MC9S12DG128BVFU [MOTOROLA]

MC9S12DT128B;
MC9S12DG128BVFU
型号: MC9S12DG128BVFU
厂家: MOTOROLA    MOTOROLA
描述:

MC9S12DT128B

文件: 总124页 (文件大小:637K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DOCUMENT NUMBER  
9S12DT128BDGV1/D  
MC9S12DT128B  
Device User Guide  
V01.07  
Covers also  
MC9S12DG128B, MC9S12DJ128B,  
MC9S12DB128B  
Original Release Date: 18 June 2001  
Revised: 16 Aug 2002  
Motorola, Inc  
Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or  
design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein;  
neither does it convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended,  
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to  
support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where  
personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was  
negligent regarding the design or manufacture of the part.  
1
DOCUMENT NUMBER  
9S12DT128BDGV1/D  
Revision History  
Version Revision Effective  
Author  
Description of Changes  
Number  
Date  
Date  
18 Jun  
2001  
18 June  
2001  
V01.00  
Initial version (parent doc v2.03 dug for dp256).  
Updated version after review  
23 July  
2001  
23 July  
2001  
V01.01  
V01.02  
V01.03  
V01.04  
V01.05  
Changed Partname, added pierce mode, updated electrical  
characteristics  
some minor corrections  
23 Sep  
2001  
23 Sep  
2001  
12 Oct  
2001  
12 Oct  
2001  
Replaced Star12 by HCS12  
Updated electrical spec after MC-Qualification (IOL/IOH), Data for  
Pierce, NVM reliability  
New document numbering. Corrected Typos  
27 Feb  
2002  
27 Feb  
2002  
4 Mar  
2002  
4 Mar  
2002  
Increased VDD to 2.35V, removed min. oscillator startup  
Removed Document order number except from Cover Sheet  
Added:  
Pull-up columns to signal table,  
example for PLL Filter calculation,  
Thermal values for junction to board and package,  
BGND pin pull-up  
Part Order Information  
Global Register Table  
Chip Configuration Summary  
Modified:  
8 July  
2002  
22 July  
2002  
V01.06  
Reduced Wait and Run IDD values  
Mode of Operation chapter  
changed leakage current for ADC inputs down to +-1uA  
Corrected:  
Interrupt vector table enable register inconsistencies  
PCB layout for 80QFP VREGEN position  
16 Aug  
2002  
16 Aug  
2002  
V01.07  
Minor corrections in table 1-1 & section 1.5.1  
Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or  
design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein;  
neither does it convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended,  
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to  
support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where  
personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was  
negligent regarding the design or manufacture of the part.  
2
MC9S12DT128B Device User Guide — V01.07  
Table of Contents  
Section 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
1.1  
1.2  
1.3  
1.4  
1.5  
1.5.1  
1.6  
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Device Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
Detailed Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Part ID Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Section 2 Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
2.1  
Device Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
Signal Properties Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
Detailed Signal Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
EXTAL, XTAL — Oscillator Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
RESET — External Reset Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
TEST — Test Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
XFC — PLL Loop Filter Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
BKGD / TAGHI / MODC — Background Debug, Tag High, and Mode Pin . . . . . . . .53  
PAD[15] / AN1[7] / ETRIG1 — Port AD Input Pin [15] . . . . . . . . . . . . . . . . . . . . . . . .54  
PAD[14:8] / AN1[6:0] — Port AD Input Pins [14:8]. . . . . . . . . . . . . . . . . . . . . . . . . . .54  
PAD[7] / AN0[7] / ETRIG0 — Port AD Input Pin [7] . . . . . . . . . . . . . . . . . . . . . . . . . .54  
PAD[6:0] / AN0[6:0] — Port AD Input Pins [6:0]. . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
2.2  
2.3  
2.3.1  
2.3.2  
2.3.3  
2.3.4  
2.3.5  
2.3.6  
2.3.7  
2.3.8  
2.3.9  
2.3.10 PA[7:0] / ADDR[15:8] / DATA[15:8] — Port A I/O Pins . . . . . . . . . . . . . . . . . . . . . . .54  
2.3.11 PB[7:0] / ADDR[7:0] / DATA[7:0] — Port B I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . .54  
2.3.12 PE7 / NOACC / XCLKS — Port E I/O Pin 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
2.3.13 PE6 / MODB / IPIPE1 — Port E I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
2.3.14 PE5 / MODA / IPIPE0 — Port E I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
2.3.15 PE4 / ECLK — Port E I/O Pin 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
2.3.16 PE3 / LSTRB / TAGLO — Port E I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
2.3.17 PE2 / R/W — Port E I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
2.3.18 PE1 / IRQ — Port E Input Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
2.3.19 PE0 / XIRQ — Port E Input Pin 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
2.3.20 PH7 / KWH7 — Port H I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
3
MC9S12DT128B Device User Guide — V01.07  
2.3.21 PH6 / KWH6 — Port H I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
2.3.22 PH5 / KWH5 — Port H I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
2.3.23 PH4 / KWH4 — Port H I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
2.3.24 PH3 / KWH3 / SS1 — Port H I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
2.3.25 PH2 / KWH2 / SCK1 — Port H I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
2.3.26 PH1 / KWH1 / MOSI1 — Port H I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
2.3.27 PH0 / KWH0 / MISO1 — Port H I/O Pin 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
2.3.28 PJ7 / KWJ7 / TXCAN4 / SCL — PORT J I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . .57  
2.3.29 PJ6 / KWJ6 / RXCAN4 / SDA — PORT J I/O Pin 6. . . . . . . . . . . . . . . . . . . . . . . . . .58  
2.3.30 PJ[1:0] / KWJ[1:0] — Port J I/O Pins [1:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
2.3.31 PK7 / ECS / ROMCTL — Port K I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
2.3.32 PK[5:0] / XADDR[19:14] — Port K I/O Pins [5:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
2.3.33 PM7 / BF_PSLM / TXCAN4 — Port M I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
2.3.34 PM6 / BF_PERR / RXCAN4 — Port M I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
2.3.35 PM5 / BF_PROK / TXCAN0 / TXCAN4 / SCK0 — Port M I/O Pin 5 . . . . . . . . . . . . .58  
2.3.36 PM4 / BF_PSYN / RXCAN0 / RXCAN4/ MOSI0 — Port M I/O Pin 4. . . . . . . . . . . . .59  
2.3.37 PM3 / TX_BF / TXCAN1 / TXCAN0 / SS0 — Port M I/O Pin 3 . . . . . . . . . . . . . . . . .59  
2.3.38 PM2 / RX_BF / RXCAN1 / RXCAN0 / MISO0 — Port M I/O Pin 2. . . . . . . . . . . . . . .59  
2.3.39 PM1 / TXCAN0 / TXB — Port M I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
2.3.40 PM0 / RXCAN0 / RXB — Port M I/O Pin 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
2.3.41 PP7 / KWP7 / PWM7 — Port P I/O Pin 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
2.3.42 PP6 / KWP6 / PWM6 — Port P I/O Pin 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
2.3.43 PP5 / KWP5 / PWM5 — Port P I/O Pin 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
2.3.44 PP4 / KWP4 / PWM4 — Port P I/O Pin 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
2.3.45 PP3 / KWP3 / PWM3 / SS1 — Port P I/O Pin 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
2.3.46 PP2 / KWP2 / PWM2 / SCK1 — Port P I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
2.3.47 PP1 / KWP1 / PWM1 / MOSI1 — Port P I/O Pin 1. . . . . . . . . . . . . . . . . . . . . . . . . . .60  
2.3.48 PP0 / KWP0 / PWM0 / MISO1 — Port P I/O Pin 0. . . . . . . . . . . . . . . . . . . . . . . . . . .60  
2.3.49 PS7 / SS0 — Port S I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
2.3.50 PS6 / SCK0 — Port S I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
2.3.51 PS5 / MOSI0 — Port S I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
2.3.52 PS4 / MISO0 — Port S I/O Pin 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
2.3.53 PS3 / TXD1 — Port S I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
2.3.54 PS2 / RXD1 — Port S I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
2.3.55 PS1 / TXD0 — Port S I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
2.3.56 PS0 / RXD0 — Port S I/O Pin 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
4
MC9S12DT128B Device User Guide — V01.07  
2.3.57 PT[7:0] / IOC[7:0] — Port T I/O Pins [7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
2.4  
Power Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
VDDX,VSSX — Power & Ground Pins for I/O Drivers. . . . . . . . . . . . . . . . . . . . . . . .62  
VDDR, VSSR — Power & Ground Pins for I/O Drivers & for Internal Voltage Regulator  
2.4.1  
2.4.2  
62  
2.4.3  
2.4.4  
2.4.5  
2.4.6  
2.4.7  
VDD1, VDD2, VSS1, VSS2 — Core Power Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
VDDA, VSSA — Power Supply Pins for ATD and VREG . . . . . . . . . . . . . . . . . . . . .63  
VRH, VRL — ATD Reference Voltage Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
VDDPLL, VSSPLL — Power Supply Pins for PLL . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
VREGEN — On Chip Voltage Regulator Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
Section 3 System Clock Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
3.1  
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
Section 4 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
4.1  
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
Chip Configuration Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
Securing the Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
Operation of the Secured Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
Unsecuring the Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
Pseudo Stop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
Wait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
Run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
4.2  
4.3  
4.3.1  
4.3.2  
4.3.3  
4.4  
4.4.1  
4.4.2  
4.4.3  
4.4.4  
Section 5 Resets and Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
5.1  
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Vector Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Effects of Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
I/O pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
5.2  
5.2.1  
5.3  
5.3.1  
5.3.2  
Section 6 HCS12 Core Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
5
MC9S12DT128B Device User Guide — V01.07  
Section 7 Clock and Reset Generator (CRG) Block Description . . . . . . . . .75  
7.1  
Device-specific information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
XCLKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
7.1.1  
Section 8 Enhanced Capture Timer (ECT) Block Description. . . . . . . . . . . .75  
Section 9 Analog to Digital Converter (ATD) Block Description. . . . . . . . . .75  
Section 10 Inter-IC Bus (IIC) Block Description . . . . . . . . . . . . . . . . . . . . . . .75  
Section 11 Serial Communications Interface (SCI) Block Description. . . . .75  
Section 12 Serial Peripheral Interface (SPI) Block Description . . . . . . . . . .76  
Section 13 J1850 (BDLC) Block Description. . . . . . . . . . . . . . . . . . . . . . . . . .76  
Section 14 Byteflight (BF) Block Description . . . . . . . . . . . . . . . . . . . . . . . . .76  
Section 15 Pulse Width Modulator (PWM) Block Description. . . . . . . . . . . .76  
Section 16 Flash EEPROM 128K Block Description . . . . . . . . . . . . . . . . . . .76  
Section 17 EEPROM 2K Block Description. . . . . . . . . . . . . . . . . . . . . . . . . . .76  
Section 18 RAM Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
Section 19 MSCAN Block Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
Section 20 Port Integration Module (PIM) Block Description . . . . . . . . . . . .77  
Section 21 Voltage Regulator (VREG) Block Description . . . . . . . . . . . . . . .77  
Section 22 Printed Circuit Board Layout Proposal . . . . . . . . . . . . . . . . . . . .78  
Appendix A Electrical Characteristics  
A.1 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83  
A.1.1  
A.1.2  
Parameter Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83  
Power Supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83  
6
MC9S12DT128B Device User Guide — V01.07  
A.1.3  
A.1.4  
A.1.5  
A.1.6  
A.1.7  
A.1.8  
A.1.9  
Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84  
Current Injection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
ESD Protection and Latch-up Immunity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
Power Dissipation and Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .87  
I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
A.1.10 Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
A.2 ATD Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
A.2.1  
A.2.2  
A.2.3  
ATD Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
Factors influencing accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
ATD accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95  
A.3 NVM, Flash and EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97  
A.3.1  
A.3.2  
NVM timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97  
NVM Reliability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
A.4 Voltage Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101  
A.5 Reset, Oscillator and PLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103  
A.5.1  
A.5.2  
A.5.3  
Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103  
Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104  
Phase Locked Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
A.6 MSCAN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109  
A.7 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111  
A.7.1  
A.7.2  
Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111  
Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113  
A.8 External Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115  
A.8.1 General Muxed Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115  
Appendix B Package Information  
B.1 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119  
B.2 112-pin LQFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120  
B.3 80-pin QFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121  
7
MC9S12DT128B Device User Guide — V01.07  
8
MC9S12DT128B Device User Guide — V01.07  
List of Figures  
Figure 0-1 Order Partnumber Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Figure 1-1 MC9S12DT128B Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Figure 1-2 MC9S12DT128B Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Figure 2-1 Pin assignments 112 LQFP for MC9S12DT128B,MC9S12DG128B,  
MC9S12DJ128B, MC9S12DB128B48  
Figure 2-2 Pin Assignments in 80 QFP for MC9S12DG128B, MC9S12DJ128B Bondout . .49  
Figure 2-3 PLL Loop Filter Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Figure 2-4 Colpitts Oscillator Connections (PE7=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Figure 2-5 Pierce Oscillator Connections (PE7=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Figure 2-6 External Clock Connections (PE7=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Figure 3-1 Clock Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
Figure 22-1 Recommended PCB Layout for 112LQFP Colpitts Oscillator . . . . . . . . . . . . . . .79  
Figure 22-2 Recommended PCB Layout for 80QFP Colpitts Oscillator . . . . . . . . . . . . . . . . .80  
Figure 22-3 Recommended PCB Layout for 112LQFP Pierce Oscillator . . . . . . . . . . . . . . . .81  
Figure 22-4 Recommended PCB Layout for 80QFP Pierce Oscillator . . . . . . . . . . . . . . . . . .82  
Figure A-1 ATD Accuracy Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Figure A-2 Basic PLL functional diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Figure A-3 Jitter Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Figure A-4 Maximum bus clock jitter approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Figure A-5 SPI Master Timing (CPHA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Figure A-6 SPI Master Timing (CPHA =1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Figure A-7 SPI Slave Timing (CPHA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Figure A-8 SPI Slave Timing (CPHA =1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Figure A-9 General External Bus Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Figure 22-5 112-pin LQFP mechanical dimensions (case no. 987) . . . . . . . . . . . . . . . . . . .120  
9
MC9S12DT128B Device User Guide — V01.07  
10  
MC9S12DT128B Device User Guide — V01.07  
List of Tables  
Table 0-1 Derivative Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Table 0-2 Document References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Table 1-1 Device Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
$0000 - $000F MEBI map 1 of 3 (Core User Guide) ........................................................22  
$0010 - $0014 MMC map 1 of 4 (Core User Guide) ........................................................22  
$0015 - $0016 INT map 1 of 2 (Core User Guide) ...........................................................23  
$0017 - $0017 MMC map 2 of 4 (Core User Guide) ........................................................23  
$0018 - $001B Miscellaneous Peripherals (Device User Guide, Table 1-3) ....................23  
$001C - $001D MMC map 3 of 4 (Core and Device User Guide, Table 1-4) ...................23  
$001E - $001E MEBI map 2 of 3 (Core User Guide) ........................................................23  
$001F - $001F INT map 2 of 2 (Core User Guide) ...........................................................23  
$0020 - $0027 Reserved ..................................................................................................24  
$0028 - $002F BKP (Core User Guide) ...........................................................................24  
$0030 - $0031 MMC map 4 of 4 (Core User Guide) ........................................................24  
$0032 - $0033 MEBI map 3 of 3 (Core User Guide) ........................................................24  
$0034 - $003F CRG (Clock and Reset Generator) ..........................................................25  
$0040 - $007F ECT (Enhanced Capture Timer 16 Bit 8 Channels) .................................25  
$0080 - $009F ATD0 (Analog to Digital Converter 10 Bit 8 Channel) ..............................28  
$00A0 - $00C7 PWM (Pulse Width Modulator 8 Bit 8 Channel) .......................................29  
$00C8 - $00CF SCI0 (Asynchronous Serial Interface) ......................................................31  
$00D0 - $00D7 SCI1 (Asynchronous Serial Interface) ......................................................31  
$00D8 - $00DF SPI0 (Serial Peripheral Interface) ............................................................32  
$00E0 - $00E7 IIC (Inter IC Bus) ......................................................................................32  
$00E8 - $00EF BDLC (Byte Level Data Link Controller J1850) ........................................33  
$00F0 - $00F7 SPI1 (Serial Peripheral Interface) ............................................................33  
$00F8 - $00FF Reserved ..................................................................................................33  
$0100 - $010F Flash Control Register (fts128k2) ............................................................34  
$0110 - $011B EEPROM Control Register (eets2k) ........................................................34  
$011C - $011F Reserved for RAM Control Register ........................................................35  
$0120 - $013F ATD1 (Analog to Digital Converter 10 Bit 8 Channel) ..............................35  
$0140 - $017F CAN0 (Motorola Scalable CAN - MSCAN) ..............................................36  
Table 1-2 Detailed MSCAN Foreground Receive and Transmit Buffer Layout. . . . . . . . . . .37  
$0180 - $01BF CAN1 (Motorola Scalable CAN - MSCAN) ..............................................38  
11  
MC9S12DT128B Device User Guide — V01.07  
$01C0 - $01FF Reserved ..................................................................................................39  
$0200 - $023F Reserved ..................................................................................................39  
$0240 - $027F PIM (Port Integration Module) ..................................................................40  
$0280 - $02BF CAN4 (Motorola Scalable CAN - MSCAN) ..............................................42  
$02C0 - $02FF Reserved ..................................................................................................43  
$0300 - $035F Byteflight ..................................................................................................43  
$0360 - $03FF Reserved ..................................................................................................45  
Table 1-3 Assigned Part ID Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Table 1-4 Memory size registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Table 2-1 Signal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
Table 2-2 MC9S12DT128B Power and Ground Connection Summary. . . . . . . . . . . . . . . . .61  
Table 4-1 Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
Table 4-2 Clock Selection Based on PE7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
Table 4-3 Voltage Regulator VREGEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
Table 5-1 Interrupt Vector Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Table 22-1 Suggested External Component Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78  
Table A-1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
Table A-2 ESD and Latch-up Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
Table A-3 ESD and Latch-Up Protection Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
Table A-4 Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87  
Table A-5 Thermal Package Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
Table A-6 5V I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
Table A-7 Supply Current Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
Table A-8 ATD Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
Table A-9 ATD Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
Table A-10 ATD Conversion Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95  
Table A-11 NVM Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98  
Table A-12 NVM Reliability Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
Table A-13 Voltage Regulator Recommended Load Capacitances. . . . . . . . . . . . . . . . . . . .101  
Table A-14 Startup Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103  
Table A-15 Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104  
Table A-16 PLL Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108  
Table A-17 MSCAN Wake-up Pulse Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109  
Table A-18 SPI Master Mode Timing Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112  
Table A-19 SPI Slave Mode Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114  
Table A-20 Expanded Bus Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117  
12  
MC9S12DT128B Device User Guide — V01.07  
Preface  
The Device User Guide provides information about the MC9S12DT128B device made up of standard  
HCS12 blocks and the HCS12 processor core.  
This document is part of the customer documentation. A complete set of device manuals also includes the  
HCS12 Core User Guide and all the individual Block User Guides of the implemented modules. In a effort  
to reduce redundancy all module specific information is located only in the respective Block User Guide.  
If applicable, special implementation details of the module are given in the block description sections of  
this document.  
This document also covers the MC9S12DG128B, MC9S12DJ128B and MC9S12DB128B.  
Table 0-1 shows the availability of peripheral modules on the various derivatives. For details about the  
compatibility within the MC9S12D-Family refer also to engineering bulletin EB386.  
1
Table 0-1 Derivative Differences  
Modules  
# of CANs  
CAN4  
MC9S12DT128B MC9S12DG128B MC9S12DJ128B MC9S12DB128B  
3
2
2
2
CAN1  
CAN0  
J1850/BDLC  
IIC  
Byteflight  
Package  
112 LQFP  
112 LQFP/80 QFP 112 LQFP/80 QFP  
112 LQFP  
Package  
Code  
PV  
PV/FU  
PV/FU  
PV  
Mask set  
L85D  
L85D  
L85D  
L85D  
Temp Options  
M, V, C  
M, V, C  
M, V, C  
M, V, C  
An errata exists  
contact Sales  
Office  
An errata exists  
contact Sales  
Office  
An errata exists  
contact Sales  
Office  
An errata exists  
contact Sales  
Office  
Notes  
NOTES:  
1. : Available for this device, : Not available for this device  
13  
 
MC9S12DT128B Device User Guide — V01.07  
The following figure provides an ordering number example for the MC9S12D128B devices.  
MC9S12 DJ128B C FU  
Temperature Options  
Package Option  
Temperature Option  
Device Title  
C = -40˚C to 85˚C  
V = -40˚C to 105˚C  
M = -40˚C to 125˚C  
Package Options  
Controller Family  
FU =  
80QFP  
PV = 112LQFP  
Figure 0-1 Order Partnumber Example  
See Table 0-2 for names and versions of the referenced documents throughout the Device User Guide.  
Table 0-2 Document References  
User Guide  
Version  
Document Order Number  
HCS12COREUG  
S12CRGV3/D  
HCS12_V1.5 Core User Guide  
1.2  
Clock and Reset Generator (CRG) Block User Guide  
Enhanced Capture Timer 16 Bit 8 Channel (ECT_16B8C) Block User Guide  
Analog to Digital Converter 10 Bit 8 Channel (ATD_10B8C) Block User Guide  
Inter IC Bus (IIC) Block User Guide  
V03  
V01  
V02  
V02  
V02  
V02  
V01  
V01  
V01  
V01  
V02  
V01  
V01  
V01  
S12ECT16B8CV1/D  
S12ATD10B8CV2/D  
S12IICV2/D  
Asynchronous Serial Interface (SCI) Block User Guide  
Serial Peripheral Interface (SPI) Block User Guide  
S12SCIV2/D  
S12SPIV2/D  
Pulse Width Modulator 8 Bit 8 Channel (PWM_8B8C) Block User Guide  
128K Byte Flash (FTS128K) Block User Guide  
S12PWM8B8CV1/D  
S12FTS128KV1/D  
S12EETS2KV1/D  
S12BDLCV1/D  
2K Byte EEPROM (EETS2K) Block User Guide  
Byte Level Data Link Controller -J1850 (BDLC) Block User Guide  
Motorola Scalable CAN (MSCAN) Block User Guide  
Voltage Regulator (VREG) Block User Guide  
S12MSCANV2/D  
S12VREGV1/D  
Port Integration Module (PIM_9DT128) Block User Guide  
Byteflight (BF) Block User Guide  
S12PIMDT128V1/D  
S12BFV1/D  
14  
MC9S12DT128B Device User Guide — V01.07  
Section 1 Introduction  
1.1 Overview  
The MC9S12DT128B microcontroller unit (MCU) is a 16-bit device composed of standard on-chip  
peripherals including a 16-bit central processing unit (HCS12 CPU), 128K bytes of Flash EEPROM, 8K  
bytes of RAM, 2K bytes of EEPROM, two asynchronous serial communications interfaces (SCI), two  
serial peripheral interfaces (SPI), an 8-channel IC/OC enhanced capture timer, two 8-channel, 10-bit  
analog-to-digital converters (ADC), an 8-channel pulse-width modulator (PWM), a digital Byte Data Link  
Controller (BDLC), 29 discrete digital I/O channels (Port A, Port B, Port K and Port E), 20 discrete digital  
I/O lines with interrupt and wakeup capability, three CAN 2.0 A, B software compatible modules  
(MSCAN12), a Byteflight module and an Inter-IC Bus. The MC9S12DT128B has full 16-bit data paths  
throughout. However, the external bus can operate in an 8-bit narrow mode so single 8-bit wide memory  
can be interfaced for lower cost systems. The inclusion of a PLL circuit allows power consumption and  
performance to be adjusted to suit operational requirements.  
1.2 Features  
HCS12 Core  
– 16-bit HCS12 CPU  
i. Upward compatible with M68HC11 instruction set  
ii. Interrupt stacking and programmer’s model identical to M68HC11  
iii.20-bit ALU  
iv. Instruction queue  
v. Enhanced indexed addressing  
– MEBI (Multiplexed External Bus Interface)  
– MMC (Module Mapping Control)  
– INT (Interrupt control)  
– BKP (Breakpoints)  
– BDM (Background Debug Mode)  
CRG (Clock and Reset Generator)  
– Choice of low current Colpitts oscillator or standard Pierce Oscillator  
– PLL  
– COP watchdog  
– real time interrupt  
– clock monitor  
8-bit and 4-bit ports with interrupt functionality  
15  
MC9S12DT128B Device User Guide — V01.07  
– Digital filtering  
– Programmable rising or falling edge trigger  
Memory  
– 128K Flash EEPROM  
– 2K byte EEPROM  
– 8K byte RAM  
Two 8-channel Analog-to-Digital Converters  
– 10-bit resolution  
– External conversion trigger capability  
Three 1M bit per second, CAN 2.0 A, B software compatible modules  
– Five receive and three transmit buffers  
– Flexible identifier filter programmable as 2 x 32 bit, 4 x 16 bit or 8 x 8 bit  
– Four separate interrupt channels for Rx, Tx, error and wake-up  
– Low-pass filter wake-up function  
– Loop-back for self test operation  
Enhanced Capture Timer  
– 16-bit main counter with 7-bit prescaler  
– 8 programmable input capture or output compare channels  
– Two 8-bit or one 16-bit pulse accumulators  
8 PWM channels  
– Programmable period and duty cycle  
– 8-bit 8-channel or 16-bit 4-channel  
– Separate control for each pulse width and duty cycle  
– Center-aligned or left-aligned outputs  
– Programmable clock select logic with a wide range of frequencies  
– Fast emergency shutdown input  
– Usable as interrupt inputs  
Serial interfaces  
– Two asynchronous Serial Communications Interfaces (SCI)  
– Two Synchronous Serial Peripheral Interface (SPI)  
– Byteflight  
Byte Data Link Controller (BDLC)  
16  
MC9S12DT128B Device User Guide — V01.07  
SAE J1850 Class B Data Communications Network Interface  
– Compatible and ISO Compatible for Low-Speed (<125 Kbps) Serial Data Communications in  
Automotive Applications  
Inter-IC Bus (IIC)  
– Compatible with I2C Bus standard  
– Multi-master operation  
– Software programmable for one of 256 different serial clock frequencies  
112-Pin LQFP and 80-Pin QFP package options  
– I/O lines with 5V input and drive capability  
– 5V A/D converter inputs  
– Operation at 50MHz equivalent to 25MHz Bus Speed  
– Development support  
– Single-wire background debug™ mode (BDM)  
– On-chip hardware breakpoints  
1.3 Modes of Operation  
User modes  
Normal and Emulation Operating Modes  
– Normal Single-Chip Mode  
– Normal Expanded Wide Mode  
– Normal Expanded Narrow Mode  
– Emulation Expanded Wide Mode  
– Emulation Expanded Narrow Mode  
Special Operating Modes  
– Special Single-Chip Mode with active Background Debug Mode  
– Special Test Mode (Motorola use only)  
– Special Peripheral Mode (Motorola use only)  
Low power modes  
Stop Mode  
Pseudo Stop Mode  
Wait Mode  
17  
MC9S12DT128B Device User Guide — V01.07  
1.4 Block Diagram  
Figure 1-1 shows a block diagram of the MC9S12DT128B device.  
18  
MC9S12DT128B Device User Guide — V01.07  
Figure 1-1 MC9S12DT128B Block Diagram  
VRH  
VRL  
VRH  
VRL  
VRH  
VRL  
128K Byte Flash EEPROM  
ATD0  
ATD1  
VDDA  
VSSA  
VDDA  
VSSA  
VDDA  
VSSA  
8K Byte RAM  
AN0  
AN1  
AN2  
AN3  
AN4  
AN5  
AN6  
AN7  
PAD00  
PAD01  
PAD02  
PAD03  
PAD04  
PAD05  
PAD06  
AN0  
AN1  
AN2  
AN3  
AN4  
AN5  
AN6  
AN7  
PAD08  
PAD09  
PAD10  
PAD11  
PAD12  
PAD13  
PAD14  
2K Byte EEPROM  
VDDR  
VSSR  
VREGEN  
VDD1,2  
VSS1,2  
Voltage Regulator  
PAD07  
PAD15  
PIX0  
PK0 XADDR14  
PK1 XADDR15  
Single-wire Background  
BKGD  
PIX1  
PIX2  
PIX3  
PIX4  
PIX5  
ECS  
CPU12  
Debug Module  
PPAGE  
PK2  
XADDR16  
XFC  
VDDPLL  
VSSPLL  
EXTAL  
XTAL  
PK3 XADDR17  
PK4 XADDR18  
PK5 XADDR19  
Clock and  
Reset  
Generation  
Module  
PLL  
Periodic Interrupt  
COP Watchdog  
Clock Monitor  
Breakpoints  
PK7  
ECS  
IOC0  
IOC1  
IOC2  
IOC3  
IOC4  
IOC5  
IOC6  
IOC7  
PT0  
PT1  
PT2  
PT3  
PT4  
PT5  
RESET  
PE0  
PE1  
PE2  
PE3  
PE4  
PE5  
PE6  
PE7  
XIRQ  
IRQ  
R/W  
LSTRB  
ECLK  
MODA  
MODB  
Enhanced Capture  
Timer  
System  
Integration  
Module  
(SIM)  
PT6  
PT7  
NOACC/XCLKS  
RXD  
TXD  
RXD  
TXD  
PS0  
PS1  
PS2  
PS3  
PS4  
PS5  
PS6  
PS7  
SCI0  
TEST  
SCI1  
SPI0  
MISO  
MOSI  
SCK  
SS  
Multiplexed Address/Data Bus  
DDRA  
PTA  
DDRB  
PTB  
BDLC  
(J1850)  
RxB  
TxB  
RxCAN  
TxCAN  
RxCAN  
TxCAN  
RX_BF  
TX_BF  
BF_PSYN  
BF_PROK  
BF_PERR  
BF_PSLM  
PM0  
PM1  
PM2  
PM3  
PM4  
PM5  
PM6  
PM7  
CAN0  
CAN1  
BYTE-  
FLIGHT  
Multiplexed  
Wide Bus  
RxCAN  
TxCAN  
SDA  
KWJ0  
KWJ1  
KWJ6  
KWJ7  
PJ0  
PJ1  
PJ6  
PJ7  
CAN4  
Multiplexed  
Narrow Bus  
IIC  
SCL  
Internal Logic 2.5V  
I/O Driver 5V  
PWM0  
KWP0  
KWP1  
KWP2  
KWP3  
KWP4  
KWP5  
KWP6  
KWP7  
PP0  
PP1  
PP2  
PP3  
PP4  
PP5  
V
V
V
DD1,2  
SS1,2  
DDX  
PWM1  
PWM2  
PWM3  
PWM4  
PWM5  
PWM6  
PWM7  
V
SSX  
A/D Converter 5V &  
Voltage Regulator Reference  
PLL 2.5V  
VDDPLL  
V
PP6  
PP7  
DDA  
V
SSPLL  
V
SSA  
MISO  
MOSI  
SCK  
KWH0  
KWH1  
KWH2  
KWH3  
KWH4  
KWH5  
KWH6  
KWH7  
PH0  
PH1  
PH2  
PH3  
PH4  
PH5  
Voltage Regulator 5V & I/O  
V
DDR  
SS  
SPI1  
V
SSR  
PH6  
PH7  
19  
MC9S12DT128B Device User Guide — V01.07  
1.5 Device Memory Map  
Table 1-1 and Figure 1-2 show the device memory map of the MC9S12DT128B after reset. Note that  
after reset the EEPROM ($0000 $07FF) is hidden by the register space ($0000 - $03FF) and the RAM  
($0000 - $1FFF). The bottom 1K Bytes of RAM ($0000 - $03FF) are hidden by the register space.  
Table 1-1 Device Memory Map  
Size  
Address  
Module  
(Bytes)  
24  
2
$0000 – $0017 CORE (Ports A, B, E, Modes, Inits, Test)  
$0018 – $0019 Reserved  
$001A – $001B Device ID register (PARTID)  
$001C – $001F CORE (MEMSIZ, IRQ, HPRIO)  
$0020 – $0027 Reserved  
2
4
8
$0028 – $002F CORE (Background Debug Mode)  
$0030 – $0033 CORE (PPAGE, Port K)  
$0034 – $003F Clock and Reset Generator (PLL, RTI, COP)  
$0040 – $007F Enhanced Capture Timer 16-bit 8 channels  
$0080 – $009F Analog to Digital Converter 10-bit 8 channels (ATD0)  
$00A0 – $00C7 Pulse Width Modulator 8-bit 8 channels (PWM)  
$00C8 – $00CF Serial Communications Interface (SCI0)  
$00D0 – $00D7 Serial Communications Interface (SCI1)  
$00D8 – $00DF Serial Peripheral Interface (SPI0)  
$00E0 – $00E7 Inter IC Bus  
8
4
12  
64  
32  
40  
8
8
8
8
$00E8 – $00EF Byte Level Data Link Controller (BDLC)  
$00F0 – $00F7 Serial Peripheral Interface (SPI1)  
$00F8 – $00FF Reserved  
8
8
8
$0100 – $010F Flash Control Register  
16  
12  
4
$0110 – $011B EEPROM Control Register  
$011C – $011F Reserved  
$0120 – $013F Analog to Digital Converter 10-bit 8 channels (ATD1)  
$0140 – $017F Motorola Scalable CAN (CAN0)  
$0180 – $01BF Motorola Scalable CAN (CAN1)  
$01C0 – $01FF Reserved  
32  
64  
64  
64  
64  
64  
64  
64  
96  
160  
2048  
8192  
$0200 – $023F Reserved  
$0240 – $027F Port Integration Module (PIM)  
$0280 – $02BF Motorola Scalable CAN (CAN4)  
$02C0 – $02FF Reserved  
$0300 – $035F Byteflight (BF)  
$0360 – $03FF Reserved  
$0000 – $07FF EEPROM array  
$0000 – $1FFF RAM array  
Fixed Flash EEPROM array  
$4000 – $7FFF  
16384  
16384  
incl. 0.5K, 1K, 2K or 4K Protected Sector at start  
$8000 – $BFFF Flash EEPROM Page Window  
20  
 
 
MC9S12DT128B Device User Guide — V01.07  
Table 1-1 Device Memory Map  
Size  
(Bytes)  
Address  
Module  
Fixed Flash EEPROM array  
incl. 0.5K, 1K, 2K or 4K Protected Sector at end  
and 256 bytes of Vector Space at $FF80 $FFFF  
$C000 – $FFFF  
16384  
Figure 1-2 MC9S12DT128B Memory Map  
$0000  
1K Register Space  
$03FF  
$0800  
Mappable to any 2K Boundary  
2K Bytes EEPROM  
$0000  
$0400  
$0800  
$1000  
$2000  
$0FFF  
$2000  
$3FFF  
$4000  
Mappable to any 2K Boundary  
8K Bytes RAM  
Mappable to any 8K Boundary  
$4000  
$8000  
$C000  
0.5K, 1K, 2K or 4K Protected Sector  
16K Fixed Flash EEPROM  
$7FFF  
$8000  
16K Page Window  
eight * 16K Flash EEPROM Pages  
EXT  
$BFFF  
$C000  
16K Fixed Flash EEPROM  
2K, 4K, 8K or 16K Protected Boot Sector  
$FFFF  
$FF00  
BDM  
(If Active)  
$FF00  
$FFFF  
VECTORS  
VECTORS  
VECTORS  
$FFFF  
NORMAL  
SINGLE CHIP  
EXPANDED  
SPECIAL  
SINGLE CHIP  
The address does not show the map after reset, but a useful map. After reset the map is:  
$0000 – $03FF: Register Space  
$0000 – $1FFF: 8K RAM  
$0000 – $07FF: 2K EEPROM (not visible)  
21  
MC9S12DT128B Device User Guide — V01.07  
1.5.1 Detailed Register Map  
$0000 - $000F  
MEBI map 1 of 3 (Core User Guide)  
Address  
$0000  
Name  
Bit 7  
Bit 7  
Bit 6  
6
Bit 5  
5
Bit 4  
4
Bit 3  
3
Bit 2  
2
Bit 1  
1
Bit 0  
Bit 0  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
PORTA  
$0001  
$0002  
$0003  
$0004  
$0005  
$0006  
$0007  
$0008  
$0009  
$000A  
$000B  
$000C  
$000D  
$000E  
$000F  
PORTB  
DDRA  
Bit 7  
Bit 7  
6
6
5
5
4
4
3
3
2
2
1
1
Bit 0  
Bit 0  
DDRB  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Reserved  
Reserved  
Reserved  
Reserved  
PORTE  
DDRE  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bit 1  
0
Bit 0  
0
Bit 7  
Bit 7  
6
5
5
4
4
3
3
2
6
0
Bit 2  
0
0
PEAR  
NOACCE  
MODC  
PUPKE  
PIPOE  
NECLK  
0
LSTRE  
RDWE  
0
MODE  
MODB  
0
MODA  
0
IVIS  
0
EMK  
EME  
0
0
0
0
PUCR  
PUPEE  
PUPBE PUPAE  
0
0
0
0
0
0
0
0
0
RDRIV  
RDPK  
0
RDPE  
0
RDPB  
0
RDPA  
EBICTL  
Reserved  
ESTR  
0
0
0
0
$0010 - $0014  
MMC map 1 of 4 (Core User Guide)  
Address  
$0010  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
0
Bit 1  
0
Bit 0  
RAMHAL  
0
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
INITRM  
RAM15 RAM14 RAM13 RAM12 RAM11  
0
0
0
0
0
$0011  
$0012  
$0013  
$0014  
INITRG  
INITEE  
MISC  
REG14  
REG13  
REG12  
REG11  
0
EE15  
0
EE14  
0
EE13  
0
EE12  
0
EEON  
EXSTR1 EXSTR0 ROMHM ROMON  
Bit 0  
Bit 7  
6
5
4
3
2
1
MTST0  
Test Only  
22  
MC9S12DT128B Device User Guide — V01.07  
$0015 - $0016  
INT map 1 of 2 (Core User Guide)  
Address  
$0015  
Name  
ITCR  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Read:  
Write:  
Read:  
Write:  
WRINT  
ADR3  
ADR2  
ADR1  
ADR0  
$0016  
ITEST  
INTE  
INTC  
INTA  
INT8  
INT6  
INT4  
INT2  
INT0  
$0017 - $0017  
MMC map 2 of 4 (Core User Guide)  
Address  
$0017  
Name  
Bit 7  
Bit 7  
Bit 6  
6
Bit 5  
5
Bit 4  
4
Bit 3  
3
Bit 2  
2
Bit 1  
1
Bit 0  
Bit 0  
Read:  
Write:  
MTST1  
Test Only  
$0018 - $001B  
Miscellaneous Peripherals (Device User Guide, Table 1-3)  
Address  
$0018  
Name  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Reserved  
0
0
0
0
0
0
0
0
$0019  
$001A  
$001B  
Reserved  
PARTIDH  
PARTIDL  
ID15  
ID7  
ID14  
ID6  
ID13  
ID5  
ID12  
ID4  
ID11  
ID3  
ID10  
ID2  
ID9  
ID1  
ID8  
ID0  
$001C - $001D  
MMC map 3 of 4 (Core and Device User Guide, Table 1-4)  
Address  
$001C  
Name  
Bit 7  
Read: reg_sw0  
Write:  
Bit 6  
0
Bit 5  
Bit 4  
Bit 3  
0
Bit 2  
Bit 1  
Bit 0  
eep_sw1 eep_sw0  
ram_sw2 ram_sw1 ram_sw0  
MEMSIZ0  
Read: rom_sw1 rom_sw0  
Write:  
0
0
0
0
pag_sw1 pag_sw0  
$001D  
MEMSIZ1  
$001E - $001E  
MEBI map 2 of 3 (Core User Guide)  
Address  
$001E  
Name  
Bit 7  
Bit 6  
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
Read:  
Write:  
INTCR  
IRQE  
IRQEN  
$001F - $001F  
INT map 2 of 2 (Core User Guide)  
Address  
$001F  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
Read:  
Write:  
HPRIO  
PSEL7  
PSEL6  
PSEL5  
PSEL4  
PSEL3  
PSEL2  
PSEL1  
23  
MC9S12DT128B Device User Guide — V01.07  
$0020 - $0027  
Reserved  
Address  
Name  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
Read:  
Write:  
$0020 -  
$0027  
Reserved  
$0028 - $002F  
BKP (Core User Guide)  
Address  
$0028  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
BKPCT0  
BKEN  
BKFULL BKBDM BKTAG  
$0029  
$002A  
$002B  
$002C  
$002D  
$002E  
$002F  
BKPCT1  
BKP0X  
BKP0H  
BKP0L  
BKP1X  
BKP1H  
BKP1L  
BK0MBH BK0MBL BK1MBH BK1MBL BK0RWE BK0RW BK1RWE BK1RW  
0
0
BK0V5  
BK0V4  
BK0V3  
BK0V2  
BK0V1  
BK0V0  
Bit 8  
Bit 15  
14  
13  
12  
11  
10  
9
Bit 7  
0
6
0
5
BK1V5  
13  
4
BK1V4  
12  
3
BK1V3  
11  
2
BK1V2  
10  
1
Bit 0  
BK1V1  
BK1V0  
Bit 8  
Bit 15  
Bit 7  
14  
6
9
1
5
4
3
2
Bit 0  
$0030 - $0031  
MMC map 4 of 4 (Core User Guide)  
Address  
$0030  
Name  
Bit 7  
0
Bit 6  
0
Bit 5  
PIX5  
0
Bit 4  
PIX4  
0
Bit 3  
PIX3  
0
Bit 2  
PIX2  
0
Bit 1  
PIX1  
0
Bit 0  
PIX0  
0
Read:  
Write:  
Read:  
Write:  
PPAGE  
0
0
$0031  
Reserved  
$0032 - $0033  
MEBI map 3 of 3 (Core User Guide)  
Address  
$0032  
Name  
Bit 7  
Bit 7  
Bit 6  
6
Bit 5  
5
Bit 4  
4
Bit 3  
3
Bit 2  
2
Bit 1  
1
Bit 0  
Bit 0  
Read:  
Write:  
Read:  
Write:  
PORTK  
$0033  
DDRK  
Bit 7  
6
5
4
3
2
1
Bit 0  
24  
MC9S12DT128B Device User Guide — V01.07  
$0034 - $003F  
CRG (Clock and Reset Generator)  
Address  
$0034  
Name  
SYNR  
Bit 7  
0
Bit 6  
0
Bit 5  
SYN5  
0
Bit 4  
SYN4  
0
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
SYN3  
SYN2  
SYN1  
SYN0  
0
0
0
0
$0035  
$0036  
$0037  
$0038  
$0039  
$003A  
$003B  
$003C  
$003D  
$003E  
$003F  
REFDV  
REFDV3 REFDV2 REFDV1 REFDV0  
0
0
0
0
0
LOCK  
0
0
TRACK  
0
0
0
SCM  
0
CTFLG  
TEST ONLY  
CRGFLG  
CRGINT  
CLKSEL  
PLLCTL  
RTICTL  
RTIF  
RTIE  
PORF  
0
LOCKIF  
LOCKIE  
SCMIF  
SCMIE  
PLLSEL  
PSTP  
PLLON  
RTR6  
SYSWAI ROAWAI PLLWAI  
0
CWAI  
PRE  
RTIWAI COPWAI  
CME  
0
AUTO  
ACQ  
PCE  
SCME  
RTR0  
RTR5  
0
RTR4  
0
RTR3  
0
RTR2  
RTR1  
COPCTL  
WCOP  
0
RSBCK  
0
CR2  
0
CR1  
0
CR0  
0
0
0
0
0
0
0
FORBYP  
TEST ONLY  
0
0
0
0
0
CTCTL  
TEST ONLY  
0
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
ARMCOP  
$0040 - $007F  
ECT (Enhanced Capture Timer 16 Bit 8 Channels)  
Address  
$0040  
Name  
TIOS  
Bit 7  
IOS7  
0
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Read:  
Write:  
Read:  
IOS6  
IOS5  
IOS4  
IOS3  
IOS2  
IOS1  
IOS0  
0
0
0
0
0
0
0
$0041  
$0042  
$0043  
$0044  
$0045  
$0046  
$0047  
$0048  
$0049  
CFORC  
OC7M  
Write: FOC7  
Read:  
FOC6  
FOC5  
FOC4  
FOC3  
FOC2  
FOC1  
FOC0  
OC7M7 OC7M6 OC7M5 OC7M4 OC7M3 OC7M2 OC7M1 OC7M0  
OC7D7 OC7D6 OC7D5 OC7D4 OC7D3 OC7D2 OC7D1 OC7D0  
Write:  
Read:  
Write:  
OC7D  
Read: Bit 15  
Write:  
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
0
Bit 8  
Bit 0  
0
TCNT (hi)  
TCNT (lo)  
TSCR1  
TTOV  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Bit 7  
0
0
TEN  
TOV7  
OM7  
OM3  
TSWAI  
TOV6  
OL7  
TSFRZ  
TOV5  
OM6  
TFFCA  
TOV4  
OL6  
TOV3  
OM5  
OM1  
TOV2  
OL5  
TOV1  
OM4  
OM0  
TOV0  
OL4  
TCTL1  
TCTL2  
OL3  
OM2  
OL2  
OL1  
OL0  
25  
MC9S12DT128B Device User Guide — V01.07  
$0040 - $007F  
ECT (Enhanced Capture Timer 16 Bit 8 Channels)  
Address  
$004A  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
TCTL3  
EDG7B EDG7A EDG6B EDG6A EDG5B EDG5A EDG4B EDG4A  
EDG3B EDG3A EDG2B EDG2A EDG1B EDG1A EDG0B EDG0A  
$004B  
$004C  
$004D  
$004E  
$004F  
$0050  
$0051  
$0052  
$0053  
$0054  
$0055  
$0056  
$0057  
$0058  
$0059  
$005A  
$005B  
$005C  
$005D  
$005E  
$005F  
$0060  
$0061  
$0062  
TCTL4  
TIE  
C7I  
TOI  
C6I  
0
C5I  
0
C4I  
0
C3I  
C2I  
C1I  
C0I  
TSCR2  
TFLG1  
TCRE  
PR2  
PR1  
PR0  
C7F  
C6F  
0
C5F  
0
C4F  
0
C3F  
0
C2F  
0
C1F  
0
C0F  
0
TFLG2  
TOF  
TC0 (hi)  
TC0 (lo)  
TC1 (hi)  
TC1 (lo)  
TC2 (hi)  
TC2 (lo)  
TC3 (hi)  
TC3 (lo)  
TC4 (hi)  
TC4 (lo)  
TC5 (hi)  
TC5 (lo)  
TC6 (hi)  
TC6 (lo)  
TC7 (hi)  
TC7 (lo)  
PACTL  
Bit 15  
Bit 7  
14  
6
13  
5
12  
4
11  
3
10  
2
9
Bit 8  
Bit 0  
Bit 8  
Bit 0  
Bit 8  
Bit 0  
Bit 8  
Bit 0  
Bit 8  
Bit 0  
Bit 8  
Bit 0  
Bit 8  
Bit 0  
Bit 8  
Bit 0  
PAI  
1
Bit 15  
Bit 7  
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
Bit 15  
Bit 7  
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
Bit 15  
Bit 7  
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
Bit 15  
Bit 7  
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
Bit 15  
Bit 7  
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
Bit 15  
Bit 7  
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
Bit 15  
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
Bit 7  
0
PAEN  
0
PAMOD PEDGE  
CLK1  
0
CLK0  
0
PAOVI  
PAOVF  
1
0
0
0
PAFLG  
PAIF  
Bit 0  
PACN3 (hi)  
Bit 7  
6
5
4
3
2
26  
MC9S12DT128B Device User Guide — V01.07  
$0040 - $007F  
ECT (Enhanced Capture Timer 16 Bit 8 Channels)  
Address  
$0063  
Name  
Bit 7  
Bit 7  
Bit 6  
6
Bit 5  
5
Bit 4  
4
Bit 3  
3
Bit 2  
2
Bit 1  
1
Bit 0  
Bit 0  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
PACN2 (lo)  
$0064  
$0065  
$0066  
$0067  
$0068  
$0069  
$006A  
$006B  
$006C  
$006D  
$006E  
$006F  
$0070  
$0071  
$0072  
$0073  
$0074  
$0075  
$0076  
$0077  
$0078  
$0079  
$007A  
$007B  
PACN1 (hi)  
PACN0 (lo)  
MCCTL  
MCFLG  
ICPAR  
Bit 7  
Bit 7  
6
6
5
5
4
4
3
3
2
2
1
1
Bit 0  
Bit 0  
0
ICLAT  
0
0
MCZI  
MODMC RDMCL  
MCEN  
POLF2  
MCPR1 MCPR0  
FLMC  
POLF3  
0
0
0
0
0
0
POLF1  
POLF0  
MCZF  
0
0
0
PA3EN  
0
PA2EN  
0
PA1EN  
DLY1  
PA0EN  
DLY0  
0
DLYCT  
ICOVW  
NOVW7 NOVW6 NOVW5 NOVW4 NOVW3 NOVW2 NOVW1 NOVW0  
ICSYS  
SH37  
SH26  
SH15  
SH04  
TFMOD PACMX BUFEN  
LATQ  
Reserved  
0
0
0
0
0
0
0
TIMTST  
Test Only  
TCBYP  
PBOVI  
Reserved  
Reserved  
PBCTL  
0
0
0
5
5
5
5
0
0
4
4
4
4
0
0
3
3
3
3
0
0
2
2
2
2
0
PBEN  
0
0
0
PBFLG  
PBOVF  
1
Bit 7  
Bit 7  
Bit 7  
Bit 7  
6
6
6
6
Bit 0  
Bit 0  
Bit 0  
Bit 0  
PA3H  
1
1
1
PA2H  
PA1H  
PA0H  
MCCNT (hi)  
MCCNT (lo)  
TC0H (hi)  
TC0H (lo)  
TC1H (hi)  
TC1H (lo)  
Bit 15  
Bit 7  
14  
13  
12  
11  
10  
9
Bit 8  
6
5
4
3
2
1
9
Bit 0  
Bit 8  
Read: Bit 15  
Write:  
14  
13  
12  
11  
10  
Read:  
Write:  
Bit 7  
6
14  
6
5
13  
5
4
12  
4
3
11  
3
2
10  
2
1
9
1
Bit 0  
Bit 8  
Bit 0  
Read: Bit 15  
Write:  
Read:  
Write:  
Bit 7  
27  
MC9S12DT128B Device User Guide — V01.07  
$0040 - $007F  
ECT (Enhanced Capture Timer 16 Bit 8 Channels)  
Address  
$007C  
Name  
Bit 7  
Read: Bit 15  
Write:  
Bit 6  
14  
Bit 5  
13  
Bit 4  
12  
Bit 3  
11  
Bit 2  
10  
Bit 1  
9
Bit 0  
Bit 8  
TC2H (hi)  
Read:  
Write:  
Read: Bit 15  
Write:  
Read:  
Write:  
Bit 7  
6
14  
6
5
13  
5
4
12  
4
3
11  
3
2
10  
2
1
9
1
Bit 0  
Bit 8  
Bit 0  
$007D  
$007E  
$007F  
TC2H (lo)  
TC3H (hi)  
TC3H (lo)  
Bit 7  
$0080 - $009F  
ATD0 (Analog to Digital Converter 10 Bit 8 Channel)  
Address  
$0080  
Name  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
ATD0CTL0  
0
0
0
0
0
0
0
0
$0081  
$0082  
$0083  
$0084  
$0085  
$0086  
$0087  
$0088  
$0089  
$008A  
$008B  
$008C  
$008D  
$008E  
$008F  
$0090  
$0091  
ATD0CTL1  
ATD0CTL2  
ATD0CTL3  
ATD0CTL4  
ATD0CTL5  
ATD0STAT0  
Reserved  
ASCIF  
ADPU  
0
AFFC  
S8C  
AWAI ETRIGLE ETRIGP ETRIG  
ASCIE  
FRZ1  
PRS1  
S4C  
S2C  
S1C  
FIFO  
FRZ0  
PRS0  
SRES8  
SMP1  
SMP0  
PRS4  
PRS3  
0
PRS2  
DJM  
SCF  
DSGN  
0
SCAN  
MULT  
CC  
CB  
CA  
ETORF  
FIFOR  
0
CC2  
CC1  
CC0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
ATD0TEST0  
ATD0TEST1  
Reserved  
0
0
0
0
0
0
0
0
0
0
0
0
SC  
0
Read: CCF7  
Write:  
CCF6  
0
CCF5  
0
CCF4  
0
CCF3  
0
CCF2  
0
CCF1  
0
CCF0  
0
ATD0STAT1  
Reserved  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
0
ATD0DIEN  
Reserved  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Bit7  
6
5
13  
0
4
12  
0
3
11  
0
2
10  
0
1
9
0
BIT 0  
Bit8  
0
PORTAD0  
ATD0DR0H  
ATD0DR0L  
Read: Bit15  
Write:  
14  
Read:  
Write:  
Bit7  
Bit6  
28  
MC9S12DT128B Device User Guide — V01.07  
$0080 - $009F  
ATD0 (Analog to Digital Converter 10 Bit 8 Channel)  
Address  
$0092  
Name  
Bit 7  
Read: Bit15  
Write:  
Bit 6  
14  
Bit 5  
13  
Bit 4  
12  
Bit 3  
11  
Bit 2  
10  
Bit 1  
9
Bit 0  
Bit8  
ATD0DR1H  
Read:  
Write:  
Read: Bit15  
Write:  
Read:  
Write:  
Read: Bit15  
Write:  
Read:  
Write:  
Read: Bit15  
Write:  
Read:  
Write:  
Read: Bit15  
Write:  
Read:  
Write:  
Read: Bit15  
Write:  
Read:  
Write:  
Read: Bit15  
Write:  
Bit7  
Bit6  
14  
0
13  
0
0
12  
0
0
11  
0
0
10  
0
0
9
0
9
0
9
0
9
0
9
0
9
0
0
Bit8  
0
$0093  
$0094  
$0095  
$0096  
$0097  
$0098  
$0099  
$009A  
$009B  
$009C  
$009D  
$009E  
$009F  
ATD0DR1L  
ATD0DR2H  
ATD0DR2L  
ATD0DR3H  
ATD0DR3L  
ATD0DR4H  
ATD0DR4L  
ATD0DR5H  
ATD0DR5L  
ATD0DR6H  
ATD0DR6L  
ATD0DR7H  
ATD0DR7L  
Bit7  
Bit6  
14  
13  
0
12  
0
11  
0
10  
0
Bit8  
0
Bit7  
Bit6  
14  
13  
0
12  
0
11  
0
10  
0
Bit8  
0
Bit7  
Bit6  
14  
13  
0
12  
0
11  
0
10  
0
Bit8  
0
Bit7  
Bit6  
14  
13  
0
12  
0
11  
0
10  
0
Bit8  
0
Bit7  
Bit6  
14  
13  
0
12  
0
11  
0
10  
0
Bit8  
0
Read:  
Write:  
Bit7  
Bit6  
$00A0 - $00C7  
PWM (Pulse Width Modulator 8 Bit 8 Channel)  
Address  
$00A0  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
PWME  
PWME7 PWME6 PWME5 PWME4 PWME3 PWME2 PWME1 PWME0  
$00A1  
$00A2  
$00A3  
$00A4  
$00A5  
$00A6  
$00A7  
$00A8  
PWMPOL  
PWMCLK  
PWMPRCLK  
PWMCAE  
PWMCTL  
PPOL7  
PPOL6  
PCLK6  
PCKB2  
CAE6  
PPOL5  
PCLK5  
PCKB1  
CAE5  
PPOL4  
PCLK4  
PCKB0  
CAE4  
PPOL3  
PPOL2  
PCLK2  
PCKA2  
CAE2  
PPOL1  
PCLK1  
PCKA1  
PPOL0  
PCLK0  
PCKA0  
PCLK7  
0
PCLK3  
0
CAE7  
CAE3  
CAE1  
0
CAE0  
0
CON67 CON45 CON23 CON01  
PSWAI  
0
PFRZ  
0
0
0
0
0
0
0
0
0
0
0
0
0
PWMTST  
Test Only  
0
3
0
2
PWMPRSC  
Test Only  
PWMSCLA  
Bit 7  
6
5
4
1
Bit 0  
29  
MC9S12DT128B Device User Guide — V01.07  
$00A0 - $00C7  
PWM (Pulse Width Modulator 8 Bit 8 Channel)  
Address  
$00A9  
Name  
Bit 7  
Bit 7  
0
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bit 0  
0
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
PWMSCLB  
6
0
5
0
4
0
3
0
2
0
1
0
PWMSCNTA  
Test Only  
$00AA  
$00AB  
$00AC  
$00AD  
$00AE  
$00AF  
$00B0  
$00B1  
$00B2  
$00B3  
$00B4  
$00B5  
$00B6  
$00B7  
$00B8  
$00B9  
$00BA  
$00BB  
$00BC  
$00BD  
$00BE  
$00BF  
$00C0  
$00C1  
0
0
0
0
0
0
0
0
PWMSCNTB  
Test Only  
Bit 7  
0
Bit 7  
0
Bit 7  
0
Bit 7  
0
Bit 7  
0
Bit 7  
0
Bit 7  
0
Bit 7  
0
6
0
6
0
6
0
6
0
6
0
6
0
6
0
6
0
5
0
5
0
5
0
5
0
5
0
5
0
5
0
5
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
2
0
2
0
2
0
2
0
2
0
2
0
2
0
2
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
Bit 0  
0
Bit 0  
0
Bit 0  
0
Bit 0  
0
Bit 0  
0
Bit 0  
0
Bit 0  
0
Bit 0  
0
PWMCNT0  
PWMCNT1  
PWMCNT2  
PWMCNT3  
PWMCNT4  
PWMCNT5  
PWMCNT6  
PWMCNT7  
PWMPER0  
PWMPER1  
PWMPER2  
PWMPER3  
PWMPER4  
PWMPER5  
PWMPER6  
PWMPER7  
PWMDTY0  
PWMDTY1  
PWMDTY2  
PWMDTY3  
PWMDTY4  
PWMDTY5  
Bit 7  
Bit 7  
Bit 7  
Bit 7  
Bit 7  
Bit 7  
Bit 7  
Bit 7  
Bit 7  
Bit 7  
Bit 7  
Bit 7  
Bit 7  
Bit 7  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
5
5
5
5
5
5
5
5
5
5
5
5
5
5
4
4
4
4
4
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Bit 0  
Bit 0  
Bit 0  
Bit 0  
Bit 0  
Bit 0  
Bit 0  
Bit 0  
Bit 0  
Bit 0  
Bit 0  
Bit 0  
Bit 0  
Bit 0  
30  
MC9S12DT128B Device User Guide — V01.07  
$00A0 - $00C7  
PWM (Pulse Width Modulator 8 Bit 8 Channel)  
Address  
$00C2  
Name  
Bit 7  
Bit 7  
Bit 6  
6
Bit 5  
5
Bit 4  
4
Bit 3  
3
Bit 2  
2
Bit 1  
1
Bit 0  
Bit 0  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
PWMDTY6  
$00C3  
$00C4  
$00C5  
$00C6  
$00C7  
PWMDTY7  
PWMSDN  
Reserved  
Reserved  
Reserved  
Bit 7  
6
5
4
3
0
2
1
Bit 0  
PWM7IN  
PWMRSTRT  
PWMIF PWMIE  
PWMLVL  
0
PWM7INL PWM7ENA  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
$00C8 - $00CF  
SCI0 (Asynchronous Serial Interface)  
Address  
$00C8  
Name  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
SCI0BDH  
SBR12  
SBR11  
SBR10  
SBR9  
SBR8  
$00C9  
$00CA  
$00CB  
$00CC  
$00CD  
$00CE  
$00CF  
SCI0BDL  
SCI0CR1  
SCI0CR2  
SCI0SR1  
SCI0SR2  
SCI0DRH  
SCI0DRL  
SBR7  
SBR6  
SBR5  
SBR4  
M
SBR3  
SBR2  
ILT  
SBR1  
PE  
SBR0  
PT  
LOOPS SCISWAI RSRC  
WAKE  
TIE  
TCIE  
TC  
RIE  
ILIE  
TE  
RE  
NF  
RWU  
FE  
SBK  
PF  
Read: TDRE  
Write:  
RDRF  
IDLE  
OR  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
0
0
0
0
0
0
0
0
RAF  
0
BRK13  
0
TXDIR  
0
R8  
T8  
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
$00D0 - $00D7  
SCI1 (Asynchronous Serial Interface)  
Address  
$00D0  
Name  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
SCI1BDH  
SBR12  
SBR11  
SBR10  
SBR9  
SBR8  
$00D1  
$00D2  
$00D3  
$00D4  
SCI1BDL  
SCI1CR1  
SCI1CR2  
SCI1SR1  
SBR7  
SBR6  
SBR5  
SBR4  
M
SBR3  
SBR2  
ILT  
SBR1  
PE  
SBR0  
PT  
LOOPS SCISWAI RSRC  
WAKE  
TIE  
TCIE  
TC  
RIE  
ILIE  
TE  
RE  
NF  
RWU  
FE  
SBK  
PF  
Read: TDRE  
Write:  
RDRF  
IDLE  
OR  
31  
MC9S12DT128B Device User Guide — V01.07  
$00D0 - $00D7  
SCI1 (Asynchronous Serial Interface)  
Address  
$00D5  
Name  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
BRK13  
0
Bit 1  
TXDIR  
0
Bit 0  
RAF  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
SCI1SR2  
R8  
0
0
0
0
$00D6  
$00D7  
SCI1DRH  
SCI1DRL  
T8  
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
$00D8 - $00DF  
SPI0 (Serial Peripheral Interface)  
Address  
$00D8  
Name  
Bit 7  
SPIE  
0
Bit 6  
SPE  
0
Bit 5  
SPTIE  
0
Bit 4  
Bit 3  
Bit 2  
CPHA  
0
Bit 1  
Bit 0  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
SPI0CR1  
MSTR  
CPOL  
SSOE  
LSBFE  
$00D9  
$00DA  
$00DB  
$00DC  
$00DD  
$00DE  
$00DF  
SPI0CR2  
SPI0BR  
MODFEN BIDIROE  
SPISWAI SPC0  
0
SPIF  
0
0
SPPR2  
0
SPPR1  
SPTEF  
SPPR0  
SPR2  
0
SPR1  
0
SPR0  
0
MODF  
0
0
0
SPI0SR  
0
0
0
0
0
Reserved  
SPI0DR  
Reserved  
Reserved  
Bit7  
0
6
0
5
0
4
0
3
0
2
0
1
0
Bit0  
0
0
0
0
0
0
0
0
0
$00E0 - $00E7  
IIC (Inter IC Bus)  
Address  
$00E0  
Name  
IBAD  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
ADR7  
ADR6  
ADR5  
ADR4  
ADR3  
ADR2  
ADR1  
$00E1  
$00E2  
$00E3  
$00E4  
$00E5  
$00E6  
$00E7  
IBFD  
IBCR  
IBC7  
IBC6  
IBC5  
IBC4  
TX/RX  
IBAL  
IBC3  
IBC2  
IBC1  
0
IBC0  
0
IBEN  
TCF  
IBIE  
MS/SL  
IBB  
TXAK  
0
IBSWAI  
RXAK  
RSTA  
SRW  
IAAS  
IBSR  
IBIF  
IBDR  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D 0  
0
Reserved  
Reserved  
Reserved  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
32  
MC9S12DT128B Device User Guide — V01.07  
$00E8 - $00EF  
BDLC (Byte Level Data Link Controller J1850)  
Address  
$00E8  
Name  
Bit 7  
IMSG  
0
Bit 6  
CLKS  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
IE  
Bit 0  
WCM  
0
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
DLCBCR1  
I3  
I2  
I1  
I0  
0
$00E9  
$00EA  
$00EB  
$00EC  
$00ED  
$00EE  
$00EF  
DLCBSVR  
DLCBCR2  
DLCBDR  
SMRST DLOOP RX4XE  
NBFS  
TEOD  
D3  
TSIFR  
D2  
TMIFR1 TMIFR0  
D7  
0
D6  
D5  
0
D4  
0
D1  
D0  
DLCBARD  
DLCBRSR  
DLCSCR  
RXPOL  
0
BO3  
BO2  
BO1  
BO0  
0
0
0
R5  
0
R4  
R3  
0
R2  
0
R1  
0
R0  
0
0
0
BDLCE  
0
0
0
0
0
IDLE  
DLCBSTAT  
$00F0 - $00F7  
SPI1 (Serial Peripheral Interface)  
Address  
$00F0  
Name  
Bit 7  
SPIE  
0
Bit 6  
SPE  
0
Bit 5  
SPTIE  
0
Bit 4  
Bit 3  
Bit 2  
CPHA  
0
Bit 1  
Bit 0  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
SPI1CR1  
MSTR  
CPOL  
SSOE  
LSBFE  
$00F1  
$00F2  
$00F3  
$00F4  
$00F5  
$00F6  
$00F7  
SPI1CR2  
SPI1BR  
MODFEN BIDIROE  
SPISWAI SPC0  
0
SPIF  
0
0
SPPR2  
0
SPPR1  
SPTEF  
SPPR0  
SPR2  
0
SPR1  
0
SPR0  
0
MODF  
0
0
0
SPI1SR  
0
0
0
0
0
Reserved  
SPI1DR  
Reserved  
Reserved  
Bit7  
0
6
0
5
0
4
0
3
0
2
0
1
0
Bit0  
0
0
0
0
0
0
0
0
0
$00F8 - $00FF  
Reserved  
Address  
Name  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
Read:  
Write:  
$00F8 -  
$00FF  
Reserved  
33  
MC9S12DT128B Device User Guide — V01.07  
$0100 - $010F  
Flash Control Register (fts128k2)  
Address  
$0100  
Name  
Bit 7  
Read: FDIVLD  
Write:  
Read: KEYEN  
Write:  
Bit 6  
PRDIV8  
NV6  
Bit 5  
FDIV5  
NV5  
Bit 4  
FDIV4  
NV4  
Bit 3  
FDIV3  
NV3  
Bit 2  
FDIV2  
NV2  
Bit 1  
FDIV1  
SEC1  
Bit 0  
FDIV0  
SEC0  
FCLKDIV  
$0101  
$0102  
$0103  
$0104  
$0105  
$0106  
$0107  
$0108  
$0109  
$010A  
$010B  
FSEC  
FTSTMOD  
FCNFG  
FPROT  
FSTAT  
Read:  
Write:  
0
0
0
0
0
0
0
0
WRALL  
0
0
Read:  
CBEIE  
Write:  
CCIE  
KEYACC  
BKSEL1 BKSEL0  
Read:  
Write:  
FPOPEN  
NV6  
FPHDIS FPHS1  
FPHS0 FPLDIS  
FPLS1  
0
FPLS0  
0
Read:  
CBEIF  
Write:  
CCIF  
0
PVIOL ACCERR  
0
BLANK  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
0
0
0
0
0
0
FCMD  
CMDB6 CMDB5  
CMDB2  
CMDB0  
0
0
0
0
0
0
Reserved for  
Factory Test  
FADDRHI  
FADDRLO  
FDATAHI  
FDATALO  
Reserved  
Bit 14  
6
13  
5
12  
4
11  
3
10  
2
9
1
9
Bit 8  
Bit 0  
Bit 8  
Bit 7  
Bit 15  
14  
13  
12  
11  
10  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
$010C -  
$010F  
$0110 - $011B  
EEPROM Control Register (eets2k)  
Address  
$0110  
Name  
Bit 7  
Read: EDIVLD  
Write:  
Bit 6  
PRDIV8  
0
Bit 5  
EDIV5  
0
Bit 4  
EDIV4  
0
Bit 3  
EDIV3  
0
Bit 2  
EDIV2  
0
Bit 1  
EDIV1  
0
Bit 0  
EDIV0  
0
ECLKDIV  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
0
$0111  
$0112  
$0113  
$0114  
$0115  
$0116  
$0117  
$0108  
Reserved  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Reserved for  
Factory Test  
ECNFG  
EPROT  
ESTAT  
ECMD  
CBEIE  
CCIE  
EPOPEN  
NV6  
NV5  
NV4  
EPDIS  
0
EP2  
EP1  
0
EP0  
0
CCIF  
CBEIF  
0
PVIOL ACCERR  
0
BLANK  
0
0
0
0
0
CMDB6 CMDB5  
CMDB2  
0
CMDB0  
0
0
0
0
0
0
0
0
0
Reserved for  
Factory Test  
0
EADDRHI  
Bit 9  
Bit 8  
34  
MC9S12DT128B Device User Guide — V01.07  
$0110 - $011B  
EEPROM Control Register (eets2k)  
Address  
$0109  
Name  
Bit 7  
Bit 7  
Bit 6  
6
Bit 5  
5
Bit 4  
4
Bit 3  
3
Bit 2  
2
Bit 1  
1
Bit 0  
Bit 0  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
EADDRLO  
$010A  
$010B  
EDATAHI  
EDATALO  
Bit 15  
Bit 7  
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
Bit 8  
Bit 0  
$011C - $011F  
Reserved for RAM Control Register  
Address  
Name  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
Read:  
Write:  
$011C -  
$011F  
Reserved  
$0120 - $013F  
ATD1 (Analog to Digital Converter 10 Bit 8 Channel)  
Address  
$0120  
Name  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
ATD1CTL0  
0
0
0
0
0
0
0
0
$0121  
$0122  
$0123  
$0124  
$0125  
$0126  
$0127  
$0128  
$0129  
$012A  
$012B  
$012C  
$012D  
$012E  
$012F  
ATD1CTL1  
ATD1CTL2  
ATD1CTL3  
ATD1CTL4  
ATD1CTL5  
ATD1STAT0  
Reserved  
ASCIF  
ADPU  
0
AFFC  
S8C  
AWAI ETRIGLE ETRIGP ETRIG  
ASCIE  
FRZ1  
PRS1  
S4C  
S2C  
S1C  
FIFO  
FRZ0  
PRS0  
SRES8  
SMP1  
SMP0  
PRS4  
PRS3  
0
PRS2  
DJM  
SCF  
DSGN  
0
SCAN  
MULT  
CC  
CB  
CA  
ETORF  
FIFOR  
0
CC2  
CC1  
CC0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
ATD1TEST0  
ATD1TEST1  
Reserved  
0
0
0
0
0
0
0
0
0
0
0
0
SC  
0
Read: CCF7  
Write:  
CCF6  
0
CCF5  
0
CCF4  
0
CCF3  
0
CCF2  
0
CCF1  
0
CCF0  
0
ATD1STAT1  
Reserved  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
0
ATD1DIEN  
Reserved  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Bit7  
6
5
4
3
2
1
BIT 0  
PORTAD1  
35  
MC9S12DT128B Device User Guide — V01.07  
$0120 - $013F  
ATD1 (Analog to Digital Converter 10 Bit 8 Channel)  
Address  
$0130  
Name  
Bit 7  
Read: Bit15  
Write:  
Bit 6  
14  
Bit 5  
13  
Bit 4  
12  
Bit 3  
11  
Bit 2  
10  
Bit 1  
9
Bit 0  
Bit8  
ATD1DR0H  
Read:  
Write:  
Read: Bit15  
Write:  
Read:  
Write:  
Read: Bit15  
Write:  
Read:  
Write:  
Read: Bit15  
Write:  
Read:  
Write:  
Read: Bit15  
Write:  
Read:  
Write:  
Read: Bit15  
Write:  
Read:  
Write:  
Read: Bit15  
Write:  
Read:  
Write:  
Read: Bit15  
Write:  
Read:  
Write:  
Bit7  
Bit6  
14  
0
13  
0
0
12  
0
0
11  
0
0
10  
0
0
9
0
9
0
9
0
9
0
9
0
9
0
9
0
0
Bit8  
0
$0131  
$0132  
$0133  
$0134  
$0135  
$0136  
$0137  
$0138  
$0139  
$013A  
$013B  
$013C  
$013D  
$013E  
$013F  
ATD1DR0L  
ATD1DR1H  
ATD1DR1L  
ATD1DR2H  
ATD1DR2L  
ATD1DR3H  
ATD1DR3L  
ATD1DR4H  
ATD1DR4L  
ATD1DR5H  
ATD1DR5L  
ATD1DR6H  
ATD1DR6L  
ATD1DR7H  
ATD1DR7L  
Bit7  
Bit6  
14  
13  
0
12  
0
11  
0
10  
0
Bit8  
0
Bit7  
Bit6  
14  
13  
0
12  
0
11  
0
10  
0
Bit8  
0
Bit7  
Bit6  
14  
13  
0
12  
0
11  
0
10  
0
Bit8  
0
Bit7  
Bit6  
14  
13  
0
12  
0
11  
0
10  
0
Bit8  
0
Bit7  
Bit6  
14  
13  
0
12  
0
11  
0
10  
0
Bit8  
0
Bit7  
Bit6  
14  
13  
0
12  
0
11  
0
10  
0
Bit8  
0
Bit7  
Bit6  
$0140 - $017F  
CAN0 (Motorola Scalable CAN - MSCAN)  
Address  
$0140  
Name  
Bit 7  
Bit 6  
RXACT  
Bit 5  
Bit 4  
SYNCH  
Bit 3  
TIME  
0
Bit 2  
Bit 1  
Bit 0  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
CAN0CTL0  
RXFRM  
CSWAI  
WUPE  
SLPRQ INITRQ  
SLPAK  
INITAK  
$0141  
$0142  
$0143  
$0144  
$0145  
CAN0CTL1  
CAN0BTR0  
CAN0BTR1  
CAN0RFLG  
CAN0RIER  
CANE CLKSRC LOOPB LISTEN  
SJW1 SJW0 BRP5 BRP4  
WUPM  
BRP2  
BRP3  
BRP1  
BRP0  
SAMP TSEG22 TSEG21 TSEG20 TSEG13 TSEG12 TSEG11 TSEG10  
RSTAT1 RSTAT0 TSTAT1 TSTAT0  
WUPIF  
CSCIF  
OVRIF  
RXF  
WUPIE  
CSCIE RSTATE1 RSTATE0 TSTATE1 TSTATE0 OVRIE  
RXFIE  
36  
MC9S12DT128B Device User Guide — V01.07  
$0140 - $017F  
CAN0 (Motorola Scalable CAN - MSCAN)  
Address  
$0146  
Name  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
Bit 1  
Bit 0  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
CAN0TFLG  
TXE2  
TXE1  
TXE0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
$0147  
$0148  
$0149  
$014A  
$014B  
$014C  
$014D  
$014E  
$014F  
CAN0TIER  
CAN0TARQ  
CAN0TAAK  
CAN0TBSEL  
CAN0IDAC  
Reserved  
TXEIE2 TXEIE1 TXEIE0  
ABTRQ2 ABTRQ1 ABTRQ0  
ABTAK2 ABTAK1 ABTAK0  
TX2  
TX1  
TX0  
IDHIT2  
IDHIT1  
IDHIT0  
IDAM1  
0
IDAM0  
0
0
0
0
0
0
0
0
0
Reserved  
Read: RXERR7 RXERR6 RXERR5 RXERR4 RXERR3 RXERR2 RXERR1 RXERR0  
CAN0RXERR  
CAN0TXERR  
Write:  
Read: TXERR7 TXERR6 TXERR5 TXERR4 TXERR3 TXERR2 TXERR1 TXERR0  
Write:  
Read:  
$0150 - CAN0IDAR0 -  
$0153 CAN0IDAR3  
$0154 - CAN0IDMR0 -  
$0157 CAN0IDMR3  
$0158 - CAN0IDAR4 -  
$015B CAN0IDAR7  
$015C - CAN0IDMR4 -  
AC7  
AM7  
AC7  
AM7  
AC6  
AM6  
AC6  
AM6  
AC5  
AM5  
AC5  
AM5  
AC4  
AM4  
AC4  
AM4  
AC3  
AM3  
AC3  
AM3  
AC2  
AM2  
AC2  
AM2  
AC1  
AM1  
AC1  
AM1  
AC0  
AM0  
AC0  
AM0  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
$015F  
CAN0IDMR7  
FOREGROUND RECEIVE BUFFER see Table 1-2  
$0160 -  
$016F  
CAN0RXFG  
$0170 -  
$017F  
CAN0TXFG  
FOREGROUND TRANSMIT BUFFER see Table 1-2  
Table 1-2 Detailed MSCAN Foreground Receive and Transmit Buffer Layout  
Address  
$xxx0  
Name  
Bit 7  
ID28  
ID10  
Bit 6  
ID27  
ID9  
Bit 5  
ID26  
ID8  
Bit 4  
ID25  
ID7  
Bit 3  
ID24  
ID6  
Bit 2  
ID23  
ID5  
Bit 1  
ID22  
ID4  
Bit 0  
ID21  
ID3  
Extended ID Read:  
Standard ID Read:  
CANxRIDR0 Write:  
Extended ID Read:  
Standard ID Read:  
CANxRIDR1 Write:  
Extended ID Read:  
Standard ID Read:  
CANxRIDR2 Write:  
Extended ID Read:  
Standard ID Read:  
CANxRIDR3 Write:  
ID20  
ID2  
ID19  
ID1  
ID18  
ID0  
SRR=1  
RTR  
IDE=1  
IDE=0  
ID17  
ID9  
ID16  
ID8  
ID15  
ID7  
$xxx1  
$xxx2  
ID14  
ID6  
ID13  
ID5  
ID12  
ID4  
ID11  
ID3  
ID10  
ID2  
ID1  
ID0  
RTR  
DB0  
$xxx3  
Read:  
CANxRDSR7  
Write:  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
$xxx4- CANxRDSR0 -  
$xxxB  
37  
 
MC9S12DT128B Device User Guide — V01.07  
Table 1-2 Detailed MSCAN Foreground Receive and Transmit Buffer Layout  
Address  
$xxxC  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
DLC3  
Bit 2  
DLC2  
Bit 1  
DLC1  
Bit 0  
DLC0  
Read:  
Write:  
Read:  
Write:  
CANRxDLR  
$xxxD  
$xxxE  
$xxxF  
Reserved  
Read: TSR15  
Write:  
Read: TSR7  
Write:  
TSR14  
TSR6  
TSR13  
TSR5  
TSR12  
TSR4  
TSR11  
TSR3  
TSR10  
TSR2  
TSR9  
TSR1  
TSR8  
TSR0  
CANxRTSRH  
CANxRTSRL  
Extended ID Read:  
CANxTIDR0 Write:  
Standard ID Read:  
Write:  
Extended ID Read:  
CANxTIDR1 Write:  
Standard ID Read:  
Write:  
Extended ID Read:  
CANxTIDR2 Write:  
Standard ID Read:  
Write:  
Extended ID Read:  
CANxTIDR3 Write:  
Standard ID Read:  
Write:  
ID28  
ID10  
ID20  
ID2  
ID27  
ID9  
ID26  
ID8  
ID25  
ID7  
ID24  
ID6  
ID23  
ID5  
ID22  
ID4  
ID21  
ID3  
$xx10  
$xx11  
$xx12  
ID19  
ID1  
ID18  
ID0  
SRR=1  
RTR  
IDE=1  
IDE=0  
ID10  
ID17  
ID16  
ID15  
ID14  
ID13  
ID12  
ID11  
ID9  
ID1  
ID8  
ID0  
ID7  
ID6  
DB7  
ID5  
ID4  
ID3  
ID2  
RTR  
$xx13  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read: TSR15  
Write:  
Read: TSR7  
Write:  
$xx14- CANxTDSR0 -  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
$xx1B  
CANxTDSR7  
$xx1C  
CANxTDLR  
DLC3  
DLC2  
DLC1  
DLC0  
$xx1D  
$xx1E  
$xx1F  
CONxTTBPR  
CANxTTSRH  
CANxTTSRL  
PRIO7  
PRIO6  
TSR14  
PRIO5  
TSR13  
PRIO4  
TSR12  
PRIO3  
TSR11  
PRIO2  
TSR10  
PRIO1  
TSR9  
PRIO0  
TSR8  
TSR6  
TSR5  
TSR4  
TSR3  
TSR2  
TSR1  
TSR0  
$0180 - $01BF  
CAN1 (Motorola Scalable CAN - MSCAN)  
Address  
$0180  
Name  
Bit 7  
Bit 6  
RXACT  
Bit 5  
Bit 4  
SYNCH  
Bit 3  
TIME  
0
Bit 2  
Bit 1  
Bit 0  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
CAN1CTL0  
RXFRM  
CSWAI  
WUPE  
SLPRQ INITRQ  
SLPAK  
INITAK  
$0181  
$0182  
$0183  
$0184  
CAN1CTL1  
CAN1BTR0  
CAN1BTR1  
CAN1RFLG  
CANE CLKSRC LOOPB LISTEN  
SJW1 SJW0 BRP5 BRP4  
WUPM  
BRP2  
BRP3  
BRP1  
BRP0  
SAMP TSEG22 TSEG21 TSEG20 TSEG13 TSEG12 TSEG11 TSEG10  
RSTAT1 RSTAT0 TSTAT1 TSTAT0  
WUPIF  
CSCIF  
OVRIF  
RXF  
38  
MC9S12DT128B Device User Guide — V01.07  
$0180 - $01BF  
CAN1 (Motorola Scalable CAN - MSCAN)  
Address  
$0185  
Name  
Bit 7  
WUPIE  
0
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
CAN1RIER  
CSCIE RSTATE1 RSTATE0 TSTATE1 TSTATE0 OVRIE  
RXFIE  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
$0186  
$0187  
$0188  
$0189  
$018A  
$018B  
$018C  
$018D  
CAN1TFLG  
CAN1TIER  
CAN1TARQ  
CAN1TAAK  
CAN1TBSEL  
CAN1IDAC  
Reserved  
TXE2  
TXE1  
TXE0  
0
0
0
0
0
0
0
TXEIE2 TXEIE1 TXEIE0  
ABTRQ2 ABTRQ1 ABTRQ0  
ABTAK2 ABTAK1 ABTAK0  
TX2  
TX1  
TX0  
IDHIT2  
IDHIT1  
IDHIT0  
IDAM1  
0
IDAM0  
0
0
0
0
0
0
0
0
0
Reserved  
Read: RXERR7 RXERR6 RXERR5 RXERR4 RXERR3 RXERR2 RXERR1 RXERR0  
Write:  
$0184E CAN1RXERR  
Read: TXERR7 TXERR6 TXERR5 TXERR4 TXERR3 TXERR2 TXERR1 TXERR0  
$018F  
CAN1TXERR  
Write:  
Read:  
$0190 - CAN1IDAR0 -  
AC7  
AM7  
AC7  
AM7  
AC6  
AM6  
AC6  
AM6  
AC5  
AM5  
AC5  
AM5  
AC4  
AM4  
AC4  
AM4  
AC3  
AM3  
AC3  
AM3  
AC2  
AM2  
AC2  
AM2  
AC1  
AM1  
AC1  
AM1  
AC0  
AM0  
AC0  
AM0  
$0193 CAN1IDAR3  
$0194 - CAN1IDMR0 -  
$0197 CAN1IDMR3  
$0198 - CAN1IDAR4 -  
$019B CAN1IDAR7  
$019C - CAN1IDMR4 -  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
$019F  
CAN1IDMR7  
FOREGROUND RECEIVE BUFFER see Table 1-2  
$0160 -  
$016F  
CAN0RXFG  
$0170 -  
$017F  
CAN0TXFG  
FOREGROUND TRANSMIT BUFFER see Table 1-2  
$01C0 - $01FF  
Reserved  
Address  
Name  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
Read:  
Write:  
$01C0 -  
$01FF  
Reserved  
$0200 - $023F  
Reserved  
Address  
Name  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
Read:  
Write:  
$020C -  
$023F  
Reserved  
39  
MC9S12DT128B Device User Guide — V01.07  
$0240 - $027F  
PIM (Port Integration Module)  
Address  
$0240  
Name  
PTT  
Bit 7  
Bit 6  
PTT6  
PTIT6  
Bit 5  
PTT5  
PTIT5  
Bit 4  
PTT4  
PTIT4  
Bit 3  
PTT3  
PTIT3  
Bit 2  
PTT2  
PTIT2  
Bit 1  
PTT1  
PTIT1  
Bit 0  
PTT0  
PTIT0  
Read:  
Write:  
PTT7  
Read: PTIT7  
Write:  
$0241  
$0242  
$0243  
$0244  
$0245  
$0246  
$0247  
$0248  
$0249  
$024A  
$024B  
$024C  
$024D  
$024E  
$024F  
$0250  
$0251  
$0252  
$0253  
$0254  
$0255  
$0256  
$0257  
$0258  
PTIT  
DDRT  
RDRT  
PERT  
Read:  
DDRT7 DDRT7 DDRT5 DDRT4 DDRT3 DDRT2 DDRT1 DDRT0  
RDRT7 RDRT6 RDRT5 RDRT4 RDRT3 RDRT2 RDRT1 RDRT0  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
PERT7  
PERT6  
PERT5  
PERT4  
PERT3  
PERT2  
PERT1  
PERT0  
PPST  
PPST7  
0
PPST6  
0
PPST5  
0
PPST4  
0
PPST3  
0
PPST2  
0
PPST1  
0
PPST0  
0
Reserved  
Reserved  
PTS  
0
0
0
0
0
0
0
0
PTS7  
PTS6  
PTS5  
PTS4  
PTS3  
PTS2  
PTS1  
PTS0  
Read: PTIS7  
Write:  
PTIS6  
PTIS5  
PTIS4  
PTIS3  
PTIS2  
PTIS1  
PTIS0  
PTIS  
Read:  
DDRS  
RDRS  
PERS  
PPSS  
DDRS7 DDRS7 DDRS5 DDRS4 DDRS3 DDRS2 DDRS1 DDRS0  
RDRS7 RDRS6 RDRS5 RDRS4 RDRS3 RDRS2 RDRS1 RDRS0  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
PERS7  
PPSS7  
PERS6  
PPSS6  
PERS5  
PPSS5  
PERS4  
PPSS4  
PERS3  
PPSS3  
PERS2  
PPSS2  
PERS1  
PPSS1  
PERS0  
PPSS0  
WOMS  
Reserved  
PTM  
WOMS7 WOMS6 WOMS5 WOMS4 WOMS3 WOMS2 WOMS1 WOMS0  
0
0
0
0
0
0
0
0
PTM7  
PTM6  
PTM5  
PTM4  
PTM3  
PTM2  
PTM1  
PTM0  
Read: PTIM7  
Write:  
PTIM6  
PTIM5  
PTIM4  
PTIM3  
PTIM2  
PTIM1  
PTIM0  
PTIM  
Read:  
DDRM  
RDRM  
PERM  
PPSM  
WOMM  
MODRR  
PTP  
DDRM7 DDRM7 DDRM5 DDRM4 DDRM3 DDRM2 DDRM1 DDRM0  
RDRM7 RDRM6 RDRM5 RDRM4 RDRM3 RDRM2 RDRM1 RDRM0  
PERM7 PERM6 PERM5 PERM4 PERM3 PERM2 PERM1 PERM0  
PPSM7 PPSM6 PPSM5 PPSM4 PPSM3 PPSM2 PPSM1 PPSM0  
WOMM7 WOMM6 WOMM5 WOMM4 WOMM3 WOMM2 WOMM1 WOMM0  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
0
0
MODRR5 MODRR4 MODRR3 MODRR2 MODRR1 MODRR0  
PTP5 PTP4 PTP3 PTP2 PTP1 PTP0  
PTP7  
PTP6  
40  
MC9S12DT128B Device User Guide — V01.07  
$0240 - $027F  
PIM (Port Integration Module)  
Address  
$0259  
Name  
PTIP  
Bit 7  
Read: PTIP7  
Write:  
Bit 6  
PTIP6  
Bit 5  
PTIP5  
Bit 4  
PTIP4  
Bit 3  
PTIP3  
Bit 2  
PTIP2  
Bit 1  
PTIP1  
Bit 0  
PTIP0  
Read:  
$025A  
$025B  
$025C  
$025D  
$025E  
$025F  
$0260  
$0261  
$0262  
$0263  
$0264  
$0265  
$0266  
$0267  
$0268  
$0269  
$026A  
$026B  
$026C  
$026D  
$026E  
$026F  
DDRP  
RDRP  
PERP  
PPSP  
PIEP  
DDRP7 DDRP7 DDRP5 DDRP4 DDRP3 DDRP2 DDRP1 DDRP0  
RDRP7 RDRP6 RDRP5 RDRP4 RDRP3 RDRP2 RDRP1 RDRP0  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
PERP7  
PPSP7  
PIEP7  
PIFP7  
PTH7  
PERP6  
PPSP6  
PIEP6  
PIFP6  
PERP5  
PPSP5  
PIEP5  
PIFP5  
PERP4  
PPSP4  
PIEP4  
PIFP4  
PERP3  
PPSP3  
PIEP3  
PIFP3  
PERP2  
PPSP2  
PIEP2  
PIFP2  
PERP1  
PPSP1  
PIEP1  
PIFP1  
PERP0  
PPSS0  
PIEP0  
PIFP0  
PIFP  
PTH  
PTH6  
PTH5  
PTH4  
PTH3  
PTH2  
PTH1  
PTH0  
Read: PTIH7  
Write:  
Read:  
PTIH6  
PTIH5  
PTIH4  
PTIH3  
PTIH2  
PTIH1  
PTIH0  
PTIH  
DDRH  
RDRH  
PERH  
PPSH  
PIEH  
DDRH7 DDRH7 DDRH5 DDRH4 DDRH3 DDRH2 DDRH1 DDRH0  
RDRH7 RDRH6 RDRH5 RDRH4 RDRH3 RDRH2 RDRH1 RDRH0  
PERH7 PERH6 PERH5 PERH4 PERH3 PERH2 PERH1 PERH0  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read: PTIJ7  
Write:  
Read:  
DDRJ7  
Write:  
Read:  
RDRJ7  
Write:  
Read:  
PERJ7  
Write:  
PPSH7  
PIEH7  
PIFH7  
PTJ7  
PPSH6  
PIEH6  
PIFH6  
PPSH5  
PIEH5  
PPSH4  
PIEH4  
PPSH3  
PIEH3  
PPSH2  
PIEH2  
PPSH1  
PIEH1  
PIFH1  
PPSH0  
PIEH0  
PIFH0  
PIFH  
PIFH5  
0
PIFH4  
0
PIFH3  
0
PIFH2  
0
PTJ  
PTJ6  
PTJ1  
PTJ0  
PTIJ6  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PTIJ1  
PTIJ0  
PTIJ  
DDRJ  
RDRJ  
PERJ  
PPSJ  
PIEJ  
DDRJ7  
RDRJ6  
PERJ6  
PPSJ6  
PIEJ6  
DDRJ1  
RDRJ1  
PERJ1  
PPSJ1  
PIEJ1  
DDRJ0  
RDRJ0  
PERJ0  
PPSJ0  
PIEJ0  
Read:  
PPSJ7  
Write:  
Read:  
PIEJ7  
Write:  
Read:  
PIFJ7  
Write:  
Read:  
Write:  
PIFJ  
PIFJ6  
0
PIFJ1  
0
PIFJ0  
0
0
$0270 -  
$027F  
Reserved  
41  
MC9S12DT128B Device User Guide — V01.07  
$0280 - $02BF  
CAN4 (Motorola Scalable CAN - MSCAN)  
Address  
$0280  
Name  
Bit 7  
Bit 6  
RXACT  
Bit 5  
Bit 4  
SYNCH  
Bit 3  
TIME  
0
Bit 2  
Bit 1  
Bit 0  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
CAN4CTL0  
RXFRM  
CSWAI  
WUPE  
SLPRQ INITRQ  
SLPAK  
BRP1  
INITAK  
BRP0  
$0281  
$0282  
$0283  
$0284  
$0285  
$0286  
$0287  
$0288  
$0289  
$028A  
$028B  
$028C  
$028D  
$028E  
$028F  
CAN4CTL1  
CAN4BTR0  
CAN4BTR1  
CAN4RFLG  
CAN4RIER  
CAN4TFLG  
CAN4TIER  
CAN4TARQ  
CAN4TAAK  
CAN4TBSEL  
CAN4IDAC  
Reserved  
CANE CLKSRC LOOPB LISTEN  
SJW1 SJW0 BRP5 BRP4  
WUPM  
BRP2  
BRP3  
SAMP TSEG22 TSEG21 TSEG20 TSEG13 TSEG12 TSEG11 TSEG10  
RSTAT1 RSTAT0 TSTAT1 TSTAT0  
WUPIF  
CSCIF  
OVRIF  
RXF  
RXFIE  
TXE0  
WUPIE  
0
CSCIE RSTATE1 RSTATE0 TSTATE1 TSTATE0 OVRIE  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
TXE2  
TXE1  
0
0
0
0
0
0
0
TXEIE2 TXEIE1 TXEIE0  
ABTRQ2 ABTRQ1 ABTRQ0  
ABTAK2 ABTAK1 ABTAK0  
TX2  
TX1  
TX0  
IDHIT2  
IDHIT1  
IDHIT0  
IDAM1  
0
IDAM0  
0
0
0
0
0
0
0
0
0
Reserved  
Read: RXERR7 RXERR6 RXERR5 RXERR4 RXERR3 RXERR2 RXERR1 RXERR0  
CAN4RXERR  
CAN4TXERR  
Write:  
Read: TXERR7 TXERR6 TXERR5 TXERR4 TXERR3 TXERR2 TXERR1 TXERR0  
Write:  
Read:  
$0290 - CAN0IDAR0 -  
$0293 CAN0IDAR3  
$0294 - CAN0IDMR0 -  
$0297 CAN0IDMR3  
$0298 - CAN0IDAR4 -  
$029B CAN0IDAR7  
$029C - CAN0IDMR4 -  
AC7  
AM7  
AC7  
AM7  
AC6  
AM6  
AC6  
AM6  
AC5  
AM5  
AC5  
AM5  
AC4  
AM4  
AC4  
AM4  
AC3  
AM3  
AC3  
AM3  
AC2  
AM2  
AC2  
AM2  
AC1  
AM1  
AC1  
AM1  
AC0  
AM0  
AC0  
AM0  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
$029F  
CAN0IDMR7  
Read:  
Write:  
Read:  
Write:  
FOREGROUND RECEIVE BUFFER see Table 1-2  
$02A0 -  
$02AF  
CAN4RXFG  
$02B0 -  
$02BF  
CAN4TXFG  
FOREGROUND TRANSMIT BUFFER see Table 1-2  
42  
MC9S12DT128B Device User Guide — V01.07  
$02C0 - $02FF  
Reserved  
Address  
Name  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
Read:  
Write:  
$02C0 -  
$02FF  
Reserved  
$0300 - $035F  
Byteflight  
Address  
$0300  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
SLPAK  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INITAK  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
BFMCR  
INITRQ MASTER ALARM  
SLPRQ WPULSE SSWAI  
FSIZ3 FSIZ2 FSIZ1  
0
0
0
$0301  
$0302  
$0303  
$0304  
$0305  
$0306  
$0307  
$0308  
$0309  
$030A  
$030B  
$030C  
$030D  
$030E  
$030F  
$0310  
$0311  
BFFSIZR  
BFTCR1  
BFTCR2  
BFTCR3  
BFIDX  
FSIZ4  
FSIZ0  
TWX0T7 TWX0T6 TWX0T5 TWX0T4 TWX0T3 TWX0T2 TWX0T1 TWX0T0  
TWX0R7 TWX0R6 TWX0R5 TWX0R4 TWX0R3 TWX0R2 TWX0R1 TWX0R0  
TWX0D7 TWX0D6 TWX0D5 TWX0D4 TWX0D3 TWX0D2 TWX0D1 TWX0D0  
Read: GETIDX3 GETIDX2 GETIDX1 GETIDX0 PUTIDX3 PUTIDX2 PUTIDX1 PUTIDX0  
Write:  
Read: RCVFIF  
Write:  
RXIF  
0
BFRISR  
BFGISR  
BFRIER  
BFGIER  
BFRIVEC  
BFTIVEC  
BFFIDAC  
BFFIDMR  
BFMVR  
SYNAIF SYNNIF SLMMIF  
OVRNIF ERRIF SYNEIF SYNLIF  
RXIE SYNAIE SYNNIE SLMMIE  
OVRNIE ERRIE SYNEIE SYNLIE  
XSYNIF OPTDF  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
TXIF  
LOCKIF  
WAKEIF  
ILLPIF  
0
0
RCVFIE  
TXIE  
XSYNIE  
LOCKIE  
WAKEIE  
ILLPIE  
0
0
0
0
0
0
0
0
RIVEC3 RIVEC2 RIVEC1 RIVEC0  
TIVEC3 TIVEC2 TIVEC1 TIVEC0  
FIDAC7 FIDAC6 FIDAC5 FIDAC4 FIDAC3 FIDAC2 FIDAC1 FIDAC0  
FIDMR7 FIDMR6 FIDMR5 FIDMR4 FIDMR3 FIDMR2 FIDMR1 FIDMR0  
Read: MVR7  
Write:  
MVR6  
MVR5  
0
MVR4  
0
MVR3  
0
MVR2  
0
MVR1  
MVR0  
0
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
0
0
0
0
0
0
0
Reserved  
BFPCTLBF  
Reserved  
PMEREN  
0
PSLMEN PERREN PROKEN PSYNEN  
BFEN  
0
0
0
0
0
0
0
0
0
0
0
0
0
TXBUFL RXBUFL  
OCK  
Read:  
0
0
0
0
OCK  
$0312  
BFBUFLOCK  
Write:  
Read:  
Write:  
Read:  
Write:  
0
0
Reserved  
for Test  
$0313  
$0314  
BFFIDRJ  
FIDRJ7 FIDRJ6 FIDRJ5 FIDRJ4 FIDRJ3 FIDRJ2 FIDRJ1 FIDRJ0  
43  
MC9S12DT128B Device User Guide — V01.07  
$0300 - $035F  
Byteflight  
Address  
$0315  
Name  
Bit 7  
0
Bit 6  
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
Read:  
Write:  
0
0
0
0
0
0
0
0
0
0
0
Reserved  
for Test  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Reserved  
for Test  
$0316  
$0317  
$0318  
$0319  
$031A  
$031B  
$031C  
$031D  
$031E  
$031F  
$0320  
$0321  
Reserved  
for Test  
Reserved  
for Test  
Reserved  
for Test  
Reserved  
for Test  
Reserved  
for Test  
Reserved  
for Test  
Reserved  
for Test  
Reserved  
for Test  
Reserved  
for Test  
BFTIDENT  
BFTLEN  
Bit 7  
Bit 7  
Bit 7  
Bit 7  
Bit 7  
Bit 7  
Bit 7  
Bit 7  
Bit 7  
Bit 7  
Bit 7  
Bit 7  
IFLG  
6
5
4
4
4
4
4
4
4
4
4
4
4
3
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
Bit 0  
Bit 0  
Bit 0  
Bit 0  
Bit 0  
Bit 0  
Bit 0  
Bit 0  
Bit 0  
Bit 0  
Bit 0  
Bit 0  
CFG  
6
5
3
$0322 -  
$032D  
BFTDATA0-  
BFTDATA11  
6
5
3
$032E - Unimplemente  
$032F  
6
5
3
d
$0330  
BFRIDENT  
6
5
3
$0331  
BFRLEN  
6
5
3
$0332 -  
$033D  
BFRDATA0-  
BFRDATA11  
6
5
3
$033E- Unimplemente  
$033F  
6
5
3
d
$0340  
BFFIDENT  
6
5
3
$0341  
BFFLEN  
6
6
5
3
$0342 -  
$034D  
BFFDATA0-  
BFFDATA11  
5
5
3
3
$034E - Unimplemente  
$034F  
$0350 - BFBUFCTL0 -  
$035F BFBUFCTL15  
6
4
2
0
1
0
d
ABTAK  
IENA  
LOCK  
ABTRQ  
44  
MC9S12DT128B Device User Guide — V01.07  
$0360 - $03FF  
Reserved  
Address  
Name  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
Read:  
Write:  
$0360 -  
$03FF  
Reserved  
1.6 Part ID Assignments  
The part ID is located in two 8-bit registers PARTIDH and PARTIDL (addresses $001A and $001B after  
reset). The read-only value is a unique part ID for each revision of the chip. Table 1-3 shows the assigned  
part ID number.  
Table 1-3 Assigned Part ID Numbers  
1
Device  
Mask Set Number  
0L85D  
Part ID  
$0100  
$0101  
MC9S12DT128B  
MC9S12DT128B  
1L85D  
NOTES:  
1. The coding is as follows:  
Bit 15-12: Major family identifier  
Bit 11-8: Minor family identifier  
Bit 7-4: Major mask set revision number including FAB transfers  
Bit 3-0: Minor - non full - mask set revision  
The device memory sizes are located in two 8-bit registers MEMSIZ0 and MEMSIZ1 (addresses $001C  
and $001D after reset). Table 1-4 shows the read-only values of these registers. Refer to section Module  
Mapping and Control (MMC) of HCS12 Core User Guide for further details.  
Table 1-4 Memory size registers  
Register name  
MEMSIZ0  
Value  
$13  
MEMSIZ1  
$80  
45  
 
 
MC9S12DT128B Device User Guide — V01.07  
46  
MC9S12DT128B Device User Guide — V01.07  
Section 2 Signal Description  
This section describes signals that connect off-chip. It includes a pinout diagram, a table of signal  
properties, and detailed discussion of signals. It is built from the signal description sections of the Block  
User Guides of the individual IP blocks on the device.  
2.1 Device Pinout  
The MC9S12DT128B and its derivatives are available in a 112-pin low profile quad flat pack (LQFP) and  
in a 80-pin quad flat pack (QFP). Most pins perform two or more functions, as described in the Signal  
Descriptions.Figure 2-1 and Figure 2-2 show the pin assignments for different packages.  
47  
MC9S12DT128B Device User Guide — V01.07  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
SS1/PWM3/KWP3/PP3  
SCK1/PWM2/KWP2/PP2  
MOSI1/PWM1/KWP1/PP1  
MISO1/PWM0/KWP0/PP0  
XADDR17/PK3  
XADDR16/PK2  
XADDR15/PK1  
XADDR14/PK0  
IOC0/PT0  
1
2
3
4
5
6
7
8
VRH  
VDDA  
PAD15/AN15/ETRIG1  
PAD07/AN07/ETRIG0  
PAD14/AN14  
PAD06/AN06  
PAD13/AN13  
PAD05/AN05  
PAD12/AN12  
PAD04/AN04  
PAD11/AN11  
PAD03/AN03  
PAD10/AN10  
PAD02/AN02  
PAD09/AN09  
PAD01/AN01  
PAD08/AN08  
9
IOC1/PT1  
IOC2/PT2  
IOC3/PT3  
VDD1  
VSS1  
IOC4/PT4  
IOC5/PT5  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
MC9S12DT128B, MC9S12DG128B,  
MC9S12DJ128B, MC9S12DB128B  
112LQFP  
IOC6/PT6  
IOC7/PT7  
PAD00/AN00  
VSS2  
VDD2  
XADDR19/PK5  
XADDR18/PK4  
KWJ1/PJ1  
PA7/ADDR15/DATA15  
PA6/ADDR14/DATA14  
PA5/ADDR13/DATA13  
PA4/ADDR12/DATA12  
PA3/ADDR11/DATA11  
PA2/ADDR10/DATA10  
PA1/ADDR9/DATA9  
PA0/ADDR8/DATA8  
KWJ0/PJ0  
MODC/TAGHI/BKGD  
ADDR0/DATA0/PB0  
ADDR1/DATA1/PB1  
ADDR2/DATA2/PB2  
ADDR3/DATA3/PB3  
ADDR4/DATA4/PB4  
Signals shown in Bold are not available on the 80 Pin Package  
Figure 2-1 Pin assignments 112 LQFP for MC9S12DT128B,MC9S12DG128B,  
MC9S12DJ128B, MC9S12DB128B  
48  
MC9S12DT128B Device User Guide — V01.07  
60  
59  
58  
57  
SS1/PWM3/KWP3/PP3  
SCK1/PWM2/KWP2/PP2  
MOSI1/PWM1/KWP1/PP1  
MISO1/PWM0/KWP0/PP0  
IOC0/PT0  
1
2
3
4
VRH  
VDDA  
PAD07/AN07/ETRIG0  
PAD06/AN06  
56  
5
PAD05/AN05  
55  
IOC1/PT1  
6
PAD04/AN04  
54  
IOC2/PT2  
7
PAD03/AN03  
53  
IOC3/PT3  
8
PAD02/AN02  
52  
VDD1  
9
PAD01/AN01  
51  
VSS1  
IOC4/PT4  
IOC5/PT5  
IOC6/PT6  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
PAD00/AN00  
VSS2  
VDD2  
MC9S12DG128B, MC9S12DJ128B  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
80 QFP  
PA7/ADDR15/DATA15  
PA6/ADDR14/DATA14  
PA5/ADDR13/DATA13  
PA4/ADDR12/DATA12  
PA3/ADDR11/DATA11  
PA2/ADDR10/DATA10  
PA1/ADDR9/DATA9  
PA0/ADDR8/DATA8  
IOC7/PT7  
MODC/TAGHI/BKGD  
ADDR0/DATA0/PB0  
ADDR1/DATA1/PB1  
ADDR2/DATA2/PB2  
ADDR3/DATA3/PB3  
ADDR4/DATA4/PB4  
Figure 2-2 Pin Assignments in 80 QFP for MC9S12DG128B, MC9S12DJ128B Bondout  
49  
MC9S12DT128B Device User Guide — V01.07  
2.2 Signal Properties Summary  
Table 2-1 summarizes the pin functionality. Signals shown in bold are not available in the 80 pin  
package.  
Table 2-1 Signal Properties  
Internal Pull  
Resistor  
Pin Name Pin Name Pin Name Pin Name Pin Name Powered  
Description  
Function 1 Function 2 Function 3 Function 4 Function 5  
by  
Reset  
State  
CTRL  
EXTAL  
XTAL  
VDDPLL  
VDDPLL  
VDDR  
NA  
NA  
NA  
NA  
Oscillator Pins  
RESET  
TEST  
None  
None  
None  
None  
External Reset  
Test Input  
N.A.  
Voltage Regulator  
Enable Input  
VREGEN  
XFC  
VDDX  
VDDPLL  
VDDR  
NA  
NA  
NA  
NA  
Up  
PLL Loop Filter  
Always  
Up  
Background Debug,  
Tag High, Mode Input  
BKGD  
TAGHI  
MODC  
Port AD Input,  
Analog Inputs,  
External Trigger  
Input (ATD1)  
PAD[15]  
AN1[7]  
ETRIG1  
VDDA  
VDDA  
None  
None  
None  
None  
Port AD Input,  
Analog Inputs  
(ATD1)  
PAD[14:8]  
AN1[6:0]  
Port AD Input, Analog  
Inputs, External  
Trigger Input (ATD0)  
PAD[7]  
PAD[6:0]  
PA[7:0]  
AN0[7]  
ETRIG0  
VDDA  
VDDA  
VDDR  
None  
None  
None  
None  
Port AD Input, Analog  
Inputs (ATD0)  
AN0[6:0]  
Port A I/O,  
Disabled Multiplexed  
Address/Data  
ADDR[15:8]/  
DATA[15:8]  
PUCR/  
PUPAE  
Port B I/O,  
Disabled Multiplexed  
Address/Data  
ADDR[7:0]/  
DATA[7:0]  
PUCR/  
PUPBE  
PB[7:0]  
VDDR  
PUCR/  
PUPEE  
Port E I/O, Access,  
Clock Select  
PE7  
PE6  
PE5  
PE4  
PE3  
PE2  
NOACC  
IPIPE1  
IPIPE0  
ECLK  
XCLKS  
MODB  
MODA  
VDDR  
VDDR  
VDDR  
VDDR  
VDDR  
VDDR  
Up  
Port E I/O, Pipe  
Status, Mode Input  
While RESET pin  
low:  
Down  
Port E I/O, Pipe  
Status, Mode Input  
PUCR/  
Up  
Port E I/O, Bus Clock  
Output  
PUPEE  
PUCR/  
Up  
Port E I/O, Byte  
Strobe, Tag Low  
LSTRB  
R/W  
TAGLO  
PUPEE  
PUCR/  
Up  
Port E I/O, R/W in  
expanded modes  
PUPEE  
50  
 
 
MC9S12DT128B Device User Guide — V01.07  
Internal Pull  
Resistor  
Pin Name Pin Name Pin Name Pin Name Pin Name Powered  
Description  
Function 1 Function 2 Function 3 Function 4 Function 5  
by  
Reset  
State  
CTRL  
Always  
Up  
Port E Input,  
Maskable Interrupt  
PE1  
PE0  
PH7  
PH6  
PH5  
PH4  
PH3  
PH2  
PH1  
PH0  
IRQ  
VDDR  
VDDR  
VDDR  
VDDR  
VDDR  
VDDR  
VDDR  
VDDR  
VDDR  
VDDR  
Up  
Up  
Always  
Up  
Port E Input, Non  
Maskable Interrupt  
XIRQ  
PERH/  
PPSH  
KWH7  
KWH6  
KWH5  
KWH4  
KWH3  
KWH2  
KWH1  
KWH0  
---  
Disabled Port H I/O, Interrupt  
Disabled Port H I/O, Interrupt  
Disabled Port H I/O, Interrupt  
Disabled Port H I/O, Interrupt  
PERH/  
PPSH  
---  
PERH/  
PPSH  
---  
PERH/  
PPSH  
---  
PERH/  
PPSH  
Port H I/O, Interrupt,  
Disabled  
SS1  
SCK1  
MOSI1  
MISO1  
SS of SPI1  
PERH/  
PPSH  
Port H I/O, Interrupt,  
Disabled  
SCK of SPI1  
PERH/  
PPSH  
Port H I/O, Interrupt,  
Disabled  
MOSI of SPI1  
PERH/  
PPSH  
Port H I/O, Interrupt,  
Disabled  
MISO of SPI1  
Port J I/O, Interrupt,  
TX of CAN4, SCL of  
IIC  
PERJ/  
PPSJ  
PJ7  
KWJ7  
TXCAN4  
SCL  
VDDX  
Up  
Port J I/O, Interrupt,  
RX of CAN4, SDA of  
IIC  
PERJ/  
PPSJ  
PJ6  
PJ[1:0]  
PK7  
KWJ6  
KWJ[1:0]  
ECS  
RXCAN4  
SDA  
VDDX  
VDDX  
VDDX  
VDDX  
VDDX  
Up  
Up  
Up  
Up  
PERJ/  
PPSJ  
Port J I/O, Interrupts  
Port K I/O,  
Emulation Chip  
Select, ROM Control  
PUCR/  
PUPKE  
ROMCTL  
XADDR[19:  
14]  
PUCR/  
PUPKE  
Port K I/O, Extended  
Addresses  
PK[5:0]  
PM7  
Port M I/O, BF slot  
Disabled mismatch pulse, TX  
of CAN4  
PERM/  
PPSM  
BF_PSLM  
TXCAN4  
Port M I/O, BF illegal  
PERM/  
PPSM  
pulse/message  
format error pulse,  
PM6  
BF_PERR  
RXCAN4  
VDDX  
Disabled  
RX of CAN4  
Port M I/O, BF  
PERM/  
PPSM  
reception ok pulse,  
TX of CAN0, CAN4,  
SCK of SPI0  
PM5  
BF_PROK  
BF_PSYN  
TXCAN0  
TXCAN4  
SCK0  
VDDX  
Disabled  
Port M I/O, BF sync  
pulse (Rx/Tx) OK  
Disabled pulse o/p, RX of  
CAN0, CAN4, MOSI  
of SPI0  
PERM/  
PPSM  
PM4  
RXCAN0  
RXCAN4  
MOSI0  
VDDX  
51  
MC9S12DT128B Device User Guide — V01.07  
Internal Pull  
Resistor  
Pin Name Pin Name Pin Name Pin Name Pin Name Powered  
Description  
Function 1 Function 2 Function 3 Function 4 Function 5  
by  
Reset  
State  
CTRL  
Port M I/O, TX of BF,  
Disabled CAN1, CAN0, SS of  
SPI0  
PERM/  
PPSM  
PM3  
PM2  
TX_BF  
RX_BF  
TXCAN1  
RXCAN1  
TXCAN0  
RXCAN0  
SS0  
VDDX  
VDDX  
Port M I/O, RX of BF,  
Disabled CAN1, CAN0, MISO  
of SPI0  
PERM/  
PPSM  
MISO0  
PERM/  
PPSM  
Port M I/O, TX of  
Disabled  
PM1  
PM0  
PP7  
PP6  
PP5  
PP4  
TXCAN0  
RXCAN0  
KWP7  
TXB  
VDDX  
VDDX  
VDDX  
VDDX  
VDDX  
VDDX  
CAN0, RX of BDLC  
PERM/  
PPSM  
Port M I/O, RX of  
Disabled  
RXB  
CAN0, RX of BDLC  
PERP/  
PPSP  
Port P I/O, Interrupt,  
Disabled  
PWM7  
PWM6  
PWM5  
PWM4  
Channel 7 of PWM  
PERP/  
PPSP  
Port P I/O, Interrupt,  
Disabled  
KWP6  
Channel 6 of PWM  
PERP/  
PPSP  
Port P I/O, Interrupt,  
Disabled  
KWP5  
Channel 5 of PWM  
PERP/  
PPSP  
Port P I/O, Interrupt,  
Disabled  
KWP4  
Channel 4 of PWM  
Port P I/O, Interrupt,  
Disabled Channel 3 of PWM,  
SS of SPI1  
PERP/  
PPSP  
PP3  
PP2  
PP1  
PP0  
KWP3  
KWP2  
KWP1  
KWP0  
PWM3  
PWM2  
PWM1  
PWM0  
SS1  
VDDX  
VDDX  
VDDX  
VDDX  
Port P I/O, Interrupt,  
Disabled Channel 2 of PWM,  
SCK of SPI1  
PERP/  
PPSP  
SCK1  
MOSI1  
MISO1  
Port P I/O, Interrupt,  
Disabled Channel 1 of PWM,  
MOSI of SPI1  
PERP/  
PPSP  
Port P I/O, Interrupt,  
Disabled Channel 0 of PWM,  
MISO2 of SPI1  
PERP/  
PPSP  
PERS/  
PPSS  
Port S I/O, SS of  
SPI0  
PS7  
PS6  
SS0  
SCK0  
MOSI0  
MISO0  
TXD1  
VDDX  
VDDX  
VDDX  
VDDX  
VDDX  
VDDX  
VDDX  
VDDX  
VDDX  
Up  
PERS/  
PPSS  
Port S I/O, SCK of  
SPI0  
Up  
PERS/  
PPSS  
Port S I/O, MOSI of  
SPI0  
PS5  
Up  
PERS/  
PPSS  
Port S I/O, MISO of  
SPI0  
PS4  
Up  
PERS/  
PPSS  
Port S I/O, TXD of  
SCI1  
PS3  
Up  
PERS/  
PPSS  
Port S I/O, RXD of  
SCI1  
PS2  
RXD1  
TXD0  
Up  
PERS/  
PPSS  
Port S I/O, TXD of  
SCI0  
PS1  
Up  
PERS/  
PPSS  
Port S I/O, RXD of  
SCI0  
PS0  
RXD0  
IOC[7:0]  
Up  
PERT/  
PPST  
Port T I/O, Timer  
Disabled  
PT[7:0]  
channels  
52  
MC9S12DT128B Device User Guide — V01.07  
2.3 Detailed Signal Descriptions  
2.3.1 EXTAL, XTAL — Oscillator Pins  
EXTAL and XTAL are the crystal driver and external clock pins. On reset all the device clocks are derived  
from the EXTAL input frequency. XTAL is the crystal output.  
2.3.2 RESET — External Reset Pin  
An active low bidirectional control signal, it acts as an input to initialize the MCU to a known start-up  
state, and an output when an internal MCU function causes a reset.  
2.3.3 TEST — Test Pin  
This input only pin is reserved for test.  
NOTE: The TEST pin must be tied to VSS in all applications.  
2.3.4 XFC — PLL Loop Filter Pin  
PLL loop filter. Please ask your Motorola representative for the interactive application note to compute  
PLL loop filter elements. Any current leakage on this pin must be avoided.  
XFC  
R
C
P
MCU  
C
S
VDDPLL  
VDDPLL  
Figure 2-3 PLL Loop Filter Connections  
2.3.5 BKGD / TAGHI / MODC — Background Debug, Tag High, and Mode Pin  
The BKGD/TAGHI/MODC pin is used as a pseudo-open-drain pin for the background debug  
communication. In MCU expanded modes of operation when instruction tagging is on, an input low on  
this pin during the falling edge of E-clock tags the high half of the instruction word being read into the  
instruction queue. It is used as a MCU operating mode select pin during reset. The state of this pin is  
latched to the MODC bit at the rising edge of RESET. This pin has a permanently enabled pull-up device.  
53  
MC9S12DT128B Device User Guide — V01.07  
2.3.6 PAD[15] / AN1[7] / ETRIG1 — Port AD Input Pin [15]  
PAD15 is a general purpose input pin and analog input of the analog to digital converter ATD1. It can act  
as an external trigger input for the ATD1.  
2.3.7 PAD[14:8] / AN1[6:0] — Port AD Input Pins [14:8]  
PAD14 - PAD8 are general purpose input pins and analog inputs of the analog to digital converter ATD1.  
2.3.8 PAD[7] / AN0[7] / ETRIG0 — Port AD Input Pin [7]  
PAD7 is a general purpose input pin and analog input of the analog to digital converter ATD0. It can act  
as an external trigger input for the ATD0.  
2.3.9 PAD[6:0] / AN0[6:0] — Port AD Input Pins [6:0]  
PAD6 - PAD8 are general purpose input pins and analog inputs of the analog to digital converter ATD0.  
2.3.10 PA[7:0] / ADDR[15:8] / DATA[15:8] — Port A I/O Pins  
PA7-PA0 are general purpose input or output pins. In MCU expanded modes of operation, these pins are  
used for the multiplexed external address and data bus.  
2.3.11 PB[7:0] / ADDR[7:0] / DATA[7:0] — Port B I/O Pins  
PB7-PB0 are general purpose input or output pins. In MCU expanded modes of operation, these pins are  
used for the multiplexed external address and data bus.  
2.3.12 PE7 / NOACC / XCLKS — Port E I/O Pin 7  
PE7 is a general purpose input or output pin. During MCU expanded modes of operation, the NOACC  
signal, when enabled, is used to indicate that the current bus cycle is an unused or “free” cycle. This signal  
will assert when the CPU is not using the bus.  
The XCLKS is an input signal which controls whether a crystal in combination with the internal Colpitts  
(low power) oscillator is used or whether Pierce oscillator/external clock circuitry is used. The state of this  
pin is latched at the rising edge of RESET. If the input is a logic low the EXTAL pin is configured for an  
external clock drive. If input is a logic high an oscillator circuit is configured on EXTAL and XTAL. Since  
this pin is an input with a pull-up device during reset, if the pin is left floating, the default configuration is  
an oscillator circuit on EXTAL and XTAL.  
54  
MC9S12DT128B Device User Guide — V01.07  
EXTAL  
C
*
DC  
C
MCU  
Crystal or  
1
ceramic resonator  
XTAL  
C
2
VSSPLL  
* Due to the nature of a translated ground Colpitts oscillator a  
DC voltage bias is applied to the crystal  
Please contact the crystal manufacturer for crystal DC  
bias conditions and recommended capacitor value C  
.
DC  
Figure 2-4 Colpitts Oscillator Connections (PE7=1)  
EXTAL  
C
1
MCU  
RB  
Crystal or  
ceramic resonator  
*
RS  
XTAL  
C
2
VSSPLL  
* Rs can be zero (shorted) when used with higher frequency crystals.  
Refer to manufacturer’s data.  
Figure 2-5 Pierce Oscillator Connections (PE7=0)  
EXTAL  
CMOS-COMPATIBLE  
EXTERNAL OSCILLATO  
(VDDPLL-Level)  
R
MCU  
XTAL  
not connected  
Figure 2-6 External Clock Connections (PE7=0)  
55  
MC9S12DT128B Device User Guide — V01.07  
2.3.13 PE6 / MODB / IPIPE1 — Port E I/O Pin 6  
PE6 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset.  
The state of this pin is latched to the MODB bit at the rising edge of RESET. This pin is shared with the  
instruction queue tracking signal IPIPE1. This pin is an input with a pull-down device which is only active  
when RESET is low.  
2.3.14 PE5 / MODA / IPIPE0 — Port E I/O Pin 5  
PE5 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset.  
The state of this pin is latched to the MODA bit at the rising edge of RESET. This pin is shared with the  
instruction queue tracking signal IPIPE0. This pin is an input with a pull-down device which is only active  
when RESET is low.  
2.3.15 PE4 / ECLK — Port E I/O Pin 4  
PE4 is a general purpose input or output pin. It can be configured to drive the internal bus clock ECLK.  
ECLK can be used as a timing reference.  
2.3.16 PE3 / LSTRB / TAGLO — Port E I/O Pin 3  
PE3 is a general purpose input or output pin. In MCU expanded modes of operation, LSTRB can be used  
for the low-byte strobe function to indicate the type of bus access and when instruction tagging is on,  
TAGLO is used to tag the low half of the instruction word being read into the instruction queue.  
2.3.17 PE2 / R/W — Port E I/O Pin 2  
PE2 is a general purpose input or output pin. In MCU expanded modes of operations, this pin drives the  
read/write output signal for the external bus. It indicates the direction of data on the external bus.  
2.3.18 PE1 / IRQ — Port E Input Pin 1  
PE1 is a general purpose input pin and the maskable interrupt request input that provides a means of  
applying asynchronous interrupt requests. This will wake up the MCU from STOP or WAIT mode.  
2.3.19 PE0 / XIRQ — Port E Input Pin 0  
PE0 is a general purpose input pin and the non-maskable interrupt request input that provides a means of  
applying asynchronous interrupt requests. This will wake up the MCU from STOP or WAIT mode.  
2.3.20 PH7 / KWH7 — Port H I/O Pin 7  
PH7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU  
to exit STOP or WAIT mode.  
56  
MC9S12DT128B Device User Guide — V01.07  
2.3.21 PH6 / KWH6 — Port H I/O Pin 6  
PH6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU  
to exit STOP or WAIT mode.  
2.3.22 PH5 / KWH5 — Port H I/O Pin 5  
PH5 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU  
to exit STOP or WAIT mode.  
2.3.23 PH4 / KWH4 — Port H I/O Pin 2  
PH4 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU  
to exit STOP or WAIT mode.  
2.3.24 PH3 / KWH3 / SS1 — Port H I/O Pin 3  
PH3 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU  
to exit STOP or WAIT mode. It can be configured as slave select pin SS of the Serial Peripheral Interface  
1 (SPI1).  
2.3.25 PH2 / KWH2 / SCK1 — Port H I/O Pin 2  
PH2 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU  
to exit STOP or WAIT mode. It can be configured as serial clock pin SCK of the Serial Peripheral Interface  
1 (SPI1).  
2.3.26 PH1 / KWH1 / MOSI1 — Port H I/O Pin 1  
PH1 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU  
to exit STOP or WAIT mode. It can be configured as master output (during master mode) or slave input  
pin (during slave mode) MOSI of the Serial Peripheral Interface 1 (SPI1).  
2.3.27 PH0 / KWH0 / MISO1 — Port H I/O Pin 0  
PH0 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU  
to exit STOP or WAIT mode. It can be configured as master input (during master mode) or slave output  
(during slave mode) pin MISO of the Serial Peripheral Interface 1 (SPI1).  
2.3.28 PJ7 / KWJ7 / TXCAN4 / SCL — PORT J I/O Pin 7  
PJ7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU  
to exit STOP or WAIT mode. It can be configured as the transmit pin TXCAN for the Motorola Scalable  
Controller Area Network controller 4 (CAN4) or the serial clock pin SCL of the IIC module.  
57  
MC9S12DT128B Device User Guide — V01.07  
2.3.29 PJ6 / KWJ6 / RXCAN4 / SDA — PORT J I/O Pin 6  
PJ6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU  
to exit STOP or WAIT mode. It can be configured as the receive pin RXCAN for the Motorola Scalable  
Controller Area Network controller 4 (CAN4) or the serial data pin SDA of the IIC module.  
2.3.30 PJ[1:0] / KWJ[1:0] — Port J I/O Pins [1:0]  
PJ1 and PJ0 are general purpose input or output pins. They can be configured to generate an interrupt  
causing the MCU to exit STOP or WAIT mode.  
2.3.31 PK7 / ECS / ROMCTL — Port K I/O Pin 7  
PK7 is a general purpose input or output pin. During MCU expanded modes of operation, this pin is used  
as the emulation chip select output (ECS). During MCU expanded modes of operation, this pin is used to  
enable the Flash EEPROM memory in the memory map (ROMCTL). At the rising edge of RESET, the  
state of this pin is latched to the ROMON bit. For a complete list of modes refer to 4.2 Chip Configuration  
Summary.  
2.3.32 PK[5:0] / XADDR[19:14] — Port K I/O Pins [5:0]  
PK5-PK0 are general purpose input or output pins. In MCU expanded modes of operation, these pins  
provide the expanded address XADDR[19:14] for the external bus.  
2.3.33 PM7 / BF_PSLM / TXCAN4 — Port M I/O Pin 7  
PM7 is a general purpose input or output pin. It can be configured as the slot mismatch output pulse pin  
of Byteflight. It can be configured as the transmit pin TXCAN of the Motorola Scalable Controller Area  
Network controllers 4 (CAN4).  
2.3.34 PM6 / BF_PERR / RXCAN4 — Port M I/O Pin 6  
PM6 is a general purpose input or output pin. It can be configured as the illegal pulse or message format  
error output pulse pin of Byteflight. It can be configured as the receive pin RXCAN of the Motorola  
Scalable Controller Area Network controllers 4 (CAN4).  
2.3.35 PM5 / BF_PROK / TXCAN0 / TXCAN4 / SCK0 — Port M I/O Pin 5  
PM5 is a general purpose input or output pin. It can be configured as the reception OK output pulse pin of  
Byteflight. It can be configured as the transmit pin TXCAN of the Motorola Scalable Controller Area  
Network controllers 0 or 4 (CAN0 or CAN4). It can be configured as the serial clock pin SCK of the Serial  
Peripheral Interface 0 (SPI0).  
58  
MC9S12DT128B Device User Guide — V01.07  
2.3.36 PM4 / BF_PSYN / RXCAN0 / RXCAN4/ MOSI0 — Port M I/O Pin 4  
PM4 is a general purpose input or output pin. It can be configured as the correct synchronisation pulse  
reception/transmission output pulse pin of Byteflight. It can be configured as the receive pin RXCAN of  
the Motorola Scalable Controller Area Network controllers 0 or 4 (CAN0 or CAN4). It can be configured  
as the master output (during master mode) or slave input pin (during slave mode) MOSI for the Serial  
Peripheral Interface 0 (SPI0).  
2.3.37 PM3 / TX_BF / TXCAN1 / TXCAN0 / SS0 — Port M I/O Pin 3  
PM3 is a general purpose input or output pin. It can be configured as the transmit pinTX_BF of Byteflight.  
It can be configured as the transmit pin TXCAN of the Motorola Scalable Controller Area Network  
controllers 1 or 0 (CAN1 or CAN0). It can be configured as the slave select pin SS of the Serial Peripheral  
Interface 0 (SPI0).  
2.3.38 PM2 / RX_BF / RXCAN1 / RXCAN0 / MISO0 — Port M I/O Pin 2  
PM2 is a general purpose input or output pin. It can be configured as the receive pin RX_BF of Byteflight.  
It can be configured as the receive pin RXCAN of the Motorola Scalable Controller Area Network  
controllers 1 or 0 (CAN1 or CAN0). It can be configured as the master input (during master mode) or slave  
output pin (during slave mode) MISO for the Serial Peripheral Interface 0 (SPI0).  
2.3.39 PM1 / TXCAN0 / TXB — Port M I/O Pin 1  
PM1 is a general purpose input or output pin. It can be configured as the transmit pin TXCAN of the  
Motorola Scalable Controller Area Network controller 0 (CAN0). It can be configured as the transmit pin  
TXB of the BDLC.  
2.3.40 PM0 / RXCAN0 / RXB — Port M I/O Pin 0  
PM0 is a general purpose input or output pin. It can be configured as the receive pin RXCAN of the  
Motorola Scalable Controller Area Network controller 0 (CAN0). It can be configured as the receive pin  
RXB of the BDLC.  
2.3.41 PP7 / KWP7 / PWM7 — Port P I/O Pin 7  
PP7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU  
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 7 output.  
2.3.42 PP6 / KWP6 / PWM6 — Port P I/O Pin 6  
PP6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU  
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 6 output.  
59  
MC9S12DT128B Device User Guide — V01.07  
2.3.43 PP5 / KWP5 / PWM5 — Port P I/O Pin 5  
PP5 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU  
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 5 output.  
2.3.44 PP4 / KWP4 / PWM4 — Port P I/O Pin 4  
PP4 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU  
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 4 output.  
2.3.45 PP3 / KWP3 / PWM3 / SS1 — Port P I/O Pin 3  
PP3 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU  
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 3 output. It  
can be configured as slave select pin SS of the Serial Peripheral Interface 1 (SPI1).  
2.3.46 PP2 / KWP2 / PWM2 / SCK1 — Port P I/O Pin 2  
PP2 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU  
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 2 output. It  
can be configured as serial clock pin SCK of the Serial Peripheral Interface 1 (SPI1).  
2.3.47 PP1 / KWP1 / PWM1 / MOSI1 — Port P I/O Pin 1  
PP1 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU  
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 1 output. It  
can be configured as master output (during master mode) or slave input pin (during slave mode) MOSI of  
the Serial Peripheral Interface 1 (SPI1).  
2.3.48 PP0 / KWP0 / PWM0 / MISO1 — Port P I/O Pin 0  
PP0 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU  
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 0 output. It  
can be configured as master input (during master mode) or slave output (during slave mode) pin MISO of  
the Serial Peripheral Interface 1 (SPI1).  
2.3.49 PS7 / SS0 — Port S I/O Pin 7  
PS7 is a general purpose input or output pin. It can be configured as the slave select pin SS of the Serial  
Peripheral Interface 0 (SPI0).  
2.3.50 PS6 / SCK0 — Port S I/O Pin 6  
PS6 is a general purpose input or output pin. It can be configured as the serial clock pin SCK of the Serial  
Peripheral Interface 0 (SPI0).  
60  
MC9S12DT128B Device User Guide — V01.07  
2.3.51 PS5 / MOSI0 — Port S I/O Pin 5  
PS5 is a general purpose input or output pin. It can be configured as master output (during master mode)  
or slave input pin (during slave mode) MOSI of the Serial Peripheral Interface 0 (SPI0).  
2.3.52 PS4 / MISO0 — Port S I/O Pin 4  
PS4 is a general purpose input or output pin. It can be configured as master input (during master mode) or  
slave output pin (during slave mode) MOSI of the Serial Peripheral Interface 0 (SPI0).  
2.3.53 PS3 / TXD1 — Port S I/O Pin 3  
PS3 is a general purpose input or output pin. It can be configured as the transmit pin TXD of Serial  
Communication Interface 1 (SCI1).  
2.3.54 PS2 / RXD1 — Port S I/O Pin 2  
PS2 is a general purpose input or output pin. It can be configured as the receive pin RXD of Serial  
Communication Interface 1 (SCI1).  
2.3.55 PS1 / TXD0 — Port S I/O Pin 1  
PS1 is a general purpose input or output pin. It can be configured as the transmit pin TXD of Serial  
Communication Interface 0 (SCI0).  
2.3.56 PS0 / RXD0 — Port S I/O Pin 0  
PS0 is a general purpose input or output pin. It can be configured as the receive pin RXD of Serial  
Communication Interface 0 (SCI0).  
2.3.57 PT[7:0] / IOC[7:0] — Port T I/O Pins [7:0]  
PT7-PT0 are general purpose input or output pins. They can be configured as input capture or output  
compare pins IOC7-IOC0 of the Enhanced Capture Timer (ECT).  
2.4 Power Supply Pins  
MC9S12DT128B power and ground pins are described below.  
Table 2-2 MC9S12DT128B Power and Ground Connection Summary  
Pin Number  
Nominal  
Mnemonic  
Description  
Voltage  
112-pin QFP  
13, 65  
VDD1, 2  
VSS1, 2  
2.5V  
0V  
Internal power and ground generated by internal regulator  
14, 66  
61  
MC9S12DT128B Device User Guide — V01.07  
Pin Number  
Nominal  
112-pin QFP  
Mnemonic  
Description  
Voltage  
VDDR  
VSSR  
VDDX  
VSSX  
VDDA  
41  
40  
5.0V  
0V  
External power and ground, supply to pin drivers and internal  
voltage regulator.  
107  
106  
83  
5.0V  
0V  
External power and ground, supply to pin drivers.  
5.0V  
Operating voltage and ground for the analog-to-digital  
converters and the reference for the internal voltage regulator,  
allows the supply voltage to the A/D to be bypassed  
independently.  
VSSA  
86  
0V  
VRL  
VRH  
85  
84  
43  
0V  
Reference voltages for the analog-to-digital converter.  
5.0V  
2.5V  
VDDPLL  
Provides operating voltage and ground for the Phased-Locked  
Loop. This allows the supply voltage to the PLL to be  
bypassed independently. Internal power and ground  
generated by internal regulator.  
VSSPLL  
45  
97  
0V  
5V  
VREGEN  
Internal Voltage Regulator enable/disable  
NOTE: All VSS pins must be connected together in the application.  
2.4.1 VDDX,VSSX — Power & Ground Pins for I/O Drivers  
External power and ground for I/O drivers. Because fast signal transitions place high, short-duration  
current demands on the power supply, use bypass capacitors with high-frequency characteristics and place  
them as close to the MCU as possible. Bypass requirements depend on how heavily the MCU pins are  
loaded.  
2.4.2 VDDR, VSSR — Power & Ground Pins for I/O Drivers & for Internal  
Voltage Regulator  
External power and ground for I/O drivers and input to the internal voltage regulator. Because fast signal  
transitions place high, short-duration current demands on the power supply, use bypass capacitors with  
high-frequency characteristics and place them as close to the MCU as possible. Bypass requirements  
depend on how heavily the MCU pins are loaded.  
2.4.3 VDD1, VDD2, VSS1, VSS2 — Core Power Pins  
Power is supplied to the MCU through VDD and VSS. Because fast signal transitions place high,  
short-duration current demands on the power supply, use bypass capacitors with high-frequency  
characteristics and place them as close to the MCU as possible. This 2.5V supply is derived from the  
internal voltage regulator. There is no static load on those pins allowed. The internal voltage regulator is  
turned off, if VREGEN is tied to ground.  
NOTE: No load allowed except for bypass capacitors.  
62  
MC9S12DT128B Device User Guide — V01.07  
2.4.4 VDDA, VSSA — Power Supply Pins for ATD and VREG  
VDDA, VSSA are the power supply and ground input pins for the voltage regulator and the analog to  
digital converter. It also provides the reference for the internal voltage regulator. This allows the supply  
voltage to the ATD and the reference voltage to be bypassed independently.  
2.4.5 VRH, VRL — ATD Reference Voltage Input Pins  
VRH and VRL are the reference voltage input pins for the analog to digital converter.  
2.4.6 VDDPLL, VSSPLL — Power Supply Pins for PLL  
Provides operating voltage and ground for the Oscillator and the Phased-Locked Loop. This allows the  
supply voltage to the Oscillator and PLL to be bypassed independently.This 2.5V voltage is generated by  
the internal voltage regulator.  
NOTE: No load allowed except for bypass capacitors.  
2.4.7 VREGEN — On Chip Voltage Regulator Enable  
Enables the internal 5V to 2.5V voltage regulator. If this pin is tied low, VDD1,2 and VDDPLL must be  
supplied externally.  
63  
MC9S12DT128B Device User Guide — V01.07  
64  
MC9S12DT128B Device User Guide — V01.07  
Section 3 System Clock Description  
3.1 Overview  
The Clock and Reset Generator provides the internal clock signals for the core and all peripheral modules.  
Figure 3-1 shows the clock connections from the CRG to all modules.  
Consult the CRG Block User Guide for details on clock generation.  
S12_CORE  
core clock  
Flash  
RAM  
EEPROM  
ECT  
ATD0, 1  
PWM  
EXTAL  
XTAL  
bus clock  
CRG  
SCI0, SCI1  
SPI0, 1  
oscillator clock  
CAN0, 1, 4  
IIC  
BDLC  
PIM  
BF  
Figure 3-1 Clock Connections  
65  
 
MC9S12DT128B Device User Guide — V01.07  
66  
MC9S12DT128B Device User Guide — V01.07  
Section 4 Modes of Operation  
4.1 Overview  
Eight possible modes determine the operating configuration of the MC9S12DT128B. Each mode has an  
associated default memory map and external bus configuration controlled by a further pin.  
Three low power modes exist for the device.  
4.2 Chip Configuration Summary  
The operating mode out of reset is determined by the states of the MODC, MODB, and MODA pins during  
reset (Table 4-1). The MODC, MODB, and MODA bits in the MODE register show the current operating  
mode and provide limited mode switching during operation. The states of the MODC, MODB, and MODA  
pins are latched into these bits on the rising edge of the reset signal. The ROMCTL signal allows the setting  
of the ROMON bit in the MISC register thus controlling whether the internal Flash is visible in the  
memory map. ROMON = 1 mean the Flash is visible in the memory map. The state of the ROMCTL pin  
is latched into the ROMON bit in the MISC register on the rising edge of the reset signal.  
Table 4-1 Mode Selection  
BKGD =  
MODC  
PE6 =  
MODB  
PE5 =  
MODA  
PK7 =  
ROMCTL  
ROMON  
Bit  
Mode Description  
Special Single Chip, BDM allowed and ACTIVE. BDM is  
allowed in all other modes but a serial command is  
required to make BDM active.  
0
0
0
X
1
0
0
0
1
0
1
1
0
1
0
1
0
X
X
X
X
0
0
0
0
1
0
1
Emulation Expanded Narrow, BDM allowed  
Special Test (Expanded Wide), BDM allowed  
Emulation Expanded Wide, BDM allowed  
Normal Single Chip, BDM allowed  
1
1
1
0
1
1
1
0
1
Normal Expanded Narrow, BDM allowed  
1
Special Peripheral; BDM allowed but bus operations  
would cause bus conflicts (must not be used)  
X
1
0
1
0
1
Normal Expanded Wide, BDM allowed  
For further explanation on the modes refer to the Core User Guide.  
Table 4-2 Clock Selection Based on PE7  
PE7 = XCLKS  
Description  
1
0
Colpitts Oscillator selected  
Pierce Oscillator/external clock selected  
67  
 
MC9S12DT128B Device User Guide — V01.07  
Table 4-3 Voltage Regulator VREGEN  
VREGEN  
Description  
1
Internal Voltage Regulator enabled  
Internal Voltage Regulator disabled, VDD1,2 and  
VDDPLL must be supplied externally with 2.5V  
0
4.3 Security  
The device will make available a security feature preventing the unauthorized read and write of the  
memory contents. This feature allows:  
Protection of the contents of FLASH,  
Protection of the contents of EEPROM,  
Operation in single-chip mode, No BDM possible  
Operation from external memory with internal FLASH and EEPROM disabled.  
The user must be reminded that part of the security must lie with the user’s code. An extreme example  
would be user’s code that dumps the contents of the internal program. This code would defeat the purpose  
of security. At the same time the user may also wish to put a back door in the user’s program. An example  
of this is the user downloads a key through the SCI which allows access to a programming routine that  
updates parameters stored in EEPROM.  
4.3.1 Securing the Microcontroller  
Once the user has programmed the FLASH and EEPROM (if desired), the part can be secured by  
programming the security bits located in the FLASH module. These non-volatile bits will keep the part  
secured through resetting the part and through powering down the part.  
The security byte resides in a portion of the Flash array.  
Check the Flash Block User Guide for more details on the security configuration.  
4.3.2 Operation of the Secured Microcontroller  
4.3.2.1 Normal Single Chip Mode  
This will be the most common usage of the secured part. Everything will appear the same as if the part was  
not secured with the exception of BDM operation. The BDM operation will be blocked.  
4.3.2.2 Executing from External Memory  
The user may wish to execute from external space with a secured microcontroller. This is accomplished  
by resetting directly into expanded mode. The internal FLASH and EEPROM will be disabled. BDM  
operations will be blocked.  
68  
MC9S12DT128B Device User Guide — V01.07  
4.3.3 Unsecuring the Microcontroller  
In order to unsecure the microcontroller, the internal FLASH and EEPROM must be erased. This can be  
done through an external program in expanded mode.  
Once the user has erased the FLASH and EEPROM, the part can be reset into special single chip mode.  
This invokes a program that verifies the erasure of the internal FLASH and EEPROM. Once this program  
completes, the user can erase and program the FLASH security bits to the unsecured state. This is generally  
done through the BDM, but the user could also change to expanded mode (by writing the mode bits  
through the BDM) and jumping to an external program (again through BDM commands). Note that if the  
part goes through a reset before the security bits are reprogrammed to the unsecure state, the part will be  
secured again.  
4.4 Low Power Modes  
The microcontroller features three main low power modes. Consult the respective Block User Guide for  
information on the module behavior in Stop, Pseudo Stop, and Wait Mode. An important source of  
information about the clock system is the Clock and Reset Generator User Guide (CRG).  
4.4.1 Stop  
Executing the CPU STOP instruction stops all clocks and the oscillator thus putting the chip in fully static  
mode. Wake up from this mode can be done via reset or external interrupts.  
4.4.2 Pseudo Stop  
This mode is entered by executing the CPU STOP instruction. In this mode the oscillator is still running  
and the Real Time Interrupt (RTI) or Watchdog (COP) sub module can stay active. Other peripherals are  
turned off. This mode consumes more current than the full STOP mode, but the wake up time from this  
mode is significantly shorter.  
4.4.3 Wait  
This mode is entered by executing the CPU WAI instruction. In this mode the CPU will not execute  
instructions. The internal CPU signals (address and databus) will be fully static. All peripherals stay active.  
For further power consumption the peripherals can individually turn off their local clocks.  
4.4.4 Run  
Although this is not a low power mode, unused peripheral modules should not be enabled in order to save  
power.  
69  
MC9S12DT128B Device User Guide — V01.07  
70  
MC9S12DT128B Device User Guide — V01.07  
Section 5 Resets and Interrupts  
5.1 Overview  
Consult the Exception Processing section of the HCS12 Core User Guide for information on resets and  
interrupts.  
5.2 Vectors  
5.2.1 Vector Table  
Table 5-1 lists interrupt sources and vectors in default order of priority.  
Table 5-1 Interrupt Vector Locations  
CCR  
Mask  
HPRIO Value  
to Elevate  
Vector Address  
Interrupt Source  
Local Enable  
$FFFE, $FFFF  
$FFFC, $FFFD  
$FFFA, $FFFB  
$FFF8, $FFF9  
$FFF6, $FFF7  
$FFF4, $FFF5  
$FFF2, $FFF3  
$FFF0, $FFF1  
$FFEE, $FFEF  
$FFEC, $FFED  
$FFEA, $FFEB  
$FFE8, $FFE9  
$FFE6, $FFE7  
$FFE4, $FFE5  
$FFE2, $FFE3  
$FFE0, $FFE1  
$FFDE, $FFDF  
$FFDC, $FFDD  
$FFDA, $FFDB  
$FFD8, $FFD9  
Reset  
None  
None  
None  
None  
None  
X-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
None  
COPCTL (CME, FCME)  
COP rate select  
None  
Clock Monitor fail reset  
COP failure reset  
Unimplemented instruction trap  
SWI  
None  
XIRQ / BF High prio Sync pulse intr  
IRQ  
None / BFRIER (XSYNIE)  
INTCR (IRQEN)  
CRGINT (RTIE)  
TIE (C0I)  
$F2  
$F0  
$EE  
$EC  
$EA  
$E8  
$E6  
$E4  
$E2  
$E0  
$DE  
$DC  
$DA  
$D8  
Real Time Interrupt  
Enhanced Capture Timer channel 0  
Enhanced Capture Timer channel 1  
Enhanced Capture Timer channel 2  
Enhanced Capture Timer channel 3  
Enhanced Capture Timer channel 4  
Enhanced Capture Timer channel 5  
Enhanced Capture Timer channel 6  
Enhanced Capture Timer channel 7  
Enhanced Capture Timer overflow  
Pulse accumulator A overflow  
Pulse accumulator input edge  
SPI0  
TIE (C1I)  
TIE (C2I)  
TIE (C3I)  
TIE (C4I)  
TIE (C5I)  
TIE (C6I)  
TIE (C7I)  
TSCR2 (TOF)  
PACTL (PAOVI)  
PACTL (PAI)  
SP0CR1 (SPIE, SPTIE)  
SC0CR2  
(TIE, TCIE, RIE, ILIE)  
$FFD6, $FFD7  
$FFD4, $FFD5  
SCI0  
SCI1  
I-Bit  
I-Bit  
$D6  
$D4  
SC1CR2  
(TIE, TCIE, RIE, ILIE)  
$FFD2, $FFD3  
$FFD0, $FFD1  
$FFCE, $FFCF  
$FFCC, $FFCD  
$FFCA, $FFCB  
ATD0  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
ATD0CTL2 (ASCIE)  
ATD1CTL2 (ASCIE)  
PTJIF (PTJIE)  
$D2  
$D0  
$CE  
$CC  
$CA  
ATD1  
Port J  
Port H  
PTHIF (PTHIE)  
Modulus Down Counter underflow  
MCCTL (MCZI)  
71  
 
MC9S12DT128B Device User Guide — V01.07  
$FFC8, $FFC9  
$FFC6, $FFC7  
$FFC4, $FFC5  
$FFC2, $FFC3  
$FFC0, $FFC1  
$FFBE, $FFBF  
$FFBC, $FFBD  
$FFBA, $FFBB  
$FFB8, $FFB9  
$FFB6, $FFB7  
$FFB4, $FFB5  
$FFB2, $FFB3  
$FFB0, $FFB1  
$FFAE, $FFAF  
$FFAC, $FFAD  
$FFAA, $FFAB  
$FFA8, $FFA9  
$FFA6, $FFA7  
$FFA4, $FFA5  
$FFA2, $FFA3  
Pulse Accumulator B Overflow  
I-Bit  
PBCTL (PBOVI)  
PLLCR (LOCKIE)  
PLLCR (SCMIE)  
DLCBCR1 (IE)  
$C8  
$C6  
$C4  
$C2  
$C0  
$BE  
CRG PLL lock  
CRG Self Clock Mode  
BDLC  
I-Bit  
I-Bit  
I-Bit  
IIC Bus  
I-Bit  
IBCR (IBIE)  
SPI1  
I-Bit  
SP1CR1 (SPIE, SPTIE)  
Reserved  
I-Bit  
EEPROM  
FLASH  
ECNFG (CCIE, CBEIE)  
FCNFG (CCIE, CBEIE)  
CAN0RIER (WUPIE)  
$BA  
$B8  
$B6  
$B4  
$B2  
$B0  
$AE  
$AC  
$AA  
$A8  
$A6  
$A4  
$A2  
I-Bit  
CAN0 wake-up  
CAN0 errors  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
CAN0RIER (CSCIE, OVRIE)  
CAN0RIER (RXFIE)  
CAN0 receive  
CAN0 transmit  
CAN1 wake-up  
CAN1 errors  
CAN0TIER (TXEIE[2:0])  
CAN1RIER (WUPIE)  
CAN1RIER (CSCIE, OVRIE)  
CAN1RIER (RXFIE)  
CAN1 receive  
CAN1 transmit  
BF Rx FIFO not empty  
BF receive  
CAN1TIER (TXEIE[2:0])  
BFRIER (RCVFIE)  
BFBUFCTL[15:0] (IENA)  
BFRIER (SYNAIE, SYNNIE)  
BF Synchronisation  
BFBUFCTL[15:0] (IENA),  
BFGIER (OVRNIE, ERRIE,  
SYNEIE, SYNLIE, ILLPIE,  
LOCKIE, WAKEIE)  
$FFA0, $FFA1  
BF general  
I-Bit  
$A0  
BFRIER (SLMMIE)  
$FF98, $FF9F  
$FF96, $FF97  
$FF94, $FF95  
$FF92, $FF93  
$FF90, $FF91  
$FF8E, $FF8F  
$FF8C, $FF8D  
Reserved  
I-Bit  
CAN4 wake-up  
CAN4 errors  
CAN4RIER (WUPIE)  
$96  
$94  
$92  
$90  
$8E  
$8C  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
I-Bit  
CAN4RIER (CSCIE, OVRIE)  
CAN4RIER (RXFIE)  
CAN4TIER (TXEIE[2:0])  
PTPIF (PIEP)  
CAN4 receive  
CAN4 transmit  
Port P Interrupt  
PWM Emergency Shutdown  
PWMSDN (PWMIE)  
$FF80 to  
$FF8B  
Reserved  
5.3 Effects of Reset  
When a reset occurs, MCU registers and control bits are changed to known start-up states. Refer to the  
respective module Block User Guides for register reset states.  
5.3.1 I/O pins  
Refer to the HCS12 Core User Guides for mode dependent pin configuration of port A, B, E and K out of  
reset.  
Refer to the PIM Block User Guide for reset configurations of all peripheral module ports.  
72  
MC9S12DT128B Device User Guide — V01.07  
NOTE: For devices assembled in 80-pin QFP packages all non-bonded out pins should be  
configured as outputs after reset in order to avoid current drawn from floating  
inputs. Refer to Table 2-1 for affected pins.  
5.3.2 Memory  
Refer to Table 1-1 for locations of the memories depending on the operating mode after reset.  
The RAM array is not automatically initialized out of reset.  
73  
MC9S12DT128B Device User Guide — V01.07  
74  
MC9S12DT128B Device User Guide — V01.07  
Section 6 HCS12 Core Block Description  
Consult the HCS12 Core User Guide for information about the HCS12 core modules, i.e. central  
processing unit (CPU), interrupt module (INT), module mapping control module (MMC), multiplexed  
external bus interface (MEBI), breakpoint module (BKP) and background debug mode module (BDM).  
Section 7 Clock and Reset Generator (CRG) Block  
Description  
Consult the CRG Block User Guide for information about the Clock and Reset Generator module.  
7.1 Device-specific information  
7.1.1 XCLKS  
The XCLKS input signal is active low (see 2.3.12 PE7 / NOACC / XCLKS — Port E I/O Pin 7).  
Section 8 Enhanced Capture Timer (ECT) Block  
Description  
Consult the ECT_16B8C Block User Guide for information about the Enhanced Capture Timer  
module.When the ECT_16B8C Block User Guide refers to freeze mode this is equivalent to active BDM  
mode.  
Section 9 Analog to Digital Converter (ATD) Block  
Description  
There are two Analog to Digital Converters (ATD1 and ATD0) implemented on the MC9S12DT128B.  
Consult the ATD_10B8C Block User Guide for information about each Analog to Digital Converter  
module. When the ATD_10B8C Block User Guide refers to freeze mode this is equivalent to active BDM  
mode.  
Section 10 Inter-IC Bus (IIC) Block Description  
Consult the IIC Block User Guide for information about the Inter-IC Bus module.  
Section 11 Serial Communications Interface (SCI) Block  
75  
MC9S12DT128B Device User Guide — V01.07  
Description  
There are two Serial Communications Interfaces (SCI1 and SCI0) implemented on theMC9S12DT128B  
device. Consult the SCI Block User Guide for information about each Serial Communications Interface  
module.  
Section 12 Serial Peripheral Interface (SPI) Block  
Description  
There are two Serial Peripheral Interfaces (SPI1 and SPI0) implemented on MC9S12DT128B. Consult the  
SPI Block User Guide for information about each Serial Peripheral Interface module.  
Section 13 J1850 (BDLC) Block Description  
Consult the BDLC Block User Guide for information about the J1850 module.  
Section 14 Byteflight (BF) Block Description  
Consult the BF Block User Guide for information about the 10 Mbps Byteflight module.  
Section 15 Pulse Width Modulator (PWM) Block  
Description  
Consult the PWM_8B8C Block User Guide for information about the Pulse Width Modulator module.  
When the PWM_8B8C Block User Guide refers to freeze mode this is equivalent to active BDM mode.  
Section 16 Flash EEPROM 128K Block Description  
Consult the FTS128K Block User Guide for information about the flash module.  
Section 17 EEPROM 2K Block Description  
Consult the EETS2K Block User Guide for information about the EEPROM module.  
76  
MC9S12DT128B Device User Guide — V01.07  
Section 18 RAM Block Description  
This module supports single-cycle misaligned word accesses without wait states.  
Section 19 MSCAN Block Description  
There are three MSCAN modules (CAN4, CAN1 and CAN0) implemented on the MC9S12DT128B.  
Consult the MSCAN Block User Guide for information about the Motorola Scalable CAN Module.  
Section 20 Port Integration Module (PIM) Block Description  
Consult the PIM_9DTB128 Block User Guide for information about the Port Integration Module.  
Section 21 Voltage Regulator (VREG) Block Description  
Consult the VREG Block User Guide for information about the dual output linear voltage regulator.  
77  
MC9S12DT128B Device User Guide — V01.07  
Section 22 Printed Circuit Board Layout Proposal  
Table 22-1 Suggested External Component Values  
Component  
Purpose  
Type  
Value  
100 … 220nF  
100 … 220nF  
100nF  
C1  
C2  
VDD1 filter cap  
VDD2 filter cap  
VDDA filter cap  
VDDR filter cap  
VDDPLL filter cap  
VDDX filter cap  
OSC load cap  
ceramic X7R  
ceramic X7R  
ceramic X7R  
X7R/tantalum  
ceramic X7R  
X7R/tantalum  
C3  
C4  
>= 100nF  
100nF  
C5  
C6  
>= 100nF  
C7  
C8  
OSC load cap  
C9 / CS  
PLL loop filter cap  
See PLL specification chapter  
C10 / CP  
PLL loop filter cap  
DC cutoff cap  
Colpitts mode only, if recommended by  
quartz manufacturer  
C11 / CDC  
R1 / R  
PLL loop filter res  
See PLL Specification chapter  
R2 / RB  
Pierce mode only  
R3 / RS  
Q1  
Quartz  
The PCB must be carefully laid out to ensure proper operation of the voltage regulator as well as of the  
MCU itself. The following rules must be observed:  
Every supply pair must be decoupled by a ceramic capacitor connected as near as possible to the  
corresponding pins (C1 – C6).  
Central point of the ground star should be the VSSR pin.  
Use low ohmic low inductance connections between VSS1, VSS2 and VSSR.  
VSSPLL must be directly connected to VSSR.  
Keep traces of VSSPLL, EXTAL and XTAL as short as possible and occupied board area for C7,  
C8, C11 and Q1 as small as possible.  
Do not place other signals or supplies underneath area occupied by C7, C8, C10 and Q1 and the  
connection area to the MCU.  
Central power input should be fed in at the VDDA/VSSA pins.  
78  
MC9S12DT128B Device User Guide — V01.07  
Figure 22-1 Recommended PCB Layout for 112LQFP Colpitts Oscillator  
VSSA  
C3  
VSSX  
VDDA  
VDD1  
VSS1  
C1  
VSS2  
C2  
VDD2  
VSSR  
VDDR  
Q1  
VSSPLL  
VDDPLL  
R1  
79  
MC9S12DT128B Device User Guide — V01.07  
Figure 22-2 Recommended PCB Layout for 80QFP Colpitts Oscillator  
C3  
VSSA  
VSSX  
VDDA  
VDD1  
C1  
VSS2  
C2  
VSS1  
VDD2  
VSSR  
VDDR  
Q1  
VSSPLL  
VDDPLL  
R1  
80  
MC9S12DT128B Device User Guide — V01.07  
Figure 22-3 Recommended PCB Layout for 112LQFP Pierce Oscillator  
VSSA  
C3  
VSSX  
VDDA  
VDD1  
VSS1  
C1  
VSS2  
C2  
VDD2  
VSSR  
VDDR  
VSSPLL  
R3  
R2  
Q1  
VDDPLL  
R1  
81  
MC9S12DT128B Device User Guide — V01.07  
Figure 22-4 Recommended PCB Layout for 80QFP Pierce Oscillator  
C3  
VSSA  
VSSX  
VDDA  
VDD1  
C1  
VSS2  
C2  
VSS1  
VDD2  
VSSPLL  
VSSR  
R3  
VDDR  
R2  
Q1  
VDDPLL  
R1  
82  
MC9S12DT128B Device User Guide — V01.07  
Appendix A Electrical Characteristics  
A.1 General  
This introduction is intended to give an overview on several common topics like power supply, current  
injection etc.  
A.1.1 Parameter Classification  
The electrical parameters shown in this supplement are guaranteed by various methods. To give the  
customer a better understanding the following classification is used and the parameters are tagged  
accordingly in the tables where appropriate.  
P:  
Those parameters are guaranteed during production testing on each individual device.  
C:  
Those parameters are achieved by the design characterization by measuring a statistically relevant  
sample size across process variations. They are regularly verified by production monitors.  
T:  
Those parameters are achieved by design characterization on a small sample size from typical  
devices. All values shown in the typical column are within this category.  
D:  
Those parameters are derived mainly from simulations.  
A.1.2 Power Supply  
The MC9S12DT128B utilizes several pins to supply power to the I/O ports, A/D converter, oscillator and  
PLL as well as the digital core.  
The VDDA, VSSA pair supplies the A/D converter and the resistor ladder of the internal voltage regulator.  
The VDDX, VSSX, VDDR and VSSR pairs supply the I/O pins ,VDDR supplies also the internal voltage  
regulator.  
VDD1, VSS1, VDD2 and VSS2 are the supply pins for the digital logic, VDDPLL, VSSPLL supply the  
oscillator and the PLL.  
VSS1 and VSS2 are internally connected by metal.  
VDDA, VDDX, VDDR as well as VSSA, VSSX, VSSR are connected by anti-parallel diodes for ESD  
protection.  
83  
MC9S12DT128B Device User Guide — V01.07  
NOTE: In the following context VDD5 is used for either VDDA, VDDR and VDDX; VSS5  
is used for either VSSA, VSSR and VSSX unless otherwise noted.  
IDD5 denotes the sum of the currents flowing into the VDDA, VDDX and VDDR  
pins.  
VDD is used for VDD1, VDD2 and VDDPLL, VSS is used for VSS1, VSS2 and  
VSSPLL.  
IDD is used for the sum of the currents flowing into VDD1 and VDD2.  
A.1.3 Pins  
There are four groups of functional pins.  
A.1.3.1 5V I/O pins  
Those I/O pins have a nominal level of 5V. This class of pins is comprised of all port I/O pins, the analog  
inputs, BKGD pin and the RESET inputs.The internal structure of all those pins is identical, however some  
of the functionality may be disabled. E.g. for the analog inputs the output drivers, pull-up and pull-down  
resistors are disabled permanently.  
A.1.3.2 Analog Reference  
This class is made up by the two VRH and VRL pins.  
A.1.3.3 Oscillator  
The pins XFC, EXTAL, XTAL dedicated to the oscillator have a nominal 2.5V level. They are supplied  
by VDDPLL.  
A.1.3.4 TEST  
This pin is used for production testing only.  
A.1.3.5 VREGEN  
This pin is used to enable the on chip voltage regulator.  
A.1.4 Current Injection  
Power supply must maintain regulation within operating V  
or V range during instantaneous and  
DD  
DD5  
operating maximum current conditions. If positive injection current (V > V  
) is greater than I  
, the  
in  
DD5  
DD5  
injection current may flow out of VDD5 and could result in external power supply going out of regulation.  
Insure external VDD5 load will shunt current greater than maximum injection current. This will be the  
greatest risk when the MCU is not consuming power; e.g. if no system clock is present, or if clock rate is  
very low which would reduce overall power consumption.  
84  
 
MC9S12DT128B Device User Guide — V01.07  
A.1.5 Absolute Maximum Ratings  
Absolute maximum ratings are stress ratings only. A functional operation under or outside those maxima  
is not guaranteed. Stress beyond those limits may affect the reliability or cause permanent damage of the  
device.  
This device contains circuitry protecting against damage due to high static voltage or electrical fields;  
however, it is advised that normal precautions be taken to avoid application of any voltages higher than  
maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused  
inputs are tied to an appropriate logic voltage level (e.g., either V  
or V  
).  
SS5  
DD5  
1
Table A-1 Absolute Maximum Ratings  
Num  
Rating  
Symbol  
Min  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
Max  
6.0  
3.0  
3.0  
0.3  
0.3  
6.0  
6.0  
3.0  
10.0  
Unit  
V
VDD5  
1
2
3
4
5
6
7
8
9
I/O, Regulator and Analog Supply Voltage  
Digital Logic Supply Voltage 2  
VDD  
V
PLL Supply Voltage 2  
VDDPLL  
V
Voltage difference VDDX to VDDR and VDDA  
Voltage difference VSSX to VSSR and VSSA  
Digital I/O Input Voltage  
V
VDDX  
V
VSSX  
VIN  
VRH, VRL  
VILV  
V
Analog Reference  
V
XFC, EXTAL, XTAL inputs  
TEST input  
V
VTEST  
V
Instantaneous Maximum Current  
Single pin limit for all digital I/O pins 3  
ID  
10  
11  
12  
-25  
-25  
+25  
+25  
mA  
mA  
Instantaneous Maximum Current  
Single pin limit for XFC, EXTAL, XTAL4  
IDL  
Instantaneous Maximum Current  
Single pin limit for TEST 5  
IDT  
-0.25  
– 65  
0
mA  
Tstg  
13  
Storage Temperature Range  
155  
°C  
NOTES:  
1. Beyond absolute maximum ratings device might be damaged.  
2. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply.  
The absolute maximum ratings apply when the device is powered from an external source.  
3. All digital I/O pins are internally clamped to VSSX and VDDX, VSSR and VDDR or VSSA and VDDA  
.
4. Those pins are internally clamped to VSSPLL and VDDPLL  
.
5. This pin is clamped low to VSSPLL, but not clamped high. This pin must be tied low in applications.  
A.1.6 ESD Protection and Latch-up Immunity  
All ESD testing is in conformity with CDF-AEC-Q100 Stress test qualification for Automotive Grade  
Integrated Circuits. During the device qualification ESD stresses were performed for the Human Body  
Model (HBM), the Machine Model (MM) and the Charge Device Model.  
85  
 
MC9S12DT128B Device User Guide — V01.07  
A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device  
specification. Complete DC parametric and functional testing is performed per the applicable device  
specification at room temperature followed by hot temperature, unless specified otherwise in the device  
specification.  
Table A-2 ESD and Latch-up Test Conditions  
Model  
Description  
Symbol  
Value  
1500  
100  
Unit  
Ohm  
pF  
Series Resistance  
R1  
C
Storage Capacitance  
Human Body  
Number of Pulse per pin  
positive  
negative  
3
3
Series Resistance  
R1  
C
0
Ohm  
pF  
Storage Capacitance  
200  
Machine  
Latch-up  
Number of Pulse per pin  
positive  
negative  
3
3
Minimum input voltage limit  
Maximum input voltage limit  
–2.5  
7.5  
V
V
Table A-3 ESD and Latch-Up Protection Characteristics  
Num  
C
Rating  
Symbol  
VHBM  
Min  
2000  
200  
Max  
Unit  
1
2
3
C Human Body Model (HBM)  
C Machine Model (MM)  
V
V
V
VMM  
VCDM  
C Charge Device Model (CDM)  
500  
Latch-up Current at 125°C  
C positive  
ILAT  
4
5
+100  
–100  
mA  
mA  
negative  
Latch-up Current at 27°C  
C positive  
ILAT  
+200  
–200  
negative  
A.1.7 Operating Conditions  
This chapter describes the operating conditions of the device. Unless otherwise noted those conditions  
apply to all the following data.  
NOTE: Please refer to the temperature rating of the device (C, V, M) with regards to the  
ambient temperature T and the junction temperature T . For power dissipation  
A
J
86  
MC9S12DT128B Device User Guide — V01.07  
calculations refer to Section A.1.8 Power Dissipation and Thermal  
Characteristics.  
Table A-4 Operating Conditions  
Rating  
Symbol  
Min  
4.5  
Typ  
5
Max  
5.25  
2.75  
2.75  
0.1  
Unit  
V
VDD5  
I/O, Regulator and Analog Supply Voltage  
Digital Logic Supply Voltage 1  
VDD  
2.35  
2.25  
-0.1  
-0.1  
0.5  
2.5  
2.5  
0
V
PLL Supply Voltage 2  
VDDPLL  
V
Voltage Difference VDDX to VDDR and VDDA  
Voltage Difference VSSX to VSSR and VSSA  
Oscillator  
V
VDDX  
0
0.1  
V
VSSX  
fosc  
fbus  
-
16  
MHz  
MHz  
Bus Frequency  
0.5  
-
25  
MC9S12DT128BC  
TJ  
TA  
Operating Junction Temperature Range  
-40  
-40  
-
100  
85  
°C  
°C  
Operating Ambient Temperature Range 2  
MC9S12DT128BV  
27  
TJ  
TA  
Operating Junction Temperature Range  
-40  
-40  
-
120  
105  
°C  
°C  
Operating Ambient Temperature Range 2  
MC9S12DT128BM  
27  
TJ  
TA  
Operating Junction Temperature Range  
-40  
-40  
-
140  
125  
°C  
°C  
Operating Ambient Temperature Range 2  
27  
NOTES:  
1. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply. The  
absolute maximum ratings apply when this regulator is disabled and the device is powered from an external  
source.  
2. Please refer to Section A.1.8 Power Dissipation and Thermal Characteristics for more details about the rela-  
tion between ambient temperature TA and device junction temperature TJ.  
A.1.8 Power Dissipation and Thermal Characteristics  
Power dissipation and thermal characteristics are closely related. The user must assure that the maximum  
operating junction temperature is not exceeded. The average chip-junction temperature (T ) in °C can be  
J
obtained from:  
T = T + (P • Θ  
)
J
A
D
JA  
T = Junction Temperature, [°C]  
J
T
= Ambient Temperature, [°C]  
A
87  
 
 
 
 
MC9S12DT128B Device User Guide — V01.07  
P
= Total Chip Power Dissipation, [W]  
D
Θ
= Package Thermal Resistance, [°C/W]  
JA  
The total power dissipation can be calculated from:  
= P  
P
+ P  
D
INT  
IO  
P
= Chip Internal Power Dissipation, [W]  
INT  
Two cases with internal voltage regulator enabled and disabled must be considered:  
1. Internal Voltage Regulator disabled  
P
= I  
V
+ I  
V
+ I  
V
INT  
DD DD DDPLL DDPLL DDA DDA  
2
P
=
R
I
IO  
DSON IO  
i
i
Which is the sum of all output currents on I/O ports associated with VDDX and VDDM.  
For R is valid:  
DSON  
V
OL  
R
= ----------- ;for outputs driven low  
DSON  
I
OL  
respectively  
V
V  
DD5  
OH  
R
= ----------------------------------- ;for outputs driven high  
DSON  
I
OH  
2. Internal voltage regulator enabled  
= I  
P
V
+ I  
V
INT  
DDR DDR DDA DDA  
I
is the current shown in Table A-7 and not the overall current flowing into VDDR, which  
DDR  
additionally contains the current flowing into the external loads with output high.  
2
P
=
R
I
IO  
DSON IO  
i
i
Which is the sum of all output currents on I/O ports associated with VDDX and VDDR.  
88  
MC9S12DT128B Device User Guide — V01.07  
1
Table A-5 Thermal Package Characteristics  
Num C  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
Thermal Resistance LQFP112, single sided PCB2  
oC/W  
θJA  
1
T
54  
Thermal Resistance LQFP112, double sided PCB  
with 2 internal planes3  
oC/W  
θJA  
2
T
41  
oC/W  
oC/W  
oC/W  
oC/W  
θJB  
θJC  
ΨJT  
θJA  
3
4
5
6
T Junction to Board LQFP112  
31  
11  
2
T Junction to Case LQFP112  
T Junction to Package Top LQFP112  
T Thermal Resistance QFP 80, single sided PCB  
51  
Thermal Resistance QFP 80, double sided PCB with  
2 internal planes  
oC/W  
θJA  
7
T
41  
oC/W  
oC/W  
oC/W  
θJB  
θJC  
ΨJT  
8
9
T Junction to Board QFP80  
T Junction to Case QFP80  
27  
14  
3
10  
T Junction to Package Top QFP80  
NOTES:  
1. The values for thermal resistance are achieved by package simulations  
2. PC Board according to EIA/JEDEC Standard 51-3  
3. PC Board according to EIA/JEDEC Standard 51-7  
A.1.9 I/O Characteristics  
This section describes the characteristics of all 5V I/O pins. All parameters are not always applicable, e.g.  
not all pins feature pull up/down resistances.  
89  
MC9S12DT128B Device User Guide — V01.07  
Table A-6 5V I/O Characteristics  
Conditions are shown in Table A-4 unless otherwise noted  
Num C  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
VIH  
0.65*VDD5  
1
2
3
P Input High Voltage  
V
VIH  
VIL  
VDD5 + 0.3  
0.35*VDD5  
T Input High Voltage  
P Input Low Voltage  
T Input Low Voltage  
C Input Hysteresis  
V
V
VIL  
VSS5 – 0.3  
VHYS  
250  
mV  
Input Leakage Current (pins in high ohmic input  
mode)1  
Vin = VDD5 or VSS5  
Iin  
4
P
µA  
ADC Inputs AN15:0  
All other Ports (A, B, E, K, M, S, T)  
-1.0  
–2.5  
1.0  
2.5  
Output High Voltage (pins in output mode)  
Partial Drive I  
= –2.0mA  
= –10.0mA  
VOH  
VDD5 – 0.8  
5
6
C
P
OH  
V
V
Full Drive I  
OH  
Output Low Voltage (pins in output mode)  
Partial Drive I = +2.0mA  
VOL  
C
P
OL  
= +10.0mA  
0.8  
Full Drive I  
OL  
Internal Pull Up Device Current,  
tested at VIL Max.  
IPUL  
IPUH  
IPDH  
7
8
P
C
P
C
–10  
–130  
µA  
µA  
µA  
Internal Pull Up Device Current,  
tested at VIH Min.  
Internal Pull Down Device Current,  
tested at VIH Min.  
9
130  
Internal Pull Down Device Current,  
tested at VIL Max.  
IPDL  
Cin  
10  
10  
6
µA  
11 D Input Capacitance  
Injection current2  
pF  
IICS  
IICP  
12  
T
–2.5  
–25  
2.5  
25  
mA  
Single Pin limit  
Total Device Limit. Sum of all injected currents  
Port H, J, P Interrupt Input Pulse filtered 3  
Port H, J, P Interrupt Input Pulse passed 3  
tPULSE  
tPULSE  
13  
14  
P
P
3
µs  
µs  
10  
NOTES:  
1. Maximum leakage current occurs at maximum operating temperature. Current decreases by approximately one-half for  
each 8 C to 12 C in the temperature range from 50 C to 125 C.  
2. Refer to Section A.1.4 Current Injection, for more details  
3. Parameter only applies in STOP or Pseudo STOP mode.  
90  
 
MC9S12DT128B Device User Guide — V01.07  
A.1.10 Supply Currents  
This section describes the current consumption characteristics of the device as well as the conditions for  
the measurements.  
A.1.10.1 Measurement Conditions  
All measurements are without output loads. Unless otherwise noted the currents are measured in single  
chip mode, internal voltage regulator enabled and at 25MHz bus frequency using a 4MHz oscillator in  
Colpitts mode. Production testing is performed using a square wave signal at the EXTAL input.  
A.1.10.2 Additional Remarks  
In expanded modes the currents flowing in the system are highly dependent on the load at the address, data  
and control signals as well as on the duty cycle of those signals. No generally applicable numbers can be  
91  
MC9S12DT128B Device User Guide — V01.07  
given. A very good estimate is to take the single chip currents and add the currents due to the external  
loads.  
Table A-7 Supply Current Characteristics  
Conditions are shown in Table A-4 unless otherwise noted  
Num C  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
Run supply currents  
1
P
mA  
IDD5  
Single Chip, Internal regulator enabled  
55  
Wait Supply current  
All modules enabled, PLL on  
only RTI enabled 1  
IDDW  
2
P
P
30  
5
mA  
Pseudo Stop Current (RTI and COP disabled) 1, 2  
-40°C  
27°C  
70°C  
C
P
C
C
P
C
P
C
P
370  
400  
450  
550  
600  
650  
800  
850  
1200  
500  
85°C  
IDDPS  
3
4
5
µA  
"C" Temp Option 100°C  
105°C  
"V" Temp Option 120°C  
125°C  
1600  
2100  
5000  
“M” Temp Option 140°C  
Pseudo Stop Current (RTI and COP enabled) 1, 2  
C
C
C
C
C
C
C
570  
600  
650  
750  
850  
-40°C  
27°C  
70°C  
IDDPS  
µA  
85°C  
105°C  
125°C  
140°C  
1200  
1500  
Stop Current 2  
C
P
C
C
P
C
P
C
P
12  
25  
-40°C  
27°C  
70°C  
100  
100  
130  
160  
200  
350  
400  
600  
85°C  
IDDS  
µA  
1200  
1700  
5000  
"C" Temp Option 100°C  
105°C  
"V" Temp Option 120°C  
125°C  
“M” Temp Option 140°C  
NOTES:  
1. PLL off, Oscillator in Colpitts Mode  
2. At those low power dissipation levels TJ = TA can be assumed  
92  
 
MC9S12DT128B Device User Guide — V01.07  
A.2 ATD Characteristics  
This section describes the characteristics of the analog to digital converter.  
A.2.1 ATD Operating Characteristics  
The Table A-8 shows conditions under which the ATD operates.  
The following constraints exist to obtain full-scale, full range results:  
V
V V V V  
. This constraint exists since the sample buffer amplifier can not drive  
SSA  
RL  
IN  
RH  
DDA  
beyond the power supply levels that it ties to. If the input level goes outside of this range it will effectively  
be clipped.  
Table A-8 ATD Operating Characteristics  
Conditions are shown in Table A-4 unless otherwise noted  
Num C  
Rating  
Symbol  
Min  
Typ  
Max  
/2  
Unit  
Reference Potential  
1
D
Low  
High  
V
V
V
V
V
RL  
SSA  
DDA  
V
V
/2  
V
RH  
DDA  
DDA  
Differential Reference Voltage1  
2
3
C
V
-V  
4.50  
0.5  
5.00  
5.25  
2.0  
V
RH RL  
D ATD Clock Frequency  
f
MHz  
ATDCLK  
ATD 10-Bit Conversion Period  
D
Clock Cycles2  
4
5
N
T
14  
7
28  
14  
Cycles  
µs  
CONV10  
CONV10  
Conv, Time at 2.0MHz ATD Clock fATDCLK  
ATD 8-Bit Conversion Period  
Clock Cycles(2)  
D
D
N
T
12  
6
26  
13  
Cycles  
µs  
CONV8  
CONV8  
Conv, Time at 2.0MHz ATD Clock fATDCLK  
Stop Recovery Time (VDDA=5.0 Volts)  
6
7
8
t
20  
µs  
SR  
P Reference Supply current (Both ATD modules on)  
P Reference Supply current (Only one ATD module on)  
I
0.75  
0.375  
mA  
mA  
REF  
REF  
I
NOTES:  
1. Full accuracy is not guaranteed when differential voltage is less than 4.50V  
2. The minimum time assumes a final sample period of 2 ATD clocks cycles while the maximum time assumes a final sample  
period of 16 ATD clocks.  
A.2.2 Factors influencing accuracy  
Three factors – source resistance, source capacitance and current injection – have an influence on the  
accuracy of the ATD.  
A.2.2.1 Source Resistance:  
Due to the input pin leakage current as specified in Table A-6 in conjunction with the source resistance  
there will be a voltage drop from the signal source to the ATD input. The maximum source resistance R  
S
93  
 
 
MC9S12DT128B Device User Guide — V01.07  
specifies results in an error of less than 1/2 LSB (2.5mV) at the maximum leakage current. If device or  
operating conditions are less than worst case or leakage-induced error is acceptable, larger values of source  
resistance is allowed.  
A.2.2.2 Source capacitance  
When sampling an additional internal capacitor is switched to the input. This can cause a voltage drop due  
to charge sharing with the external and the pin capacitance. For a maximum sampling error of the input  
voltage 1LSB, then the external filter capacitor, C 1024 * (C – C ).  
f
INS  
INN  
A.2.2.3 Current injection  
There are two cases to consider.  
1. A current is injected into the channel being converted. The channel being stressed has conversion  
values of $3FF ($FF in 8-bit mode) for analog inputs greater than V and $000 for values less than  
RH  
V
unless the current is higher than specified as disruptive conditions.  
RL  
2. Current is injected into pins in the neighborhood of the channel being converted. A portion of this  
current is picked up by the channel (coupling ratio K), This additional current impacts the accuracy  
of the conversion depending on the source resistance.  
The additional input voltage error on the converted channel can be calculated as V  
= K * R *  
ERR  
S
I
, with I being the sum of the currents injected into the two pins adjacent to the converted  
INJ  
INJ  
channe  
Table A-9 ATD Electrical Characteristics  
Conditions are shown in Table A-4 unless otherwise noted  
Num C  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
RS  
1
C Max input Source Resistance  
-
-
1
KΩ  
Total Input Capacitance  
T Non Sampling  
Sampling  
CINN  
CINS  
2
10  
22  
pF  
INA  
Kp  
Kn  
3
4
5
C Disruptive Analog Input Current  
-2.5  
2.5  
10-4  
10-2  
mA  
A/A  
A/A  
C Coupling Ratio positive current injection  
C Coupling Ratio negative current injection  
94  
MC9S12DT128B Device User Guide — V01.07  
A.2.3 ATD accuracy  
Table A-10 specifies the ATD conversion performance excluding any errors due to current injection,  
input capacitance and source resistance.  
Table A-10 ATD Conversion Performance  
Conditions are shown in Table A-4 unless otherwise noted  
VREF = VRH - VRL = 5.12V. Resulting to one 8 bit count = 20mV and one 10 bit count = 5mV  
f
= 2.0MHz  
ATDCLK  
Num C  
Rating  
Symbol  
LSB  
DNL  
INL  
Min  
Typ  
Max  
Unit  
mV  
1
2
3
4
5
6
7
8
P 10-Bit Resolution  
5
P 10-Bit Differential Nonlinearity  
P 10-Bit Integral Nonlinearity  
–1  
–2.5  
-3  
1
2.5  
3
Counts  
Counts  
Counts  
mV  
±1.5  
±2.0  
20  
10-Bit Absolute Error1  
P
AE  
P 8-Bit Resolution  
LSB  
DNL  
INL  
P 8-Bit Differential Nonlinearity  
P 8-Bit Integral Nonlinearity  
–0.5  
–1.0  
-1.5  
0.5  
1.0  
1.5  
Counts  
Counts  
Counts  
±0.5  
±1.0  
8-Bit Absolute Error(1)  
P
AE  
NOTES:  
1. These values include the quantization error which is inherently 1/2 count for any A/D converter.  
For the following definitions see also Figure A-1.  
Differential Non-Linearity (DNL) is defined as the difference between two adjacent switching steps.  
V V  
i
i 1  
DNL(i) =  
1  
------------------------  
1LSB  
The Integral Non-Linearity (INL) is defined as the sum of all DNLs:  
n
V V  
n
0
-------------------  
1LSB  
INL(n) =  
DNL(i) =  
n  
i = 1  
95  
 
 
MC9S12DT128B Device User Guide — V01.07  
DNL  
10-Bit Absolute Error Boundary  
LSB  
V
V
i
i-1  
$3FF  
$3FE  
$3FD  
$3FC  
$3FB  
$3FA  
$3F9  
$3F8  
$3F7  
$3F6  
$3F5  
$3F4  
$3F3  
8-Bit Absolute Error Boundary  
$FF  
$FE  
$FD  
2
9
8
7
6
5
4
3
2
1
0
Ideal Transfer Curve  
10-Bit Transfer Curve  
1
8-Bit Transfer Curve  
5
10  
15  
20  
25  
30  
35  
40  
45  
5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120  
Vin  
mV  
Figure A-1 ATD Accuracy Definitions  
NOTE: Figure A-1 shows only definitions, for specification values refer to Table A-10.  
96  
MC9S12DT128B Device User Guide — V01.07  
A.3 NVM, Flash and EEPROM  
NOTE: Unless otherwise noted the abbreviation NVM (Non Volatile Memory) is used for  
both Flash and EEPROM.  
A.3.1 NVM timing  
The time base for all NVM program or erase operations is derived from the oscillator. A minimum  
oscillator frequency f  
is required for performing program or erase operations. The NVM modules  
NVMOSC  
do not have any means to monitor the frequency and will not prevent program or erase operation at  
frequencies above or below the specified minimum. Attempting to program or erase the NVM modules at  
a lower frequency a full program or erase transition is not assured.  
The Flash and EEPROM program and erase operations are timed using a clock derived from the oscillator  
using the FCLKDIV and ECLKDIV registers respectively. The frequency of this clock must be set within  
the limits specified as f  
.
NVMOP  
The minimum program and erase times shown in Table A-11 are calculated for maximum f  
and  
NVMOP  
maximum f . The maximum times are calculated for minimum f  
and a f of 2MHz.  
bus  
NVMOP  
bus  
A.3.1.1 Single Word Programming  
The programming time for single word programming is dependant on the bus frequency as a well as on  
the frequency f¨ and can be calculated according to the following formula.  
NVMOP  
1
1
t
= 9  
+ 25  
---------------------  
----------  
swpgm  
f
f
NVMOP  
bus  
A.3.1.2 Burst Programming  
This applies only to the Flash where up to 32 words in a row can be programmed consecutively using burst  
programming by keeping the command pipeline filled. The time to program a consecutive word can be  
calculated as:  
1
1
t
= 4  
+ 9  
---------------------  
----------  
bwpgm  
f
f
NVMOP  
bus  
The time to program a whole row is:  
t
= t  
+ 31 t  
brpgm  
swpgm  
bwpgm  
Burst programming is more than 2 times faster than single word programming.  
97  
 
MC9S12DT128B Device User Guide — V01.07  
A.3.1.3 Sector Erase  
Erasing a 512 byte Flash sector or a 4 byte EEPROM sector takes:  
1
t
4000  
---------------------  
era  
f
NVMOP  
The setup times can be ignored for this operation.  
A.3.1.4 Mass Erase  
Erasing a NVM block takes:  
1
t
20000  
---------------------  
mass  
f
NVMOP  
The setup times can be ignored for this operation.  
A.3.1.5 Blank Check  
The time it takes to perform a blank check on the Flash or EEPROM is dependant on the location of the  
first non-blank word starting at relative address zero. It takes one bus cycle per word to verify plus a setup  
of the command.  
t
location t  
+ 10 t  
check  
cyc  
cyc  
Table A-11 NVM Timing Characteristics  
Conditions are shown in Table A-4 unless otherwise noted  
Num C  
Rating  
Symbol  
fNVMOSC  
fNVMBUS  
fNVMOP  
tswpgm  
Min  
0.5  
1
Typ  
Max  
Unit  
MHz  
MHz  
kHz  
µs  
50 1  
1
2
3
4
5
6
7
8
9
D External Oscillator Clock  
D Bus frequency for Programming or Erase Operations  
D Operating Frequency  
150  
200  
74.5 3  
31 3  
46 2  
20.4 2  
678.4 2  
20 5  
P Single Word Programming Time  
Flash Burst Programming consecutive word 4  
D
tbwpgm  
tbrpgm  
tera  
µs  
Flash Burst Programming Time for 32 Words 4  
D
1035.5 3  
26.7 3  
133 3  
µs  
P Sector Erase Time  
ms  
100 5  
11 6  
tmass  
tcheck  
tcheck  
P Mass Erase Time  
ms  
32778 7  
20587  
tcyc  
tcyc  
D Blank Check Time Flash per block  
11 6  
10 D Blank Check Time EEPROM per block  
NOTES:  
1. Restrictions for oscillator in crystal mode apply!  
2. Minimum Programming times are achieved under maximum NVM operating frequency fNVMOP and maximum bus frequency  
fbus  
.
3. Maximum Erase and Programming times are achieved under particular combinations of fNVMOP and bus frequency fbus  
.
Refer to formulae in Sections A.3.1.1 - A.3.1.5 for guidance.  
98  
 
 
 
MC9S12DT128B Device User Guide — V01.07  
4. Burst Programming operations are not applicable to EEPROM  
5. Minimum Erase times are achieved under maximum NVM operating frequency fNVMOP  
.
6. Minimum time, if first word in the array is not blank  
7. Maximum time to complete check on an erased block  
A.3.2 NVM Reliability  
The reliability of the NVM blocks is guaranteed by stress test during qualification, constant process  
monitors and burn-in to screen early life failures.  
The failure rates for data retention and program/erase cycling are specified at the operating conditions  
noted.  
The program/erase cycle count on the sector is incremented every time a sector or mass erase event is  
executed.  
NOTE: All values shown in Table A-12 are target values and subject to further extensive  
characterization  
Table A-12 NVM Reliability Characteristics  
Conditions are shown in Table A-4 unless otherwise noted  
Data Retention  
Num C  
Rating  
Cycles  
Unit  
Lifetime  
10  
1
2
C Flash/EEPROM (-40˚C to +125˚C)  
C EEPROM (-40˚C to +125˚C)  
15  
5
Years  
Years  
10,000  
NOTE: Flash cycling performance is 10 cycles at -40˚C to +125˚C. Data retention is  
specified for 15 years.  
NOTE: EEPROM cycling performance is 10K cycles at -40˚C to 125˚C. Data retention is  
specified for 5 years on words after cycling 10K times. However if only 10 cycles  
are executed on a word the data retention is specified for 15 years.  
99  
MC9S12DT128B Device User Guide — V01.07  
100  
MC9S12DT128B Device User Guide — V01.07  
A.4 Voltage Regulator  
The on-chip voltage regulator is intended to supply the internal logic and oscillator circuits. No external  
DC load is allowed.  
Table A-13 Voltage Regulator Recommended Load Capacitances  
Rating  
Load Capacitance on VDD1, 2  
Load Capacitance on VDDPLL  
Symbol  
CLVDD  
Min  
Typ  
220  
220  
Max  
Unit  
nF  
CLVDDfcPLL  
nF  
101  
MC9S12DT128B Device User Guide — V01.07  
102  
MC9S12DT128B Device User Guide — V01.07  
A.5 Reset, Oscillator and PLL  
This section summarizes the electrical characteristics of the various startup scenarios for Oscillator and  
Phase-Locked-Loop (PLL).  
A.5.1 Startup  
Table A-14 summarizes several startup characteristics explained in this section. Detailed description of  
the startup behavior can be found in the Clock and Reset Generator (CRG) Block User Guide.  
Table A-14 Startup Characteristics  
Conditions are shown in Table A-4 unless otherwise noted  
Num C  
Rating  
Symbol  
VPORR  
VPORA  
PWRSTL  
nRST  
Min  
Typ  
Max  
Unit  
V
1
2
3
4
5
6
T POR release level  
T POR assert level  
2.07  
0.97  
2
V
tosc  
nosc  
D Reset input pulse width, minimum input time  
D Startup from Reset  
192  
20  
196  
14  
PWIRQ  
tWRS  
D Interrupt pulse width, IRQ edge-sensitive mode  
D Wait recovery startup time  
ns  
tcyc  
A.5.1.1 POR  
The release level V  
and the assert level V  
are derived from the V Supply. They are also valid  
PORA DD  
PORR  
if the device is powered externally. After releasing the POR reset the oscillator and the clock quality check  
are started. If after a time t no valid oscillation is detected, the MCU will start using the internal self  
CQOUT  
clock. The fastest startup time possible is given by n  
.
uposc  
A.5.1.2 SRAM Data Retention  
Provided an appropriate external reset signal is applied to the MCU, preventing the CPU from executing  
code when VDD5 is out of specification limits, the SRAM contents integrity is guaranteed if after the reset  
the PORF bit in the CRG Flags Register has not been set.  
A.5.1.3 External Reset  
When external reset is asserted for a time greater than PW  
the CRG module generates an internal  
RSTL  
reset, and the CPU starts fetching the reset vector without doing a clock quality check, if there was an  
oscillation before reset.  
A.5.1.4 Stop Recovery  
Out of STOP the controller can be woken up by an external interrupt. A clock quality check as after POR  
is performed before releasing the clocks to the system.  
103  
 
MC9S12DT128B Device User Guide — V01.07  
A.5.1.5 Pseudo Stop and Wait Recovery  
The recovery from Pseudo STOP and Wait are essentially the same since the oscillator was not stopped in  
both modes. The controller can be woken up by internal or external interrupts. After t the CPU starts  
wrs  
fetching the interrupt vector.  
A.5.2 Oscillator  
The device features an internal Colpitts and Pierce oscillator. The selection of Colpitts oscillator or Pierce  
oscillator/external clock depends on the XCLKS signal which is sampled during reset.By asserting the  
XCLKS input during reset this oscillator can be bypassed allowing the input of a square wave. Before  
asserting the oscillator to the internal system clocks the quality of the oscillation is checked for each start  
from either power-on, STOP or oscillator fail. t  
specifies the maximum time before switching to the  
CQOUT  
internal self clock mode after POR or STOP if a proper oscillation is not detected. The quality check also  
determines the minimum oscillator start-up time t . The device also features a clock monitor. A  
UPOSC  
Clock Monitor Failure is asserted if the frequency of the incoming clock signal is below the Assert  
Frequency f  
CMFA.  
Table A-15 Oscillator Characteristics  
Conditions are shown in Table A-4 unless otherwise noted  
Num C  
Rating  
Symbol  
Min  
0.5  
Typ  
Max  
16  
Unit  
MHz  
MHz  
µA  
fOSC  
1a C Crystal oscillator range (Colpitts)  
Crystal oscillator range (Pierce) 1  
fOSC  
iOSC  
1b  
2
C
0.5  
40  
P Startup Current  
100  
82  
1003  
2.5  
tUPOSC  
tCQOUT  
fCMFA  
fEXT  
3
C Oscillator start-up time (Colpitts)  
D Clock Quality check time-out  
P Clock Monitor Failure Assert Frequency  
ms  
s
4
0.45  
50  
5
100  
200  
50  
KHz  
MHz  
ns  
External square wave input frequency 4  
P
6
0.5  
9.5  
9.5  
tEXTL  
tEXTH  
tEXTR  
tEXTF  
CIN  
7
D External square wave pulse width low  
D External square wave pulse width high  
D External square wave rise time  
8
ns  
9
1
1
ns  
10 D External square wave fall time  
ns  
11 D Input Capacitance (EXTAL, XTAL pins)  
DC Operating Bias in Colpitts Configuration on  
7
pF  
VDCBIAS  
12  
C
1.1  
V
EXTAL Pin  
NOTES:  
1. Depending on the crystal a damping series resistor might be necessary  
2. fosc = 4MHz, C = 22pF.  
3. Maximum value is for extreme cases using high Q, low frequency crystals  
4. XCLKS =0 during reset  
104  
MC9S12DT128B Device User Guide — V01.07  
A.5.3 Phase Locked Loop  
The oscillator provides the reference clock for the PLL. The PLL´s Voltage Controlled Oscillator (VCO)  
is also the system clock source in self clock mode.  
A.5.3.1 XFC Component Selection  
This section describes the selection of the XFC components to achieve a good filter characteristics.  
C
p
VDDPLL  
R
C
XFC Pin  
s
Phase  
VCO  
f
f
vco  
f
1
ref  
osc  
K
K
Φ
V
refdv+1  
Detector  
f
cmp  
Loop Divider  
1
1
2
synr+1  
Figure A-2 Basic PLL functional diagram  
The following procedure can be used to calculate the resistance and capacitance values using typical  
values for K , f and i from Table A-16.  
1
1
ch  
The grey boxes show the calculation for f  
= 50MHz and f = 1MHz. E.g., these frequencies are used  
ref  
VCO  
for f  
= 4MHz and a 25MHz bus clock.  
OSC  
The VCO Gain at the desired VCO frequency is approximated by:  
(f1 fvco  
-----------------------  
K1 1V  
)
(75 50)  
-----------------------  
120  
K = K e  
= -97.43MHz/V  
= 120 e  
V
1
The phase detector relationship is given by:  
K = i  
K
= 341.0Hz/Ω  
Φ
ch  
V
i is the current in tracking mode.  
ch  
105  
MC9S12DT128B Device User Guide — V01.07  
The loop bandwidth f should be chosen to fulfill the Gardner’s stability criteria by at least a factor of 10,  
C
typical values are 50. ζ = 0.9 ensures a good transient response.  
2 ζ f  
f
ref  
1
ref  
f < ------------------------------------------  
f < ------------- ;= 0.9)  
------  
10  
C
C
4 10  
fC < 25kHz  
2
π
ζ + 1 + ζ  
And finally the frequency relationship is defined as  
f
VCO  
n = ------------- = 2 (synr + 1)  
= 50  
f
ref  
With the above values the resistance can be calculated. The example is shown for a loop bandwidth  
f =11kHz:  
C
2 π n f  
C
= 2*π*50*11kHz/(341.0Hz/)=10.1k=~ 10kΩ  
R = ----------------------------  
K
Φ
The capacitance C can now be calculated as:  
s
2
0.516  
--------------;= 0.9)  
2 ζ  
= 4.69nF =~ 4.7nF  
C =  
---------------------  
π f  
s
f
R
R
C
C
The capacitance C should be chosen in the range of:  
p
C 20 C C 10  
Cp = 470pF  
s
p
s
A.5.3.2 Jitter Information  
The basic functionality of the PLL is shown in Figure A-2. With each transition of the clock f , the  
cmp  
deviation from the reference clock f is measured and input voltage to the VCO is adjusted  
ref  
accordingly.The adjustment is done continuously with no abrupt changes in the clock output frequency.  
Noise, voltage, temperature and other factors cause slight variations in the control loop resulting in a clock  
jitter. This jitter affects the real minimum and maximum clock periods as illustrated in Figure A-3.  
106  
MC9S12DT128B Device User Guide — V01.07  
1
2
3
N-1  
N
0
t
min1  
t
nom  
t
max1  
t
minN  
t
maxN  
Figure A-3 Jitter Definitions  
is at its maximum for one clock period, and decreases towards zero for larger  
The relative deviation of t  
nom  
number of clock periods (N).  
Defining the jitter as:  
t
(N)  
t
(N)  
max  
min  
J(N) = max 1 –  
, 1 –  
--------------------  
---------------------  
N t  
N t  
nom  
nom  
For N < 100, the following equation is a good fit for the maximum jitter:  
j
1
J(N) =  
+ j  
-------  
2
N
J(N)  
1
5
10  
20  
N
Figure A-4 Maximum bus clock jitter approximation  
107  
MC9S12DT128B Device User Guide — V01.07  
This is very important to notice with respect to timers, serial modules where a pre-scaler will eliminate the  
effect of the jitter to a large extent.  
Table A-16 PLL Characteristics  
Conditions are shown in Table A-4 unless otherwise noted  
Num C  
Rating  
Symbol  
fSCM  
Min  
1
Typ  
Max  
5.5  
Unit  
MHz  
MHz  
1
2
P Self Clock Mode frequency  
D VCO locking range  
fVCO  
8
50  
Lock Detector transition from Acquisition to Tracking  
mode  
1
|∆trk  
|∆Lock  
|∆unl  
|∆unt  
|
3
D
3
4
%
(1)  
|
4
5
D Lock Detection  
0
1.5  
2.5  
%
(1)  
|
D Un-Lock Detection  
0.5  
%
Lock Detector transition from Tracking to Acquisition  
mode  
(1)  
|
6
D
6
8
%
PLLON Total Stabilization delay (Auto Mode) 2  
C
tstab  
tacq  
tal  
7
8
9
0.5  
0.3  
ms  
ms  
PLLON Acquisition mode stabilization delay (2)  
D
PLLON Tracking mode stabilization delay (2)  
D
0.2  
ms  
K1  
f1  
10 D Fitting parameter VCO loop gain  
11 D Fitting parameter VCO loop frequency  
12 D Charge pump current acquisition mode  
13 D Charge pump current tracking mode  
-120  
75  
MHz/V  
MHz  
µA  
| ich  
| ich  
j1  
|
38.5  
3.5  
|
µA  
Jitter fit parameter 1(2)  
Jitter fit parameter 2(2)  
14  
15  
C
C
1.1  
%
j2  
0.13  
%
NOTES:  
1. % deviation from target frequency  
2. fREF = 4MHz, fBUS = 25MHz equivalent fVCO = 50MHz: REFDV = #$03, SYNR = #$018, Cs = 4.7nF, Cp = 470pF, Rs =  
10K.  
108  
 
 
MC9S12DT128B Device User Guide — V01.07  
A.6 MSCAN  
Table A-17 MSCAN Wake-up Pulse Characteristics  
Conditions are shown in Table A-4 unless otherwise noted  
Num C  
Rating  
Symbol  
tWUP  
Min  
Typ  
Max  
Unit  
µs  
1
2
P MSCAN Wake-up dominant pulse filtered  
P MSCAN Wake-up dominant pulse pass  
2
tWUP  
5
µs  
109  
MC9S12DT128B Device User Guide — V01.07  
110  
MC9S12DT128B Device User Guide — V01.07  
A.7 SPI  
A.7.1 Master Mode  
Figure A-5 and Figure A-6 illustrate the master mode timing. Timing values are shown in Table A-18.  
1
SS  
(OUTPUT)  
2
1
11  
12  
3
SCK  
0)  
4
(CPOL  
=
(OUTPUT)  
4
SCK  
= 1)  
(CPOL  
(OUTPUT)  
5
6
MISO  
(INPUT)  
MSB IN2  
LSB IN  
BIT 6 . . . 1  
9
9
10  
MOSI  
(OUTPUT)  
MSB OUT2  
BIT 6 . . . 1  
LSB OUT  
1.if configured as an output.  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure A-5 SPI Master Timing (CPHA = 0)  
111  
 
MC9S12DT128B Device User Guide — V01.07  
1
SS  
(OUTPUT)  
1
12  
11  
12  
3
2
SCK  
0)  
(OUTPUT)  
(CPOL  
=
4
4
11  
SCK  
= 1)  
(CPOL  
(OUTPUT)  
5
6
MISO  
MSB IN2  
BIT 6 . . . 1  
10  
BIT 6 . . . 1  
LSB IN  
(INPUT)  
9
MOSI  
(OUTPUT)  
MASTER MSB OUT2  
PORT DATA  
MASTER LSB OUT  
PORT DATA  
1.If configured as output  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure A-6 SPI Master Timing (CPHA =1)  
1
Table A-18 SPI Master Mode Timing Characteristics  
Conditions are shown in Table A-4 unless otherwise noted, CLOAD = 200pF on all outputs  
Num C  
Rating  
Symbol  
Min  
DC  
Typ  
Max  
1/4  
Unit  
fbus  
tbus  
tsck  
fop  
tsck  
tlead  
tlag  
twsck  
tsu  
thi  
1
1
2
3
4
5
6
9
P Operating Frequency  
SCK Period tsck = 1./fop  
P
4
2048  
D Enable Lead Time  
1/2  
tsck  
D Enable Lag Time  
1/2  
t
bus 30  
1024 tbus  
D Clock (SCK) High or Low Time  
D Data Setup Time (Inputs)  
D Data Hold Time (Inputs)  
D Data Valid (after SCK Edge)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
25  
0
tv  
25  
tho  
tr  
10 D Data Hold Time (Outputs)  
11 D Rise Time Inputs and Outputs  
12 D Fall Time Inputs and Outputs  
NOTES:  
0
25  
25  
tf  
1. The numbers 7, 8 in the column labeled “Num” are missing. This has been done on purpose to be consistent between the  
Master and the Slave timing shown in Table A-19.  
112  
MC9S12DT128B Device User Guide — V01.07  
A.7.2 Slave Mode  
Figure A-7 and Figure A-8 illustrate the slave mode timing. Timing values are shown in Table A-19.  
SS  
(INPUT)  
1
12  
11  
11  
12  
3
SCK  
0)  
(CPOL  
=
(INPUT)  
4
4
2
SCK  
(CPOL  
= 1)  
(INPUT)  
8
7
9
10  
10  
MISO  
(OUTPUT)  
BIT 6 . . . 1  
SLAVE LSB OUT  
MSB OUT  
6
SLAVE  
5
MOSI  
(INPUT)  
BIT 6 . . . 1  
MSB IN  
LSB IN  
Figure A-7 SPI Slave Timing (CPHA = 0)  
SS  
(INPUT)  
3
1
12  
11  
12  
2
SCK  
(CPOL  
= 0)  
(INPUT)  
4
4
11  
10  
SCK  
= 1)  
(INPUT)  
(CPOL  
8
9
MISO  
BIT 6 . . . 1  
SLAVE LSB OUT  
LSB IN  
SLAVE  
5
MSB OUT  
6
(OUTPUT)  
7
MOSI  
(INPUT)  
MSB IN  
BIT 6 . . . 1  
Figure A-8 SPI Slave Timing (CPHA =1)  
113  
 
MC9S12DT128B Device User Guide — V01.07  
Table A-19 SPI Slave Mode Timing Characteristics  
Conditions are shown in Table A-4 unless otherwise noted, CLOAD = 200pF on all outputs  
Num C  
Rating  
Symbol  
fop  
Min  
Typ  
Max  
1/4  
Unit  
fbus  
tbus  
tcyc  
1
1
2
3
4
5
6
7
8
9
P Operating Frequency  
SCK Period tsck = 1./fop  
DC  
tsck  
tlead  
tlag  
twsck  
tsu  
P
4
2048  
D Enable Lead Time  
1
1
tcyc  
D Enable Lag Time  
t
cyc 30  
D Clock (SCK) High or Low Time  
D Data Setup Time (Inputs)  
D Data Hold Time (Inputs)  
D Slave Access Time  
ns  
ns  
25  
25  
thi  
ns  
ta  
tcyc  
tcyc  
1
1
tdis  
tv  
D Slave MISO Disable Time  
D Data Valid (after SCK Edge)  
25  
ns  
ns  
ns  
ns  
tho  
10 D Data Hold Time (Outputs)  
11 D Rise Time Inputs and Outputs  
12 D Fall Time Inputs and Outputs  
0
tr  
25  
25  
tf  
114  
MC9S12DT128B Device User Guide — V01.07  
A.8 External Bus Timing  
A timing diagram of the external multiplexed-bus is illustrated in Figure A-9 with the actual timing  
values shown on table Table A-20. All major bus signals are included in the diagram. While both a data  
write and data read cycle are shown, only one or the other would occur on a particular bus cycle.  
A.8.1 General Muxed Bus Timing  
The expanded bus timings are highly dependent on the load conditions. The timing parameters shown  
assume a balanced load across all outputs.  
115  
MC9S12DT128B Device User Guide — V01.07  
1, 2  
3
4
ECLK  
PE4  
5
6
16  
10  
9
15  
11  
Addr/Data  
(read)  
PA, PB  
data  
data  
data  
addr  
7
8
12  
14  
data  
13  
Addr/Data  
(write)  
PA, PB  
addr  
17  
19  
23  
26  
18  
Non-Multiplexed  
Addresses  
PK5:0  
20  
21  
22  
ECS  
PK7  
24  
27  
25  
28  
R/W  
PE2  
29  
32  
LSTRB  
PE3  
31  
34  
30  
33  
NOACC  
PE7  
35  
36  
PIPO0  
PIPO1, PE6,5  
Figure A-9 General External Bus Timing  
116  
MC9S12DT128B Device User Guide — V01.07  
Table A-20 Expanded Bus Timing Characteristics  
Conditions are shown in Table A-4 unless otherwise noted, CLOAD = 50pF  
Num C  
Rating  
Symbol  
fo  
Min  
0
Typ  
Max  
Unit  
MHz  
ns  
1
2
3
4
5
6
7
8
9
P Frequency of operation (E-clock)  
P Cycle time  
25.0  
tcyc  
40  
19  
19  
PWEL  
D Pulse width, E low  
ns  
Pulse width, E high1  
D
PWEH  
tAD  
ns  
D Address delay time  
8
ns  
Address valid time to E rise (PWEL–tAD  
)
tAV  
D
11  
2
ns  
tMAH  
tAHDS  
tDHA  
tDSR  
tDHR  
tDDW  
tDHW  
tDSW  
D Muxed address hold time  
D Address hold to data valid  
D Data hold to address  
ns  
7
ns  
2
ns  
10 D Read data setup time  
11 D Read data hold time  
12 D Write data delay time  
13 D Write data hold time  
13  
0
ns  
ns  
7
ns  
2
12  
19  
6
ns  
Write data setup time(1) (PWEH–tDDW  
)
14  
15  
16  
D
D
D
ns  
ns  
Address access time(1) (tcyc–tAD–tDSR  
E high access time(1) (PWEH–tDSR  
)
tACCA  
tACCE  
tNAD  
tNAV  
tNAH  
tCSD  
tACCS  
tCSH  
tCSN  
tRWD  
tRWV  
tRWH  
tLSD  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
)
17 D Non-multiplexed address delay time  
Non-muxed address valid to E rise (PWEL–tNAD  
6
)
18  
D
15  
2
19 D Non-multiplexed address hold time  
20 D Chip select delay time  
16  
Chip select access time(1) (tcyc–tCSD–tDSR  
)
21  
D
11  
2
22 D Chip select hold time  
23 D Chip select negated time  
24 D Read/write delay time  
8
7
7
7
Read/write valid time to E rise (PWEL–tRWD  
)
25  
D
14  
2
26 D Read/write hold time  
27 D Low strobe delay time  
Low strobe valid time to E rise (PWEL–tLSD  
)
tLSV  
28  
D
14  
2
tLSH  
29 D Low strobe hold time  
tNOD  
tNOV  
30 D NOACC strobe delay time  
NOACC valid time to E rise (PWEL–tNOD  
)
31  
D
14  
117  
MC9S12DT128B Device User Guide — V01.07  
Table A-20 Expanded Bus Timing Characteristics  
Conditions are shown in Table A-4 unless otherwise noted, CLOAD = 50pF  
Num C  
Rating  
Symbol  
tNOH  
Min  
2
Typ  
Max  
Unit  
ns  
32 D NOACC hold time  
33 D IPIPO[1:0] delay time  
tP0D  
2
7
ns  
IPIPO[1:0] valid time to E rise (PWEL–tP0D  
)
tP0V  
34  
35  
D
D
11  
ns  
IPIPO[1:0] delay time(1) (PWEH-tP1V  
)
tP1D  
tP1V  
2
25  
ns  
ns  
36 D IPIPO[1:0] valid time to E fall  
11  
NOTES:  
1. Affected by clock stretch: add N x tcyc where N=0,1,2 or 3, depending on the number of clock stretches.  
118  
 
MC9S12DT128B Device User Guide — V01.07  
Appendix B Package Information  
B.1 General  
This section provides the physical dimensions of the MC9S12DT128B packages.  
119  
MC9S12DT128B Device User Guide — V01.07  
B.2 112-pin LQFP package  
4X  
0.20  
T L-M N  
4X 28 TIPS  
85  
0.20  
T L-M N  
4X  
P
J1  
J1  
PIN 1  
IDENT  
112  
C
1
84  
L
VIEW Y  
X
108X  
G
X=L, M OR N  
VIEW Y  
V
B
L
M
AA  
J
B1  
V1  
28  
57  
BASE  
METAL  
F
D
29  
56  
M
0.13  
T
L-M  
N
N
SECTION J1-J1  
A1  
S1  
ROTATED 90 COUNTERCLOCKWISE  
°
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
A
2. DIMENSIONS IN MILLIMETERS.  
3. DATUMS L, M AND N TO BE DETERMINED AT  
SEATING PLANE, DATUM T.  
S
4. DIMENSIONS S AND V TO BE DETERMINED AT  
SEATING PLANE, DATUM T.  
5. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION. ALLOWABLE  
PROTRUSION IS 0.25 PER SIDE. DIMENSIONS  
A AND B INCLUDE MOLD MISMATCH.  
6. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL NOT CAUSE THE D  
DIMENSION TO EXCEED 0.46.  
C2  
VIEW AB  
θ2  
C
0.050  
112X  
0.10  
T
SEATING  
PLANE  
MILLIMETERS  
DIM  
A
MIN  
MAX  
θ3  
20.000 BSC  
A1  
B
B1  
C
C1  
C2  
D
10.000 BSC  
20.000 BSC  
10.000 BSC  
T
---  
0.050  
1.350  
0.270  
0.450  
0.270  
1.600  
0.150  
1.450  
0.370  
0.750  
0.330  
θ
E
F
G
0.650 BSC  
J
K
P
0.090  
0.500 REF  
0.325 BSC  
0.170  
R R2  
R1  
R2  
S
0.100  
0.100  
22.000 BSC  
0.200  
0.200  
0.25  
R R1  
S1  
V
V1  
Y
11.000 BSC  
22.000 BSC  
11.000 BSC  
0.250 REF  
1.000 REF  
GAGE PLANE  
(K)  
Z
C1  
θ1  
AA  
θ
0.090  
0.160  
E
8
°
°
°
°
0
°
°
°
°
θ
θ
θ
1
2
3
3
7
(Y)  
(Z)  
13  
13  
11  
11  
VIEW AB  
Figure 22-5 112-pin LQFP mechanical dimensions (case no. 987)  
120  
MC9S12DT128B Device User Guide — V01.07  
B.3 80-pin QFP package  
L
60  
61  
41  
40  
B
P
B
-A-  
L
-B-  
V
B
-A-,-B-,-D-  
DETAIL A  
DETAIL A  
21  
80  
F
1
20  
-D-  
A
S
M
S
S
S
0.20  
H
A-B  
A-B  
D
D
0.05 A-B  
J
N
M
S
0.20  
C
D
M
E
DETAIL C  
M
S
S
0.20  
C
A-B  
D
SECTION B-B  
VIEW ROTATED 90  
C
DATUM  
PLANE  
-H-  
°
-C-  
0.10  
H
SEATING  
PLANE  
M
G
NOTES:  
MILLIMETERS  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
DIM  
A
B
C
D
E
MIN  
13.90  
13.90  
2.15  
MAX  
14.10  
14.10  
2.45  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLANE -H- IS LOCATED AT BOTTOM OF  
LEAD AND IS COINCIDENT WITH THE  
LEAD WHERE THE LEAD EXITS THE PLASTIC  
BODY AT THE BOTTOM OF THE PARTING LINE.  
4. DATUMS -A-, -B- AND -D- TO BE  
DETERMINED AT DATUM PLANE -H-.  
5. DIMENSIONS S AND V TO BE DETERMINED  
AT SEATING PLANE -C-.  
6. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION. ALLOWABLE  
PROTRUSION IS 0.25 PER SIDE. DIMENSIONS  
A AND B DO INCLUDE MOLD MISMATCH  
AND ARE DETERMINED AT DATUM PLANE -H-.  
7. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.08 TOTAL IN  
EXCESS OF THE D DIMENSION AT MAXIMUM  
MATERIAL CONDITION. DAMBAR CANNOT  
BE LOCATED ON THE LOWER RADIUS OR  
THE FOOT.  
U
0.22  
0.38  
2.00  
2.40  
T
F
0.22  
0.33  
G
H
J
K
L
M
N
P
Q
R
S
0.65 BSC  
DATUM  
PLANE  
---  
0.13  
0.65  
0.25  
0.23  
0.95  
-H-  
R
12.35 REF  
5
0.13  
10  
0.17  
°
°
0.325 BSC  
K
0
7
Q
°
°
W
0.13  
16.95  
0.13  
0.30  
17.45  
---  
X
T
DETAIL C  
U
V
W
X
0
---  
17.45  
0.45  
°
16.95  
0.35  
1.6 REF  
Figure 1 80-pin QFP Mechanical Dimensions (case no. 841B)  
121  
MC9S12DT128B Device User Guide — V01.07  
122  
MC9S12DT128B Device User Guide — V01.07  
User Guide End Sheet  
123  
MC9S12DT128B Device User Guide — V01.07  
FINAL PAGE OF  
124  
PAGES  
124  

相关型号:

MC9S12DG128BVPV

MC9S12DT128B
MOTOROLA

MC9S12DG128BVPV

MC9S12DT128B
FREESCALE

MC9S12DG128BVPV

16-BIT, FLASH, 25MHz, MICROCONTROLLER, PQFP112, LQFP-112
NXP

MC9S12DG128CFU

暂无描述
MOTOROLA

MC9S12DG128CFUE

S12DG 16-bit MCU, HCS12 core, 128KB Flash, QFP 80
NXP

MC9S12DG128CFUER

8-bit and 4-bit ports with interrupt functionality
FREESCALE

MC9S12DG128CFUER

16-BIT, FLASH, 25MHz, MICROCONTROLLER, PQFP80, PLASTIC, LQFP-80
NXP

MC9S12DG128CPV

Microcontroller, 16-Bit, FLASH, CPU12 CPU, 25MHz, CMOS, PQFP112, LQFP-112
MOTOROLA

MC9S12DG128CPVE

S12DG 16-bit MCU, HCS12 core, 128KB Flash, QFP 112
NXP

MC9S12DG128CPVR2

16-BIT, FLASH, 25 MHz, MICROCONTROLLER, PQFP112, LQFP-112
NXP

MC9S12DG128E

MC9S12DT128 Device User Guide V02.09
MOTOROLA

MC9S12DG128E

nullDevice User Guide
FREESCALE