MC9328MXLVM20R2 [MOTOROLA]

RISC Microprocessor, 32-Bit, 200MHz, CMOS, PBGA256, 14 X 14 MM, 1.30 MM HEIGHT, 0.80 MM PITCH, LEAD FREE, MAPBGA-256;
MC9328MXLVM20R2
型号: MC9328MXLVM20R2
厂家: MOTOROLA    MOTOROLA
描述:

RISC Microprocessor, 32-Bit, 200MHz, CMOS, PBGA256, 14 X 14 MM, 1.30 MM HEIGHT, 0.80 MM PITCH, LEAD FREE, MAPBGA-256

时钟 外围集成电路
文件: 总82页 (文件大小:978K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Advance Information  
MC9328MXL/D  
Rev. 3.1, 6/2003  
MC9328MXL  
i.MX Integrated Portable  
System Processor  
Contents  
1 Introduction  
1 Introduction . . . . . . . . . . . 1  
2 Signals and  
Connections. . . . . . . . . . 4  
3 Specifications . . . . . . . . 10  
4 Pin-Out and Package  
The i.MX family builds on the DragonBall family of application processors which have  
demonstrated leadership in the portable handheld market. Continuing this legacy, the i.MX  
(Media Extensions) series provides a leap in performance with an ARM9™ microprocessor  
core and highly integrated system functions. The i.MX products specifically address the  
requirements of the personal, portable product market by providing intelligent integrated  
peripherals, an advanced processor core, and power management capabilities.  
Information. . . . . . . . . . 78  
The new MC9328MXL features the advanced and power-efficient ARM920T™ core that  
operates at speeds up to 200 MHz. Integrated modules, which include an LCD controller,  
USB support, and an MMC/SD host controller, support a suite of peripherals to enhance any  
product seeking to provide a rich multimedia experience. It is packaged in either a 256-pin  
Mold Array Process-Ball Grid Array (MAPBGA) or 225-pin PBGA package. Figure 1 shows  
the functional block diagram of the MC9328MXL.  
Standard  
System I/O  
System Control  
Power  
Control  
CGM  
(PLLx2)  
JTAG/ICE  
Bootstrap  
GPIO  
PWM  
Connectivity  
MC9328MXL  
CPU Complex  
ARM9TDMI™  
MMC/SD  
Timer 1 & 2  
RTC  
Memory Stick®  
Host Controller  
Watchdog  
SPI 1 and  
SPI 2  
I Cache  
D Cache  
Multimedia  
UART 1  
UART 2  
Multimedia  
Accelerator  
Interrupt  
Controller  
AIPI 1  
AIPI 2  
VMMU  
Video Port  
2
SSI/I S  
DMAC  
Bus  
Human Interface  
2
I C  
(11 Chnl)  
Control  
LCD Controller  
EIM &  
SDRAMC  
USB Device  
Figure 1. MC9328MXL Functional Block Diagram  
This document contains information on a new product. Specifications and information herein are subject to change  
without notice. © Motorola, Inc., 2003. All rights reserved.  
 
Introduction  
1.1 Conventions  
This document uses the following conventions:  
OVERBAR is used to indicate a signal that is active when pulled low: for example, RESET.  
Logic level one is a voltage that corresponds to Boolean true (1) state.  
Logic level zero is a voltage that corresponds to Boolean false (0) state.  
To set a bit or bits means to establish logic level one.  
To clear a bit or bits means to establish logic level zero.  
A signal is an electronic construct whose state conveys or changes in state convey information.  
A pin is an external physical connection. The same pin can be used to connect a number of signals.  
Asserted means that a discrete signal is in active logic state.  
Active low signals change from logic level one to logic level zero.  
Active high signals change from logic level zero to logic level one.  
Negated means that an asserted discrete signal changes logic state.  
Active low signals change from logic level zero to logic level one.  
Active high signals change from logic level one to logic level zero.  
LSB means least significant bit or bits, and MSB means most significant bit or bits. References to  
low and high bytes or words are spelled out.  
Numbers preceded by a percent sign (%) are binary. Numbers preceded by a dollar sign ($) or 0x  
are hexadecimal.  
1.2 Features  
To support a wide variety of applications, the MC9328MXL offers a robust array of features, including the  
following:  
ARM920T™ Microprocessor Core  
AHB to IP Bus Interfaces (AIPIs)  
External Interface Module (EIM)  
SDRAM Controller (SDRAMC)  
DPLL Clock and Power Control Module  
Two Universal Asynchronous Receiver/Transmitters (UART 1 and UART 2)  
Two Serial Peripheral Interfaces (SPI1 and SPI2)  
Two General-Purpose 32-bit Counters/Timers  
Watchdog Timer  
Real-Time Clock/Sampling Timer (RTC)  
LCD Controller (LCDC)  
Pulse-Width Modulation (PWM) Module  
Universal Serial Bus (USB) Device  
Multimedia Card and Secure Digital (MMC/SD) Host Controller Module  
Memory Stick® Host Controller (MSHC)  
2
MC9328MXL Advance Information  
MOTOROLA  
Introduction  
Direct Memory Access Controller (DMAC)  
Synchronous Serial Interface and Inter-IC Sound (SSI/I2S) Module  
Inter-IC (I2C) Bus Module  
Video Port  
General-Purpose I/O (GPIO) Ports  
Bootstrap Mode  
Multimedia Accelerator (MMA)  
Power Management Features  
Operating Voltage Range: 1.7 V to 1.98 V core, 1.7 V to 3.3V I/O  
256-pin MAPBGA Package  
225-pin MAPBGA Package  
1.3 Target Applications  
The MC9328MXL is targeted for advanced information appliances, smart phones, Web browsers, digital  
MP3 audio players, handheld computers, and messaging applications.  
1.4 Product Documentation  
The following documents are required for a complete description of the MC9328MXL and are necessary to  
design properly with the device. Especially for those not familiar with the ARM920T processor or  
previous DragonBall products, the following documents are helpful when used in conjunction with this  
document.  
ARM Architecture Reference Manual (ARM Ltd., order number ARM DDI 0100)  
ARM9DT1 Data Sheet Manual (ARM Ltd., order number ARM DDI 0029)  
ARM Technical Reference Manual (ARM Ltd., order number ARM DDI 0151C)  
EMT9 Technical Reference Manual (ARM Ltd., order number DDI O157E)  
MC9328MXL Product Brief (order number MC9328MXLP/D)  
MC9328MXL Reference Manual (order number MC9328MXLRM/D)  
The Motorola manuals are available on the Motorola Semiconductors Web site at  
http://www.motorola.com/semiconductors. These documents may be downloaded directly from the  
Motorola Web site, or printed versions may be ordered. The ARM Ltd. documentation is available from  
http://www.arm.com.  
MOTOROLA  
MC9328MXL Advance Information  
3
Signals and Connections  
1.5 Ordering Information  
Table 1 provides ordering information for both the 256-lead mold array process ball grid array  
(MAPBGA) package and the 225-lead BGA package.  
Table 1. MC9328MXL Ordering Information  
Package Type  
Frequency  
Temperature  
Solderball Type  
Order Number  
MC9328MXLVH15  
MC9328MXLVM15  
MC9328MXLDVH15  
MC9328MXLDVM15  
MC9328MXLCVH15  
MC9328MXLCVM15  
MC9328MXLVH20  
MC9328MXLVM20  
MC9328MXLDVH20  
MC9328MXLDVM20  
MC9328MXLVF15  
MC9328MXLVP15  
MC9328MXLDVF15  
MC9328MXLDVP15  
MC9328MXLCVF15  
MC9328MXLCVP15  
MC9328MXLVF20  
MC9328MXLVP20  
MC9328MXLDVF20  
MC9328MXLDVP20  
0OC to 70OC  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
-30OC to 70OC  
-40OC to 85OC  
0OC to 70OC  
150 MHz  
256-lead MAPBGA  
200 MHz  
150 MHz  
200 MHz  
-30OC to 70OC  
0OC to 70OC  
-30OC to 70OC  
-40OC to 85OC  
0OC to 70OC  
225-lead MAPBGA  
-30OC to 70OC  
2 Signals and Connections  
Table 2 identifies and describes the MC9328MXL signals that are assigned to package pins. The signals  
are grouped by the internal module that they are connected to.  
Table 2. MC9328MXL Signal Descriptions  
Signal Name  
Function/Notes  
External Bus/Chip-Select (EIM)  
A[24:0]  
Address bus signals  
Data bus signals  
MSB Byte Strobe—Active low external enable byte signal that controls D [31:24].  
D[31:0]  
EB0  
4
MC9328MXL Advance Information  
MOTOROLA  
 
 
Signals and Connections  
Table 2. MC9328MXL Signal Descriptions (Continued)  
Signal Name  
Function/Notes  
EB1  
EB2  
EB3  
OE  
Byte Strobe—Active low external enable byte signal that controls D [23:16].  
Byte Strobe—Active low external enable byte signal that controls D [15:8].  
LSB Byte Strobe—Active low external enable byte signal that controls D [7:0].  
Memory Output Enable—Active low output enables external data bus.  
Chip-Select—The chip-select signals CS [3:2] are multiplexed with CSD [1:0] and are  
selected by the Function Multiplexing Control Register (FMCR). By default CSD [1:0] is  
selected.  
CS [5:0]  
ECB  
Active low input signal sent by a flash device to the EIM whenever the flash device must  
terminate an on-going burst sequence and initiate a new (long first access) burst  
sequence.  
Active low signal sent by a flash device causing the external burst device to latch the  
starting burst address.  
LBA  
Clock signal sent to external synchronous memories (such as burst flash) during burst  
mode.  
BCLK  
RW signal—Indicates whether external access is a read (high) or write (low) cycle. Used  
as a WE input signal by external DRAM.  
RW  
DTACK  
DTACK signal— The external input data acknowledge signal. When using the external  
DTACK signal as a data acknowledge signal, the bus time-out monitor generates a bus  
error when a bus cycle is not terminated by the external DTACK signal after 1022 clock  
counts have elapsed.  
Bootstrap  
System Boot Mode Select—The operational system boot mode of the MC9328MXL upon  
system reset is determined by the settings of these pins.  
BOOT [3:0]  
SDRAM Controller  
SDRAM/SyncFlash non-interleave mode bank address multiplexed with address signals  
A [15:11]. These signals are logically equivalent to core address p_addr [25:21] in  
SDRAM/SyncFlash cycles.  
SDBA [4:0]  
SDIBA [3:0]  
SDRAM/SyncFlash interleave addressing mode bank address multiplexed with address  
signals A [19:16]. These signals are logically equivalent to core address p_addr [12:9] in  
SDRAM/SyncFlash cycles.  
MA [11:10]  
MA [9:0]  
DQM [3:0]  
CSD0  
SDRAM address signals  
SDRAM address signals which are multiplexed with address signals A [10:1]. MA [9:0]  
are selected on SDRAM/SyncFlash cycles.  
SDRAM data enable  
SDRAM/SyncFlash Chip-select signal which is multiplexed with the CS2 signal. These  
two signals are selectable by programming the system control register.  
SDRAM/SyncFlash Chip-select signal which is multiplexed with CS3 signal. These two  
signals are selectable by programming the system control register. By default, CSD1 is  
selected, so it can be used as SyncFlash boot chip-select by properly configuring BOOT  
[3:0] input pins.  
CSD1  
RAS  
SDRAM/SyncFlash Row Address Select signal  
MOTOROLA  
MC9328MXL Advance Information  
5
Signals and Connections  
Table 2. MC9328MXL Signal Descriptions (Continued)  
Signal Name  
Function/Notes  
CAS  
SDRAM/SyncFlash Column Address Select signal  
SDRAM/SyncFlash Write Enable signal  
SDRAM/SyncFlash Clock Enable 0  
SDRAM/SyncFlash Clock Enable 1  
SDRAM/SyncFlash Clock  
SDWE  
SDCKE0  
SDCKE1  
SDCLK  
RESET_SF  
SyncFlash Reset  
Clocks and Resets  
Crystal input (4 MHz to 16 MHz), or a 16 MHz oscillator input when the internal oscillator  
circuit is shut down.  
EXTAL16M  
XTAL16M  
EXTAL32K  
XTAL32K  
CLKO  
Crystal output  
32 kHz crystal input  
32 kHz crystal output  
Clock Out signal selected from internal clock signals.  
Master Reset—External active low Schmitt trigger input signal. When this signal goes  
active, all modules (except the reset module and the clock control module) are reset.  
RESET_IN  
RESET_OUT  
POR  
Reset Out—Internal active low output signal from the Watchdog Timer module and is  
asserted from the following sources: Power-on reset, External reset (RESET_IN), and  
Watchdog time-out.  
Power On Reset—Internal active high Schmitt trigger input signal. The POR signal is  
normally generated by an external RC circuit designed to detect a power-up event.  
JTAG  
Test Reset Pin—External active low signal used to asynchronously initialize the JTAG  
controller.  
TRST  
TDO  
TDI  
Serial Output for test instructions and data. Changes on the falling edge of TCK.  
Serial Input for test instructions and data. Sampled on the rising edge of TCK.  
Test Clock to synchronize test logic and control register access through the JTAG port.  
TCK  
Test Mode Select to sequence the JTAG test controller’s state machine. Sampled on the  
rising edge of TCK.  
TMS  
DMA  
Big Endian—Input signal that determines the configuration of the external chip-select  
space. If it is driven logic-high at reset, the external chip-select space will be configured to  
little endian. If it is driven logic-low at reset, the external chip-select space will be  
configured to big endian.  
BIG_ENDIAN  
DMA_REQ  
External DMA request pin.  
6
MC9328MXL Advance Information  
MOTOROLA  
Signals and Connections  
Table 2. MC9328MXL Signal Descriptions (Continued)  
Function/Notes  
Signal Name  
ETM  
ETM sync signal which is multiplexed with A24. ETMTRACESYNC is selected in ETM  
mode.  
ETMTRACESYNC  
ETMTRACECLK  
ETM clock signal which is multiplexed with A23. ETMTRACECLK is selected in ETM  
mode.  
ETM status signals which are multiplexed with A [22:20]. ETMPIPESTAT [2:0] are  
selected in ETM mode.  
ETMPIPESTAT [2:0]  
ETMTRACEPKT [7:0]  
ETM packet signals which are multiplexed with ECB, LBA, BCLK, PA17, A [19:16].  
ETMTRACEPKT [7:0] are selected in ETM mode.  
CMOS Sensor Interface  
CSI_D [7:0]  
CSI_MCLK  
CSI_VSYNC  
CSI_HSYNC  
CSI_PIXCLK  
Sensor port data  
Sensor port master clock  
Sensor port vertical sync  
Sensor port horizontal sync  
Sensor port data latch clock  
LCD Controller  
LD [15:0]  
LCD Data Bus—All LCD signals are driven low after reset and when LCD is off.  
Frame Sync or Vsync—This signal also serves as the clock signal output for the gate  
driver (dedicated signal SPS for Sharp panel HR-TFT).  
FLM/VSYNC  
LP/HSYNC  
LSCLK  
Line pulse or H sync  
Shift clock  
ACD/OE  
CONTRAST  
SPL_SPR  
PS  
Alternate crystal direction/output enable.  
This signal is used to control the LCD bias voltage as contrast control.  
Program horizontal scan direction (Sharp panel dedicated signal).  
Control signal output for source driver (Sharp panel dedicated signal).  
Start signal output for gate driver. This signal is an inverted version of PS (Sharp panel  
dedicated signal).  
CLS  
REV  
Signal for common electrode driving signal preparation (Sharp panel dedicated signal).  
SPI 1 and 2  
Master Out/Slave In  
SPI1_MOSI  
SPI1_MISO  
SPI1_SS  
Slave In/Master Out  
Slave Select (Selectable polarity)  
Serial Clock  
SPI1_SCLK  
SPI1_SPI_RDY  
Serial Data Ready  
MOTOROLA  
MC9328MXL Advance Information  
7
Signals and Connections  
Table 2. MC9328MXL Signal Descriptions (Continued)  
Signal Name  
Function/Notes  
SPI2 Master TxData Output—This signal is multiplexed with a GPI/O pin yet shows up as  
a primary or alternative signal in the signal multiplex scheme table. Please refer to the  
SPI and GPIO chapters in the MC9328MXL Reference Manual for information about how  
to bring this signal to the assigned pin.  
SPI2_TXD  
SPI2 Master RxData Input—This signal is multiplexed with a GPI/O pin yet shows up as a  
primary or alternative signal in the signal multiplex scheme table. Please refer to the SPI  
and GPIO chapters in the MC9328MXL Reference Manual for information about how to  
bring this signal to the assigned pin.  
SPI2_RXD  
SPI2_SS  
SPI2 Slave Select—This signal is multiplexed with a GPI/O pin yet shows up as a primary  
or alternative signal in the signal multiplex scheme table. Please refer to the SPI and  
GPIO chapters in the MC9328MXL Reference Manual for information about how to bring  
this signal to the assigned pin.  
SPI2 Serial Clock—This signal is multiplexed with a GPI/O pin yet shows up as a primary  
or alternative signal in the signal multiplex scheme table. Please refer to the SPI and  
GPIO chapters in the MC9328MXL Reference Manual for information about how to bring  
this signal to the assigned pin.  
SPI2_SCLK  
General Purpose Timers  
Timer Input Capture or Timer Input Clock—The signal on this input is applied to both  
timers simultaneously.  
TIN  
TMR2OUT  
Timer 2 Output  
USB Device  
USBD_VMO  
USBD_VPO  
USBD_VM  
USB Minus Output  
USB Plus Output  
USB Minus Input  
USB Plus Input  
USBD_VP  
USBD_SUSPND  
USBD_RCV  
USBD_OE  
USB Suspend Output  
USB Receive Data  
USB OE  
USBD_AFE  
USB Analog Front End Enable  
Secure Digital Interface  
SD Command—If the system designer does not wish to make use of the internal pull-up,  
via the Pull-up enable register, a 4.7K–69K external pull up resistor must be added.  
SD_CMD  
SD_CLK  
MMC Output Clock  
Data—If the system designer does not wish to make use of the internal pull-up, via the  
Pull-up enable register, a 50K–69K external pull up resistor must be added.  
SD_DAT [3:0]  
Memory Stick Interface  
MS_BS  
Memory Stick Bus State (Output)—Serial bus control signal  
Memory Stick Serial Data (Input/Output)  
MS_SDIO  
MS_SCLKO  
Memory Stick Serial Clock (Input)—Serial protocol clock source for SCLK Divider  
8
MC9328MXL Advance Information  
MOTOROLA  
Signals and Connections  
Table 2. MC9328MXL Signal Descriptions (Continued)  
Signal Name  
MS_SCLKI  
Function/Notes  
Memory Stick External Clock (Output)—Test clock input pin for SCLK divider. This pin is  
only for test purposes, not for use in application mode.  
MS_PI0  
MS_PI1  
General purpose Input0—Can be used for Memory Stick Insertion/Extraction detect  
General purpose Input1—Can be used for Memory Stick Insertion/Extraction detect  
UARTs – IrDA/Auto-Bauding  
Receive Data  
UART1_RXD  
UART1_TXD  
UART1_RTS  
UART1_CTS  
UART2_RXD  
UART2_TXD  
UART2_RTS  
UART2_CTS  
UART2_DSR  
UART2_RI  
Transmit Data  
Request to Send  
Clear to Send  
Receive Data  
Transmit Data  
Request to Send  
Clear to Send  
Data Set Ready  
Ring Indicator  
UART2_DCD  
UART2_DTR  
Data Carrier Detect  
Data Terminal Ready  
Serial Audio Port – SSI (configurable to I2S protocol)  
Transmit Data  
SSI_TXDAT  
SSI_RXDAT  
SSI_TXCLK  
SSI_RXCLK  
SSI_TXFS  
Receive Data  
Transmit Serial Clock  
Receive Serial Clock  
Transmit Frame Sync  
Receive Frame Sync  
SSI_RXFS  
I2C  
I2C_SCL  
I2C_SDA  
I2C Clock  
I2C Data  
PWM  
PWMO  
PWM Output  
Digital Supply Pins  
NVDD  
NVSS  
Digital Supply for the I/O pins  
Digital Ground for the I/O pins  
MOTOROLA  
MC9328MXL Advance Information  
9
Specifications  
Signal Name  
Table 2. MC9328MXL Signal Descriptions (Continued)  
Function/Notes  
Supply Pins – Analog Modules  
AVDD  
AVSS  
Supply for analog blocks  
Quiet ground for analog blocks  
Internal Power Supply  
QVDD  
QVSS  
Power supply pins for silicon internal circuitry  
Ground pins for silicon internal circuitry  
Substrate Supply Pins  
SVDD  
SGND  
Supply routed through substrate of package; not to be bonded  
Ground routed through substrate of package; not to be bonded  
3 Specifications  
This section contains the electrical specifications and timing diagrams for the MC9328MXL processor.  
3.1 Maximum Ratings  
Table 3 provides information on maximum ratings.  
Table 3. Maximum Ratings  
Rating  
Symbol  
Vdd  
Minimum  
Maximum  
Unit  
Supply voltage  
-0.3  
0
3.3  
70  
V
°C  
TA  
Maximum operating temperature range  
Storage temperature  
Test  
-55  
150  
°C  
8001  
13002  
Power Consumption  
Pmax  
mW  
1. A typical application with 30 pads simultaneously switching assumes the GPIO toggling and instruction  
fetches from the ARM core-that is, 7x GPIO, 15x Data bus, and 8x Address bus.  
2. A worst-case application with 70 pads simultaneously switching assumes the GPIO toggling and  
instruction fetches from the ARM core-that is, 32x GPIO, 30x Data bus, 8x Address bus. These  
calculations are based on the core running its heaviest OS application at 200MHz, and where the whole  
image is running out of SDRAM. QVDD at 2.0V, NVDD and AVDD at 3.3V, therefore, 180mA is the worst  
measurement recorded in the factory environment, max 5mA is consumed for OSC pads, with each toggle  
GPIO consuming 4mA.  
10  
MC9328MXL Advance Information  
MOTOROLA  
 
Specifications  
3.2 Recommended Operating Range  
Table 4 provides the recommended operating ranges for the supply voltages. The MC9328MXL has  
multiple pairs of VDD and VSS power supply and return pins. QVDD and QVSS pins are used for internal  
logic. All other VDD and VSS pins are for the I/O pads voltage supply, and each pair of VDD and VSS  
provides power to the enclosed I/O pads. This design allows different peripheral supply voltage levels in a  
system.  
Because AVDD pins are supply voltages to the analog pads, it is recommended to isolate and noise-filter  
the AVDD pins from other VDD pins.  
For more information about I/O pads grouping per VDD, please refer to Table 2 on page 4.  
Table 4. Recommended Operating Range  
Rating  
Symbol  
Minimum Maximum Unit  
I/O supply voltage (if using MSHC, SPI, BTA, USBd, LCD and CSI  
which are only 3 V interfaces)  
NVDD  
2.70  
3.30  
V
NVDD  
QVDD  
QVDD  
AVDD  
I/O supply voltage (if not using the peripherals listed above)  
Internal supply voltage (Core = 150 MHz)  
Internal supply voltage (Core = 200 MHz)  
Analog supply voltage  
1.70  
1.70  
1.80  
1.70  
3.30  
1.90  
2.00  
3.30  
V
V
V
V
3.3 DC Electrical Characteristics  
Table 5 contains both maximum and minimum DC characteristics of the MC9328MXL.  
Table 5. Maximum and Minimum DC Characteristics  
Numberor  
Symbol  
Parameter  
Minimum  
Typical  
Maximum Unit  
Full running operating current at 1.8V for QVDD,  
3.3V for NVDD/AVDD (Core = 96 MHz, System =  
96 MHz, MPEG4 decoding playback from external  
memory card to both external SSI audio decoder  
and TFT display panel, and OS with MMU  
enabled memory system is running on external  
SDRAM).  
QVDD at 1.8v  
= 120mA;  
NVDD+AVDD  
at 3.0v =  
Iop  
mA  
30mA  
Standby current (Core = 150 MHz, QVDD = 1.8V,  
Sidd1  
Sidd2  
Sidd3  
Sidd4  
25  
45  
35  
60  
µA  
µA  
µA  
µA  
temp = 25°C)  
Standby current (Core = 150 MHz, QVDD = 1.8V,  
temp = 55°C)  
Standby current (Core = 150 MHz, QVDD = 2.0V,  
temp = 25°C)  
Standby current (Core = 150 MHz, QVDD = 2.0V,  
temp = 55°C)  
V
0.7V  
DD  
Input high voltage  
Input low voltage  
Vdd+0.2  
0.4  
V
V
IH  
V
IL  
MOTOROLA  
MC9328MXL Advance Information  
11  
 
 
Specifications  
Table 5. Maximum and Minimum DC Characteristics (Continued)  
Numberor  
Symbol  
Parameter  
Minimum  
Typical  
Maximum Unit  
V
0.7V  
DD  
Output high voltage (I  
= 2.0 mA)  
Vdd  
0.4  
V
V
V
V
V
OH  
OH  
V
Output low voltage (I = -2.5 mA)  
OL  
OL  
Vit+  
Vit-  
Positive input threshold voltage, Vi =Vih  
Negative input threshold voltage, Vi =Vil  
Hysteresis (Vit+ Vit-) = Vih  
1.126  
0.640  
Vhys  
0.3  
Input low leakage current  
I
±1  
±1  
4.0  
µA  
µA  
IL  
(V = GND, no pull-up or pull-down)  
IN  
Input high leakage current  
I
IH  
(V = V , no pull-up or pull-down)  
IN  
DD  
Output high current  
(V = 0.8VDD, VDD = 1.8V)  
I
mA  
mA  
µA  
OH  
OH  
Output low current  
I
4.0  
OL  
(V = 0.4V, VDD = 1.8V)  
OL  
Output leakage current  
I
±5  
OZ  
(V = V , output is tri-stated)  
out  
DD  
C
i
Input capacitance  
5
5
pF  
pF  
C
o
Output capacitance  
3.4 AC Electrical Characteristics  
The AC characteristics consist of output delays, input setup and hold times, and signal skew times. All  
signals are specified relative to an appropriate edge of other signals. All timing specifications are specified  
at a system operating frequency from 0 MHz to 96 MHz (core operating frequency 150 MHz) with an  
operating supply voltage from VDD min to VDD max under an operating temperature from TL to TH. All  
timing is measured at 30 pF loading.  
Table 6. Tristate Signal Timing  
Pin  
Parameter  
Minimum Maximum Unit  
TRISTATE Time from TRISTATE activate until I/O becomes Hi-Z  
20.8  
ns  
Table 7. 32k/16M Oscillator Signal Timing  
Parameter  
Minimum  
RMS  
Maximum  
Unit  
EXTAL32k input jitter(peak to peak)  
EXTAL32k startup time  
5
20  
ns  
800  
ms  
12  
MC9328MXL Advance Information  
MOTOROLA  
Specifications  
Table 7. 32k/16M Oscillator Signal Timing (Continued)  
Parameter  
Minimum  
RMS  
Maximum  
Unit  
EXTAL16M input jitter(peak to peak)  
EXTAL16M startup time  
TBD  
TBD  
TBD  
3.5 Embedded Trace Macrocell  
All registers in the ETM9 are programmed through a JTAG interface. The interface is an extension of the  
ARM920T processor’s TAP controller, and is assigned scan chain 6. The scan chain consists of a 40-bit  
shift register comprised of the following:  
32-bit data field  
7-bit address field  
A read/write bit  
The data to be written is scanned into the 32-bit data field, the address of the register into the 7-bit address  
field, and a 1 into the read/write bit.  
A register is read by scanning its address into the address field and a 0 into the read/write bit. The 32-bit  
data field is ignored. A read or a write takes place when the TAP controller enters the UPDATE-DR state.  
The timing diagram for the ETM9 is shown in Figure 2. See Table 8 on page 13 for the ETM9 timing  
parameters used in Figure 2.  
2a  
1
2b  
3a  
TRACECLK  
3b  
TRACECLK  
(Half-Rate Clocking Mode)  
Output Trace Port  
Valid Data  
Valid Data  
4a  
Figure 2. Trace Port Timing Diagram  
Table 8. Trace Port Timing Diagram Parameter Table  
1.8V 0.10V 3.0V 0.30V  
4b  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
1
CLK frequency  
Clock high time  
Clock low time  
Clock rise time  
0
1.3  
3
85  
4
0
2
100  
3
MHz  
ns  
2a  
2b  
3a  
2
ns  
ns  
MOTOROLA  
MC9328MXL Advance Information  
13  
 
 
Specifications  
Table 8. Trace Port Timing Diagram Parameter Table (Continued)  
1.8V 0.10V 3.0V 0.30V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
3b  
4a  
Clock fall time  
3
2
3
ns  
ns  
ns  
Output hold time  
2.28  
3.42  
4b  
Output setup time  
3
14  
MC9328MXL Advance Information  
MOTOROLA  
Specifications  
3.6 DPLL Timing Specifications  
Parameters of the DPLL are given in Table 9. In this table, Tref is a reference clock period after the  
pre-divider and Tdck is the output double clock period.  
Table 9. DPLL Specifications  
Parameter  
Test Conditions  
Vcc = 1.8V  
Minimum  
Typical Maximum  
Unit  
Reference clock freq range  
5
100  
30  
MHz  
Pre-divider output clock  
freq range  
Vcc = 1.8V  
Vcc = 1.8V  
5
MHz  
Double clock freq range  
Pre-divider factor (PD)  
80  
1
220  
16  
MHz  
Includes both integer  
and fractional parts  
Total multiplication factor (MF)  
MF integer part  
5
5
0
15  
15  
Should be less than the  
denominator  
MF numerator  
1022  
MF denominator  
1
1023  
Pre-multiplier lock-in time  
312.5  
µsec  
FOL mode for non-integer MF  
(does not include pre-multi lock-in  
time)  
Freq lock-in time after  
full reset  
280  
Tref  
250  
220  
300  
270  
(56 µs)  
FOL mode for non-integer MF  
(does not include pre-multi lock-in  
time)  
Freq lock-in time after  
partial reset  
250  
Tref  
(50 µs)  
Phase lock-in time after  
full reset  
FPL mode and integer MF (does  
not include pre-multi lock-in time)  
350  
Tref  
Tref  
300  
270  
400  
370  
0.01  
(70 µs)  
Phase lock-in time after  
partial reset  
FPL mode and integer MF (does  
not include pre-multi lock-in time)  
320  
(64 µs)  
0.005  
2•Tdck  
Freq jitter (p-p)  
(0.01%)  
1.0  
Phase jitter (p-p)  
Integer MF, FPL mode, Vcc=1.8V  
1.7  
1.5  
2.5  
4
ns  
V
(10%)  
Power supply voltage  
Power dissipation  
FOL mode, integer MF,  
mW  
fdck = 200 MHz, Vcc = 1.8V  
MOTOROLA  
MC9328MXL Advance Information  
15  
 
Specifications  
3.7 Reset Module  
The timing relationships of the Reset module with the POR and RESET_IN are shown in Figure 3 and  
Figure 4. Be aware that NVDD must ramp up to at least 1.8V before QVDD is powered up to prevent  
forward biasing.  
90% AVDD  
1
10% AVDD  
POR  
Could be adjusted due to 32kHz  
Crystal start-up time  
2
RESET_POR  
Exact 300ms  
3
7 cycles @ CLK32  
RESET_DRAM  
4
14 cycles @ CLK32  
HRESET  
RESET_OUT  
CLK32  
HCLK  
Figure 3. Timing Relationship with POR  
16  
MC9328MXL Advance Information  
MOTOROLA  
 
Specifications  
5
RESET_IN  
14 cycles @ CLK32  
HRESET  
4
RESET_OUT  
6
CLK32  
HCLK  
Figure 4. Timing Relationship with RESET_IN  
Table 10. Reset Module Timing Parameter Table  
1.8V 0.10V  
3.0V 0.30V  
Ref  
No.  
Parameter  
Unit  
Min  
Max  
Min  
Max  
1
2
Width of input POWER_ON_RESET  
800  
800  
ms  
ms  
Width of internal POWER_ON_RESET  
(CLK32 at 32 kHz)  
300  
7
300  
7
300  
7
300  
7
Cycles of  
CLK32  
3
4
5
6
7K to 32K-cycle stretcher for SDRAM reset  
14K to 32K-cycle stretcher for internal system reset  
HRESERT and output reset at pin RESET_OUT  
Cycles of  
CLK32  
14  
4
14  
4
14  
4
14  
4
Cycles of  
CLK32  
Width of external hard-reset RESET_IN  
4K to 32K-cycle qualifier  
Cycles of  
CLK32  
4
4
MOTOROLA  
MC9328MXL Advance Information  
17  
Specifications  
3.8 External Interface Module  
The External Interface Module (EIM) handles the interface to devices external to the MC9328MXL,  
including the generation of chip-selects for external peripherals and memory. The timing diagram for the  
EIM is shown in Figure 5, and Table 11 on page 19 defines the parameters of signals.  
(HCLK) Bus Clock  
1a  
2a  
3a  
1b  
2b  
3b  
Address  
Chip-select  
Read (Write)  
4a  
5a  
4b  
5b  
OE (rising edge)  
4c  
5c  
4d  
OE (falling edge)  
EB (rising edge)  
EB (falling edge)  
5d  
6b  
6a  
6a  
LBA (negated falling edge)  
LBA (negated rising edge)  
6c  
7a  
7b  
Burst Clock (rising edge)  
7c  
7d  
Burst Clock (falling edge)  
Read Data  
8b  
9a  
9a  
8a  
9b  
Write Data (negated falling)  
9c  
Write Data (negated rising)  
10a  
10a  
DTACK_B  
Figure 5. EIM Bus Timing Diagram  
18  
MC9328MXL Advance Information  
MOTOROLA  
 
Specifications  
Table 11. EIM Bus Timing Parameter Table  
1.8V 0.10V  
3.0V 0.30V  
Typical Max  
Ref No.  
Parameter  
Unit  
Min  
Typical Max  
Min  
1a  
1b  
2a  
2b  
3a  
3b  
4a  
4b  
4c  
4d  
5a  
5b  
5c  
5d  
6a  
6b  
6c  
7a  
7b  
7c  
7d  
8a  
8b  
9a  
9b  
9c  
10a  
Clock fall to address valid  
2.48  
1.55  
2.69  
1.55  
1.35  
1.86  
2.32  
2.11  
2.38  
2.17  
1.91  
1.81  
1.97  
1.76  
2.07  
1.97  
1.91  
1.61  
1.61  
1.55  
1.55  
5.54  
0
3.31  
2.48  
3.31  
2.48  
2.79  
2.59  
2.62  
2.52  
2.69  
2.59  
2.52  
2.42  
2.59  
2.48  
2.79  
2.79  
2.62  
2.62  
2.62  
2.48  
2.59  
9.11  
5.69  
7.87  
6.31  
6.52  
6.11  
6.85  
6.55  
7.04  
6.73  
5.54  
5.24  
5.69  
5.38  
6.73  
6.83  
6.45  
5.64  
5.84  
5.59  
5.80  
2.4  
1.5  
2.6  
1.5  
1.3  
1.8  
2.3  
2.1  
2.3  
2.1  
1.9  
1.8  
1.9  
1.7  
2.0  
1.9  
1.9  
1.6  
1.6  
1.5  
1.5  
5.5  
0
3.2  
2.4  
3.2  
2.4  
2.7  
2.5  
2.6  
2.5  
2.6  
2.5  
2.5  
2.4  
2.5  
2.4  
2.7  
2.7  
2.6  
2.6  
2.6  
2.4  
2.5  
8.8  
5.5  
7.6  
6.1  
6.3  
5.9  
6.8  
6.5  
6.8  
6.5  
5.5  
5.2  
5.5  
5.2  
6.5  
6.6  
6.4  
5.6  
5.8  
5.4  
5.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock fall to address invalid  
Clock fall to chip-select valid  
Clock fall to chip-select invalid  
Clock fall to Read (Write) Valid  
Clock fall to Read (Write) Invalid  
Clock1 rise to Output Enable Valid  
Clock1 rise to Output Enable Invalid  
Clock1 fall to Output Enable Valid  
Clock1 fall to Output Enable Invalid  
Clock1 rise to Enable Bytes Valid  
Clock1 rise to Enable Bytes Invalid  
Clock1 fall to Enable Bytes Valid  
Clock1 fall to Enable Bytes Invalid  
Clock1 fall to Load Burst Address Valid  
Clock1 fall to Load Burst Address Invalid  
Clock1 rise to Load Burst Address Invalid  
Clock1 rise to Burst Clock rise  
Clock1rise to Burst Clock fall  
Clock1 fall to Burst Clock rise  
Clock1 fall to Burst Clock fall  
Read Data setup time  
Read Data hold time  
Clock1 rise to Write Data Valid  
Clock1 fall to Write Data Invalid  
Clock1 rise to Write Data Invalid  
DTACK setup time  
1.81  
1.45  
1.63  
2.52  
2.72  
2.48  
6.85  
5.69  
1.8  
1.4  
1.62  
2.5  
2.7  
2.4  
6.8  
5.5  
1. Clock refers to the system clock signal, HCLK, generated from the System PLL  
MOTOROLA  
MC9328MXL Advance Information  
19  
Specifications  
3.8.1 DTACK Signal Description  
The DTACK signal is the external input data acknowledge signal. When using the external DTACK signal  
as a data acknowledge signal, the bus time-out monitor generates a bus error when a bus cycle is not  
terminated by the external DTACK signal after 1022 HCLK counts have elapsed. Only CS5 group is  
designed to support DTACK signal function when using the external DTACK signal for data  
acknowledgement.  
3.8.2 DTACK Signal Timing  
Figure 6 shows the access cycle timing used by chip-select 5. The signal values and units of measure for  
this figure are found in Table 12.  
HCLK  
CS5  
3
RW  
1
5
OE  
4
EXT_DTACK  
2
INT_DTACK  
Figure 6. DTACK Timing, WSC=111111, DTACK_sel=0  
Table 12. Access Cycle Timing Parameters  
1.8V 0.10V  
3.0V 0.30V  
Ref  
No.  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
1
2
3
4
CS5 asserted to OE asserted  
0
T
T
ns  
ns  
ns  
ns  
ns  
External DTACK input setup from CS5  
asserted  
0
3T  
0
CS5 pulse width  
3T  
0
External DTACK input hold after CS5 is  
negated  
1.5T  
4.5  
1.5T  
4
5
OE negated after CS5 is negated  
0
0
Note:  
1. n is the number of wait states in the current memory access cycle. The max n is 1022.  
2. T is the system clock period (system clock is 96 MHz).  
3. The external DTACK input requirement is eliminated when CS5 is programmed to use internal wait state.  
20  
MC9328MXL Advance Information  
MOTOROLA  
 
 
Specifications  
HCLK  
CS5  
RW  
OE  
1
EXT_DTACK (WAIT)  
INT_DTACK  
Figure 7. DTACK Timing, WSC=111111, DTACK_sel=1  
Table 13. Access Cycle Timing Parameters  
1.8V 0.10V  
Min Max  
3.0V 0.30V  
Ref  
No.  
Characteristic  
Unit  
Min  
Max  
External DTACK input setup from CS5  
asserted  
1
0
0
ns  
Note:  
1. n is the number of wait states in the current memory access cycle. The max n is 1022.  
2. T is the system clock period (system clock is 96 MHz).  
3. The external DTACK input requirement is eliminated when CS5 is programmed to use internal wait state.  
MOTOROLA  
MC9328MXL Advance Information  
21  
Specifications  
3.8.3 EIM External Bus Timing  
The timing diagrams in this section show the timing of accesses to memory or a peripheral.  
hclk  
hsel_weim_cs[0]  
htrans  
hwrite  
Seq/Nonseq  
Read  
haddr  
hready  
V1  
weim_hrdata  
weim_hready  
Last Valid Data  
V1  
weim_bclk  
weim_addr  
Last Valid Address  
V1  
weim_cs  
weim_r/w  
Read  
weim_lba  
weim_oe  
weim_eb (EBC=0)  
weim_eb (EBC=1)  
weim_data_in  
V1  
Figure 8. WSC = 1, A.HALF/E.HALF  
22  
MC9328MXL Advance Information  
MOTOROLA  
Specifications  
hclk  
hsel_weim_cs[0]  
htrans  
Nonseq  
Write  
V1  
hwrite  
haddr  
hready  
hwdata  
Last Valid Data  
Write Data (V1)  
Unknown  
weim_hrdata  
Last Valid Data  
weim_hready  
weim_bclk  
weim_addr  
Last Valid Address  
V1  
weim_cs[0]  
weim_r/w  
weim_lba  
weim_oe  
weim_eb  
Write  
weim_data_out  
Last Valid Data  
Write Data (V1)  
Figure 9. WSC = 1, WEA = 1, WEN = 1, A.HALF/E.HALF  
MOTOROLA  
MC9328MXL Advance Information  
23  
Specifications  
hclk  
hsel_weim_cs[0]  
htrans  
Nonseq  
Read  
V1  
hwrite  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
weim_hready  
weim_bclk  
weim_addr  
Last Valid Addr  
Address V1  
Address V1 + 2  
weim_cs[0]  
weim_r/w  
weim_lba  
weim_oe  
Read  
weim_eb (EBC=0)  
weim_eb (EBC=1)  
weim_data_in  
1/2 Half Word  
2/2 Half Word  
Figure 10. WSC = 1, OEA = 1, A.WORD/E.HALF  
24  
MC9328MXL Advance Information  
MOTOROLA  
Specifications  
hclk  
hsel_weim_cs[0]  
htrans  
Nonseq  
Write  
V1  
hwrite  
haddr  
hready  
hwdata  
Last Valid Data  
Write Data (V1 Word)  
Last Valid Data  
weim_hrdata  
weim_hready  
weim_bclk  
weim_addr  
Last Valid Addr  
Address V1  
Address V1 + 2  
weim_cs[0]  
weim_r/w  
weim_lba  
weim_oe  
weim_eb  
Write  
weim_data_out  
1/2 Half Word  
2/2 Half Word  
Figure 11. WSC = 1, WEA = 1, WEN = 2, A.WORD/E.HALF  
MOTOROLA  
MC9328MXL Advance Information  
25  
Specifications  
hclk  
hsel_weim_cs[3]  
htrans  
Nonseq  
hwrite  
Read  
V1  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
weim_hready  
weim_bclk  
weim_addr  
Last Valid Addr  
Address V1  
Read  
Address V1 + 2  
weim_cs[3]  
weim_r/w  
weim_lba  
weim_oe  
weim_eb (EBC=0)  
weim_eb (EBC=1)  
weim_data_in  
1/2 Half Word  
2/2 Half Word  
Figure 12. WSC = 3, OEA = 2, A.WORD/E.HALF  
26  
MC9328MXL Advance Information  
MOTOROLA  
Specifications  
hclk  
hsel_weim_cs[3]  
htrans  
Nonseq  
hwrite  
Write  
V1  
haddr  
hready  
Last Valid  
Data  
hwdata  
Write Data (V1 Word)  
Last Valid Data  
weim_hrdata  
weim_hready  
weim_bclk  
weim_addr  
Last Valid Addr  
Address V1  
Address V1 + 2  
weim_cs[3]  
weim_r/w  
weim_lba  
weim_oe  
Write  
weim_eb  
weim_data_out]  
Last Valid Data  
1/2 Half Word  
2/2 Half Word  
Figure 13. WSC = 3, WEA = 1, WEN = 3, A.WORD/E.HALF  
MOTOROLA  
MC9328MXL Advance Information  
27  
Specifications  
hclk  
hsel_weim_cs[2]  
htrans  
Nonseq  
Read  
V1  
hwrite  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
weim_hready  
weim_bclk  
weim_addr  
Last Valid Addr  
Address V1  
Read  
Address V1 + 2  
weim_cs[2]  
weim_r/w  
weim_lba  
weim_oe  
weim_eb (EBC=0)  
weim_eb (EBC=1)  
weim_data_in  
1/2 Half Word  
2/2 Half Word  
Figure 14. WSC = 3, OEA = 4, A.WORD/E.HALF  
28  
MC9328MXL Advance Information  
MOTOROLA  
Specifications  
hclk  
hsel_weim_cs[2]  
htrans  
Nonseq  
hwrite  
haddr  
Write  
V1  
hready  
hwdata  
Last Valid  
Data  
Write Data (V1 Word)  
Last Valid Data  
weim_hrdata  
weim_hready  
weim_bclk  
weim_addr Last Valid Addr  
weim_cs[2]  
Address V1  
Address V1 + 2  
weim_r/w  
Write  
weim_lba  
weim_oe  
weim_eb  
weim_data_out  
Last Valid Data  
1/2 Half Word  
2/2 Half Word  
Figure 15. WSC = 3, WEA = 2, WEN = 3, A.WORD/E.HALF  
MOTOROLA  
MC9328MXL Advance Information  
29  
Specifications  
hclk  
hsel_weim_cs[2]  
htrans  
Nonseq  
Read  
V1  
hwrite  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
weim_hready  
weim_bclk  
weim_addr  
Last Valid Addr  
Address V1  
Read  
Address V1 + 2  
weim_cs[2]  
weim_r/w  
weim_lba  
weim_oe  
weim_eb (EBC=0)  
weim_eb (EBC=1)  
weim_data_in  
1/2 Half Word  
2/2 Half Word  
Figure 16. WSC = 3, OEN = 2, A.WORD/E.HALF  
30  
MC9328MXL Advance Information  
MOTOROLA  
Specifications  
hclk  
hsel_weim_cs[2]  
htrans  
Nonseq  
Read  
V1  
hwrite  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
weim_hready  
weim_bclk  
weim_addr  
Last Valid Addr  
Address V1  
Read  
Address V1 + 2  
weim_cs[2]  
weim_r/w  
weim_lba  
weim_oe  
weim_eb (EBC=0)  
weim_eb (EBC=1)  
weim_data_in  
1/2 Half Word  
2/2 Half Word  
Figure 17. WSC = 3, OEA = 2, OEN = 2, A.WORD/E.HALF  
MOTOROLA  
MC9328MXL Advance Information  
31  
Specifications  
hclk  
hsel_weim_cs[2]  
htrans  
Nonseq  
Write  
V1  
hwrite  
haddr  
hready  
hwdata  
Last Valid  
Data  
Write Data (V1 Word)  
Last Valid Data  
Unknown  
weim_hrdata  
weim_hready  
weim_bclk  
weim_addr Last Valid Addr  
weim_cs[2]  
Address V1  
Address V1 + 2  
weim_r/w  
Write  
weim_lba  
weim_oe  
weim_eb  
weim_data_out  
1/2 Half Word  
2/2 Half Word  
Last Valid Data  
Figure 18. WSC = 2, WWS = 1, WEA = 1, WEN = 2, A.WORD/E.HALF  
32  
MC9328MXL Advance Information  
MOTOROLA  
Specifications  
hclk  
hsel_weim_cs[2]  
htrans  
Nonseq  
Write  
V1  
hwrite  
haddr  
hready  
hwdata  
Last Valid  
Data  
Write Data (V1 Word)  
Last Valid Data  
Unknown  
weim_hrdata  
weim_hready  
weim_bclk  
weim_addr  
Last Valid Addr  
Address V1  
Address V1 + 2  
weim_cs[2]  
weim_r/w  
weim_lba  
weim_oe  
weim_eb  
Write  
weim_data_out  
1/2 Half Word  
2/2 Half Word  
Last Valid Data  
Figure 19. WSC = 1, WWS = 2, WEA = 1, WEN = 2, A.WORD/E.HALF  
MOTOROLA  
MC9328MXL Advance Information  
33  
Specifications  
hclk  
hsel_weim_cs[2]  
htrans  
Nonseq  
Read  
V1  
Nonseq  
Write  
V8  
hwrite  
haddr  
hready  
hwdata  
Last Valid Data  
Last Valid Data  
Write Data  
Read Data  
weim_hrdata  
weim_hready  
weim_bclk  
weim_addr  
Last Valid Addr  
Address V1  
Address V8  
weim_cs[2]  
weim_r/w  
weim_lba  
Read  
Write  
weim_oe  
weim_eb (EBC=0)  
weim_eb (EBC=1)  
weim_data_in  
weim_data_out  
Read Data  
Last Valid Data  
Write Data  
Figure 20. WSC = 2, WWS = 2, WEA = 1, WEN = 2, A.HALF/E.HALF  
34  
MC9328MXL Advance Information  
MOTOROLA  
Specifications  
Read  
Idle  
Write  
hclk  
hsel_weim_cs[2]  
htrans  
Nonseq  
Read  
V1  
Nonseq  
Write  
V8  
hwrite  
haddr  
hready  
hwdata  
Last Valid Data  
Write Data  
weim_hrdata  
weim_hready  
Last Valid Data  
Read Data  
weim_bclk  
weim_addr  
Last Valid Addr  
Address V1  
Address V8  
Write  
weim_cs[2]  
weim_r/w  
Read  
weim_lba  
weim_oe  
weim_eb (EBC=0)  
weim_eb (EBC=1)  
weim_data_in  
weim_data_out  
Read Data  
Last Valid Data  
Write Data  
Figure 21. WSC = 2, WWS = 1, WEA = 1, WEN = 2, EDC = 1, A.HALF/E.HALF  
MOTOROLA  
MC9328MXL Advance Information  
35  
Specifications  
hclk  
hsel_weim_cs[4]  
htrans  
Nonseq  
Write  
V1  
hwrite  
haddr  
hready  
hwdata  
Last Valid  
Data  
Write Data (Word)  
Last Valid Data  
weim_hrdata  
weim_hready  
weim_bclk  
weim_addr  
Last Valid Addr  
Address V1  
Address V1 + 2  
weim_cs  
weim_r/w  
Write  
weim_lba  
weim_oe  
weim_eb  
weim_data_out  
Write Data (1/2 Half Word)  
Write Data (2/2 Half Word)  
Last Valid Data  
Figure 22. WSC = 2, CSA = 1, WWS = 1, A.WORD/E.HALF  
36  
MC9328MXL Advance Information  
MOTOROLA  
Specifications  
hclk  
hsel_weim_cs[4]  
htrans  
Nonseq  
Read  
V1  
Nonseq  
Write  
V8  
hwrite  
haddr  
hready  
hwdata  
weim_hrdata  
weim_hready  
Last Valid Data  
Last Valid Data  
Write Data  
Read Data  
weim_bclk  
weim_addr Last Valid Addr  
weim_cs[4]  
Address V1  
Address V8  
weim_r/w  
Read  
Write  
weim_lba  
weim_oe  
weim_eb (EBC=0)  
weim_eb (EBC=1)  
Read Data  
weim_data_in  
weim_data_out  
Last Valid Data  
Write Data  
Figure 23. WSC = 3, CSA = 1, A.HALF/E.HALF  
MOTOROLA  
MC9328MXL Advance Information  
37  
Specifications  
hclk  
hsel_weim_cs[4]  
htrans  
Nonseq  
Read  
V1  
Idle  
Seq  
Read  
V2  
hwrite  
haddr  
hready  
weim_hrdata  
weim_hready  
Last Valid Data  
Read Data (V1)  
Read Data (V2)  
weim_bclk  
weim_addr  
Last Valid Addr  
Address V1  
Address V2  
CNC  
weim_cs[4]  
weim_r/w  
weim_lba  
Read  
weim_oe  
weim_eb (EBC=0)  
weim_eb (EBC=1)  
Read Data  
(V1)  
Read Data  
(V2)  
weim_data_in  
Figure 24. WSC = 2, OEA = 2, CNC = 3, BCM = 1, A.HALF/E.HALF  
38  
MC9328MXL Advance Information  
MOTOROLA  
Specifications  
hclk  
hsel_weim_cs[4]  
htrans  
Nonseq  
Read  
V1  
Idle  
Nonseq  
Write  
V8  
hwrite  
haddr  
hready  
hwdata  
Last Valid Data  
Last Valid Data  
Write Data  
Read Data  
weim_hrdata  
weim_hready  
weim_bclk  
weim_addr  
Last Valid Addr  
Address V1  
Address V8  
CNC  
weim_cs[4]  
weim_r/w  
Read  
Write  
weim_lba  
weim_oe  
weim_eb (EBC=0)  
weim_eb (EBC=1)  
weim_data_in  
weim_data_out  
Read Data  
Last Valid Data  
Write Data  
Figure 25. WSC = 2, OEA = 2, WEA = 1, WEN = 2, CNC = 3, A.HALF/E.HALF  
MOTOROLA  
MC9328MXL Advance Information  
39  
Specifications  
hclk  
hsel_weim_cs[2]  
htrans  
Idle  
Nonseq  
Read  
V1  
Nonseq  
Read  
V5  
hwrite  
haddr  
hready  
weim_hrdata  
weim_hready  
weim_bclk  
weim_addr]  
Last Valid Addr  
Address V1  
Read  
Address V5  
weim_cs[2]  
weim_r/w  
weim_lba  
weim_oe  
weim_eb (EBC=0)  
weim_eb (EBC=1)  
weim_ecb  
weim_data_in  
V2 Word  
V6 Word  
V1 Word  
V5 Word  
Figure 26. WSC = 3, SYNC = 1, A.HALF/E.HALF  
40  
MC9328MXL Advance Information  
MOTOROLA  
Specifications  
hclk  
hsel_weim_cs[2]  
htrans  
Nonseq  
Read  
V1  
Idle  
Seq  
Read  
V2  
Seq  
Read  
V3  
Seq  
Read  
V4  
hwrite  
haddr  
hready  
weim_hrdata  
weim_hready  
weim_bclk  
Last Valid Data  
V1 Word  
V2 Word  
V3 Word  
V4 Word  
weim_addr  
Last Valid Addr  
Address V1  
weim_cs[2]  
weim_r/w  
Read  
weim_lba  
weim_oe  
weim_eb (EBC=0)  
weim_eb (EBC=1)  
weim_ecb  
weim_data_in  
V1 Word  
V2 Word  
V3 Word  
V4 Word  
Figure 27. WSC = 2, SYNC = 1, DOL = [1/0], A.WORD/E.WORD  
MOTOROLA  
MC9328MXL Advance Information  
41  
Specifications  
hclk  
hsel_weim_cs[2]  
htrans  
Nonseq  
Seq  
Idle  
hwrite  
Read  
V1  
Read  
V2  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
V2 Word  
weim_hready  
weim_bclk  
weim_addr  
weim_cs[2]  
weim_r/w  
Last Valid Addr  
Address V1  
Address V2  
Read  
weim_lba  
weim_oe  
weim_eb (EBC=0)  
weim_eb (EBC=1)  
weim_ecb  
weim_data_in  
V1 1/2  
V1 2/2  
V2 1/2  
V2 2/2  
Figure 28. WSC = 2, SYNC = 1, DOL = [1/0], A.WORD/E.HALF  
42  
MC9328MXL Advance Information  
MOTOROLA  
Specifications  
hclk  
hsel_weim_cs[2]  
Non  
seq  
Seq  
Read  
V2  
Idle  
htrans  
hwrite  
Read  
V1  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
V2 Word  
weim_hready  
weim_bclk  
Last Valid  
Addr  
Address V1  
weim_addr  
weim_cs[2]  
Read  
weim_r/w  
weim_lba  
weim_oe  
weim_eb (EBC=0)  
weim_eb (EBC=1)  
weim_ecb  
weim_data_in  
V1 1/2  
V1 2/2  
V2 1/2  
V2 2/2  
Figure 29. WSC = 7, OEA = 8, SYNC = 1, DOL = 1, BCD = 1, BCS = 2, A.WORD/E.HALF  
MOTOROLA  
MC9328MXL Advance Information  
43  
Specifications  
hclk  
hsel_weim_cs[2]  
htrans  
Non  
seq  
Seq  
Idle  
hwrite  
Read  
V1  
Read  
V2  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
V2 Word  
weim_hready  
weim_bclk  
weim_addr  
weim_cs[2]  
Last Valid  
Addr  
Address V1  
weim_r/w  
weim_lba  
Read  
weim_oe  
weim_eb (EBC=0)  
weim_eb (EBC=1)  
weim_ecb  
weim_data_in  
V1 1/2  
V1 2/2  
V2 1/2  
V2 2/2  
Figure 30. WSC = 7, OEA = 8, SYNC = 1, DOL = 1, BCD = 1, BCS = 1, A.WORD/E.HALF  
44  
MC9328MXL Advance Information  
MOTOROLA  
Specifications  
3.9 SPI Timing Diagrams  
To utilize the internal transmit (TX) and receive (RX) data FIFOs when the SPI 1 module is configured as  
a master, two control signals are used for data transfer rate control: the SS signal (output) and the  
SPI_RDY signal (input). The SPI 1 Sample Period Control Register (PERIODREG1) and the SPI 2  
Sample Period Control Register (PERIODREG2) can also be programmed to a fixed data transfer rate for  
either SPI 1 or SPI 2. When the SPI 1 module is configured as a slave, the user can configure the SPI 1  
Control Register (CONTROLREG1) to match the external SPI master’s timing. In this configuration, SS  
becomes an input signal, and is used to latch data into or load data out to the internal data shift registers, as  
well as to increment the data FIFO. Figure 31 through Figure 35 show the timing relationship of the master  
SPI using different triggering mechanisms.  
.
2
5
3
SS  
1
4
SPIRDY  
SCLK, MOSI, MISO  
Figure 31. Master SPI Timing Diagram Using SPI_RDY Edge Trigger  
SS  
SPIRDY  
SCLK, MOSI, MISO  
Figure 32. Master SPI Timing Diagram Using SPI_RDY Level Trigger  
SS (output)  
SCLK, MOSI, MISO  
Figure 33. Master SPI Timing Diagram Ignore SPI_RDY Level Trigger  
SS (input)  
SCLK, MOSI, MISO  
Figure 34. Slave SPI Timing Diagram FIFO Advanced by BIT COUNT  
MOTOROLA  
MC9328MXL Advance Information  
45  
 
Specifications  
SS (input)  
6
7
SCLK, MOSI, MISO  
Figure 35. Slave SPI Timing Diagram FIFO Advanced by SS Rising Edge  
Table 14. Timing Parameter Table for Figure 31 through Figure 35  
1.8V 0.10V  
3.0V 0.30V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
2T 1  
2T1  
1
2
SPI_RDY to SS output low  
ns  
ns  
SS output low to first SCLK  
edge  
3 • Tsclk 2  
2 • Tsclk  
0
3 • Tsclk2  
2 • Tsclk  
0
Last SCLK edge to SS output  
high  
3
4
5
ns  
ns  
ns  
SS output high to SPI_RDY  
low  
Tsclk +  
WAIT 3  
Tsclk +  
WAIT3  
SS output pulse width  
SS input low to first SCLK  
edge  
6
7
T
T
T
T
ns  
ns  
SS input pulse width  
1. T = CSPI system clock period (PERCLK2).  
2. Tsclk = Period of SCLK.  
3. WAIT = Number of bit clocks (SCLK) or 32.768 kHz clocks per Sample Period Control Register.  
3.10 LCD Controller  
This section includes timing diagrams for the LCD controller. For detailed timing diagrams of the LCD  
controller with various display configurations, refer to the LCD controller chapter of the MC9328MXL  
Reference Manual.  
LSCLK  
LD[15:0]  
1
Figure 36. SCLK to LD Timing Diagram  
46  
MC9328MXL Advance Information  
MOTOROLA  
 
Specifications  
Table 15. LCDC SCLK Timing Parameter Table  
1.8V 0.10V 3.0V 0.30V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
1
SCLK to LD valid  
2
2
ns  
Non-display region  
T3  
Display region  
T1  
T4  
VSYN  
T2  
HSYN  
OE  
Line Y  
Line 1  
Line Y  
LD[15:0]  
T6  
T7  
T5  
XMAX  
HSYN  
SCLK  
OE  
T8  
(1,1)  
(1,2)  
LD[15:0]  
VSYN  
(1,X)  
T9  
T10  
Figure 37. 4/8/16 Bit/Pixel TFT Color Mode Panel Timing  
Table 16. 4/8/16 Bit/Pixel TFT Color Mode Panel Timing  
Symbol  
Description  
Minimum  
Corresponding Register Value  
Unit  
T5+T6  
+T7+T9  
T1  
End of OE to beginning of VSYN  
(VWAIT1·T2)+T5+T6+T7+T9  
Ts  
T2  
T3  
T4  
T5  
T6  
HSYN period  
XMAX+5  
XMAX+T5+T6+T7+T9+T10  
VWIDTH·(T2)  
Ts  
Ts  
Ts  
Ts  
Ts  
VSYN pulse width  
T2  
2
End of VSYN to beginning of OE  
HSYN pulse width  
VWAIT2·(T2)  
1
HWIDTH+1  
End of HSYN to beginning to T9  
1
HWAIT2+1  
MOTOROLA  
MC9328MXL Advance Information  
47  
 
Specifications  
Symbol  
Table 16. 4/8/16 Bit/Pixel TFT Color Mode Panel Timing (Continued)  
Description  
Minimum  
Corresponding Register Value  
Unit  
T7  
T8  
End of OE to beginning of HSYN  
SCLK to valid LD data  
1
HWAIT1+1  
3
Ts  
ns  
-3  
End of HSYN idle2 to VSYN edge  
(for non-display region)  
T9  
T9  
2
1
1
2
2
1
1
2
Ts  
Ts  
Ts  
Ts  
End of HSYN idle2 to VSYN edge  
(for Display region)  
VSYN to OE active (Sharp = 0)  
when VWAIT2 = 0  
T10  
T10  
VSYN to OE active (Sharp = 1)  
when VWAIT2 = 0  
Note:  
Ts is the SCLK period which equals LCDC_CLK / (PCD + 1). Normally LCDC_CLK = 15ns.  
VSYN, HSYN and OE can be programmed as active high or active low. In Figure 37, all 3 signals are active low.  
The polarity of SCLK and LD[15:0] can also be programmed.  
SCLK can be programmed to be deactivated during the VSYN pulse or the OE deasserted period. In Figure 37, SCLK  
is always active.  
For T9 non-display region, VSYN is non-active. It is used as an reference.  
XMAX is defined in pixels.  
48  
MC9328MXL Advance Information  
MOTOROLA  
Specifications  
3.11 Multimedia Card/Secure Digital Host Controller  
The DMA interface block controls all data routing between the external data bus (DMA access), internal  
MMC/SD module data bus, and internal system FIFO access through a dedicated state machine that  
monitors the status of FIFO content (empty or full), FIFO address, and byte/block counters for the  
MMC/SD module (inner system) and the application (user programming).  
3a  
1
2
4b  
3b  
Bus Clock  
4a  
5b  
5a  
Valid Data  
CMD_DAT Input  
Valid Data  
7
CMD_DAT Output  
Valid Data  
Valid Data  
6a  
6b  
Figure 38. Chip-Select Read Cycle Timing Diagram  
Table 17. SDHC Bus Timing Parameter Table  
1.8V 0.10V  
3.0 0.30V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
CLK frequency at Data transfer  
Mode (PP)1—10/30 cards  
1
2
0
0
25/5  
0
0
25/5  
MHz  
kHz  
CLK frequency at Identification  
Mode2  
400  
400  
3a  
3b  
Clock high time1—10/30 cards  
Clock low time1—10/30 cards  
6/33  
10/50  
10/50  
ns  
ns  
15/75  
10/50  
4a  
4b  
Clock fall time1—10/30 cards  
Clock rise time1—10/30 cards  
10/50  
10/50  
ns  
ns  
(5.00)3  
14/67  
(6.67)3  
5a  
5b  
6a  
6b  
7
Input hold time3—10/30 cards  
Input setup time3—10/30 cards  
Output hold time3—10/30 cards  
Output setup time3—10/30 cards  
Output delay time3  
5.7/5.7  
5.7/5.7  
5.7/5.7  
5.7/5.7  
0
16  
5/5  
5/5  
5/5  
5/5  
0
14  
ns  
ns  
ns  
ns  
ns  
1. CL 100 pF / 250 pF (10/30 cards)  
2. CL 250 pF (21 cards)  
3. CL 25 pF (1 card)  
MOTOROLA  
MC9328MXL Advance Information  
49  
Specifications  
3.11.1 Command Response Timing on MMC/SD Bus  
The card identification and card operation conditions timing are processed in open-drain mode. The card  
response to the host command starts after exactly NID clock cycles. For the card address assignment,  
SET_RCA is also processed in the open-drain mode. The minimum delay between the host command and  
card response is NCR clock cycles as illustrated in Figure 39. The symbols for Figure 39 through Figure 43  
are defined in Table 18.  
Table 18. State Signal Parameters for Figure 39 through Figure 43  
Card Active  
Definition  
Host Active  
Definition  
Symbol  
Symbol  
Z
High impedance state  
Data bits  
S
Start bit (0)  
Transmitter bit  
(Host = 1, Card = 0)  
D
T
*
Repetition  
P
E
One-cycle pull-up (1)  
End bit (1)  
CRC  
Cyclic redundancy check bits (7 bits)  
N
ID cycles  
Host Command  
CID/OCR  
Content  
CMD  
CMD  
Content  
CRC  
******  
ST  
E Z  
Z S T  
Z Z Z  
Identification Timing  
N
CR cycles  
Host Command  
CID/OCR  
Content  
******  
Content  
Z Z Z  
CRC  
ST  
E Z  
Z S T  
SET_RCA Timing  
Figure 39. Timing Diagrams at Identification Mode  
After a card receives its RCA, it switches to data transfer mode. As shown on the first diagram in  
Figure 40, SD_CMD lines in this mode are driven with push-pull drivers. The command is followed by a  
period of two Z bits (allowing time for direction switching on the bus) and then by P bits pushed up by the  
responding card. The other two diagrams show the separating periods NRC and NCC  
.
50  
MC9328MXL Advance Information  
MOTOROLA  
 
 
Specifications  
NCR cycles  
Host Command  
Response  
Content  
CRC  
E Z Z Z  
CMD  
Content  
CRC  
******  
ST  
E Z Z P  
P S T  
Command response timing (data transfer mode)  
NRC cycles  
Response  
Content  
Host Command  
Content  
CMD  
******  
CRC  
CRC  
E Z Z Z  
ST  
E Z  
Z S T  
Timing response end to next CMD start (data transfer mode)  
NCC cycles  
Host Command  
Host Command  
Content  
CRC  
E Z Z Z  
CMD  
Content  
CRC  
E Z  
******  
ST  
Z S T  
Timing of command sequences (all modes)  
Figure 40. Timing Diagrams at Data Transfer Mode  
Figure 41 on page 52 shows basic read operation timing. In a read operation, the sequence starts with a  
single block read command (which specifies the start address in the argument field). The response is sent  
on the SD_CMD lines as usual. Data transmission from the card starts after the access time delay NAC  
,
beginning from the last bit of the read command. If the system is in multiple block read mode, the card  
sends a continuous flow of data blocks with distance NAC until the card sees a stop transmission command.  
The data stops two clock cycles after the end bit of the stop command.  
MOTOROLA  
MC9328MXL Advance Information  
51  
Specifications  
NCR cycles  
Host Command  
Response  
Content  
CRC  
E Z  
CMD  
DAT  
Content  
CRC  
******  
******  
ST  
E Z Z P  
P S T  
Z****Z  
*****  
Z Z P  
P S DDDD  
Read Data  
Timing of single block read  
NAC cycles  
NCR cycles  
Host Command  
Response  
Content  
CRC  
E Z  
CMD  
ST  
Content  
CRC  
******  
E Z Z P  
Z Z P  
P S T  
DAT  
Z****Z  
******  
*****  
Read Data  
*****  
*****  
Read Data  
P S DDDD  
P
P S DDDD  
NAC cycles  
NAC cycles  
Timing of multiple block read  
NCR cycles  
Host Command  
Response  
CMD  
Content  
CRC  
******  
Content  
CRC  
E Z  
ST  
E Z Z P  
P S T  
NST  
DAT  
*****  
*****  
DDDD  
DDDD E Z Z Z  
Timing of stop command  
(CMD12, data transfer mode)  
Valid Read Data  
Figure 41. Timing Diagrams at Data Read  
Figure 42 shows the basic write operation timing. As with the read operation, after the card response, the  
data transfer starts after NWR cycles. The data is suffixed with CRC check bits to allow the card to check  
for transmission errors. The card sends back the CRC check result as a CC status token on the data line. If  
there was a transmission error, the card sends a negative CRC status (101); otherwise, a positive CRC  
status (010) is returned. The card expects a continuous flow of data blocks if it is configured to multiple  
block mode, with the flow terminated by a stop transmission command.  
52  
MC9328MXL Advance Information  
MOTOROLA  
Specifications  
Figure 42. Timing Diagrams at Data Write  
MOTOROLA  
MC9328MXL Advance Information  
53  
Specifications  
The stop transmission command may occur when the card is in different states. Figure 43 shows the  
different scenarios on the bus.  
Figure 43. Stop Transmission During Different Scenarios  
54  
MC9328MXL Advance Information  
MOTOROLA  
 
Specifications  
Table 19. Timing Values for Figure 39 through Figure 43  
Symbol Minimum Maximum Unit  
Parameter  
Parameter  
MMC/SD bus clock, CLK  
(All values are referred to  
minimum (VIH) and  
maximum (VIL)  
MMC/SD bus clock, CLK (All values are referred to minimum (VIH) and maximum  
(VIL)  
Clock  
cycles  
Command response cycle  
NCR  
NID  
2
5
2
8
8
2
2
64  
Command response cycle  
Identification response  
cycle  
Clock  
cycles  
Identification response  
cycle  
5
Clock  
cycles  
Access time delay cycle  
Command read cycle  
NAC  
NRC  
NCC  
NWR  
NST  
TAAC + NSAC  
Access time delay cycle  
Command read cycle  
Clock  
cycles  
2
Command-command  
cycle  
Clock  
cycles  
Command-command cycle  
Command write cycle  
Stop transmission cycle  
Clock  
cycles  
Command write cycle  
Stop transmission cycle  
Clock  
cycles  
TAAC: Data read access  
time -1 defined in CSD  
register bit[119:112]  
TAAC: Data read access time -1 defined in CSD register bit[119:112]  
NSAC: Data read access time -2 in CLK cycles (NSAC·100) defined in CSD register  
bit[111:104]  
NSAC: Data read access  
time -2 in CLK cycles  
(NSAC·100) defined in  
CSD register bit[111:104]  
3.11.2 SDIO-IRQ and ReadWait Service Handling  
In SDIO, there is a 1-bit or 4-bit interrupt response from the SDIO peripheral card. In 1-bit mode, the  
interrupt response is simply that the SD_DAT[1] line is held low. The SD_DAT[1] line is not used as data  
in this mode. The memory controller generates an interrupt according to this low and the system interrupt  
continues until the source is removed (SD_DAT[1] returns to its high level).  
In 4-bit mode, the interrupt is less simple. The interrupt triggers at a particular period called the "Interrupt  
Period" during the data access, and the controller must sample SD_DAT[1] during this short period to  
determine the IRQ status of the attached card. The interrupt period only happens at the boundary of each  
block (512 bytes).  
MOTOROLA  
MC9328MXL Advance Information  
55  
Specifications  
CMD  
ST  
Content  
CRC  
Response  
******  
S
E Z Z P S  
E Z Z Z  
Z Z Z  
DAT[1]  
Interrupt Period  
IRQ  
IRQ  
Block Data  
Block Data  
S
E
E
For 4-bit  
L H  
DAT[1]  
Interrupt Period  
For 1-bit  
Figure 44. SDIO IRQ Timing Diagram  
ReadWait is another feature in SDIO that allows the user to submit commands during the data transfer. In  
this mode, the block temporarily pauses the data transfer operation counter and related status, yet keeps the  
clock running, and allows the user to submit commands as normal. After all commands are submitted, the  
user can switch back to the data transfer operation and all counter and status values are resumed as access  
continues.  
CMD  
******  
CMD52 CRC  
******  
P S T  
E Z Z Z  
DAT[1]  
Block Data  
Block Data  
S
S
E Z Z L H  
S
E
E
For 4-bit  
DAT[2]  
Block Data  
Block Data  
E Z Z L L L L L L L L L L L L L L L L L L L L L H Z S  
For 4-bit  
Figure 45. SDIO ReadWait Timing Diagram  
3.12 Memory Stick Host Controller  
The Memory Stick protocol requires three interface signal line connections for data transfers: MS_BS,  
MS_SDIO, and MS_SCLKO. Communication is always initiated by the MSHC and operates the bus in  
either four-state or two-state access mode.  
The MS_BS signal classifies data on the SDIO into one of four states (BS0, BS1, BS2, or BS3) according  
to its attribute and transfer direction. BS0 is the INT transfer state, and during this state no packet  
transmissions occur. During the BS1, BS2, and BS3 states, packet communications are executed. The BS1,  
BS2, and BS3 states are regarded as one packet length and one communication transfer is always  
completed within one packet length (in four-state access mode).  
The Memory Stick usually operates in four state access mode and in BS1, BS2, and BS3 bus states. When  
an error occurs during packet communication, the mode is shifted to two-state access mode, and the BS0  
and BS1 bus states are automatically repeated to avoid a bus collision on the SDIO.  
56  
MC9328MXL Advance Information  
MOTOROLA  
Specifications  
2
3
5
1
4
MS_SCLKI  
6
8
7
MS_SCLKO  
MS_BS  
9
10  
11  
12  
11  
12  
MS_SDIO(output)  
14  
13  
MS_SDIO (input)  
(RED bit = 0)  
15  
16  
MS_SDIO (input)  
(RED bit = 1)  
Figure 46. MSHC Signal Timing Diagram  
Table 20. MSHC Signal Timing Parameter Table  
Parameter  
3.0 0.3V  
Minimum Maximum  
Ref  
No.  
Unit  
1
2
3
4
5
6
7
8
9
MS_SCLKI frequency  
20  
20  
20  
15  
25  
3
MHz  
ns  
MS_SCLKI high pulse width  
MS_SCLKI low pulse width  
MS_SCLKI rise time  
ns  
ns  
MS_SCLKI fall time  
3
ns  
MS_SCLKO frequency1  
MS_SCLKO high pulse width1  
MS_SCLKO low pulse width1  
MS_SCLKO rise time1  
25  
5
MHz  
ns  
ns  
ns  
MOTOROLA  
MC9328MXL Advance Information  
57  
Specifications  
Table 20. MSHC Signal Timing Parameter Table (Continued)  
3.0 0.3V  
Minimum Maximum  
Ref  
No.  
Parameter  
Unit  
10  
11  
12  
13  
14  
15  
16  
MS_SCLKO fall time1  
MS_BS delay time1  
18  
0
5
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MS_SDIO output delay time1,2  
3
MS_SDIO input setup time for MS_SCLKO rising edge (RED bit = 0)3  
MS_SDIO input hold time for MS_SCLKO rising edge (RED bit = 0)3  
MS_SDIO input setup time for MS_SCLKO falling edge (RED bit = 1)4  
MS_SDIO input hold time for MS_SCLKO falling edge (RED bit = 1)4  
23  
0
1. Loading capacitor condition is less than or equal to 30pF.  
2. An external resistor (100 ~ 200 ohm) should be inserted in series to provide current control on the  
MS_SDIO pin, because of a possibility of signal conflict between the MS_SDIO pin and Memory Stick  
SDIO pin when the pin direction changes.  
3. If the MSC2[RED] bit = 0, MSHC samples MS_SDIO input data at MS_SCLKO rising edge.  
4. If the MSC2[RED] bit = 1, MSHC samples MS_SDIO input data at MS_SCLKO falling edge.  
58  
MC9328MXL Advance Information  
MOTOROLA  
Specifications  
3.13 Pulse-Width Modulator  
The PWM can be programmed to select one of two clock signals as its source frequency. The selected  
clock signal is passed through a divider and a prescaler before being input to the counter. The output is  
available at the pulse-width modulator output (PWMO) external pin. Its timing diagram is shown in  
Figure 47 and the parameters are listed in Table 21.  
1
2a  
3b  
System Clock  
2b  
4b  
3a  
4a  
PWM Output  
Figure 47. PWM Output Timing Diagram  
Table 21. PWM Output Timing Parameter Table  
1.8V 0.10V  
3.0V 0.30V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
1
System CLK frequency1  
Clock high time1  
Clock low time1  
0
87  
0
5/10  
5/10  
100  
MHz  
ns  
2a  
2b  
3a  
3b  
4a  
4b  
3.3  
7.5  
ns  
Clock fall time1  
5
5/10  
5/10  
ns  
Clock rise time1  
6.67  
ns  
Output delay time1  
Output setup time1  
5.7  
5.7  
5
ns  
5
ns  
1. CL of PWMO = 30 pF  
3.14 SDRAM Controller  
A write to an address within the memory region initiates the program sequence. The first command issued  
to the SyncFlash is Load Command Register. The value in A [7:0] determines which operation the  
command performs. For this write setup operation, an address of 0x40 is hardware generated. The bank  
and other address lines are driven with the address to be programmed. The next command is Active which  
registers the row address and confirms the bank address. The third command supplies the column address,  
re-confirms the bank address, and supplies the data to be written. SyncFlash does not support burst writes,  
therefore a Burst Terminate command is not required.  
A read to the memory region initiates the status read sequence. The first command issued to the SyncFlash  
is the Load Command Register with A [7:0] set to 0x70 which corresponds to the Read Status Register  
operation. The bank and other address lines are driven to the selected address. The second command is  
MOTOROLA  
MC9328MXL Advance Information  
59  
 
 
Specifications  
Active which sets up the status register read. The bank and row addresses are driven during this command.  
The third command of the triplet is Read. Bank and column addresses are driven on the address bus during  
this command. Data is returned from memory on the low order 8 data bits following the CAS latency.  
1
SDCLK  
2
3S  
3
CS  
RAS  
CAS  
3H  
3H  
3S  
3S  
3H  
3
S
3H  
4H  
WE  
ADDR  
DQ  
4S  
ROW/BA  
COL/BA  
8
5
6
Data  
7
3S  
DQM  
3H  
Note: CKE is high during the read/write cycle.  
Figure 48. SDRAM/SyncFlash Read Cycle Timing Diagram  
Table 22. SDRAM Timing Parameter Table  
1.8V 0.10V  
3.0V 0.30V  
Ref  
Parameter  
Unit  
No.  
Minimum Maximum Minimum Maximum  
1
2
SDRAM clock high-level width  
SDRAM clock low-level width  
SDRAM clock cycle time  
2.67  
6
4
4
ns  
ns  
ns  
ns  
3
11.4  
3.42  
10  
3
3S  
CS, RAS, CAS, WE, DQM setup time  
60  
MC9328MXL Advance Information  
MOTOROLA  
Specifications  
Table 22. SDRAM Timing Parameter Table (Continued)  
3.0V 0.30V  
Minimum Maximum Minimum Maximum  
1.8V 0.10V  
Ref  
No.  
Parameter  
Unit  
3H  
4S  
4H  
5
CS, RAS, CAS, WE, DQM hold time  
Address setup time  
2.28  
3.42  
2.28  
2
3
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address hold time  
2
SDRAM access time (CL = 3)  
SDRAM access time (CL = 2)  
SDRAM access time (CL = 1)  
Data out hold time  
6.84  
6.84  
22  
2.5  
5
6
5
22  
6
6
2.85  
7
Data out high-impedance time (CL = 3)  
Data out high-impedance time (CL = 2)  
Data out high-impedance time (CL = 1)  
6.84  
6.84  
22  
7
6
7
22  
1
1
8
Active to read/write command period (RC = 1)  
ns  
tRCD  
tRCD  
1. tRCD = SDRAM clock cycle time. This settings can be found in the MC9328MXL reference manual.  
MOTOROLA  
MC9328MXL Advance Information  
61  
Specifications  
SDCLK  
1
3
2
CS  
RAS  
CAS  
6
WE  
ADDR  
DQ  
4
5
7
/ BA  
ROW/BA  
COL/BA  
DATA  
8
9
DQM  
Figure 49. SDRAM/SyncFlash Write Cycle Timing Diagram  
Table 23. SDRAM Write Timing Parameter Table  
1.8V 0.10V  
3.0V 0.30V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
1
2
3
4
5
SDRAM clock high-level width  
SDRAM clock low-level width  
SDRAM clock cycle time  
Address setup time  
2.67  
6
4
4
ns  
ns  
ns  
ns  
ns  
11.4  
3.42  
2.28  
10  
3
Address hold time  
2
2
2
6
7
Precharge cycle period1  
ns  
ns  
tRP  
tRP  
2
2
Active to read/write command delay  
tRCD  
tRCD  
62  
MC9328MXL Advance Information  
MOTOROLA  
Specifications  
Table 23. SDRAM Write Timing Parameter Table (Continued)  
1.8V 0.10V 3.0V 0.30V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
8
9
Data setup time  
Data hold time  
4.0  
2
2
ns  
ns  
2.28  
1. Precharge cycle timing is included in the write timing diagram.  
2. tRP and tRCD = SDRAM clock cycle time. These settings can be found in the MC9328MXL reference  
manual.  
SDCLK  
1
3
2
CS  
RAS  
CAS  
6
7
7
WE  
ADDR  
DQ  
4
5
BA  
ROW/BA  
DQM  
Figure 50. SDRAM Refresh Timing Diagram  
Table 24. SDRAM Refresh Timing Parameter Table  
3.0V 0.30V  
1.8V 0.10V  
Ref  
Parameter  
Unit  
No.  
Minimum  
Maximum  
Minimum  
Maximum  
1
2
SDRAM clock high-level width  
SDRAM clock low-level width  
2.67  
6
4
4
ns  
ns  
MOTOROLA  
MC9328MXL Advance Information  
63  
Specifications  
Table 24. SDRAM Refresh Timing Parameter Table (Continued)  
1.8V 0.10V 3.0V 0.30V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
3
4
5
SDRAM clock cycle time  
Address setup time  
Address hold time  
11.4  
3.42  
2.28  
10  
3
ns  
ns  
ns  
2
1
1
6
7
Precharge cycle period  
ns  
ns  
tRP  
tRP  
1
1
Auto precharge command period  
tRC  
tRC  
1. tRP and tRC = SDRAM clock cycle time. These settings can be found in the MC9328MXL reference  
manual.  
SDCLK  
CS  
RAS  
CAS  
WE  
ADDR  
DQ  
BA  
DQM  
CKE  
Figure 51. SDRAM Self-Refresh Cycle Timing Diagram  
64  
MC9328MXL Advance Information  
MOTOROLA  
Specifications  
3.15 USB Device Port  
Four types of data transfer modes exist for the USB module: control transfers, bulk transfers, isochronous  
transfers, and interrupt transfers. From the perspective of the USB module, the interrupt transfer type is  
identical to the bulk data transfer mode, and no additional hardware is supplied to support it. This section  
covers the transfer modes and how they work from the ground up.  
Data moves across the USB in packets. Groups of packets are combined to form data transfers. The same  
packet transfer mechanism applies to bulk, interrupt, and control transfers. Isochronous data is also moved  
in the form of packets, however, because isochronous pipes are given a fixed portion of the USB  
bandwidth at all times, there is no end-of-transfer.  
USBD_AFE  
(Output)  
t VMO_ROE  
4
t ROE_VPO  
1
USBD_ROE  
(Output)  
6
3
tPERIOD  
tVPO_ROE  
USBD_VPO  
(Output)  
USBD_VMO  
(Output)  
tROE_VMO  
tFEOPT  
USBD_SUSPND  
(Output)  
2
5
USBD_RCV  
(Input)  
USBD_VP  
(Input)  
USBD_VM  
(Input)  
Figure 52. USB Device Timing Diagram for Data Transfer to USB Transceiver (TX)  
Table 25. USB Device Timing Parameter Table for Data Transfer to USB Transceiver (TX)  
1.8V 0.10V  
3.0V 0.30V  
Ref No.  
Parameter  
Unit  
Minimum Maximum Minimum Maximum  
tROE_VPO; USBD_ROE active to  
USBD_VPO low  
1
2
3
83.14  
81.55  
83.54  
83.47  
81.98  
83.80  
83.14  
81.55  
83.54  
83.47  
81.98  
83.80  
ns  
ns  
ns  
tROE_VMO; USBD_ROE active to  
USBD_VMO high  
tVPO_ROE; USBD_VPO high to  
USBD_ROE deactivated  
MOTOROLA  
MC9328MXL Advance Information  
65  
Specifications  
Table 25. USB Device Timing Parameter Table for Data Transfer to USB Transceiver (TX)  
3.0V 0.30V  
Minimum Maximum Minimum Maximum  
1.8V 0.10V  
Ref No.  
Parameter  
Unit  
t
VMO_ROE; USBD_VMO low to  
4
248.90  
249.13  
248.90  
249.13  
ns  
USBD_ROE deactivated (includes SE0)  
5
6
tFEOPT; SE0 interval of EOP  
160.00  
11.97  
175.00  
12.03  
160.00  
11.97  
175.00  
12.03  
ns  
t
PERIOD; Data transfer rate  
Mb/s  
USBD_AFE  
(Output)  
USBD_ROE  
(Output)  
USBD_VPO  
(Output)  
USBD_VMO  
(Output)  
USBD_SUSPND  
(Output)  
USBD_RCV  
(Input)  
1
tFEOPR  
USBD_VP  
(Input)  
USBD_VM  
(Input)  
Figure 53. USB Device Timing Diagram for Data Transfer from USB Transceiver (RX)  
Table 26. USB Device Timing Parameter Table for Data Transfer from USB Transceiver (RX)  
1.8V 0.10V 3.0V 0.30V  
Ref No.  
Parameter  
Unit  
Minimum  
82  
Maximum  
Minimum  
82  
Maximum  
1
tFEOPR; Receiver SE0 interval of EOP  
ns  
66  
MC9328MXL Advance Information  
MOTOROLA  
Specifications  
3.16 I2C Module  
The I2C communication protocol consists of seven elements: START, Data Source/Recipient, Data  
Direction, Slave Acknowledge, Data, Data Acknowledge, and STOP.  
SDA  
5
3
4
SCL  
2
6
1
2
Figure 54. Definition of Bus Timing for I C  
2
Table 27. I C Bus Timing Parameter Table  
1.8V 0.10V  
3.0V 0.30V  
Ref No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
1
2
3
4
5
6
Hold time (repeated) START condition  
Data hold time  
182  
0
171  
160  
0
150  
ns  
ns  
ns  
ns  
ns  
ns  
Data setup time  
11.4  
80  
10  
HIGH period of the SCL clock  
LOW period of the SCL clock  
Setup time for STOP condition  
120  
320  
160  
480  
182.4  
3.17 Synchronous Serial Interface  
The transmit and receive sections of the SSI can be synchronous or asynchronous. In synchronous mode,  
the transmitter and the receiver use a common clock and frame synchronization signal. In asynchronous  
mode, the transmitter and receiver each have their own clock and frame synchronization signals.  
Continuous or gated clock mode can be selected. In continuous mode, the clock runs continuously. In  
gated clock mode, the clock functions only during transmission. The internal and external clock timing  
diagrams are shown in Figure 56 through Figure 58 on page 69.  
Normal or network mode can also be selected. In normal mode, the SSI functions with one data word of  
I/O per frame. In network mode, a frame can contain between 2 and 32 data words. Network mode is  
typically used in star or ring-time division multiplex networks with other processors or codecs, allowing  
interface to time division multiplexed networks without additional logic. Use of the gated clock is not  
allowed in network mode. These distinctions result in the basic operating modes that allow the SSI to  
communicate with a wide variety of devices.  
MOTOROLA  
MC9328MXL Advance Information  
67  
Specifications  
1
STCK Output  
4
2
STFS (bl) Output  
STFS (wl) Output  
6
8
12  
10  
11  
32  
STXD Output  
SRXD Input  
31  
Note: SRXD input in synchronous mode only.  
Figure 55. SSI Transmitter Internal Clock Timing Diagram  
1
SRCK Output  
3
5
SRFS (bl) Output  
SRFS (wl) Output  
7
9
13  
14  
SRXD Input  
Figure 56. SSI Receiver Internal Clock Timing Diagram  
68  
MC9328MXL Advance Information  
MOTOROLA  
Specifications  
15  
16  
17  
STCK Input  
18  
20  
STFS (bl) Input  
STFS (wl) Input  
24  
22  
28  
27  
34  
26  
STXD Output  
SRXD Input  
33  
Note: SRXD Input in Synchronous mode only  
Figure 57. SSI Transmitter External Clock Timing Diagram  
15  
16  
17  
SRCK Input  
19  
21  
SRFS (bl) Input  
SRFS (wl) Input  
25  
23  
30  
29  
SRXD Input  
Figure 58. SSI Receiver External Clock Timing Diagram  
Table 28. SSI (Port C Primary Function) Timing Parameter Table  
1.8V 0.10V  
Minimum Maximum  
Internal Clock Operation1 (Port C Primary Function2)  
3.0V 0.30V  
Ref No.  
Parameter  
Unit  
Minimum Maximum  
1
2
3
STCK/SRCK clock period1  
STCK high to STFS (bl) high3  
SRCK high to SRFS (bl) high3  
95  
1.5  
-1.2  
4.5  
-1.7  
83.3  
1.3  
ns  
ns  
ns  
3.9  
-1.1  
-1.5  
MOTOROLA  
MC9328MXL Advance Information  
69  
Specifications  
Table 28. SSI (Port C Primary Function) Timing Parameter Table (Continued)  
1.8V 0.10V 3.0V 0.30V  
Ref No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
4
5
6
7
8
9
STCK high to STFS (bl) low3  
SRCK high to SRFS (bl) low3  
STCK high to STFS (wl) high3  
SRCK high to SRFS (wl) high3  
STCK high to STFS (wl) low3  
SRCK high to SRFS (wl) low3  
2.5  
0.1  
4.3  
-0.8  
4.45  
-1.5  
4.33  
-0.8  
2.2  
0.1  
1.3  
-1.1  
2.2  
0.1  
3.8  
-0.8  
3.9  
ns  
ns  
ns  
ns  
ns  
ns  
1.48  
-1.1  
2.51  
0.1  
-1.5  
3.8  
-0.8  
STCK high to STXD valid from high  
impedance  
10  
14.25  
15.73  
12.5  
13.8  
ns  
11a  
11b  
12  
STCK high to STXD high  
0.91  
0.57  
12.88  
21.1  
0
3.08  
3.19  
13.57  
0.8  
0.5  
11.3  
18.5  
0
2.7  
2.8  
11.9  
ns  
ns  
ns  
ns  
ns  
STCK high to STXD low  
STCK high to STXD high impedance  
SRXD setup time before SRCK low  
SRXD hold time after SRCK low  
13  
14  
External Clock Operation (Port C Primary Function2)  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
STCK/SRCK clock period1  
92.8  
27.1  
61.1  
81.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
STCK/SRCK clock high period  
STCK/SRCK clock low period  
STCK high to STFS (bl) high3  
SRCK high to SRFS (bl) high3  
STCK high to STFS (bl) low3  
SRCK high to SRFS (bl) low3  
STCK high to STFS (wl) high3  
SRCK high to SRFS (wl) high3  
STCK high to STFS (wl) low3  
SRCK high to SRFS (wl) low3  
40.7  
40.7  
0
92.8  
92.8  
92.8  
92.8  
92.8  
92.8  
92.8  
92.8  
81.4  
81.4  
81.4  
81.4  
81.4  
81.4  
81.4  
81.4  
0
0
0
0
0
0
0
STCK high to STXD valid from high  
impedance  
26  
18.01  
28.16  
15.8  
24.7  
ns  
27a  
27b  
STCK high to STXD high  
STCK high to STXD low  
8.98  
9.12  
18.13  
18.24  
7.0  
8.0  
15.9  
16.0  
ns  
ns  
70  
MC9328MXL Advance Information  
MOTOROLA  
Specifications  
Table 28. SSI (Port C Primary Function) Timing Parameter Table (Continued)  
3.0V 0.30V  
1.8V 0.10V  
Ref No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
28  
29  
30  
STCK high to STXD high impedance  
SRXD setup time before SRCK low  
SRXD hole time after SRCK low  
18.47  
1.14  
0
28.5  
16.2  
1.0  
0
25.0  
ns  
ns  
ns  
Synchronous Internal Clock Operation (Port C Primary Function2)  
31  
32  
SRXD setup before STCK falling  
SRXD hold after STCK falling  
15.4  
0
13.5  
0
ns  
ns  
Synchronous External Clock Operation (Port C Primary Function2)  
33  
34  
SRXD setup before STCK falling  
SRXD hold after STCK falling  
1.14  
0
1.0  
0
ns  
ns  
1. All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a  
non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been  
inverted, all the timing remains valid by inverting the clock signal STCK/SRCK and/or the frame sync  
STFS/SRFS shown in the tables and in the figures.  
2. There are 2 sets of I/O signals for the SSI module. They are from Port C primary function (pad 257 to pad  
261) and Port B alternate function (pad 283 to pad 288). When SSI signals are configured as outputs, they  
can be viewed both at Port C primary function and Port B alternate function. When SSI signals are  
configured as input, the SSI module selects the input based on status of the FMCR register bits in the  
Clock controller module (CRM). By default, the input are selected from Port C primary function.  
3. bl = bit length; wl = word length.  
Table 29. SSI (Port B Alternate Function) Timing Parameter Table  
1.8V 0.10V  
Minimum Maximum  
Internal Clock Operation1 (Port B Alternate Function2)  
3.0V 0.30V  
Ref  
No.  
Parameter  
Unit  
Minimum Maximum  
1
2
3
4
5
6
7
8
STCK/SRCK clock period1  
STCK high to STFS (bl) high3  
SRCK high to SRFS (bl) high3  
STCK high to STFS (bl) low3  
SRCK high to SRFS (bl) low3  
STCK high to STFS (wl) high3  
SRCK high to SRFS (wl) high3  
STCK high to STFS (wl) low3  
95  
83.3  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1.7  
4.8  
4.2  
1.0  
4.6  
2.0  
4.2  
1.0  
4.6  
-0.1  
3.08  
1.25  
1.71  
-0.1  
3.08  
1.0  
-0.1  
2.7  
5.24  
2.28  
4.79  
1.0  
1.1  
1.5  
-0.1  
2.7  
5.24  
MOTOROLA  
MC9328MXL Advance Information  
71  
Specifications  
Table 29. SSI (Port B Alternate Function) Timing Parameter Table (Continued)  
1.8V 0.10V 3.0V 0.30V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
9
SRCK high to SRFS (wl) low3  
1.25  
2.28  
1.1  
2.0  
ns  
ns  
STCK high to STXD valid from high  
impedance  
10  
14.93  
16.19  
13.1  
14.2  
11a STCK high to STXD high  
11b STCK high to STXD low  
1.25  
2.51  
12.43  
20  
3.42  
3.99  
14.59  
1.1  
2.2  
10.9  
17.5  
0
3.0  
3.5  
12.8  
ns  
ns  
ns  
ns  
ns  
12  
13  
14  
STCK high to STXD high impedance  
SRXD setup time before SRCK low  
SRXD hold time after SRCK low  
0
External Clock Operation (Port B Alternate Function2)  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
STCK/SRCK clock period1  
92.8  
27.1  
61.1  
81.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
STCK/SRCK clock high period  
STCK/SRCK clock low period  
STCK high to STFS (bl) high3  
SRCK high to SRFS (bl) high3  
STCK high to STFS (bl) low3  
SRCK high to SRFS (bl) low3  
STCK high to STFS (wl) high3  
SRCK high to SRFS (wl) high3  
STCK high to STFS (wl) low3  
SRCK high to SRFS (wl) low3  
40.7  
40.7  
0
92.8  
92.8  
92.8  
92.8  
92.8  
92.8  
92.8  
92.8  
81.4  
81.4  
81.4  
81.4  
81.4  
81.4  
81.4  
81.4  
0
0
0
0
0
0
0
STCK high to STXD valid from high  
impedance  
26  
18.9  
29.07  
16.6  
25.5  
ns  
27a STCK high to STXD high  
27b STCK high to STXD low  
9.23  
10.60  
17.90  
1.14  
0
20.75  
21.32  
29.75  
8.1  
9.3  
15.7  
1.0  
0
18.2  
18.7  
26.1  
ns  
ns  
ns  
ns  
ns  
28  
29  
30  
STCK high to STXD high impedance  
SRXD setup time before SRCK low  
SRXD hold time after SRCK low  
Synchronous Internal Clock Operation (Port B Alternate Function2)  
72  
MC9328MXL Advance Information  
MOTOROLA  
Specifications  
Table 29. SSI (Port B Alternate Function) Timing Parameter Table (Continued)  
3.0V 0.30V  
Minimum Maximum  
1.8V 0.10V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
31  
32  
SRXD setup before STCK falling  
SRXD hold after STCK falling  
18.81  
0
16.5  
0
ns  
ns  
Synchronous External Clock Operation (Port B Alternate Function2)  
33  
34  
SRXD setup before STCK falling  
SRXD hold after STCK falling  
1.14  
0
1.0  
0
ns  
ns  
1. All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a  
non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been  
inverted, all the timing remains valid by inverting the clock signal STCK/SRCK and/or the frame sync  
STFS/SRFS shown in the tables and in the figures.  
2. There are 2 set of I/O signals for the SSI module. They are from Port C primary function (pad 257 to pad  
261) and Port B alternate function (pad 283 to pad 288). When SSI signals are configured as outputs, they  
can be viewed both at Port C primary function and Port B alternate function. When SSI signals are  
configured as inputs, the SSI module selects the input based on FMCR register bits in the Clock controller  
module (CRM). By default, the input are selected from Port C primary function.  
3. bl = bit length; wl = word length.  
MOTOROLA  
MC9328MXL Advance Information  
73  
Specifications  
3.18 CMOS Sensor Interface  
The CMOS Sensor Interface (CSI) module consists of a control register to configure the interface timing, a  
control register for statistic data generation, a status register, interface logic, a 32 × 32 image data receive  
FIFO, and a 16 × 32 statistic data FIFO.  
3.18.1 Gated Clock Mode  
Figure 59 shows the timing diagram when the CMOS sensor output data is configured for negative edge  
and the CSI is programmed to received data on the positive edge. Figure 60 on page 74 shows the timing  
diagram when the CMOS sensor output data is configured for positive edge and the CSI is programmed to  
received data in negative edge. The parameters for the timing diagrams are listed in Table 30 on page 75.  
1
VSYNC  
7
HSYNC  
5
6
2
PIXCLK  
Valid Data  
Valid Data  
Valid Data  
DATA[7:0]  
3
4
Figure 59. Sensor Output Data on Pixel Clock Falling Edge  
CSI Latches Data on Pixel Clock Rising Edge  
1
VSYNC  
7
HSYNC  
PIXCLK  
6
5
2
Valid Data  
Valid Data  
Valid Data  
DATA[7:0]  
3
4
Figure 60. Sensor Output Data on Pixel Clock Rising Edge  
CSI Latches Data on Pixel Clock Falling Edge  
74  
MC9328MXL Advance Information  
MOTOROLA  
 
 
Specifications  
Table 30. Gated Clock Mode Timing Parameters  
Ref No.  
Parameter  
Min  
Max  
Unit  
1
2
3
4
5
6
7
csi_vsync to csi_hsync  
csi_hsync to csi_pixclk  
csi_d setup time  
180  
-
-
ns  
ns  
1
1
-
ns  
csi_d hold time  
1
-
ns  
csi_pixclk high time  
csi_pixclk low time  
csi_pixclk frequency  
10.42  
10.42  
0
-
ns  
-
ns  
48  
MHz  
The limitation on pixel clock rise time / fall time are not specified. It should be calculated from the hold  
time and setup time, according to:  
Rising-edge latch data  
max rise time allowed = (positive duty cycle - hold time)  
max fall time allowed = (negative duty cycle - setup time)  
In most of case, duty cycle is 50 / 50, therefore  
max rise time = (period / 2 - hold time)  
max fall time = (period / 2 - setup time)  
For example: Given pixel clock period = 10ns, duty cycle = 50 / 50, hold time = 1ns, setup time = 1ns.  
positive duty cycle = 10 / 2 = 5ns  
=> max rise time allowed = 5 - 1 = 4ns  
negative duty cycle = 10 / 2 = 5ns  
=> max fall time allowed = 5 - 1 = 4ns  
Falling-edge latch data  
max fall time allowed = (negative duty cycle - hold time)  
max rise time allowed = (positive duty cycle - setup time)  
MOTOROLA  
MC9328MXL Advance Information  
75  
Specifications  
3.18.2 Non-Gated Clock Mode  
Figure 61 shows the timing diagram when the CMOS sensor output data is configured for negative edge  
and the CSI is programmed to received data on the positive edge. Figure 62 on page 76 shows the timing  
diagram when the CMOS sensor output data is configured for positive edge and the CSI is programmed to  
received data in negative edge. The parameters for the timing diagrams are listed in Table 31 on page 76.  
1
VSYNC  
6
4
5
PIXCLK  
Valid Data  
Valid Data  
Valid Data  
DATA[7:0]  
2
3
Figure 61. Sensor Output Data on Pixel Clock Falling Edge  
CSI Latches Data on Pixel Clock Rising Edge  
1
VSYNC  
6
4
5
PIXCLK  
Valid Data  
Valid Data  
Valid Data  
DATA[7..0]  
2
3
Figure 62. Sensor Output Data on Pixel Clock Rising Edge  
CSI Latches Data on Pixel Clock Falling Edge  
Table 31. Non-Gated Clock Mode Parameters  
Ref No.  
Parameter  
Min  
Max  
Unit  
1
csi_vsync to csi_pixclk  
180  
-
ns  
76  
MC9328MXL Advance Information  
MOTOROLA  
 
 
 
Specifications  
Table 31. Non-Gated Clock Mode Parameters (Continued)  
Ref No.  
Parameter  
csi_d setup time  
Min  
Max  
Unit  
2
3
4
5
6
1
1
-
-
ns  
ns  
csi_d hold time  
csi_pixclk high time  
csi_pixclk low time  
csi_pixclk frequency  
10.42  
10.42  
0
-
ns  
-
ns  
48  
MHz  
The limitation on pixel clock rise time / fall time are not specified. It should be calculated from the hold  
time and setup time, according to:  
max rise time allowed = (positive duty cycle - hold time)  
max fall time allowed = (negative duty cycle - setup time)  
In most of case, duty cycle is 50 / 50, therefore:  
max rise time = (period / 2 - hold time)  
max fall time = (period / 2 - setup time)  
For example: Given pixel clock period = 10ns, duty cycle = 50 / 50, hold time = 1ns, setup time = 1ns.  
positive duty cycle = 10 / 2 = 5ns  
=> max rise time allowed = 5 - 1 = 4ns  
negative duty cycle = 10 / 2 = 5ns  
=> max fall time allowed = 5 - 1 = 4ns  
Falling-edge latch data  
max fall time allowed = (negative duty cycle - hold time)  
max rise time allowed = (positive duty cycle - setup time)  
MOTOROLA  
MC9328MXL Advance Information  
77  
4 Pin-Out and Package Information  
Table 32 illustrates the package pin assignments for the 256-pin MAPBGA package.  
Table 32. MC9328MXL 256 MAPBGA Pin Assignments  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
A
B
C
NVSS1  
DAT3  
CLK  
NVSS4  
USBD_  
AFE  
NVDD4  
NVSS3  
UART1_  
RTS  
UART1_  
RXD  
NVDD3  
N.C.  
N.C.  
QVDD4  
N.C.  
N.C.  
N.C.  
A24  
A23  
DAT1  
D31  
CMD  
SSI1_RXDAT  
SSI1_RXCLK  
USBD_  
ROE  
USBD_VP  
SSI0_  
RXCLK  
SSI0_  
TXCLK  
SPI1_  
SCLK  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
QVSS4  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
DAT0  
USBD_  
RCV  
UART2_  
CTS  
UART2_  
RXD  
SSI0_  
RXFS  
UART1_  
TXD  
D
E
F
A22  
A20  
A18  
A15  
D30  
A21  
D27  
A17  
D29  
D28  
D25  
D24  
SSI1_RXFS  
D26  
USBD_  
SUSPND  
USBD_  
VPO  
USBD_  
VMO  
SSI0_  
RXDAT  
SPI1_  
SPI_RDY  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
CLS  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
DAT2  
A16  
USBD_VM  
UART2_  
RTS  
SSI0_  
TXDAT  
SPI1_SS  
A19  
SSI1_  
TXFS  
UART2_  
TXD  
SSI0_  
TXFS  
SPI1_  
MISO  
REV  
N.C.  
N.C.  
LSCLK  
VSYNC  
SPL_SPR  
LD1  
G
D23  
D21  
SSI1_  
TXDAT  
SSI1_  
TXCLK  
UART1_  
CTS  
SPI1_  
MOSI  
CONTRAST  
OE_ACD  
HSYNC  
H
J
A13  
A12  
A10  
A8  
D22  
A11  
D16  
A7  
A14  
D18  
A9  
D20  
D19  
D17  
D15  
A6  
NVDD1  
NVDD1  
NVDD1  
D14  
NVDD1  
NVDD1  
NVSS1  
NVDD1  
NVSS1  
NVSS1  
NVSS1  
NVSS1  
NVSS1  
RW  
QVSS1  
NVDD1  
NVDD1  
CAS  
QVDD1  
NVSS2  
NVDD2  
TCK  
PS  
NVSS2  
NVDD2  
TIN  
LD0  
LD6  
LD2  
LD7  
LD4  
LD8  
LD5  
LD11  
LD9  
LD3  
QVDD3  
TOUT2  
CSI_D2  
CSI_D6  
QVSS3  
LD15  
K
L
LD10  
PWMO  
LD12  
LD13  
CSI_D0  
LD14  
D13  
D11  
CSI_MCLK  
CSI_D4  
CSI_D1  
CSI_VSYNC  
CSI_D3  
CSI_D5  
M
A5  
D12  
SDCLK  
MA10  
RAS  
RESET_IN  
BIG_ENDI  
AN  
CSI_  
HSYNC  
N
A4  
EB1  
D10  
D7  
A0  
D4  
PA17  
D1  
DQM1  
RESET_SF  
RESET_  
OUT  
BOOT2  
CSI_  
PIXCLK  
CSI_D7  
TMS  
TDI  
P
R
T
A3  
EB2  
D9  
EB3  
A2  
EB0  
A1  
CS3  
CS4  
CS5  
D6  
D8  
ECB  
D5  
D2  
D3  
DQM3  
D0  
SDCKE1  
DQM0  
BOOT3  
SDCKE0  
CLKO  
BOOT0  
POR  
TRST  
BOOT1  
I2C_CLK  
TDO  
I2C_DATA  
QVDD2  
XTAL32K  
EXTAL32K  
QVSS2  
LBA  
CS0  
BCLK  
MA11  
NVSS1  
OE  
CS2  
CS1  
DQM2  
SDWE  
AVDD1  
TRISTATE  
EXTAL16M  
XTAL16M  
 
Table 33 illustrates the package pin assignments for the 225-pin PBGA package.  
Table 33. MC9328MXL 225 PBGA Pin Assignments  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
SSI1_  
RXCLK  
SSI1_  
TXCLK  
USBD_  
ROE  
USBD_  
SUSPND  
SSI0_  
RXFS  
SSI0_  
TXCLK  
SPI1_  
SCLK  
A
B
C
D
E
CMD  
USBD_VM  
SPI1_RDY  
REV  
PS  
LD2  
LD4  
LD5  
SSI1_  
RXDAT  
USBD_  
AFE  
USBD_  
VMO  
SSI0_  
RXDAT  
UART1_  
TXD  
SPL_  
SPR  
DAT3  
D31  
A23  
CLK  
DAT0  
A24  
USBD_RCV  
DAT2  
SPI1_SS  
LSCLK  
LD0  
LD8  
LD3  
LD9  
LD11  
TIN  
LD6  
LD7  
NVDD2  
LD13  
SSI1_  
RXFS  
SSI1_  
TXFS  
USBD_  
VPO  
UART2_  
RXD  
SSI0_  
TXFS  
UART1_  
RTS  
CONTRAST VSYNC  
LD12  
SSI1_  
TXDAT  
UART2_  
TXD  
SPI1_  
HSYNC  
MOSI  
DAT1  
D30  
NVDD1  
NVDD1  
USBD_VP  
QVSS  
QVDD4  
NVDD3  
LD1  
TOUT2  
CSI_D0  
UART2_  
RTS  
UART1_  
RXD  
UART1_  
CTS  
SPI1_  
MISO  
OE_  
ACD  
CSI_  
MCLK  
A21  
A22  
D29  
LD10  
LD14  
UART2_  
CTS  
SSI0_  
RXCLK  
SSI0_  
TXDAT  
F
G
H
A20  
A17  
A15  
A19  
A18  
A16  
D28  
D26  
D23  
D27  
D25  
D24  
NVDD1  
NVDD1  
D22  
NVDD1  
NVSS  
NVSS  
CLS  
QVDD3  
LD15  
CSI_D2  
CSI_HSYNC  
I2C_DATA  
CSI_D4  
CSI_D5  
TMS  
NVDD4  
NVSS  
NVSS  
NVSS  
NVSS  
NVSS  
QVSS  
NVDD2  
PWMO CSI_D3  
CSI_D7  
CSI_  
CSI_D1  
CSI_  
PIXCLK  
VSYNC  
I2C_  
TCK  
CLK  
J
A14  
A13  
A12  
A11  
D21  
D20  
D19  
NVDD1  
NVDD1  
NVSS  
NVSS  
NVSS  
QVSS  
QVDD1  
NVDD1  
NVSS  
NVSS  
CSI_D6  
D1  
TDO_B  
BOOT1  
BOOT0  
BIG_  
ENDIAN  
RESET_  
OUT_B  
K
CS2_B  
BOOT2  
TDI  
XTAL32K  
L
M
N
P
R
A10  
D16  
A8  
A9  
D15  
A7  
D17  
D13  
D18  
D10  
NVDD1  
EB3_B  
D9  
NVDD1  
NVDD1  
D8  
CS5_B  
CS4_B  
CS3_B  
D6  
D2  
ECB_B  
BCLK  
PA17  
MA10  
D4  
NVSS  
RW_B  
D0  
NVSS  
NVSS  
DQM2  
DQM1  
D3  
POR  
BOOT3  
DQM0  
RAS_B  
DQM3  
QVSS  
QVDD2  
SDCKE0  
SDCKE1  
CAS_B  
XTAL16M  
RESET_IN_B  
TRISTATE  
CLKO  
EXTAL32K  
EXTAL16M  
TRST_B  
CS1_B  
CS0_B  
D5  
D12  
EB0_B  
A3  
D14  
A6  
A5  
A4  
A2  
A1  
MA11  
LBA_B  
RESETSF_B  
AVDD1  
D11  
EB1_B  
EB2_B  
OE_B  
D7  
A0  
SDCLK  
SDWE_B  
Pin-Out and Package Information  
4.1 MAPBGA 256 Package Dimensions  
Figure 63 illustrates the 256 MAPBGA 14 mm × 14 mm × 1.30 mm package, which has 0.8 mm spacing  
between the pads. The device designator for the MAPBGA package is VH.  
Case Outline 1367  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
NOTES:  
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14 5M-1994.  
3. MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A.  
4. DATUM A, THE SEATING PLANE IS DEFINED BY SPHERICAL CROWNS OF THE SOLDER BALLS.  
Figure 63. MC9328MXL 256 MAPBGA Mechanical Drawing  
80  
MC9328MXL Advance Information  
MOTOROLA  
 
Pin-Out and Package Information  
4.2 PBGA 225 Package Dimensions  
Figure 64 illustrates the 225 PBGA 13 mm × 13 mm × 0.8 mm package.  
Case Outline 1304B  
TOP VIEW  
BOTTOM VIEW  
SIDE VIEW  
NOTES:  
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
2. DIMENSIONS AND TOLERANCES PER ASME Y14 5M-1994.  
3. MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A.  
4. DATUM A, THE SEATING PLANE IS DEFINED BY SPHERICAL CROWNS OF THE SOLDER BALLS.  
5. PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE OF  
PACKAGE.  
Figure 64. MC9328MXL 225 PBGA Mechanical Drawing  
MOTOROLA  
MC9328MXL Advance Information  
81  
 
Information in this document is provided solely to enable system and software implementers to  
use Motorola products. There are no express or implied copyright licenses granted hereunder to  
design or fabricate any integrated circuits or integrated circuits based on the information in this  
document.  
HOW TO REACH US:  
USA/EUROPE/LOCATIONS NOT LISTED:  
Motorola Literature Distribution  
P.O. Box 5405, Denver, Colorado 80217  
1-800-521-6274 or 480-768-2130  
Motorola reserves the right to make changes without further notice to any products herein.  
Motorola makes no warranty, representation or guarantee regarding the suitability of its products  
for any particular purpose, nor does Motorola assume any liability arising out of the application or  
use of any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters which may be provided in  
Motorola data sheets and/or specifications can and do vary in different applications and actual  
performance may vary over time. All operating parameters, including “Typicals” must be validated  
for each customer application by customer’s technical experts. Motorola does not convey any  
license under its patent rights nor the rights of others. Motorola products are not designed,  
intended, or authorized for use as components in systems intended for surgical implant into the  
body, or other applications intended to support or sustain life, or for any other application in which  
the failure of the Motorola product could create a situation where personal injury or death may  
occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,  
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola  
was negligent regarding the design or manufacture of the part.  
JAPAN:  
Motorola Japan Ltd.; SPS, Technical Information Center,  
3-20-1, Minami-Azabu, Minato-ku, Tokyo 106-8573, Japan  
81-3-3440-3569  
ASIA/PACIFIC:  
Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre,  
2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T.,  
Hong Kong  
852-26668334  
HOME PAGE:  
http://motorola.com/semiconductors  
Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office. All other  
product or service names are the property of their respective owners. ARM and the ARM  
POWERED logo are the registered trademarks of ARM Limited. ARM9, ARM920T, and  
ARM9TDMI are the trademarks of ARM Limited.  
Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
© Motorola, Inc. 2003  
MC9328MXL/D  

相关型号:

MC9328MXLVP15

MX Family of applications processors
FREESCALE

MC9328MXLVP15

DRAGONBALL MXL 225 PB-FR
NXP

MC9328MXLVP20

i.MX Integrated Portable System Processor
FREESCALE

MC9328MXLVP20

200MHz, RISC PROCESSOR, PBGA225, 13 X 13 MM, 0.80 MM PITCH, LEAD FREE, PLASTIC, BGA-225
MOTOROLA

MC9328MXLVP20

32-BIT, 200MHz, RISC PROCESSOR, PBGA225, 13 X 13 MM, 0.80 MM PITCH, ROHS COMPLIANT, PLASTIC, MAPBGA-225
NXP

MC9328MXLVP20R2

IC,MICROPROCESSOR,32-BIT,CMOS,BGA,225PIN,PLASTIC
NXP

MC9328MXL_06

MX Family of applications processors
FREESCALE

MC9328MXS

MX Family of applications processors
FREESCALE

MC9328MXSCVF10

32-BIT, 100MHz, MICROPROCESSOR, PBGA225, 13 X 13 MM, PLASTIC, BGA-225
ROCHESTER

MC9328MXSCVF10(R2)

Advance Information
ETC

MC9328MXSCVF10R2

Advance Information
ETC

MC9328MXSCVP10

MX Family of applications processors
FREESCALE