MMBFJ309LT1 [MOTOROLA]

JFET VHF/UHF Amplifier Transistor; JFET VHF / UHF放大器晶体管
MMBFJ309LT1
型号: MMBFJ309LT1
厂家: MOTOROLA    MOTOROLA
描述:

JFET VHF/UHF Amplifier Transistor
JFET VHF / UHF放大器晶体管

晶体 放大器 小信号场效应晶体管 射频小信号场效应晶体管 光电二极管
文件: 总6页 (文件大小:169K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MMBFJ309LT1/D  
SEMICONDUCTOR TECHNICAL DATA  
N–Channel  
2 SOURCE  
3
GATE  
1 DRAIN  
3
1
MAXIMUM RATINGS  
2
Rating  
Drain–Source Voltage  
Symbol  
Value  
Unit  
Vdc  
V
V
25  
25  
10  
DS  
CASE 31808, STYLE 10  
SOT23 (TO236AB)  
Gate–Source Voltage  
Vdc  
GS  
Gate Current  
I
G
mAdc  
THERMAL CHARACTERISTICS  
Characteristic  
Symbol  
Max  
Unit  
(1)  
Total Device Dissipation FR5 Board  
P
225  
mW  
D
T
A
= 25°C  
Derate above 25°C  
1.8  
556  
mW/°C  
°C/W  
°C  
Thermal Resistance, Junction to Ambient  
Junction and Storage Temperature  
DEVICE MARKING  
R
JA  
T , T  
J stg  
55 to +150  
MMBFJ309LT1 = 6U; MMBFJ310LT1 = 6T  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Gate–Source Breakdown Voltage (I = –1.0 µAdc, V  
= 0)  
V
(BR)GSS  
25  
Vdc  
G
DS  
Gate Reverse Current (V  
Gate Reverse Current (V  
= –15 Vdc)  
= –15 Vdc, T = 125°C)  
I
1.0  
1.0  
nAdc  
µAdc  
GS  
GS  
GSS  
A
Gate Source Cutoff Voltage  
(V = 10 Vdc, I = 1.0 nAdc)  
MMBFJ309  
MMBFJ310  
V
1.0  
2.0  
4.0  
6.5  
Vdc  
GS(off)  
DS  
D
ON CHARACTERISTICS  
Zero–Gate–Voltage Drain Current  
MMBFJ309  
MMBFJ310  
I
12  
24  
30  
60  
mAdc  
Vdc  
DSS  
(V  
DS  
= 10 Vdc, V  
= 0)  
GS  
Gate–Source Forward Voltage (I = 1.0 mAdc, V  
G
= 0)  
V
1.0  
DS  
GS(f)  
SMALL–SIGNAL CHARACTERISTICS  
Forward Transfer Admittance (V  
DS  
= 10 Vdc, I = 10 mAdc, f = 1.0 kHz)  
|Y  
|
8.0  
10  
18  
250  
5.0  
2.5  
mmhos  
µmhos  
pF  
D
fs  
Output Admittance (V  
= 10 Vdc, I = 10 mAdc, f = 1.0 kHz)  
|y  
C
|
DS  
D
os  
Input Capacitance (V  
= –10 Vdc, V  
= 0 Vdc, f = 1.0 MHz)  
GS  
DS  
= –10 Vdc, V  
iss  
rss  
Reverse Transfer Capacitance (V  
= 0 Vdc, f = 1.0 MHz)  
DS  
C
pF  
GS  
Equivalent Short–Circuit Input Noise Voltage  
(V = 10 Vdc, I = 10 mAdc, f = 100 Hz)  
e
n
nV Hz  
DS  
1. FR5 = 1.0  
D
0.75 0.062 in.  
Thermal Clad is a trademark of the Bergquist Company  
Motorola, Inc. 1997  
50  
U310  
50  
SOURCE  
LOAD  
C3  
L2  
L2  
S
P
L1  
C1  
C2  
C4  
C5  
C6  
C7  
1.0 k  
RFC  
+V  
DD  
C1 = C2 = 0.8 – 10 pF, JFD #MVM010W.  
C3 = C4 = 8.35 pF Erie #539–002D.  
C5 = C6 = 5000 pF Erie (2443–000).  
C7 = 1000 pF, Allen Bradley #FA5C.  
RFC = 0.33 µH Miller #9230–30.  
L1 = One Turn #16 Cu, 1/4I.D. (Air Core).  
L2 = One Turn #16 Cu, 1/4I.D. (Air Core).  
P
L2 = One Turn #16 Cu, 1/4I.D. (Air Core).  
S
Figure 1. 450 MHz Common–Gate Amplifier Test Circuit  
70  
35  
70  
60  
60  
50  
40  
30  
20  
10  
0
30  
25  
20  
15  
10  
5.0  
0
T
= 55°C  
V
= 10 V  
A
DS  
f = 1.0 MHz  
V
= 10 V  
T = 55°C  
A
DS  
+25°C  
50  
40  
30  
20  
10  
+25°C  
I
DSS  
+25  
°
C
+150°C  
+25°C  
+150  
°
C
55°C  
+25°C  
+150°C  
55°C  
+150  
°C  
–1.0  
0
–5.0  
–4.0  
–3.0  
–2.0  
1.0  
0
5.0  
4.0  
3.0  
2.0  
I
– V , GATE–SOURCE VOLTAGE (VOLTS)  
D
GS  
V
, GATE–SOURCE VOLTAGE (VOLTS)  
GS  
I
– V , GATE–SOURCE CUTOFF VOLTAGE (VOLTS)  
DSS  
GS  
Figure 2. Drain Current and Transfer  
Characteristics versus Gate–Source Voltage  
Figure 3. Forward Transconductance  
versus Gate–Source Voltage  
100 k  
10 k  
10  
120  
1.0 k  
100  
R
DS  
Y
fs  
96  
72  
48  
24  
0
Y
fs  
7.0  
4.0  
C
gs  
V
V
= 2.3 V =  
= 5.7 V =  
10  
1.0 k  
100  
GS(off)  
GS(off)  
Y
os  
C
gd  
1.0  
0
1.0  
0.01  
0.1 0.2 0.3 0.5 1.0 2.0 3.0 5.0 10 20 30 50 100  
10  
9.0  
8.0  
V
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0
I
, DRAIN CURRENT (mA)  
, GATE SOURCE VOLTAGE (VOLTS)  
D
GS  
Figure 4. Common–Source Output  
Admittance and Forward Transconductance  
versus Drain Current  
Figure 5. On Resistance and Junction  
Capacitance versus Gate–Source Voltage  
2
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
|S |, |S  
21  
|
|S |, |S  
12  
|
22  
11  
0.85 0.45  
0.79 0.39  
0.73 0.33  
0.67 0.27  
0.61 0.21  
0.55 0.15  
0.060 1.00  
0.048 0.98  
0.036 0.96  
0.024 0.94  
0.012 0.92  
0.90  
30  
24  
18  
12  
6.0  
0
3.0  
2.4  
1.8  
1.2  
0.6  
S
22  
V
= 10 V  
DS  
= 10 mA  
I
T
D
S
21  
= 25°C  
A
Y
11  
V
= 10 V  
DS  
= 10 mA  
I
T
D
= 25°C  
A
Y
Y
21  
S
11  
22  
S
12  
Y
12  
100  
200  
300  
500  
700 1000  
100  
200  
300  
500  
700 1000  
f, FREQUENCY (MHz)  
f, FREQUENCY (MHz)  
Figure 6. Common–Gate Y Parameter  
Magnitude versus Frequency  
Figure 7. Common–Gate S Parameter  
Magnitude versus Frequency  
θ
,
θ
θ
, θ  
θ
,
θ
θ
, θ  
21 11  
12 22  
11 12  
21 22  
180  
170  
160  
150  
140  
130  
°
°
°
°
°
°
50°  
40°  
30°  
20°  
10°  
0°  
20  
20  
40  
60  
80  
°
°
°
°
°
87°  
86°  
85°  
84°  
83°  
82°  
20  
°
°
°
°
°
°
120  
100  
80  
°
°
°
°
°
0
θ
11  
θ
22  
θ
21  
40  
θ
20  
40  
60  
80  
°
°
°
°
22  
θ
21  
60  
100  
120  
140  
160  
180  
200  
°
°
°
°
°
°
80  
60  
θ
21  
θ
12  
θ
θ
12  
11  
V
I
= 10 V  
V
I
= 10 V  
DS  
= 10 mA  
100  
120  
40  
DS  
= 10 mA  
θ
11  
D
D
T
= 25°C  
T
= 25°C  
A
A
100  
700 1000  
°
20  
°
100  
200  
300  
500  
700 1000  
100  
200  
300  
500  
f, FREQUENCY (MHz)  
f, FREQUENCY (MHz)  
Figure 8. Common–Gate Y Parameter  
Phase–Angle versus Frequency  
Figure 9. S Parameter Phase–Angle  
versus Frequency  
8.0  
24  
21  
18  
15  
12  
9.0  
6.0  
3.0  
0
7.0  
6.0  
26  
22  
18  
14  
V
= 20 V  
DD  
f = 450 MHz  
BW 10 MHz  
CIRCUIT IN FIGURE 1  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0
5.0  
4.0  
G
pg  
V
= 10 V  
G
DS  
= 10 mA  
pg  
I
T
D
A
NF  
= 25°C  
3.0  
2.0  
CIRCUIT IN FIGURE 1  
10  
NF  
6.0  
2.0  
1.0  
0
4.0 6.0  
8.0  
10  
12  
14  
16  
18  
20  
22  
24  
50  
100  
200 300  
500 700 1000  
I
, DRAIN CURRENT (mA)  
f, FREQUENCY (MHz)  
D
Figure 10. Noise Figure and  
Power Gain versus Drain Current  
Figure 11. Noise Figure and Power Gain  
versus Frequency  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
3
C1  
C6  
U310  
D
B
(3 dB) – 36.5 MHz  
– 10 mAdc  
– 20 Vdc  
S
W
I
V
D
DS  
G
C4  
C3  
L1  
L3  
INPUT  
= 50  
OUTPUT  
= 50 Ω  
Device case grounded  
R
R
IM test tones – f1 = 449.5 MHz, f2 = 450.5 MHz  
S
L
C2  
L2  
C5  
C1 = 1–10 pF Johanson Air variable trimmer.  
C2, C5 = 100 pF feed thru button capacitor.  
C3, C4, C6 = 0.5–6 pF Johanson Air variable  
trimmer.  
L4  
L1 = 1/8x 1/32x 1–5/8copper bar.  
L2, L4 = Ferroxcube Vk200 choke.  
L3 = 1/8x 1/32x 1–7/8copper bar.  
V
V
D
S
SHIELD  
Figure 12. 450 MHz IMD Evaluation Amplifier  
Amplifier power gain and IMD products are a function of the load impedance. For the amplifier design shown above with C4 and  
C6 adjusted to reflect a load to the drain resulting in a nominal power gain of 9 dB, the 3rd order intercept point (IP) value is  
29 dBm. Adjusting C4, C6 to provide larger load values will result in higher gain, smaller bandwidth and lower IP values. For  
example, a nominal gain of 13 dB can be achieved with an intercept point of 19 dBm.  
+40  
U310 JFET  
V = 20 Vdc  
3RD ORDER INTERCEPT POINT  
+20  
0
DS  
= 10 mAdc  
I
D
F1 = 449.5 MHz  
F2 = 450.5 MHz  
–20  
–40  
–60  
–80  
–100  
–120  
FUNDAMENTAL OUTPUT  
Example of intercept point plot use:  
Assume two in–band signals of –20 dBm at the amplifier input.  
They will result in a 3rd order IMD signal at the output of  
–90 dBm. Also, each signal level at the output will be  
–11 dBm, showing an amplifier gain of 9.0 dB and an  
intermodulation ratio (IMR) capability of 79 dB. The gain and  
IMR values apply only for signal levels below comparison.  
3RD ORDER IMD OUTPUT  
–60  
–40  
–20  
0
+20  
–120  
–100  
–80  
INPUT POWER PER TONE (dBm)  
Figure 13. Two Tone 3rd Order Intercept Point  
4
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
INFORMATION FOR USING THE SOT–23 SURFACE MOUNT PACKAGE  
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS  
Surface mount board layout is a critical portion of the total  
design. The footprint for the semiconductor packages must  
be the correct size to insure proper solder connection  
interface between the board and the package. With the  
correct pad geometry, the packages will self align when  
subjected to a solder reflow process.  
0.037  
0.95  
0.037  
0.95  
0.079  
2.0  
0.035  
0.9  
0.031  
0.8  
inches  
mm  
SOT–23  
SOT–23 POWER DISSIPATION  
The power dissipation of the SOT–23 is a function of the  
SOLDERING PRECAUTIONS  
pad size. This can vary from the minimum pad size for  
soldering to a pad size given for maximum power dissipation.  
Power dissipation for a surface mount device is determined  
The melting temperature of solder is higher than the rated  
temperature of the device. When the entire device is heated  
to a high temperature, failure to complete soldering within a  
short time could result in device failure. Therefore, the  
following items should always be observed in order to  
minimize the thermal stress to which the devices are  
subjected.  
by T  
, the maximum rated junction temperature of the  
, the thermal resistance from the device junction to  
J(max)  
die, R  
θJA  
ambient, and the operating temperature, T . Using the  
A
values provided on the data sheet for the SOT–23 package,  
P
can be calculated as follows:  
D
Always preheat the device.  
The delta temperature between the preheat and  
soldering should be 100°C or less.*  
T
– T  
A
J(max)  
P
=
D
R
θJA  
When preheating and soldering, the temperature of the  
leads and the case must not exceed the maximum  
temperature ratings as shown on the data sheet. When  
using infrared heating with the reflow soldering method,  
the difference shall be a maximum of 10°C.  
The values for the equation are found in the maximum  
ratings table on the data sheet. Substituting these values into  
the equation for an ambient temperature T of 25°C, one can  
A
calculate the power dissipation of the device which in this  
case is 225 milliwatts.  
The soldering temperature and time shall not exceed  
260°C for more than 10 seconds.  
When shifting from preheating to soldering, the  
maximum temperature gradient shall be 5°C or less.  
After soldering has been completed, the device should  
be allowed to cool naturally for at least three minutes.  
Gradual cooling should be used as the use of forced  
cooling will increase the temperature gradient and result  
in latent failure due to mechanical stress.  
150°C – 25°C  
556°C/W  
P
=
= 225 milliwatts  
D
The 556°C/W for the SOT–23 package assumes the use  
of the recommended footprint on a glass epoxy printed circuit  
board to achieve a power dissipation of 225 milliwatts. There  
are other alternatives to achieving higher power dissipation  
from the SOT–23 package. Another alternative would be to  
use a ceramic substrate or an aluminum core board such as  
Thermal Clad . Using a board material such as Thermal  
Clad, an aluminum core board, the power dissipation can be  
doubled using the same footprint.  
Mechanical stress or shock should not be applied during  
cooling.  
* Soldering a device without preheating can cause excessive  
thermal shock and stress which can result in damage to the  
device.  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
5
PACKAGE DIMENSIONS  
NOTES:  
A
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
L
2. CONTROLLING DIMENSION: INCH.  
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD  
FINISH THICKNESS. MINIMUM LEAD THICKNESS  
IS THE MINIMUM THICKNESS OF BASE  
MATERIAL.  
3
STYLE 10:  
S
B
PIN 1. DRAIN  
2. SOURCE  
3. GATE  
1
2
INCHES  
MIN MAX  
MILLIMETERS  
DIM  
A
B
C
D
G
H
J
MIN  
2.80  
1.20  
0.89  
0.37  
1.78  
0.013  
0.085  
0.45  
0.89  
2.10  
0.45  
MAX  
3.04  
1.40  
1.11  
0.50  
2.04  
0.100  
0.177  
0.60  
1.02  
2.50  
0.60  
V
G
0.1102 0.1197  
0.0472 0.0551  
0.0350 0.0440  
0.0150 0.0200  
0.0701 0.0807  
0.0005 0.0040  
0.0034 0.0070  
0.0180 0.0236  
0.0350 0.0401  
0.0830 0.0984  
0.0177 0.0236  
C
K
L
S
H
J
D
V
K
CASE 318–08  
ISSUE AE  
SOT–23 (TO–236AB)  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
Mfax is a trademark of Motorola, Inc.  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447  
JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4–32–1,  
Nishi–Gotanda, Shinagawa–ku, Tokyo 141, Japan. 81–3–5487–8488  
Mfax : RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
– US & Canada ONLY 1–800–774–1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
INTERNET: http://motorola.com/sps  
MMBFJ309LT1/D  

相关型号:

MMBFJ309LT1G

JFET - VHF/UHF Amplifier Transistor N-Channel
ONSEMI

MMBFJ309LT1G_09

JFET - VHF/UHF Amplifier Transistor
ONSEMI

MMBFJ309LT1_06

JFET - VHF/UHF Amplifier Transistor N-Channel
ONSEMI

MMBFJ309LT3

UHF BAND, Si, N-CHANNEL, RF SMALL SIGNAL, JFET, TO-236AB
MOTOROLA

MMBFJ309S62Z

UHF BAND, Si, N-CHANNEL, RF SMALL SIGNAL, FET, TO-236AB
TI

MMBFJ309_10

N-Channel RF Amplifier
FAIRCHILD

MMBFJ310

N 沟道 RF 晶体管
ONSEMI

MMBFJ310

SFET RF,VHF, UHF, Amplitiers
FAIRCHILD

MMBFJ310

J-FET HIGH FREQUENCY AMPLIFIER TRANSISTOR
PANJIT

MMBFJ310

UHF BAND, Si, N-CHANNEL, RF SMALL SIGNAL, JFET, TO-236AB
TI

MMBFJ310-HIGH

UHF BAND, Si, N-CHANNEL, RF SMALL SIGNAL, JFET, TO-236AA
TI

MMBFJ310D87Z

RF Small Signal Field-Effect Transistor, 1-Element, Ultra High Frequency Band, Silicon, N-Channel, Junction FET, SOT-23, 3 PIN
FAIRCHILD