MCM64Z836TQ225 [MOTOROLA]

ZBT SRAM, 256KX36, 2.6ns, CMOS, PQFP100, TQFP-100;
MCM64Z836TQ225
型号: MCM64Z836TQ225
厂家: MOTOROLA    MOTOROLA
描述:

ZBT SRAM, 256KX36, 2.6ns, CMOS, PQFP100, TQFP-100

静态存储器 内存集成电路
文件: 总31页 (文件大小:356K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MCM64Z836/D  
SEMICONDUCTOR TECHNICAL DATA  
MCM64Z836  
MCM64Z918  
Product Proposal  
256K x 36 and 512K x 18  
Bit Pipelined ZBT RAM  
Synchronous Fast Static RAM  
The ZBT RAM is an 8M–bit synchronous fast static RAM designed to provide  
Zero Bus Turnaround . The ZBT RAM allows 100% use of bus cycles during  
back–to–back read/write and write/read cycles. The MCM64Z836 (organized as  
256K words by 36 bits) and the MCM64Z918 (organized as 512K words by 18  
bits) are fabricated in Motorola’s high performance silicon gate CMOS tech-  
nology. This device integrates input registers, an output register, a 2–bit address  
counter, and high speed SRAM onto a single monolithic circuit for reduced parts  
count in communication applications. Synchronous design allows precise cycle  
control with the use of an external positive–edge–triggered clock (CK). CMOS  
circuitry reduces the overall power consumption of the integrated functions for  
greater reliability.  
TQ PACKAGE  
TQFP  
CASE 983A–01  
ZP PACKAGE  
PBGA  
CASE 999–02  
Addresses (SA), data inputs (DQ), and all control signals except output enable  
(G), sleep mode (ZZ), and linear burst order (LBO) are clock (CK) controlled  
through positive–edge–triggered noninverting registers.  
Write cycles are internally self–timed and are initiated by the rising edge of the  
clock (CK) input. This feature eliminates complex off–chip write pulse generation  
and provides increased timing flexibility for incoming signals.  
Forreadcycles, pipelinedSRAMoutputdataistemporarilystoredbyanedge–  
triggered output register and then released to the output buffers at the next rising  
edge of clock (CK).  
2.5 V LVTTL and LVCMOS Compatible  
MCM64Z836/918–225 = 2.6 ns Access/4.4 ns Cycle (225 MHz)  
MCM64Z836/918–200 = 3.2 ns Access/5 ns Cycle (200 MHz)  
MCM64Z836/918–166 = 3.6 ns Access/6 ns Cycle (166 MHz)  
Selectable Burst Sequencing Order (Linear/Interleaved)  
Internally Self–Timed Write Cycle  
Sleep Mode (ZZ)  
Two–Cycle Deselect  
Byte Write Control  
ADV Controlled Burst  
IEEE 1149–1 Sample Only JTAG  
100–Pin TQFP and 119–Bump PBGA Packages  
ZBT and Zero Bus Turnaround are trademarks of Integrated Device Technology, Inc., and the architecture is supported by  
Micron Technology, Inc. and Motorola, Inc.  
This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.  
REV 2  
6/2/99  
Motorola, Inc. 1999  
LOGIC BLOCK DIAGRAM  
LBO  
SA  
BURST  
ADDRESS  
COUNTER  
ADDRESS  
REGISTER  
MEMORY  
ARRAY  
DATA–IN  
REGISTER  
K
K
WRITE  
ADDRESS  
REGISTER  
WRITE  
ADDRESS  
REGISTER  
CK  
CONTROL  
LOGIC  
K
CKE  
DATA–IN  
REGISTER  
SE1  
SE2  
SE3  
CONTROL  
REGISTER  
ADV  
SW  
CONTROL  
LOGIC  
K
DATA–OUT  
REGISTER  
SBx  
G
ZZ  
36 OR 18  
DQ  
MCM64Z836MCM64Z918  
MOTOROLA FAST SRAM  
2
MCM64Z836 PIN ASSIGNMENTS  
1
2
3
4
5
6
7
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81  
A
B
C
D
E
DQc  
DQc  
DQc  
1
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQb  
DQb  
DQb  
V
SA  
SA  
NC  
SA  
SA  
V
DDQ  
DDQ  
2
3
4
5
6
7
8
9
NC  
SE2  
SA  
SA  
SA  
ADV  
SA  
SA  
SE3  
SA  
NC  
V
V
V
V
DDQ  
DDQ  
SS  
NC  
V
NC  
V
DD  
SS  
DQc  
DQc  
DQc  
DQc  
DQb  
DQb  
DQb  
DQb  
DQc  
DQc  
DQc  
DQc  
DQc  
V
NC  
SE1  
G
V
DQb DQb  
DQb DQb  
SS  
SS  
SS  
SS  
SS  
SS  
V
V
V
V
F
V
V
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
SS  
SS  
V
DQb  
V
DDQ  
DDQ  
V
DDQ  
DQc  
DQc  
DDQ  
G
DQb  
DQb  
DQc  
DQc  
DQc  
SBc  
SA  
SBb  
DQb DQb  
DQb DQb  
H
V
V
V
V
V
DD  
DD  
SS  
DD  
DD  
DQc  
V
SW  
V
SS  
SS  
J
K
L
V
V
DQd  
DQd  
V
V
NC  
V
NC  
V
V
DDQ  
DD  
SS  
DDQ  
DD  
DD  
DD  
ZZ  
DQa  
DQa  
DQd  
DQd  
V
CK  
V
DQa DQa  
DQa DQa  
SS  
SS  
DQd  
DQd SBd  
NC  
SBa  
V
V
V
V
DDQ  
DDQ  
SS  
M
N
P
V
SS  
V
DQd  
V
CKE  
V
DQa  
V
DDQ  
DDQ  
DQd  
DQd  
SS  
SS  
DQd  
DQd  
DQd  
DQd  
DQa  
DQa  
DQa  
DQa  
DQd  
DQd  
SA  
V
SA1  
SA0  
V
DQa DQa  
DQa DQa  
SS  
SS  
SS  
SS  
DD  
V
V
V
V
V
SS  
SS  
DDQ  
R
T
DDQ  
DQd  
DQd  
DQd  
V
LBO  
V
V
SA  
NC  
NC  
DD  
DD  
DQa  
DQa  
DQa  
NC  
NC  
SA  
SA  
SA  
ZZ  
U
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
V
TMS  
TDI  
TCK  
TDO TRST V  
DDQ  
DDQ  
100–PIN TQFP  
TOP VIEW  
119–BUMP PGBA  
TOP VIEW  
Not to Scale  
MCM64Z836MCM64Z918  
MOTOROLA FAST SRAM  
3
MCM64Z836 TQFP PIN DESCRIPTIONS  
Pin Locations  
Symbol  
Type  
Description  
85  
ADV  
Input  
Synchronous Load/Advance: Loads a new address into counter when  
low. RAM uses internally generated burst addresses when high.  
89  
87  
CK  
Input  
Clock: This signal registers the address, data in, and all control signals  
except G and LBO.  
CKE  
DQx  
Input  
I/O  
Clock Enable: Disables the CK input when CKE is high.  
(a) 51, 52, 53, 56, 57, 58, 59, 62, 63  
(b) 68, 69, 72, 73, 74, 75, 78, 79, 80  
(c) 1, 2, 3, 6, 7, 8, 9, 12, 13  
Synchronous Data I/O: “x” refers to the byte being read or written  
(byte a, b, c, d).  
(d) 18, 19, 22, 23, 24, 25, 28, 29, 30  
86  
31  
G
Input  
Input  
Asynchronous Output Enable.  
LBO  
Linear Burst Order Input: This pin must remain in steady state (this  
signal not registered or latched). It must be tied high or low.  
Low — linear burst counter.  
High — interleaved burst counter.  
32, 33, 34, 35, 44, 45, 46, 47, 48, 49,  
50, 81, 82, 83, 99, 100  
SA  
Input  
Input  
Synchronous Address Inputs: These inputs are registered and must  
meet setup and hold times.  
37, 36  
SA0, SA1  
Synchronous Burst Address Inputs: The two LSBs of the address field.  
These pins must preset the burst address counter values. These inputs  
are registered and must meet setup and hold times.  
93, 94, 95, 96  
(a) (b) (c) (d)  
SBx  
Input  
Synchronous Byte Write Inputs: Enables write to byte “x” (byte a, b,  
c, d) in conjunction with SW. Has no effect on read cycles.  
98  
97  
92  
88  
SE1  
SE2  
SE3  
SW  
Input  
Input  
Input  
Input  
Synchronous Chip Enable: Active low to enable chip.  
Synchronous Chip Enable: Active high for depth expansion.  
Synchronous Chip Enable: Active low for depth expansion.  
Synchronous Write: This signal writes only those bytes that have been  
selected using the byte write SBx pins.  
64  
ZZ  
Input  
Sleep Mode: This active high asynchronous signal places the RAM into  
the lowest power mode. The ZZ pin disables the RAMs internal clock  
when placed in this mode. When ZZ is negated, the RAM remains in  
low power mode until it is commanded to READ or WRITE. Data  
integrity is maintained upon returning to normal operation.  
14, 15, 16, 41, 65, 66, 91  
4, 11, 20, 27, 54, 61, 70, 77  
V
Supply Core Power Supply.  
Supply I/O Power Supply.  
Supply Ground.  
DD  
V
DDQ  
5, 10, 17, 21, 26, 40, 55, 60, 67,  
71, 76, 90  
V
SS  
38, 39, 42, 43, 84  
NC  
No Connection: There is no connection to the chip.  
MCM64Z836MCM64Z918  
MOTOROLA FAST SRAM  
4
MCM64Z836 PBGA PIN DESCRIPTIONS  
Pin Locations  
Symbol  
Type  
Description  
4B  
ADV  
Input  
Synchronous Load/Advance: Loads a new address into counter when  
low. RAM uses internally generated burst addresses when high.  
4K  
CK  
Input  
Clock: This signal registers the address, data in, and all control signals  
except G and LBO.  
4M  
CKE  
DQx  
Input  
I/O  
Clock Enable: Disables the CK input when CKE is high.  
(a) 6K, 7K, 6L, 7L, 6M, 6N, 7N, 6P, 7P  
(b) 6D, 7D, 6E, 7E, 6F, 6G, 7G, 6H, 7H  
(c) 1D, 2D, 1E, 2E, 2F, 1G, 2G, 1H, 2H  
(d) 1K, 2K, 1L, 2L, 2M, 1N, 2N, 1P, 2P  
Synchronous Data I/O: “x” refers to the byte being read or written  
(byte a, b, c, d).  
4F  
3R  
G
Input  
Input  
Asynchronous Output Enable.  
LBO  
Linear Burst Order Input: This pin must remain in steady state (this  
signal not registered or latched). It must be tied high or low.  
Low — linear burst counter.  
High — interleaved burst counter.  
2A, 3A, 5A, 6A, 3B, 5B, 2C, 3C, 5C,  
6C, 4G, 2R, 6R, 3T, 4T, 5T  
SA  
Input  
Input  
Synchronous Address Inputs: These inputs are registered and must  
meet setup and hold times.  
4N, 4P  
SA1, SA0  
Synchronous Burst Address Inputs: The two LSBs of the address field.  
These pins must preset the burst address counter values. These inputs  
are registered and must meet setup and hold times.  
5L, 5G, 3G, 3L  
(a) (b) (c) (d)  
SBx  
Input  
Synchronous Byte Write Inputs: Enables write to byte “x” (byte a, b,  
c, d) in conjunction with SW. Has no effect on read cycles.  
4E  
2B  
6B  
4H  
SE1  
SE2  
SE3  
SW  
Input  
Input  
Input  
Input  
Synchronous Chip Enable: Active low to enable chip.  
Synchronous Chip Enable: Active high for depth expansion.  
Synchronous Chip Enable: Active low for depth expansion.  
Synchronous Write: This signal writes only those bytes that have been  
selected using the byte write SBx pins.  
4U  
TCK  
Input  
Input  
Boundary Scan Pin, Test Clock: If boundary scan is not used, TCK  
must be tied to V  
or V  
.
SS  
DD  
3U  
5U  
2U  
6U  
TDI  
TDO  
TMS  
TRST  
Boundary Scan Pin, Test Data In.  
Output Boundary Scan Pin, Test Data Out.  
Input  
Input  
Boundary Scan Pin, Test Mode Select.  
Boundary Scan Pin, Asynchronous Test Reset. If boundary scan is not  
used, TRST must be tied to V  
.
SS  
7T  
ZZ  
Input  
Sleep Mode: This active high asynchronous signal places the RAM into  
the lowest power mode. The ZZ pin disables the RAMs internal clock  
when placed in this mode. When ZZ is negated, the RAM remains in  
low power mode until it is commanded to READ or WRITE. Data  
integrity is maintained upon returning to normal operation.  
4C, 2J, 4J, 6J, 1R, 4R, 5R  
V
Supply Core Power Supply.  
Supply I/O Power Supply.  
Supply Ground.  
DD  
1A, 7A, 1F, 7F, 1J, 7J, 1M, 7M, 1U, 7U  
V
DDQ  
3D, 5D, 3E, 5E, 3F, 5F, 3H, 5H, 3K,  
5K, 3L, 3M, 5M, 3N, 5N, 3P, 5P  
V
SS  
4A, 1B, 7B, 1C, 7C, 4D, 3J, 5J, 7R,  
1T, 2T, 6T  
NC  
No Connection: There is no connection to the chip.  
MCM64Z836MCM64Z918  
MOTOROLA FAST SRAM  
5
MCM64Z918 PIN ASSIGNMENTS  
1
2
3
4
5
6
7
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81  
A
B
C
D
E
NC  
NC  
NC  
1
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
SA  
NC  
NC  
V
SA  
SA  
NC  
SA  
SA  
V
DDQ  
DDQ  
2
3
4
5
6
7
8
9
NC  
SE2  
SA  
SA  
SA  
ADV  
SA  
SA  
SE3  
SA  
NC  
V
V
V
V
NC  
DDQ  
DDQ  
SS  
V
NC  
V
NC  
SS  
DD  
NC  
NC  
DQb  
NC  
NC  
DQb  
NC  
V
NC  
SE1  
G
V
DQa  
NC  
NC  
DQa  
DQa  
DQa  
SS  
SS  
SS  
SS  
SS  
SS  
DQb  
DQb  
V
V
V
V
V
V
DQa  
F
V
V
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
SS  
SS  
V
DQa  
V
DDQ  
DDQ  
V
DDQ  
DQb  
DQb  
DDQ  
G
DQa  
DQa  
NC  
DQb  
NC  
SBb  
SA  
NC  
DQa  
SS  
SS  
H
V
V
V
V
V
DD  
DD  
SS  
DD  
DD  
DQb  
V
SW  
DQa  
NC  
SS  
J
K
L
V
V
V
NC  
V
NC  
V
V
DD  
DDQ  
DD  
DD  
DD  
DDQ  
V
DQb  
DQb  
ZZ  
DQa  
SS  
NC  
DQb  
NC  
V
CK  
NC  
V
NC  
DQa  
NC  
DQa  
SS  
SS  
SS  
SS  
SS  
SS  
DQa  
V
V
DQb  
V
V
V
V
SBa  
NC  
DDQ  
DDQ  
SS  
M
N
P
V
V
SS  
V
DQb  
NC  
CKE  
SA1  
SA0  
V
V
DQb  
DQb  
DQb  
NC  
DQa  
DQa  
NC  
DDQ  
SS  
DDQ  
DQb  
V
V
DQa  
NC  
NC  
SS  
SS  
DD  
NC  
NC  
DQb  
SA  
DQa  
NC  
ZZ  
V
V
V
SS  
SS  
DDQ  
R
T
V
DDQ  
NC  
NC  
NC  
V
LBO  
SA  
V
V
SA  
DD  
DD  
NC  
NC  
NC  
NC  
SA  
NC  
SA  
SA  
U
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
V
TMS  
TDI  
TCK  
TDO TRST V  
DDQ  
DDQ  
100–PIN TQFP  
TOP VIEW  
119–BUMP PGBA  
TOP VIEW  
Not to Scale  
MCM64Z836MCM64Z918  
MOTOROLA FAST SRAM  
6
MCM64Z918 TQFP PIN DESCRIPTIONS  
Pin Locations  
Symbol  
Type  
Description  
85  
ADV  
Input  
Synchronous Load/Advance: Loads a new address into counter when  
low. RAM uses internally generated burst addresses when high.  
89  
87  
CK  
Input  
Clock: This signal registers the address, data in, and all control signals  
except G and LBO.  
CKE  
DQx  
Input  
I/O  
Clock Enable: Disables the CK input when CKE is high.  
(a) 58, 59, 62, 63, 68, 69, 72, 73, 74  
(b) 8, 9, 12, 13, 18, 19, 22, 23, 24  
Synchronous Data I/O: “x” refers to the byte being read or written  
(byte a, b).  
86  
31  
G
Input  
Input  
Asynchronous Output Enable.  
LBO  
Linear Burst Order Input: This pin must remain in steady state (this  
signal not registered or latched). It must be tied high or low.  
Low — linear burst counter.  
High — interleaved burst counter.  
32, 33, 34, 35, 44, 45, 46, 47, 48, 49,  
50, 80, 81, 82, 83, 99, 100  
SA  
Input  
Input  
Synchronous Address Inputs: These inputs are registered and must  
meet setup and hold times.  
37, 36  
SA0, SA1  
Synchronous Burst Address Inputs: The two LSBs of the address field.  
These pins must preset the burst address counter values. These inputs  
are registered and must meet setup and hold times.  
93, 94  
(a) (b)  
SBx  
Input  
Synchronous Byte Write Inputs: Enables write to byte “x” (byte a, b) in  
conjunction with SW. Has no effect on read cycles.  
98  
97  
92  
88  
SE1  
SE2  
SE3  
SW  
Input  
Input  
Input  
Input  
Synchronous Chip Enable: Active low to enable chip.  
Synchronous Chip Enable: Active high for depth expansion.  
Synchronous Chip Enable: Active low for depth expansion.  
Synchronous Write: This signal writes only those bytes that have been  
selected using the byte write SBx pins.  
64  
ZZ  
Input  
Sleep Mode: This active high asynchronous signal places the RAM into  
the lowest power mode. The ZZ pin disables the RAMs internal clock  
when placed in this mode. When ZZ is negated, the RAM remains in  
low power mode until it is commanded to READ or WRITE. Data  
integrity is maintained upon returning to normal operation.  
14, 15, 16, 41, 65, 66, 91  
4, 11, 20, 27, 54, 61, 70, 77  
V
Supply Core Power Supply.  
Supply I/O Power Supply.  
Supply Ground.  
DD  
V
DDQ  
5, 10, 17, 21, 26, 40, 55, 60, 67,  
71, 76, 90  
V
SS  
1, 2, 3, 6, 7, 25, 28, 29, 30, 38, 39,  
42, 43, 51, 52, 53, 56, 57, 75, 78,  
79, 84, 95, 96  
NC  
No Connection: There is no connection to the chip.  
MCM64Z836MCM64Z918  
MOTOROLA FAST SRAM  
7
MCM64Z918 PBGA PIN DESCRIPTIONS  
Pin Locations  
Symbol  
Type  
Description  
4B  
ADV  
Input  
Synchronous Load/Advance: Loads a new address into counter when  
low. RAM uses internally generated burst addresses when high.  
4K  
CK  
Input  
Clock: This signal registers the address, data in, and all control signals  
except G and LBO.  
4M  
CKE  
DQx  
Input  
I/O  
Clock Enable: Disables the CK input when CKE is high.  
(a) 6D, 7E, 6F, 7G, 6H, 7K, 6L, 6N, 7P  
(b) 1D, 2E, 2G, 1H, 2K, 1L, 2M, 1N, 2P  
Synchronous Data I/O: “x” refers to the byte being read or written  
(byte a, b).  
4F  
3R  
G
Input  
Input  
Asynchronous Output Enable.  
LBO  
Linear Burst Order Input: This pin must remain in steady state (this  
signal not registered or latched). It must be tied high or low.  
Low — linear burst counter.  
High — interleaved burst counter.  
2A, 3A, 5A, 6A, 3B, 5B, 2C, 3C, 5C,  
6C, 4G, 2R, 6R, 2T, 3T, 5T, 6T  
SA  
Input  
Input  
Synchronous Address Inputs: These inputs are registered and must  
meet setup and hold times.  
4N, 4P  
SA1, SA0  
Synchronous Address Inputs: These pins must be wired to the two  
LSBs of the address bus for proper burst operation. These inputs are  
registered and must meet setup and hold times.  
5L, 3G  
(a) (b)  
SBx  
Input  
Synchronous Byte Write Inputs: Enables write to byte “x” (byte a, b) in  
conjunction with SW. Has no effect on read cycles.  
4E  
2B  
6B  
4H  
SE1  
SE2  
SE3  
SW  
Input  
Input  
Input  
Input  
Synchronous Chip Enable: Active low to enable chip.  
Synchronous Chip Enable: Active high for depth expansion.  
Synchronous Chip Enable: Active low for depth expansion.  
Synchronous Write: This signal writes only those bytes that have been  
selected using the byte write SBx pins.  
4U  
TCK  
Input  
Input  
Boundary Scan Pin, Test Clock: If boundary scan is not used, TCK  
must be tied to V  
or V  
.
SS  
DD  
3U  
5U  
2U  
6U  
TDI  
TDO  
TMS  
TRST  
Boundary Scan Pin, Test Data In.  
Output Boundary Scan Pin, Test Data Out.  
Input  
Input  
Boundary Scan Pin, Test Mode Select.  
Boundary Scan Pin, Asynchronous Test Reset. If boundary scan is not  
used, TRST must be tied to V  
.
SS  
7T  
ZZ  
Input  
Sleep Mode: This active high asynchronous signal places the RAM into  
the lowest power mode. The ZZ pin disables the RAMs internal clock  
when placed in this mode. When ZZ is negated, the RAM remains in  
low power mode until it is commanded to READ or WRITE. Data  
integrity is maintained upon returning to normal operation.  
4C, 2J, 4J, 6J, 1R, 4R, 5R  
V
Supply Core Power Supply.  
Supply I/O Power Supply.  
Supply Ground.  
DD  
1A, 7A, 1F, 7F, 1J, 7J, 1M, 7M, 1U, 7U  
V
DDQ  
3D, 5D, 3E, 5E, 3F, 5F, 5G, 3H,  
5H, 3K, 5K, 3L, 3M, 5M, 3N, 5N,  
3P, 5P  
V
SS  
NC  
4A, 1B, 7B, 1C, 7C, 2D, 4D, 7D, 1E,  
6E, 2F, 1G, 6G, 2H, 7H, 3J, 5J, 1K,  
6K, 2L, 4L, 7L, 6M, 2N, 7N, 1P, 6P,  
7R, 1T, 4T  
No Connection: There is no connection to the chip.  
MCM64Z836MCM64Z918  
MOTOROLA FAST SRAM  
8
TRUTH TABLE  
SA0 –  
SAx  
Input  
Command Code  
CK  
L–H  
L–H  
L–H  
CKE  
E
X
SW  
X
SBx  
X
ADV  
Next Operation  
Notes  
1, 2  
1
0
0
X
0
0
X
X
V
Hold  
H
D
False  
True  
X
X
Deselect  
1, 2  
0
V
Load Address, New Write  
W
1, 2, 3,  
4, 5  
L–H  
L–H  
0
0
True  
X
1
X
0
1
V
X
Load Address, New Read  
R
B
1, 2  
V (W)  
X (R, D)  
Burst  
X
1, 2, 4,  
6, 7  
Continue  
NOTES:  
1. X = don‘t care, 1 = logic high, 0 = logic low, V = valid signal, according to AC Operating Conditions and Characteristics.  
2. E = true if SE1 and SE3 = 0, and SE2 = 1.  
3. Byte write enables, SBx are evaluated only as new write addresses are loaded.  
4. No control inputs except CKE, SBx, and ADV are recognized in a clock cycle where ADV is sampled high.  
5. A write with SBx not valid does load addresses.  
6. A burst write with SBx not valid does increment address.  
7. ADV controls whether the RAM enters burst mode. If the previous cycle was a write, then ADV = 1 results in a burst write. If the previous  
cycle is a read, then ADV = 1 results in a burst read. ADV = 1 will also continue a deselect cycle.  
ASYNCHRONOUS TRUTH TABLE  
Operation  
Read  
ZZ  
L
G
L
I/O Status  
Data Out (DQx)  
High–Z  
Read  
L
H
X
X
X
Write  
L
High–Z  
Deselected  
Sleep  
L
High–Z  
H
High–Z  
WRITE TRUTH TABLE  
SBc  
SBd  
(See Note 1)  
(See Note 1)  
Cycle Type  
SW  
H
L
SBa  
X
SBb  
X
Read  
X
H
H
L
X
H
H
H
L
Write Byte a  
L
H
Write Byte b  
L
H
L
Write Byte c (See Note 1)  
Write Byte d (See Note 1)  
Write All Bytes  
L
H
H
L
H
H
H
L
L
L
L
L
NOTE:  
1. Valid only for x36.  
LINEAR BURST ADDRESS TABLE (LBO = V  
)
SS  
1st Address (External)  
X . . . X00  
2nd Address (Internal)  
X . . . X01  
3rd Address (Internal)  
X . . . X10  
4th Address (Internal)  
X . . . X11  
X . . . X01  
X . . . X10  
X . . . X11  
X . . . X00  
X . . . X10  
X . . . X11  
X . . . X00  
X . . . X01  
X . . . X11  
X . . . X00  
X . . . X01  
X . . . X10  
INTERLEAVED BURST ADDRESS TABLE (LBO = V  
)
DD  
2nd Address (Internal)  
1st Address (External)  
X . . . X00  
3rd Address (Internal)  
X . . . X10  
4th Address (Internal)  
X . . . X11  
X . . . X01  
X . . . X00  
X . . . X11  
X . . . X10  
X . . . X01  
X . . . X11  
X . . . X10  
X . . . X10  
X . . . X00  
X . . . X01  
X . . . X11  
X . . . X01  
X . . . X00  
MCM64Z836MCM64Z918  
MOTOROLA FAST SRAM  
9
INPUT COMMAND CODE AND STATE NAME DEFINITION DIAGRAM  
INPUT  
COMMAND  
CODE  
D
B
W
B
R
B
H
CONTINUE  
DESELECT  
BURST  
WRITE  
BURST  
READ  
DESELECT  
NEW WRITE  
NEW READ  
HOLD  
CK  
CKE  
E
FALSE  
TRUE  
VALID  
TRUE  
VALID  
SA0 – SAx  
ADV  
SW  
SBX  
VALID  
VALID  
NOTE: Cycles are named for their control inputs, not for data I/O state.  
MCM64Z836MCM64Z918  
10  
MOTOROLA FAST SRAM  
B
B
BURST  
READ  
BURST  
WRITE  
D
D
W
W
R
R
B
B
D
D
NEW  
READ  
NEW  
WRITE  
R
R
W
W
B
R
W
DESELECT  
D
KEY:  
CURRENT  
STATE (n)  
NEXT  
STATE (n + 1)  
TRANSITION  
ƒ
NOTES:  
1. Input command codes (D, W, R, and B) represent control pin  
inputs as indicated in the Truth Table.  
2. Hold (i.e., CKE sampled high) is not shown simply because  
CKE = 1 blocks clock input and therefore, blocks any state  
change.  
INPUT  
COMMAND  
CODE  
Figure 1. ZBT RAM State Diagram  
STATE  
CK  
n
n + 1  
n + 2  
n + 3  
COMMAND  
CODE  
ƒ
DQ  
CURRENT  
STATE  
NEXT  
STATE  
Figure 2. State Definitions for ZBT RAM State Diagram  
MCM64Z836MCM64Z918  
MOTOROLA FAST SRAM  
11  
INTERMEDIATE  
D
B
HIGH–Z  
R
W
INTERMEDIATE  
INTERMEDIATE  
D
W
R
D
B
B
W
DATA OUT  
(Q VALID)  
HIGH–Z  
(DATA IN)  
INTERMEDIATE  
INTERMEDIATE  
R
INTERMEDIATE  
KEY:  
INTERMEDIATE  
STATE (n + 1)  
CURRENT  
STATE (n)  
NEXT STATE  
(n + 2)  
TRANSITION  
TRANSITION  
NOTES:  
ƒ
1. Inputcommand codes (D, W, R, and B) represent control pin  
inputs as indicated in the Truth Table.  
2. Hold (i.e., CKE sampled high) is not shown simply because  
CKE = 1 blocks clock input and therefore, blocks any state  
change.  
INPUT  
COMMAND  
CODE  
Figure 3. Data I/O State Diagram  
STATE  
n
n + 1  
n + 2  
n + 3  
CK  
COMMAND  
CODE  
ƒ
DQ  
STATE NAME  
CURRENT  
STATE  
INTERMEDIATE  
STATE  
NEXT  
STATE  
Figure 4. State Definitions for I/O State Diagrams  
MCM64Z836MCM64Z918  
MOTOROLA FAST SRAM  
12  
DC OPERATING CONDITIONS AND CHARACTERISTICS  
(V  
= 2.5 V ± 5%, T = 0 to 70°C Unless Otherwise Noted)  
DD  
A
RECOMMENDED OPERATING CONDITIONS (Voltages Referenced to V  
= 0 V)  
SS  
Parameter  
Symbol  
Min  
Typ  
2.5  
2.5  
Max  
2.625  
2.625  
0.7  
Unit  
V
Supply Voltage  
V
DD  
2.375  
2.375  
– 0.3  
1.7  
I/O Supply Voltage  
Input Low Voltage  
Input High Voltage  
Output Low Voltage (I  
V
DDQ  
V
V
IL  
V
V
IH  
V
+ 0.3  
V
DDQ  
= 8 mA)  
V
0.7  
V
OL  
OL  
Output High Voltage (I  
= – 8 mA)  
V
OH  
1.7  
V
OH  
V
IH  
V
SS  
V
– 1.0 V  
SS  
20% t  
(MIN)  
KHKH  
Figure 5. Undershoot Voltage  
DC CHARACTERISTICS AND SUPPLY CURRENTS  
Parameter  
Symbol  
Min  
Typ  
Max  
± 1  
Unit  
Notes  
Input Leakage Current (0 V V V  
in  
)
I
µA  
µA  
1
DD  
lkg(I)  
Output Leakage Current (0 V V V  
in  
)
I
± 1  
DDQ  
lkg(O)  
AC Supply Current (Device Selected, All Outputs Open,  
Freq = Max) Includes Supply Current for Both V and V  
I
I
I
–225  
–200  
–166  
300  
290  
280  
mA  
2, 3, 4  
DDA  
DDA  
DDA  
DD  
DDQ  
CMOS Standby Supply Current (Device Deselected, Freq = 0,  
= Max, V = Max, All Inputs Static at CMOS Levels)  
I
10  
mA  
mA  
5, 6  
SB2  
V
DD  
Sleep Mode Supply Current (Device Deselected, Freq = Max,  
= Max, All Other Inputs Static at CMOS Levels,  
DDQ  
I
TBD  
1, 5, 6  
ZZ  
V
DD  
ZZ V  
– 0.2 V)  
DD  
Clock Running (Device Deselected, Freq = Max, V  
All Inputs Toggling at CMOS Levels)  
= Max,  
I
I
I
–225  
–200  
–166  
100  
100  
90  
mA  
mA  
5, 7  
6
DD  
SB4  
SB4  
SB4  
Hold Supply Current (Device Selected, Freq = Max,  
= Max, V = Max, CKE V – 0.2 V,  
I
15  
DD1  
V
DD  
DDQ  
DD  
All Inputs Static at CMOS Levels)  
NOTES:  
1. LBO and ZZ pins have an internal pullup and will exhibit leakage currents of ± 5 µA.  
2. Reference AC Operating Conditions and Characteristics for input and timing.  
3. All addresses transition simultaneously low (LSB) then high (MSB).  
4. Data states are all zero.  
5. Device in deselected mode as defined by the Truth Table.  
6. CMOS levels for I/Os are V V  
7. TTL levels for I/Os are V V or V  
IT IL  
+ 0.2 V or V  
. TTL levels for other inputs are V V or V .  
IH2 in IL  
– 0.2 V. CMOS levels for other inputs are V V  
in  
+ 0.2 V or V – 0.2 V.  
DD  
IT  
SS  
DDQ  
SS  
IH  
CAPACITANCE (f = 1.0 MHz, T = 0 to 70°C, Periodically Sampled Rather Than 100% Tested)  
A
Parameter  
Symbol  
Min  
Typ  
4
Max  
5
Unit  
pF  
Input Capacitance  
C
in  
Input/Output Capacitance  
C
7
8
pF  
I/O  
MCM64Z836MCM64Z918  
MOTOROLA FAST SRAM  
13  
AC OPERATING CONDITIONS AND CHARACTERISTICS  
(V  
= 2.5 V ± 5%, T = 0 to 70°C Unless Otherwise Noted)  
DD  
A
Input Timing Measurement Reference Level . . . . . . . . . . . . . . 1.25 V  
Input Pulse Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 to 2.5 V  
Input Rise/Fall Time . . . . . . . . . . . . . . . . . . . . . . . . 1 ns (20% to 80%)  
Output Timing Reference Level . . . . . . . . . . . . . . . . . . . . . . . . . 1.25 V  
Output Load . . . . . . . . . . . . . . See Figure 6 Unless Otherwise Noted  
R
Under Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TBD  
θJA  
READ/WRITE CYCLE TIMING (See Notes 1 and 2)  
MCM64Z836–225  
MCM64Z918–225  
225 MHz  
MCM64Z836–200  
MCM64Z918–200  
200 MHz  
MCM64Z836–166  
MCM64Z918–166  
166 MHz  
Parameter  
Symbol  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
Min  
4.4  
1.7  
1.7  
Max  
Min  
5
Max  
3
Min  
6
Max  
Cycle Time  
t
KHKH  
Clock High Pulse Width  
Clock Low Pulse Width  
Clock Access Time  
t
2
2.4  
2.4  
0.8  
0.7  
0
3
3
KHKL  
KLKH  
KHQV  
t
2
t
2.6  
2.6  
0.8  
0.7  
0
3.6  
3.6  
Output Enable to Output Valid  
Clock High to Output Active  
Output Hold Time  
t
3
GLQV  
t
0.8  
0.7  
0
3
4, 5  
4
KHQX1  
t
KHQX  
Output Enable to Output Active  
Output Disable to Q High–Z  
Clock High to Q High–Z  
t
4, 5  
4, 5  
4, 5  
GLQX  
GHQZ  
t
2.3  
2.4  
1
1
3.5  
3
t
0.8  
2.5  
KHQZ  
ADKH  
Setup Times:  
Hold Times:  
NOTES:  
Address  
ADV  
Data In  
t
1.3  
1.3  
1.2  
1.3  
1.3  
1.3  
1.3  
1.3  
1.2  
1.3  
1.3  
1.3  
1.3  
1.3  
1.2  
1.3  
1.3  
1.3  
t
t
LVKH  
DVKH  
Write  
t
WVKH  
Chip Enable  
Clock Enable  
t
t
EVKH  
CVKH  
Address  
ADV  
Data In  
t
t
0.5  
0.5  
0.5  
ns  
KHAX  
KHLX  
t
KHDX  
Write  
t
KHWX  
Chip Enable  
Clock Enable  
t
t
KHEX  
KHCX  
1. Write is defined as any SBx and SW low. Chip Enable is defined as SE1 low, SE2 high, and SB3 low whenever ADV is low.  
2. All read and write cycle timings are referenced from CK or G.  
3. In order to reduce test correlation issues and to reduce the effects of application specific input edge rate variations on correlation between  
data sheet parameters and actual system performance, FSRAM AC parametric specifications are always specified at V /2. In some  
DDQ  
designexercises, it is desirable to evaluate timing using other reference levels. Since the maximum test input edge rate is known and is given  
in the AC test conditions section of the data sheet as 1 V/ns, one can easily interpolate timing values to other reference levels.  
4. This parameter is sampled and not 100% tested.  
5. Measured at ± 200 mV from steady state.  
OUTPUT  
Z
= 50 Ω  
0
R
= 50 Ω  
L
1.25 V  
Figure 6. AC Test Loads  
MCM64Z836MCM64Z918  
MOTOROLA FAST SRAM  
14  
t
KHKH  
t
t
KLKH  
KHKL  
CK  
t
AVKH  
t
t
KHAX  
SA0 – SAx  
t
t
WVKH  
WVKH  
KHWX  
SW  
t
t
KHWX  
SBx  
E
t
EVKH  
KHEX  
t
LVKH  
t
t
KHLX  
ADV  
CKE  
t
CVKH  
KHCX  
G
t
GLQX  
t
t
GLQV  
GHQZ  
DQ  
Q
t
DVKH  
t
KHDX  
DQ  
DQ  
D
t
t
KHQV  
KHQX  
t
t
KHQZ  
KHQX1  
Q
Q
NOTE: E is true if SE1 = SE3 = low and SE2 = high.  
t
t
,t  
,andt  
onlyapplyifGistoggled.IfGistiedlow  
GLQX GLQV  
GHQZ  
, and t  
, t  
apply.  
KHQX KHQV  
KHQZ  
Figure 7. AC Timing Parameter Definitions  
MCM64Z836MCM64Z918  
MOTOROLA FAST SRAM  
15  
MCM64Z836MCM64Z918  
MOTOROLA FAST SRAM  
16  
MCM64Z836MCM64Z918  
MOTOROLA FAST SRAM  
17  
MCM64Z836MCM64Z918  
MOTOROLA FAST SRAM  
18  
MCM64Z836MCM64Z918  
MOTOROLA FAST SRAM  
19  
MCM64Z836MCM64Z918  
MOTOROLA FAST SRAM  
20  
APPLICATION INFORMATION  
SLEEP MODE  
No READ/WRITE: During the period of time just prior to  
sleep and during recovery from sleep, the assertion of any  
write signal is not allowed. If a write operation occurs during  
these periods, the memory array may be corrupted. Validity  
of data out from the RAM can not be guaranteed immediately  
after ZZ is asserted (prior to being in sleep).  
Sleep Mode: The RAM automatically deselects itself. The  
RAM disconnects its internal clock buffer. The external clock  
may continue to run without impacting the RAMs sleep  
A sleep mode feature, the ZZ pin, has been implemented  
on the MCM64Z836 and MCM64Z918. It allows the system  
designer to place the RAM in the lowest possible power  
condition by asserting ZZ. The sleep mode timing diagram  
shows the different modes of operation: Normal Operation,  
No READ/WRITE Allowed, and Sleep Mode. Each mode has  
its own set of constraints and conditions that are allowed.  
Normal Operation: All inputs must meet setup and hold  
current (I ). All inputs are allowed to toggle — the RAM will  
ZZ  
times prior to sleep and t  
nanoseconds after re-  
not be selected and perform any reads or writes. However, if  
ZZREC  
covering from sleep. Clock (K) must also meet cycle high and  
low times during these periods. Two cycles prior to sleep, ini-  
tiation of either a read or write operation is not allowed.  
inputs toggle, the I (max) specification will not be met.  
ZZ  
Note: It is invalid to go from stop clock mode directly into  
sleep mode.  
MCM64Z836MCM64Z918  
MOTOROLA FAST SRAM  
21  
SERIAL BOUNDARY SCAN TEST ACCESS PORT OPERATION  
OVERVIEW  
TAPs operation) and can be expected to function in a manner  
that does not conflict with the operation of devices with IEEE  
Standard 1149.1 compliant TAPs. The TAP operates using a  
3.3 V tolerant logic level signaling.  
The serial boundary scan test access port (TAP) on this  
RAM is designed to operate in a manner consistent with  
IEEE Standard 1149.1–1990 (commonly referred to as  
JTAG), but does not implement all of the functions required  
for IEEE 1149.1 compliance. Certain functions have been  
modified or eliminated because their implementation places  
extra delays in the RAMs critical speed path. Nevertheless,  
the RAM supports the standard TAP controller architecture  
(the TAP controller is the state machine that controls the  
DISABLING THE TEST ACCESS PORT  
It is possible to use this device without utilizing the TAP. To  
disable the TAP controller without interfering with normal  
operation of the device, TRST should be tied low and TCK,  
TDI, and TMS should be pulled through a resistor to 3.3 V.  
TDO should be left unconnected.  
TAP DC OPERATING CHARACTERISTICS  
(T = 0 to 70°C, Unless Otherwise Noted)  
A
Symbol  
Min  
Max  
Unit  
Notes  
Parameter  
Input Logic Low  
Input Logic High  
Input Leakage Current  
Output Logic Low  
Output Logic High  
NOTES:  
V
1
– 0.5  
2
0.8  
3.6  
± 10  
0.4  
V
V
IL  
V
IH  
1
I
µA  
V
1
2
lkg  
V
OL  
1
V
OH  
1
2.4  
V
1. 0 V V V  
in  
for all logic input pins.  
DDQ  
2. For V  
= 0.4 V, 14 mA I  
28 mA.  
OL  
OL  
MCM64Z836MCM64Z918  
MOTOROLA FAST SRAM  
22  
TAP AC OPERATING CONDITIONS AND CHARACTERISTICS  
(T = 0 to 70°C, Unless Otherwise Noted)  
A
AC TEST CONDITIONS  
Parameter  
Value  
1.5  
Unit  
V
Input Timing Reference Level  
Input Pulse Levels  
0 to 3.0  
1
V
Input Rise/Fall Time (20% to 80%)  
Output Timing Reference Level  
V/ns  
V
1.5  
Output Load (See Figure 6 Unless Otherwise Noted)  
TAP CONTROLLER TIMING  
Parameter  
Symbol  
Min  
60  
25  
25  
1
Max  
Unit  
Notes  
TCK Cycle Time  
t
ns  
ns  
ns  
ns  
ns  
ns  
THTH  
TCK Clock High Time  
TCK Clock Low Time  
TDO Access Time  
TRST Pulse Width  
Setup Times  
t
TH  
t
TL  
t
t
10  
TLQV  
TSRT  
40  
Capture  
TDI  
t
5
5
5
1
1
CS  
t
t
DVTH  
MVTH  
TMS  
Hold Times  
NOTE:  
Capture  
TDI  
t
13  
14  
14  
ns  
CH  
t
t
THDX  
THMX  
TMS  
1. t  
CS  
and t  
CH  
define the minimum pauses in RAM I/O transitions to assure accurate pad data capture.  
TAP CONTROLLER TIMING DIAGRAM  
t
THTH  
t
TLTH  
TEST CLOCK  
(TCK)  
t
THTL  
t
THMX  
t
MVTH  
TEST MODE SELECT  
(TMS)  
t
THDX  
t
DVTH  
TEST DATA IN  
(TDI)  
t
TLQV  
TEST DATA OUT  
(TDO)  
MCM64Z836MCM64Z918  
MOTOROLA FAST SRAM  
23  
MCM64Z836 BOUNDARY SCAN ORDER  
Bit No.  
1
Signal Name  
SA  
Bump ID  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Bit No.  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
Signal Name  
SBa  
Bump ID  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
2
SA  
SEb  
3
SA  
SBc  
4
SA  
SBd  
5
SA  
SE2  
6
SA  
SE1  
7
SA  
SA  
8
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
ZZ  
SA  
9
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
SA  
V
DD  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
LBO  
SA  
SA  
SA  
ADV  
G
SA  
SA  
CKE  
SW  
SA  
SA1  
SA0  
CK  
SE3  
MCM64Z836MCM64Z918  
MOTOROLA FAST SRAM  
24  
MCM64Z918 BOUNDARY SCAN ORDER  
Bit No.  
1
Signal Name  
SA  
Bump ID  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Bit No.  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
Signal Name  
CK  
Bump ID  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
2
SA  
SE3  
3
SA  
SBa  
4
SA  
SBb  
5
SA  
SB2  
6
SA  
SE1  
7
SA  
SA  
8
DQa  
DQa  
DQa  
DQa  
ZZ  
SA  
9
DQb  
DQb  
DQb  
DQb  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
DQa  
DQa  
DQa  
DQa  
DQa  
SA  
V
DD  
DQb  
DQb  
DQb  
DQb  
DQb  
LBO  
SA  
SA  
SA  
SA  
SA  
ADV  
G
SA  
SA  
CKE  
SW  
SA1  
SA0  
MCM64Z836MCM64Z918  
MOTOROLA FAST SRAM  
25  
BOUNDARY SCAN REGISTER  
TEST ACCESS PORT PINS  
The boundary scan register is identical in length to the  
number of active input and I/O connections on the RAM (not  
counting the TAP pins). This also includes a number of place  
holder locations (always set to a logic 0) reserved for density  
upgrade address pins. There are a total of 67 bits in the case  
of the x36 device and 48 bits in the case of the x18 device.  
The boundary scan register, under the control of the TAP  
controller, is loaded with the contents of the RAMs I/O ring  
when the controller is in capture–DR state and then is placed  
between the TDI and TDO pins when the controller is moved  
to shift–DR state.  
TCK — TEST CLOCK (INPUT)  
Clocks all TAP events. All inputs are captured on the rising  
edge of TCK and all outputs propagate from the falling edge  
of TCK.  
TMS — TEST MODE SELECT (INPUT)  
The TMS input is sampled on the rising edge of TCK. This  
is the command input for the TAP controller state machine.  
An undriven TMS input will not produce the same result as a  
logic 1 input level (not IEEE 1149.1 compliant).  
The Bump/Bit Scan Order table describes which device  
bump connects to each boundary scan register location. The  
first column defines the bit’s position in the boundary scan  
register. The shift register bit nearest TDO (i.e., first to be  
shifted out) is defined as bit 1. The second column is the  
name of the input or I/O at the bump and the third column is  
the bump number.  
TDI — TEST DATA IN (INPUT)  
The TDI input is sampled on the rising edge of TCK. This is  
the input side of the serial registers placed between TDI and  
TDO. The register placed between TDI and TDO is deter-  
mined by the state of the TAP controller state machine and  
the instruction that is currently loaded in the TAP instruction  
register (refer to Figure 9). An undriven TDI pin will not pro-  
duce the same result as a logic 1 input level (not IEEE 1149.1  
compliant).  
IDENTIFICATION (ID) REGISTER  
The ID register is a 32–bit register that is loaded with a de-  
vice and vendor specific 32–bit code when the controller is  
put in capture–DR state with the IDCODE command loaded  
in the instruction register. The code is loaded from a 32–bit  
on–chip ROM. It describes various attributes of the RAM as  
indicated below. The register is then placed between the TDI  
and TDO pins when the controller is moved into shift–DR  
state. Bit 0 in the register is the LSB and the first to reach  
TDO when shifting begins.  
TDO — TEST DATA OUT (OUTPUT)  
Output that is active depending on the state of the TAP  
state machine (refer to Figure 9). Output changes in re-  
sponse to the falling edge of TCK. This is the output side of  
the serial registers placed between TDI and TDO.  
TRST — TAP RESET  
The TRST is an asynchronous input that resets the TAP  
controller and preloads the instruction register with the  
IDCODE command. This type of reset does not affect the  
operation of the system logic. The reset affects test logic  
only.  
ID Register Presence Indicator  
Bit No.  
Value  
0
1
TEST ACCESS PORT REGISTERS  
OVERVIEW  
Motorola JEDEC ID Code (Compressed Format, per  
IEEE Standard 1149.1–1990  
Bit No. 11  
Value  
10  
9
8
7
6
5
4
3
2
1
The various TAP registers are selected (one at a time) via  
the sequences of 1s and 0s input to the TMS pin as the TCK  
is strobed. Each of the TAPs registers are serial shift regis-  
ters that capture serial input data on the rising edge of TCK  
and push serial data out on the subsequent falling edge of  
TCK. When a register is selected, it is “placed” between the  
TDI and TDO pins.  
0
0
0
0
0
0
0
1
1
1
0
Reserved For Future Use  
Bit No.  
Value  
17  
16  
15  
14  
13  
12  
x
x
x
x
x
x
Device Width  
Bit No.  
INSTRUCTION REGISTER  
22  
21  
0
20  
1
19  
0
18  
0
The instruction register holds the instructions that are  
executed by the TAP controller when it is moved into the run  
test/idle or the various data register states. The instructions  
are 3 bits long. The register can be loaded when it is placed  
between the TDI and TDO pins. The parallel outputs of the  
instruction register are automatically preloaded with the  
IDCODE instruction when TRST is asserted or whenever the  
controller is placed in the test–logic–reset state. The two  
least significant bits of the serial instruction register are  
loaded with a binary “or” pattern in the capture–IR state.  
256K x 36  
512K x 18  
Device Depth  
Bit No.  
0
0
0
0
1
1
27  
0
26  
0
25  
1
24  
1
23  
0
256K x 36  
512K x 18  
Revision Number  
Bit No.  
0
0
1
1
1
BYPASS REGISTER  
31  
30  
29  
28  
The bypass register is a single bit register that can be  
placed between TDI and TDO. It allows serial test data to be  
passed through the RAMs TAP to another device in the scan  
chain with as little delay as possible.  
Value  
0
0
0
0
Figure 8. ID Register Bit Meanings  
MCM64Z836MCM64Z918  
MOTOROLA FAST SRAM  
26  
possible for the TAP to attempt to capture the I/O ring con-  
tents while the input buffers are in transition (i.e., in a metast-  
able state). Although allowing the TAP to sample metastable  
inputs will not harm the device, repeatable results can not be  
expected. RAM input signals must be stabilized for long  
enough to meet the TAPs input data capture setup, plus hold  
TAP CONTROLLER INSTRUCTION SET  
OVERVIEW  
There are two classes of instructions defined in the IEEE  
Standard 1149.1–1990; the standard (public) instructions  
and device specific (private) instructions. Some public  
instructions, are mandatory for IEEE 1149.1 compliance.  
Optional public instructions must be implemented in pre-  
scribed ways.  
Although the TAP controller in this device follows the IEEE  
1149.1 conventions, it is not IEEE 1149.1 compliant because  
some of the mandatory instructions are not fully imple-  
mented. The TAP on this device may be used to monitor all  
input and I/O pads, but can not be used to load address,  
data, or control signals into the RAM or to preload the I/O  
buffers. In other words, the device will not perform IEEE  
1149.1 EXTEST, INTEST, or the preload portion of the  
SAMPLE/PRELOAD command.  
time (t  
plus t ). The RAMs clock inputs need not be  
CS  
CH  
paused for any other TAP operation except capturing the I/O  
ring contents into the boundary scan register.  
Moving the controller to shift–DR state then places the  
boundary scan register between the TDI and TDO pins. Be-  
cause the PRELOAD portion of the command is not im-  
plemented in this device, moving the controller to the  
update–DR state with the SAMPLE/PRELOAD instruction  
loaded in the instruction register has the same effect as the  
pause–DR command. This functionality is not IEEE 1149.1  
compliant.  
EXTEST  
When the TAP controller is placed in capture–IR state, the  
two least significant bits of the instruction register are loaded  
with 01. When the controller is moved to the shift–IR state  
the instruction register is placed between TDI and TDO. In  
this state, the desired instruction is serially loaded through  
the TDI input (while the previous contents are shifted out at  
TDO). For all instructions, the TAP executes newly loaded  
instructions only when the controller is moved to update–IR  
state. The TAP instruction sets for this device are listed in the  
following tables.  
EXTEST is an IEEE 1149.1 mandatory public instruction. It  
is to be executed whenever the instruction register, whatever  
length it may be in the device, is loaded with all logic 0s.  
EXTEST is not implemented in this device.  
IDCODE  
The IDCODE instruction causes the ID ROM to be loaded  
into the ID register when the controller is in capture–DR  
mode and places the ID register between the TDI and TDO  
pins in shift–DR mode. The IDCODE instruction is the default  
instruction loaded in at TRST assertion and any time the con-  
troller is placed in the test–logic–reset state.  
STANDARD (PUBLIC) INSTRUCTIONS  
BYPASS  
THE DEVICE SPECIFIC (PUBLIC) INSTRUCTION  
The BYPASS instruction is loaded in the instruction regis-  
ter when the bypass register is placed between TDI and  
TDO. This occurs when the TAP controller is moved to the  
shift–DR state. This allows the board level scan path to be  
shortened to facilitate testing of other devices in the scan  
path.  
SAMPLE–Z  
If the HIGH–Z instruction is loaded in the instruction regis-  
ter, all DQ pins are forced to an inactive drive state (High–Z)  
and the bypass register is connected between TDI and TDO  
when the TAP controller is moved to the shift–DR state.  
SAMPLE/PRELOAD  
THE DEVICE SPECIFIC (PRIVATE) INSTRUCTION  
SAMPLE/PRELOAD is an IEEE 1149.1 mandatory public  
instruction. When the SAMPLE/PRELOAD instruction is  
loaded in the instruction register, moving the TAP controller  
out of the capture–DR state loads the data in the RAMs input  
and I/O buffers into the boundary scan register. Because the  
RAM clock(s) are independent from the TAP clock (TCK), it is  
NO OP  
Do not use these instructions; they are reserved for future  
use.  
MCM64Z836MCM64Z918  
MOTOROLA FAST SRAM  
27  
STANDARD AND DEVICE SPECIFIC (PUBLIC) INSTRUCTION CODES  
Instruction  
IDCODE  
Code*  
001**  
010  
Description  
Preloads ID register and places it between TDI and TDO. Does not affect RAM operation.  
HIGH–Z  
Captures I/O ring contents. Places the bypass register between TDI and TDO. Forces all DQ pins  
to High–Z. NOT IEEE 1149.1 COMPLIANT.  
BYPASS  
011  
100  
Places bypass register between TDI and TDO. Does not affect RAM operation. NOT IEEE 1149.1  
COMPLIANT.  
SAMPLE/PRELOAD  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Does not  
affect RAM operation.  
Does not implement IEEE 1149.1 Preload function. NOT IEEE 1149.1 COMPLIANT.  
*Instruction codes expressed in binary, MSB on left, LSB on right.  
**Default instruction automatically loaded when TRST asserted or in test–logic–reset state.  
STANDARD (PRIVATE) INSTRUCTION CODES  
Instruction  
NO OP  
Code*  
000  
Description  
Do not use these instructions; they are reserved for future use.  
Do not use these instructions; they are reserved for future use.  
Do not use these instructions; they are reserved for future use.  
Do not use these instructions; they are reserved for future use.  
NO OP  
NO OP  
NO OP  
101  
110  
111  
* Instruction codes expressed in binary, MSB on left, LSB on right.  
TEST–LOGIC  
RESET  
1
0
1
RUN–TEST/  
IDLE  
SELECT  
DR–SCAN  
SELECT  
IR–SCAN  
1
1
0
0
0
CAPTURE–IR  
0
1
1
CAPTURE–DR  
0
SHIFT–DR  
1
SHIFT–IR  
1
0
0
1
1
EXIT1–DR  
0
EXIT1–IR  
0
PAUSE–DR  
1
PAUSE–IR  
1
0
0
0
0
EXIT2–DR  
1
EXIT2–IR  
1
UPDATE–IR  
0
UPDATE–DR  
1
0
1
NOTE: The value adjacent to each state transition represents the signal present at TMS at the rising edge of TCK.  
Figure 9. TAP Controller State Diagram  
MCM64Z836MCM64Z918  
28  
MOTOROLA FAST SRAM  
ORDERING INFORMATION  
(Order by Full Part Number)  
64Z836  
64Z918  
MCM  
XX  
X
X
Motorola Memory Prefix  
Part Number  
Blank = Trays, R = Tape and Reel  
Speed (225 = 225 MHz, 200 = 200 MHz,  
166 = 166 MHz)  
Package (TQ = TQFP, ZP = PBGA)  
Full Part Numbers — MCM64Z836TQ225  
MCM64Z836TQ225R  
MCM64Z836TQ200 MCM64Z836TQ166  
MCM64Z836TQ200R  
MCM64Z918TQ200  
MCM64Z918TQ200R  
MCM64Z836TQ166R  
MCM64Z918TQ166  
MCM64Z918TQ166R  
MCM64Z918TQ225  
MCM64Z918TQ225R  
MCM64Z836ZP225  
MCM64Z836ZP225R  
MCM64Z918ZP225  
MCM64Z918ZP225R  
MCM64Z836ZP200  
MCM64Z836ZP200R  
MCM64Z918ZP200  
MCM64Z918ZP200R  
MCM64Z836ZP166  
MCM64Z836ZP166R  
MCM64Z918ZP166  
MCM64Z918ZP166R  
MCM64Z836MCM64Z918  
29  
MOTOROLA FAST SRAM  
PACKAGE DIMENSIONS  
TQ PACKAGE  
TQFP  
CASE 983A–01  
e
4X  
80  
0.20 (0.008)  
H
A–B  
D
2X 30 TIPS  
e/2  
0.20 (0.008)  
C
A–B  
D
–D–  
51  
B
B
50  
81  
–X–  
E/2  
X=A, B, OR D  
–A–  
–B–  
VIEW Y  
E1  
E
BASE  
METAL  
PLATING  
b1  
E1/2  
31  
100  
c1  
c
1
30  
b
D1/2  
D/2  
M
S
S
D1  
0.13 (0.005)  
C
A–B  
D
D
SECTION B–B  
2X 20 TIPS  
0.20 (0.008)  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
C
A–B  
D
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLANE –H– IS LOCATED AT BOTTOM OF  
LEAD AND IS COINCIDENT WITH THE LEAD  
WHERE THE LEAD EXITS THE PLASTIC BODY AT  
THE BOTTOM OF THE PARTING LINE.  
4. DATUMS –A–, –B– AND –D– TO BE DETERMINED  
AT DATUM PLANE –H–.  
A
2
3
0.10 (0.004)  
C
–H–  
5. DIMENSIONS D AND E TO BE DETERMINED AT  
SEATING PLANE –C–.  
–C–  
SEATING  
PLANE  
6. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS 0.25  
(0.010) PER SIDE. DIMENSIONS D1 AND B1 DO  
INCLUDE MOLD MISMATCH AND ARE  
DETERMINED AT DATUM PLANE –H–.  
7. DIMENSION b DOES NOT INCLUDE DAMBAR  
PROTRUSION. DAMBAR PROTRUSION SHALL  
NOT CAUSE THE b DIMENSION TO EXCEED 0.45  
(0.018).  
VIEW AB  
S
0.05 (0.002)  
S
1
MILLIMETERS  
INCHES  
MIN  
0.25 (0.010)  
DIM  
A
A1  
A2  
b
MIN  
–––  
MAX  
1.60  
0.15  
1.45  
0.38  
0.33  
0.20  
0.16  
MAX  
0.063  
0.006  
0.057  
0.015  
0.013  
0.008  
0.006  
GAGE PLANE  
–––  
0.002  
0.053  
0.009  
0.009  
0.004  
0.004  
R2  
A2  
0.05  
1.35  
0.22  
0.22  
0.09  
0.09  
b1  
c
L2  
L
R1  
A1  
c1  
D
22.00 BSC  
0.866 BSC  
D1  
E
E1  
e
20.00 BSC  
16.00 BSC  
14.00 BSC  
0.65 BSC  
0.787 BSC  
0.630 BSC  
0.551 BSC  
0.026 BSC  
L1  
VIEW AB  
L
0.45  
1.00 REF  
0.50 REF  
0.75  
0.018  
0.039 REF  
0.020 REF  
0.030  
L1  
L2  
S
R1  
R2  
0.20  
–––  
–––  
0.20  
7
0.008  
–––  
–––  
0.008  
7
0.08  
0.08  
0
0.003  
0.003  
0
1
2
3
0
11  
11  
–––  
13  
13  
0
11  
11  
–––  
13  
13  
MCM64Z836MCM64Z918  
MOTOROLA FAST SRAM  
30  
ZP PACKAGE  
7 x 17 BUMP PBGA  
CASE 999–02  
0.20  
4X  
119X  
b
B
D
M
0.3  
A
A
B C  
E
C
NOTES:  
M
0.15  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
7
6 5 4 3 2 1  
A
B
C
D
E
F
G
H
J
2. ALL DIMENSIONS IN MILLIMETERS.  
3. DIMENSION b IS THE MAXIMUM SOLDER BALL  
DIAMETER MEASURED PARALLEL TO DATUM A.  
4. DATUM A, THE SEATING PLANE, IS DEFINED BY  
THE SPHERICAL CROWNS OF THE SOLDER  
BALLS.  
D1  
D2  
MILLIMETERS  
K
L
DIM  
A
A1  
A2  
A3  
D
D1  
D2  
E
E1  
E2  
b
MIN  
–––  
0.50  
1.30  
0.80  
MAX  
2.40  
0.70  
1.70  
1.00  
M
N
P
R
T
16X e  
U
22.00 BSC  
20.32 BSC  
19.40 19.60  
14.00 BSC  
7.62 BSC  
6X  
e
E2  
E1  
BOTTOM VIEW  
TOP VIEW  
11.90  
0.60  
1.27 BSC  
12.10  
0.90  
e
0.25  
A
A
A3  
A2  
0.35  
0.20  
A
A
SEATING  
PLANE  
SIDE VIEW  
A1  
A
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
Mfax is a trademark of Motorola, Inc.  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 5405, Denver, Colorado, 80217. 1-303-675-2140 or 1-800-441-2447 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan. 81-3-5487-8488  
Mfax : RMFAX0@email.sps.mot.com – TOUCHTONE 1-602-244-6609 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre,  
– US & Canada ONLY 1-800-774-1848 2 Dai King Street, Tai Po Industrial Estate, Tao Po, N.T., Hong Kong.  
JAPAN: Motorola Japan Ltd.; SPD, Strategic Planning Office, 141,  
Motorola Fax Back System  
– http://sps.motorola.com/mfax/  
852-26668334  
HOME PAGE: http://motorola.com/sps/  
CUSTOMER FOCUS CENTER: 1-800-521-6274  
MCM64Z836/D  

相关型号:

MCM64Z836TQ7

256K x 36 and 512K x 18 Bit ZBT Fast Static RAM
FREESCALE

MCM64Z836TQ7

256KX36 ZBT SRAM, 7ns, PQFP100, PLASTIC, TQFP-100
NXP

MCM64Z836TQ7R

256K x 36 and 512K x 18 Bit ZBT Fast Static RAM
FREESCALE

MCM64Z836TQ7R

256KX36 ZBT SRAM, 7ns, PQFP100, PLASTIC, TQFP-100
NXP

MCM64Z836TQ8

256K x 36 and 512K x 18 Bit ZBT Fast Static RAM
FREESCALE

MCM64Z836TQ8.5

256K x 36 and 512K x 18 Bit ZBT Fast Static RAM
FREESCALE

MCM64Z836TQ8.5R

256K x 36 and 512K x 18 Bit ZBT Fast Static RAM
FREESCALE

MCM64Z836TQ8.5R

256KX36 ZBT SRAM, 8.5ns, PQFP100, PLASTIC, TQFP-100
NXP

MCM64Z836TQ8R

256K x 36 and 512K x 18 Bit ZBT Fast Static RAM
FREESCALE

MCM64Z836TQ8R

256KX36 ZBT SRAM, 8ns, PQFP100, PLASTIC, TQFP-100
NXP

MCM64Z836ZP166

ZBT SRAM, 256KX36, 3.6ns, CMOS, PBGA119, PLASTIC, BGA-119
MOTOROLA

MCM64Z836ZP166R

ZBT SRAM, 256KX36, 3.6ns, CMOS, PBGA119, PLASTIC, BGA-119
MOTOROLA