MCM69R736ZP5 [MOTOROLA]

Cache SRAM, 128KX36, 2.5ns, BICMOS, PBGA119, 14 X 22 MM, 1.27 MM PITCH, PLASTIC, BGA-119;
MCM69R736ZP5
型号: MCM69R736ZP5
厂家: MOTOROLA    MOTOROLA
描述:

Cache SRAM, 128KX36, 2.5ns, BICMOS, PBGA119, 14 X 22 MM, 1.27 MM PITCH, PLASTIC, BGA-119

信息通信管理 静态存储器
文件: 总20页 (文件大小:309K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MCM69R736/D  
SEMICONDUCTOR TECHNICAL DATA  
MCM69R736  
MCM69R818  
Advance Information  
4M Late Write HSTL  
The MCM69R736/818 is a 4 megabit synchronous late write fast static RAM  
designed to provide high performance in secondary cache and ATM switch,  
Telecom, and other high speed memory applications. The MCM69R818  
organized as 256K words by 18 bits, and the MCM69R736 organized as 128K  
words by 36 bits wide are fabricated in Motorola’s high performance silicon gate  
BiCMOS technology.  
The differential CK clock inputs control the timing of read/write operations of  
the RAM. At the rising edge of the CK clock all addresses, write enables, and  
synchronous selects are registered. An internal buffer and special logic enable  
the memory to accept write data on the rising edge of the CK clock a cycle after  
address and control signals. Read data is driven on the rising edge of the CK  
clock also.  
ZP PACKAGE  
PBGA  
CASE 999–01  
TheRAMusesHSTLinputsandoutputs. Theadjustableinputtrippoint(V  
)
ref  
and output voltage (V  
) gives the system designer greater flexibility in  
optimizing system performance.  
DDQ  
The synchronous write and byte enables allow writing to individual bytes or the  
entire word.  
The impedance of the output buffers is programmable allowing the outputs to  
match the impedance of the circuit traces which reduces signal reflections.  
Byte Write Control  
Single 3.3 V ± 5% Operation  
HSTL – I/O (JEDEC Standard JESD8–6 Class I and Class II Compatible)  
HSTL – User Selectable Input Trip–Point  
HSTL – Compatible Programmable Impedance Output Drivers  
Register to Register Synchronous Operation  
Asynchronous Output Enable  
Boundary Scan (JTAG) IEEE 1149.1 Compatible  
Differential Clock Inputs  
Optional x 18 or x 36 organization  
MCM69R736/818–5 = 5 ns  
MCM69R736/818–6 = 6 ns  
MCM69R736/818–7 = 7 ns  
119 Bump, 50 mil (1.27 mm) Pitch, 14 mm x 17 mm Plastic Ball Grid Array  
(PBGA) Package  
This document contains information on a new product. Specifications and information herein are subject to change without notice.  
5/3/96  
Motorola, Inc. 1996  
FUNCTIONAL BLOCK DIAGRAM  
DATA IN  
REGISTER  
ADDRESS  
REGISTERS  
MEMORY  
ARRAY  
SA  
DQ  
DATA OUT  
REGISTER  
SW  
SW  
REGISTERS  
CONTROL  
LOGIC  
SBx  
CK  
G
SS  
SS  
REGISTERS  
PIN ASSIGNMENTS  
TOP VIEW  
MCM69R736  
MCM69R818  
1
2
3
4
5
6
7
1
2
3
4
5
6
7
A
B
C
D
E
A
B
C
D
E
V
SA  
NC  
SA  
SA  
SA  
NC  
NC  
SA  
SA  
SA  
SA  
NC  
SA  
V
V
SA  
NC  
SA  
SA  
SA  
SA  
NC  
NC  
SA  
SA  
SA  
SA  
NC  
V
DDQ  
DDQ  
DDQ  
DDQ  
NC  
NC  
NC  
NC  
NC  
SA  
V
NC  
NC  
V
SA  
NC  
NC  
DD  
DD  
DQc  
DQc  
DQc  
DQc  
DQc  
V
ZQ  
V
DQb DQb  
DQb DQb  
DQb  
NC  
NC  
DQb  
NC  
V
ZQ  
SS  
G
V
DQa  
NC  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
V
V
SS  
G
V
V
V
V
V
V
V
V
DQa  
F
F
V
DQb  
V
V
DQa  
NC  
V
DDQ  
DDQ  
DDQ  
DDQ  
G
G
DQc  
DQc SBc  
DQc  
NC  
NC  
SBb  
DQb DQb  
DQb DQb  
NC  
DQb SBb  
NC  
NC  
DQa  
H
H
DQc  
V
V
DQb  
NC  
V
DQa  
NC  
SS  
SS  
SS  
J
K
L
J
K
L
V
V
V
V
V
V
V
DDQ  
DD  
DQd  
DQd SBd  
ref  
DD  
ref  
DD DDQ  
V
V
V
V
V
V V  
DD DDQ  
DDQ  
DD  
ref  
SS  
SS  
DD  
ref  
DQd  
V
CK  
V
DQa DQa  
DQa DQa  
NC  
DQb  
V
V
CK  
CK  
V
NC  
DQa  
NC  
SS  
SS  
SS  
DQb  
NC  
SBa  
DQa  
DQd  
CK  
SW  
SA  
SA  
SBa  
M
N
P
M
N
P
V
DQd  
DQd  
DQd  
V
V
V
V
V
V
DQa  
V
V
DQb  
NC  
V
V
V
SW  
SA  
SA  
V
V
V
NC  
DQa  
NC  
V
DDQ  
SS  
SS  
SS  
SS  
SS  
SS  
DDQ  
DDQ  
SS  
SS  
SS  
SS  
SS  
SS  
DDQ  
DQd  
DQa DQa  
DQa DQa  
DQb  
NC  
DQd  
NC  
NC  
NC  
DQb  
DQa  
NC  
R
T
R
T
NC  
NC  
SA  
NC  
V
V
V
SA  
NC  
NC  
NC  
NC  
SA  
SA  
V
V
V
SA  
SA  
NC  
SS  
DD  
DD  
SS  
DD  
NC  
TCK  
DD  
SA  
TDO  
SA  
SA  
SA  
SA  
NC  
U
U
V
TMS  
TDI  
TCK  
TDO  
V
V
TMS  
TDI  
V
DDQ  
DDQ  
DDQ  
DDQ  
MCM69R736MCM69R818  
MOTOROLA FAST SRAM  
2
MCM69R736 PIN DESCRIPTIONS  
PBGA Pin Locations  
Symbol  
Type  
Description  
2A, 3A, 5A, 6A, 3B, 5B, 2C, 3C,  
5C, 6C, 4N, 4P, 2R, 6R, 3T, 4T, 5T  
SA  
Input  
Synchronous Address Inputs: Registered on the rising clock edge.  
4K  
4L  
CK  
CK  
SW  
Input  
Input  
Input  
Address, data in and control input register clock. Active high.  
Address, data in and control input register clock. Active low.  
4M  
Synchronous Write: Registered on the rising clock edge, active low.  
Writes all enabled bytes.  
5L, 5G, 3G, 3L  
(a), (b), (c), (d)  
SBx  
SS  
Input  
Input  
Synchronous Byte Write Enable: Enables writes to byte x in  
conjunction with the SW input. Has no effect on read cycles, active  
low.  
4E  
Synchronous Chip Enable: Registered on the rising clock edge, active  
low.  
4F  
2U  
3U  
4U  
5U  
4D  
G
Input  
Input  
Input  
Input  
Output Enable: Asynchronous pin, active low.  
Test Mode Select (JTAG).  
Test Data In (JTAG).  
TMS  
TDI  
TCK  
TDO  
ZQ  
Test Clock (JTAG).  
Output Test Data Out (JTAG).  
Input  
I/O  
Programmable Output Impedance: Programming pin.  
Synchronous Data I/O.  
(a) 6K, 7K, 6L, 7L, 6M, 6N, 7N, 6P, 7P  
(b) 6D, 7D, 6E, 7E, 6F, 6G, 7G, 6H, 7H  
(c) 1D, 2D, 1E, 2E, 2F, 1G, 2G, 1H, 2H  
(d) 1K, 2K, 1L, 2L, 2M, 1N, 2N, 1P, 2P  
DQx  
3J, 5J  
V
Supply Input Reference: provides reference voltage for input buffers.  
Supply Core Power Supply.  
ref  
4C, 2J, 4J, 6J, 4R, 5R  
V
DD  
1A, 7A, 1F, 7F, 1J, 7J, 1M, 7M, 1U, 7U  
V
Supply Output Power Supply: provides operating power for output buffers.  
Supply Ground.  
DDQ  
3D, 5D, 3E, 5E, 3F, 5F, 3H, 5H,  
3K, 5K, 3M, 5M, 3N, 5N, 3P, 5P, 3R  
V
SS  
4A, 1B, 2B, 4B, 6B, 7B, 1C, 7C,  
4G, 4H, 1R, 7R, 1T, 2T, 6T, 7T, 6U  
NC  
No Connection: There is no connection to the chip.  
MCM69R736MCM69R818  
MOTOROLA FAST SRAM  
3
MCM69R818 PIN DESCRIPTIONS  
PBGA Pin Locations  
Symbol  
Type  
Description  
2A, 3A, 5A, 6A, 3B, 5B, 2C, 3C, 5C,  
6C, 4N, 4P, 2R, 6R, 2T, 3T, 5T, 6T  
SA  
Input  
Synchronous Address Inputs: Registered on the rising clock edge.  
4K  
4L  
CK  
CK  
SW  
Input  
Input  
Input  
Address, data in and control input register clock. Active high.  
Address, data in and control input register clock. Active low.  
4M  
Synchronous Write: Registered on the rising clock edge, active low.  
Writes all enabled bytes.  
5L, 3G  
(a), (b)  
SBx  
SS  
Input  
Input  
Synchronous Byte Write Enable: Enables writes to byte x in  
conjunction with the SW input. Has no effect on read cycles, active  
low.  
4E  
Synchronous Chip Enable: Registered on the rising clock edge, active  
low.  
2U  
3U  
4U  
5U  
4D  
4F  
TMS  
TDI  
TCK  
TDO  
ZQ  
Input  
Input  
Input  
Test Mode Select (JTAG).  
Test Data In (JTAG).  
Test Clock (JTAG).  
Output Test Data Out (JTAG).  
Input  
Input  
I/O  
Programmable Output Impedance: Programming pin.  
G
Output Enable: Asynchronous pin, active low.  
Synchronous Data I/O.  
(a) 6D, 7E, 6F, 7G, 6H, 7K, 6L, 6N, 7P  
(b) 1D, 2E, 2G, 1H, 2K, 1L, 2M, 1N, 2P  
DQx  
3J, 5J  
V
Supply Input Reference: provides reference voltage for input buffers.  
Supply Core Power Supply.  
ref  
4C, 2J, 4J, 6J, 4R, 5R  
V
DD  
1A, 7A, 1F, 7F, 1J, 7J, 1M, 7M, 1U, 7U  
V
Supply Output Power Supply: provides operating power for output buffers.  
Supply Ground.  
DDQ  
3D, 5D, 3E, 5E, 3F, 5F, 5G, 3H, 5H,  
3K, 5K, 3L, 3M, 5M, 3N, 5N, 3P, 5P, 3R  
V
SS  
4A, 1B, 2B, 4B, 6B, 7B, 1C, 7C,  
2D, 7D, 1E, 6E, 2F, 1G, 4G, 6G,  
2H, 4H, 7H, 1K, 6K, 2L, 7L, 6M, 2N,  
7N, 1P, 6P, 1R, 7R, 1T, 4T, 7T, 6U  
NC  
No Connection: There is no connection to the chip.  
MCM69R736MCM69R818  
MOTOROLA FAST SRAM  
4
ABSOLUTE MAXIMUM RATINGS (Voltages Referenced to V  
)
SS  
This device contains circuitry to protect the  
inputs against damage due to high static volt-  
ages or electric fields; however, it is advised  
that normal precautions be taken to avoid  
application of any voltage higher than maxi-  
mum rated voltages to this high–impedance  
circuit.  
This BiCMOS memory circuit has been  
designed to meet the dc and ac specifications  
shown in the tables, after thermal equilibrium  
has been established.  
Rating  
Core Supply Voltage  
Symbol  
Value  
Unit  
V
DD  
– 0.5 to + 4.6  
V
Output Supply Voltage  
Voltage On Any Pin  
V
DDQ  
– 0.5 to V  
V
V
DD + 0.5  
V
in  
– 0.5 to V  
+ 0.5  
DD  
Input Current (per I/O)  
Output Current (per I/O)  
Power Dissipation  
I
in  
± 50  
mA  
mA  
W
I
± 70  
out  
P
D
This devicecontainscircuitrythatwillensure  
the output devices are in High–Z at power up.  
Temperature Under Bias*  
Operating Temperature*  
Storage Temperature  
T
°C  
°C  
°C  
bias  
T
J
20 to +110  
– 55 to + 125  
T
stg  
*
Power dissipation capability will be dependent upon package characteristics and  
use environment. See enclosed thermal impedance data.  
NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are  
exceeded. Functional operation should be restricted to RECOMMENDED OPER-  
ATING CONDITIONS. Exposure to higher than recommended voltages for  
extended periods of time could affect device reliability.  
PBGA PACKAGE THERMAL CHARACTERISTICS (See Note 1)  
Rating  
Symbol  
Max  
25  
Unit  
°C/W  
°C/W  
°C/W  
Notes  
Junction to Ambient (@ 1 m/s)  
Junction to Balls (Bottom)  
Junction to Case (Top)  
NOTES:  
R
θJA  
R
θJB  
R
θJC  
2
3
4
12  
10  
1. Junction temperature is a function of on–chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient  
temperature, air flow, board population, and board thermal resistance.  
2. Per SEMI G38–87.  
3. Indicates the average thermal resistance between the die and the printed circuit board.  
4. Indicates the average thermal resistance between the die and the case top surface via the cold plate method (MIL SPEC–883 Method 1012.1).  
MCM69R736MCM69R818  
MOTOROLA FAST SRAM  
5
DC OPERATING CONDITIONS AND CHARACTERISTICS  
(T = 20 to 110 °C, Unless Otherwise Noted)  
J
RECOMMENDED OPERATING CONDITIONS (See Notes 1 through 4)  
Parameter Symbol  
Min  
3.1  
1.4  
Max  
3.6  
Unit  
V
Notes  
Core Power Supply Voltage  
Output Driver Supply Voltage  
Active Power Supply Current  
V
DD  
V
1.6  
V
DDQ  
DD1  
(x18)  
(x36)  
I
600  
700  
mA  
5
Quiescent Active Power Supply Current  
Active Standby Power Supply Current  
Quiescent Standby Power Supply Current  
I
TBD  
TBD  
TBD  
mA  
mA  
mA  
6
7
8
DD2  
I
SB1  
SB2  
I
NOTES:  
1. AlldatasheetparametersspecifiedtofullrangeofV  
unlessotherwisenoted. AllvoltagesarereferencedtovoltageappliedtoV bumps.  
SS  
DD  
2. Supply voltage applied to V  
3. Supply voltage applied to V  
connections.  
DD  
connections when using the RAM in push–pull output configuration.  
DDQ  
4. All power supply currents measured with outputs open or deselected.  
5. V  
6. V  
7. V  
8. V  
= V  
= V  
= V  
= V  
(max), t  
(max), t  
(max), t  
(max), t  
= t  
(min), SS registered active, 50% read cycles.  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
KHKH KHKH  
KHKH  
= dc, SS registered active.  
= t  
(min), SS registered active.  
KHKH KHKH  
= dc, SS registered inactive.  
KHKH  
DC INPUT CHARACTERISTICS  
Parameter  
Symbol  
Min  
+ 0.1  
Max  
+ 0.3  
Unit  
V
Notes  
DC Input Logic High  
V
(dc)  
(dc)  
(dc)  
V
ref  
V
IH  
DDQ  
DC Input Logic Low  
V
– 0.3  
0.6  
V
– 0.1  
V
1
2
3
IL  
ref  
1.1  
± 5  
Input Reference DC Voltage  
Input Leakage Current  
V
ref  
V
I
µA  
V
lkg(1)  
Clock Input Signal Voltage  
Clock Input Differential Voltage  
Clock Input Common Mode Voltage Range  
V
in  
– 0.3  
0.1  
V
V
+ 0.3  
DDQ  
V
DIF  
V
CM  
(dc)  
(dc)  
+ 0.6  
V
4
DDQ  
0.68  
1.1  
V
Note 5,  
Fig. 2  
Clock Input Crossing Point Voltage Range  
V
X
0.68  
1.1  
V
NOTES:  
1. Inputs may undershoot to –0.5 V (peak) for up to 20% t  
2. Although considerable latitude in the selection of the nominal dc value (i.e. rms value) of V is supported, the peak to peak ac component  
(e.g. 2 ns at a clock cycle time of 10 ns).  
KHKH  
ref  
superimposed on V may not exceed 5% of the dc component of V  
.
ref ref  
for all pins.  
3. 0 V ± V ± V  
in DDQ  
4. Minimum instantaneous differential input voltage required for differential input clock operation.  
5. Maximum rejectable common mode input voltage variation.  
DC OUTPUT BUFFER CHARACTERISTICS – PROGRAMMABLE IMPEDANCE PUSH–PULL OUTPUT BUFFER MODE  
(T = 20 to 110 °C, ZQ = I  
(out) (RQ)) (See Notes 5 and 6)  
ZQ  
Parameter  
J
Symbol  
Min  
Max  
V /2 +0.025  
DDQ  
Unit  
V
Notes  
Output Logic Low  
Output Logic High  
V
OL  
V
V
/2 – 0.025  
/2 – 0.025  
1
2
3
4
DDQ  
V
OH  
V
DDQ  
/2 + 0.025  
V
DDQ  
Light Load Output Logic Low  
Light Load Output Logic High  
V 1  
OL  
V
SS  
0.2  
V
V
OH  
1
V
– 0.2  
V
DDQ  
V
DDQ  
NOTES:  
1.  
2. | I  
I
= (V  
| = (V  
DDQ  
/2)/(RQ/5) for values of RQ = 175 RQ 350 Ω.  
/2)/(RQ/5) for values of RQ = 175 RQ 350 Ω.  
OL  
DDQ  
OH  
I = 100 µΑ  
OL  
3.  
4. | I  
| 100 µA  
OH  
5. The impedance controlled mode is expected to be used in point–to–point applications, driving high impedance inputs.  
6. The ZQ pin is connected through RQ to V  
for the controlled impedance mode.  
SS  
MCM69R736MCM69R818  
MOTOROLA FAST SRAM  
6
PROGRAMMABLE IMPEDANCE OUTPUT  
BUFFER OPERATION  
vate the outputs, such as deselect cycles.  
Impedance updates occur approximately every 32 clock  
cycles (CK clock). All clock cycles are counted. For example,  
after 32 + 1 contiguous read cycles have occurred, an im-  
pedance update will occur the next time SS is high or SW is  
low at the rising edge of CK clock.  
The output impedance is programmed by a resistor (RQ)  
attached between the ZQ pin and V . RQ’s value is five  
SS  
times the programmed impedance. For example, 250 is re-  
quired for an output impedance of 50 .  
Impedance updates occur early in cycles that do not acti-  
DC OUTPUT BUFFER CHARACTERISTICS – MINIMUM IMPEDANCE PUSH–PULL OUTPUT BUFFER MODE  
(T = 20 to 110 °C, ZQ = V ) (See Notes 5 and 6)  
J
DD  
Parameter  
Symbol  
Min.  
Max.  
Unit  
V
Notes  
Output Logic Low  
Output Logic High  
V 2  
OL  
V
SS  
0.4  
1
2
3
4
V
2
3
V
V
– 0.4  
V
DDQ  
V
OH  
DDQ  
Light Load Output Logic Low  
Light Load Output Logic High  
V
V
SS  
0.2  
V
OL  
V
OH  
3
– 0.2  
V
DDQ  
V
DDQ  
NOTES:  
1.  
2. | I  
I
20 mA  
|20 mA  
OL  
OH  
I 100 µA  
OL  
3.  
4. | I  
|100 µA  
OH  
5. The push–pull output mode is expected to be used in bussed applications and may be series or parallel terminated. Conforms to the JEDEC  
Standard JESD8–6 Class II.  
6. The ZQ pin is connected to V  
DD  
to enable the minimum impedance mode.  
CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, T = 20 to 110 °C, Periodically Sampled Rather Than 100% Tested)  
J
Characteristic  
Symbol  
Typ  
5
Max  
Unit  
pF  
Input Capacitance  
C
5
8
7
in  
Input/Output Capacitance  
CK, CK Capacitance  
C
6
pF  
I/O  
CK  
C
6
pF  
MCM69R736MCM69R818  
MOTOROLA FAST SRAM  
7
AC OPERATING CONDITIONS AND CHARACTERISTICS  
(T = 20 to 110°C, Unless Otherwise Noted)  
J
Input Pulse Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.25 to 1.25 V  
Input Rise/Fall Time . . . . . . . . . . . . . . . . . . . . . . 1 V/ns (20% to 80%)  
Input Timing Measurement Reference Level . . . . . . . . . . . . . . 0.75 V  
Output Timing Reference Level . . . . . . . . . . . . . . . . . . . . . . . . . 0.75 V  
Clock Input Timing Reference Level . . . . . . Differential Cross–Point  
ZQ for 50 Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 Ω  
READ/WRITE CYCLE TIMING (See Note 3)  
MCM69R736–5 MCM69R736–6 MCM69R736–7  
MCM69R818–5 MCM69R818–6 MCM69R818–7  
Parameter  
Symbol  
Min  
5
Max  
Min  
6
Max  
3
Min  
7
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
Cycle Time  
t
KHKH  
Clock High Pulse Width  
t
2
2.4  
2.4  
1
2.8  
2.8  
1
KHKL  
Clock Low Pulse Width  
t
2
KLKH  
Clock High to Output Low–Z  
Clock High to Output Valid  
Clock High to Output Hold  
Clock High to Output High–Z  
Output Enable Low to Output Low–Z  
Output Enable Low to Output Valid  
Output Enable to Output Hold  
Output Enable High to Output High–Z  
Setup Times:  
t
1
2
1
1
2
2
1
1
2
KHQX1  
t
1
2.5  
1
1
3.5  
KHQV  
KHQX  
t
3
t
t
t
0
2.5  
0
0
3.25  
KHQZ  
GLQX  
GLQV  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
3
0.5  
0.5  
0.5  
2.5  
3.5  
t
3
GHQX  
t
2.5  
3.5  
GHQZ  
Address  
Data In  
Chip Select  
Write Enable  
t
t
AVKH  
DVKH  
t
SVKH  
t
WVKH  
Hold Times:  
NOTES:  
Address  
Data In  
Chip Select  
Write Enable  
t
t
1
1
1
ns  
KHAX  
KHDX  
t
KHSX  
t
KHWX  
1. Tested per AC Test Load diagram. See Figure 1A.  
2. Measured at ± 200 mV from steady state. See Figure 1B.  
3. In no case may control input signals (e.g. SS) be operated with pulse widths less than the minimum clock input pulse width specifications  
(e.g. t ) or at frequencies that exceed the applied K clock frequency.  
KHKL  
AC TEST LOADS  
TIMING LIMITS  
The table of timing values shows either a  
minimum or a maximum limit for each param-  
eter. Input requirements are specified from  
the external system point of view. Thus, ad-  
dress setup time is shown as a minimum  
since the system must supply at least that  
much time (even though most devices do not  
requireit). Ontheotherhand, responsesfrom  
the memory are specified from the device  
point of view. Thus, the access time is shown  
as a maximum since the device never pro-  
vides data later than that time.  
0.75 V  
0.75 V  
V
/2  
DDQ  
V
/2  
DDQ  
V
V
ref  
ref  
50  
50  
DEVICE  
UNDER  
TEST  
DEVICE  
UNDER  
TEST  
50  
250  
250  
5 pF  
ZQ  
ZQ  
Figure 1A  
Figure 1B  
MCM69R736MCM69R818  
MOTOROLA FAST SRAM  
8
AC INPUT CHARACTERISTICS  
Parameter  
Symbol  
Min  
Max  
Note  
AC Input Logic High  
AC Input Logic Low  
V
(ac)  
(ac)  
V +200 mV  
ref  
Fig. 3  
IH  
V
V –200 mV  
ref  
Note 1,  
Fig. 1, 3  
IL  
Input Reference Peak to Peak ac Voltage  
Clock Input Differential Voltage  
V
(ac)  
(ac)  
5% V (dc)  
ref  
2
3
ref  
V
400 mV  
V
+600 mV  
dif  
DDQ  
NOTES:  
1. Inputs may undershoot to –0.5 V (peak) for up to 20% t  
2. Although considerable latitude in the selection of the nominal dc value (i.e. rms value) of V is supported, the peak to peak ac component  
(e.g. 2 ns at a clock cycle time of 10 ns).  
KHKH  
ref  
superimposed on V may not exceed 5% of the dc component of V  
.
ref ref  
3. Minimum instantaneous differential input voltage required for differential input clock operation.  
V
OH  
V
SS  
50%  
100%  
20% t  
KHKH  
Figure 1. Undershoot Voltage  
V
DDQ  
VTR  
CROSSING POINT  
V
dif  
VCM*  
VCP  
V
SS  
* VCM , the Common Mode Input Voltage, equals VTR–((VTR–VCP)/2).  
Figure 2. Differential Inputs/ Common Mode Input Voltage  
V (ac)  
IH  
V
ref  
V (ac)  
IL  
Figure 3. Differential Inputs/ Common Mode Input Voltage  
MCM69R736MCM69R818  
MOTOROLA FAST SRAM  
9
REGISTER/REGISTER READ–WRITE–READ CYCLES  
t
t
KHKH  
KHKL  
CK  
SA  
SS  
t
t
AVKH  
t
KLKH  
KHAX  
A0  
A1  
A2  
A3  
A4  
t
SVKH  
t
KHSX  
t
WVKH  
t
KHWX  
SW  
SBx  
G
V
IL  
t
t
KHQX1  
t
t
KHQZ  
KHQV  
t
t
KHDX  
KHQX  
t
KHQX  
Q1  
DVKH  
DQx  
Q–1  
Q0  
D2  
Q3  
MCM69R736MCM69R818  
MOTOROLA FAST SRAM  
10  
REGISTER/REGISTER READ–WRITE–READ  
(G Controlled)  
t
t
KHKH  
KHKL  
CK  
SA  
t
t
AVKH  
t
KLKH  
KHAX  
A0  
A1  
A2  
A3  
A4  
SS  
V
IL  
SW  
SBx  
G
t
t
GLQV  
GLQX  
t
GHQZ  
t
GHQX  
DQx  
Q–1  
Q0  
Q1  
D2  
Q3  
MCM69R736MCM69R818  
MOTOROLA FAST SRAM  
11  
enable inputs active is neither a read or a write. No write will  
occur, but the outputs will be deselected as in a normal write  
cycle.  
FUNCTIONAL OPERATION  
READ AND WRITE OPERATIONS  
All control signals except G are registered on the rising  
edge of the CK clock. These signals must meet the setup  
and hold times shown in the AC Characteristics table. On the  
rising edge of the following clock, read data is clocked into  
LATE WRITE  
The write address is sampled on the first rising edge of  
clock and write data is sampled on the following rising edge.  
The late write feature is implemented with single stage  
write buffering. Write buffering is transparent to the user. A  
comparator monitors the address bus and, when necessary,  
routes buffer contents to the outputs to assure coherent op-  
eration. This occurs in all cases whether there is a byte write  
or a full word is written.  
the output register and available at the outputs at t  
ing this same cycle a new read address can be applied to the  
address pins.  
. Dur-  
KHQV  
A deselect cycle (dead cycle) must occur prior to a write  
cycle. Read cycles may follow write cycles immediately.  
G, SS, and SW control output drive. Chip deselect via a  
high on SS at the rising edge of the CK clock has its effect on  
the output drivers after the next rising edge of the CK clock.  
SW low deselects the output drivers immediately (on the  
same cycle). Output drive is also controlled directly by output  
enable, G. No clock edges are required to generate output  
disable with G. G asynchronously enables the output drivers.  
PROGRAMMABLE IMPEDANCE OPERATION  
The designer can program the RAMs output buffer imped-  
ance by terminating the ZQ pin to V  
through a precision  
SS  
resistor (RQ). The value of RQ is five times the output imped-  
ance desired. For example, 250 resistor will give an output  
impedance of 50 Ω.  
Impedance updates occur early in cycles that do not acti-  
vate the outputs, such as deselect cycles, i.e. SW, SS, but  
not G. In all cases impedance updates are transparent to the  
user and do not produce access time “push–outs” or other  
anomalous behavior in the RAM.  
Output data will be valid the latter of t  
and t  
.
GLQV  
. Outputs will hold pre-  
KHQV  
Outputs will begin driving at t  
KHQX1  
.
vious data until t  
or t  
KHQX  
GHQX  
WRITE AND BYTE WRITE FUNCTIONS  
Note that in the following discussion the term “byte” refers  
to nine bits of the RAM I/O bus. In all cases, the timing pa-  
rameters described for synchronous write input (SW) apply  
to each of the byte write enable inputs (SBa, SBb, etc.).  
Byte write enable inputs have no effect on read cycles.  
This allows the system designer not interested in performing  
byte writes to connect the byte enable inputs to active low  
The output buffers can also be programmed in a minimum  
impedance configuration. The output buffers have an output  
impedance similar to standard LVTTL outputs but maintain  
V
and V as the maximum output voltages.  
DDQ  
SS  
POWER UP AND INITIALIZATION  
(V ). Reads of all bytes proceed normally and write cycles,  
The following supply voltage application sequence is  
SS  
activated via a low on SW, and the rising edge of the CK  
clock, write the entire RAM I/O width. This way the designer  
is spared having to drive multiple write input buffer loads.  
Byte writes are performed using the byte write enable in-  
puts in conjunction with the synchronous write input (SW). It  
is important to note that writing any one byte will inhibit a read  
of all bytes at the current address. The RAM cannot simulta-  
neously read one byte and write another at the same ad-  
dress. A write cycle initiated with none of the byte write  
recommended: V , V  
Absolute Maximum Ratings table, V  
then V  
. Please note, per the  
is not to exceed  
SS DD,  
DDQ  
DDQ  
V
+0.5 V, whatever the instantaneous value of V . Once  
DD  
DD  
supplies have reached specification levels, a minimum dwell  
of 1.0 µs with CK clock inputs cycling is required before  
beginning normal operations. At power up the output  
impedance will be set at approximately 50 , however, in  
order to match the programmed impedance the part requires  
deselect cycles to occur.  
MCM69R736MCM69R818  
MOTOROLA FAST SRAM  
12  
SERIAL BOUNDARY SCAN TEST ACCESS PORT OPERATION  
OVERVIEW  
1149.1 compliant TAPs. The TAP operates using convention-  
al JEDEC Standard 8–1B Low Voltage (3.3 V) TTL / CMOS  
logic level signaling.  
The serial boundary scan test access port (TAP) on this  
RAM is designed to operate in a manner consistent with  
IEEE Standard 1149.1–1990 (commonly referred to as  
JTAG), but does not implement all of the functions required  
for 1149.1 compliance. Certain functions have been modified  
or eliminated because their implementation places extra de-  
lays in the RAMs critical speed path. Nevertheless, the RAM  
supports the standard TAP controller architecture. (The TAP  
controller is the state machine that controls the TAPs opera-  
tion) and can be expected to function in a manner that does  
not conflict with the operation of devices with Standard  
DISABLING THE TEST ACCESS PORT  
It is possible to use this device without utilizing the TAP. To  
disable the TAP Controller without interfering with normal op-  
eration of the device, TCK must be tied to V  
to preclude  
SS  
mid level inputs. TDI and TMS are designed so an undriven  
input will produce a response identical to the application of a  
logic 1, and may be left unconnected. But they may also be  
tied to V  
nected.  
through a 1 k resistor. TDO should be left uncon-  
DD  
TAP DC OPERATING CHARACTERISTICS  
(T = 20 to 110°C, Unless Otherwise Noted)  
J
Parameter  
Symbol  
Min  
Max  
V + 0.3  
DD  
Unit  
V
Note  
Logic Input Logic High  
Logic Input Logic Low  
V
IH  
1
2.0  
– 0.3  
V 1  
IL  
0.8  
± 5  
0.2  
V
Logic Input Leakage Current  
CMOS Output Logic Low  
CMOS Output Logic High  
TTL Output Logic Low  
I
µA  
V
1
2
3
4
5
lkg  
V 1  
OL  
V
OH  
1
V
– 0.2  
V
DD  
V 2  
OL  
0.4  
V
TTL Output Logic High  
V
OH  
2
2.4  
V
NOTES:  
1. 0 V± V ± V  
for all logic input pins.  
= 0.2 V. Sampled, not 100% tested.  
–0.2 V. Sampled, not 100% tested.  
in  
DDQ  
2.  
3. |I  
4.  
I
1 100 µA @ V  
OL OL  
1| 100 µA @ V  
OH  
DDQ  
= 0.4 V  
I
2 8 mA @ V  
OL OL  
5. |I 2| 8 mA @ V  
= 2.4 V  
OH  
OH  
MCM69R736MCM69R818  
MOTOROLA FAST SRAM  
13  
TAP AC OPERATING CONDITIONS AND CHARACTERISTICS  
(T = 20 to 110°C, Unless Otherwise Noted)  
J
Input Pulse Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 to 3.0 V  
Output Test Load . . . . . . 50 Parallel Terminated T–line with 20 pF  
Receiver Input Capacitance  
Test Load Termination Supply Voltage (V ) . . . . . . . . . . . . . . . 1.5 V  
Input Rise/Fall Time . . . . . . . . . . . . . . . . . . . . . . 1 V/ns (20% to 80%)  
Input Timing Measurement Reference Level . . . . . . . . . . . . . . . 1.5 V  
Output Timing Reference Level . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 V  
T
TAP CONTROLLER TIMING  
Parameter  
Cycle Time  
Symbol  
Min  
100  
40  
40  
10  
10  
10  
10  
10  
10  
0
Max  
20  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
t
THTH  
Clock High Time  
t
THTL  
Clock Low Time  
t
TLTH  
TMS Setup  
t
t
MVTH  
THMX  
TMS Hold  
TDI Valid to TCK High  
TCK High to TDI Don’t Care  
Capture Setup  
t
DVTH  
THDX  
t
t
1
1
CS  
Capture Hold  
t
CH  
TCK Low to TDO Unknown  
TCK Low to TDO Valid  
NOTES:  
t
t
TLQX  
TLOV  
1. t defines the minimum pause in RAM I/O pad transitions to assure accurate pad data capture.  
+ t  
CS CH  
AC TEST LOAD  
1.5 V  
50  
DEVICE  
UNDER  
TEST  
50  
20 pF  
TAP CONTROLLER TIMING DIAGRAM  
t
THTH  
t
TLTH  
TEST CLOCK  
(TCK)  
t
THTL  
t
THMX  
t
MVTH  
TEST MODE SELECT  
(TMS)  
t
THDX  
t
DVTH  
TEST DATA IN  
(TDI)  
t
t
TLQV  
TLQX  
TEST DATA OUT  
(TDO)  
MCM69R736MCM69R818  
MOTOROLA FAST SRAM  
14  
TEST ACCESS PORT PINS  
TCK – TEST CLOCK (INPUT)  
Clocks all TAP events. All inputs are captured on the rising  
edge of TCK and all outputs propagate from the falling edge  
of TCK.  
BOUNDARY SCAN REGISTER  
The boundary scan register is identical in length to the  
number of active input and I/O connections on the RAM (not  
counting the TAP pins). This also includes a number of place  
holder locations (always set to a logic 1) reserved for density  
upgrade address pins. There are a total of 70 bits in the case  
of the x36 device and 51 bits in the case of the x18 device.  
The boundary scan register, under the control of the TAP  
controller, is loaded with the contents of the RAMs I/O ring  
when the controller is in capture–DR state and then is placed  
between the TDI and TDO pins when the controller is moved  
to shift–DR state. Several TAP instructions can be used to  
activate the boundary scan register.  
TMS – TEST MODE SELECT (INPUT)  
The TMS input is sampled on the rising edge of TCK. This  
is the command input for the TAP controller state machine.  
An undriven TMS input will produce the same result as a log-  
ic one input level.  
TDI – TEST DATA IN (INPUT)  
The TDI input is sampled on the rising edge of TCK. This is  
the input side of the serial registers placed between TDI and  
TDO. The register placed between TDI and TDO is deter-  
mined by the state of the TAP controller state machine and  
the instruction that is currently loaded in the TAP instruction  
register (refer to Figure 5 TAP Controller State Diagram). An  
undriven TDI pin will produce the same result as a logic one  
input level.  
The Bump/Bit Scan Order tables describe which device  
bump connects to each boundary scan register location. The  
first column defines the bit’s position in the boundary scan  
register. The shift register bit nearest TDO (i.e., first to be  
shifted out) is defined as bit 1. The second column is the  
name of the input or I/O at the bump and the third column is  
the bump number.  
IDENTIFICATION (ID) REGISTER  
The ID Register is a 32 bit register that is loaded with a de-  
vice and vendor specific 32 bit code when the controller is  
put in capture–DR state with the IDCODE command loaded  
in the instruction register. The code is loaded from a 32 bit  
on–chip ROM. It describes various attributes of the RAM as  
indicated below. The register is then placed between the TDI  
and TDO pins when the controller is moved into shift–DR  
state. Bit 0 in the register is the LSB and the first to reach  
TDO when shifting begins.  
TDO – TEST DATA OUT (OUTPUT)  
Output that is active depending on the state of the TAP  
state machine (refer to Figure 5 TAP Controller State Dia-  
gram). Output changes in response to the falling edge of  
TCK. This is the output side of the serial registers placed be-  
tween TDI and TDO.  
TRST – TAP RESET  
This device does not have a TRST pin. TRST is optional in  
IEEE 1149.1. The test–logic reset state is entered while TMS  
is held high for five rising edges of TCK. Power on reset cir-  
cuitry is included internally. This type of reset does not affect  
the operation of the system logic. The reset affects test logic  
only.  
ID Register Presence Indicator  
Bit #  
0
1
Value  
Motorola JEDEC ID Code (Compressed Format, per  
IEEE Standard 1149.1 – 1990  
TEST ACCESS PORT REGISTERS  
OVERVIEW  
Bit #  
11  
10  
9
8
7
6
5
4
3
2
1
The various TAP registers are selected (one at a time) via  
the sequences of ones and zeros input to the TMS pin as the  
TCK is strobed. Each of the TAPs registers are serial shift  
registers that capture serial input data on the rising edge of  
TCK and push serial data out on subsequent falling edge of  
TCK. When a register is selected it is “placed” between the  
TDI and TDO pins.  
Value  
0
0
0
0
0
0
0
1
1
1
0
Reserved For Future Use  
Bit #  
Value  
17  
16  
15  
14  
13  
12  
x
x
x
x
x
x
Device Width  
Configuration  
128Kx36  
Bit #  
Value  
Value  
22  
0
21  
20  
1
19  
0
18  
0
INSTRUCTION REGISTER  
The instruction register holds the instructions that are  
executed by the TAP controller when it is moved into the run  
test/idle or the various data register states. The instructions  
are three bits long. The register can be loaded when it is  
placed between the TDI and TDO pins. The instruction regis-  
ter is automatically preloaded with the IDCODE instruction at  
power–up or whenever the controller is placed in test–logic–  
reset state.  
0
0
256Kx18  
0
0
1
1
Device Depth  
Configuration  
Bit #  
Value  
Value  
27  
0
26  
0
25  
1
24  
0
23  
1
128Kx36  
256Kx18  
0
0
1
1
0
Revision Number  
BYPASS REGISTER  
Bit #  
31  
30  
29  
28  
The bypass register is a single bit register that can be  
placed between TDI and TDO. It allows serial test data to be  
passed through the RAMs TAP to another device in the scan  
chain with as little delay as possible.  
Value  
x
x
x
x
Figure 4. ID Register Bit Meanings  
MCM69R736MCM69R818  
MOTOROLA FAST SRAM  
15  
MCM69R736 Bump/Bit Scan Order  
MCM69R818 Bump/Bit Scan Order  
BIT  
#
Signal  
Name  
Bump  
ID  
Bit  
#
Signal  
Name  
Bump  
ID  
Bit  
#
Signal  
Name  
Bump  
ID  
Bit  
#
Signal  
Name  
Bump  
ID  
1
M2  
SA  
5R  
4P  
4T  
6R  
5T  
7T  
6P  
7P  
6N  
7N  
6M  
6L  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
SA  
NC  
3B  
2B  
3A  
3C  
2C  
2A  
2D  
1D  
2E  
1E  
2F  
2G  
1G  
2H  
1H  
3G  
4D  
4E  
4G  
4H  
4M  
3L  
1
M2  
SA  
5R  
6T  
4P  
6R  
5T  
7T  
7P  
6N  
6L  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
SBb  
ZQ  
3G  
4D  
4E  
4G  
4H  
4M  
2K  
1L  
2
2
3
SA  
SA  
3
SA  
SS  
4
SA  
SA  
4
SA  
NC  
5
SA  
SA  
5
SA  
NC  
6
NC  
SA  
6
NC  
SW  
DQb  
DQb  
DQb  
DQb  
DQb  
SA  
7
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
SBa  
CK  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
SBc  
ZQ  
7
DQa  
DQa  
DQa  
DQa  
SBa  
CK  
8
8
9
9
2M  
1N  
2P  
3T  
2R  
4N  
2T  
3R  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
7K  
5L  
4L  
7L  
CK  
4K  
4F  
6H  
7G  
6F  
7E  
6D  
6A  
6C  
5C  
5A  
6B  
5B  
3B  
2B  
3A  
3C  
2C  
2A  
1D  
2E  
2G  
1H  
SA  
6K  
7K  
5L  
G
SA  
DQa  
DQa  
DQa  
DQa  
DQa  
SA  
SA  
M1  
4L  
CK  
4K  
4F  
5G  
7H  
6H  
7G  
6G  
6F  
7E  
6E  
7D  
6D  
6A  
6C  
5C  
5A  
6B  
5B  
SS  
G
NC  
SBb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
SA  
NC  
SW  
SBd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
SA  
SA  
SA  
1K  
2K  
1L  
SA  
NC  
SA  
2L  
SA  
2M  
1N  
2N  
1P  
2P  
3T  
2R  
4N  
3R  
NC  
SA  
SA  
SA  
SA  
SA  
SA  
DQb  
DQb  
DQb  
DQb  
SA  
SA  
NC  
SA  
35  
SA  
M1  
NOTES:  
1. TheNC pads listed in this table are indeed no connects, but are represented in the boundary scan register by a “place holder” bit that is forced  
to logic 1. These pads are reserved for use as address inputs on higher density RAMs that follow this pad out and scan order standard.  
2. CK, CK, are sampled individually. CK is not simply a forced compliment of the CK input. In scan mode these differential inputs are referenced  
to V , not each other.  
ref  
3. M1 and M2 are not ordinary inputs and may not respond to standard I/O logic levels. M1 and M2 must be driven to within 100 mV of a V  
DD  
or V  
supply rail to assure consistent results.  
SS  
MCM69R736MCM69R818  
MOTOROLA FAST SRAM  
16  
TAP Controller Instruction Set  
expected. RAM input signals must be stabilized for long  
enough to meet the TAPs input data capture set–up plus hold  
OVERVIEW  
time (t  
plus t ). The RAMs clock inputs need not be  
CS  
CH  
There are two classes of instructions defined in the Stan-  
dard 1149.1–1990; the standard (public) instructions, and de-  
vice specific (private) instructions. Some public instructions,  
are mandatory for 1149.1 compliance. Optional public  
instructions must be implemented in prescribed ways.  
Although the TAP controller in this device follows the  
1149.1 conventions, it is not 1194.1 compliant because some  
of the mandatory instructions are not fully implemented. The  
TAP on this device may be used to monitor all input and I/O  
pads, but cannot be used to load address, data or control sig-  
nals into the RAM or to preload the I/O buffers. In other  
words, the device will not perform Standard 1149.1 EXTEST,  
INTEST or the preload portion of the SAMPLE / PRELOAD  
command.  
When the TAP controller is placed in capture–IR state the  
two least significant bits of the instruction register are loaded  
with 01. When the controller is moved to the shift–IR state  
the instruction register is placed between TDI and TDO. In  
this state the desired instruction is serially loaded through the  
TDI input (while the previous contents are shifted out at  
TDO). For all instructions, the TAP executes newly loaded  
instructions only when the controller is moved to update–IR  
state. The TAP instruction sets for this device are listed in the  
following tables.  
paused for any other TAP operation except capturing the I/O  
ring contents into the boundary scan register.  
Moving the controller to shift–DR state then places the  
boundary scan register between the TDI and TDO pins. Be-  
cause the PRELOAD portion of the command is not imple-  
mented in this device, moving the controller to the  
update–DR state with the SAMPLE / PRELOAD instruction  
loaded in the instruction register has the same effect as the  
pause–DR command. This functionality is not Standard  
1149.1 compliant.  
EXTEST  
EXTEST is an IEEE 1149.1 mandatory public instruction. It  
is to be executed whenever the instruction register, whatever  
length it may be in the device, is loaded with all logic 0s.  
EXTEST is not implemented in this device. Therefore this  
device is not 1149.1 compliant. Nevertheless, this RAMs TAP  
does respond to an all zeros instruction, as follows. With the  
EXTEST (000) instruction loaded in the instruction register  
the RAM responds just as it does in response to the  
SAMPLE / PRELOAD instruction described above, except  
the RAM outputs are forced to high–Z any time the  
instruction is loaded.  
IDCODE  
STANDARD (PUBLIC) INSTRUCTIONS  
The IDCODE instruction causes the ID ROM to be loaded  
into the ID register when the controller is in capture–DR  
mode and places the ID register between the TDI and TDO  
pins in shift–DR mode. The IDCODE instruction is the default  
instruction loaded in at power up and any time the controller  
is placed in the test–logic–reset state.  
BYPASS  
The BYPASS instruction is loaded in the instruction regis-  
ter when the bypass register is placed between TDI and  
TDO. This occurs when the TAP controller is moved to the  
shift–DR state. This allows the board level scan path to be  
shortened to facilitate testing of other devices in the scan  
path.  
THE DEVICE SPECIFIC (PUBLIC) INSTRUCTION  
SAMPLE–Z  
SAMPLE/PRELOAD  
If the SAMPLE–Z instruction is loaded in the instruction  
register, all RAM outputs are forced to an inactive drive state  
(high–Z) and the boundary scan register is connected be-  
tween TDI and TDO when the TAP controller. is moved to the  
shift–DR state.  
Sample/preload is a Standard 1149.1 mandatory public  
instruction. When the sample / preload instruction is loaded  
in the Instruction register, moving the TAP controller into the  
capture–DR state loads the data in the RAMs input and I/O  
buffers into the boundary scan register. Because the RAM  
clock(s) are independent from the TAP clock (TCK) it is pos-  
sible for the TAP to attempt to capture the I/O ring contents  
while the input buffers are in transition (i.e. in a metastable  
state). Although allowing the TAP to sample metastable in-  
puts will not harm the device, repeatable results cannot be  
THE DEVICE SPECIFIC (PRIVATE) INSTRUCTION  
NOOP  
Do not use these instructions, they are reserved for future  
use.  
MCM69R736MCM69R818  
MOTOROLA FAST SRAM  
17  
STANDARD (PUBLIC) INSTRUCTION CODES  
Instruction  
Code*  
Description  
EXTEST  
000  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Forces all  
RAM outputs to High–Z state. *NOT 1149.1 COMPLIANT*  
IDCODE  
001**  
100  
Preloads ID register and places it between TDI and TDO.  
Does not affect RAM operation.  
SAMPLE / PRELOAD  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Does not  
affect RAM operation.  
Does not implement 1149.1 Preload function. * NOT 1149.1 COMPLIANT *  
BYPASS  
111  
010  
Places bypass register between TDI and TDO.  
Does not affect RAM operation.  
SAMPLE–Z  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Forces all  
RAM output drivers to High–Z.  
*Instruction codes expressed in binary, MSB on left, LSB on right.  
**Default instruction automatically loaded at power–up and in test–logic–reset state.  
STANDARD (PRIVATE) INSTRUCTION CODES  
Instruction  
NO OP  
Code*  
011  
Description  
Do not use these instructions, they are reserved for future use.  
Do not use these instructions, they are reserved for future use.  
Do not use these instructions, they are reserved for future use.  
NO OP  
101  
NO OP  
110  
*Instruction codes expressed in binary, MSB on left, LSB on right.  
TEST–LOGIC  
RESET  
1
0
1
RUN–TEST/  
IDLE  
SELECT  
DR–SCAN  
SELECT  
IR–SCAN  
1
1
0
0
0
1
1
CAPTURE–DR  
CAPTURE–IR  
0
0
SHIFT–DR  
1
SHIFT–IR  
1
0
0
1
1
EXIT1–DR  
0
EXIT1–IR  
0
PAUSE–DR  
1
PAUSE–IR  
1
0
0
0
0
EXIT2–DR  
1
EXIT2–IR  
1
UPDATE–DR  
UPDATE–IR  
1
0
1
0
NOTE: The value adjacent to each state transition represents the signal present at TMS at the rising edge of TCK.  
Figure 5. TAP Controller State Diagram  
MCM69R736MCM69R818  
MOTOROLA FAST SRAM  
18  
ORDERING INFORMATION  
(Order by Full Part Number)  
69R736  
MCM  
69R818  
XX  
X
X
R = Tape and Reel, Blank = Tray  
Speed (5 = 5 ns, 6 = 6 ns, 7 = 7 ns)  
Package (ZP = PBGA)  
Motorola Memory Prefix  
Part Number  
Full Part Numbers — MCM69R736ZP5  
MCM69R818ZP5  
MCM69R736ZP6  
MCM69R818ZP6  
MCM69R736ZP7  
MCM69R818ZP7  
MCM69R736ZP5R MCM69R736ZP6R MCM69R736ZP7R  
MCM69R818ZP5R MCM69R818ZP6R MCM69R818ZP7R  
Motorolareserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representationorguaranteeregarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,  
andspecifically disclaims any and all liability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters can and do vary in different  
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does  
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in  
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of  
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintendedor unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
MCM69R736MCM69R818  
MOTOROLA FAST SRAM  
19  
PACKAGE DIMENSIONS  
ZP PACKAGE  
7 X 17 BUMP PBGA  
CASE 999–01  
0.20 (0.008)  
4X  
A
-W-  
PIN 1A  
IDENTIFIER  
-T-  
0.15 (0.006)  
0.25 (0.010)  
T
T
0.35 (0.014)  
T
NOTES:  
B
-L-  
P
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
MILLIMETERS  
MIN MAX  
14.00 BSC  
22.00 BSC  
INCHES  
MIN MAX  
0.551 BSC  
0.866 BSC  
DIM  
A
B
C
D
E
–––  
0.60  
0.50  
1.30  
2.40  
–––  
0.024  
0.020  
0.051  
0.094  
N
0.90  
0.70  
1.70  
0.035  
0.028  
0.067  
TOP VIEW  
F
G
K
N
P
R
S
1.27 BSC  
0.050 BSC  
0.80  
11.90  
19.40  
1.00  
12.10  
19.60  
0.031  
0.469  
0.764  
0.039  
0.476  
0.772  
R
6X  
G
7.62 BSC  
20.32 BSC  
0.300 BSC  
0.800 BSC  
U
T
K
F
R
P
N
M
L
K
J
H
G
F
E
C
16X G  
S
SIDE VIEW  
E
D
C
B
A
1
2 3 4 5 6 7  
119X  
D
BOTTOM VIEW  
S
S
S
0.30 (0.012)  
0.10 (0.004)  
T
T
W
L
S
How to reach us:  
USA / EUROPE: Motorola Literature Distribution;  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,  
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609  
INTERNET: http://Design–NET.com  
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MCM69R736/D  

相关型号:

MCM69R736ZP5R

Cache SRAM, 128KX36, 2.5ns, BICMOS, PBGA119, 14 X 22 MM, 1.27 MM PITCH, PLASTIC, BGA-119
MOTOROLA

MCM69R736ZP6R

Cache SRAM, 128KX36, 3ns, BICMOS, PBGA119, 14 X 22 MM, 1.27 MM PITCH, PLASTIC, BGA-119
MOTOROLA

MCM69R737A

4M Late Write LVTTL
MOTOROLA

MCM69R737AZP5

4M Late Write LVTTL
MOTOROLA

MCM69R737AZP5

IC,SYNC SRAM,128KX36,BICMOS-TTL,BGA,119PIN,PLASTIC
NXP

MCM69R737AZP5R

4M Late Write LVTTL
MOTOROLA

MCM69R737AZP5R

128KX36 LATE-WRITE SRAM, 2.5ns, PBGA119, 14 X 22 MM, 1.27 MM PITCH, PLASTIC, BGA-119
NXP

MCM69R737AZP6

4M Late Write LVTTL
MOTOROLA

MCM69R737AZP6R

4M Late Write LVTTL
MOTOROLA

MCM69R737AZP7

4M Late Write LVTTL
MOTOROLA

MCM69R737AZP7

IC,SYNC SRAM,128KX36,BICMOS-TTL,BGA,119PIN,PLASTIC
NXP

MCM69R737AZP7R

4M Late Write LVTTL
MOTOROLA