOR)  
BUSCLKX2 (FROM OSCILLATOR)  
÷2  
VDD  
CLOCK  
CONTROL  
CLOCK GENERATORS  
INTERNAL CLOCKS  
INTERNAL  
PULL-UP  
ILLEGAL OPCODE (FROM CPU)  
ILLEGAL ADDRESS (FROM ADDRESS  
MAP DECODERS)  
RESET  
PIN LOGIC  
POR CONTROL  
RESET PIN CONTROL  
MASTER  
RESET  
CONTROL  
COP TIMEOUT (FROM COP MODULE)  
LVI RESET (FROM LVI MODULE)  
SIM RESET STATUS REGISTER  
FORCED MON MODE ENTRY (FROM MENRST MODULE)  
RESET  
INTERRUPT SOURCES  
CPU INTERFACE  
INTERRUPT CONTROL  
AND PRIORITY DECODE  
Figure 13-1. SIM Block Diagram  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
118  
Freescale Semiconductor  
RST and IRQ Pins Initialization  
13.2 RST and IRQ Pins Initialization  
RST and IRQ pins come out of reset as PTA3 and PTA2 respectively. RST and IRQ functions can be  
activated by programing CONFIG2 accordingly. Refer to Chapter 5 Configuration Register (CONFIG).  
13.3 SIM Bus Clock Control and Generation  
The bus clock generator provides system clock signals for the CPU and peripherals on the MCU. The  
system clocks are generated from an incoming clock, BUSCLKX2, as shown in Figure 13-2.  
FROM  
OSCILLATOR  
BUSCLKX4  
BUSCLKX2  
SIM COUNTER  
FROM  
OSCILLATOR  
BUS CLOCK  
GENERATORS  
÷ 2  
SIM  
Figure 13-2. SIM Clock Signals  
13.3.1 Bus Timing  
In user mode, the internal bus frequency is the oscillator frequency (BUSCLKX4) divided by four.  
13.3.2 Clock Start-Up from POR  
When the power-on reset module generates a reset, the clocks to the CPU and peripherals are inactive  
and held in an inactive phase until after the 4096 BUSCLKX4 cycle POR time out has completed. The  
IBUS clocks start upon completion of the time out.  
13.3.3 Clocks in Stop Mode and Wait Mode  
Upon exit from stop mode by an interrupt or reset, the SIM allows BUSCLKX4 to clock the SIM counter.  
The CPU and peripheral clocks do not become active until after the stop delay time out. This time out is  
selectable as 4096 or 32 BUSCLKX4 cycles. See 13.7.2 Stop Mode.  
In wait mode, the CPU clocks are inactive. The SIM also produces two sets of clocks for other modules.  
Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode.  
Some modules can be programmed to be active in wait mode.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
119  
System Integration Module (SIM)  
13.4 Reset and System Initialization  
The MCU has these reset sources:  
Power-on reset module (POR)  
External reset pin (RST)  
Computer operating properly module (COP)  
Low-voltage inhibit module (LVI)  
Illegal opcode  
Illegal address  
All of these resets produce the vector $FFFE–FFFF ($FEFE–FEFF in monitor mode) and assert the  
internal reset signal (IRST). IRST causes all registers to be returned to their default values and all  
modules to be returned to their reset states.  
An internal reset clears the SIM counter (see 13.5 SIM Counter), but an external reset does not. Each of  
the resets sets a corresponding bit in the SIM reset status register (SRSR). See 13.8 SIM Registers.  
13.4.1 External Pin Reset  
The RST pin circuits include an internal pullup device. Pulling the asynchronous RST pin low halts all  
processing. The PIN bit of the SIM reset status register (SRSR) is set as long as RST is held low for at  
least the minimum tRL time. Figure 13-3 shows the relative timing. The RST pin function is only available  
if the RSTEN bit is set in the CONFIG1 register.  
BUSCLKX2  
RST  
VECT H VECT L  
ADDRESS BUS  
PC  
Figure 13-3. External Reset Timing  
13.4.2 Active Resets from Internal Sources  
The RST pin is initially setup as a general-purpose input after a POR. Setting the RSTEN bit in the  
CONFIG1 register enables the pin for the reset function. This section assumes the RSTEN bit is set when  
describing activity on the RST pin.  
NOTE  
For POR and LVI resets, the SIM cycles through 4096 BUSCLKX4 cycles.  
The internal reset signal then follows the sequence from the falling edge of  
RST shown in Figure 13-4.  
The COP reset is asynchronous to the bus clock.  
The active reset feature allows the part to issue a reset to peripherals and other chips within a system  
built around the MCU.  
All internal reset sources actively pull the RST pin low for 32 BUSCLKX4 cycles to allow resetting of  
external peripherals. The internal reset signal IRST continues to be asserted for an additional 32 cycles  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
120  
Freescale Semiconductor  
Reset and System Initialization  
(see Figure 13-4). An internal reset can be caused by an illegal address, illegal opcode, COP time out,  
LVI, or POR (see Figure 13-5).  
IRST  
RST PULLED LOW BY MCU  
32 CYCLES  
RST  
32 CYCLES  
BUSCLKX4  
ADDRESS  
BUS  
VECTOR HIGH  
Figure 13-4. Internal Reset Timing  
ILLEGAL ADDRESS RST  
ILLEGAL OPCODE RST  
COPRST  
POR  
INTERNAL RESET  
LVI  
Figure 13-5. Sources of Internal Reset  
Table 13-2. Reset Recovery Timing  
Reset Recovery Type  
POR/LVI  
All others  
Actual Number of Cycles  
4163 (4096 + 64 + 3)  
67 (64 + 3)  
13.4.2.1 Power-On Reset  
When power is first applied to the MCU, the power-on reset module (POR) generates a pulse to indicate  
that power on has occurred. The SIM counter counts out 4096 BUSCLKX4 cycles. Sixty-four BUSCLKX4  
cycles later, the CPU and memories are released from reset to allow the reset vector sequence to occur.  
At power on, the following events occur:  
A POR pulse is generated.  
The internal reset signal is asserted.  
The SIM enables the oscillator to drive BUSCLKX4.  
Internal clocks to the CPU and modules are held inactive for 4096 BUSCLKX4 cycles to allow  
stabilization of the oscillator.  
The POR bit of the SIM reset status register (SRSR) is set.  
See Figure 13-6.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
121  
System Integration Module (SIM)  
OSC1  
PORRST  
4096  
CYCLES  
32  
CYCLES  
32  
CYCLES  
BUSCLKX4  
BUSCLKX2  
RST  
(RST PIN IS A GENERAL-PURPOSE INPUT AFTER A POR)  
ADDRESS BUS  
$FFFE  
$FFFF  
Figure 13-6. POR Recovery  
13.4.2.2 Computer Operating Properly (COP) Reset  
An input to the SIM is reserved for the COP reset signal. The overflow of the COP counter causes an  
internal reset and sets the COP bit in the SIM reset status register (SRSR). The SIM actively pulls down  
the RST pin for all internal reset sources.  
To prevent a COP module time out, write any value to location $FFFF. Writing to location $FFFF clears  
the COP counter and stages 12–5 of the SIM counter. The SIM counter output, which occurs at least  
every (212 – 24) BUSCLKX4 cycles, drives the COP counter. The COP should be serviced as soon as  
possible out of reset to guarantee the maximum amount of time before the first time out.  
The COP module is disabled during a break interrupt with monitor mode when BDCOP bit is set in break  
auxiliary register (BRKAR).  
13.4.2.3 Illegal Opcode Reset  
The SIM decodes signals from the CPU to detect illegal instructions. An illegal instruction sets the ILOP  
bit in the SIM reset status register (SRSR) and causes a reset.  
If the stop enable bit, STOP, in the mask option register is 0, the SIM treats the STOP instruction as an  
illegal opcode and causes an illegal opcode reset. The SIM actively pulls down the RST pin for all internal  
reset sources.  
13.4.2.4 Illegal Address Reset  
An opcode fetch from an unmapped address generates an illegal address reset. The SIM verifies that the  
CPU is fetching an opcode prior to asserting the ILAD bit in the SIM reset status register (SRSR) and  
resetting the MCU. A data fetch from an unmapped address does not generate a reset. The SIM actively  
pulls down the RST pin for all internal reset sources. See Figure 2-1. Memory Map for memory ranges.  
13.4.2.5 Low-Voltage Inhibit (LVI) Reset  
The LVI asserts its output to the SIM when the VDD voltage falls to the LVI trip voltage VTRIPF. The LVI  
bit in the SIM reset status register (SRSR) is set, and the external reset pin (RST) is held low while the  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
122  
Freescale Semiconductor  
SIM Counter  
SIM counter counts out 4096 BUSCLKX4 cycles after VDD rises above VTRIPR. Sixty-four BUSCLKX4  
cycles later, the CPU and memories are released from reset to allow the reset vector sequence to occur.  
The SIM actively pulls down the (RST) pin for all internal reset sources.  
13.5 SIM Counter  
The SIM counter is used by the power-on reset module (POR) and in stop mode recovery to allow the  
oscillator time to stabilize before enabling the internal bus (IBUS) clocks. The SIM counter also serves as  
a prescaler for the computer operating properly module (COP). The SIM counter uses 12 stages for  
counting, followed by a 13th stage that triggers a reset of SIM counters and supplies the clock for the COP  
module. The SIM counter is clocked by the falling edge of BUSCLKX4.  
13.5.1 SIM Counter During Power-On Reset  
The power-on reset module (POR) detects power applied to the MCU. At power-on, the POR circuit  
asserts the signal PORRST. Once the SIM is initialized, it enables the oscillator to drive the bus clock  
state machine.  
13.5.2 SIM Counter During Stop Mode Recovery  
The SIM counter also is used for stop mode recovery. The STOP instruction clears the SIM counter. After  
an interrupt, break, or reset, the SIM senses the state of the short stop recovery bit, SSREC, in the  
configuration register 1 (CONFIG1). If the SSREC bit is a 1, then the stop recovery is reduced from the  
normal delay of 4096 BUSCLKX4 cycles down to 32 BUSCLKX4 cycles. This is ideal for applications  
using canned oscillators that do not require long start-up times from stop mode. External crystal  
applications should use the full stop recovery time, that is, with SSREC cleared in the configuration  
register 1 (CONFIG1).  
13.5.3 SIM Counter and Reset States  
External reset has no effect on the SIM counter (see 13.7.2 Stop Mode for details.) The SIM counter is  
free-running after all reset states. See 13.4.2 Active Resets from Internal Sources for counter control and  
internal reset recovery sequences.  
13.6 Exception Control  
Normal sequential program execution can be changed in three different ways:  
1. Interrupts  
a. Maskable hardware CPU interrupts  
b. Non-maskable software interrupt instruction (SWI)  
2. Reset  
3. Break interrupts  
13.6.1 Interrupts  
An interrupt temporarily changes the sequence of program execution to respond to a particular event.  
Figure 13-7 flow charts the handling of system interrupts.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
123  
System Integration Module (SIM)  
FROM RESET  
YES  
BREAK INTERRUPT?  
NO  
YES  
I BIT SET?  
NO  
YES  
YES  
IRQ  
INTERRUPT?  
NO  
TIMER  
INTERRUPT?  
NO  
STACK CPU REGISTERS  
SET I BIT  
LOAD PC WITH INTERRUPT VECTOR  
(AS MANY INTERRUPTS AS EXIST ON CHIP)  
FETCH NEXT  
INSTRUCTION  
SWI  
INSTRUCTION?  
YES  
YES  
NO  
RTI  
INSTRUCTION?  
UNSTACK CPU REGISTERS  
EXECUTE INSTRUCTION  
NO  
Figure 13-7. Interrupt Processing  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
124  
Freescale Semiconductor  
Exception Control  
Interrupts are latched, and arbitration is performed in the SIM at the start of interrupt processing. The  
arbitration result is a constant that the CPU uses to determine which vector to fetch. Once an interrupt is  
latched by the SIM, no other interrupt can take precedence, regardless of priority, until the latched  
interrupt is serviced (or the I bit is cleared).  
At the beginning of an interrupt, the CPU saves the CPU register contents on the stack and sets the  
interrupt mask (I bit) to prevent additional interrupts. At the end of an interrupt, the RTI instruction recovers  
the CPU register contents from the stack so that normal processing can resume. Figure 13-8 shows  
interrupt entry timing. Figure 13-9 shows interrupt recovery timing.  
MODULE  
INTERRUPT  
I BIT  
ADDRESS BUS  
DATA BUS  
R/W  
DUMMY  
SP  
SP – 1  
SP – 2  
SP – 3  
SP – 4  
VECT H  
VECT L START ADDR  
DUMMY PC – 1[7:0] PC – 1[15:8]  
X
A
CCR  
V DATA H V DATA L OPCODE  
Figure 13-8. Interrupt Entry  
MODULE  
INTERRUPT  
I BIT  
ADDRESS BUS  
DATA BUS  
R/W  
SP – 4  
SP – 3  
SP – 2  
SP – 1  
SP  
PC  
PC + 1  
CCR  
A
X
PC – 1[7:0] PC – 1[15:8] OPCODE OPERAND  
Figure 13-9. Interrupt Recovery  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
125  
System Integration Module (SIM)  
13.6.1.1 Hardware Interrupts  
A hardware interrupt does not stop the current instruction. Processing of a hardware interrupt begins after  
completion of the current instruction. When the current instruction is complete, the SIM checks all pending  
hardware interrupts. If interrupts are not masked (I bit clear in the condition code register), and if the  
corresponding interrupt enable bit is set, the SIM proceeds with interrupt processing; otherwise, the next  
instruction is fetched and executed.  
If more than one interrupt is pending at the end of an instruction execution, the highest priority interrupt is  
serviced first. Figure 13-10 demonstrates what happens when two interrupts are pending. If an interrupt  
is pending upon exit from the original interrupt service routine, the pending interrupt is serviced before the  
LDA instruction is executed.  
The LDA opcode is prefetched by both the INT1 and INT2 return-from-interrupt (RTI) instructions.  
However, in the case of the INT1 RTI prefetch, this is a redundant operation.  
NOTE  
To maintain compatibility with the M6805 Family, the H register is not  
pushed on the stack during interrupt entry. If the interrupt service routine  
modifies the H register or uses the indexed addressing mode, software  
should save the H register and then restore it prior to exiting the routine.  
CLI  
LDA #$FF  
BACKGROUND ROUTINE  
INT1  
PSHH  
INT1 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
INT2  
PSHH  
INT2 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
Figure 13-10. Interrupt Recognition Example  
13.6.1.2 SWI Instruction  
The SWI instruction is a non-maskable instruction that causes an interrupt regardless of the state of the  
interrupt mask (I bit) in the condition code register.  
NOTE  
A software interrupt pushes PC onto the stack. A software interrupt does  
not push PC – 1, as a hardware interrupt does.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
126  
Freescale Semiconductor  
Exception Control  
13.6.2 Interrupt Status Registers  
The flags in the interrupt status registers identify maskable interrupt sources. Table 13-3 summarizes the  
interrupt sources and the interrupt status register flags that they set. The interrupt status registers can be  
useful for debugging.  
Table 13-3. Interrupt Sources  
INT  
Register Flag  
Vector  
Address  
Mask(1)  
Priority  
Source  
Flag  
Highest  
Reset  
$FFFE–$FFFF  
$FFFC–$FFFD  
$FFFA–$FFFB  
$FFF6–$FFF7  
$FFF4–$FFF5  
$FFF2–$FFF3  
$FFEA–$FFEB  
$FFE0–$FFE1  
$FFDE–$FFDF  
SWI instruction  
IRQ pin  
IRQF1  
CH0F  
CH1F  
TOF  
IMASK1  
CH0IE  
CH1IE  
TOIE  
IF1  
IF3  
IF4  
IF5  
IF9  
IF14  
IF15  
Timer channel 0 interrupt  
Timer channel 1 interrupt  
Timer overflow interrupt  
SLIC interrupt  
SLCF  
KEYF  
COCO  
SLCIE  
IMASKK  
AIEN  
Keyboard interrupt  
Lowest  
ADC conversion complete interrupt  
1. The I bit in the condition code register is a global mask for all interrupt sources except the SWI instruction.  
Bit 7  
IF6  
R
6
5
IF4  
R
4
IF3  
R
3
0
2
IF1  
R
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
IF5  
R
R
0
R
0
R
0
0
0
0
0
0
R
= Reserved  
Figure 13-11. Interrupt Status Register 1 (INT1)  
IF1 and IF3–IF6 — Interrupt Flags  
These flags indicate the presence of interrupt requests from the sources shown in Table 13-3.  
1 = Interrupt request present  
0 = No interrupt request present  
Bit 0, 1, and 3— Always read 0  
13.6.2.1 Interrupt Status Register 2  
Bit 7  
IF14  
R
6
5
IF12  
R
4
IF11  
R
3
IF10  
R
2
IF9  
R
1
IF8  
R
Bit 0  
IF7  
R
Read:  
Write:  
Reset:  
IF13  
R
0
0
0
0
0
0
0
0
R
= Reserved  
Figure 13-12. Interrupt Status Register 2 (INT2)  
IF7–IF14 — Interrupt Flags  
This flag indicates the presence of interrupt requests from the sources shown in Table 13-3.  
1 = Interrupt request present  
0 = No interrupt request present  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
127  
System Integration Module (SIM)  
13.6.2.2 Interrupt Status Register 3  
Bit 7  
IF22  
R
6
5
IF20  
R
4
IF19  
R
3
IF18  
R
2
IF17  
R
1
IF16  
R
Bit 0  
IF15  
R
Read:  
Write:  
Reset:  
IF21  
R
0
0
0
0
0
0
0
0
R
= Reserved  
Figure 13-13. Interrupt Status Register 3 (INT3)  
IF15–IF22 — Interrupt Flags  
These flags indicate the presence of interrupt requests from the sources shown in Table 13-3.  
1 = Interrupt request present  
0 = No interrupt request present  
13.6.3 Reset  
All reset sources always have equal and highest priority and cannot be arbitrated.  
13.6.4 Break Interrupts  
The break module can stop normal program flow at a software programmable break point by asserting its  
break interrupt output. (See Chapter 16 Development Support.) The SIM puts the CPU into the break  
state by forcing it to the SWI vector location. Refer to the break interrupt subsection of each module to  
see how each module is affected by the break state.  
13.6.5 Status Flag Protection in Break Mode  
The SIM controls whether status flags contained in other modules can be cleared during break mode. The  
user can select whether flags are protected from being cleared by properly initializing the break clear flag  
enable bit (BCFE) in the break flag control register (BFCR).  
Protecting flags in break mode ensures that set flags will not be cleared while in break mode. This  
protection allows registers to be freely read and written during break mode without losing status flag  
information.  
Setting the BCFE bit enables the clearing mechanisms. Once cleared in break mode, a flag remains  
cleared even when break mode is exited. Status flags with a two-step clearing mechanism — for example,  
a read of one register followed by the read or write of another — are protected, even when the first step  
is accomplished prior to entering break mode. Upon leaving break mode, execution of the second step  
will clear the flag as normal.  
13.7 Low-Power Modes  
Executing the WAIT or STOP instruction puts the MCU in a low power- consumption mode for standby  
situations. The SIM holds the CPU in a non-clocked state. The operation of each of these modes is  
described below. Both STOP and WAIT clear the interrupt mask (I) in the condition code register, allowing  
interrupts to occur.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
128  
Freescale Semiconductor  
Low-Power Modes  
13.7.1 Wait Mode  
In wait mode, the CPU clocks are inactive while the peripheral clocks continue to run. Figure 13-14 shows  
the timing for wait mode entry.  
ADDRESS BUS  
DATA BUS  
R/W  
WAIT ADDR  
WAIT ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
NOTE: Previous data can be operand data or the WAIT opcode, depending on the last instruction.  
Figure 13-14. Wait Mode Entry Timing  
A module that is active during wait mode can wake up the CPU with an interrupt if the interrupt is enabled.  
Stacking for the interrupt begins one cycle after the WAIT instruction during which the interrupt occurred.  
In wait mode, the CPU clocks are inactive. Refer to the wait mode subsection of each module to see if the  
module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode.  
Wait mode can also be exited by a reset (or break in emulation mode). A break interrupt during wait mode  
sets the SIM break stop/wait bit, SBSW, in the break status register (BSR). If the COP disable bit, COPD,  
in the configuration register is 0, then the computer operating properly module (COP) is enabled and  
remains active in wait mode.  
Figure 13-15 and Figure 13-16 show the timing for wait recovery.  
ADDRESS BUS  
DATA BUS  
$6E0B  
$A6  
$6E0C  
$00FF  
$00FE  
$00FD  
$00FC  
$A6  
$A6  
$01  
$0B  
$6E  
EXITSTOPWAIT  
NOTE: EXITSTOPWAIT = RST pin OR CPU interrupt  
Figure 13-15. Wait Recovery from Interrupt  
32  
CYCLES  
32  
CYCLES  
ADDRESS BUS  
$6E0B  
$A6  
RSTVCTH RSTVCTL  
DATA BUS $A6  
$A6  
RST(1)  
BUSCLKX4  
1. RST is only available if the RSTEN bit in the CONFIG1 register is set.  
Figure 13-16. Wait Recovery from Internal Reset  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
129  
System Integration Module (SIM)  
13.7.2 Stop Mode  
In stop mode, the SIM counter is reset and the system clocks are disabled. An interrupt request from a  
module can cause an exit from stop mode. Stacking for interrupts begins after the selected stop recovery  
time has elapsed. Reset or break also causes an exit from stop mode.  
The SIM disables the oscillator signals (BUSCLKX2 and BUSCLKX4) in stop mode, stopping the CPU  
and peripherals. If OSCENINSTOP is set, BUSCLKX4 will remain running in STOP and can be used to  
run the AWU. Stop recovery time is selectable using the SSREC bit in the configuration register 1  
(CONFIG1). If SSREC is set, stop recovery is reduced from the normal delay of 4096 BUSCLKX4 cycles  
down to 32. This is ideal for the internal oscillator, RC oscillator, and external oscillator options which do  
not require long start-up times from stop mode.  
NOTE  
External crystal applications should use the full stop recovery time by  
clearing the SSREC bit.  
The SIM counter is held in reset from the execution of the STOP instruction until the beginning of stop  
recovery. It is then used to time the recovery period. Figure 13-17 shows stop mode entry timing and  
Figure 13-18 shows the stop mode recovery time from interrupt or break  
NOTE  
To minimize stop current, all pins configured as inputs should be driven to  
a logic 1 or logic 0.  
CPUSTOP  
ADDRESS BUS  
DATA BUS  
R/W  
STOP ADDR  
STOP ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
NOTE: Previous data can be operand data or the STOP opcode, depending on the last instruction.  
Figure 13-17. Stop Mode Entry Timing  
STOP RECOVERY PERIOD  
BUSCLKX4  
INTERRUPT  
ADDRESS BUS  
STOP + 2  
STOP + 2  
SP  
SP – 1  
SP – 2  
SP – 3  
STOP +1  
Figure 13-18. Stop Mode Recovery from Interrupt  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
130  
Freescale Semiconductor  
SIM Registers  
13.8 SIM Registers  
The SIM has two memory mapped registers.  
13.8.1 SIM Reset Status Register  
This register contains seven flags that show the source of the last reset. Clear the SIM reset status  
register by reading it. A power-on reset sets the POR bit and clears all other bits in the register.  
Bit 7  
POR  
6
5
4
3
2
1
Bit 0  
0
Read:  
Write:  
POR:  
PIN  
COP  
ILOP  
ILAD  
MODRST  
LVI  
1
0
0
0
0
0
0
0
= Unimplemented  
Figure 13-19. SIM Reset Status Register (SRSR)  
POR — Power-On Reset Bit  
1 = Last reset caused by POR circuit  
0 = Read of SRSR  
PIN — External Reset Bit  
1 = Last reset caused by external reset pin (RST)  
0 = POR or read of SRSR  
COP — Computer Operating Properly Reset Bit  
1 = Last reset caused by COP counter  
0 = POR or read of SRSR  
ILOP — Illegal Opcode Reset Bit  
1 = Last reset caused by an illegal opcode  
0 = POR or read of SRSR  
ILAD — Illegal Address Reset Bit (illegal attempt to fetch an opcode from an unimplemented  
address)  
1 = Last reset caused by an opcode fetch from an illegal address  
0 = POR or read of SRSR  
MODRST — Monitor Mode Entry Module Reset bit  
1 = Last reset caused by monitor mode entry when vector locations $FFFE and $FFFF are $FF after  
POR while IRQB = VDD  
0 = POR or read of SRSR  
LVI — Low Voltage Inhibit Reset bit  
1 = Last reset caused by LVI circuit  
0 = POR or read of SRSR  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
131  
System Integration Module (SIM)  
13.8.2 Break Flag Control Register  
The break control register (BFCR) contains a bit that enables software to clear status bits while the MCU  
is in a break state.  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
0
= Reserved  
R
Figure 13-20. Break Flag Control Register (BFCR)  
BCFE — Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing status registers while the MCU is  
in a break state. To clear status bits during the break state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
132  
Freescale Semiconductor  
Chapter 14  
Slave LIN Interface Controller (SLIC) Module  
14.1 Introduction  
The slave LIN interface controller (SLIC) is designed to provide slave node connectivity on a local  
interconnect network (LIN) sub-bus. LIN is an open-standard serial protocol developed for the automotive  
industry to connect sensors, motors, and actuators.  
The SLIC shares its pins with general-purpose input/output (I/O) port pins. See Figure 14-1 for port  
location of these shared pins.  
14.2 Features  
The SLIC includes these distinctive features:  
Full LIN message buffering of identifier and 8 data bytes  
Automatic bit rate and LIN message frame synchronization:  
No prior programming of bit rate required, 1–20 kbps LIN bus speed operation  
All LIN messages will be received (no message loss due to synchronization process)  
Input clock tolerance as high as 50%, allowing internal oscillator to remain untrimmed  
Incoming break symbols always allowed to be 10 or more bit times without message loss  
Supports automatic software trimming of internal oscillator using LIN synchronization data  
Automatic processing and verification of LIN SYNCH BREAK and SYNCH BYTE  
Automatic checksum calculation and verification with error reporting  
Maximum of two interrupts per standard LIN message frame with no errors  
Full LIN error checking and reporting  
High-speed LIN capability up to 83.33 kbps to 120.00 kbps(1)  
Configurable digital receive filter  
Streamlined interrupt servicing through use of a state vector register  
Switchable UART-like byte transfer mode for processing bytes one at a time without LIN message  
framing constraints  
Enhanced checksum (includes ID) generation and verification  
1. Maximum bit rate of SLIC module dependent upon frequency of SLIC input clock.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
133  
Slave LIN Interface Controller (SLIC) Module  
PTA0/AD0/KBI0  
PTA1/AD1/TCH1/KBI1  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
INTERNAL OSC  
INTERNAL CLOCK SOURCE  
4, 8, 12.8, or 25.6 MHz  
KEYBOARD INTERRUPT  
MODULE  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
EXTERNAL INTERRUPT  
MODULE  
M68HC08 CPU  
PTB0/TCH0  
PTB1  
AUTO WAKEUP  
MODULE  
PTB2/AD4  
PTB3/AD5  
PTB4/SLCRX  
PTB5/SLCTX  
PTB6  
LOW-VOLTAGE  
INHIBIT  
2-CHANNEL 16-BIT  
TIMER MODULE  
PTB7  
COP  
MODULE  
MC68HC908QL4  
4096 BYTES  
MC68HC908QL4  
128 BYTES  
USER FLASH  
USER RAM  
6-CHANNEL  
10-BIT ADC  
SLAVE LIN INTERFACE  
CONTROLLER  
VDD  
POWER SUPPLY  
VSS  
DEVELOPMENT SUPPORT  
MONITOR ROM  
BREAK MODULE  
RST, IRQ: Pins have internal pull up device  
All port pins have programmable pull up device (pullup/down on port A)  
PTA[0:5]: Higher current sink and source capability  
Figure 14-1. Block Diagram Highlighting SLIC Block and Pins  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
134  
Functional Description  
14.3 Functional Description  
The SLIC provides full standard LIN message buffering for a slave node, minimizing the need for CPU  
intervention. Routine protocol functions (such as synchronization to the communication channel,  
reception, and verification of header data) and generation of the checksum are handled automatically by  
the SLIC. This allows application software to be greatly simplified relative to standard UART  
implementations, as well as reducing the impact of interrupts needed in those applications to handle each  
byte of a message independently.  
Additionally, the SLIC has the ability to automatically synchronize to any LIN message, regardless of the  
LIN bus bit rate (1–20 kbps), properly receiving that message without prior programming of the target LIN  
bit rate. Furthermore, this can even be accomplished using an untrimmed internal oscillator, provided its  
accuracy is at least 50% of nominal.  
The SLIC also has a simple UART-like byte transfer mode, which allows the user to send and receive  
single bytes of data in half-duplex 8-N-1 format (8-bit data, no parity, 1 stop bit) without the need for LIN  
message framing.  
LSVR AND LINIF  
SLCSVR CONTROL  
STATUS REGISTERS  
CONTROL REGISTERS  
LIN PROTOCOL STATE MACHINE  
(PSM)  
MESSAGE BUFFER — 9 BYTES  
SLCID  
SLCD7, SLCD6, SLCD5, SLCD4  
SLCD3, SLCD2, SLCD1, SLCD0  
SHADOW REGISTER  
1 BYTE  
SLIC CLOCK  
BUS CLOCK  
DIGITAL RX FILTER  
DIGITAL RX FILTER  
PRESCALER (RXFP[1:0])  
SLCTX  
SLCRX  
Figure 14-2. SLIC Module Block Diagram  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
135  
Slave LIN Interface Controller (SLIC) Module  
14.4 Interrupts  
The SLIC module contains one interrupt vector, which can be triggered by sources encoded in the SLIC  
state vector register. See 14.8.6 SLIC State Vector Register.  
14.5 Modes of Operation  
Figure 14-3 shows the modes in which the SLIC will operate.  
POWER OFF  
VDD <= VDD (MIN)  
VDD > VDD (MIN) AND ANY  
MCU RESET SOURCE ASSERTED  
(FROM ANY MODE)  
ANY MCU RESET SOURCE  
ASSERTED  
SLIC RESET  
NO MCU RESET SOURCE ASSERTED  
INITREQ = 0; (INITACK = 0)  
SLIC INIT  
REQUESTED  
(INITACK = 1)  
SLIC DISABLED  
(FROM ANY MODE)  
INITREQ SET TO 1 IN  
SLCC1 REGISTER  
SLCE SET IN SLCC2 REGISTER  
SLCE CLEARED IN  
SLCC2 REGISTER  
NETWORK ACTIVITY  
OR OTHER MCU  
WAKEUP  
NETWORK ACTIVITY OR OTHER  
MCU WAKEUP  
SLIC RUN  
SLIC WAIT  
SLIC STOP  
(WAIT INSTRUCTION  
AND SLCWCM = 0)  
STOP INSTRUCTION  
(WAIT INSTRUCTION  
AND SLCWCM = 1)  
Figure 14-3. SLIC Operating Modes  
14.5.1 Power Off  
This mode is entered from the reset mode whenever the SLIC module supply voltage VDD drops below  
its minimum specified value for the SLIC module to guarantee operation. The SLIC module will be placed  
in the reset mode by a system low-voltage reset (LVR) before being powered down. In this mode, the pin  
input and output specifications are not guaranteed.  
14.5.2 Reset  
This mode is entered from the power off mode whenever the SLIC module supply voltage VDD rises above  
its minimum specified value (VDD(MIN)) and some MCU reset source is asserted. To prevent the SLIC from  
entering an unknown state, the internal MCU reset is asserted while powering up the SLIC module. SLIC  
reset mode is also entered from any other mode as soon as one of the MCU's possible reset sources (e.g.,  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
136  
Freescale Semiconductor  
Modes of Operation  
LVR, POR, COP watchdog, RST pin, etc.) is asserted. SLIC reset mode may also be entered by the user  
software by asserting the INITREQ bit. INITACK indicates whether the SLIC module is in the reset mode  
as a result of writing INITREQ in SLCC1. While in the reset state the SLIC module clocks are stopped.  
Clearing the INITREQ allows the SLIC to proceed and enter SLIC run mode (if SLCE is set). The module  
will clear INITACK after the module has left reset mode and the SLIC will seek the next LIN header. It is  
the responsibility of the user to verify that this operation is compatible with the application before  
implementing this feature.  
In this mode, the internal SLIC module voltage references are operative, VDD is supplied to the internal  
circuits, which are held in their reset state and the internal SLIC module system clock is running. Registers  
will assume their reset condition. Outputs are held in their programmed reset state, inputs and network  
activity are ignored.  
14.5.3 SLIC Disabled  
This mode is entered from the reset mode after all MCU reset sources are no longer asserted or INITREQ  
is cleared by the user and the SLIC module clears INITACK. It is entered from the run mode whenever  
SLCE in SLCC2 is cleared. In this mode the SLIC clock is stopped to conserve power and allow the SLIC  
module to be configured for proper operation on the LIN bus.  
14.5.4 SLIC Run  
This mode is entered from the SLIC disabled mode when SLCE in SLCC2 is set. It is entered from the  
SLIC wait mode whenever activity is sensed on the LIN bus or some other MCU source wakes the CPU  
out of wait mode.  
It is entered from the SLIC stop mode whenever network activity is sensed or some other MCU source  
wakes the CPU out of stop mode. Messages will not be received properly until the clocks have stabilized  
and the CPU is also in the run mode.  
14.5.5 SLIC Wait  
This power conserving mode is automatically entered from the run mode whenever the CPU executes a  
WAIT instruction and SLCWCM in SLCC1 is previously cleared. In this mode, the SLIC module internal  
clocks continue to run. Any activity on the LIN network will cause the SLIC module to exit SLIC wait mode  
and return to SLIC run.  
14.5.6 Wakeup from SLIC Wait with CPU in WAIT  
If the CPU executes the WAIT instruction and the SLIC module enters the wait mode (SLCWCM = 0), the  
clocks to the SLIC module as well as the clocks in the MCU continue to run. Therefore, the message that  
wakes up the SLIC module from WAIT and the CPU from wait mode will also be received correctly by the  
SLIC module. This is because all of the required clocks continue to run in the SLIC module in wait mode.  
14.5.7 SLIC Stop  
This power conserving mode is automatically entered from the run mode whenever the CPU executes a  
STOP instruction, or if the CPU executes a WAIT instruction and SLCWCM in SLCC1 is previously set.  
In this mode, the SLIC internal clocks are stopped. Any activity on the network will cause the SLIC module  
to exit SLIC stop mode and generate an unmaskable interrupt of the CPU. This wakeup interrupt state is  
reflected in the SLCSV, encoded as the highest priority interrupt. This interrupt can be cleared by the CPU  
with a read of the SLCSV and clearing of the SLCF interrupt flag. Depending upon which low-power mode  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
137  
Slave LIN Interface Controller (SLIC) Module  
instruction the CPU executes to cause the SLIC module to enter SLIC stop, the message which wakes  
up the SLIC module (and the CPU) may or may not be received.  
There are two different possibilities:  
1. Wakeup from SLIC Stop with CPU in STOP  
When the CPU executes the STOP instruction, all clocks in the MCU, including clocks to the SLIC  
module, are turned off. Therefore, the message which wakes up the SLIC module and the CPU  
from stop mode will not be received. This is due primarily to the amount of time required for the  
MCU's oscillator to stabilize before the clocks can be applied internally to the other MCU modules,  
including the SLIC module.  
2. Wakeup from SLIC Stop with CPU in WAIT If the CPU executes the WAIT instruction and the SLIC  
module enters the stop mode (SLCWCM = 1), the clocks to the SLIC module are turned off, but the  
clocks in the MCU continue to run. Therefore, the message which wakes up the SLIC module from  
stop and the CPU from wait mode will be received correctly by the SLIC module. This is because  
very little time is required for the CPU to turn the clocks to the SLIC module back on after the  
wakeup interrupt occurs.  
NOTE  
While the SLIC module will correctly receive a message which arrives when  
the SLIC module is in stop or wait mode and the MCU is in wait mode, if the  
user enters this mode while a message is being received, the data in the  
message will become corrupted. This is due to the steps required for the  
SLIC module to resume operation upon exiting stop or wait mode, and its  
subsequent resynchronization with the LIN bus.  
14.5.8 Normal and Emulation Mode Operation  
The SLIC module operates in the same manner in all normal and emulation modes. All SLIC module  
registers can be read and written except those that are reserved, unimplemented, or write once. The user  
must be careful not to unintentionally write a register when using 16-bit writes to avoid unexpected SLIC  
module behavior.  
14.5.9 Special Mode Operation  
Some aspects of SLIC module operation can be modified in special test mode. This mode is reserved for  
internal use only.  
14.5.10 Low-Power Options  
The SLIC module can save power in disabled, wait, and stop modes. A complete description of what the  
SLIC module does while in a low-power mode can be found in 14.5 Modes of Operation.  
14.6 SLIC During Break Interrupts  
The BCFE bit in the BSCR register has no affect on the SLIC module. Therefore the SLIC modules status  
bits cannot be protected during break.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
138  
Freescale Semiconductor  
I/O Signals  
14.7 I/O Signals  
The SLIC module can share its two pins with the general-purpose I/O pins. See Figure 14-1 for the port  
pins that are shared.  
14.7.1 SLCTX — SLIC Transmit Pin  
The SLCTX pin serves as the serial output of the SLIC module.  
14.7.2 SLCRX — SLIC Receive Pin  
The SLCRX pin serves as the serial input of the SLIC module. This input feeds directly into the digital  
receive filter block which filters out noise glitches from the incoming data stream.  
14.8 Registers  
14.8.1 SLIC Control Register 1  
SLIC control register 1 (SLCC1) contains bits used to control various basic features of the SLIC module,  
including features used for initialization and at runtime.  
Bit 7  
0
6
0
5
INITREQ  
1
4
0
3
2
1
IMSG  
0
Bit 0  
SLCIE  
0
Read:  
Write:  
Reset:  
WAKETX TXABRT  
0
0
0
0
0
= Unimplemented  
Figure 14-4. SLIC Control Register 1 (SLCC1)  
INITREQ —Initialization Request  
Requesting initialization mode by setting this bit will place the SLIC module into its initialized state  
immediately. If transmission or reception of data is in progress, the transaction will be terminated  
immediately upon entry into initialization mode (signified by INITACK being set to 1). To return to  
normal SLIC operation after the SLIC has been initialized (the INITACK is high), the INITREQ must be  
cleared by software.  
1 = Request for SLIC to be put into reset state immediately  
0 = Normal operation  
WAKETX — Transmit Wakeup Symbol  
This bit allows the user to transmit a wakeup symbol on the LIN bus. When set, this sends a wakeup  
symbol, as defined in the LIN specification a single time, then resets to 0. This bit will read 1 while the  
wakeup symbol is being transmitted on the bus. This bit will be automatically cleared when the wakeup  
symbol is complete.  
1 = Send wakeup symbol on LIN bus  
0 = Normal operation  
TXABRT — Transmit Abort Message  
1 = Transmitter aborts current transmission at next byte boundary; TXABRT resets to 0 after the  
transmission is successfully aborted  
0 = Normal operation  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
139  
Slave LIN Interface Controller (SLIC) Module  
IMSG — SLIC Ignore Message Bit  
IMSG cannot be cleared by a write of 0, but is cleared automatically by the SLIC module after the next  
BREAK/SYNC symbol pair is validated. After it is set, IMSG will not keep data from being written to the  
receive data buffer, which means that the buffers cannot be assumed to contain known valid message  
data until the next receive buffer full interrupt. IMSG must not be used in BTM mode.  
1 = SLIC to ignore data field of message, SLIC interrupts are suppressed until the next message  
header arrives  
0 = Normal operation  
SLCIE — SLIC Interrupt Enable  
1 = SLIC interrupt sources are enabled  
0 = SLIC interrupt sources are disabled  
14.8.2 SLIC Control Register 2  
SLIC control register 2 (SLCC2) contains bits used to control various features of the SLIC module.  
Bit 7  
0
6
0
5
0
4
0
3
SLCWCM  
0
2
BTM  
0
1
0
Bit 0  
SLCE  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
= Unimplemented  
Figure 14-5. SLIC Control Register 2 (SLCC2)  
SLCWCM — SLIC Wait Clock Mode  
This bit can only be written once out of reset state.  
1 = SLIC clocks stop when the CPU is placed into wait mode  
0 = SLIC clocks continue to run when the CPU is placed into wait mode so that the SLIC can receive  
messages and wakeup the CPU.  
BTM — UART Byte Transfer Mode  
Byte transmit mode bypasses the normal LIN message framing and checksum monitoring and allows  
the user to send and receive single bytes in a method similar to a half-duplex UART. When enabled,  
this mode reads the bit time register (SLCBT) value and assumes this is the value corresponding to  
the number of SLIC clock counts for one bit time to establish the desired UART bit rate. The user  
software must initialize this register prior to sending or receiving data, based on the input clock  
selection, prescaler stage choice, and desired bit rate.  
BTM forces the data length in SLCDLC to one byte (DLC = 0x00) and disables the checksum circuitry  
so that CHKMOD has no effect. Refer to 14.9.15 Byte Transfer Mode Operation for more detailed  
information about how to use this mode. BTM sets up the SLIC module to send and receive one byte  
at a time, with 8-bit data, no parity, and one stop bit (8-N-1). This is the most commonly used setup for  
UART communications and should work for most applications. This is fixed in the SLIC and is not  
configurable.  
1 = UART byte transfer mode enabled  
0 = UART byte transfer mode disabled  
SLCE — SLIC Module Enable  
1 = SLIC module enabled  
0 = SLIC module disabled  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
140  
Freescale Semiconductor  
Registers  
NOTE  
To guarantee timing, the user must ensure that the SLIC clock used allows  
the proper communications timing tolerances and therefore internal  
oscillator circuits might not be appropriate for use with BTM mode.  
14.8.3 SLIC Status Register  
SLIC status register (SLCS) contains bits used to monitor the status of the SLIC module.  
Bit 7  
Read: SLCACT  
Write:  
6
0
5
4
0
3
0
2
0
1
0
Bit 0  
SLCF  
0
INITACK  
Reset:  
0
0
1
0
0
0
0
= Unimplemented  
Figure 14-6. SLIC Status Register (SLCS)  
SLCACT — SLIC Active (Oscillator Trim Blocking Semaphore)  
SLCACT is used to indicate if it is safe to trim the oscillator based upon current SLIC activity in LIN  
mode. This bit indicates that the SLIC module might be currently receiving a message header,  
synchronization byte, ID byte, or sending or receiving data bytes. This bit is read-only.  
1 = SLIC module activity (not safe to trim oscillator)  
SLCACT is automatically set to 1 if a falling edge is seen on the SLCRX pin and has  
successfully been passed through the digital RX filter. This edge is the potential beginning of a  
LIN message frame.  
0 = SLIC module not active (safe to trim oscillator)  
SLCACT is cleared by the SLIC module only upon assertion of the RX Message Buffer Full  
Checksum OK (SLCSV = $10) or the TX Message Buffer Empty Checksum Transmitted  
(SLCSV = $08) interrupt sources.  
NOTE  
SLCACT may not be clear during all idle times of the bus. For example, if  
IMSG was used to ignore the data interrupts of an extended message  
frame, SLCACT will remain set until another LIN message is received and  
either the RX Message Buffer Full Checksum OK (SLCSV = $10) or the TX  
Message Buffer Empty Checksum Transmitted (SLCSV = $08) interrupt  
sources are asserted and cleared. When clear, SLCACT always indicates  
times when the SLIC module is not active, but it is possible for the SLIC  
module to be not active with SLCACT set. SLCACT has no meaning in BTM  
mode.  
INITACK — Initialization Mode Acknowledge  
INITACK indicates whether the SLIC module is in the reset mode as a result of writing INITREQ in  
SLCC1. While in the reset state the SLIC module clocks are stopped. Clearing the INITREQ allows the  
SLIC to proceed and enter SLIC run mode (if SLCE is set). The module will clear INITACK after the  
module has left reset mode and the SLIC will seek the next LIN header. This bit is read-only.  
1 = SLIC module is in reset state  
0 = Normal operation  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
141  
Slave LIN Interface Controller (SLIC) Module  
SLCF — SLIC Interrupt Flag  
The SLCF interrupt flag indicates if a SLIC module interrupt is pending. If set, the SLCSV is then used  
to determine what interrupt is pending. This flag is cleared by writing a 1 to the bit. If additional interrupt  
sources are pending, the bit will be automatically set to 1 again by the SLIC.  
1 = SLIC interrupt pending  
0 = No SLIC interrupt pending  
14.8.4 SLIC Prescaler Register  
SLIC prescaler register (SLCP) is used to configure the delay of the digital receive filter circuit, and hence  
the width of noise pulse which is blocked by the filter. The SLIC clock is used to drive the digital receive  
circuit. Variations on the input clock will affect filter performance proportionally, so if internal oscillators  
are used, worst case oscillator frequencies must be accounted for when determining prescaler settings  
to ensure that the frequency of the SLIC clock always remains between 2 MHz and 8 MHz.  
Bit 7  
RXFP1  
1
6
RXFP0  
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
0
= Unimplemented  
Figure 14-7. SLIC Prescale Register (SLCP)  
Table 14-1. Digital Receive Filter Clock Prescaler  
Maximum Filter Delay (in µs)  
Digital RX Filter  
RXFP[1:0]  
Clock Prescaler  
(Divide by)  
SLIC Clock (in MHz)  
2
3.2  
5
4
4
6
6.4  
2.5  
5
8
$00  
$01  
$10  
$11  
1
8
2.67  
5.33  
8
2
4
6
8
2
3 (default)  
4
16  
24  
32  
10  
15  
20  
8
12  
16  
7.5  
10  
10.67  
RXFP[1:0] — Receive Filter Prescaler  
These bits configure the effective filter width for the digital receive filter circuit. The RXFP bits control  
the maximum number of SLIC clock counts required for the filter to change state, which determines  
the total maximum filter delay. Any pulse which is smaller than the maximum filter delay value will be  
rejected by the filter and ignored as noise. For this reason, the user must choose the prescaler value  
appropriately to ensure that all valid message traffic is able to pass the filter for the desired bit rate. For  
more details about setting up the digital receive filter, please refer to 14.9.17 Digital Receive Filter.  
The frequency of the SLIC clock must be between 2 MHz and 8 MHz, factoring in worst case possible  
numbers due to untrimmed process variations, as well as temperature and voltage variations in oscillator  
frequency. This will guarantee greater than 1.5% accuracy for all LIN messages from 1–20 kbps. The  
faster this input clock is, the greater the resulting accuracy and the higher the possible bit rates at which  
the SLIC can send and receive. In LIN systems, the bit rates will not exceed 20 kbps; however, the SLIC  
module is capable of much higher speeds without any configuration changes, for cases such as  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
142  
Freescale Semiconductor  
Registers  
high-speed downloads for reprogramming of FLASH memory or diagnostics in a test environment where  
radiated emissions requirements are not as stringent. In these situations, the user may choose to run  
faster than the 20 kbps limit which is imposed by the LIN specification for EMC reasons. Details of how  
to calculate maximum bit rates and operate the SLIC above 20 kbps are detailed in 14.9.14 High-Speed  
LIN Operation. Refer to 14.9.6 SLIC Module Initialization Procedure for more information on when to set  
up this register.  
14.8.5 SLIC Bit Time Registers  
NOTE  
In this subsection, the SLIC bit time registers are collectively referred to as  
SLCBT.  
In LIN operating mode (BTM = 0), the SLCBT is updated by the SLIC upon reception of a LIN break-synch  
combination and provides the number of SLIC clock counts that equal one LIN bit time to the user  
software. This value can be used by the software to calculate the clock drift in the oscillator as an offset  
to a known count value (based on nominal oscillator frequency and LIN bus speed). The user software  
can then trim the oscillator to compensate for clock drift. Refer to 14.9.16 Oscillator Trimming with SLIC  
for more information on this procedure. The user cannot read the bit time value from SLCBTH and  
SLCBTL any time after the identifier byte is received until the beginning of the next LIN message frame  
on the bus. The beginning of this message frame activity will be indicated by SLCACT.  
When in byte transfer mode (BTM = 1), the SLCBT must be written by the user to set the length of one  
bit at the desired bit rate in SLIC clock counts. The user software must initialize this number prior to  
sending or receiving data, based on the input clock selection, prescaler stage choice, and desired bit rate.  
This setting is similar to choosing an input capture or output compare value for a timer. The closest even  
value must be chosen for this value, as BT0 will be forced to 0 by the SLIC module and any odd value will  
always be reduced to the next lowest even integer value. For example, a write of value 51 (0x33) will be  
forced to value of 50 and read back as 0x32. A write to both registers is required to update the bit time  
value.  
NOTE  
The SLIC bit time will not be updated until a write of the SLCBTL has  
occurred.  
Bit 7  
0
6
0
5
0
4
BT12  
0
3
BT11  
0
2
BT10  
0
1
BT9  
0
Bit 0  
BT8  
0
Read:  
Write:  
Reset:  
0
0
0
= Unimplemented  
Figure 14-8. SLIC Bit Time Register High (SLCBTH)  
Bit 7  
BT7  
0
6
BT6  
0
5
BT5  
0
4
BT4  
0
3
BT3  
0
2
BT2  
0
1
BT1  
0
Bit 0  
0
Read:  
Write:  
Reset:  
0
= Unimplemented  
Figure 14-9. SLIC Bit Time Register Low (SLCBTL)  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
143  
Slave LIN Interface Controller (SLIC) Module  
BT — Bit Time Value  
BT displays the number of SLIC clocks that equals one bit time in LIN mode (BTM = 0). For details of  
the use of the SLCBT registers in LIN mode for trimming of the internal oscillator, refer to 14.9.16  
Oscillator Trimming with SLIC.  
BT sets the number of SLIC clocks that equals one bit time in byte transfer mode (BTM = 1). For details  
of the use of the SLCBT registers in BTM mode, refer to 14.9.15 Byte Transfer Mode Operation.  
NOTE  
Do not write to unimplemented bits as unexpected operation may occur.  
14.8.6 SLIC State Vector Register  
SLIC state vector register (SLCSV) is provided to substantially decrease the CPU overhead associated  
with servicing interrupts while under operation of a LIN protocol. It provides an index offset that is directly  
related to the LIN module’s current state, which can be used with a user supplied jump table to rapidly  
enter an interrupt service routine. This eliminates the need for the user to maintain a duplicate state  
machine in software.  
Bit 7  
0
6
0
5
4
3
2
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
I3  
I2  
I1  
I0  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 14-10. SLIC State Vector Register (SLCSV)  
READ: any time  
WRITE: ignored  
I[3:0] — Interrupt State Vector (Bits 5–2)  
These bits indicate the source of the interrupt request that is currently pending.  
14.8.6.1 LIN Mode Operation  
Table 14-2 shows the possible values for the possible sources for a SLIC interrupt while in LIN mode  
operation (BTM = 0).  
Table 14-2. Interrupt Sources Summary (BTM = 0)  
SLCSV  
$00  
I3  
0
I2  
0
I1  
0
I0  
0
Interrupt Source  
No Interrupts Pending  
No-Bus-Activity  
Priority  
0 (Lowest)  
1
$04  
0
0
0
1
TX Message Buffer Empty  
Checksum Transmitted  
$08  
$0C  
$10  
0
0
0
0
0
1
1
1
0
0
1
0
2
3
4
TX Message Buffer Empty  
RX Message Buffer Full  
Checksum OK  
RX Data Buffer Full  
No Errors  
$14  
$18  
0
0
1
1
0
1
1
0
5
6
Bit-Error  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
144  
Registers  
Table 14-2. Interrupt Sources Summary (BTM = 0) (Continued)  
SLCSV  
$1C  
$20  
I3  
0
1
1
1
1
1
1
1
1
I2  
1
0
0
0
0
1
1
1
1
I1  
1
0
0
1
1
0
0
1
1
I0  
1
0
1
0
1
0
1
0
1
Interrupt Source  
Receiver Buffer Overrun  
Reserved  
Priority  
7
8
$24  
Checksum Error  
9
$28  
Byte Framing Error  
Identifier Received Successfully  
Identifier Parity Error  
Inconsistent-Synch-Field-Error  
Reserved  
10  
$2C  
$30  
11  
12  
$34  
13  
14  
$38  
$3C  
Wakeup  
15 (Highest)  
No Interrupts Pending  
This value indicates that all pending interrupt sources have been serviced. In polling mode, the  
SLCSV is read and interrupts serviced until this value reads back 0. This source will not generate  
an interrupt of the CPU, regardless of state of SLCIE.  
No Bus Activity (LIN specified error)  
The No-Bus-Activity condition occurs if no valid SYNCH BREAK FIELD or BYTE FIELD was  
received for more than 223 SLIC clock counts since the reception of the last valid message. For  
example, with 6.4 MHz SLIC clock frequency, a No-Bus-Activity interrupt will occur about 1.31  
seconds after the bus begins to idle.  
TX Message Buffer Empty — Checksum Transmitted  
When the entire LIN message frame has been transmitted successfully, complete with the  
appropriately selected checksum byte, this interrupt source is asserted. This source is used for all  
standard LIN message frames and the final set of bytes with extended LIN message frames.  
TX Message Buffer Empty  
This interrupt source indicates that all 8 bytes in the LIN message buffer have been transmitted  
with no checksum appended. This source is used for intermediate sets of 8 bytes in extended LIN  
message frames.  
RX Message Buffer Full — Checksum OK  
When the entire LIN message frame has been received successfully, complete with the  
appropriately selected checksum byte, and the checksum calculates correctly, this interrupt source  
is asserted. This source is used for all standard LIN message frames and the final set of bytes with  
extended LIN message frames. To clear this source, SLCD0 must be read first.  
RX Data Buffer Full — No Errors  
This interrupt source indicates that 8 bytes have been received with no checksum byte and are  
waiting in the LIN message buffer. This source is used for intermediate sets of 8 bytes in extended  
LIN message frames. To clear this source, SLCD0 must be read first.  
Bit Error  
A unit that is sending a bit on the bus also monitors the bus. A BIT_ERROR must be detected at  
that bit time, when the bit value that is monitored is different from the bit value that is sent. The  
SLIC will terminate the data transmission upon detection of a bit error, according to the LIN  
specification. Bit errors are not checked when the LIN bus is running at high speed due to the  
effects of physical layer round trip delay. Bit errors are fully checked at all LIN 2.0 compliant speeds  
of 20 kbps and below.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
145  
Slave LIN Interface Controller (SLIC) Module  
Receiver Buffer Overrun Error  
This error is an indication that the receive buffer has not been emptied and additional bytes have  
been received, resulting in lost data. Because this interrupt is higher priority than the receive buffer  
full interrupts, it will appear first when an overflow condition occurs. There will, however, be a  
pending receive interrupt which must also be cleared after the buffer overrun flag is cleared.  
Checksum Error (LIN specified error)  
The checksum error occurs when the calculated checksum value does not match the expected  
value. If this error is encountered, it is important to verify that the correct checksum calculation  
method was employed for this message frame. Refer to the LIN specification for more details on  
the calculations.  
Byte Framing Error  
This error comes from the standard UART definition for byte encoding and occurs when the STOP  
bit is sampled and reads back as a 0. STOP should always read as 1. In LIN mode (BTM=0), if a  
byte framing error occurs in an identifier byte of a LIN header the user must set and then clear  
CHKMOD to ensure that the checksum calculation is reset. Failure to do so can result in an  
improperly calculated enhanced checksum for the subsequent LIN frame. Because any byte  
framing error indicates a corrupted byte, the best practice is to always toggle CHKMOD in the case  
of a byte framing error.  
NOTE  
A byte framing error can also be an indication that the number of data bytes  
received in a LIN message frame does not match the value written to the  
SLCDLC register. See 14.9.7 Handling LIN Message Headers for more  
details.  
Identifier Received Successfully  
This interrupt source indicates that a LIN identifier byte has been received with correct parity and  
is waiting in the LIN identifier buffer (SLCID). Upon reading this interrupt source from SLCSV, the  
user can then decode the identifier in software to determine the nature of the LIN message frame.  
To clear this source, SLCID must be read.  
Identifier-Parity-Error  
A parity error in the identifier (i.e., corrupted identifier) will be flagged. Typical LIN slave  
applications do not distinguish between an unknown but valid identifier, and a corrupted identifier.  
However, it is mandatory for all slave nodes to evaluate in case of a known identifier all eight bits  
of the ID-Field and distinguish between a known and a corrupted identifier. The received identifier  
value is reported in SLCID so that the user software can choose to acknowledge or ignore the  
parity error message.  
Inconsistent-Synch-Field-Error  
An Inconsistent-Synch-Field-Error must be detected if a slave detects the edges of the SYNCH  
FIELD outside the given tolerance.  
Wakeup  
The wakeup interrupt source indicates that the SLIC module has entered SLIC run mode from SLIC  
stop mode.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
146  
Freescale Semiconductor  
Registers  
14.8.6.2 Byte Transfer Mode Operation  
When byte transfer mode is enabled (BTM = 1), many of the interrupt sources for the SLCSV no longer  
apply, as they are specific to LIN operations. Table 14-3 shows those interrupt sources which are  
applicable to BTM operations. The value of the SLCSV for each interrupt source remains the same, as  
well as the priority of the interrupt source.  
I
Table 14-3. Interrupt Sources Summary (BTM = 1)  
SLCSV  
$00  
I3  
0
I2  
0
I1  
0
I0  
0
Interrupt Source  
No Interrupts Pending  
TX Message Buffer Empty  
Priority  
0 (Lowest)  
3
$0C  
0
0
1
1
RX Data Buffer Full  
No Errors  
$14  
0
1
0
1
5
$18  
$1C  
$28  
$38  
$3C  
0
0
1
1
1
1
1
0
1
1
1
1
1
1
1
0
1
0
0
1
Bit-Error  
Receiver Buffer Overrun  
Byte Framing Error  
Reserved  
6
7
10  
14  
Wakeup  
15 (Highest)  
No Interrupts Pending  
This value indicates that all pending interrupt sources have been serviced. In polling mode, the  
SLCSV is read and interrupts serviced until this value reads back 0. This source will not generate  
an interrupt of the CPU, regardless of state of SLCIE.  
TX Message Buffer Empty  
In byte transfer mode, this interrupt source indicates that the byte in the SLCID has been  
transmitted.  
RX Data Buffer Full — No Errors  
This interrupt source indicates that a byte has been received and is waiting in SLCID. To clear this  
source, SLCID must be read first.  
Bit-Error  
A unit that is sending a bit on the bus also monitors the bus. A BIT_ERROR must be detected at  
that bit time, when the bit value that is monitored is different from the bit value that is sent.  
Receiver Buffer Overrun Error  
This error is an indication that the receive buffer has not been emptied and additional byte(s) have  
been received, resulting in lost data. Because this interrupt is higher priority than the receive buffer  
full interrupts, it will appear first when an overflow condition occurs. There will, however, be a  
pending receive interrupt which must also be cleared after the buffer overrun flag is cleared.  
Byte Framing Error  
This error comes from the standard UART definition for byte encoding and occurs when STOP is  
sampled and reads back as a 0. STOP should always read as 1.  
Wakeup  
The wakeup interrupt source indicates that the SLIC module has entered SLIC run mode from SLIC  
wait mode.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
147  
Slave LIN Interface Controller (SLIC) Module  
14.8.7 SLIC Data Length Code Register  
The SLIC data length code register (SLCDLC) is the primary functional control register for the SLIC  
module during normal LIN operations. It contains the data length code of the message buffer, indicating  
how many bytes of data are to be sent or received, as well as the checksum mode control and transmit  
enabling bit.  
Bit 7  
TXGO  
0
6
CHKMOD  
0
5
DLC5  
0
4
DLC4  
0
3
DLC3  
0
2
DLC2  
0
1
DLC1  
0
Bit 0  
DLC0  
0
Read:  
Write:  
Reset:  
Figure 14-11. SLIC Data Length Code Register (SLCDLC)  
TXGO — SLIC Transmit Go  
This bit controls whether the SLIC module is sending or receiving data bytes. This bit is automatically  
reset to 0 after a transmit operation is complete or an error is encountered and transmission has been  
aborted.  
1 = Initiate SLIC transmit  
The SLIC assumes the user has loaded the proper data into the message buffer and will begin  
transmitting the number of bytes indicated in the SLCDLC bits. If the number of bytes is greater  
than 8, the first 8 bytes will be transmitted and an interrupt will be triggered (if unmasked) for  
the user to enter the next bytes of the message. If the number of bytes is 8 or fewer, the SLIC  
will transmit the appropriate number of bytes and automatically append the checksum to the  
transmission.  
0 = SLIC receive data  
CHKMOD — LIN Checksum Mode  
CHKMOD is used to decide what checksum method to use for this message frame. Resets after error  
code or message frame complete. CHKMOD must be written (if desired) only after the reception of an  
identifier and before the reception or transmission of data bytes. Writing this bit to a one clears the  
current checksum calculation. The one exception is when a byte framing error is detected and the  
checksum calculation should be reset. (See Byte Framing Error description in section 14.8.6.1 LIN  
Mode Operation.)  
1 = Checksum calculated without the identifier byte (LIN spec <= 1.3)  
0 = Checksum calculated with the identifier byte included  
(SAE J2602/LIN 2.0)  
DLC — Data Length Control Bits  
The value of the bits indicate the number of data bytes in message. Values $00–$07 are for “normal”  
LIN messaging. Values $08–$3F are for “extended” LIN messaging.  
Table 14-4. Data Length Control  
DLC[5:0]  
$00  
Message Data Length (Number of Bytes)  
1
2
$01  
$02  
3
...  
...  
62  
63  
64  
$3D  
$3E  
$3F  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
148  
Registers  
14.8.8 SLIC Identifier and Data Registers  
The SLIC identifier (SLCID) and eight data registers (SLCD7–SLCD0) comprise the transmit and receive  
buffer and are used to read/write the identifier and message buffer 8 data bytes. In BTM mode (BTM = 1),  
only SLCID is used to send and receive bytes, as only one byte is handled at any one time. The number  
of bytes to be read from or written to these registers is determined by the user software and written to  
SLCDLC. To obtain proper data, reads and writes to these registers must be made based on the proper  
length corresponding to a particular message. It is the responsibility of the user software to keep track of  
this value to prevent data corruption. For example, it is possible to read data from locations in the  
message buffer which contain erroneous or old data if the user software reads more data registers than  
were updated by the incoming message, as indicated in SLCDLC.  
NOTE  
An incorrect length value written to SLCDLC can result in the user software  
misreading or miswriting data in the message buffer. An incorrect length  
value might also result in SLIC error messages. For example, if a 4-byte  
message is to be received, but the user software incorrectly reports a  
3-byte length to the DLC, the SLIC will assume the 4th data byte is actually  
a checksum value and attempt to validate it as such. If this value doesn’t  
match the calculated value, an incorrect checksum error will occur. If it does  
happen to match the expected value, then the message would be received  
as a 3-byte message with valid checksum. Either case is incorrect behavior  
for the application and can be avoided by ensuring that the correct length  
code is used for each identifier.  
The first data byte received after the LIN identifier in a LIN message frame will be loaded into SLCD0. The  
next byte (if applicable) will be loaded into SLCD1, and so forth.  
.
Bit 7  
R7  
T7  
0
6
R6  
T6  
0
5
R5  
T5  
0
4
R4  
T4  
0
3
R3  
T3  
0
2
R2  
T2  
0
1
R1  
T1  
0
Bit 0  
R0  
T0  
0
Read:  
Write:  
Reset:  
Figure 14-12. SLIC Identifier Register (SLCID)  
The SLIC identifier register is used to capture the incoming LIN identifier and when the SLCSV value  
indicates that the identifier has been received successfully, this register contains the received identifier  
value. If the incoming identifier contained a parity error, this register value will not contain valid data.  
In byte transfer mode (BTM = 1), this register is used for sending and receiving each byte of data. When  
transmitting bytes, the data is loaded into this register, then TXGO in SLCDLC is set to initiate the  
transmission. When receiving bytes, they are read from this register only.  
Bit 7  
R7  
T7  
0
6
R6  
T6  
0
5
R5  
T5  
0
4
R4  
T4  
0
3
R3  
T3  
0
2
R2  
T2  
0
1
R1  
T1  
0
Bit 0  
R0  
T0  
0
Read:  
Write:  
Reset:  
Figure 14-13. SLIC Data Register x (SLCD7–SLCD0)  
R — Read SLC Receive Data  
T — Write SLC Transmit Data  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
149  
Slave LIN Interface Controller (SLIC) Module  
14.9 Initialization/Application Information  
The LIN specification defines a standard LIN “MESSAGE FRAME” as the basic format for transferring  
data across a LIN network. A standard MESSAGE FRAME is composed as shown in Figure 14-14 (shown  
with 8 data bytes).  
LIN transmits all data, identifier, and checksum characters as standard UART characters with eight data  
bits, no parity, and one stop bit. Therefore, each byte has a length of 10 bits, including the start and stop  
bits. The data bits are transmitted least significant bit (LSB) first.  
HEADER  
DATA  
0x55  
SYNCH  
BREAK  
SYNCH  
BYTE  
IDENT  
FIELD  
DATA  
FIELD  
DATA  
FIELD  
DATA  
FIELD  
DATA  
FIELD  
DATA  
FIELD  
DATA  
FIELD  
DATA  
FIELD  
DATA  
FIELD  
CHECKSUM  
FIELD  
0
1
2
3
4
5
6
7
13 OR MORE BITS (LIN 1.3)  
Figure 14-14. Typical LIN MESSAGE FRAME  
14.9.1 LIN Message Frame Header  
The HEADER section of all LIN messages is transmitted by the master node in the network and contains  
synchronization data, as well as the identifier to define what information is to be contained in the message  
frame. Formally, the header is comprised of three parts:  
1. SYNCH BREAK  
2. SYNCH BYTE (0x55)  
3. IDENTIFIER FIELD  
The first two components are present to allow the LIN slave nodes to recognize the beginning of the  
message frame and derive the bit rate of the master module.  
The SYNCH BREAK allows the slave to see the beginning of a message frame on the bus. The SLIC  
module can receive a standard 10-bit break character for the SYNCH BREAK, or any break symbol 10 or  
more bit times in length. This encompasses the LIN requirement of 13 or more bits of length for the  
SYNCH BREAK character.  
The SYNCH BYTE is always a 0x55 data byte, providing five falling edges for the slave to derive the bit  
rate of the master node.  
The identifier byte indicates to the slave what is the nature of the data in the message frame. This data  
might be supplied from either the master node or the slave node, as determined at system design time.  
The slave node must read this identifier, check for parity errors, and determine whether it is to send or  
receive data in the data field.  
More information on the HEADER is contained in 14.9.7.1 LIN Message Headers.  
14.9.2 LIN Data Field  
The data field is comprised of standard bytes (eight data bits, no parity, one stop bit) of data, from 0–8  
bytes for normal LIN frames and greater than eight bytes for extended LIN frames. The SLIC module will  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
150  
Freescale Semiconductor  
Initialization/Application Information  
either transmit or receive these bytes, depending upon the user code interpretation of the identifier byte.  
Data is always transmitted into the data field least significant byte (LSB) first.  
The SLIC module can automatically handle up to 64 bytes in extended LIN message frames without  
significantly changing program execution.  
14.9.3 LIN Checksum Field  
The checksum field is a data integrity measure for LIN message frames, used to signal errors in data  
consistency. The LIN 1.3 checksum calculation only covers the data field, but the SLIC module also  
supports an enhanced checksum calculation which also includes the identifier field. For more information  
on the checksum calculation, refer to 14.9.13 LIN Data Integrity Checking Methods.  
14.9.4 SLIC Module Constraints  
In designing a practical module, certain reasonable constraints must be placed on the LIN message traffic  
which are not necessarily explicitly specified in the LIN specification. The SLIC module presumes that:  
Timeout for no-bus-activity = 1 second.  
14.9.5 SLCSV Interrupt Handling  
Each change of state of the SLIC module is encoded in the SLIC state vector register (SLCSV). This is  
an efficient method of handling state changes, indicating to the user not only the current status of the SLIC  
module, but each state change will also generate an interrupt (if SLIC interrupts are enabled). For more  
detailed information on the SLCSV, please refer to 14.8.6 SLIC State Vector Register.  
In the software diagrams in the following subsections, when an interrupt is shown, the first step must  
always be reading SLCSV to determine what is the current status of the SLIC module. Likewise, when the  
diagrams indicate to “EXIT ISR”, the final step to exiting the interrupt service routine is to clear the SLCF  
interrupt flag. This can only be done if the SLCSV has first been read, and in the case that data has been  
received (such as an ID byte or command message data) the SLCD has been read at least one time.  
After SLCSV is read, it will switch to the next pending state, so the user must be sure it is copied only once  
into a software variable at the beginning of the interrupt service routine to avoid inadvertently clearing a  
pending interrupt source. Additional decisions based on this value must be made from the software  
variable, rather than from the SLCSV itself.  
After exiting the ISR, normal application code may resume. If the diagram indicates to “RETURN TO  
IDLE,” it indicates that all processing for the current message frame has been completed. If an error was  
detected and the corresponding error code loaded into the SLCSV, any pending data in the data buffer  
will be flushed out and the SLIC returned to its idle state, seeking out the next message frame header.  
14.9.6 SLIC Module Initialization Procedure  
14.9.6.1 LIN Mode Initialization  
The SLIC module does not require very much initialization, due to its self-synchronizing design. Because  
no prior knowledge of the bit rate is required to synchronize to the LIN bus, no programming of bit rate is  
required.  
At initialization time, the user must configure:  
SLIC prescale register (SLIC digital receive filter adjustment).  
Wait clock mode operation.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
151  
Slave LIN Interface Controller (SLIC) Module  
The SLIC clock is the same as the CPU bus clock. The module is designed to provide better than 1% bit  
rate accuracy at the lowest value of the SLIC clock frequency and the accuracy improves as the SLIC  
clock frequency is increased. For this reason, it is advantageous to choose the fastest SLIC clock which  
is still within the acceptable operating range of the SLIC. Because the SLIC may be used with MCUs with  
internal oscillators, the tolerance of the oscillator must be taken into account to ensure that SLIC clock  
frequency does not exceed the bounds of the SLIC clock operating range. This is especially important if  
the user wishes to use the oscillator untrimmed, where process variations might result in MCU frequency  
offsets of 25%.  
The acceptable range of SLIC clock frequencies is 2–8 MHz to guarantee LIN operations with greater than  
1.5% accuracy across the 1–20 kbps range of LIN bit rates. The user must ensure that the fastest possible  
SLIC clock frequency never exceeds 8 MHz or that the slowest possible SLIC clock never falls below 2  
MHz under worst case conditions. This would include, for example, oscillator frequency variations due to  
untrimmed oscillator tolerance, temperature variation, or supply voltage variation.  
To initialize the SLIC module into LIN operating mode, the user must perform the following steps prior to  
needing to receive any LIN message traffic. These steps assume the MCU has been reset either by a  
power-on reset (POR) or any other MCU reset mechanism.  
The steps for SLIC Initialization for LIN operation are:  
1. Write SLCC1 to clear INITREQ.  
2. When INITACK = 0, write SLCC1 & SLCC2 with desired values for:  
a. SLCWCM — Wait clock mode (default = leaving SLIC clock running when in CPU wait).  
3. Write SLCP to set up prescalers for:  
a. RXFP — Digital receive filter clock prescaler (default = SLIC divided by 3).  
4. Enable the SLIC module by writing SLCC2:  
a. SLCE = 1 to place SLIC module into run mode.  
b. BTM = 0 to disable byte transfer mode (default).  
5. Write SLCC1 to enable SLIC interrupts (if desired).  
14.9.6.2 Byte Transfer Mode Initialization  
Bit rate synchronization is handled automatically in LIN mode, using the synchronization data contained  
in each LIN message to derive the desired bit rate. In byte transfer mode (BTM = 1); however, the user  
must set up the bit rate for communications using the clock selection, prescaler, and SLCBT.  
More information on byte transfer mode is described in 14.9.15 Byte Transfer Mode Operation, including  
the performance parameters on recommended maximum speeds, bit time resolution, and oscillator  
tolerance requirements.  
After the desired settings of prescalers and bit time are determined, the SLIC Initialization for BTM  
operation is virtually identical to that of LIN operation.  
The steps are:  
1. Write SLCC1 to clear INITREQ.  
2. When INITACK = 0, write SLCC2 with desired values for:  
a. SLCWCM — Wait clock mode (default = leaving SLIC clock running when in CPU wait).  
3. Write SLCICP to set up prescalers for:  
a. RXFP — Digital receive filter clock prescaler (default = SLIC divided by 3).  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
152  
Freescale Semiconductor  
Initialization/Application Information  
4. Enable the SLIC module by writing SLCC2:  
a. SLCE = 1 to place SLIC module into run mode.  
b. BTM = 1 to enable byte transfer mode (default = disabled).  
5. Write SLCC1 to enable SLIC interrupts (if desired).  
14.9.7 Handling LIN Message Headers  
Figure 14-15 shows how the SLIC module deals with incoming LIN message headers.  
LIN MESSAGE  
HEADER RECEIVED  
N
VALID BREAK  
AND SYNCH  
DATA?  
INTERRUPT  
READ SLCSV  
Y
SLIC UPDATES SLCBT  
ID ARRIVING IN RX BUFFER  
PROCESS ERROR CODE:  
BYTE FRAMING ERROR  
INTERRUPT  
READ SLCSV  
CLEAR SLCF  
EXIT ISR  
RETURN TO  
LIN BUS IDLE  
PROCESS ERROR CODE:  
IDENTIFIER-PARITY ERROR  
BYTE FRAMING ERROR  
Y
ERROR CODE  
?
N
READ ID FROM SLCID  
N
ID FOR THIS  
NODE  
SET IMSG BIT  
?
Y
PROCESS VALID ID  
Figure 14-15. Handling LIN Message Headers  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
153  
Slave LIN Interface Controller (SLIC) Module  
14.9.7.1 LIN Message Headers  
All LIN message frame headers are comprised of three components:  
The first is the SYNCHRONIZATION BREAK (SYNCH BREAK) symbol, which is a dominant (low)  
pulse at least 13 or more bit times long, followed by a recessive (high) synchronization delimiter of  
at least one bit time. In LIN 2.0, this is allowed to be 10 or more bit times in length.  
The second part is called the SYNCHRONIZATION FIELD (SYNCH FIELD) and is a single byte  
with value 0x55. This value was chosen as it is the only one which provides a series of five falling  
(recessive to dominant) transitions on the bus.  
The third section of the message frame header is the IDENTIFIER FIELD (ID). The identifier is  
covered more in 14.9.8 Handling Command Message Frames and 14.9.9 Handling Request LIN  
Message Frames.  
The SLIC automatically reads the incoming pattern of the SYNCHRONIZATION BREAK and FIELD and  
determines the bit rate of the LIN data frame, as well as checking for errors in form and discerning  
between a genuine BREAK/FIELD combination and a similar byte pattern somewhere in the data stream.  
After the header has been verified to be valid and has been processed, the SLIC module updates the  
SLIC bit time register (SLICBT) with the value obtained from the SYNCH FIELD and begins to receive the  
ID.  
If there are errors in the SYNCH BREAK/FIELD pattern, then an interrupt is generated. If unmasked, it  
will trigger an MCU interrupt request and the resulting code in the SLIC state vector register (SLCSV) will  
be an “Inconsistent-Synch-Field-Error,” based on the LIN protocol specification.  
After the ID for the message frame has been received, an interrupt is generated by the SLIC and will  
trigger an MCU interrupt request if unmasked. At this point, it might be possible that the ID was received  
with errors such as a parity error (based on the LIN specification) or a byte framing error. If the ID did not  
have any errors, it will be copied into the SLCD for the software to read. The SLCSV will indicate the type  
error or that the ID was received correctly.  
In a LIN system, the meaning and function of all messages, and therefore all message identifiers, is  
pre-defined by the system designer. This information can be collected and stored in a standardized format  
file, called a Configuration Language Description (CLD) file. In using the SLIC module, it is the  
responsibility of the user software to determine the nature of the incoming message, and therefore how  
to further handle that message.  
The simplest case is when the SLIC receives a message which the user software determines is of no  
interest to the application. In other words, the slave node does not need to receive or transmit any data  
for this message frame. This might also apply to messages with zero data bytes (which is allowed by the  
LIN specification). At this point, the user can set the IMSG control bit, and exit the interrupt service routine  
by clearing the SLCIF flag. Because there is no data to be sent or received, the SLIC will not generate  
another interrupt until the next message frame header or bus goes idle long enough to trigger a  
“No-Bus-Activity” error according to the LIN specification.  
NOTE  
IMSG will prevent another interrupt from occurring for the current message  
frame; however, if data bytes are appearing on the bus they may be  
received and copied into the message buffer. This will delete any previous  
data which might have been present in the buffer, even though no interrupt  
is triggered to indicate the arrival of this data.  
At the time the ID is read, the user might also choose to read SLCBT and copy this value out to an  
application variable. This data can then be used at a time appropriate to both the application software and  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
154  
Freescale Semiconductor  
Initialization/Application Information  
the LIN communications to adjust the trim of the internal oscillator. This operation must be handled very  
carefully to avoid adjusting the base timing of the MCU at the wrong time, adversely affecting the  
operation of the SLIC module or of the application itself. More information about this is contained in  
14.9.16 Oscillator Trimming with SLIC.  
If the user software determines that the ID read out of the SLCD corresponds to a command or request  
message for which this node needs to receive or transmit data (respectively), it will then move on to  
procedures described in 14.9.8 Handling Command Message Frames and 14.9.9 Handling Request LIN  
Message Frames.  
For clarification, in this document, “command” messages will refer to any message frame where the SLIC  
module is receiving data bytes and “request” messages refer to message frames where the SLIC module  
will be expected to transmit data bytes. This is a generic description and should not be confused with the  
terminology in the LIN specification. The LIN use of the terms “command” and “request” have the same  
basic meaning, but are limited in scope to specific identifier values of 0x3C and 0x3D. In the SLIC module  
documentation, these terms have been used to describe these functional types of messages, regardless  
of the specific identifier value used.  
14.9.7.2 Possible Errors on Message Headers  
Possible errors on message headers are:  
Identifier-Parity-Error  
Byte Framing Error  
14.9.8 Handling Command Message Frames  
Figure 14-16 shows how to handle command message frames, where the SLIC module is receiving data  
from the master node.  
Command message frames refer to LIN messages frames where the master node is “commanding” the  
slave node to do something. The implication is that the slave will then be receiving data from the master  
for this message frame. This can be a standard LIN message frame of 1–8 data bytes, a reserved LIN  
system message (using 0x3C identifier), or an extended command message frame utilizing the reserved  
0x3E user defined identifier or perhaps the 0x3F LIN reserved extended identifier. The SLIC module is  
capable of handling message frames containing up to 64 bytes of data, while still automatically calculating  
and/or verifying the checksum.  
14.9.8.1 Standard Command Message Frames  
After the application software has read the incoming identifier and determined that it is a valid identifier  
which cannot be ignored using IMSG, it must determine if this message frame is a command message  
frame or a request message frame. (i.e., should the application receive data from the master or send data  
back to the master?)  
The first case, shown in Figure 14-16 deals with command messages, where the SLIC will be receiving  
data from the master node. If the received identifier corresponds to a standard LIN command frame (i.e.,  
1–8 data bytes), the user must then write the number of bytes (determined by the system designer and  
directly linked with this particular identifier) corresponding to the length of the message frame into  
SLCDLC. The two most significant bits of this register are used for special control bits describing the  
nature of this message frame.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
155  
Slave LIN Interface Controller (SLIC) Module  
PROCESS  
VALID ID  
N
PROCESS  
REQUEST MESSAGE  
COMMAND MESSAGE  
?
Y
INITIALIZE SW BYTE COUNT  
WRITE SLCDLC FOR THIS ID  
0nxx xxxx  
(TXGO = 0)  
(CHKMOD = n)  
Y
EXTENDED FRAME  
?
N
WRITE SLCDLC FOR THIS ID  
EXIT ISR  
0n00 0xxx  
(TXGO = 0)  
(CHKMOD = n)  
INTERRUPT  
READ SLCSV  
CLEAR SLCF  
EXIT ISR  
PROCESS ERROR CODE:  
BYTE FRAMING ERROR  
NO-BUS-ACTIVITY  
Y
ERROR CODE  
?
INTERRUPT  
READ SLCSV  
CLEAR SLCF  
RECEIVE BUFFER OVERRUN  
N
PROCESS ERROR CODE:  
BYTE FRAMING ERROR  
CHECKSUM-ERROR  
NO-BUS-ACTIVITY  
EXIT ISR  
RETURN TO IDLE  
1. EMPTY RX BUFFER  
Y
2. DECREMENT SW BYTE COUNT BY 8  
ERROR CODE  
?
RECEIVE BUFFER OVERRUN  
N
LAST FRAME  
N
(SW BYTE COUNT £8)  
EXIT ISR  
RETURN TO IDLE  
EMPTY RX BUFFER  
?
Y
Figure 14-16. Handling Command Messages (Data Receive)  
The SLIC transmit go (TXGO) bit should be 0 for command frames, indicating to the SLIC that data is  
coming from the master. The checksum mode control (CHKMOD) bit allows the user to select which  
method of checksum calculation is desired for this message frame. The LIN 1.3 checksum does not  
include the identifier byte in the calculation, while the SAE version does include this byte. Because the  
identifier is already received by the SLIC by this time, the default is to include it in the calculation. If a LIN  
1.3 checksum is desired, a 1 in CHKMOD will reset the checksum circuitry to begin calculating the  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
156  
Freescale Semiconductor  
Initialization/Application Information  
checksum on the first data byte. Using CHKMOD in this way allows the SLIC to receive messages with  
either method of data consistency check and change on a frame-by-frame basis. If a system uses both  
types of data consistency checking methods, the software must simply change the setting of this bit based  
on the identifier of each message. If the network only uses one type of check, CHKMOD can be set as a  
constant value in the user’s code. If CHKMOD is not written on each frame, care must be taken not to  
accidentally modify the bit when writing the data length and TXGO bits. This is especially true if using C  
code without carefully inspecting the output of the compiler and assembler.  
The control bits and data length code are contained in one register, allowing the user to maximize the  
efficiency of the identifier processing by writing a single byte value to indicate the nature of the message  
frame. This allows very efficient identifier processing code, which is important in a command frame, as  
the master node can be sending data immediately following the identifier byte which might be as little as  
one byte in length. The SLIC module uses a separate internal storage area for the incoming data bytes,  
so there is no danger of losing incoming data, but the user should spend as little time as possible within  
the ISR to ensure that the application or other ISRs are able to use the majority of the CPU bandwidth.  
The identifier must be processed in a maximum of 2 byte times on the LIN bus to ensure that the ISR  
completes before the checksum would be received for the shortest possible message. This should be  
easily achievable, as the only operations required are to read SLCID and look up the checksum method,  
data length, and command/request state of that identifier, then write that value to the SLCDLC. This can  
be easily streamlined in code with a lookup table of identifiers and corresponding SLCDLC bytes.  
NOTE  
Once the ID is decoded for a message header and a length code written to  
SLCDLC, the SLIC is expecting that number of bytes to be received. If the  
SLIC module doesn't receive the number of bytes indicated in the SLCDLC  
register, it will continue to look for data bytes. If another message header  
begins, a byte framing error will trigger on the break symbol of that second  
message. The second message will still properly generate an ID received  
interrupt, but the byte framing error prior to this is an indication to the  
application that the previous message was not properly handled and should  
be discarded.  
14.9.8.2 Extended Command Message Frames  
Handling of extended frames is very similar to handling of standard frames, providing that the length is  
less than or equal to 64 bytes. Because the SLIC module can only receive 8 bytes at a time, the receive  
buffer must be emptied periodically for long message frames. This is not standard LIN operation, and is  
likely only to be used for downloading calibration data or reprogramming FLASH devices in a factory or  
service facility, so the added steps required for processing are not as critical to performance. During these  
types of operations, the application code is likely very limited in scope and special adjustments can be  
made to compensate for added message processing time.  
For extended command frames, the data length is still written one time at the time the identifier is  
decoded, along with the TXGO and CHKMOD bits. When this is done, a software counter must also be  
initialized to keep track of how many bytes are expected to be received in the message frame. The ISR  
completes, clearing the SLCF flag, and resumes application execution. The SLIC will generate an  
interrupt, if unmasked, after 8 bytes are received or an error is detected. At this interrupt, the SLCSV will  
indicate an error condition (in case of byte framing error, idle bus) or that the receive buffer is full. If the  
data is successfully received, the user must then empty the buffer by reading SLCD7-SLCD0 and then  
subtract 8 from the software byte count. When this software counter reaches 8 or fewer, the remaining  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
157  
Slave LIN Interface Controller (SLIC) Module  
data bytes will fit in the buffer and only one interrupt should occur. At this time, the final interrupt may be  
handled normally, continuing to use the software counter to read the proper number of bytes from the  
appropriate SLCD registers.  
NOTE  
Do not write SLCDLC more than one time per LIN message frame. The  
SLIC tracks the number of sent or received bytes based on the value written  
to this register at the beginning of the data field and rewriting this register  
will corrupt the checksum calculation and cause unpredictable behavior in  
the SLIC module. The application software must track the number of sent  
or received bytes to know what the current byte count in the SLIC is. If  
programming in C, make sure to use the VOLATILE modifier on this  
variable (or make it a global variable) to ensure that it keeps its value  
between interrupts.  
14.9.8.3 Possible Errors on Command Message Data  
Possible errors on command message data are:  
Byte Framing Error  
Checksum-Error (LIN specified error)  
No-Bus-Activity (LIN specified error)  
Receiver Buffer Overrun Error  
14.9.9 Handling Request LIN Message Frames  
Figure 14-17 shows how to handle request message frames, where the SLIC module is sending data to  
the master node.  
Request message frames refer to LIN messages frames where the master node is “requesting” the slave  
node to supply information. The implication is that the slave will then be transmitting data to the master  
for this message frame. This can be a standard LIN message frame of 1–8 data bytes, a reserved LIN  
system message (using 0x3D identifier), or an extended request message frame utilizing the reserved  
0x3E identifier or perhaps the 0x3F LIN reserved extended identifier. The SLIC module is capable of  
handling request message frames containing up to 64 bytes of data, while still automatically calculating  
and/or verifying the checksum.  
14.9.9.1 Standard Request Message Frames  
Dealing with request messages with the SLIC is very similar to dealing with command messages, with  
one important difference. Because the SLIC is now to be transmitting data in the LIN message frame, the  
user software must load the data to be transmitted into the message buffer prior to initiating the  
transmission. This means an extra step is taken inside the interrupt service routine after the identifier has  
been decoded and is determined to be an ID for a request message frame.  
Figure 14-17 deals with request messages, where the SLIC will be transmitting data to the master node.  
If the received identifier corresponds to a standard LIN command frame (i.e., 1-8 data bytes), the  
message processing is very simple. The user must load the data to be transmitted into the transmit buffer  
by writing it to the SLCD registers. The first byte to be transmitted on the LIN bus must be loaded into  
SLCD0, then SLCD1 for the second byte, etc. After all of the bytes to be transmitted are loaded in this  
way, a single write to SLCDLC will allow the user to encode the number of data bytes to be transmitted  
(1–8 bytes for standard request frames), set the proper checksum calculation method for the data  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
158  
Freescale Semiconductor  
Initialization/Application Information  
(CHKMOD), as well as signal the SLIC that the buffer is ready by writing a 1 to TXGO. TXGO will remain  
set to 1 until the buffer is sent successfully or an error is encountered, signaling to the application code  
that the buffer is in process of transmitting. In cases of 1–8 data bytes only being sent (standard LIN  
request frames), the SLIC automatically calculates and transmits the checksum byte at the end of the  
message frame. The user can exit the ISR after SLCDLC has been written and the SLCF flag has been  
cleared.  
PROCESS  
REQUEST MESSAGE  
Y
1. CLEAR SLCF  
2. INITIALIZE SW BYTE COUNT  
EXTENDED FRAME  
?
3. LOAD FIRST 8 DATA BYTES  
4. WRITE SLCDLC FOR THIS ID  
1nxx xxxx  
(TXGO = 1)  
N
(CHKMOD = n)  
1. CLEAR SLCF  
2. LOAD DATA INTO MESSAGE BUFFER  
3. WRITE SLCDLC FOR THIS ID  
1n00 0xxx  
(TXGO = 1)  
(CHKMOD = n)  
EXIT ISR  
EXIT ISR  
INTERRUPT  
READ SLCSV  
CLEAR SLCF  
INTERRUPT  
READ SLCSV  
CLEAR SLCF  
PROCESS ERROR CODE:  
BYTE FRAMING ERROR  
BIT-ERROR  
Y
ERROR CODE  
PROCESS ERROR CODE:  
BYTE FRAMING ERROR  
BIT-ERROR  
?
Y
ERROR CODE  
N
CHECKSUM-ERROR  
?
EXIT ISR  
RETURN TO IDLE  
DECREMENT SW BYTE COUNT BY 8  
N
EXIT ISR  
RETURN TO IDLE  
TRANSMIT COMPLETE  
N
LAST FRAME  
(SW BYTE COUNT £8)  
?
Y
1. LOAD NEXT 8 BYTES TO TRANSMIT  
2. WRITE TXGO BIT TO START TRANSMIT(1)  
1. LOAD LAST (£8) BYTES TO TRANSMIT  
2. WRITE TXGO BIT TO START TRANSMIT(1)  
Note 1. When writing TXGO bit only, ensure that CHKMOD and data length values are not accidentally modified.  
Figure 14-17. Handling Request LIN Message Frames  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
159  
Slave LIN Interface Controller (SLIC) Module  
The next SLIC interrupt which occurs, if unmasked, will indicate the end of the request message frame  
and will either indicate that the frame was properly transmitted or that an error was encountered during  
transmission. Refer to 14.9.9.4 Possible Errors on Request Message Data for more detailed explanation  
of these possible errors. This interrupt also signals to the application that the message frame is complete  
and all data bytes and the checksum value have been properly transmitted onto the bus.  
The SLIC module cannot begin to transmit the data until the user writes a 1 to TXGO, indicating that data  
is ready. If the user writes TXGO without loading data into the transmit buffer, whatever data is in storage  
will be transmitted, where the number of bytes transmitted is based on the data length value in the data  
length register. Similarly, if the user writes the wrong value for the number of data bytes to transmit, the  
SLIC will transmit that number of bytes, potentially transmitting garbage data onto the bus. The checksum  
calculation is performed based on the data transmitted, and will therefore still be calculated.  
The identifier must be processed, data must be loaded into the transmit buffer, and the SLCDLC value  
written to initiate data transmission in a certain amount of time, based on the LIN specification. If the user  
waits too long to start transmission, the master node will observe an idle bus and trigger a Slave Not  
Responding error condition. The same error can be triggered if the transmission begins too late and does  
not complete before the message frame times out. Refer to the LIN specification for more details on timing  
constraints and requirements for LIN slave devices. This is especially important when dealing with  
extended request frames, when the data must be loaded in 8 byte sections (maximum) to be transmitted  
at each interrupt.  
14.9.9.2 Extended Request Message Frames  
Handling of extended frames is very similar to handling of standard frames, providing that the length is  
less than or equal to 64 bytes. Because the SLIC module can only transmit 8 bytes at a time, the transmit  
buffer must be loaded periodically for extended message frames. This is not standard LIN operation, and  
is likely only to be used for special cases, so the added steps required for processing should not be as  
critical to performance. During these types of operations, the application code is likely very limited in  
scope and special adjustments can be made to compensate for added message processing time.  
When handling extended request frames, it is important to clear the SLCF flag first, before loading any  
data or writing TXGO. The data length is still written only one time, at the time the identifier is decoded,  
along with the TXGO and CHKMOD bits, after the first 8 data bytes are loaded into the transmit buffer.  
When this is done, a software counter must also be initialized to keep track of how many bytes are to be  
transmitted in the message frame. The SLIC will generate an interrupt, if unmasked, after 8 bytes are  
transmitted or an error is detected. At this interrupt, the SLCSV will indicate an error condition (in case of  
byte framing error or bit error) or that the transmit buffer is empty. If the data is transmitted successfully,  
the user must then clear the SLCF flag, subtract 8 from the software byte count, load the next 8 bytes into  
the SLCD registers, and write a 1 to TXGO to tell the SLIC that the buffers are loaded and transmission  
can commence. When this software counter reaches 8 or fewer, the remaining data bytes will fit in the  
transmit buffer and the SLIC will automatically append the checksum value to the frame after the last byte  
is sent.  
NOTE  
Do not write the CHKMOD or data length values in SLCDLC more than one  
time per message frame. The SLIC tracks the number of sent or received  
bytes based on the value written to this register at the beginning of the data  
field and rewriting this register will corrupt the checksum calculation and  
cause unpredictable behavior in the SLIC module. The application software  
must track the number of sent or received bytes to know what the current  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
160  
Freescale Semiconductor  
Initialization/Application Information  
byte count in the SLIC is. If programming in C, make sure to use the  
STATIC modifier on this variable (or make it a global variable) to ensure  
that it keeps its value between interrupts.  
14.9.9.3 Transmit Abort  
The transmit abort bit (TXABRT) in SLCC1 allows the user to cease transmission of data on the next byte  
boundary. When this bit is set to 1, it will finish transmitting the byte currently being transmitted, then  
cease transmission. After the transmission is successfully aborted, TXABRT will automatically be reset  
by the SLIC to 0. If the SLIC is not in process of transmitting at the time TXABRT is written to 1, there is  
no effect and TXABRT will read back as 0.  
14.9.9.4 Possible Errors on Request Message Data  
Possible errors on request message data are:  
Byte Framing Error  
Checksum-Error (LIN specified error)  
Bit-Error  
14.9.10 Handling IMSG to Minimize Interrupts  
The IMSG feature is designed to minimize the number of interrupts required to maintain LIN  
communications. On a network with many slave nodes, it is very likely that a particular slave will observe  
messages which are not intended for that node. When the SLIC module detects any message header, it  
synchronizes to that message frame and bit rate, then interrupts the CPU after the identifier byte has been  
successfully received and parity checked. At this time, if the software determines that the message may  
be ignored, IMSG may be set to indicate to the module that the data field of the message frame is to be  
ignored and no additional interrupts should be generated until the next valid message header is received.  
The bit is automatically reset to 0 after the current message frame is complete and the LIN bus returns to  
idle state. This reduces the load on the CPU and allows the application software to immediately begin  
performing any operations which might otherwise not be allowed while receiving messaging.  
NOTE  
IMSG will prevent another interrupt from occurring for the current message  
frame, however if data bytes are appearing on the bus they may be  
received and copied into the message buffer. This will delete any previous  
data which might have been present in the buffer, even though no interrupt  
is triggered to indicate the arrival of this data.  
14.9.11 Sleep and Wakeup Operation  
The SLIC module itself has no special sleep mode, but does support low-power modes and wake-up on  
network activity. For low-power operations, the user must select whether or not to allow the SLIC clock to  
continue operating when the MCU issues a wait instruction through the SLC wait clock mode (SLCWCM)  
bit in SLCC1. If SLCWCM = 1, the SLIC will enter SLIC STOP mode when the MCU executes a WAIT  
instruction. If SLCWCM = 0, the SLIC will enter SLIC WAIT mode when the MCU executes a WAIT  
instruction. For more information on these modes, as well as wakeup options from these modes, please  
refer to 14.5 Modes of Operation.  
When network activity occurs, the SLIC module will wake the MCU out of stop or wait mode, and return  
the SLIC module to SLIC run mode. If the SLIC was in SLIC wait mode, normal SLIC interrupt processing  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
161  
Slave LIN Interface Controller (SLIC) Module  
will resume. If the SLIC was in SLIC stop mode, SLCSV will indicate wakeup as the interrupt source so  
that the user knows that the SLIC module brought the MCU out of stop or wait.  
In a LIN system, a system message is generally sent to all nodes to indicate that they are to enter  
low-power network sleep mode. After a node enters sleep mode, it waits for outside events, such as  
switch or sensor inputs or network traffic to bring it out of network sleep mode. If the node using the SLIC  
module is awakened by a source other than network traffic, such as a switch input, the LIN specification  
requires this node to issue a wake-up signal to the rest of the network. The SLIC module supports this  
feature using WAKETX in SLCC2. The user software may set this bit and one LIN wake-up signal is  
immediately transmitted on the bus, then the bit is automatically cleared by the SLIC module. If another  
wake-up signal is required to be sent, the user must set WAKETX again.  
In a LIN system, the LIN physical interface can often also provide an output to the IRQ pin to provide a  
wake-up mechanism on network activity. The physical layer might also control voltage regulation supply  
to the MCU, cutting power to the MCU when the physical layer is placed in its low-power mode. The user  
must take care to ensure that the interaction between the physical layer, IRQ pin, SLIC transmit and  
receive pins, and power supply regulator is fully understood and designed to ensure proper operation.  
14.9.12 Polling Operation  
It is possible to operate the SLIC module in polling mode, if desired. The primary difference is that the  
SLIC interrupt request should not be enabled (SLCIE = 0). The SLCSV will update and operate properly  
and interrupt requests will be indicated with the SLCF flag, which can be polled to determine status  
changes in the SLIC module. It is required that the polling rate be fast enough to ensure that SLIC status  
changes be recognized and processed in time to ensure that all application timings can be met.  
14.9.13 LIN Data Integrity Checking Methods  
The SLIC module supports two different LIN-based data integrity options:  
The first option supports LIN 1.3 and older methods of checksum calculations.  
The second option supports an optional additional enhanced checksum calculation which has  
greater data integrity coverage.  
The LIN 1.3 and earlier specifications transmit a checksum byte in the “CHECKSUM FIELD” of the LIN  
message frame. This CHECKSUM FIELD contains the inverted modulo-256 sum over all data bytes. The  
sum is calculated by an “ADD with Carry” where the carry bit of each addition is added to the least  
significant bit (LSB) of its resulting sum. This guarantees security also for the MSBs of the data bytes. The  
sum of modulo-256 sum over all data bytes and the checksum byte must be ’0xFF’.  
An optional checksum calculation can also be performed on a LIN data frame which is very similar to the  
LIN 1.3 calculation, but with one important distinction. This enhanced calculation simply includes the  
identifier field as the first value in the calculation, whereas the LIN 1.3 calculation begins with the least  
significant byte of the data field (which is the first byte to be transmitted on the bus). This enhanced  
calculation further ensures that the identifier field is correct and ties the identifier and data together under  
a common calculation, ensuring greater reliability.  
In the SLIC module, either checksum calculation can be performed on any given message frame by  
simply writing or clearing CHKMOD in SLCDLC, as desired, when the identifier for the message frame is  
decoded. The appropriate calculation for each message frame should be decided at system design time  
and documented in the LIN description file, indicating to the user which calculation to use for a particular  
identifier.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
162  
Freescale Semiconductor  
Initialization/Application Information  
14.9.14 High-Speed LIN Operation  
High-speed LIN operation does not necessarily require any reconfiguration of the SLIC module,  
depending upon what maximum LIN bit rate is desired. Several factors affect the performance of the SLIC  
module at LIN speeds higher than 20 kbps, all of which are functions of the speed of the SLIC clock and  
the prescaler of the digital filter. The tightest constraint comes from the need to maintain 1.5% accuracy  
with the master node timing. This requires that the SLIC module be able to sample the incoming data  
stream accurately enough to guarantee that accuracy. Table 14-5 shows the maximum LIN bit rates  
allowable to maintain this accuracy.  
Table 14-5. Maximum LIN Bit Rates for High-Speed Operation  
Maximum LIN Bit Rate  
for 1ꢀ SLIC Accuracy  
(Bits / Second)  
Maximum LIN Bit Rate  
for 1.5ꢀ SLIC Accuracy  
(Bits / Second)  
SLIC Clock (MHz)  
8
80,000  
64,000  
48,000  
40,000  
32,000  
24,000  
20,000  
120,000  
96,000  
72,000  
60,000  
48,000  
36,000  
30,000  
6.4  
4.8  
4
3.2  
2.4  
2
The above numbers assume a perfect input waveforms into the SLCRX pin, where 1 and 0 bits are of  
equal length and are exactly the correct length for the appropriate speed. Factors such as physical layer  
wave shaping and ground shift can affect the symmetry of these waveforms, causing bits to appear  
shortened or lengthened as seen by the SLIC module. The user must take these factors into account and  
base the maximum speed upon the shortest possible bit time that the SLIC module may observe, factoring  
in all physical layer effects. On some LIN physical layer devices it is possible to turn off wave shaping  
circuitry for high-speed operation, removing this portion of the physical layer error.  
The digital receive filter can also affect high speed operation if it is set too low and begins to filter out valid  
message traffic. Under ideal conditions, this will not happen, as the digital filter maximum speeds  
allowable are higher than the speeds allowed for 1.5% accuracy. If the digital receive filter prescaler is  
set to divide- by-4; however, the filter delay is very close to the 1.5% accuracy maximum bit time.  
For example, with a SLIC clock of 4 MHz, the SLIC module is capable of maintaining 1.5% accuracy up  
to 60,000 bps. If the digital receive filter prescaler is set to divide-by-4, this means that the filter will only  
pass message traffic which is 62,500 bps or slower under ideal circumstances. This is only a difference  
of 2,500 bps (4.17% of the nominal valid message traffic speed). In this case, the user must ensure that  
with all errors accounted for, no bit will appear shorter than 16 µs  
(1 bit at 62,500 bps) or the filter will block that bit. This is far too narrow a margin for safe design practices.  
The better solution would be to reduce the filter prescaler, increasing the gap between the filter cut-off  
point and the nominal speed of valid message traffic. Changing the prescaler to divide by 2 in this example  
gives a filter cut-off of 125,000 bps, which is 60,000 bps faster than the nominal speed of the LIN bus and  
much less likely to interfere with valid message traffic.  
To ensure that all valid messages pass the filter stage in high-speed operation, it is best to ensure that  
the filter cut-off point is at least 2 times the nominal speed of the fastest message traffic to appear on the  
bus. Refer to Table 14-6 for a more complete list of the digital receive filter delays as they relate to the  
maximum LIN bus frequency. Table 14-7 repeats much of the data found in Table 14-6; however, the filter  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
163  
Slave LIN Interface Controller (SLIC) Module  
delay values (cutoff values) are shown in the frequency and time domains. Note that Table 14-7 shows  
the filter performance under ideal conditions.  
When switching between a low-speed (< 4800 bps) to a high-speed (> 40000 bps) LIN message, the  
master node must allow a minimum idle time of eight bit times (of the slowest bit rate) between the  
messages. This prevents a valid message at another frequency from being detected as an invalid  
message.  
Table 14-6. Maximum LIN Bit Rates for High-Speed Operation Due to Digital Receive Filter  
Maximum LIN  
Bit Rate for 1.5ꢀ  
SLIC Accuracy  
(for Master-Slave  
Communication  
(Bits / Second)  
Maximum LIN  
Bit Rate with  
Digital RX Filter  
Set to ÷4  
Maximum LIN  
Bit Rate with  
Digital RX Filter  
Set to ÷3  
Maximum LIN  
Bit Rate with  
Digital RX Filter  
Set to ÷2  
Maximum LIN  
Bit Rate with  
Digital RX Filter  
Set to ÷1  
SLIC  
Clock  
(MHz)  
(Bits / Second)  
(Bits / Second)  
THESE PRESCALERS  
NOT RECOMMENDED FOR  
HIGH-SPEED LIN OPERATION  
(Bits / Second)  
(Bits / Second)  
DIGITAL RX FILTER  
NOT CONSIDERED  
8
120,000  
96,000  
72,000  
60,000  
48,000  
36,000  
30,000  
120,000(1)  
100,000  
75,000  
62,500  
50,000  
37,500  
31,250  
120,000(1)  
120,000(1)  
100,000  
83,333  
120,000(1)  
120,000(1)  
120,000(1)  
120,000(1)  
100,000  
120,000(1)  
120,000(1)  
120,000(1)  
120,000(1)  
120,000(1)  
120,000(1)  
120,000(1)  
6.4  
4.8  
4
3.2  
2.4  
2
66,667  
50,000  
75,000  
41,667  
62,500  
1. Bit rates over 120,000 bits per second are not recommended for LIN communications, as physical layer delay between the  
TX and RX pins can cause the stop bit of a byte to be mis-sampled as the last data bit. This could result in a byte framing  
error.  
Table 14-7. Digital Receive Filter Absolute Cutoff (Ideal Conditions)  
Digital RX Filter  
Digital RX Filter  
Digital RX Filter  
Digital RX Filter  
Set to ÷4  
Set to ÷3  
Set to ÷2  
Set to ÷1  
SLIC  
Clock  
(MHz)  
Max.  
Min Pulse  
Max.  
Min Pulse  
Width  
Max.  
Min Pulse  
Width  
Max.  
Min Pulse  
Width  
Bit Rate  
(Bits /  
Sec)  
Width  
Allowed  
(µs)  
Bit Rate  
(Bits /  
Sec)  
Bit Rate  
(Bits /  
Sec)  
Bit Rate  
(Bits /  
Sec)  
Allowed  
(µs)  
Allowed  
(µs)  
Allowed  
(µs)  
8
125,000  
100,000  
75,000  
62,500  
50,000  
37,500  
31,250  
8.0  
166,667  
133,333  
100,000  
83,333  
66,667  
50,000  
41,667  
6.0  
7.5  
250,000  
200,000  
150,000  
125,000  
100,000  
75,000  
4.0  
5.0  
500,000  
400,000  
300,000  
250,000  
200,000  
150,000  
125,000  
2.0  
2.5  
3.3  
4.0  
5.0  
6.7  
8.0  
6.4  
4.8  
4
10.0  
13.3  
16.0  
20.0  
26.7  
32.0  
10.0  
12.0  
15.0  
20.0  
24.0  
6.7  
8.0  
3.2  
2.4  
2
10.0  
13.3  
16.0  
62,500  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
164  
Freescale Semiconductor  
Initialization/Application Information  
14.9.15 Byte Transfer Mode Operation  
This subsection describes the operation and limitations of the optional UART-like byte transfer mode  
(BTM). This mode allows sending and receiving individual bytes, but changes the behavior of the SLCBT  
registers (now read/write registers) and locks the SLCDLC to 1 byte data length. The SLCBT value now  
becomes the bit time reference for the SLIC, where the software sets the length of one bit time rather than  
the SLIC module itself. This is similar to an input capture/output compare (IC/OC) count in a timer module,  
where the count value represents the number of SLIC clock counts in one bit time.  
Byte transfer mode assumes that the user has a very stable, precise oscillator, resonator, or clock  
reference input into the MCU and is therefore not appropriate for use with internal oscillators. There is no  
synchronization method available to the user in this mode and the user must tell the SLIC how many clock  
counts comprise a bit time. Figure 14-18, Figure 14-19, Figure 14-20, and Figure 14-21 show calculations  
to determine the SLCBT value for different settings.  
NOTE  
It is possible to use the LIN autobauding circuitry in a non-LIN system to  
derive the correct bit timing values if system constraints allow. To do this  
the SLIC module must be activated in LIN mode (BTM=0) and receive a  
break symbol, 0x55 data byte and one additional data byte (at the desired  
BTM speed). Upon receiving this sequence of symbols which appears to be  
a LIN header, the SLIC module will assert an ID received successfully  
interrupt (SLCSV=0x2C). The value in the SLCBT registers will reflect the  
bit rate which the 0x55 data character was received and can be saved to  
RAM. The user then switches the SLIC into BTM mode and reloads this  
value from RAM and the SLIC will be configured to communicate in BTM  
mode at the baud rate which the 0x55 data character was sent.  
In the example in Figure 14-18, the user should write 0x16, as a write of 0x15 (decimal value of 21) would  
automatically revert to 0x14, resulting in transmitted bit times that are 1.33 SLIC clock periods too short  
rather than 0.667 SLIC clock periods too long. The optimal choice, which gives the smallest resolution  
error, is the closest even number of SLIC clocks to the exact calculated SLCBT value.  
There is a trade-off between maximum bit rate and resolution with the SLIC in BTM mode. Faster SLIC  
clock speeds improve resolution, but require higher numbers to be written to the SLCBT registers for a  
given desired bit rate. It is up to the user to determine what level of resolution is acceptable for the given  
application.  
Desired Bit Rate:  
57,600 bps  
External Crystal Frequency: 4.9152 MHz  
1 Second  
17.36111 ms  
1 Bit  
=
=
57,600 Bits  
1 Second  
4 CGMXCLK Period  
1 SLIC Clock Period  
813.802 ns  
X
X
4,915,200 CGMXCLK Periods  
1 SLIC Clock Period  
17.36111 ms  
1 Bit  
1 SLIC Clock Period  
813.802 ns  
21.33 SLIC Clock Periods  
1 Bit  
=
Therefore, the closest SLCBT value would be 21 SLIC clocks (SLCBT = 0x0015).  
Because you can only use even values in SLCBT, the closest acceptable value is 22 (0x0016).  
Figure 14-18. SLCBT Value Calculation Example 1  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
165  
Slave LIN Interface Controller (SLIC) Module  
Desired Bit Rate:  
57,600 bps  
External Crystal Frequency: 9.8304 MHz  
1 Second  
17.36111 ms  
1 Bit  
=
=
57,600 Bits  
1 Second  
4 CGMXCLK Period  
1 SLIC Clock Period  
406.90 ns  
X
X
9,830,400 CGMXCLK Periods  
1 SLIC Clock Period  
17.36111 ms  
1 Bit  
1 SLIC Clock Period  
406.90 ns  
42.67 SLIC Clock Periods  
1 Bit  
=
Therefore, the closest SLCBT value would be 42 SLIC clocks (SLCBT = 0x002A).  
Figure 14-19. SLCBT Value Calculation Example 2  
Desired Bit Rate:  
15,625 bps  
External Crystal Frequency: 8.000 MHz  
1 Second  
64 ms  
1 Bit  
=
=
15,625 Bits  
1 Second  
4 CGMXCLK Period  
1 SLIC Clock Period  
500 ns  
X
X
8,000,000 CGMXCLK Periods  
1 SLIC Clock Period  
64 ms  
1 Bit  
1 SLIC Clock Period  
500 ns  
128 SLIC Clock Periods  
1 Bit  
=
Therefore, the closest SLCBT value would be 128 SLIC clocks (SLCBT = 0x0080).  
Figure 14-20. SLCBT Value Calculation Example 3  
Desired Bit Rate:  
9.615 bps  
External Crystal Frequency: 8.000 MHz  
1 Second  
9,615 Bits  
104.004 ms  
1 Bit  
=
=
1 Second  
4 CGMXCLK Period  
1 SLIC Clock Period  
500 ns  
X
X
8,000,000 CGMXCLK Periods  
1 SLIC Clock Period  
104.004 ms  
1 Bit  
1 SLIC Clock Period  
500 ns  
208.008 SLIC Clock Periods  
1 Bit  
=
Therefore, the closest SLCBT value would be 42 SLIC clocks (SLCBT = 0x00D0).  
Figure 14-21. SLCBT Value Calculation Example 4  
This resolution affects the sampling accuracy of the SLIC module on receiving bytes, but only as far as  
locating the sample point of each bit within a given byte. The best sample point of the bit may be off by  
as much as one SLIC clock period from the exact center of the bit, if the proper SLCBT value for the  
desired bit rate is an odd number of SLIC clock periods.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
166  
Freescale Semiconductor  
Initialization/Application Information  
Figure 14-22 shows an example of this error. In this example, the user has additionally chosen an  
incorrect value of 30 SLIC clocks for the length of one bit time, and a filter prescaler of 1. This makes little  
difference in the receive sampling of this particular bit, as the sample point is still within the bit and the  
digital filter will catch any noise pulses shorter than 16 filter clocks long.The ideal value of SLCBT would  
be 35 SLIC clocks, but the closest available value is 34, placing the sample point at 17 SLIC clocks into  
the bit.  
The error in the bit time value chosen by the user in the above example will grow throughout the byte, as  
the sample point for the next bit will be only 30 SLIC clock cycles later (1 full bit time at this bit rate setting).  
The SLIC resynchronizes upon every falling edge received. In a 0x00 data byte, however, there are no  
falling edges after the beginning of the start bit. This means that the accumulated error of the sampling  
point over the data byte with these settings could be as high as 30 SLIC clock cycles (10 bits x {2 SLIC  
clocks due to user error + 1 SLIC clock resolution error}) placing it at the boundary between the last bit  
and the stop bit. This could result in missampling and missing a byte framing error on the last bit on high  
speed communications when the SLCBT count is relatively low. A properly chosen SLCBT value would  
result in a maximum error of 10 SLIC clock counts over a given byte. This is less than one filter delay time,  
and will not cause missampling of any of the bits in that byte. At the falling edge of the next start bit, the  
SLIC will resynchronize and any accumulated sampling error returns to 0. The sampling error becomes  
even less significant at lower speeds, when higher values of SLCBT are used to define a bit time, as the  
worst case bit time resolution error is still only one SLIC clock per bit (or maximum of 10 SLIC clocks per  
byte).  
UNFILTERED  
RX DATA  
FILTERED  
RX DATA  
(³1 PRESCALE)  
FILTER CLOCK  
(³1 PRESCALE)  
16 FILTER CLOCKS  
(³1 PRESCALE)  
16 FILTER CLOCKS  
(³1 PRESCALE)  
FILTER REACHES 0XF  
AND TOGGLES FILTER OUTPUT  
FILTER REACHES 0X0  
AND TOGGLES FILTER OUTPUT  
FILTER BEGINS  
COUNTING DOWN  
FILTER BEGINS  
COUNTING UP  
SLIC CLOCK  
15 SLIC CLOCKS  
(1/2 OF SLCBT VALUE)  
35 SLIC CLOCKS  
(ACTUAL FILTERED BIT LENGTH)  
IDEAL SLIC SAMPLE POINT (17 SLIC CLOCKS)  
SLIC SAMPLE POINT  
(BASED ON SLCBT VALUE)  
This example assumes a SLCBT value of 30 (0x1E).  
Transmitted bits will be sent out as 30 SLIC clock cycles long.  
The proper closest SLCBT setting would be 34 (0x22),  
which gives the ideal sample point of 17 SLIC clocks and  
transmitted bits are 34 SLIC clocks long.  
Figure 14-22. BTM Mode Receive Byte Sampling Example  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
167  
Slave LIN Interface Controller (SLIC) Module  
The error also comes into effect with transmitted bit times. Using the previous example with a SLCBT  
value of 34, transmitted bits will appear as 34 SLIC clock periods long. This is one SLIC clock short of the  
proper length. Depending on the frequency of the SLIC clock, one period of the SLIC clock might be a  
large or a small fraction of one ideal bit time. Raising the frequency of the SLIC clock will reduce this error  
relative to the ideal bit time, improving the resolution of the SLIC clock relative to the bit rate of the bus.  
In any case, the error is still one SLIC clock cycle. Raising the SLIC clock frequency, however, requires  
programming a higher value for SLCBT to maintain the same target bit rate.  
Smaller values of SLCBT combined with higher values of the SLIC clock frequency (smaller clock period)  
will give faster bit rates, but the SLIC clock period becomes an increasingly significant portion of one bit  
time.  
Because BTM mode does not perform any synchronization and relies on the accuracy of the data  
provided by the user software to set its sample point and generate transmitted bits, the constraint on  
maximum speeds is only limited to the limits imposed by the digital filter delay and the SLIC input clock.  
Because the digital filter delay cannot be less than 16 SLIC clock cycles, the fastest possible pulse which  
would pass the filter is 16 clock periods at 8 MHz, or 500,000 bits/second. The values shown in Table 14-7  
are the same values shown in Table 14-8 and indicate the absolute fastest bit rates which could just pass  
the minimum digital filter settings (prescaler = divide by 1) under perfect conditions.  
Because perfect conditions are almost impossible to attain, more robust values must be chosen for bit  
rates. For reliable communication, it is best to ensure that a bit time is no smaller 2x–3x longer than the  
filter delay on the digital receive filter. This is true in LIN or BTM mode and ensures that valid data bits  
which have been shortened due to ground shift, asymmetrical rise and fall times, etc., are accepted by  
the filter without exception. This would translate to 2x to 3x reduction in the maximum speeds shown in  
Table 14-7. Recommended maximum bit rates are shown in Table 14-8, and ensure that a single bit time  
is at least twice the length of one filter delay value. If system noise is not adequately filtered out it might  
be necessary to change the prescaler of the filter and lower the bit rate of the communication. If valid  
communications are being absorbed by the filter, corrective action must be taken to ensure that either the  
bit rate is reduced or whatever physical fault is causing bit times to shorten is corrected (ground offset,  
asymmetrical rise/fall times, insufficient physical layer supply voltage, etc.).  
Table 14-8. Recommended Maximum Bit Rates  
for BTM Operation Due to Digital Filter  
Maximum BTM  
Bit Rate with  
Digital RX Filter  
Set to ÷4  
Maximum BTM  
Bit Rate with  
Digital RX Filter  
Set to ÷3  
Maximum BTM  
Bit Rate with  
Digital RX Filter  
Set to ÷2  
Maximum BTM  
Bit Rate with  
Digital RX Filter  
Set to ÷1  
SLIC  
Clock  
(MHz)  
(Bits / Second)  
(Bits / Second)  
(Bits / Second)  
(Bits / Second)  
8
62,500  
50,000  
37,500  
31,250  
25,000  
18,750  
15,625  
83,333  
66,667  
50,000  
41,667  
33,333  
25,000  
20,833  
120,000(1)  
100,000  
75,000  
62,500  
50,000  
37,500  
31,250  
120,000(1)  
120,000(1)  
120,000(1)  
120,000(1)  
100,000  
6.4  
4.8  
4
3.2  
2.4  
2
75,000  
62,500  
1. Bit rates over 120,000 bits per second are not recommended for BTM communications, as  
physical layer delay between the TX and RX pins can cause the stop bit of a byte to be  
missampled as the last data bit. This could result in a byte framing error.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
168  
Freescale Semiconductor  
Initialization/Application Information  
14.9.16 Oscillator Trimming with SLIC  
SLCACT can be used as an indicator of LIN bus activity. SLCACT tells the user that the SLIC is currently  
processing a message header (therefore synchronizing to the bus) or processing a message frame  
(including checksum). Therefore, at idle times between message frames or during a message frame  
which has been marked as a “don’t care” by writing IMSG, it is possible to trim the oscillator circuit of the  
MCU with no impact to the LIN communications.  
It is important to note the exact mechanisms with which the SLIC sets and clears SLCACT. Any falling  
edge which successfully passes through the digital receive filter will cause SLCACT to become set. This  
might even include noise pulses, if they are of sufficient length to pass through the digital RX filter.  
Although in these cases SLCACT is becoming set on a noise spike, it is very probable that noise of this  
nature will cause other system issues as well such as corruption of the message frame. The software can  
then further qualify if it is appropriate to trim the oscillator.  
SLCACT will only be cleared by the SLIC upon successful completion of a normal LIN message frame  
(see 14.8.3 SLIC Status Register description for more detail). This means that in some cases, if a  
message frame terminates with an error condition or some source other than those cited in the SLCACT  
bit description, SLCACT might remain set during an otherwise idle bus time. SLCACT will then clear upon  
the successful completion of the next LIN message frame.  
These mechanisms might result in SLCACT being set when it is safe (from the SLIC module perspective)  
to trim the oscillator. However, SLCACT will only be clear when the SLIC considers it safe to trim the  
oscillator.  
In a particular system, it might also be possible to improve the opportunities for trimming by using system  
knowledge and use of IMSG. If a message ID is known to be considered a “don’t care” by this particular  
node, it should be safe to trim the oscillator during that message frame (provided that it is safe for the  
application software as well). After the software has done an identifier lookup and determined that the ID  
corresponds to a “don’t care” message, the software might choose to set IMSG. From that time, the  
application software should have at least one byte time of message traffic in which to trim the oscillator  
before that ignored message frame expires, regardless of the state of SLCACT. If the length of that  
ignored message frame is known, that knowledge might also be used to extend the time of this oscillator  
trimming opportunity.  
Now that the mechanisms for recognizing when the SLIC module indicates safe oscillator trimming  
opportunities are understood, it is important to understand how to derive the information needed to  
perform the trimming.  
The value in SLCBT will indicate how many SLIC clock cycles comprise one bit time and for any given  
LIN bus speed, this will be a fixed value if the oscillator is running at its ideal frequency. It is possible to  
use this ideal value combined with the measured value in SLCBT to determine how to adjust the oscillator  
of the microcontroller.  
The actual oscillator trimming algorithm is very specific to each particular implementation, and  
applications might or might not require the oscillator even to be trimmed. The SLIC can maintain  
communications even with input oscillator variation of 50% (with 4 MHz nominal, that means that any  
input clock into the SLIC from 2 MHz to 6 MHz will still guarantee communications). Because Freescale  
internal oscillators are at least within 25% of their nominal value, even when untrimmed, this means that  
trimming of the oscillator is not even required for LIN communications. If the application can tolerate the  
range of frequencies which might appear within this manufacturing range, then it is not necessary ever to  
trim the oscillator. This can be a tremendous advantage to the customer, enabling migration to very  
low-cost ROM devices which have no non-volatile memory in which to store the trim value.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
169  
Slave LIN Interface Controller (SLIC) Module  
NOTE  
Even though most internal oscillators are within 25% before trimming, they  
are stable at some frequency in that range, within at least 5% over the  
entire operating voltage and temperature range. The trimming operation  
simply eliminates the offset due to factory manufacturing variations to  
re-center the base oscillator frequency to the nominal value. Please refer to  
the electrical specifications for the oscillator for more specific information,  
as exact specifications might differ from module to module.  
14.9.17 Digital Receive Filter  
The receiver section of the SLIC module includes a digital low-pass filter to remove narrow noise pulses  
from the incoming message. block diagram of the digital filter is shown in Figure 14-23.  
DIGITAL RX FILTER  
PRESCALER (RXFP[1:0])  
INPUT  
SYNC  
4-BIT UP/DOWN COUNTER  
RX DATA  
FROM  
SLCRX PIN  
4
EDGE &  
COUNT  
COMPARATOR  
FILTERED  
RX DATA OUT  
OUT  
D
Q
D
Q
UP/DOWN  
HOLD  
SLIC CLOCK  
Figure 14-23. SLIC Module Rx Digital Filter Block Diagram  
14.9.17.1 Digital Filter Operation  
The clock for the digital filter is provided by the SLIC Interface clock. At each positive edge of the clock  
signal, the current state of the receiver input signal from the SLCRX pad is sampled. The SLCRX signal  
state is used to determine whether the counter should increment or decrement at the next positive edge  
of the clock signal.  
The counter will increment if the input data sample is high but decrement if the input sample is low. The  
counter will thus progress up towards the highest count value (determined by RXFP bit settings), on  
average, the SLCRX signal remains high or progress down towards ‘0’ if, on average, the SLCRX signal  
remains low. The final counter value which determines when the filter will change state is generated by  
shifting the RXFP value right two positions and bitwise OR-ing the result with the value 0x0F. For  
example, a prescale setting of divide by 3 (RXFP = 0x80) would give a count value of 0x2F.  
When the counter eventually reaches this value, the digital filter decides that the condition of the SLCRX  
signal is at a stable logic level 1 and the data latch is set, causing the filtered Rx data signal to become a  
logic level 1. Furthermore, the counter is prevented from overflowing and can only be decremented from  
this state.  
Alternatively, when the counter eventually reaches the value ‘0’, the digital filter decides that the condition  
of the SLCRX signal is at a stable logic level 0 and the data latch is reset, causing the filtered Rx data  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
170  
Freescale Semiconductor  
Initialization/Application Information  
signal to become a logic level 0. Furthermore, the counter is prevented from underflowing and can only  
be incremented from this state.  
The data latch will retain its value until the counter next reaches the opposite end point, signifying a  
definite transition of the SLCRX signal.  
14.9.17.2 Digital Filter Performance  
The performance of the digital filter is best described in the time domain rather than the frequency domain.  
If the signal on the SLCRX signal transitions, then there will be a delay before that transition appears at  
the filtered Rx data output signal. This delay will be between 15 and 16 clock periods, depending on where  
the transition occurs with respect to the sampling points. This ‘filter delay’ is not an issue for SLIC  
operation, as there is no need for message arbitration.  
The effect of random noise on the SLCRX signal depends on the characteristics of the noise itself. Narrow  
noise pulses on the SLCRX signal will be completely ignored if they are shorter than the filter delay. This  
provides a degree of low-pass filtering. Figure 14-23 shows the configuration of the digital receive filter  
and the consequential effect on the filter delay. This filter delay value indicates that for a particular setup,  
only pulses of which are greater than the filter delay will pass the filter.  
For example, if the frequency of the SLIC clock (fSLIC) is 3.2 MHz, then the period (tSLIC) is of the SLIC  
clock is 313 ns. With the default receive filter prescaler setting of division by 3, the resulting maximum  
filter delay in the absence of noise will be 15.00 µs. By simply changing the prescaler of the receive filter,  
the user can then select alternatively 5 µs, 10 µs, or 20 µs as a minimum filter delay according to the  
systems requirements.  
If noise occurs during a symbol transition, the detection of that transition may be delayed by an amount  
equal to the length of the noise burst. This is just a reflection of the uncertainty of where the transition is  
truly occurring within the noise.  
NOTE  
The user must always account for the worst case bit timing of their LIN bus  
when configuring the digital receive filter, especially if running at faster  
speeds. Ground offset and other physical layer conditions can cause  
shortening of bits as seen at the digital receive pin, for example. If these  
shortened bit lengths are less than the filter delay, the bits will be  
interpreted by the filter as noise and will be blocked, even though the  
nominal bit timing might be greater than the filter delay.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
171  
Slave LIN Interface Controller (SLIC) Module  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
172  
Chapter 15  
Timer Interface Module (TIM)  
15.1 Introduction  
This section describes the timer interface module (TIM). The TIM module is a 2-channel timer that  
provides a timing reference with input capture, output compare, and pulse-width-modulation functions.  
The TIM module shares its pins with general-purpose input/output (I/O) port pins. See Figure 15-1 for port  
location of these shared pins.  
15.2 Features  
Features include the following:  
Two input capture/output compare channels  
Rising-edge, falling-edge, or any-edge input capture trigger  
Set, clear, or toggle output compare action  
Buffered and unbuffered output compare pulse-width modulation (PWM) signal generation  
Programmable clock input  
7-frequency internal bus clock prescaler selection  
External clock input pin if available, See Figure 15-1  
Free-running or modulo up-count operation  
Toggle any channel pin on overflow  
Counter stop and reset bits  
15.3 Functional Description  
Figure 15-2 shows the structure of the TIM. The central component of the TIM is the 16-bit counter that  
can operate as a free-running counter or a modulo up-counter. The counter provides the timing reference  
for the input capture and output compare functions. The counter modulo registers, TMODH:TMODL,  
control the modulo value of the counter. Software can read the counter value, TCNTH:TCNTL, at any time  
without affecting the counting sequence.  
The two TIM channels are programmable independently as input capture or output compare channels.  
15.3.1 TIM Counter Prescaler  
The TIM clock source is one of the seven prescaler outputs or the external clock input pin, TCLK if  
available. The prescaler generates seven clock rates from the internal bus clock. The prescaler select  
bits, PS[2:0], in the TIM status and control register (TSC) select the clock source.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
173  
Timer Interface Module (TIM)  
PTA0/AD0/KBI0  
PTA1/AD1/TCH1/KBI1  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
INTERNAL OSC  
INTERNAL CLOCK SOURCE  
4, 8, 12.8, or 25.6 MHz  
KEYBOARD INTERRUPT  
MODULE  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
EXTERNAL INTERRUPT  
MODULE  
M68HC08 CPU  
PTB0/TCH0  
PTB1  
AUTO WAKEUP  
MODULE  
PTB2/AD4  
PTB3/AD5  
PTB4/SLCRX  
PTB5/SLCTX  
PTB6  
LOW-VOLTAGE  
INHIBIT  
2-CHANNEL 16-BIT  
TIMER MODULE  
PTB7  
COP  
MODULE  
MC68HC908QL4  
4096 BYTES  
MC68HC908QL4  
128 BYTES  
USER FLASH  
USER RAM  
6-CHANNEL  
10-BIT ADC  
SLAVE LIN INTERFACE  
CONTROLLER  
VDD  
POWER SUPPLY  
VSS  
DEVELOPMENT SUPPORT  
MONITOR ROM  
BREAK MODULE  
RST, IRQ: Pins have internal pull up device  
All port pins have programmable pull up device (pullup/down on port A)  
PTA[0:5]: Higher current sink and source capability  
Figure 15-1. Block Diagram Highlighting TIM Block and Pins  
15.3.2 Input Capture  
With the input capture function, the TIM can capture the time at which an external event occurs. When an  
active edge occurs on the pin of an input capture channel, the TIM latches the contents of the counter into  
the TIM channel registers, TCHxH:TCHxL. The polarity of the active edge is programmable. Input  
captures can be enabled to generate interrupt requests.  
15.3.3 Output Compare  
With the output compare function, the TIM can generate a periodic pulse with a programmable polarity,  
duration, and frequency. When the counter reaches the value in the registers of an output compare  
channel, the TIM can set, clear, or toggle the channel pin. Output compares can be enabled to generate  
interrupt requests.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
174  
Freescale Semiconductor  
Functional Description  
TCLK  
TCLK  
(IF AVAILABLE)  
PRESCALER SELECT  
INTERNAL  
BUS CLOCK  
PRESCALER  
TSTOP  
TRST  
PS2  
PS1  
PS0  
16-BIT COUNTER  
TOF  
INTERRUPT  
LOGIC  
TCNTH:TCNTL  
TOIE  
16-BIT COMPARATOR  
TMODH:TMODL  
TOV0  
ELS0B  
ELS0A  
PORT  
TCH0  
CHANNEL 0  
16-BIT COMPARATOR  
TCH0H:TCH0L  
CH0MAX  
LOGIC  
CH0F  
INTERRUPT  
LOGIC  
16-BIT LATCH  
CH0IE  
MS0A  
MS0B  
CH1F  
TOV1  
ELS1B  
ELS1A  
PORT  
TCH1  
CHANNEL 1  
16-BIT COMPARATOR  
TCH1H:TCH1L  
CH1MAX  
LOGIC  
INTERRUPT  
LOGIC  
16-BIT LATCH  
CH1IE  
MS1A  
Figure 15-2. TIM Block Diagram  
15.3.3.1 Unbuffered Output Compare  
Any output compare channel can generate unbuffered output compare pulses as described in 15.3.3  
Output Compare. The pulses are unbuffered because changing the output compare value requires writing  
the new value over the old value currently in the TIM channel registers.  
An unsynchronized write to the TIM channel registers to change an output compare value could cause  
incorrect operation for up to two counter overflow periods. For example, writing a new value before the  
counter reaches the old value but after the counter reaches the new value prevents any compare during  
that counter overflow period. Also, using a TIM overflow interrupt routine to write a new, smaller output  
compare value may cause the compare to be missed. The TIM may pass the new value before it is written.  
Use the following methods to synchronize unbuffered changes in the output compare value on channel x:  
When changing to a smaller value, enable channel x output compare interrupts and write the new  
value in the output compare interrupt routine. The output compare interrupt occurs at the end of  
the current output compare pulse. The interrupt routine has until the end of the counter overflow  
period to write the new value.  
When changing to a larger output compare value, enable TIM overflow interrupts and write the new  
value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
175  
Timer Interface Module (TIM)  
current counter overflow period. Writing a larger value in an output compare interrupt routine (at  
the end of the current pulse) could cause two output compares to occur in the same counter  
overflow period.  
15.3.3.2 Buffered Output Compare  
Channels 0 and 1 can be linked to form a buffered output compare channel whose output appears on the  
TCH0 pin. The TIM channel registers of the linked pair alternately control the output.  
Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1.  
The output compare value in the TIM channel 0 registers initially controls the output on the TCH0 pin.  
Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the  
output after the TIM overflows. At each subsequent overflow, the TIM channel registers (0 or 1) that  
control the output are the ones written to last. TSC0 controls and monitors the buffered output compare  
function, and TIM channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the  
channel 1 pin, TCH1, is available as a general-purpose I/O pin.  
NOTE  
In buffered output compare operation, do not write new output compare  
values to the currently active channel registers. User software should track  
the currently active channel to prevent writing a new value to the active  
channel. Writing to the active channel registers is the same as generating  
unbuffered output compares.  
15.3.4 Pulse Width Modulation (PWM)  
By using the toggle-on-overflow feature with an output compare channel, the TIM can generate a PWM  
signal. The value in the TIM counter modulo registers determines the period of the PWM signal. The  
channel pin toggles when the counter reaches the value in the TIM counter modulo registers. The time  
between overflows is the period of the PWM signal.  
As Figure 15-3 shows, the output compare value in the TIM channel registers determines the pulse width  
of the PWM signal. The time between overflow and output compare is the pulse width. Program the TIM  
to clear the channel pin on output compare if the polarity of the PWM pulse is 1 (ELSxA = 0). Program the  
TIM to set the pin if the polarity of the PWM pulse is 0 (ELSxA = 1).  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
POLARITY = 1  
(ELSxA = 0)  
TCHx  
PULSE  
WIDTH  
POLARITY = 0 TCHx  
(ELSxA = 1)  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
Figure 15-3. PWM Period and Pulse Width  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
176  
Freescale Semiconductor  
Functional Description  
The value in the TIM counter modulo registers and the selected prescaler output determines the  
frequency of the PWM output The frequency of an 8-bit PWM signal is variable in 256 increments. Writing  
$00FF (255) to the TIM counter modulo registers produces a PWM period of 256 times the internal bus  
clock period if the prescaler select value is 000. See 15.8.1 TIM Status and Control Register.  
The value in the TIM channel registers determines the pulse width of the PWM output. The pulse width of  
an 8-bit PWM signal is variable in 256 increments. Writing $0080 (128) to the TIM channel registers  
produces a duty cycle of 128/256 or 50%.  
15.3.4.1 Unbuffered PWM Signal Generation  
Any output compare channel can generate unbuffered PWM pulses as described in 15.3.4 Pulse Width  
Modulation (PWM). The pulses are unbuffered because changing the pulse width requires writing the new  
pulse width value over the old value currently in the TIM channel registers.  
An unsynchronized write to the TIM channel registers to change a pulse width value could cause incorrect  
operation for up to two PWM periods. For example, writing a new value before the counter reaches the  
old value but after the counter reaches the new value prevents any compare during that PWM period.  
Also, using a TIM overflow interrupt routine to write a new, smaller pulse width value may cause the  
compare to be missed. The TIM may pass the new value before it is written to the timer channel  
(TCHxH:TCHxL).  
Use the following methods to synchronize unbuffered changes in the PWM pulse width on channel x:  
When changing to a shorter pulse width, enable channel x output compare interrupts and write the  
new value in the output compare interrupt routine. The output compare interrupt occurs at the end  
of the current pulse. The interrupt routine has until the end of the PWM period to write the new  
value.  
When changing to a longer pulse width, enable TIM overflow interrupts and write the new value in  
the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the current PWM  
period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse)  
could cause two output compares to occur in the same PWM period.  
NOTE  
In PWM signal generation, do not program the PWM channel to toggle on  
output compare. Toggling on output compare prevents reliable 0% duty  
cycle generation and removes the ability of the channel to self-correct in the  
event of software error or noise. Toggling on output compare also can  
cause incorrect PWM signal generation when changing the PWM pulse  
width to a new, much larger value.  
15.3.4.2 Buffered PWM Signal Generation  
Channels 0 and 1 can be linked to form a buffered PWM channel whose output appears on the TCH0 pin.  
The TIM channel registers of the linked pair alternately control the output.  
Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1.  
The TIM channel 0 registers initially control the pulse width on the TCH0 pin. Writing to the TIM channel 1  
registers enables the TIM channel 1 registers to synchronously control the pulse width at the beginning  
of the next PWM period. At each subsequent overflow, the TIM channel registers (0 or 1) that control the  
pulse width are the ones written to last. TSC0 controls and monitors the buffered PWM function, and TIM  
channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin,  
TCH1, is available as a general-purpose I/O pin.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
177  
Timer Interface Module (TIM)  
NOTE  
In buffered PWM signal generation, do not write new pulse width values to  
the currently active channel registers. User software should track the  
currently active channel to prevent writing a new value to the active  
channel. Writing to the active channel registers is the same as generating  
unbuffered PWM signals.  
15.3.4.3 PWM Initialization  
To ensure correct operation when generating unbuffered or buffered PWM signals, use the following  
initialization procedure:  
1. In the TIM status and control register (TSC):  
a. Stop the counter by setting the TIM stop bit, TSTOP.  
b. Reset the counter and prescaler by setting the TIM reset bit, TRST.  
2. In the TIM counter modulo registers (TMODH:TMODL), write the value for the required PWM  
period.  
3. In the TIM channel x registers (TCHxH:TCHxL), write the value for the required pulse width.  
4. In TIM channel x status and control register (TSCx):  
a. Write 0:1 (for unbuffered output compare or PWM signals) or 1:0 (for buffered output compare  
or PWM signals) to the mode select bits, MSxB:MSxA. See Table 15-2.  
b. Write 1 to the toggle-on-overflow bit, TOVx.  
c. Write 1:0 (polarity 1 — to clear output on compare) or 1:1 (polarity 0 — to set output on  
compare) to the edge/level select bits, ELSxB:ELSxA. The output action on compare must  
force the output to the complement of the pulse width level. See Table 15-2.  
NOTE  
In PWM signal generation, do not program the PWM channel to toggle on  
output compare. Toggling on output compare prevents reliable 0% duty  
cycle generation and removes the ability of the channel to self-correct in the  
event of software error or noise. Toggling on output compare can also  
cause incorrect PWM signal generation when changing the PWM pulse  
width to a new, much larger value.  
5. In the TIM status control register (TSC), clear the TIM stop bit, TSTOP.  
Setting MS0B links channels 0 and 1 and configures them for buffered PWM operation. The TIM  
channel 0 registers (TCH0H:TCH0L) initially control the buffered PWM output. TIM status control  
register 0 (TSCR0) controls and monitors the PWM signal from the linked channels. MS0B takes priority  
over MS0A.  
Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIM overflows. Subsequent output  
compares try to force the output to a state it is already in and have no effect. The result is a 0% duty cycle  
output.  
Setting the channel x maximum duty cycle bit (CHxMAX) and setting the TOVx bit generates a 100% duty  
cycle output. See 15.8.1 TIM Status and Control Register.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
178  
Freescale Semiconductor  
Interrupts  
15.4 Interrupts  
The following TIM sources can generate interrupt requests:  
TIM overflow flag (TOF) — The TOF bit is set when the counter reaches the modulo value  
programmed in the TIM counter modulo registers. The TIM overflow interrupt enable bit, TOIE,  
enables TIM overflow interrupt requests. TOF and TOIE are in the TSC register.  
TIM channel flags (CH1F:CH0F) — The CHxF bit is set when an input capture or output compare  
occurs on channel x. Channel x TIM interrupt requests are controlled by the channel x interrupt  
enable bit, CHxIE. Channel x TIM interrupt requests are enabled when CHxIE =1. CHxF and  
CHxIE are in the TSCx register.  
15.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
15.5.1 Wait Mode  
The TIM remains active after the execution of a WAIT instruction. In wait mode the TIM registers are not  
accessible by the CPU. Any enabled interrupt request from the TIM can bring the MCU out of wait mode.  
If TIM functions are not required during wait mode, reduce power consumption by stopping the TIM before  
executing the WAIT instruction.  
15.5.2 Stop Mode  
The TIM module is inactive after the execution of a STOP instruction. The STOP instruction does not  
affect register conditions. TIM operation resumes after an external interrupt. If stop mode is exited by  
reset, the TIM is reset.  
15.6 TIM During Break Interrupts  
A break interrupt stops the counter.  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status  
bits during the break state. See BFCR in the SIM section of this data sheet.  
To allow software to clear status bits during a break interrupt, write a 1 to BCFE. If a status bit is cleared  
during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a 0 to BCFE. With BCFE cleared (its default state),  
software can read and write registers during the break state without affecting status bits. Some status bits  
have a two-step read/write clearing procedure. If software does the first step on such a bit before the  
break, the bit cannot change during the break state as long as BCFE is cleared. After the break, doing the  
second step clears the status bit.  
15.7 I/O Signals  
The TIM module can share its pins with the general-purpose I/O pins. See Figure 15-1 for the port pins  
that are shared.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
179  
Timer Interface Module (TIM)  
15.7.1 TIM Channel I/O Pins (TCH1:TCH0)  
Each channel I/O pin is programmable independently as an input capture pin or an output compare pin.  
TCH0 can be configured as buffered output compare or buffered PWM pin.  
15.7.2 TIM Clock Pin (TCLK)  
TCLK is an external clock input that can be the clock source for the counter instead of the prescaled  
internal bus clock. Select the TCLK input by writing 1s to the three prescaler select bits, PS[2:0]. The  
minimum TCLK pulse width is specified in the Timer Interface Module Characteristics table in the  
Electricals section. The maximum TCLK frequency is the least of 4 MHz or bus frequency ÷ 2.  
15.8 Registers  
The following registers control and monitor operation of the TIM:  
TIM status and control register (TSC)  
TIM control registers (TCNTH:TCNTL)  
TIM counter modulo registers (TMODH:TMODL)  
TIM channel status and control registers (TSC0 and TSC1)  
TIM channel registers (TCH0H:TCH0L and TCH1H:TCH1L)  
15.8.1 TIM Status and Control Register  
The TIM status and control register (TSC) does the following:  
Enables TIM overflow interrupts  
Flags TIM overflows  
Stops the counter  
Resets the counter  
Prescales the counter clock  
Bit 7  
TOF  
0
6
TOIE  
0
5
TSTOP  
1
4
0
3
0
2
PS2  
0
1
PS1  
0
Bit 0  
PS0  
0
Read:  
Write:  
Reset:  
TRST  
0
0
0
= Unimplemented  
Figure 15-4. TIM Status and Control Register (TSC)  
TOF — TIM Overflow Flag Bit  
This read/write flag is set when the counter reaches the modulo value programmed in the TIM counter  
modulo registers. Clear TOF by reading the TSC register when TOF is set and then writing a 0 to TOF.  
If another TIM overflow occurs before the clearing sequence is complete, then writing 0 to TOF has no  
effect. Therefore, a TOF interrupt request cannot be lost due to inadvertent clearing of TOF. Writing a  
1 to TOF has no effect.  
1 = Counter has reached modulo value  
0 = Counter has not reached modulo value  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
180  
Freescale Semiconductor  
Registers  
TOIE — TIM Overflow Interrupt Enable Bit  
This read/write bit enables TIM overflow interrupts when the TOF bit becomes set.  
1 = TIM overflow interrupts enabled  
0 = TIM overflow interrupts disabled  
TSTOP — TIM Stop Bit  
This read/write bit stops the counter. Counting resumes when TSTOP is cleared. Reset sets the  
TSTOP bit, stopping the counter until software clears the TSTOP bit.  
1 = Counter stopped  
0 = Counter active  
NOTE  
Do not set the TSTOP bit before entering wait mode if the TIM is required  
to exit wait mode. Also, when the TSTOP bit is set and the timer is  
configured for input capture operation, input captures are inhibited until the  
TSTOP bit is cleared.  
TRST — TIM Reset Bit  
Setting this write-only bit resets the counter and the TIM prescaler. Setting TRST has no effect on any  
other timer registers. Counting resumes from $0000. TRST is cleared automatically after the counter  
is reset and always reads as 0.  
1 = Prescaler and counter cleared  
0 = No effect  
NOTE  
Setting the TSTOP and TRST bits simultaneously stops the counter at a  
value of $0000. PS[2:0] — Prescaler Select Bits  
These read/write bits select one of the seven prescaler outputs as the input to the counter as  
Table 15-1 shows.  
Table 15-1. Prescaler Selection  
PS2  
0
PS1  
0
PS0  
0
TIM Clock Source  
Internal bus clock ÷ 1  
Internal bus clock ÷ 2  
Internal bus clock ÷ 4  
Internal bus clock ÷ 8  
Internal bus clock ÷ 16  
Internal bus clock ÷ 32  
Internal bus clock ÷ 64  
TCLK (if available)  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
15.8.2 TIM Counter Registers  
The two read-only TIM counter registers contain the high and low bytes of the value in the counter.  
Reading the high byte (TCNTH) latches the contents of the low byte (TCNTL) into a buffer. Subsequent  
reads of TCNTH do not affect the latched TCNTL value until TCNTL is read. Reset clears the TIM counter  
registers. Setting the TIM reset bit (TRST) also clears the TIM counter registers.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
181  
Timer Interface Module (TIM)  
NOTE  
If you read TCNTH during a break interrupt, be sure to unlatch TCNTL by  
reading TCNTL before exiting the break interrupt. Otherwise, TCNTL  
retains the value latched during the break.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
0
0
0
0
0
0
0
0
Figure 15-5. TIM Counter High Register (TCNTH)  
Bit 7  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 0  
Read:  
Write:  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
0
0
0
0
0
0
0
0
Reset:  
= Unimplemented  
Figure 15-6. TIM Counter Low Register (TCNTL)  
15.8.3 TIM Counter Modulo Registers  
The read/write TIM modulo registers contain the modulo value for the counter. When the counter reaches  
the modulo value, the overflow flag (TOF) becomes set, and the counter resumes counting from $0000  
at the next timer clock. Writing to the high byte (TMODH) inhibits the TOF bit and overflow interrupts until  
the low byte (TMODL) is written. Reset sets the TIM counter modulo registers.  
Bit 7  
Bit15  
1
6
Bit14  
1
5
Bit13  
1
4
Bit12  
1
3
Bit11  
1
2
Bit10  
1
1
Bit9  
1
Bit 0  
Bit8  
1
Read:  
Write:  
Reset:  
Figure 15-7. TIM Counter Modulo High Register (TMODH)  
Bit 7  
Bit7  
1
6
Bit6  
1
5
Bit5  
1
4
Bit4  
1
3
Bit3  
1
2
Bit2  
1
1
Bit1  
1
Bit 0  
Bit0  
1
Read:  
Write:  
Reset:  
Figure 15-8. TIM Counter Modulo Low Register (TMODL)  
NOTE  
Reset the counter before writing to the TIM counter modulo registers.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
182  
Freescale Semiconductor  
Registers  
15.8.4 TIM Channel Status and Control Registers  
Each of the TIM channel status and control registers does the following:  
Flags input captures and output compares  
Enables input capture and output compare interrupts  
Selects input capture, output compare, or PWM operation  
Selects high, low, or toggling output on output compare  
Selects rising edge, falling edge, or any edge as the active input capture trigger  
Selects output toggling on TIM overflow  
Selects 0% and 100% PWM duty cycle  
Selects buffered or unbuffered output compare/PWM operation  
Bit 7  
CH0F  
0
6
CH0IE  
0
5
MS0B  
0
4
MS0A  
0
3
ELS0B  
0
2
ELS0A  
0
1
TOV0  
0
Bit 0  
CH0MAX  
0
Read:  
Write:  
Reset:  
0
Figure 15-9. TIM Channel 0 Status and Control Register (TSC0)  
Bit 7  
CH1F  
0
6
5
0
4
MS1A  
0
3
ELS1B  
0
2
ELS1A  
0
1
TOV1  
0
Bit 0  
CH1MAX  
0
Read:  
Write:  
Reset:  
CH1IE  
0
0
0
= Unimplemented  
Figure 15-10. TIM Channel 1 Status and Control Register (TSC1)  
CHxF — Channel x Flag Bit  
When channel x is an input capture channel, this read/write bit is set when an active edge occurs on  
the channel x pin. When channel x is an output compare channel, CHxF is set when the value in the  
counter registers matches the value in the TIM channel x registers.  
Clear CHxF by reading the TSCx register with CHxF set and then writing a 0 to CHxF. If another  
interrupt request occurs before the clearing sequence is complete, then writing 0 to CHxF has no  
effect. Therefore, an interrupt request cannot be lost due to inadvertent clearing of CHxF.  
Writing a 1 to CHxF has no effect.  
1 = Input capture or output compare on channel x  
0 = No input capture or output compare on channel x  
CHxIE — Channel x Interrupt Enable Bit  
This read/write bit enables TIM interrupt service requests on channel x.  
1 = Channel x interrupt requests enabled  
0 = Channel x interrupt requests disabled  
MSxB — Mode Select Bit B  
This read/write bit selects buffered output compare/PWM operation. MSxB exists only in the TSC0.  
Setting MS0B causes the contents of TSC1 to be ignored by the TIM and reverts TCH1 to  
general-purpose I/O.  
1 = Buffered output compare/PWM operation enabled  
0 = Buffered output compare/PWM operation disabled  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
183  
Timer Interface Module (TIM)  
MSxA — Mode Select Bit A  
When ELSxB:A 00, this read/write bit selects either input capture operation or unbuffered output  
compare/PWM operation. See Table 15-2.  
1 = Unbuffered output compare/PWM operation  
0 = Input capture operation  
When ELSxB:A = 00, this read/write bit selects the initial output level of the TCHx pin (see Table 15-2).  
1 = Initial output level low  
0 = Initial output level high  
NOTE  
Before changing a channel function by writing to the MSxB or MSxA bit, set  
the TSTOP and TRST bits in the TIM status and control register (TSC).  
Table 15-2. Mode, Edge, and Level Selection  
MSxB  
MSxA  
ELSxB  
ELSxA  
Mode  
Configuration  
Pin under port control; initial output level high  
Pin under port control; initial output level low  
Capture on rising edge only  
Capture on falling edge only  
Capture on rising or falling edge  
Software compare only  
X
X
0
0
0
0
0
0
0
1
1
1
0
1
0
0
0
1
1
1
1
X
X
X
0
0
0
1
1
0
0
1
1
0
1
1
0
0
1
0
1
0
1
0
1
1
0
1
Output preset  
Input capture  
Toggle output on compare  
Output compare  
or PWM  
Clear output on compare  
Set output on compare  
Toggle output on compare  
Buffered output  
compare or  
buffered PWM  
Clear output on compare  
Set output on compare  
ELSxB and ELSxA — Edge/Level Select Bits  
When channel x is an input capture channel, these read/write bits control the active edge-sensing logic  
on channel x.  
When channel x is an output compare channel, ELSxB and ELSxA control the channel x output  
behavior when an output compare occurs.  
When ELSxB and ELSxA are both clear, channel x is not connected to an I/O port, and pin TCHx is  
available as a general-purpose I/O pin. Table 15-2 shows how ELSxB and ELSxA work.  
NOTE  
After initially enabling a TIM channel register for input capture operation  
and selecting the edge sensitivity, clear CHxF to ignore any erroneous  
edge detection flags.  
TOVx — Toggle-On-Overflow Bit  
When channel x is an output compare channel, this read/write bit controls the behavior of the channel  
x output when the counter overflows. When channel x is an input capture channel, TOVx has no effect.  
1 = Channel x pin toggles on TIM counter overflow.  
0 = Channel x pin does not toggle on TIM counter overflow.  
NOTE  
When TOVx is set, a counter overflow takes precedence over a channel x  
output compare if both occur at the same time.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
184  
Freescale Semiconductor  
Registers  
CHxMAX — Channel x Maximum Duty Cycle Bit  
When the TOVx bit is at 1, setting the CHxMAX bit forces the duty cycle of buffered and unbuffered  
PWM signals to 100%. As Figure 15-11 shows, the CHxMAX bit takes effect in the cycle after it is set  
or cleared. The output stays at the 100% duty cycle level until the cycle after CHxMAX is cleared.  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
TCHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
CHxMAX  
Figure 15-11. CHxMAX Latency  
15.8.5 TIM Channel Registers  
These read/write registers contain the captured counter value of the input capture function or the output  
compare value of the output compare function. The state of the TIM channel registers after reset is  
unknown.  
In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the TIM channel x registers (TCHxH)  
inhibits input captures until the low byte (TCHxL) is read.  
In output compare mode (MSxB:MSxA 0:0), writing to the high byte of the TIM channel x registers  
(TCHxH) inhibits output compares until the low byte (TCHxL) is written.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Indeterminate after reset  
Figure 15-12. TIM Channel x Register High (TCHxH)  
Bit 7  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Indeterminate after reset  
Figure 15-13. TIM Channel Register Low (TCHxL)  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
185  
Timer Interface Module (TIM)  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
186  
Chapter 16  
Development Support  
16.1 Introduction  
This section describes the break module, the monitor module, and the monitor mode entry methods.  
16.2 Break Module (BRK)  
The break module can generate a break interrupt that stops normal program flow at a defined address to  
enter a background program.  
Features include:  
Accessible input/output (I/O) registers during the break Interrupt  
Central processor unit (CPU) generated break interrupts  
Software-generated break interrupts  
Computer operating properly (COP) disabling during break interrupts  
16.2.1 Functional Description  
When the internal address bus matches the value written in the break address registers, the break module  
issues a breakpoint signal (BKPT) to the system integration module (SIM). The SIM then causes the CPU  
to load the instruction register with a software interrupt instruction (SWI). The program counter vectors to  
$FFFC and $FFFD ($FEFC and $FEFD in monitor mode).  
The following events can cause a break interrupt to occur:  
A CPU generated address (the address in the program counter) matches the contents of the break  
address registers.  
Software writes a 1 to the BRKA bit in the break status and control register.  
When a CPU generated address matches the contents of the break address registers, the break interrupt  
is generated. A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and  
returns the microcontroller unit (MCU) to normal operation.  
Figure 16-2 shows the structure of the break module.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
187  
Development Support  
PTA0/AD0/KBI0  
PTA1/AD1/TCH1/KBI1  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
INTERNAL OSC  
INTERNAL CLOCK SOURCE  
4, 8, 12.8, or 25.6 MHz  
KEYBOARD INTERRUPT  
MODULE  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
EXTERNAL INTERRUPT  
MODULE  
M68HC08 CPU  
PTB0/TCH0  
PTB1  
AUTO WAKEUP  
MODULE  
PTB2/AD4  
PTB3/AD5  
PTB4/SLCRX  
PTB5/SLCTX  
PTB6  
LOW-VOLTAGE  
INHIBIT  
2-CHANNEL 16-BIT  
TIMER MODULE  
PTB7  
COP  
MODULE  
MC68HC908QL4  
4096 BYTES  
MC68HC908QL4  
128 BYTES  
USER RAM  
USER FLASH  
6-CHANNEL  
10-BIT ADC  
SLAVE LIN INTERFACE  
CONTROLLER  
VDD  
VSS  
POWER SUPPLY  
DEVELOPMENT SUPPORT  
MONITOR ROM  
BREAK MODULE  
RST, IRQ: Pins have internal pull up device  
All port pins have programmable pull up device (pullup/down on port A)  
PTA[0:5]: Higher current sink and source capability  
Figure 16-1. Block Diagram Highlighting BRK and MON Blocks  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
188  
Break Module (BRK)  
ADDRESS BUS[15:8]  
BREAK ADDRESS REGISTER HIGH  
8-BIT COMPARATOR  
ADDRESS BUS[15:0]  
CONTROL  
BKPT  
(TO SIM)  
8-BIT COMPARATOR  
BREAK ADDRESS REGISTER LOW  
ADDRESS BUS[7:0]  
Figure 16-2. Break Module Block Diagram  
When the internal address bus matches the value written in the break address registers or when software  
writes a 1 to the BRKA bit in the break status and control register, the CPU starts a break interrupt by:  
Loading the instruction register with the SWI instruction  
Loading the program counter with $FFFC and $FFFD ($FEFC and $FEFD in monitor mode)  
The break interrupt timing is:  
When a break address is placed at the address of the instruction opcode, the instruction is not  
executed until after completion of the break interrupt routine.  
When a break address is placed at an address of an instruction operand, the instruction is executed  
before the break interrupt.  
When software writes a 1 to the BRKA bit, the break interrupt occurs just before the next instruction  
is executed.  
By updating a break address and clearing the BRKA bit in a break interrupt routine, a break interrupt can  
be generated continuously.  
CAUTION  
A break address should be placed at the address of the instruction opcode.  
When software does not change the break address and clears the BRKA  
bit in the first break interrupt routine, the next break interrupt will not be  
generated after exiting the interrupt routine even when the internal address  
bus matches the value written in the break address registers.  
16.2.1.1 Flag Protection During Break Interrupts  
The system integration module (SIM) controls whether or not module status bits can be cleared during  
the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status  
bits during the break state. See 13.8.2 Break Flag Control Register and the Break Interrupts subsection  
for each module.  
16.2.1.2 TIM During Break Interrupts  
A break interrupt stops the timer counter.  
16.2.1.3 COP During Break Interrupts  
The COP is disabled during a break interrupt with monitor mode when BDCOP bit is set in break auxiliary  
register (BRKAR).  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
189  
Development Support  
16.2.2 Break Module Registers  
These registers control and monitor operation of the break module:  
Break status and control register (BRKSCR)  
Break address register high (BRKH)  
Break address register low (BRKL)  
Break status register (BSR)  
Break flag control register (BFCR)  
16.2.2.1 Break Status and Control Register  
The break status and control register (BRKSCR) contains break module enable and status bits.  
Bit 7  
BRKE  
0
6
BRKA  
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
0
= Unimplemented  
Figure 16-3. Break Status and Control Register (BRKSCR)  
BRKE — Break Enable Bit  
This read/write bit enables breaks on break address register matches. Clear BRKE by writing a 0 to bit  
7. Reset clears the BRKE bit.  
1 = Breaks enabled on 16-bit address match  
0 = Breaks disabled  
BRKA — Break Active Bit  
This read/write status and control bit is set when a break address match occurs. Writing a 1 to BRKA  
generates a break interrupt. Clear BRKA by writing a 0 to it before exiting the break routine. Reset  
clears the BRKA bit.  
1 = Break address match  
0 = No break address match  
16.2.2.2 Break Address Registers  
The break address registers (BRKH and BRKL) contain the high and low bytes of the desired breakpoint  
address. Reset clears the break address registers.  
Bit 7  
Bit 15  
0
6
Bit 14  
0
5
Bit 13  
0
4
Bit 12  
0
3
Bit 11  
0
2
Bit 10  
0
1
Bit 9  
0
Bit 0  
Bit 8  
0
Read:  
Write:  
Reset:  
Figure 16-4. Break Address Register High (BRKH)  
Bit 7  
Bit 7  
0
6
Bit 6  
0
5
Bit 5  
0
4
Bit 4  
0
3
Bit 3  
0
2
Bit 2  
0
1
Bit 1  
0
Bit 0  
Bit 0  
0
Read:  
Write:  
Reset:  
Figure 16-5. Break Address Register Low (BRKL)  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
190  
Freescale Semiconductor  
Break Module (BRK)  
16.2.2.3 Break Auxiliary Register  
The break auxiliary register (BRKAR) contains a bit that enables software to disable the COP while the  
MCU is in a state of break interrupt with monitor mode.  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
BDCOP  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
= Unimplemented  
Figure 16-6. Break Auxiliary Register (BRKAR)  
BDCOP — Break Disable COP Bit  
This read/write bit disables the COP during a break interrupt. Reset clears the BDCOP bit.  
1 = COP disabled during break interrupt  
0 = COP enabled during break interrupt  
16.2.2.4 Break Status Register  
The break status register (BSR) contains a flag to indicate that a break caused an exit from wait mode.  
This register is only used in emulation mode.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
SBSW  
Note(1)  
0
R
R
R
R
R
R
R
R
= Reserved  
1. Writing a 0 clears SBSW.  
Figure 16-7. Break Status Register (BSR)  
SBSW — SIM Break Stop/Wait  
SBSW can be read within the break state SWI routine. The user can modify the return address on the  
stack by subtracting one from it.  
1 = Wait mode was exited by break interrupt  
0 = Wait mode was not exited by break interrupt  
16.2.2.5 Break Flag Control Register  
The break control register (BFCR) contains a bit that enables software to clear status bits while the MCU  
is in a break state.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
R
0
= Reserved  
R
Figure 16-8. Break Flag Control Register (BFCR)  
BCFE — Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing status registers while the MCU is  
in a break state. To clear status bits during the break state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
191  
Development Support  
16.2.3 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes. If enabled, the  
break module will remain enabled in wait and stop modes. However, since the internal address bus does  
not increment in these modes, a break interrupt will never be triggered.  
16.3 Monitor Module (MON)  
The monitor module allows debugging and programming of the microcontroller unit (MCU) through a  
single-wire interface with a host computer. Monitor mode entry can be achieved without use of the higher  
test voltage, VTST, as long as vector addresses $FFFE and $FFFF are blank, thus reducing the hardware  
requirements for in-circuit programming.  
Features include:  
Normal user-mode pin functionality  
One pin dedicated to serial communication between MCU and host computer  
Standard non-return-to-zero (NRZ) communication with host computer  
Standard communication baud rate (7200 @ 2-MHz bus frequency)  
Execution of code in random-access memory (RAM) or FLASH  
FLASH memory security feature(1)  
FLASH memory programming interface  
Use of external 9.8304 MHz crystal or clock to generate internal frequency of 2.4576 MHz  
Simple internal oscillator mode of operation (no external clock or high voltage)  
Monitor mode entry without high voltage, VTST, if reset vector is blank ($FFFE and $FFFF contain  
$FF)  
Normal monitor mode entry if VTST is applied to IRQ  
16.3.1 Functional Description  
Figure 16-9 shows a simplified diagram of monitor mode entry.  
The monitor module receives and executes commands from a host computer. Figure 16-10, Figure 16-11,  
and Figure 16-12 show example circuits used to enter monitor mode and communicate with a host  
computer via a standard RS-232 interface.  
Simple monitor commands can access any memory address. In monitor mode, the MCU can execute  
code downloaded into RAM by a host computer while most MCU pins retain normal operating mode  
functions. All communication between the host computer and the MCU is through the PTA0 pin. A  
level-shifting and multiplexing interface is required between PTA0 and the host computer. PTA0 is used  
in a wired-OR configuration and requires a pullup resistor.  
The monitor code has been updated from previous versions of the monitor code to allow enabling the  
internal oscillator to generate the internal clock. This addition, which is enabled when IRQ is held low out  
of reset, is intended to support serial communication/programming at 9600 baud in monitor mode by using  
the internal oscillator, and the internal oscillator user trim value OSCTRIM (FLASH location $FFC0, if  
programmed) to generate the desired internal frequency (3.2 MHz). Since this feature is enabled only  
when IRQ is held low out of reset, it cannot be used when the reset vector is programmed (i.e., the value  
is not $FFFF) because entry into monitor mode in this case requires VTST on IRQ. The IRQ pin must  
remain low during this monitor session in order to maintain communication.  
1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or copying the FLASH difficult for  
unauthorized users.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
192  
Freescale Semiconductor  
Monitor Module (MON)  
POR RESET  
YES  
NO  
IRQ = VTST  
?
CONDITIONS  
FROM Table 16-1  
PTA0 = 1,  
PTA1 = 1, AND  
PTA4 = 0?  
PTA0 = 1,  
RESET VECTOR  
BLANK?  
NO  
NO  
YES  
YES  
FORCED  
MONITOR MODE  
NORMAL  
USER MODE  
NORMAL  
MONITOR MODE  
INVALID  
USER MODE  
HOST SENDS  
8 SECURITY BYTES  
YES  
IS RESET  
POR?  
NO  
ARE ALL  
SECURITY BYTES  
CORRECT?  
YES  
NO  
ENABLE FLASH  
DISABLE FLASH  
MONITOR MODE ENTRY  
DEBUGGING  
AND FLASH  
PROGRAMMING  
(IF FLASH  
IS ENABLED)  
EXECUTE  
MONITOR CODE  
NO  
YES  
DOES RESET  
OCCUR?  
Figure 16-9. Simplified Monitor Mode Entry Flowchart  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
193  
Development Support  
VDD  
VDD  
10 k*  
VDD  
RST (PTA3)  
0.1 µF  
9.8304 MHz CLOCK  
VTST  
MAX232  
VDD  
OSC1 (PTA5)  
1
16  
15  
2
C1+  
+
+
+
VDD  
1 µF  
1 µF  
3
4
C1–  
C2+  
1 µF  
+
1 kΩ  
10 k*  
10 k*  
PTA1  
V+  
V–  
IRQ (PTA2)  
VDD  
1 µF  
6
5
9.1 V  
C2–  
1 µF  
10 kΩ  
+
PTA4  
74HC125  
6
DB9  
5
10  
9
2
7
8
PTA0  
74HC125  
3
2
4
3
5
VSS  
1
* Value not critical  
Figure 16-10. Monitor Mode Circuit (External Clock, with High Voltage)  
VDD  
N.C.  
RST (PTA3)  
VDD  
0.1 µF  
MAX232  
VDD  
1
16  
15  
2
9.8304 MHz CLOCK  
C1+  
OSC1 (PTA5)  
+
+
+
1 µF  
1 µF  
3
4
1 µF  
C1–  
C2+  
+
PTA1  
PTA4  
N.C.  
N.C.  
10 k*  
V+  
V–  
VDD  
IRQ (PTA2)  
1 µF  
6
5
C2–  
1 µF  
10 kΩ  
+
74HC125  
DB9  
5
10  
9
2
7
8
6
PTA0  
74HC125  
3
4
3
5
2
VSS  
1
Figure 16-11. Monitor Mode Circuit (External Clock, No High Voltage)  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
194  
Freescale Semiconductor  
Monitor Module (MON)  
VDD  
N.C.  
N.C.  
RST (PTA3)  
VDD  
0.1 µF  
MAX232  
VDD  
OSC1 (PTA5)  
IRQ (PTA2)  
1
16  
15  
2
C1+  
+
+
+
1 µF  
1 µF  
PTA1  
PTA4  
N.C.  
N.C.  
3
4
1 µF  
C1–  
C2+  
+
10 k*  
VDD  
V+  
V–  
1 µF  
6
5
C2–  
1 µF  
10 kΩ  
+
74HC125  
DB9  
5
10  
9
2
7
8
6
PTA0  
VSS  
74HC125  
3
2
4
3
5
1
* Value not critical  
Figure 16-12. Monitor Mode Circuit (Internal Clock, No High Voltage)  
Table 16-1 shows the pin conditions for entering monitor mode. As specified in the table, monitor mode  
may be entered after a power-on reset (POR) and will allow communication at 9600 baud provided one  
of the following sets of conditions is met:  
If $FFFE and $FFFF do not contain $FF (programmed state):  
The external clock is 9.8304 MHz  
IRQ = VTST  
If $FFFE and $FFFF contain $FF (erased state):  
The external clock is 9.8304 MHz  
IRQ = VDD (this can be implemented through the internal IRQ pullup)  
If $FFFE and $FFFF contain $FF (erased state):  
IRQ = VSS (internal oscillator is selected, no external clock required)  
The rising edge of the internal RST signal latches the monitor mode. Once monitor mode is latched, the  
values on PTA1 and PTA4 pins can be changed.  
Once out of reset, the MCU waits for the host to send eight security bytes (see 16.3.2 Security). After the  
security bytes, the MCU sends a break signal (10 consecutive 0s) to the host, indicating that it is ready to  
receive a command.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
195  
Development Support  
Table 16-1. Monitor Mode Signal Requirements and Options  
Serial  
Communi-  
cation  
Mode  
Selection  
Communication  
Speed  
IRQ  
Mode  
RST Reset  
(PTA3) Vector  
COP  
Comments  
(PTA2)  
External  
Clock Frequency Rate  
Bus  
Baud  
PTA0  
PTA1 PTA4  
Normal  
VTST  
9.8304  
MHz  
2.4576  
MHz  
Provide external  
clock at OSC1.  
VDD  
X
1
1
0
Disabled  
9600  
Monitor  
$FFFF  
(blank)  
9.8304  
MHz  
2.4576  
MHz  
Provide external  
clock at OSC1.  
VDD  
X
X
X
1
1
X
X
X
X
X
X
Disabled  
Disabled  
Enabled  
9600  
9600  
X
Forced  
Monitor  
$FFFF  
(blank)  
3.2 MHz  
(Trimmed)  
Internal clock is  
active.  
VSS  
X
X
Not  
$FFFF  
User  
X
X
X
MON08  
Function  
[Pin No.]  
VTST  
[6]  
RST  
[4]  
COM  
[8]  
MOD0 MOD1  
[12] [10]  
OSC1  
[13]  
1. PTA0 must have a pullup resistor to VDD in monitor mode.  
2. Communication speed in the table is an example to obtain a baud rate of 9600. Baud rate using external oscillator is bus  
frequency / 256 and baud rate using internal oscillator is bus frequency / 333.  
3. External clock is a 9.8304 MHz oscillator on OSC1.  
4. X = don’t care  
5. MON08 pin refers to P&E Microcomputer Systems’ MON08-Cyclone 2 by 8-pin connector.  
NC  
NC  
NC  
NC  
NC  
1
3
5
7
9
2
4
GND  
RST  
IRQ  
6
8
PTA0  
PTA4  
PTA1  
NC  
10  
12  
14  
16  
NC 11  
OSC1 13  
VDD  
15  
NC  
.
16.3.1.1 Normal Monitor Mode  
RST and OSC1 functions will be active on the PTA3 and PTA5 pins respectively as long as VTST is  
applied to the IRQ pin. If the IRQ pin is lowered (no longer VTST) then the chip will still be operating in  
monitor mode, but the pin functions will be determined by the settings in the configuration registers (see  
Chapter 5 Configuration Register (CONFIG)) when VTST was lowered. With VTST lowered, the BIH and  
BIL instructions will read the IRQ pin state only if IRQEN is set in the CONFIG2 register.  
If monitor mode was entered with VTST on IRQ, then the COP is disabled as long as VTST is applied to IRQ.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
196  
Freescale Semiconductor  
Monitor Module (MON)  
16.3.1.2 Forced Monitor Mode  
If entering monitor mode without high voltage on IRQ, then startup port pin requirements and conditions,  
(PTA1/PTA4) are not in effect. This is to reduce circuit requirements when performing in-circuit  
programming.  
NOTE  
If the reset vector is blank and monitor mode is entered, the chip will see an  
additional reset cycle after the initial power-on reset (POR). Once the reset  
vector has been programmed, the traditional method of applying a voltage,  
VTST, to IRQ must be used to enter monitor mode.  
If monitor mode was entered as a result of the reset vector being blank, the COP is always disabled  
regardless of the state of IRQ.  
If the voltage applied to the IRQ is less than VTST, the MCU will come out of reset in user mode. Internal  
circuitry monitors the reset vector fetches and will assert an internal reset if it detects that the reset vectors  
are erased ($FF). When the MCU comes out of reset, it is forced into monitor mode without requiring high  
voltage on the IRQ pin. Once out of reset, the monitor code is initially executing with the internal clock at  
its default frequency.  
If IRQ is held high, all pins will default to regular input port functions except for PTA0 and PTA5 which will  
operate as a serial communication port and OSC1 input respectively (refer to Figure 16-11). That will  
allow the clock to be driven from an external source through OSC1 pin.  
If IRQ is held low, all pins will default to regular input port function except for PTA0 which will operate as  
serial communication port. Refer to Figure 16-12.  
Regardless of the state of the IRQ pin, it will not function as a port input pin in monitor mode. Bit 2 of the  
Port A data register will always read 0. The BIH and BIL instructions will behave as if the IRQ pin is  
enabled, regardless of the settings in the configuration register. See Chapter 5 Configuration Register  
(CONFIG).  
The COP module is disabled in forced monitor mode. Any reset other than a power-on reset (POR) will  
automatically force the MCU to come back to the forced monitor mode.  
16.3.1.3 Monitor Vectors  
In monitor mode, the MCU uses different vectors for reset, SWI (software interrupt), and break interrupt  
than those for user mode. The alternate vectors are in the $FE page instead of the $FF page and allow  
code execution from the internal monitor firmware instead of user code.  
NOTE  
Exiting monitor mode after it has been initiated by having a blank reset  
vector requires a power-on reset (POR). Pulling RST (when RST pin  
available) low will not exit monitor mode in this situation.  
Table 16-2 summarizes the differences between user mode and monitor mode regarding vectors.  
Table 16-2. Mode Differences  
Functions  
Modes  
User  
Reset  
Vector High  
Reset  
Vector Low  
Break  
Vector High  
Break  
Vector Low  
SWI  
Vector High  
SWI  
Vector Low  
$FFFE  
$FEFE  
$FFFF  
$FEFF  
$FFFC  
$FEFC  
$FFFD  
$FEFD  
$FFFC  
$FEFC  
$FFFD  
$FEFD  
Monitor  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
197  
Development Support  
16.3.1.4 Data Format  
Communication with the monitor ROM is in standard non-return-to-zero (NRZ) mark/space data format.  
Transmit and receive baud rates must be identical.  
NEXT  
START  
BIT  
START  
BIT  
BIT 6  
STOP  
BIT  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 7  
Figure 16-13. Monitor Data Format  
16.3.1.5 Break Signal  
A start bit (0) followed by nine 0 bits is a break signal. When the monitor receives a break signal, it drives  
the PTA0 pin high for the duration of approximately two bits and then echoes back the break signal.  
MISSING STOP BIT  
APPROXIMATELY 2 BITS DELAY  
BEFORE ZERO ECHO  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
Figure 16-14. Break Transaction  
16.3.1.6 Baud Rate  
The monitor communication baud rate is controlled by the frequency of the external or internal oscillator  
and the state of the appropriate pins as shown in Table 16-1.  
Table 16-1 also lists the bus frequencies to achieve standard baud rates. The effective baud rate is the  
bus frequency divided by 256 when using an external oscillator. When using the internal oscillator in  
forced monitor mode, the effective baud rate is the bus frequency divided by 335.  
16.3.1.7 Commands  
The monitor ROM firmware uses these commands:  
READ (read memory)  
WRITE (write memory)  
IREAD (indexed read)  
IWRITE (indexed write)  
READSP (read stack pointer)  
RUN (run user program)  
The monitor ROM firmware echoes each received byte back to the PTA0 pin for error checking. An 11-bit  
delay at the end of each command allows the host to send a break character to cancel the command. A  
delay of two bit times occurs before each echo and before READ, IREAD, or READSP data is returned.  
The data returned by a read command appears after the echo of the last byte of the command.  
NOTE  
Wait one bit time after each echo before sending the next byte.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
198  
Freescale Semiconductor  
Monitor Module (MON)  
FROM  
HOST  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
READ  
READ  
DATA  
4
4
1
1
4
1
3, 2  
4
ECHO  
RETURN  
Notes:  
1 = Echo delay, approximately 2 bit times  
2 = Data return delay, approximately 2 bit times  
3 = Cancel command delay, 11 bit times  
4 = Wait 1 bit time before sending next byte.  
Figure 16-15. Read Transaction  
FROM  
HOST  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
DATA  
DATA  
WRITE  
WRITE  
3
3
1
1
3
1
3
1
2, 3  
ECHO  
Notes:  
1 = Echo delay, approximately 2 bit times  
2 = Cancel command delay, 11 bit times  
3 = Wait 1 bit time before sending next byte.  
Figure 16-16. Write Transaction  
A brief description of each monitor mode command is given in Table 16-3 through Table 16-8.  
Table 16-3. READ (Read Memory) Command  
Description Read byte from memory  
Operand 2-byte address in high-byte:low-byte order  
Data Returned Returns contents of specified address  
Opcode $4A  
Command Sequence  
SENT TO MONITOR  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
READ  
READ  
DATA  
ECHO  
RETURN  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
199  
Development Support  
Table 16-4. WRITE (Write Memory) Command  
Description Write byte to memory  
Operand 2-byte address in high-byte:low-byte order; low byte followed by data byte  
Data Returned None  
Opcode $49  
Command Sequence  
FROM HOST  
ADDRESS  
HIGH  
ADDRESS ADDRESS  
HIGH LOW  
ADDRESS  
LOW  
DATA  
DATA  
WRITE  
WRITE  
ECHO  
Table 16-5. IREAD (Indexed Read) Command  
Description Read next 2 bytes in memory from last address accessed  
Operand None  
Data Returned Returns contents of next two addresses  
Opcode $1A  
Command Sequence  
FROM HOST  
IREAD  
IREAD  
DATA  
DATA  
ECHO  
RETURN  
Table 16-6. IWRITE (Indexed Write) Command  
Description Write to last address accessed + 1  
Operand Single data byte  
Data Returned None  
Opcode $19  
Command Sequence  
FROM HOST  
DATA  
DATA  
IWRITE  
ECHO  
IWRITE  
A sequence of IREAD or IWRITE commands can access a block of memory sequentially over the full  
64-Kbyte memory map.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
200  
Freescale Semiconductor  
Monitor Module (MON)  
Table 16-7. READSP (Read Stack Pointer) Command  
Description Reads stack pointer  
Operand None  
Returns incremented stack pointer value (SP + 1) in high-byte:low-byte  
order  
Data Returned  
Opcode $0C  
Command Sequence  
FROM HOST  
SP  
HIGH  
SP  
LOW  
READSP  
ECHO  
READSP  
RETURN  
Table 16-8. RUN (Run User Program) Command  
Description Executes PULH and RTI instructions  
Operand None  
Data Returned None  
Opcode $28  
Command Sequence  
FROM HOST  
RUN  
ECHO  
RUN  
The MCU executes the SWI and PSHH instructions when it enters monitor mode. The RUN command  
tells the MCU to execute the PULH and RTI instructions. Before sending the RUN command, the host can  
modify the stacked CPU registers to prepare to run the host program. The READSP command returns  
the incremented stack pointer value, SP + 1. The high and low bytes of the program counter are at  
addresses SP + 5 and SP + 6.  
SP  
HIGH BYTE OF INDEX REGISTER  
CONDITION CODE REGISTER  
ACCUMULATOR  
SP + 1  
SP + 2  
SP + 3  
SP + 4  
SP + 5  
SP + 6  
SP + 7  
LOW BYTE OF INDEX REGISTER  
HIGH BYTE OF PROGRAM COUNTER  
LOW BYTE OF PROGRAM COUNTER  
Figure 16-17. Stack Pointer at Monitor Mode Entry  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
201  
Development Support  
16.3.2 Security  
A security feature discourages unauthorized reading of FLASH locations while in monitor mode. The host  
can bypass the security feature at monitor mode entry by sending eight security bytes that match the  
bytes at locations $FFF6–$FFFD. Locations $FFF6–$FFFD contain user-defined data.  
NOTE  
Do not leave locations $FFF6–$FFFD blank. For security reasons, program  
locations $FFF6–$FFFD even if they are not used for vectors.  
During monitor mode entry, the MCU waits after the power-on reset for the host to send the eight security  
bytes on pin PTA0. If the received bytes match those at locations $FFF6–$FFFD, the host bypasses the  
security feature and can read all FLASH locations and execute code from FLASH. Security remains  
bypassed until a power-on reset occurs. If the reset was not a power-on reset, security remains bypassed  
and security code entry is not required. See Figure 16-18.  
Upon power-on reset, if the received bytes of the security code do not match the data at locations  
$FFF6–$FFFD, the host fails to bypass the security feature. The MCU remains in monitor mode, but  
reading a FLASH location returns an invalid value and trying to execute code from FLASH causes an  
illegal address reset. After receiving the eight security bytes from the host, the MCU transmits a break  
character, signifying that it is ready to receive a command.  
NOTE  
The MCU does not transmit a break character until after the host sends the  
eight security bytes.  
VDD  
4096 + 32 BUSCLKX4 CYCLES  
RST  
FROM HOST  
PA0  
5
1
1
4
1
4
2
1
FROM MCU  
Notes:  
1 = Echo delay, approximately 2 bit times  
2 = Data return delay, approximately 2 bit times  
4 = Wait 1 bit time before sending next byte  
5 = Wait until the monitor ROM runs  
Figure 16-18. Monitor Mode Entry Timing  
To determine whether the security code entered is correct, check to see if bit 6 of RAM address $80 is  
set. If it is, then the correct security code has been entered and FLASH can be accessed.  
If the security sequence fails, the device should be reset by a power-on reset and brought up in monitor  
mode to attempt another entry. After failing the security sequence, the FLASH module can also be mass  
erased by executing an erase routine that was downloaded into internal RAM. The mass erase operation  
clears the security code locations so that all eight security bytes become $FF (blank).  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
202  
Freescale Semiconductor  
Chapter 17  
Electrical Specifications  
17.1 Introduction  
This section contains electrical and timing specifications.  
17.2 Absolute Maximum Ratings  
Maximum ratings are the extreme limits to which the microcontroller unit (MCU) can be exposed without  
permanently damaging it.  
NOTE  
This device is not guaranteed to operate properly at the maximum ratings.  
Refer to 17.5 5-V DC Electrical Characteristics and 17.8 3.3-V DC Electrical  
Characteristics for guaranteed operating conditions.  
Characteristic(1)  
Symbol  
VDD  
Value  
–0.3 to +6.0  
VSS –0.3 to VDD +0.3  
VSS –0.3 to +9.1  
15  
Unit  
V
Supply voltage  
Input voltage  
VIN  
V
Mode entry voltage, IRQ pin  
VTST  
V
Maximum current per pin excluding PTA0–PTA5, VDD, and VSS  
Maximum current for pins PTA0–PTA5  
Storage temperature  
I
mA  
mA  
°C  
mA  
mA  
I
PTA0—IPTA5  
TSTG  
IMVSS  
IMVDD  
±25  
–55 to +150  
100  
Maximum current out of VSS  
Maximum current into VDD  
100  
1. Voltages references to VSS  
.
NOTE  
This device contains circuitry to protect the inputs against damage due to  
high static voltages or electric fields; however, it is advised that normal  
precautions be taken to avoid application of any voltage higher than  
maximum-rated voltages to this high-impedance circuit. For proper  
operation, it is recommended that VIN and VOUT be constrained to the  
range VSS (VIN or VOUT) VDD. Reliability of operation is enhanced if  
unused inputs are connected to an appropriate logic voltage level (for  
example, either VSS or VDD.)  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
203  
Electrical Specifications  
17.3 Functional Operating Range  
Temperature  
Code  
Characteristic  
Symbol  
Value  
Unit  
– 40 to +125  
– 40 to +105  
40 to +85  
M
V
C
TA  
Operating temperature range  
Operating voltage range  
°C  
(TL to TH)  
VDD  
3.0 to 5.5  
V
17.4 Thermal Characteristics  
Characteristic  
Symbol  
Value  
Unit  
Thermal resistance  
16-pin SOIC  
θJA  
90  
°C/W  
16-pin TSSOP  
133  
I/O pin power dissipation  
Power dissipation(1)  
PI/O  
PD  
User determined  
PD = (IDD x VDD  
+ PI/O = K/(TJ + 273°C)  
W
W
)
PD x (TA + 273°C)  
+ PD2 x θJA  
Constant(2)  
K
W/°C  
Average junction temperature  
TJ  
TA + (PD x θJA)  
°C  
°C  
Maximum junction temperature  
TJM  
150  
1. Power dissipation is a function of temperature.  
2. K constant unique to the device. K can be determined for a known TA and measured PD. With this value of K, PD and TJ  
can be determined for any value of TA.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
204  
Freescale Semiconductor  
5-V DC Electrical Characteristics  
17.5 5-V DC Electrical Characteristics  
Characteristic(1)  
Typ(2)  
Symbol  
Min  
Max  
Unit  
V
Output high voltage  
I
Load = –2.0 mA, all I/O pins  
ILoad = –10.0 mA, all I/O pins  
Load = –15.0 mA, PTA0, PTA1, PTA3–PTA5 only  
VDD–0.4  
VDD–1.5  
DD–0.8  
VOH  
I
V
Maximum combined IOH (all I/O pins)  
IOHT  
50  
mA  
V
Output low voltage  
ILoad = 1.6 mA, all I/O pins  
ILoad = 10.0 mA, all I/O pins  
ILoad = 15.0 mA, PTA0, PTA1, PTA3–PTA5 only  
0.4  
1.5  
0.8  
VOL  
Maximum combined IOL (all I/O pins)  
IOHL  
VIH  
50  
mA  
V
Input high voltage  
PTA0–PTA5, PTB0–PTB7  
0.7 x VDD  
VSS  
VDD  
Input low voltage  
PTA0–PTA5, PTB0–PTB7  
VIL  
0.3 x VDD  
V
Input hysteresis(3)  
VHYS  
IINJ  
IINJTOT  
IIL  
0.06 x VDD  
+2  
V
DC injection current, all ports(4)  
Total dc current injection (sum of all I/O)(4)  
Ports Hi-Z leakage current  
–2  
–25  
–1  
mA  
mA  
µA  
+25  
+1  
±0.1  
Capacitance  
CIN  
8
pF  
Ports (as input)(3)  
POR rearm voltage  
VPOR  
RPOR  
VTST  
750  
0.035  
mV  
V/ms  
V
POR rise time ramp rate(3)(5)  
Monitor mode entry voltage (3)  
VDD + 2.5  
9.1  
Pullup resistors(6)  
PTA0–PTA5, PTB0–PTB7  
RPU  
RPD  
16  
16  
26  
26  
36  
36  
kΩ  
kΩ  
Pulldown resistors(7)  
PTA0–PTA5  
Low-voltage inhibit reset, trip falling voltage  
Low-voltage inhibit reset, trip rising voltage  
Low-voltage inhibit reset/recover hysteresis  
VTRIPF  
VTRIPR  
VHYS  
3.90  
4.00  
4.20  
4.30  
100  
4.50  
4.60  
V
V
mV  
1. VDD = 4.5 to 5.5 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.  
2. Typical values reflect average measurements at midpoint of voltage range, 25°C only.  
3. Values are based on characterization results, not tested in production.  
4. Guaranteed by design, not tested in production.  
5. If minimum VDD is not reached before the internal POR reset is released, the LVI will hold the part in reset until minimum  
VDD is reached.  
6. RPU is measured at VDD = 5.0 V. Pullup resistors only available when PTAPUEx is enabled with KBIPx = 0.  
7. RPD is measured at VDD = 5.0 V, Pulldown resistors only available when PTAPUEx is enabled with KBIPx =1.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
205  
Electrical Specifications  
17.6 Typical 5-V Output Drive Characteristics  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
5V PTA  
5V PTB  
0
-5  
-10  
-15  
-20  
-25  
-30  
IOH (mA )  
Figure 17-1. Typical 5-Volt Output High Voltage  
versus Output High Current (25°C)  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
5V PTA  
5V PTB  
0
5
10  
15  
20  
25  
30  
IOL (mA )  
Figure 17-2. Typical 5-Volt Output Low Voltage  
versus Output Low Current (25°C)  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
206  
5-V Control Timing  
17.7 5-V Control Timing  
Characteristic(1)  
Internal operating frequency  
Internal clock period (1/fOP  
Symbol  
Min  
Max  
Unit  
fOP  
8
MHz  
(fBUS  
)
)
tcyc  
125  
100  
ns  
ns  
RST input pulse width low(2)  
tRL  
IRQ interrupt pulse width low (edge-triggered)(2)  
IRQ interrupt pulse period(2)  
tILIH  
tILIL  
100  
ns  
Note(3)  
tcyc  
1. VDD = 4.5 to 5.5 Vdc, VSS = 0 Vdc, TA = TL to TH; timing shown with respect to 20% VDD and 70% VSS, unless otherwise  
noted.  
2. Values are based on characterization results, not tested in production.  
3. The minimum period is the number of cycles it takes to execute the interrupt service routine plus 1 tcyc  
.
tRL  
RST  
tILIL  
tILIH  
IRQ  
Figure 17-3. RST and IRQ Timing  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
207  
Electrical Specifications  
17.8 3.3-V DC Electrical Characteristics  
Characteristic(1)  
Typ(2)  
Symbol  
Min  
Max  
Unit  
V
Output high voltage  
ILoad = –0.6 mA, all I/O pins  
Load = –4.0 mA, all I/O pins  
ILoad = –10.0 mA, PTA0, PTA1, PTA3–PTA5 only  
Maximum combined IOH (all I/O pins)  
Output low voltage  
Load = 0.5 mA, all I/O pins  
ILoad = 6.0 mA, all I/O pins  
ILoad = 10.0 mA, PTA0, PTA1, PTA3–PTA5 only  
VDD–0.3  
VDD–1.0  
VDD–0.8  
VOH  
IOHT  
VOL  
I
50  
mA  
V
I
0.3  
1.0  
0.8  
Maximum combined IOL (all I/O pins)  
IOHL  
VIH  
50  
mA  
V
Input high voltage  
PTA0–PTA5, PTB0–PTB7  
0.7 x VDD  
VDD  
Input low voltage  
PTA0–PTA5, PTB0–PTB7  
VIL  
VSS  
0.3 x VDD  
V
Input hysteresis(3)  
VHYS  
IINJ  
IINJTOT  
IIL  
0.06 x VDD  
+2  
V
DC injection current, all ports(4)  
Total dc current injection (sum of all I/O)(4)  
Ports Hi-Z leakage current  
–2  
–25  
–1  
mA  
mA  
µA  
+25  
+1  
±0.1  
Capacitance  
CIN  
8
pF  
Ports (as input)(3)  
POR rearm voltage  
VPOR  
RPOR  
VTST  
0.75  
0.035  
V
V/ms  
V
POR rise time ramp rate(3)(5)  
Monitor mode entry voltage (3)  
VDD + 2.5  
VDD + 4.0  
Pullup resistors(6)  
PTA0–PTA5, PTB0–PTB7  
RPU  
RPD  
16  
16  
26  
26  
36  
36  
kΩ  
kΩ  
Pulldown resistors(7)  
PTA0–PTA5  
Low-voltage inhibit reset, trip falling voltage  
Low-voltage inhibit reset, trip rising voltage  
Low-voltage inhibit reset/recover hysteresis  
VTRIPF  
VTRIPR  
VHYS  
2.65  
2.75  
2.8  
2.9  
3.0  
3.10  
V
V
100  
mV  
1. VDD = 3.0 to 3.6 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.  
2. Typical values reflect average measurements at midpoint of voltage range, 25°C only.  
3. Values are based on characterization results, not tested in production.  
4. Guaranteed by design, not tested in production.  
5. If minimum VDD is not reached before the internal POR reset is released, the LVI will hold the part in reset until minimum  
DD is reached.  
V
6. RPU is measured at VDD = 3.3 V. Pullup resistors only available when PTAPUEx is enabled with KBIPx = 0.  
7. RPD is measured at VDD = 3.3 V, Pulldown resistors only available when PTAPUEx is enabled with KBIPx =1.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
208  
Freescale Semiconductor  
Typical 3.3-V Output Drive Characteristics  
17.9 Typical 3.3-V Output Drive Characteristics  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
3.3V PTA  
3.3V PTB  
0
-5  
-10  
-15  
-20  
-25  
IOH (mA)  
Figure 17-4. Typical 3.3-Volt Output High Voltage  
versus Output High Current (25°C)  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
3.3V PTA  
3.3V PTB  
0
5
10  
15  
20  
25  
IOL (mA)  
Figure 17-5. Typical 3.3-Volt Output Low Voltage  
versus Output Low Current (25°C)  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
209  
Electrical Specifications  
17.10 3.3-V Control Timing  
Characteristic(1)  
Symbol  
fOP (fBus  
tcyc  
Min  
Max  
4
Unit  
MHz  
ns  
Internal operating frequency  
)
Internal clock period (1/fOP  
)
250  
RST input pulse width low(2)  
tRL  
200  
ns  
IRQ interrupt pulse width low (edge-triggered)(2)  
IRQ interrupt pulse period(2)  
tILIH  
200  
ns  
tILIL  
Note(3)  
tcyc  
1. VDD = 3.0 to 3.6 Vdc, VSS = 0 Vdc, TA = TL to TH; timing shown with respect to 20% VDD and 70% VDD, unless otherwise  
noted.  
2. Values are based on characterization results, not tested in production.  
3. The minimum period is the number of cycles it takes to execute the interrupt service routine plus 1 tcyc  
.
tRL  
RST  
tILIL  
tILIH  
IRQ  
Figure 17-6. RST and IRQ Timing  
17.11 Oscillator Characteristics  
Characteristic  
Internal oscillator frequency(1)  
Symbol  
Min  
Typ  
Max  
Unit  
ICFS1:ICFS0 = 00  
ICFS1:ICFS0 = 01  
ICFS1:ICFS0 = 10 (not allowed if VDD <3.0V)  
ICFS1:ICFS0 = 11 (not allowed if VDD < 4.5V)  
4
8
12.8  
25.6  
fINTCLK  
MHz  
Deviation from trimmed Internal oscillator (2)(3)  
4, 8, 12.8, 25.6MHz, fixed voltage, fixed temp  
± 0.4  
4, 8, 12.8MHz, VDD ± 10%, 0 to 70°C  
4, 8, 12.8MHz, VDD ± 10%, –40 to 85°C  
4, 8, 12.8MHz, VDD ± 10%, –40 to 105°C  
4, 8, 12.8MHz, VDD ± 10%, –40 to 125°C  
± 2  
± 5  
± 5  
± 5  
ACCINT  
%
25.6MHz, VDD ± 10%, 0 to 70°C  
25.6MHz, VDD ± 10%, –40 to 85°C  
25.6MHz, VDD ± 10%, –40 to 105°C  
25.6MHz, VDD ± 10%, –40 to 125°C  
± 5  
± 10  
± 10  
± 10  
Table continued on next page  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
210  
Oscillator Characteristics  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
External RC oscillator frequency, RCCLK (1)(2)  
VDD ≥ 3.0 V  
VDD < 3.0 V  
fRCCLK  
2
2
10  
8.4  
MHz  
External clock reference frequencyy(1)(4)(5)  
VDD 4.5V  
VDD 3.0V  
VDD < 3.0V  
dc  
dc  
dc  
32  
16  
8.4  
fOSCXCLK  
MHz  
RC oscillator external resistor  
VDD = 5 V  
VDD = 3 V  
REXT  
See Figure 17-7  
See Figure 17-8  
Crystal frequency, XTALCLK(1)(6)(7)  
ECFS1:ECFS0 = 00 ( VDD 4.5 V)  
ECFS1:ECFS0 = 00 (not allowed if VDD < 3.0V)  
ECFS1:ECFS0 = 01  
8
8
1
32  
16  
8
MHz  
MHz  
MHz  
kHz  
fOSCXCLK  
ECFS1:ECFS0 = 10  
30  
100  
ECFS1:ECFS0 = 00 (8)  
Feedback bias resistor  
Crystal load capacitance(9)  
Crystal capacitors(9)  
RB  
CL  
C1,C2  
1
20  
MΩ  
pF  
pF  
(2 x CL) – 5pF  
ECFS1:ECFS0 = 01(8)  
Crystal series damping resistor  
fOSCXCLK = 1 MHz  
fOSCXCLK = 4 MHz  
fOSCXCLK = 8 MHz  
Feedback bias resistor  
Crystal load capacitance(9)  
Crystal capacitors(9)  
RS  
20  
10  
0
5
18  
kΩ  
kΩ  
kΩ  
MΩ  
pF  
RB  
CL  
C1,C2  
(2 x CL) –10 pF  
pF  
AWU Module: Internal RC oscillator frequency  
fINTRC  
32  
kHz  
1. Bus frequency, fOP, is oscillator frequency divided by 4.  
2. Deviation values assumes trimming @25°C and midpoint of voltage range, for example 5.0 V for 5 V ± 10%,  
3.3 V for 3.3 V ± 10%.  
3. Values are based on characterization results, not tested in production.  
4. No more than 10% duty cycle deviation from 50%.  
5. When external oscillator clock is greater than 1MHz, ECFS1:ECFS0 must be 00 or 01  
6. Use fundamental mode only, do not use overtone crystals or overtone ceramic resonators  
7. Due to variations in electrical properties of external components such as, ESR and Load Capacitance, operation above  
16 MHz is not guaranteed for all crystals or ceramic resonators. Operation above 16 MHz requires that a Negative  
Resistance Margin (NRM) characterization and component optimization be performed by the crystal or ceramic resonator  
vendor for every different type of crystal or ceramic resonator which will be used. This characterization and optimization  
must be performed at the extremes of voltage and temperature which will be applied to the microcontroller in the  
application. The NRM must meet or exceed 10x the maximum ESR of the crystal or ceramic resonator for acceptable  
performance.  
8. Do not use damping resistor when ECFS1:ECFS0 = 00, 10 or 11  
9. Consult crystal vendor data sheet.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
211  
Electrical Specifications  
12  
10  
8
5V 25 oC  
6
4
2
0
0
10  
20  
30  
ext (k ohms)  
40  
50  
60  
R
Figure 17-7. RC versus Frequency (5 Volts @ 25°C)  
12  
10  
8
3.3V 25 oC  
6
4
2
0
0
10  
20  
30  
ext (k ohms)  
40  
50  
60  
R
Figure 17-8. RC versus Frequency (3.3 Volts @ 25°C)  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
212  
Freescale Semiconductor  
Supply Current Characteristics  
17.12 Supply Current Characteristics  
Bus  
Frequency  
(MHz)  
Characteristic(1)  
Typ(2)  
Voltage  
Symbol  
Max  
Unit  
5.0  
3.3  
3.2  
3.2  
7.25  
3.2  
8.5  
4.5  
Run mode VDD supply current(3)  
Wait mode VDD supply current(4)  
RIDD  
WIDD  
mA  
mA  
5.0  
3.3  
3.2  
3.2  
1.25  
0.80  
1.8  
1.2  
Stop mode VDD supply current(5)  
–40 to 85°C  
–40 to 105°C  
–40 to 125°C  
25°C with auto wake-up enabled  
Incremental current with LVI enabled at 25°C  
Stop mode VDD supply current(4)  
–40 to 85°C  
–40 to 105°C  
–40 to 125°C  
0.26  
12  
125  
1
2
5
µA  
µA  
µA  
µA  
µA  
5.0  
3.3  
SIDD  
0.23  
2
100  
0.5  
1
4
µA  
µA  
µA  
µA  
µA  
25°C with auto wake-up enabled  
Incremental current with LVI enabled at 25°C  
1. VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.  
2. Typical values reflect average measurement at 25°C only.  
3. Run (operating) IDD measured using trimmed internal oscillator, ADC off, all modules enabled. All pins configured as inputs  
and tied to 0.2 V from rail.  
4. Wait IDD measured using trimmed internal oscillator, ADC off, all modules enabled. All pins configured as inputs and tied  
to 0.2 V from rail.  
5. Stop IDD measured with all pins configured as inputs and tied to 0.2 V from rail.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
213  
Electrical Specifications  
15  
14  
13  
12  
11  
10  
9
Internal OSC (No A/D,SLIC)  
Internal OSC all Modules enabled  
Ex ternal Reference (No A/D, SLIC)  
Ex ternal Reference All modules enabled  
8
7
6
5
4
3
2
1
0
0
1
2
3
4
5
6
7
8
9
Freq.  
Figure 17-9. Typical 5-Volt Run Current versus Bus Frequency (25°C)  
4
Internal OSC (No A/D,SLIC)  
3
Internal OSC all Modules enabled  
2
Ex ternal Reference (No A/D, SLIC)  
1
Ex ternal Reference All modules enabled  
0
0
1
2
3
4
5
6
7
Freq.  
Figure 17-10. Typical 3.3-Volt Run Current versus Bus Frequency (25°C)  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
214  
Freescale Semiconductor  
ADC10 Characteristics  
17.13 ADC10 Characteristics  
Typ(1)  
Characteristic  
Supply voltage  
Conditions  
Absolute  
Symbol  
Min  
3.0  
Max  
5.5  
Unit  
Comment  
VDD  
V
Supply Current  
ADLPC = 1  
ADLSMP = 1  
ADCO = 1  
VDD < 3.6 V (3.3 V Typ)  
55  
(2)  
IDD  
µA  
VDD < 5.5 V (5.0 V Typ)  
75  
Supply current  
ADLPC = 1  
ADLSMP = 0  
ADCO = 1  
V
DD < 3.6 V (3.3 V Typ)  
VDD < 5.5 V (5.0 V Typ)  
DD < 3.6 V (3.3 V Typ)  
120  
175  
140  
180  
340  
440  
(2)  
IDD  
µA  
µA  
Supply current  
ADLPC = 0  
ADLSMP = 1  
ADCO = 1  
V
(2)  
IDD  
VDD < 5.5 V (5.0 V Typ)  
VDD < 3.6 V (3.3 V Typ)  
Supply current  
ADLPC = 0  
ADLSMP = 0  
ADCO = 1  
(2)  
IDD  
µA  
VDD < 5.5 V (5.0 V Typ)  
615  
High speed (ADLPC = 0)  
0.40(3)  
0.40(3)  
19  
19  
39  
16  
36  
4
2.00  
1.00  
21  
ADC internal clock  
fADCK  
tADC  
tADC  
tADS  
MHz  
tADCK = 1/fADCK  
Low power (ADLPC = 1)  
Conversion time (4)  
10-bit Mode  
tADCK  
cycles  
Short sample (ADLSMP = 0)  
Long sample (ADLSMP = 1)  
Short sample (ADLSMP = 0)  
Long sample (ADLSMP = 1)  
Short sample (ADLSMP = 0)  
Long sample (ADLSMP = 1)  
39  
41  
Conversion time (4)  
8-bit Mode  
tADCK  
cycles  
16  
18  
36  
38  
4
4
tADCK  
cycles  
Sample time  
24  
24  
7
24  
Input voltage  
VADIN  
CADIN  
RADIN  
VSS  
VDD  
10  
V
Input capacitance  
Input impedance  
pF  
kΩ  
Not tested  
Not tested  
5
15  
External to  
MCU  
Analog source impedance  
Ideal resolution (1 LSB)  
RAS  
10  
kΩ  
10-bit mode  
8-bit mode  
10-bit mode  
8-bit mode  
10-bit mode  
8-bit mode  
1.758  
5
5.371  
21.48  
±2.5  
±1.0  
RES  
mV  
V
REFH/2N  
7.031  
20  
0
0
0
0
±1.5  
±0.7  
±0.5  
±0.3  
Includes  
quantization  
Total unadjusted error  
Differential non-linearity  
ETUE  
DNL  
LSB  
LSB  
Monotonicity and no-missing-codes guaranteed  
— Continued on next page  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
215  
Electrical Specifications  
Typ(1)  
±0.5  
±0.3  
±0.5  
±0.3  
±0.5  
±0.3  
Characteristic  
Conditions  
10-bit mode  
Symbol  
Min  
0
Max  
Unit  
Comment  
Integral non-linearity  
INL  
LSB  
8-bit mode  
10-bit mode  
8-bit mode  
10-bit mode  
8-bit mode  
10-bit mode  
8-bit mode  
10-bit mode  
8-bit mode  
0
0
Zero-scale error  
Full-scale error  
Quantization error  
EZS  
EFS  
EQ  
LSB  
LSB  
LSB  
VADIN = VSS  
0
0
VADIN = VDD  
0
0
±0.5  
±0.5  
±5  
8-bit mode is  
not truncated  
Pad leakage(5)  
* RAS  
±0.2  
±0.1  
1.245  
Input leakage error  
EIL  
LSB  
V
0
±1.2  
1.32  
Bandgap voltage input(6)  
VBG  
1.17  
1. Typical values assume VDD = 5.0 V, temperature = 25°C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
2. Incremental IDD added to MCU mode current.  
3. Values are based on characterization results, not tested in production.  
4. Reference the ADC module specification for more information on calculating conversion times.  
5. Based on typical input pad leakage current.  
6. LVI must be enabled, (LVIPWRD = 0, in CONFIG1). Voltage input to ADCH4:0 = $1A, an ADC conversion on this channel  
allows user to determine supply voltage.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
216  
Freescale Semiconductor  
Timer Interface Module Characteristics  
17.14 Timer Interface Module Characteristics  
Characteristic  
Timer input capture pulse width(1)  
Symbol  
TH, tTL  
tTLTL  
tTCL, tTCH  
Min  
2
Max  
Unit  
tcyc  
tcyc  
ns  
t
Timer input capture period  
Note(2)  
Timer input clock pulse width(1)  
tcyc + 5  
1. Values are based on characterization results, not tested in production.  
2. The minimum period is the number of cycles it takes to execute the interrupt service routine plus 1 tcyc  
.
tTLTL  
tTH  
INPUT CAPTURE  
RISING EDGE  
tTLTL  
tTL  
INPUT CAPTURE  
FALLING EDGE  
tTLTL  
tTH  
tTL  
INPUT CAPTURE  
BOTH EDGES  
tTCH  
TCLK  
tTCL  
Figure 17-11. Input Capture Timing  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
217  
Electrical Specifications  
17.15 Memory Characteristics  
Characteristic  
RAM data retention voltage (1)  
Symbol  
VRDR  
Min  
1.3  
1
Typ  
Max  
Unit  
V
FLASH program bus clock frequency  
MHz  
V
FLASH PGM/ERASE supply voltage (VDD  
FLASH read bus clock frequency  
)
VPGM/ERASE  
2.7  
0
5.5  
8 M  
(2)  
fRead  
Hz  
FLASH page erase time  
<1 K cycles  
>1 K cycles  
tErase  
0.9  
3.6  
1
4
1.1  
5.5  
ms  
FLASH mass erase time  
tMErase  
tNVS  
4
10  
5
40  
4
ms  
µs  
FLASH PGM/ERASE to HVEN setup time  
FLASH high-voltage hold time  
tNVH  
µs  
FLASH high-voltage hold time (mass erase)  
FLASH program hold time  
tNVHL  
tPGS  
100  
5
µs  
µs  
FLASH program time  
tPROG  
30  
1
µs  
(3)  
FLASH return to read time  
tRCV  
µs  
(4)  
FLASH cumulative program hv period  
FLASH endurance(5)  
tHV  
10 k  
15  
ms  
100 k  
100  
Cycles  
Years  
FLASH data retention time(6)  
1. Values are based on characterization results, not tested in production.  
2. fRead is defined as the frequency range for which the FLASH memory can be read.  
3. tRCV is defined as the time it needs before the FLASH can be read after turning off the high voltage charge pump, by  
clearing HVEN to 0.  
4. tHV is defined as the cumulative high voltage programming time to the same row before next erase.  
tHV must satisfy this condition: tNVS + tNVH + tPGS + (tPROG x 32) tHV maximum.  
5. Typical endurance was evaluated for this product family. For additional information on how Freescale Semiconductor  
defines Typical Endurance, please refer to Engineering Bulletin EB619.  
6. Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated  
to 25°C using the Arrhenius equation. For additional information on how Freescale Semiconductor defines Typical Data  
Retention, please refer to Engineering Bulletin EB618.  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
218  
Freescale Semiconductor  
Chapter 18  
Ordering Information and Mechanical Specifications  
18.1 Introduction  
This section provides ordering information for the MC68HC908QL4, MC68HC908QL3, and  
MC68HC908QL2 along with the dimensions for:  
16-pin small outline integrated circuit (SOIC) package  
16-pin thin shrink small outline package (TSSOP)  
The following figures show the latest package drawings at the time of this publication. To make sure that  
you have the latest package specifications, contact your local Freescale Sales Office.  
18.2 MC Order Numbers  
Table 18-1. MC Order Numbers  
MC Order Number  
MC908QL4  
ADC  
Yes  
No  
FLASH Memory  
4096 bytes  
Package  
16-pins  
SOIC,  
MC908QL3  
4096 bytes  
and TSSOP  
MC908QL2  
Yes  
2048 bytes  
Temperature and package designators:  
C = –40°C to +85°C  
V = –40°C to +105°C  
M = –40°C to +125°C  
DW = Small outline integrated circuit package (SOIC)  
DT = Thin shrink small outline package (TSSOP)  
M C 9 0 8 Q L X X X X  
FAMILY  
PACKAGE DESIGNATOR  
TEMPERATURE RANGE  
Figure 18-1. Device Numbering System  
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
219  
Ordering Information and Mechanical Specifications  
18.3 16-Pin Small Outline Integrated Circuit Package (Case #751G)  
A
NOTES:  
D
1. DIMENSIONS ARE IN MILLIMETERS.  
2. INTERPRET DIMENSIONS AND  
TOLERANCES PER ASME Y14.5M, 1994.  
3. DIMENSIONS D AND E DO NOT INLCUDE  
MOLD PROTRUSION.  
q
16  
9
4. MAXIMUM MOLD PROTRUSION 0.15 PER  
SIDE.  
5. DIMENSION B DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.13 TOTAL IN  
EXCESSOFTHEBDIMENSIONATMAXIMUM  
MATERIAL CONDITION.  
1
8
MILLIMETERS  
B
16X B  
DIM MIN  
2.35  
A1 0.10  
MAX  
2.65  
0.25  
0.49  
0.32  
A
M
S
S
0.25  
T A  
B
B
C
D
E
e
H
h
L
q
0.35  
0.23  
10.15 10.45  
7.40 7.60  
1.27 BSC  
10.05 10.55  
0.25  
0.40  
0
0.75  
1.00  
7
SEATING  
PLANE  
14X  
e
°
°
C
T
18.4 16-Pin Thin Shrink Small Outline Package (Case #948F)  
16X KREF  
M
S
S
0.10 (0.004) T U  
V
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD  
FLASH. PROTRUSIONS OR GATE BURRS.  
MOLD FLASH OR GATE BURRS SHALL NOT  
EXCEED 0.15 (0.006) PER SIDE.  
4. DIMENSION B DOES NOT INCLUDE  
INTERLEAD FLASH OR PROTRUSION.  
INTERLEADFLASHORPROTRUSIONSHALL  
NOT EXCEED  
S
0.15 (0.006) T U  
K
K1  
16  
9
2X L/2  
J1  
B
-U-  
SECTION N-N  
L
0.25 (0.010) PER SIDE.  
J
5. DIMENSION K DOES NOTINCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.08 (0.003) TOTAL  
IN EXCESS OF THE K DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
PIN 1  
IDENT.  
8
1
N
0.25 (0.010)  
7. DIMENSION A AND B ARE TO BE  
DETERMINED AT DATUM PLANE -W-.  
S
0.15 (0.006) T U  
A
M
-V-  
N
F
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
A
B
C
D
F
G
H
J
4.90  
4.30  
---  
0.05  
0.50  
0.65 BSC  
0.18  
0.09  
5.10 0.193 0.200  
4.50 0.169 0.177  
DETAIL E  
1.20  
--- 0.047  
0.15 0.002 0.006  
0.75 0.020 0.030  
-W-  
C
0.026 BSC  
0.28 0.007 0.011  
0.20 0.004 0.008  
0.16 0.004 0.006  
0.30 0.007 0.012  
0.25 0.007 0.010  
0.10 (0.004)  
J1 0.09  
0.19  
H
DETAIL E  
SEATING  
PLANE  
K
-T-  
D
G
K1 0.19  
L
6.40 BSC  
0.252 BSC  
M
0
8
0
8
°
°
°
°
MC68HC908QL4 • MC68HC908QL3 • MC68HC908QL2 Data Sheet, Rev. 4  
Freescale Semiconductor  
220  
How to Reach Us:  
Home Page:  
www.freescale.com  
E-mail:  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Semiconductor was negligent regarding the design or manufacture of the part.  
Denver, Colorado 80217  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
© Freescale Semiconductor, Inc. 2004. All rights reserved.  
LDCForFreescaleSemiconductor@hibbertgroup.com  
MC68HC908QL4  
Rev. 4, 12/2004  

相关型号:

MC908QL2CDW

8-BIT, FLASH, 8 MHz, MICROCONTROLLER, PDSO16, 1.27 MM PITCH, PLASTIC, MS-013AA, SOIC-16
NXP

MC908QL2DT

Microcontrollers
MOTOROLA

MC908QL2DW

Microcontrollers
MOTOROLA

MC908QL2M

Microcontrollers
MOTOROLA

MC908QL2MDT

8-BIT, FLASH, 8MHz, MICROCONTROLLER, PDSO16, 0.65 MM PITCH, TSSOP-16
NXP

MC908QL2MDTE

8-BIT, FLASH, 8 MHz, MICROCONTROLLER, PDSO16, 0.65 MM PITCH, LEAD FREE, TSSOP-16
NXP

MC908QL2MDW

8-BIT, FLASH, 8MHz, MICROCONTROLLER, PDSO16, 1.27 MM PITCH, PLASTIC, MS-013AA, SOIC-16
NXP

MC908QL2MDWE

8-BIT, FLASH, 8MHz, MICROCONTROLLER, PDSO16, 1.27 MM PITCH, LEAD FREE, PLASTIC, MS-013AA, SOIC-16
NXP

MC908QL2V

Microcontrollers
MOTOROLA

MC908QL2VDT

8-BIT, FLASH, 8MHz, MICROCONTROLLER, PDSO16, 0.65 MM PITCH, TSSOP-16
NXP

MC908QL2VDTE

8-BIT, FLASH, 8MHz, MICROCONTROLLER, PDSO16, 0.65 MM PITCH, LEAD FREE, TSSOP-16
NXP

MC908QL2VDW

8-BIT, FLASH, 8MHz, MICROCONTROLLER, PDSO16, 1.27 MM PITCH, PLASTIC, MS-013AA, SOIC-16
NXP