MCM36400ASHG60 [MOTOROLA]

Fast Page DRAM Module, 4MX36, 60ns, CMOS, SIMM-72;
MCM36400ASHG60
型号: MCM36400ASHG60
厂家: MOTOROLA    MOTOROLA
描述:

Fast Page DRAM Module, 4MX36, 60ns, CMOS, SIMM-72

动态存储器 内存集成电路
文件: 总14页 (文件大小:320K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MCM36400/D  
SEMICONDUCTOR  
TECHNICAL DATA  
MCM36400  
4M x 36 Bit Dynamic Random  
Access Memory Module  
The MCM36400 is a dynamic random access memory (DRAM) module organized  
as 4,194,304 x 36 bits. The module is a 72–lead single–in–line memory module  
(SIMM) consisting of eight MCM517400B DRAMs, housed in 300 mil J–lead small  
outline packages (SOJ), and four MCM54100AN DRAMs housed in 300 mil J–lead  
small outline packages (SOJ), mounted on a substrate along with a 0.22 µF (min)  
decoupling capacitor mounted adjacent to each DRAM. The MCM517400B is a  
CMOS high–speed dynamic random access memory organized as 4,194,304 four–  
bit words and fabricated with CMOS silicon–gate process technology.  
AS PACKAGE  
SIMM MODULE  
CASE 866J–01  
ASH PACKAGE  
SIMM MODULE  
(LOW PROFILE)  
CASE 866–02  
TOP VIEW  
1
Three–State Data Output  
Early–Write Common I/O Capability  
Fast Page Mode Capability  
TTL–Compatible Inputs and Outputs  
RAS–Only Refresh  
CAS Before RAS Refresh  
Hidden Refresh  
2048 Cycle Refresh: 32 ms  
Consists of Eight 4M x 4 DRAMs, Four 4M x 1 DRAMs, and Twelve 0.22 µF (Min)  
Decoupling Capacitors  
36  
37  
Unlatched Data Out at Cycle End Allows Two Dimensional Chip Selection  
Fast Access Time (t  
RAC  
): MCM36400–60 = 60 ns (Max)  
MCM36400–70 = 70 ns (Max)  
Low Active Power Dissipation: MCM36400–60 = 7.48 W (Max)  
MCM36400–70 = 6.38 W (Max)  
Low Standby Power Dissipation: TTL Levels = 132 mW (Max)  
CMOS Levels = 66 mW (Max)  
Available in Doublesided, Low Profile Module (MCM36400ASH)  
PIN ASSIGNMENTS  
Pin  
1
Name  
Pin  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Name  
A1  
Pin  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
Name  
DQ24  
DQ7  
DQ25  
A7  
Pin  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
Name  
DQ17  
DQ35  
Pin  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
Name  
DQ9  
Pin  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
Name  
DQ14  
DQ33  
DQ15  
DQ34  
DQ16  
NC  
V
SS  
2
DQ0  
DQ18  
DQ1  
A2  
DQ27  
DQ10  
DQ28  
DQ11  
DQ29  
DQ12  
DQ30  
DQ13  
DQ31  
72  
3
A3  
V
SS  
4
A4  
CAS0  
CAS2  
CAS3  
CAS1  
RAS0  
NC  
5
DQ19  
DQ2  
A5  
NC  
PIN NAMES  
6
A6  
V
CC  
A0 – A10 . . . . . . . . . . . . . Address Inputs  
DQ0 – DQ35 . . . . . . . Data Input/Output  
CAS0 – CAS3 Column Address Strobe  
PD1 – PD4 . . . . . . . . . Presence Detect  
RAS0, RAS2 . . . . . Row Address Strobe  
W . . . . . . . . . . . . . . . . . Read/Write Input  
7
DQ20  
DQ3  
A10  
DQ4  
DQ22  
DQ5  
DQ23  
DQ6  
A8  
A9  
PD1  
8
PD2  
9
DQ21  
NC  
PD3  
10  
11  
12  
V
RAS2  
DQ26  
DQ8  
NC  
PD4  
CC  
V
V
. . . . . . . . . . . . . . . . . . Power (+ 5 V)  
. . . . . . . . . . . . . . . . . . . . . . . Ground  
CC  
SS  
NC  
A0  
W
V
NC  
CC  
NC . . . . . . . . . . . . . . . . . . No Connection  
NC  
DQ32  
V
SS  
All power supply and ground pins must be  
connected for proper operation of the  
device.  
REV 2  
10/95  
Motorola, Inc. 1995  
BLOCK DIAGRAM  
DQ0  
DQ1  
DQ2  
DQ3  
I/O1  
CAS  
RAS  
G
CAS0  
RAS0  
I/O2  
I/O3  
I/O4  
W
A0 – A10  
DQ4  
DQ5  
DQ6  
DQ7  
I/O1  
I/O2  
I/O3  
I/O4  
CAS  
RAS  
G
W
W
A0 – A10  
A0 – A10  
D
in  
CAS  
RAS  
DQ8  
D
out  
I/O1  
I/O2  
I/O3  
DQ9  
CAS  
RAS  
G
CAS1  
DQ10  
DQ11  
DQ12  
W
A0 – A10 I/O4  
I/O1  
I/O2  
I/O3  
DQ13  
DQ14  
DQ15  
DQ16  
CAS  
RAS  
G
I/O4  
W
W
A0 – A10  
A0 – A10  
D
in  
DQ17  
CAS  
RAS  
D
out  
I/O1  
I/O2  
I/O3  
I/O4  
DQ18  
DQ19  
DQ20  
DQ21  
CAS  
RAS  
G
CAS2  
RAS2  
W
A0 – A10  
I/O1  
I/O2  
I/O3  
I/O4  
DQ22  
DQ23  
DQ24  
DQ25  
CAS  
RAS  
G
W
W
A0 – A10  
A0 – A10  
D
in  
DQ26  
CAS  
RAS  
D
out  
DQ27  
DQ28  
DQ29  
DQ30  
I/O1  
I/O2  
I/O3  
I/O4  
CAS  
RAS  
G
CAS3  
W
A0 – A10  
I/O1  
I/O2  
I/O3  
I/O4  
DQ31  
DQ32  
DQ33  
DQ34  
CAS  
RAS  
G
W
W
A0 – A10  
A0 – A10  
D
in  
DQ35  
CAS  
RAS  
D
out  
W
A0 – A10  
U0 – U11  
U0 – U11  
V
CC  
0.22 µF (MIN)  
V
SS  
PRESENCE DETECT PIN OUT  
Pin Name  
60 ns  
70 ns  
PD1  
PD2  
PD3  
PD4  
V
V
SS  
SS  
NC  
NC  
NC  
NC  
V
SS  
NC  
MCM36400  
2
MOTOROLA DRAM  
ABSOLUTE MAXIMUM RATINGS (See Note)  
This device contains circuitry to protect the  
inputs against damage due to high static  
voltages or electric fields; however, it is ad-  
visedthatnormalprecautionsbetakentoavoid  
application of any voltage higher than maxi-  
mum rated voltages to these high–impedance  
circuits.  
Rating  
Symbol  
Value  
Unit  
V
Power Supply Voltage  
V
CC  
– 1 to + 7  
– 1 to + 7  
Voltage Relative to V  
SS  
for Any Pin  
V , V  
in out  
V
Except V  
CC  
Data Output Current  
Power Dissipation  
I
50  
8.4  
mA  
W
out  
P
D
Operating Temperature Range  
Storage Temperature Range  
T
0 to + 70  
– 55 to + 150  
°C  
°C  
A
T
stg  
NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are  
exceeded. Functional operation should be restricted to RECOMMENDED OPER-  
ATING CONDITIONS. Exposure to higher than recommended voltages for  
extended periods of time could affect device reliability.  
DC OPERATING CONDITIONS AND CHARACTERISTICS  
(V  
= 5.0 V ± 10%, T = 0 to 70°C, Unless Otherwise Noted)  
CC  
A
RECOMMENDED OPERATING CONDITIONS (All voltages referenced to V  
)
SS  
Parameter  
Symbol  
Min  
4.5  
Typ  
5.0  
0
Max  
5.5  
0
Unit  
Supply Voltage (Operating Voltage Range)  
V
CC  
V
V
SS  
0
Logic High Voltage, All Inputs  
Logic Low Voltage, All Inputs  
* 2.0 V at pulse width20 ns.  
V
2.4  
V
CC  
+ 0.5 V  
V
V
IH  
V
– 0.5*  
0.8  
IL  
DC CHARACTERISTICS AND SUPPLY CURRENTS (All voltages referenced to V  
)
SS  
Symbol  
Characteristic  
Min  
Max  
Unit  
Notes  
V
CC  
Power Supply Current  
MCM36400–60, t  
MCM36400–70, t  
= 110 ns  
= 130 ns  
I
1360  
1160  
mA  
1, 2  
RC  
RC  
CC1  
V
V
Power Supply Current (Standby) (RAS = CAS = V  
)
I
I
24  
mA  
mA  
CC  
IH  
CC2  
Power Supply Current During RAS–Only Refresh Cycles (CAS = V  
IH  
)
1, 2  
CC  
CC3  
MCM36400–60, t  
MCM36400–70, t  
= 110 ns  
= 130 ns  
1360  
1160  
RC  
RC  
V
CC  
V
CC  
V
CC  
Power Supply Current During Fast Page Mode Cycle (RAS = V  
)
I
CC4(P)  
720  
12  
mA  
mA  
mA  
1, 2  
1
IL  
Power Supply Current (Standby) (RAS = CAS = V  
CC  
– 0.2 V)  
I
CC5  
CC6  
Power Supply Current During CAS Before RAS Refresh Cycle  
MCM36400–60, t  
I
= 110 ns  
= 130 ns  
1360  
1160  
RC  
RC  
MCM36400–70, t  
Input Leakage Current (0 V V V  
in CC  
)
I
– 120  
– 10  
2.4  
120  
10  
µA  
µA  
V
lkg(I)  
Output Leakage Current (0 V V V , Output Disable)  
out CC  
I
lkg(O)  
Output High Voltage (I  
= – 5 mA)  
= 4.2 mA)  
V
OH  
OH  
Output Low Voltage (I  
NOTES:  
V
0.4  
V
OL  
OL  
1. Current is a function of cycle rate and output loading; maximum currents are specified cycle time (minimum) with the output open.  
2. Address may be changed once or less while RAS = V . In the case of I  
, it can be changed once or less during t .  
CC4 PC  
IL  
MCM36400  
3
MOTOROLA DRAM  
CAPACITANCE (f = 1.0 MHz, T = 25°C, V  
= 5 V, Periodically Sampled Rather Than 100% Tested)  
CC  
Characteristic  
A
Symbol  
Max  
Unit  
Input Capacitance  
A0 – A10  
W
RAS0, RAS2  
CAS0 – CAS3  
C
70  
94  
52  
31  
pF  
in  
I/O Capacitance  
DQ0 – DQ7, DQ9 – DQ16, DQ18 – DQ25, DQ27 – DQ34  
DQ8, DQ17, DQ26, DQ35  
C
17  
22  
pF  
I/O  
NOTE: Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: C = I t/V.  
AC OPERATING CONDITIONS AND CHARACTERISTICS  
(V  
= 5.0 V ± 10%, T = 0 to 70°C, Unless Otherwise Noted)  
CC  
A
READ AND WRITE CYCLES (See Notes 1, 2, 3, and 4)  
Symbol  
Std  
MCM36400–60  
MCM36400–70  
Parameter  
Random Read or Write Cycle Time  
Access Time from RAS  
Access Time from CAS  
Access Time from Column Address  
Access Time from Precharge CAS  
CAS to Output in Low–Z  
Output Buffer and Turn–Off Delay  
Transition Time (Rise and Fall)  
RAS Precharge Time  
Alt  
Min  
110  
0
Max  
Min  
130  
0
Max  
Unit  
Notes  
5
t
t
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RELREL  
RC  
t
t
t
60  
20  
30  
40  
70  
20  
35  
40  
6, 7  
6, 8  
6, 9  
6
RELQV  
CELQV  
RAC  
CAC  
t
t
t
AA  
AVQV  
t
t
t
CEHQV  
CPA  
t
t
6
CELQX  
CLZ  
t
0
20  
50  
0
20  
50  
10  
CEHQZ  
OFF  
t
T
t
T
3
3
t
t
45  
60  
20  
60  
40  
20  
20  
15  
5
50  
70  
20  
70  
40  
20  
20  
15  
5
REHREL  
RELREH  
CELREH  
RELCEH  
RP  
RAS Pulse Width  
t
t
t
t
10 k  
10 k  
RAS  
RSH  
CSH  
RAS Hold Time  
t
t
CAS Hold Time  
CAS Precharge to RAS Hold Time  
CAS Pulse Width  
t
t
CEHREH  
RHCP  
t
t
10 k  
40  
30  
10 k  
50  
35  
CELCEH  
CAS  
RCD  
RAS to CAS Delay Time  
RAS to Column Address Delay Time  
CAS to RAS Precharge Time  
CAS Precharge Time  
t
t
11  
12  
RELCEL  
t
t
RELAV  
RAD  
CRP  
t
t
CEHREL  
t
t
15  
0
10  
0
CEHCEL  
CP  
Row Address Setup Time  
Row Address Hold Time  
NOTES:  
t
t
AVREL  
ASR  
t
t
10  
10  
RELAX  
RAH  
(continued)  
11. V (min) and V (max) are reference levels for measuring timing of input signals. Transition times are measured between V and V  
.
IH IL IH IL  
12. An initial pause of 200 µs is required after power–up followed by 8 RAS cycles before proper device operation is guaranteed.  
13. The transition time specification applies for all input signals. In addition to meeting the transition rate specification, all input signals must  
transition between V and V (or between V and V ) in a monotonic manner.  
IH IL IL IH  
14. AC measurements t = 5.0 ns.  
T
15. The specification for t  
(min) is used only to indicate cycle time at which proper operation over the full temperature range (0°C T  
A
RC  
70°C) is ensured.  
16. Measured with a current load equivalent to 2 TTL (– 200 µA, + 4 mA) loads and 100 pF with the data output trip points set at V  
= 2.0 V  
OH  
and V  
OL  
= 0.8 V.  
17. Assumes that t  
18. Assumes that t  
19. Assumes that t  
t  
t  
(max).  
(max).  
(max).  
RCD RCD  
RCD RCD  
t  
RAD RAD  
10. t  
(max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.  
OFF  
11. Operation within the t  
(max) limit ensures that t  
(max) can be met. t  
(max) is specified as a reference point only; if t  
RCD  
RAC  
RCD  
RCD  
RAD  
is greater than the specified t  
(max) limit, then access time is controlled exclusively by t  
.
RCD  
(max) limit ensures that t  
CAC  
(max) is specified as a reference point only; if t  
12. Operation within the t  
(max) can be met. t  
RAD  
is greater than the specified t  
RAC  
(max), then access time is controlled exclusively by t  
RAD  
.
AA  
RAD  
MCM36400  
MOTOROLA DRAM  
4
READ AND WRITE CYCLES (Continued)  
Symbol  
Std  
MCM36400–60  
MCM36400–70  
Parameter  
Column Address Setup Time  
Alt  
Min  
0
Max  
32  
Min  
0
Max  
32  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
t
t
AVCEL  
CELAX  
AVREH  
ASC  
Column Address Hold Time  
t
t
15  
30  
0
15  
35  
0
CAH  
Column Address to RAS Lead Time  
Read Command Setup Time  
t
t
RAL  
RCS  
RCH  
RRH  
t
t
WHCEL  
CEHWX  
REHWX  
Read Command Hold Time Referenced to CAS  
Read Command Hold Time Referenced to RAS  
Write Command Hold Time Referenced to CAS  
Write Command Pulse Width  
t
t
t
t
0
0
13  
13  
0
0
t
t
10  
10  
20  
20  
0
15  
15  
20  
20  
0
CELWH  
WCH  
t
t
WP  
WLWH  
WLREH  
WLCEH  
Write Command to RAS Lead Time  
Write Command to CAS Lead Time  
Data In Setup Time  
t
t
t
RWL  
CWL  
t
t
t
14  
14  
15  
DVCEL  
CELDX  
WLCEL  
DS  
DH  
Data In Hold Time  
t
t
15  
0
15  
0
Write Command Setup Time  
t
t
WCS  
Refresh Period  
t
t
5
5
RVRV  
RFSH  
CAS Setup Time for CAS Before RAS Refresh  
CAS Hold Time for CAS Before RAS Refresh  
RAS Precharge to CAS Active Time  
t
t
RELCEL  
RELCEH  
REHCEL  
CEHCEL  
CSR  
t
t
t
t
15  
5
15  
5
CHR  
t
RPC  
CAS Precharge Time for CAS Before RAS  
Counter Time  
t
30  
40  
CPT  
Write Command Setup Time (Test Mode)  
Write Command Hold Time (Test Mode)  
t
t
10  
10  
10  
10  
10  
10  
ns  
ns  
ns  
WLREL  
RELWH  
WHREL  
WTS  
WTH  
WRP  
t
t
Write to RAS Precharge Time (CAS Before RAS  
Refresh)  
t
t
Write to RAS Hold Time (CAS Before RAS  
Refresh)  
t
t
10  
10  
ns  
RELWL  
WRH  
Fast Page Mode Cycle Time  
t
t
45  
35  
45  
40  
ns  
ns  
CELCEL  
PC  
CAS Precharge to RAS Hold Time (Fast Page  
Mode)  
t
t
RHCP  
CEHREH  
RAS Pulse Width (Fast Page Mode)  
NOTES:  
t
t
60  
200 k  
70  
200 k  
ns  
RELREH  
RASP  
13. Either t  
or t  
must be satisfied for a read cycle.  
RCH  
RRH  
14. These parameters are referenced to CAS leading edge in early write cycles and to W leading edge in late write cycles.  
15. t is not a restrictive operating parameter. It is included in the data sheet as an electrical characteristic only; if t  
t (min),  
WCS  
WCS  
WCS  
the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle. If this condition  
is not satisfied, the condition of the data out (at access time) is indeterminate.  
MCM36400  
5
MOTOROLA DRAM  
READ CYCLE (FAST PAGE MODE)  
t
RC  
V
V
IH  
IL  
t
RAS  
CAS  
RAS  
t
RP  
t
t
CSH  
CAS  
t
t
t
t
CRP  
RSH  
CRP  
RCD  
V
V
IH  
IL  
t
RAD  
t
RAL  
t
t
t
ASC  
ASR  
t
CAH  
RAH  
V
V
IH  
IL  
ADDRESSES  
ROW  
COLUMN  
t
RCH  
RRH  
t
t
RCS  
V
V
IH  
IL  
W
t
AA  
t
t
CAC  
OFF  
t
RAC  
t
CLZ  
V
OH  
DQ  
HIGH–Z  
VALID DATA OUT  
V
OL  
EARLY WRITE CYCLE  
t
RC  
t
t
RP  
RAS  
V
IH  
RAS  
V
IL  
t
CSH  
t
CRP  
t
RCD  
t
RSH  
t
CRP  
t
V
CAS  
IH  
CAS  
ADDRESSES  
W
V
IL  
t
RAD  
t
ASR  
t
t
CAH  
ASC  
t
RAH  
V
IH  
ROW  
COLUMN  
V
IL  
t
CWL  
t
t
WCH  
WCS  
V
IH  
t
WP  
V
IL  
t
RWL  
t
t
DH  
DS  
V
IH  
DQ  
VALID DATA IN  
HIGH–Z  
V
IL  
MCM36400  
6
MOTOROLA DRAM  
FAST PAGE MODE READ CYCLE  
V
V
t
IH  
IL  
RASP  
RAS  
CAS  
t
RHCP  
t
RP  
t
CRP  
t
t
t
CRP  
PC  
t
t
RSH  
RCD  
CP  
V
V
t
t
t
IH  
IL  
CAS  
t
CAS  
t
CAS  
t
RAD  
t
t
RAL  
CSH  
t
t
CAH  
CAH  
RCH  
RAH  
CAH  
t
t
t
t
ASR  
ASC  
ASC  
ASC  
V
V
IH  
IL  
ADDRESSES  
ROW  
COLUMN  
COLUMN  
t
COLUMN  
t
t
t
RCS  
RCS  
RCS  
RCH  
t
t
RCH  
V
V
IH  
IL  
W
t
t
RRH  
t
t
AA  
AA  
AA  
t
t
t
CAC  
CAC  
CAC  
t
t
t
t
OFF  
OFF  
RAC  
OFF  
t
t
t
CLZ  
CLZ  
CLZ  
V
V
VALID  
DATA OUT  
VALID  
DATA OUT  
VALID  
DATA OUT  
OH  
DQ  
OL  
FAST PAGE MODE EARLY WRITE CYCLE  
t
t
RP  
RASP  
V
IH  
IL  
t
RAS  
RHCP  
V
t
t
t
CRP  
ASR  
PC  
RSH  
CAS  
t
t
t
RCD  
CP  
CRP  
t
t
t
CAS  
t
CAS  
t
V
V
IH  
IL  
CAS  
t
t
t
RAL  
CSH  
t
t
CAH  
CAH  
RAH  
CAH  
t
t
t
t
ASC  
ASC  
ASC  
V
V
IH  
IL  
ADDRESSES  
ROW  
COLUMN  
COLUMN  
COLUMN  
t
t
t
t
CWL  
RWL  
t
RAD  
CWL  
CWL  
t
t
WCS  
t
WCS  
WCS  
t
t
t
V
V
WP  
WP  
WP  
IH  
IL  
W
t
t
t
WCH  
WCH  
WCH  
t
t
t
t
t
DH  
DS  
DH  
DS  
DH  
DS  
V
V
IH  
IL  
VALID  
DATA IN  
VALID  
DATA IN  
VALID  
DATA IN  
DQ  
MCM36400  
7
MOTOROLA DRAM  
RAS–ONLY REFRESH CYCLE  
(W is Don’t Care)  
t
RC  
t
RP  
t
RAS  
V
IH  
IL  
RAS  
CAS  
V
t
t
CRP  
RPC  
V
IH  
IL  
V
t
RAH  
t
ASR  
V
IH  
ROW  
V
IL  
ADDRESSES  
DQ  
V
OH  
HIGH–Z  
V
OL  
CAS BEFORE RAS REFRESH CYCLE  
(A0 – A10 are Don’t Care)  
t
RC  
t
t
RAS  
RP  
V
IH  
RAS  
V
IL  
t
CSR  
RPC  
t
t
CP  
t
CHR  
t
V
IH  
IL  
V
CAS  
W
t
WRP  
WRH  
V
IH  
V
IL  
t
OFF  
V
OH  
DQ  
HIGH–Z  
V
OL  
MCM36400  
8
MOTOROLA DRAM  
HIDDEN REFRESH CYCLE (READ) (FAST PAGE MODE)  
t
t
RC  
RC  
t
t
RP  
RP  
t
t
RAS  
RAS  
V
V
IH  
IL  
RAS  
CAS  
t
t
t
t
CRP  
t
CRP  
CHR  
RCD  
RSH  
V
V
IH  
IL  
t
RAD  
t
t
t
ASR  
ASC  
t
CAH  
RAH  
V
IH  
ADDRESSES  
ROW  
COLUMN  
V
IL  
t
WRP  
t
RCS  
t
t
RRH  
WRH  
V
V
IH  
IL  
W
t
AA  
t
CAC  
t
OFF  
t
CLZ  
t
RAC  
V
OH  
OL  
VALID DATA OUT  
DQ  
V
HIDDEN REFRESH CYCLE (EARLY WRITE)  
t
t
RC  
RC  
t
t
t
t
RAS  
RAS  
RP  
RP  
V
IH  
RAS  
CAS  
V
IL  
t
t
t
t
CRP  
RCD  
CRP  
RSH  
CHR  
t
V
IH  
t
V
IL  
RAD  
t
t
ASR  
ASC  
t
t
CAH  
RAH  
V
IH  
ADDRESSES  
ROW  
t
COLUMN  
V
IL  
t
t
WRP  
WCS  
WRH  
t
WCH  
V
IH  
t
WP  
W
V
IL  
t
t
DS  
DH  
V
IH  
DQ  
VALID DATA IN  
V
IL  
MCM36400  
9
MOTOROLA DRAM  
CAS BEFORE RAS REFRESH COUNTER TEST CYCLE  
V
IH  
IL  
t
RAS  
t
RAS  
CAS  
RP  
V
t
t
CSR  
RSH  
V
t
t
IH  
IL  
CHR  
CAS  
t
CPT  
V
t
RAL  
t
COLUMN  
t
t
CAH  
ASC  
V
IH  
IL  
ADDRESSES  
V
t
t
t
WRH  
AA  
READ CYCLE  
WRP  
RRH  
V
IH  
W
V
IL  
t
t
t
RCS  
CAC  
RCH  
t
t
CLZ  
OFF  
V
OH  
DQ  
HIGH–Z  
VALID DATA OUT  
V
OL  
t
RWL  
WRITE CYCLE  
t
t
t
CWL  
WRP  
WRH  
t
WCS  
V
IH  
t
WCH  
W
V
IL  
t
t
DS  
DH  
V
IH  
IL  
DQ  
HIGH–Z  
VALID DATA IN  
V
MCM36400  
10  
MOTOROLA DRAM  
DEVICE INITIALIZATION  
(V ). Minimum active time t  
IL  
and t  
, and precharge  
CAS  
RAS  
time t , apply to write mode, as in the read mode.  
RP  
On power–up, an initial pause of 200 microseconds is  
required for the internal substrate generator to establish the  
correct bias voltage. This must be followed by a minimum of  
eight active cycles of the row address strobe (clock) to  
initialize all dynamic nodes within the RAM. During an  
extended inactive state (greater than 16 milliseconds), a  
wakeup sequence of eight active cycles is necessary to  
ensure proper operation.  
An early write cycle is characterized by W active transition  
at minimum time t  
before CAS active transition. Column  
WCS  
address setup and hold times (t  
, t  
) and data in (D)  
ASC CAH  
setup and hold times (t , t ) are referenced to CAS in  
DS DH  
an early write cycle. RAS and CAS clocks must stay active  
for t  
and t  
, respectively, after the start of the  
RWL  
CWL  
early write operation to complete the cycle.  
Q remainsinthree–stateconditionthroughoutanearlywrite  
cycle because W active transition precedes or coincides with  
CAS active transition, keeping data–out buffers disabled.  
ADDRESSING THE RAM  
The eleven address pins on the device are time multiplexed  
atthe beginning of a memory cycle by two clocks, row address  
strobe (RAS ) and column address strobe (CAS), into two sep-  
arate 11–bit address fields. A total of twenty two address bits,  
eleven rows and eleven columns, will decode one of the  
4,194,304 word locations in the device. RAS active transition  
PAGE MODE CYCLES  
Page mode allows fast successive data operations at all  
column locations (2048 columns) on a selected row of the  
module family. Read access time in page mode (t  
) is typi-  
CAC  
.Pagemode  
callyhalftheregularRASclockaccesstime,t  
is followed by CAS active transition (active = V , t  
mini-  
RAC  
operation consists of keeping RAS active while toggling CAS  
between V and V . The row is latched by RAS active transi-  
IL RCD  
mum) for all read or write cycles. The delay between RAS and  
CAS active transitions, referred to as the multiplex window,  
gives a system designer flexibility in setting up the external ad-  
dresses into the RAM.  
IH  
IL  
tion,whileeachCASactivetransitionallowsselectionofanew  
column location on the row.  
A page mode cycle is initiated by a normal read or write  
cycle, as described in prior sections. Once the timing require-  
ments for the first cycle are met, CAS transitions to inactive for  
The external CAS signal is ignored until an internal RAS  
signalis available. This gate feature on the external CAS clock  
enables the internal CAS line as soon as the row address hold  
minimum t , while RAS remains low (V ). The second CAS  
time(t  
)specificationismet(anddefinest minimum).  
CP IL  
RAH  
RCD  
active transition while RAS is low initiates the first page mode  
The multiplex window can be used to absorb skew delays in  
switching the address bus from row to column addresses and  
in generating the CAS clock.  
cycle (t ). Either a read or write operation can be performed  
PC  
ina page mode cycle, subject to the same conditions as in nor-  
mal operation (previously described). These operations can  
be intermixed in consecutive page mode cycles and per-  
formed in any order. The maximum number of consecutive  
There are three other variations in addressing the module  
family per device: RAS–only refresh cycle, CAS before RAS  
refresh cycle, and page mode. All are discussed in separate  
sections that follow.  
pagemodecyclesislimitedbyt  
ended when RAS transitions to inactive, coincident with or fol-  
lowing CAS inactive transition.  
.Pagemodeoperationis  
RASP  
READ CYCLE  
The DRAM may be read with two different cycles: “normal”  
randomreadcycleandfastpagemodereadcycle. Thenormal  
read cycle is outlined here, while the fast page mode cycles  
are discussed in separate sections.  
The normal read cycle begins as described in ADDRESS-  
ING THE RAM, with RAS and CAS active transitions latching  
the desired bit location. The write (W) input level must be high  
REFRESH CYCLES  
The dynamic RAM design is based on capacitor charge  
storage for each bit in the array. This charge will tend to  
degrade with time and temperature. Each bit must be periodi-  
cally refreshed (recharged) to maintain the correct bit state.  
Bits in the module require refresh every 32 milliseconds.  
This is accomplished by cycling through the 2048 row ad-  
dresses in sequence within the specified refresh time. All the  
bits on a row are refreshed simultaneously when the row is ad-  
dressed. Distributed refresh implies a row refresh every  
15.6 microseconds for the module family. Burst refresh, a re-  
fresh of all rows consecutively, must be performed every 32  
milliseconds.  
(V ), t  
to enable read mode.  
(minimum) before the CAS or active transition,  
IH RCS  
Both the RAS and CAS clocks trigger a sequence of events  
that are controlled by several delayed internal clocks. The  
internal clocks are linked in such a manner that the read  
access time of the device is independent of the address multi-  
plex window.  
A normal read or write operation to the RAM will refresh all  
thebits associated with the particular row decoded. Three oth-  
er methods of refresh, RAS–only refresh, CAS before RAS  
refresh, and hidden refresh are available on this device for  
greater system flexibility.  
CAS controls read access time: CAS must be active before  
or at t  
maximum to guarantee valid data out (Q) at  
RCD  
. If the t  
t
maximum is exceeded, read access time  
RAC  
RCD  
is determined by the CAS clock active transition (t  
).  
CAC  
WRITE CYCLE  
RAS–Only Refresh  
Theuser can write to the DRAM with any of two cycles: early  
write or fast page mode early write. Early write mode is dis-  
cussed here, while fast page mode write operation is covered  
in a separate section.  
RAS–onlyrefreshconsistsof RAStransitiontoactive, latch-  
ing the row address to be refreshed, while CAS remains high  
(V ) throughout the cycle. An external counter should be  
IH  
A write cycle begins as described in ADDRESSING THE  
RAM. Write mode is enabled by the transition of W to active  
employed to ensure that all rows are refreshed within the  
specified limit.  
MCM36400  
11  
MOTOROLA DRAM  
CAS Before RAS Refresh  
During this test, the internal refresh counter generates the row  
address, while the external address input supplies the column  
address. The entire array is refreshed after 2048 test cycles,  
as indicated by the check data written in each row. See CAS  
before RAS refresh counter test cycle timing diagram.  
The test can be performed only after a minimum of 8 CAS  
before RAS initialization cycles. The test procedure is as  
follows:  
CAS before RAS refresh is enabled by bringing CAS active  
before RAS. This clock order activates an internal refresh  
counterthatgeneratestherowaddresstoberefreshed. Exter-  
nal address lines are ignored during the automatic refresh  
cycle. The output buffer remains at the same state it was in  
during the previous cycle (hidden refresh). W must be inactive  
fortimet  
beforeandtimet afterRASactivetransition  
WRP  
WRH  
to prevent switching the device into a test mode cycle.  
1. Write 0s into all memory cells (normal write mode).  
2. Select a column address, and read 0 out of the cell by  
performing CAS before RAS refresh counter test,  
read cycle. Repeat this operation 2048 times.  
3. Select a column address, and write 1 into the cell by per-  
forming CAS before RAS refresh counter test, write  
cycle. Repeat this operation 2048 times.  
4. Read 1s (normal read mode), which were written at step  
three.  
5. Using the same starting column address as in step two,  
read 1 out and write 0 into the cell by performing the CAS  
before RAS refresh counter test, read and write  
cycles. Repeat this operation 2048 times.  
Hidden Refresh  
Hidden refresh allows refresh cycles to occur while main-  
taining valid data at the output pin. Holding CAS active at the  
end of a read or write cycle while RAS cycles inactive for t  
and back to active starts the hidden refresh. This is essentially  
the execution of a CAS before RAS refresh from a cycle in  
progress (see Figure 1). W is subject to the same conditions  
with respect to RAS active transition (to prevent test mode  
entry) as in CAS before RAS refresh.  
RP  
CAS BEFORE RAS REFRESH COUNTER TEST  
The internal refresh counter of the device can be tested  
with a CAS before RAS refresh counter test. This refresh  
counter test is performed with read and write operations.  
6. Read 0s which were written in step five in normal read  
mode.  
7. Repeat steps one through six using complement data.  
CAS BEFORE RAS  
REFRESH CYCLE  
CAS BEFORE RAS  
REFRESH CYCLE  
MEMORY CYCLE  
RAS  
CAS  
VALID DATA OUT  
DQ  
HIGH–Z  
Figure 1. Hidden Refresh Cycle  
ORDERING INFORMATION  
(Order by Full Part Number)  
MCM 36400  
X
XX  
Motorola Memory Prefix  
Part Number  
Speed (60 = 60 ns, 70 = 70 ns)  
Package (AS = SIMM, ASG = Gold Pad SIMM, ASH = Low  
Profile SIMM, ASHG = Low Profile Gold Pad SIMM))  
Full Part Numbers — MCM36400AS60  
MCM36400AS70  
MCM36400ASG60  
MCM36400ASG70  
MCM36400ASH60 MCM36400ASHG60  
MCM36400ASH70 MCM36400ASHG70  
MCM36400  
12  
MOTOROLA DRAM  
PACKAGE DIMENSIONS  
AS PACKAGE  
SIMM MODULE  
CASE 866J–01  
A
M
S
0.006 (0.15)  
T Y X  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
C
NOTE 5  
U
2. CONTROLLING DIMENSION: INCH.  
3. CARD THICKNESS APPLIES ACROSS TABS AND  
INCLUDES PLATING AND/OR METALIZATION.  
4. DIMENSION C AND S DEFINE A DOUBLE–SIDED  
MODULE.  
COMPONENT  
AREA  
B
5. DIMENSION V DEFINES OPTIONAL SINGLE–  
SIDED MODULE.  
R Y  
S
NOTE 4  
1
INCHES  
MIN MAX  
4.255 107.82 108.08  
MILLIMETERS  
MIN MAX  
36  
37  
72  
DIM  
A
B
C
D
F
G
H
J
4.245  
1.345  
–––  
–Y–  
–X–  
1.355  
0.360  
0.042  
34.16  
–––  
1.02  
34.42  
9.14  
1.07  
P
J
2X  
N
F
2X  
2X (L)  
0.040  
V
VIEW AA  
0.125 BSC  
0.050 BSC  
3.18 BSC  
1.27 BSC  
NOTE 5  
–––  
0.047  
0.100  
0.010  
0.053  
–––  
–––  
1.19  
2.54  
0.25  
1.35  
–––  
0.003 (0.08)  
2X W  
K
L
2X W  
–T–  
1.750 REF  
44.45 REF  
2X  
Q
M
N
P
Q
R
S
0.075  
0.400 BSC  
0.085  
1.90  
10.16 BSC  
2.16  
M
L
0.006 (0.15)  
T Y X  
0.125  
0.123  
0.245  
0.225  
0.060  
–––  
0.127  
0.255  
–––  
3.18  
3.12  
6.22  
5.72  
1.52  
–––  
3.23  
6.48  
–––  
72X D  
R
T
0.064  
1.63  
L
S
0.004 (0.10)  
T Y X  
U
V
W
Y
3.984 BSC  
101.19 BSC  
–––  
0.044  
0.060  
0.208  
–––  
0.064  
–––  
1.12  
1.52  
5.28  
–––  
1.63  
72X K  
M
R T  
VIEW AA  
72X H  
70X  
G
MCM36400  
13  
MOTOROLA DRAM  
ASH PACKAGE  
SIMM MODULE (LOW PROFILE)  
CASE 866–02  
A
M
S
0.006 (0.15)  
T Y X  
U
C
NOTE 4  
COMPONENT AREA  
S
B
R Y  
NOTE 4  
P
NOTES:  
1
36 37  
72  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
N
2X  
2. CONTROLLING DIMENSION:INCH  
3. CARD THICKNESS APPLIES ACROSS TABS AND  
INCLUDES PLATING AND/OR METALIZATION.  
4. DIMENSIONS C AND S DEFINE A DOUBLE–SIDED  
MODULE.  
–Y–  
VIEW AA  
–X–  
J
V
5. DIMENSION V DEFINES OPTIONAL  
SINGLE–SIDED MODULE.  
2X L  
F
2X  
NOTE 5  
–T–  
0.003 (0.08)  
INCHES  
MIN MAX  
4.255 107.82 108.08  
MILLIMETERS  
MIN MAX  
DIM  
A
B
C
D
F
G
H
J
K
L
M
N
P
4.245  
0.995  
–––  
2X W  
1.005  
0.360  
0.042  
25.27  
–––  
1.02  
25.53  
9.14  
1.07  
2X  
Q
0.040  
2X W  
R
0.125 BSC  
0.050 BSC  
3.18 BSC  
1.27 BSC  
M
L
0.006 (0.15)  
T
Y X  
–––  
0.047  
0.100  
0.010  
0.053  
–––  
–––  
1.19  
2.54  
0.25  
1.35  
–––  
72X D  
0.004 (0.10)  
1.750 REF  
44.45 REF  
L
S
T
Y X  
0.075  
0.085  
1.91  
2.16  
0.400 BSC  
10.16 BSC  
0.125  
0.123  
0.245  
0.225  
0.060  
–––  
0.127  
0.255  
–––  
3.18  
3.12  
6.22  
5.72  
1.52  
–––  
3.23  
6.48  
–––  
Q
R
S
72X K  
72X H  
R T  
M
T
0.064  
1.63  
U
V
W
Y
3.984 BSC  
101.19 BSC  
VIEW AA  
–––  
0.044  
0.060  
0.208  
–––  
0.064  
–––  
1.12  
1.52  
5.28  
–––  
1.63  
G
70X  
Motorolareserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representationorguaranteeregarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,  
andspecifically disclaims any and all liability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters can and do vary in different  
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does  
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in  
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of  
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintendedor unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
How to reach us:  
USA / EUROPE: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447  
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609  
INTERNET: http://Design–NET.com  
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MCM36400/D  

相关型号:

MCM36400ASHG70

Fast Page DRAM Module, 4MX36, 70ns, CMOS, SIMM-72
MOTOROLA

MCM36400S60

4MX36 FAST PAGE DRAM MODULE, 60ns, SMA72, SIMM-72
MOTOROLA

MCM36400S70

4M X 36 FAST PAGE DRAM MODULE, 70 ns, SMA72, SIMM-72
MOTOROLA

MCM36400S80

Fast Page DRAM Module, 4MX36, 80ns, CMOS, SIMM-72
MOTOROLA

MCM36400SG60

4MX36 FAST PAGE DRAM MODULE, 60ns, SMA72, SIMM-72
MOTOROLA

MCM36400SG70

4MX36 FAST PAGE DRAM MODULE, 70ns, SMA72, SIMM-72
MOTOROLA

MCM36400SG80

4MX36 FAST PAGE DRAM MODULE, 80ns, SMA72, SIMM-72
MOTOROLA

MCM36404ASH50

Fast Page DRAM Module, 4MX36, 50ns, CMOS, SIMM-72
MOTOROLA

MCM36404ASH60

Fast Page DRAM Module, 4MX36, 60ns, CMOS, SIMM-72
MOTOROLA

MCM36404ASH70

4MX36 FAST PAGE DRAM MODULE, 70ns, SMA72, SIMM-72
MOTOROLA

MCM36404ASHG50

Fast Page DRAM Module, 4MX36, 50ns, CMOS, SIMM-72
MOTOROLA

MCM36404ASHG60

Fast Page DRAM Module, 4MX36, 60ns, CMOS, SIMM-72
MOTOROLA