MJE16106C [MOTOROLA]

8A, 400V, NPN, Si, POWER TRANSISTOR, TO-220AB;
MJE16106C
型号: MJE16106C
厂家: MOTOROLA    MOTOROLA
描述:

8A, 400V, NPN, Si, POWER TRANSISTOR, TO-220AB

晶体 晶体管
文件: 总10页 (文件大小:383K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MJE16106/D  
SEMICONDUCTOR TECHNICAL DATA  
POWER TRANSISTORS  
8 AMPERES  
400 VOLTS  
100 AND 125 WATTS  
Switchmode Bridge Series  
. . . specifically designed for use in half bridge and full bridge off line converters.  
Excellent Dynamic Saturation Characteristics  
Rugged RBSOA Capability  
Collector–Emitter Sustaining Voltage — V  
Collector–Emitter Breakdown — V  
(BR)CES  
— 400 V  
CEO(sus)  
— 650 V  
State–of–Art Bipolar Power Transistor Design  
Fast Inductive Switching:  
t = 30 ns (Typ) @ 100 C  
fi  
t = 65 ns (Typ) @ 100 C  
c
sv  
t
= 1.3 µs (Typ) @ 100 C  
Ultrafast FBSOA Specified  
100 C Performance Specified for:  
RBSOA  
Inductive Load Switching  
Saturation Voltages  
Leakages  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
400  
650  
6
Unit  
Vdc  
Vdc  
Vdc  
Adc  
Collector–Emitter Sustaining Voltage  
Collector–Emitter Breakdown Voltage  
Emitter–Base Voltage  
V
CEO(sus)  
V
CES  
EBO  
V
Collector Current — Continuous  
— Pulsed (1)  
I
C
8
16  
CASE 221A–06  
TO–220AB  
I
CM  
Base Current — Continuous  
— Pulsed (1)  
I
6
12  
Adc  
B
I
BM  
Total Power Dissipation @ T = 25 C  
P
100  
40  
0.8  
Watts  
C
D
@ T = 100 C  
C
Derated above 25 C  
W/ C  
C
Operating and Storage Temperature  
T , T  
J
55 to 150  
stg  
THERMAL CHARACTERISTICS  
Thermal Resistance — Junction to Case  
R
1.25  
275  
C/W  
C
θJC  
Maximum Lead Temperature for  
Soldering Purposes 1/8from  
Case for 5 Seconds  
T
L
(1) Pulse Test: Pulse Width = 5.0 ms, Duty Cycle  
10%.  
Designer’s Data for “Worst Case” Conditions — The Designer’s Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit  
curves — representing boundaries on device characteristics — are given to facilitate “worst case” design.  
Designer’s and SWITCHMODE are trademarks of Motorola Inc.  
REV 1  
Motorola, Inc. 1995
ELECTRICAL CHARACTERISTICS (T = 25 C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS (1)  
Collector–Emitter Sustaining Voltage (Table 1)  
V
400  
Vdc  
CEO(sus)  
(I = 20 mAdc, I = 0)  
C
B
Collector Cutoff Current  
I
µAdc  
CEV  
(V  
CE  
(V  
CE  
= 650 Vdc, V  
= 650 Vdc, V  
= 1.5 V)  
= 1.5 V, T = 100 C)  
100  
1000  
BE(off)  
BE(off)  
C
Collector Cutoff Current  
(V = 650 Vdc, R  
I
I
1000  
10  
µAdc  
µAdc  
CER  
= 50 , T = 100 C)  
CE BE  
C
Emitter–Base Leakage  
(V = 6.0 Vdc, I = 0)  
EBO  
EB  
C
ON CHARACTERISTICS (1)  
Collector–Emitter Saturation Voltage  
(I = 2.5 Adc, I = 0.25 Adc)  
V
Vdc  
CE(sat)  
0.2  
0.4  
0.2  
0.3  
0.9  
2.0  
1.0  
1.5  
C
B
(I = 5.0 Adc, I = 0.5 Adc)  
C
C
B
B
B
(I = 5.0 Adc, I = 1.0 Adc)  
(I = 5.0 Adc, I = 1.0 Adc, T = 100 C)  
C
C
Base–Emitter Saturation Voltage  
(I = 5.0 Adc, I = 1.0 Adc)  
V
Vdc  
BE(sat)  
0.9  
0.8  
1.5  
1.5  
C
B
(I = 5.0 Adc, I = 1.0 Adc, T = 100 C)  
C
B
C
DC Current Gain  
h
FE  
6
13  
22  
(I = 8.0 Adc, V  
C CE  
= 5.0 Vdc)  
DYNAMIC CHARACTERISTICS  
Dynamic Saturation  
V
See Figures 11, 12, and 13  
V
CE(dsat)  
Output Capacitance  
C
300  
pF  
ob  
(V  
CE  
= 10 Vdc, I = 0, f  
test  
= 1.0 kHz)  
E
SWITCHING CHARACTERISTICS  
Inductive Load (Table 1)  
Storage  
t
950  
45  
2000  
150  
75  
ns  
sv  
Crossover  
T
= 25 C  
t
t
J
c
I
V
V
= 5.0 A, I = 0.5 A,  
B1  
Fall Time  
Storage  
C
20  
fi  
= 5 V,  
BE(off)  
CE(pk)  
t
sv  
1300  
65  
2600  
200  
125  
= 250 V  
Crossover  
Fall Time  
T
J
= 100 C  
t
c
fi  
t
30  
Resistive Load (Table 2)  
Delay Time  
t
t
t
30  
200  
1800  
100  
1200  
70  
ns  
d
Rise Time  
t
r
I
= 1.0 A  
I
V
= 5.0 A, I = 0.5 A,  
B1  
B2  
C
CC  
Storage Time  
s
= 250 V,  
PW = 30 µs,  
Duty Cycle =  
Fall Time  
t
f
2.0%  
Storage Time  
Fall Time  
s
V
= 5 V  
BE(off)  
t
f
(1) Pulse Test: Pulse Width = 300 µs, Duty Cycle  
2.0%.  
2
Motorola Bipolar Power Transistor Device Data  
TYPICAL STATIC CHARACTERISTICS  
40  
30  
3
2
T
= 100°C  
J
T
= 25°C  
J
20  
1
0.7  
0.5  
T
= 100°C  
J
T
= 55°C  
T
= 25°C  
J
J
10  
7
0.3  
0.2  
5
0.1  
0.07  
V
= 5.0 V  
CE  
I
/I = 5  
C B  
0.05  
3
2
I
/I = 10  
C B  
0.03  
0.05  
0.1  
0.2  
0.5  
1
2
5
10  
10  
5
0.5 0.7  
1
2
3
5
7
10  
0.01 0.02  
0.1  
0.2 0.3  
I
, COLLECTOR CURRENT (AMPS)  
C
I
, COLLECTOR CURRENT (AMPS)  
C
Figure 1. DC Current Gain  
Figure 2. Collector–Emitter Saturation Voltage  
5
2.0  
1.5  
T
= 25°C  
J
3
2
8 A  
I
= 1 A  
3 A  
5 A  
7 A  
C
1.0  
0.7  
1
0.7  
T
= 25°C  
J
0.5  
0.5  
0.3  
0.2  
T
= 100°C  
J
I
I
/I = 10  
/I = 5  
C B  
C B  
0.3  
0.2  
0.1  
0.07  
0.05  
.01  
.02 .03 .05 .070.1  
0.2 0.3 0.5 0.7 1  
2
3
5
7
0.1  
0.2  
0.3  
I
0.5 0.7  
1
2
3
5
7
10  
I
, BASE CURRENT (AMPS)  
, COLLECTOR CURRENT (AMPS)  
B
C
Figure 3. Collector–Emitter Saturation Region  
Figure 4. Base–Emitter Saturation Region  
10K  
7K  
5K  
3K  
2K  
T
= 25°C  
J
C
ib  
f = 1.0 kHz  
1K  
700  
500  
300  
200  
C
ob  
100  
70  
50  
30  
20  
10  
0.1 0.2  
0.5  
1
2
10 20  
50 100 200 500 1000  
V
, COLLECTOR–EMITTER VOLTAGE (VOLTS)  
CE  
Figure 5. Capacitance  
3
Motorola Bipolar Power Transistor Device Data  
TYPICAL INDUCTIVE SWITCHING CHARACTERISTICS  
I /I = 10, T = 100°C, V  
= 250 V  
C B  
C
CE(pk)  
20K  
10K  
1K  
700  
500  
I
= 2 (I )  
B1  
B2  
I
= 2 (I )  
B1  
B2  
7K  
5K  
I
= I  
B2 B1  
300  
200  
I
= I  
B2 B1  
3K  
2K  
100  
70  
V
= 2 V  
BE(off)  
1K  
700  
500  
50  
V
= 5 V  
BE(off)  
V
= 2 V  
BE(off)  
V
= 5 V  
30  
20  
BE(off)  
300  
200  
1.5  
10  
1.5  
2
3
5
7
10  
15  
2
3
5
I , COLLECTOR CURRENT (AMPS)  
C
7
10  
15  
I
, COLLECTOR CURRENT (AMPS)  
C
Figure 6. Inductive Storage Time  
Figure 7. Crossover Time  
1 K  
700  
500  
300  
200  
V
= 2 V  
BE(off)  
I
= I  
B2 B1  
100  
70  
50  
V
= 5 V  
BE(off)  
30  
20  
I
= 2 (I )  
B1  
B2  
10  
1.5  
2
3
5
7
10  
I
, COLLECTOR CURRENT (AMPS)  
C
Figure 8. Collector Current Fall Time  
10  
I
C(pk)  
V
CE(pk)  
9
8
90% V  
90% I  
CE(pk)  
C(pk)  
7
6
5
4
3
2
I
t
t
t
t
ti  
C
I
I
= 1.0 A  
= 1.0 A  
sv  
rv  
fi  
B1  
B1  
t
c
V
CE  
10% V  
CE(pk)  
10%  
2% I  
I
C
B
90% I  
B1  
I
C(pk)  
I
T
= 5.0 A  
= 25°C  
C
J
1
0
TIME  
t, TIME  
0
1
2
3
4
5
6
7
8
9
10  
V
, REVERSE BASE VOLTAGE (VOLTS)  
BE(off)  
Figure 9. Inductive Switching Measurements  
Figure 10. Peak Reverse Base Current  
4
Motorola Bipolar Power Transistor Device Data  
Table 1. Inductive Load Switching  
Drive Circuit  
V
+15  
1
CEO(sus)  
I
L = 10 mH  
C(pk)  
100 µF  
µF  
150  
100 Ω  
R
V
= ∞  
= 20 Volts  
= 20 mA  
B2  
CC  
I
C
MTP8P10  
MTP8P10  
V
I
CE(pk)  
C(pk)  
Inductive Switching  
L = 200 µH  
R
B1  
V
CE  
MPF930  
A
R
V
= 0  
= 20 Volts  
selected for desired I  
B2  
CC  
+10  
MPF930  
I
B1  
R
B2  
R
B1  
B1  
I
MUR105  
MJE210  
B
50  
RBSOA  
L = 200 µH  
MTP12N10  
I
B2  
R
V
= 0  
= 20 Volts  
selected for desired I  
B1  
B2  
CC  
500 µF  
1 µF  
*I  
C
150  
R
B1  
L
V
off  
A
T.U.T.  
L
(I )  
coil Cpk  
*Tektronix AM503  
*P6302 or Equivalent  
Scope — Tektronix  
7403 or Equivalent  
MR918  
T
T
+ V  
– V  
1
1
*I  
V
CC  
adjusted to obtain I  
B
T
V
CC  
1
C(pk)  
V
0 V  
clamp  
Note: Adjust V to obtain desired V  
off  
at Point A.  
BE(off)  
Table 2. Resistive Load Switching  
+15  
100 µF  
t
and t  
t and t  
s f  
1
µF  
150  
100 Ω  
d
r
H.P. 214  
OR  
MTP8P10  
MTP8P10  
*I  
C
EQUIV.  
P.G.  
*I  
B
V
adjusted  
(off)  
R
B1  
T.U.T.  
MPF930  
to give specified  
off drive  
R
L
R
= 8.5  
A
B
+10 V  
50  
50  
MPF930  
V
R
CC  
B2  
MUR105  
MJE210  
MTP12N10  
V
250 V  
CC  
I
5 A  
0.5 A  
C
V
250 Vdc  
25 Ω  
500  
µF  
CC  
I
I
1 µF  
B1  
150  
R
L
11 V  
Per Spec  
30 Ω  
V
B2  
in  
I
5 A  
V
C
off  
0 V  
R
R
B1  
I
0.5 A  
B
T.U.T.  
A
t
15 ns  
r
Per Spec  
25 Ω  
B2  
*I  
C
R
L
*I  
R
B
L
*Tektronix AM503  
*P6302 or Equivalent  
V
CC  
5
4
3
2
V
= DYNAMIC SATURATION VOLTAGE  
CE(dsat)  
AND IS MEASURED FROM THE 90% POINT OF  
(t = 0) TO A MEASUREMENT POINT ON THE  
I
T
= 5 A  
= 25°C  
C
J
V
CE  
I
B1  
TIME AXIS (t , t or t etc.)  
1
2
3
t = 1 µs  
90% I  
B1  
t = 2  
µs  
1
I
B1  
MAXIMUM  
TYPICAL  
0
0
0
0.5  
1
1.5  
I , BASE CURRENT (AMPS)  
B
2
2.5  
0
t
t
t
t
t
t
t
t
1
2
3
4
5
6
7
8
t, TIME  
Figure 11. Definition of Dynamic Saturation  
Measurement  
Figure 12. Dynamic Saturation Voltage  
5
Motorola Bipolar Power Transistor Device Data  
DYNAMIC SATURATION VOLTAGE  
+ 24  
For bipolar power transistors low DC saturation voltages  
are achieved by conductivity modulating the collector region.  
Since conductivity modulation takes a finite amount of time,  
DC saturation voltages are not achieved instantly at turn–on.  
In bridge circuits, two transistor forward converters, and two  
transistor flyback converters dynamic saturation characteris-  
tics are responsible for the bulk of dynamic losses. The  
MJE16106 has been designed specifically to minimize these  
losses. Performance is roughly four times better than the  
original version of MJ16006.  
MJ11012  
Q1  
1N5314  
8
1 k  
100  
2.4  
20 W  
4
0.01 µF  
µ
F
1N4111  
100  
1 W  
7
1N5831  
1 k  
10 k  
2.4 mH  
U1  
MC1455  
6
2
100 pF  
Q4  
IRFD9120  
Q5  
MTM8P08  
(OSCILLATOR)  
3
1
5
10 µF  
0.1 µF  
0.01 µF  
I
C
47  
1 W  
From a measurement point of view, dynamic saturation  
voltage is defined as collector–emitter voltage at a specific  
I
B
4
8
MUR405  
1.8 k  
IRFD9123  
T.U.T.  
V
1N914  
CE  
500  
point in time after I  
has been applied, where t = 0 is the  
7
B1  
MUR405  
U2  
MC1455  
(25  
Q2  
10  
k
90% point on the I rise time waveform. This definition is il-  
B1  
2
Q6  
6
3
µ
s)  
lustrated in Figure 11. Performance data was taken in the cir-  
cuit that is shown in Figure 13. The 24 volt rail allows a  
Tektronix 2445 or equivalent scope to operate at 1 volt per  
division without input amplifier saturation.  
MTP25N06  
Q3  
IRFD113  
1
5
0.01 µF  
0.01 µF  
Dynamic saturation performance is illustrated in Figure 12.  
The MJE16106 reaches DC saturation levels in approxi-  
mately 2 µs, provided that sufficient base drive is provided.  
The dependence of dynamic saturation voltage upon base  
Figure 13. Dynamic Saturation Test Circuit  
drive suggests a spike of I at turn–on to minimize dynamic  
B1  
saturation losses, and also avoid overdrive at turn–off. How-  
ever, in order to simulate worst case conditions the guaran-  
teed dynamic saturation limits in this data sheet are specified  
with a constant level of I  
.
B1  
GUARANTEED SAFE OPERATING AREA INFORMATION  
20  
20  
10  
7
I
/I = 5  
18  
C B1  
5
1.0 ms  
MJE16106  
16  
14  
10 µs  
3
2
T
100°C  
J
T
= 25°C  
C
100 ns  
II  
dc  
12  
10  
8
1
0.7  
0.5  
0.3  
0.2  
REGION II — EXPANDED  
FBSOA USING MUR870  
ULTRAFAST RECTIFIER  
(SEE FIGURE 16)  
V
= 1 to 5 V  
BE(off)  
6
4
WIRE BOND LIMIT  
THERMAL LIMIT  
SECONDARY BREAKDOWN  
0.1  
0.07  
0.05  
2
0
V
= 0 V  
BE(off)  
0.03  
0.02  
LIMIT  
7
10  
20  
30  
50 70 100  
200 300  
500 650  
0
100 200  
300  
400  
500 600  
700 800 900  
1K  
V
, COLLECTOR–EMITTER VOLTAGE (VOLTS)  
V
, COLLECTOR–EMITTER VOLTAGE (VOLTS)  
CE  
CE  
Figure 14. Maximum Rated Forward Bias  
Safe Operating Area  
Figure 15. Maximum Rated Reverse Bias  
Safe Operating Area  
+15  
V
(650 V MAX)  
CE  
150  
100 Ω  
1.0  
µF  
100 µF  
10  
MTP8P10  
µF  
MTP8P10  
10 mH  
MUR870  
R
B1  
MUR170  
MPF930  
MUR105  
+10  
T.U.T.  
MPF930  
R
B2  
MUR105  
50  
MTP12N10  
MJE210  
500 µF  
1 µF  
Note: Test Circuit for Ultra–fast FBSOA  
Note: R = 0 and V = 5 Volts  
150  
B2 Off  
V
Off  
Figure 16. Switching Safe Operating Area  
Motorola Bipolar Power Transistor Device Data  
6
100  
80  
SECOND BREAKDOWN  
DERATING  
60  
40  
20  
0
THERMAL  
DERATING  
0
40  
80  
120  
160  
200  
T
, CASE TEMPERATURE (°C)  
C
Figure 17. Power Derating  
1
0.7  
0.5  
D = 0.5  
0.3  
0.2  
0.2  
0.1  
P
0.1  
(pk)  
Z
R
= r(t) R  
θJC  
θ
θ
JC(t)  
= 1.0 OR 1.25  
0.05  
0.02  
0.07  
0.05  
°
C/W MAX  
JC  
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
READ TIME AT t  
t
1
0.03  
0.02  
t
1
2
T
– T = P  
Z
0.01  
J(pk)  
C
(pk) θ  
JC  
20  
DUTY CYCLE, D = t /t  
1 2  
SINGLE PULSE  
0.05 0.1  
0.01  
0.01  
0.02  
0.2  
0.5  
1
2
5
10  
50  
100  
200  
500  
1.0 k  
t, TIME (ms)  
Figure 18. Typical Thermal Response [Z  
θJC  
(t)]  
the base–to–emitter junction reverse biased. Under these  
conditions the collector voltage must be held to a safe level  
at or below a specific value of collector current. This can be  
accomplished by several means such as active clamping,  
RC snubbing, load line shaping, etc. The safe level for these  
devices is specified as Reverse Biased Safe Operating Area  
and represents the voltage–current condition allowable dur-  
ing reverse biased turn–off. This rating is verified under  
clamped conditions so that the device is never subjected to  
an avalanche mode. Figure 15 gives the RBSOA character-  
istics.  
SAFE OPERATING AREA INFORMATION  
FORWARD BIAS  
There are two limitations on the power handling ability of a  
transistor: average junction temperature and second break-  
down. Safe operating area curves indicate I – V  
limits of  
C
CE  
the transistor that must be observed for reliable operation;  
i.e., the transistor must not be subjected to greater dissipa-  
tion than the curves indicate.  
The data in Figure 14 is based on T = 25 C; T  
variable depending on power level. Second breakdown pulse  
limits are valid for duty cycles to 10% but must be derated  
is  
J(pk)  
C
when T 25 C. Second breakdown limitations do not  
C
SWITCHMODE III DESIGN CONSIDERATIONS  
FBSOA  
derate the same as thermal limitations. Allowable current at  
the voltages shown on Figure 14 may be found at any case  
temperature by using the appropriate curve on Figure 17.  
T
may be calculated from the data in Figure 18. At high  
J(pk)  
Allowable dc power dissipation in bipolar power transistors  
decreases dramatically with increasing collector–emitter  
voltage. A transistor which safely dissipates 100 watts at  
10 volts will typically dissipate less than 10 watts at its rated  
case temperatures, thermal limitations will reduce the power  
that can be handled to values less than the limitations im-  
posed by second breakdown.  
REVERSE BIAS  
For inductive loads, high voltage and high current must be  
sustained simultaneously during turn–off, in most cases, with  
V
. Fromapowerhandlingpointofview,current  
(BR)CEO(sus)  
and voltage are not interchangeable (see Application Note  
AN875).  
7
Motorola Bipolar Power Transistor Device Data  
TURN–ON  
quate forward base current is needed for safe turn–on, as is  
a stiff negative bias needed for safe turn–off. Any hiccup in  
the base–drive circuitry that even momentarily violates either  
of these conditions will likely cause the transistor to fail.  
Therefore, it is important to design the driver so that its out-  
put is negative in the absence of anything but a clean crisp  
input signal (see Application Note AN952).  
Safe turn–on load line excursions are bounded by pulsed  
FBSOA curves. The 10 µs curve applies for resistive loads,  
most capacitive loads, and inductive loads that are clamped  
by standard or fast recovery rectifiers. Similarly, the 100 ns  
curve applies to inductive loads which are clamped by ultra–  
fast recovery rectifiers, and are valid for turn–on crossover  
times less than 100 ns (AN952).  
RBSOA  
At voltages above 75% of V  
, it is essential  
(BR)CEO(sus)  
Reversed Biased Safe Operating Area has a first order de-  
pendency on circuit configuration and drive parameters. The  
RBSOA curves in this data sheet are valid only for the condi-  
tions specified. For a comparison of RBSOA results in sever-  
al types of circuits (see Application Note AN951).  
to provide the transistor with an adequate amount of base  
drive VERY RAPIDLY at turn–on. More specifically, safe op-  
eration according to the curves is dependent upon base cur-  
rent rise time being less than collector current rise time. As a  
general rule, a base drive compliance voltage in excess of  
10 volts is required to meet this condition (see Application  
Note AN875).  
DESIGN SAMPLES  
Transistor parameters tend to vary much more from wafer  
lot to wafer lot, over long periods of time, than from one de-  
vice to the next in the same wafer lot. For design evaluation  
it is advisable to use transistors from several different date  
codes.  
TURN–OFF  
A bipolar transistor’s ability to withstand turn–off stress is  
dependent upon its forward base drive. Gross overdrive vio-  
lates the RBSOA curve and risks transistor failure. For this  
reason, circuits which use fixed base drive are more likely to  
fail at light loads due to heavy overdrive (see Application  
Note AN875).  
BAKER CLAMPS  
Many unanticipated pitfalls can be avoided by using Baker  
Clamps. MUR105 and MUR170 diodes are recommended  
for base drives less than 1 amp. Similarly, MUR405 and  
MUR470 types are well–suited for higher drive requirements  
(see Article Reprint AR131).  
OPERATION ABOVE V  
(BR)CEO(sus)  
When bipolars are operated above collector–emitter  
breakdown, base drive is crucial. A rapid application of ade-  
8
Motorola Bipolar Power Transistor Device Data  
PACKAGE DIMENSIONS  
NOTES:  
SEATING  
PLANE  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
–T–  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION Z DEFINES A ZONE WHERE ALL  
BODY AND LEAD IRREGULARITIES ARE  
ALLOWED.  
C
S
B
F
T
4
INCHES  
MIN  
MILLIMETERS  
DIM  
A
B
C
D
F
G
H
J
K
L
N
Q
R
S
MAX  
0.620  
0.405  
0.190  
0.035  
0.147  
0.105  
0.155  
0.025  
0.562  
0.060  
0.210  
0.120  
0.110  
0.055  
0.255  
0.050  
–––  
MIN  
14.48  
9.66  
4.07  
0.64  
3.61  
2.42  
2.80  
0.46  
12.70  
1.15  
4.83  
2.54  
2.04  
1.15  
5.97  
0.00  
1.15  
–––  
MAX  
15.75  
10.28  
4.82  
0.88  
3.73  
2.66  
3.93  
0.64  
14.27  
1.52  
5.33  
3.04  
2.79  
1.39  
6.47  
1.27  
–––  
A
K
Q
Z
0.570  
0.380  
0.160  
0.025  
0.142  
0.095  
0.110  
0.018  
0.500  
0.045  
0.190  
0.100  
0.080  
0.045  
0.235  
0.000  
0.045  
–––  
1
2
3
U
H
L
R
J
V
G
T
U
V
D
N
Z
0.080  
2.04  
STYLE 1:  
PIN 1. BASE  
2. COLLECTOR  
3. EMITTER  
4. COLLECTOR  
CASE 221A–06  
TO–220AB  
ISSUE Y  
9
Motorola Bipolar Power Transistor Device Data  
Motorolareserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representationorguaranteeregarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,  
andspecifically disclaims any and all liability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters can and do vary in different  
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does  
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in  
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of  
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintendedor unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
How to reach us:  
USA / EUROPE: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447  
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609  
INTERNET: http://Design–NET.com  
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MJE16106/D  

相关型号:

MJE16106D1

8A, 400V, NPN, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA

MJE16106DW

TRANSISTOR 8 A, 400 V, NPN, Si, POWER TRANSISTOR, PLASTIC, TO-220AB, 3 PIN, BIP General Purpose Power
ONSEMI

MJE16106L

8A, 400V, NPN, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA

MJE16106N

Power Bipolar Transistor, 8A I(C), 400V V(BR)CEO, 1-Element, NPN, Silicon, TO-220AB, Plastic/Epoxy, 3 Pin
MOTOROLA

MJE16106S

Power Bipolar Transistor, 8A I(C), 400V V(BR)CEO, 1-Element, NPN, Silicon, TO-220AB, Plastic/Epoxy, 3 Pin
MOTOROLA

MJE16106T

8A, 400V, NPN, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA

MJE16106U

8A, 400V, NPN, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA

MJE16106UA

Power Bipolar Transistor, 8A I(C), 400V V(BR)CEO, 1-Element, NPN, Silicon, TO-220AB, Plastic/Epoxy, 3 Pin
MOTOROLA

MJE16106W

8A, 400V, NPN, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA

MJE16106WD

Power Bipolar Transistor, 8A I(C), 400V V(BR)CEO, 1-Element, NPN, Silicon, TO-220AB, Plastic/Epoxy, 3 Pin
MOTOROLA

MJE16204

POWER TRANSISTORS 6.0 AMPERES 550 VOLTS-. VCES 45 AND 80 WATTS
MOTOROLA

MJE1620416

Power Bipolar Transistor, 6A I(C), 1-Element, NPN, Silicon, TO-220AB, Plastic/Epoxy, 3 Pin
MOTOROLA