MOC2R6010 [MOTOROLA]

OPTOISOLATOR 2 AMPS RANDOM-PHASE TRIAC OUTPUT 600 VOLTS; OPTOISOLATOR 2安培随机相位TRIAC输出600伏
MOC2R6010
型号: MOC2R6010
厂家: MOTOROLA    MOTOROLA
描述:

OPTOISOLATOR 2 AMPS RANDOM-PHASE TRIAC OUTPUT 600 VOLTS
OPTOISOLATOR 2安培随机相位TRIAC输出600伏

三端双向交流开关 输出元件
文件: 总8页 (文件大小:231K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MOC2R60–10/D  
SEMICONDUCTOR TECHNICAL DATA  
*Motorola Preferred Devices  
This device consists of a gallium arsenide infrared emitting diode optically coupled  
to a random phase triac driver circuit and a power triac. It is capable of driving a load  
of up to 2 amps (rms) directly, on line voltages from 20 to 280 volts AC (rms).  
Provides Normally Open Solid State AC Output with 2 Amp Rating  
70 Amp Single Cycle Surge Capability  
OPTOISOLATOR  
2 AMPS  
RANDOM–PHASE  
TRIAC OUTPUT  
600 VOLTS  
Phase Controllable  
High Input-Output Isolation of 3750 vac (rms)  
Static dv/dt Rating of 400 Volts/µs Guaranteed  
2 Amp Pilot Duty Rating Per UL508 117 (Overload Test)  
and 118 (Endurance Test)  
[File No. 129224]  
CSA Approved [File No. CA77170-1]. VDE Approval in Process.  
Exceeds NEMA 2-230 and IEEE472 Noise Immunity Test Requirements  
(See Figure 17)  
CASE 417-02  
Style 2  
PLASTIC PACKAGE  
DEVICE RATINGS (T = 25°C unless otherwise noted)  
A
9
7
Rating  
INPUT LED  
Symbol  
Value  
Unit  
3
2
Forward Current — Maximum Continuous  
I
50  
mA  
A
F
Forward Current — Maximum Peak  
(PW = 100µs, 120 pps)  
I (pk)  
F
1.0  
CASE 417A-02  
Style 1  
PLASTIC PACKAGE  
Reverse Voltage — Maximum  
OUTPUT TRIAC  
V
R
6.0  
V
Output Terminal Voltage — Maximum Transient (1)  
V
DRM  
600  
V(pk)  
Operating Voltage Range — Maximum Continuous  
(f = 4763 Hz)  
V
T
20 to 280  
Vac(rms)  
CASE 417B-01  
Style 1  
PLASTIC PACKAGE  
On-State Current Range  
(Free Air, Power Factor 0.3)  
I (rms)  
0.03 to 2.0  
70  
A
A
T
Non-Repetitive Single Cycle Surge Current —  
Maximum Peak (t = 16.7 ms)  
I
TSM  
DEVICE SCHEMATIC  
2
2
Main Terminal Fusing Current (t = 8.3 ms)  
Load Power Factor Range  
Junction Temperature Range  
TOTAL DEVICE  
I T  
26  
A sec  
PF  
0.3 to 1.0  
– 40 to 125  
7
T
J
°C  
3
2
Input-Output Isolation Voltage — Maximum (2)  
4763 Hz, 1 sec Duration  
V
R
3750  
8.0  
Vac(rms)  
ISO  
Thermal Resistance — Power Triac Junction to  
Case (See Figure 18)  
°C/W  
θJC  
9
1, 4, 5, 6, 8. NO PIN  
2. LED CATHODE  
3. LED ANODE  
Ambient Operating Temperature Range  
Storage Temperature Range  
T
– 40 to +100  
– 40 to +150  
260  
°C  
°C  
°C  
oper  
T
stg  
7. MAIN TERMINAL 2  
9. MAIN TERMINAL 1  
Lead Soldering Temperature — Maximum  
(1/16From Case, 10 sec Duration)  
T
L
1. Test voltages must be applied within dv/dt rating.  
2. Input-Output isolation voltage, V  
(2)For this test, pins 2, 3 and the heat tab are common, and pins 7 and 9 are common.  
, is an internal device dielectric breakdown rating.  
ISO  
POWER OPTO is a trademark of Motorola, Inc.  
This document contains information on a new product. Specifications and information herein are subject to change without notice.  
Preferred devices are Motorola recommended choices for future use and best overall value.  
REV 1  
Motorola, Inc. 1995  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
Characteristic  
INPUT LED  
Symbol  
Min  
Typ  
Max  
Unit  
Forward Voltage (I = 10 mA)  
V
1.00  
1.17  
1.0  
18  
1.50  
100  
V
F
F
Reverse Leakage Current (V = 6.0 V)  
R
I
R
µA  
pF  
Capacitance  
C
OUTPUT TRIAC  
Off-State Leakage, Either Direction  
I
(1)  
400  
0.25  
100  
µA  
V/µs  
mA  
DRM  
(I = 0, V  
F DRM  
= 400 V)  
Critical Rate of Rise of Off-State Voltage (Static)  
(V = 400 vac(pk)) (1) (2)  
dv/dt(s)  
in  
Holding Current, Either Direction (I = 0, V = 12 V, I = 200 mA)  
I
H
10  
F
D
T
COUPLED  
LED Trigger Current Required to Latch Output  
Either Direction (Main Terminal Voltage = 2.0 V) (3) (4) MOC2R60-15  
MOC2R60-10  
I
(on)  
TM  
7.0  
12  
10  
15  
mA  
FT  
On-State Voltage, Either Direction (I = Rated I (on), I = 2.0 A)  
V
0.96  
1.3  
V
F
FT  
TM  
Commutating dv/dt (Rated V  
, I = 30 mA – 2.0 A(rms),  
DRM  
dv/dt (c)  
5.0  
V/µS  
T
T
= – 40 + 100°C, f = 60 Hz) (2)  
A
Common-mode Input-Output dv/dt (2)  
dv/dt(cm)  
40,000  
1.3  
V/µS  
pF  
Input-Output Capacitance (V = 0, f = 1.0 MHz)  
C
R
ISO  
ISO  
Isolation Resistance (V  
I-O  
= 500 V)  
1012  
1014  
1. Per EIA/NARM standard RS–443, with V = 200 V, which is the instantaneous peak of the maximum operating voltage.  
P
2. Additional dv/dt information, including test methods, can be found in Motorola applications note AN1048/D.  
3. All devices are guaranteed to trigger at an I value less than or equal to the max I . Therefore, the recommended operating I lies between  
F
FT  
F
3. the device’s maximum I (on) limit and the Maximum Rating of 50 mA.  
FT  
4. Current–limiting resistor required in series with LED.  
TYPICAL CHARACTERISTICS  
100  
80  
2.00  
1.80  
Pulse Only  
Pulse or DC  
1.60  
1.40  
60  
40  
20  
0
T
= 40  
°
C
A
1.20  
25°  
C
1.00  
0.80  
100  
°
C
– 40  
– 20  
0
20  
40  
60  
80  
C)  
100  
120  
1
10  
100  
1000  
T , AMBIENT TEMPERATURE (  
°
I , FORWARD CURRENT (mA)  
A
F
Figure 1. Maximum Allowable Forward LED  
Current versus Ambient Temperature  
Figure 2. LED Forward Voltage  
versus LED Forward Current  
2
Motorola Optoelectronics Device Data  
1.60  
1.50  
1.40  
1.30  
1.20  
1.10  
2.4  
2.0  
1.6  
Worst Case Unit  
Normalized to  
T
= 25°C  
A
1.2  
0.8  
1.00  
0.90  
0.4  
0.0  
0.80  
– 40  
– 20  
0
20  
40  
60  
80  
C)  
100  
120  
– 40  
– 20  
0
20  
40  
60  
80  
C)  
100  
120  
T , AMBIENT TEMPERATURE (  
°
T , AMBIENT TEMPERATURE (  
°
A
A
Figure 3. Forward LED Trigger Current  
versus Ambient Temperature  
Figure 4. Maximum Allowable On-State RMS Output  
Current (Free Air) versus Ambient Temperature  
2.5  
2.20  
2.00  
Pulse  
Only  
2.0  
1.5  
1.0  
0.5  
0.0  
1.80  
1.60  
1.40  
Maximum  
1.20  
1.00  
0.80  
0.60  
Mean  
T
= 25°C  
J
100°C  
0.03  
0.1  
1.0  
0.01  
0.1  
1.0  
10  
I
, INSTANTANEOUS ON-STATE CURRENT (A)  
I , MAIN TERMINAL CURRENT (A)  
T
TM  
Figure 5. On-State Voltage Drop versus  
Output Terminal Current  
Figure 6. Power Dissipation  
versus Main Terminal Current  
100  
10  
120  
100  
80  
60  
40  
20  
0
T
= 25°C  
A
Normalized to  
T
= 25°C  
A
1.0  
0.1  
0.01  
0.01  
0.1  
1
10  
– 40  
– 20  
0
20  
40  
60  
80  
C)  
100  
120  
I , MAIN TERMINAL CURRENT (A)  
T , AMBIENT TEMPERATURE (  
°
T
A
Figure 7. Junction Temperature versus Main  
Terminal RMS Current (Free Air)  
Figure 8. Leakage with LED Off versus  
Ambient Temperature  
Motorola Optoelectronics Device Data  
3
2.00  
1.80  
1.60  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
1000  
100  
Static  
Normalized  
at 25  
°C  
Commutating  
10  
0
I
= 30 mA – 2A(RMS)  
F = 60 Hz  
T
– 40  
– 20  
0
20  
40  
60  
80  
C)  
100  
120  
– 40  
– 20  
0
+ 25  
+ 40  
+ 60  
C)  
+ 80  
+ 100  
T , AMBIENT TEMPERATURE (  
°
T , AMBIENT TEMPERATURE (  
°
A
A
Figure 9. Holding Current versus  
Ambient Temperature  
Figure 10. dv/dt versus Ambient Temperature  
25  
20  
15  
10  
Phase Control Considerations  
LED Trigger Current versus PW (normalized)  
NORMALIZED TO:  
The Random Phase POWER OPTO Isolators are designed  
to be phase controllable. They may be triggered at any phase  
angle within the AC sine wave. Phase control may be accom-  
plished by an AC line zero cross detector and a variable pulse  
delay generator which is synchronized to the zero cross de-  
tector. The same task can be accomplished by a microproces-  
sor which is synchronized to the AC zero crossing. The phase  
controlled trigger current may be a very short pulse which  
saves energy delivered to the input LED. LED trigger pulse  
currents shorter than 100 µs must have an increased ampli-  
tude as shown on Figure 11. This graph shows the dependen-  
PW  
in  
100  
µs  
5
0
cy of the trigger current I versus the pulse width t (PW). The  
1
2
5
10  
20  
50  
100  
FT  
reason for the I dependency on the pulse width can be seen  
FT  
PW , LED TRIGGER PULSE WIDTH (  
µs)  
in  
on the chart delay t(d) versus the LED trigger current.  
Figure 11. LED Current Required to Trigger  
versus LED Pulse Width  
I
in the graph I versus (PW) is normalized in respect to  
FT  
the minimum specified I for static condition, which is speci-  
FT  
FT  
fied in the device characteristic. The normalized I has to be  
FT  
multiplied with the devices guaranteed static trigger current.  
Example:  
Guaranteed I = 10 mA, Trigger pulse width PW = 3 µs  
FT  
AC SINE  
I
(pulsed) = 10 mA x 5 = 50 mA  
FT  
0°  
180°  
Minimum LED Off Time in Phase Control Applications  
In phase control applications one intends to be able to con-  
trol each AC sine half wave from 0 to 180 degrees. Turn on at  
zero degrees means full power, and turn on at 180 degrees  
means zero power. This is not quite possible in reality be-  
cause triac driver and triac have a fixed turn on time when  
activated at zero degrees. At a phase control angle close to  
180 degrees the turn on pulse at the trailing edge of the AC  
sine wave must be limited to end 200 µs before AC zero  
cross as shown in Figure 12. This assures that the device  
has time to switch off. Shorter times may cause loss off con-  
trol at the following half cycle.  
LED PW  
LED CURRENT  
LED TURN OFF MIN 200 µs  
Figure 12. Minimum Time for LED Turn-Off to  
Zero Cross of AC Trailing Edge  
4
Motorola Optoelectronics Device Data  
100  
10  
1
t(delay), t(f) versus I  
FT  
The POWER OPTO Isolators turn on switching speed con-  
sists of a turn on delay time t(d) and a fall time t(f). Figure 13  
shows that the delay time depends on the LED trigger cur-  
rent, while the actual trigger transition time t(f) stays constant  
with about one micro second.  
The delay time is important in very short pulsed operation  
because it demands a higher trigger current at very short trig-  
ger pulses. This dependency is shown in the graph I ver-  
t(d)  
t(f)  
FT  
sus LED PW.  
The turn on transition time t(f) combined with the power  
triacs turn on time is important to the power dissipation of this  
device.  
0.1  
10  
20  
30  
40  
50  
60  
I
, LED TRIGGER CURRENT (mA)  
FT  
Figure 13. Delay Time, t(d), and Fall Time, t(f),  
versus LED Trigger Current  
SCOPE  
ZERO CROSS  
115  
I
FT  
DETECTOR  
VAC  
V
TM  
EXT. SYNC  
PHASE CTRL.  
FUNCTION  
GENERATOR  
t(d)  
V
PW CTRL.  
t(f)  
PERIOD CTRL.  
V
AMPL. CTRL.  
o
V
out  
I
TM  
FT  
ISOL. TRANSF.  
DU  
T
10 k  
A
C
100  
Figure 14. Switching Time Test Circuit  
Select the value of R1 according to the following formulas:  
MOC2R60  
(1) R1 = (V  
(2) R1 = (V  
– V ) / Max. I (on) per spec.  
V
CC  
CC  
F
FT  
CC  
R2  
C1  
– V ) / 0.050  
F
MOV  
Typical values for C1 and R2 are 0.01 µF and 39 ,  
respectively. You may adjust these values for specific  
applications. The maximum recommended value of C1 is  
0.022 µF. See application note AN1048 for additional  
information on component values.  
R1  
Load  
The MOV may or may not be needed depending upon the  
characteristics of the applied AC line voltage. For  
applications where line spikes may exceed the 600 volts  
rating of the MOC2R60, an MOV is required.  
Figure 15. Typical Application Circuit  
Motorola Optoelectronics Device Data  
5
Use care to maintain the minimum spacings as  
shown. Safety and regulatory requirements dictate  
a minimum of 8.0 mm between the closest points  
between input and output conducting paths,  
Pins 3 and 7. Also, 0.070 inches distance is  
required between the two output Pins, 7 and 9.  
0.070” MIN  
Keep pad sizes on Pins 7 and 9 as large as possible for  
optimal performance.  
0.315” min  
[8 mm min]  
Figure 16. PC Board Layout Recommendations  
Device Under Test  
Noise  
Source  
Each device, when installed in the circuit  
shown in Figure 17, shall be capable of  
2
3
7
9
passing the following conducted noise tests:  
AC  
Supply  
IEEE 472 (2.5 KV)  
10  
Lamp Dimmer (NEMA Part DC33, 3.4.2.1)  
NEMA ICS 2-230.45 Showering Arc  
MIL-STD-461A CS01, CS02 and CS06  
MOV  
150 V  
I
= Rated I  
0.022 µF  
F
F
Z Load  
Figure 17. Test Circuit for Conducted Noise Tests  
No Additional Heatsink  
T
T
T
C
A
J
R
R
θCA  
Junction  
θ
JC  
Ambient Air  
Temperature  
Temperature of  
MOC2R60 . . .  
Output Chip  
Heat Flow  
{
}
X
With Additional Heatsink  
T
T
T
A
T
J
S
C
R
R
R
θSA  
θ
JC  
θ
CS  
Terms in the model signify:  
T
= Ambient temperature  
= Optional additional  
heat sink temperature  
= Case temperature  
= Junction temperature  
= Power dissipation  
R
R
R
R
= Thermal resistance, heat sink to ambient  
= Thermal resistance, case to ambient  
= Thermal resistance, heat sink to case  
= Thermal resistance, junction to case  
A
θSA  
θCA  
θCS  
θJC  
T
S
T
T
P
C
J
Thermal measurements  
of R are referenced to  
D
θJC  
Values for thermal resistance components are: R  
R
= 36°C/W/in maximum  
= 8.0°C/W maximum  
the point on the heat tab  
indicated with an ‘X’.  
θCA  
θJC  
The design of any additional heatsink will determine the values of R  
and R .  
θCS  
Measurements should be  
taken with device orientated  
along its vertical axis.  
θSA  
T
C
– T = P (R  
θCA  
)
A
D
= P (R  
θJC  
) + R  
), where P = Power Dissipation in Watts.  
D
θSA  
D
Figure 18. Approximate Thermal Circuit Model  
6
Motorola Optoelectronics Device Data  
PACKAGE DIMENSIONS  
C
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
–A–  
E
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
E
MIN  
MAX  
1.005  
0.436  
0.190  
0.035  
0.060  
MIN  
24.51  
10.57  
4.32  
0.64  
1.02  
MAX  
25.53  
11.07  
4.83  
0.89  
1.52  
0.965  
0.416  
0.170  
0.025  
0.040  
S
–B–  
N
P
2
3
7
9
G
H
J
K
L
N
P
S
0.400 BSC  
10.16 BSC  
–T–  
SEATING  
PLANE  
0.040  
0.012  
0.134  
0.060  
0.018  
0.154  
1.02  
0.30  
3.40  
1.52  
0.46  
3.91  
K
0.200 BSC  
5.08 BSC  
V
L
J
0.190  
0.023  
0.695  
0.210  
0.043  
0.715  
4.83  
0.58  
5.33  
1.09  
G
H
17.65  
18.16  
V
0.100 BSC  
2.54 BSC  
D 4 PL  
M
M
M
0.13 (0.005)  
T
A
B
STYLE 2:  
PIN 2. LED CATHODE  
3. LED ANODE  
7. TRIAC MT  
9. TRIAC MT  
CASE 417–02  
PLASTIC  
STANDARD HEAT TAB  
ISSUE C  
ORDER “F” SUFFIX  
HEAT TAB OPTION  
(EX: MOC2R60–10F)  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
INCHES  
MILLIMETERS  
–A–  
U
C
DIM  
A
B
C
D
E
MIN  
MAX  
1.005  
0.436  
0.190  
0.035  
0.060  
MIN  
24.51  
10.57  
4.32  
MAX  
25.53  
11.07  
4.83  
0.965  
0.416  
0.170  
0.025  
0.040  
E
W
Z RADIUS  
Y
0.64  
0.89  
Q
1.02  
1.52  
G
H
J
K
L
0.400 BSC  
10.16 BSC  
X
0.040  
0.012  
0.134  
0.060  
0.018  
0.154  
1.02  
0.30  
3.40  
1.52  
0.46  
3.91  
0.200 BSC  
5.08 BSC  
S
R
N
P
Q
R
S
0.190  
0.023  
0.057  
0.734  
0.840  
0.593  
0.210  
0.043  
0.067  
0.754  
0.870  
0.613  
4.83  
0.58  
1.45  
18.64  
21.34  
15.06  
5.33  
1.09  
1.70  
19.15  
22.10  
15.57  
–B–  
P
2
3
7
9
N
U
V
–T–  
0.100 BSC  
2.54 BSC  
SEATING  
PLANE  
W
X
Y
0.074  
0.265  
0.079  
0.026  
0.094  
0.295  
0.089  
0.036  
1.88  
6.73  
2.01  
0.66  
2.39  
7.49  
2.26  
0.91  
K
J
V
G
L
H
Z
D 4 PL  
0.13 (0.005)  
M
M
M
T
A
B
STYLE 1:  
PIN 2. LED CATHODE  
3. LED ANODE  
7. TRIAC MT  
9. TRIAC MT  
CASE 417A–02  
PLASTIC  
FLUSH MOUNT HEAT TAB  
ISSUE A  
Motorola Optoelectronics Device Data  
7
PACKAGE DIMENSIONS — CONTINUED  
ORDER “C” SUFFIX  
HEAT TAB OPTION  
(EX: MOC2R60–10C)  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
C
–A–  
INCHES  
MILLIMETERS  
E
DIM  
A
B
C
D
E
G
H
J
K
L
N
P
MIN  
MAX  
1.005  
0.436  
0.190  
0.035  
0.060  
MIN  
24.51  
10.57  
4.32  
MAX  
25.53  
11.07  
4.83  
0.965  
0.416  
0.170  
0.025  
0.040  
–B–  
S
P
0.64  
0.89  
1.02  
1.52  
N
2
3
7
9
0.400 BSC  
10.16 BSC  
0.040  
0.012  
0.134  
0.060  
0.060  
0.154  
1.02  
0.30  
3.40  
1.52  
0.46  
3.91  
–T–  
K
SEATING  
PLANE  
V
0.200 BSC  
5.08 BSC  
L
J
0.190  
0.023  
0.439  
0.210  
0.043  
0.529  
4.83  
0.58  
5.33  
1.09  
H
G
S
11.15  
13.44  
V
0.100 BSC  
2.54 BSC  
D 4 PL  
M
M
M
0.13 (0.005)  
T
A
B
STYLE 1:  
PIN 2. LED CATHODE  
3. LED ANODE  
7. TRIAC MT  
9. TRIAC MT  
CASE 417B–01  
PLASTIC  
CUT HEAT TAB  
ISSUE O  
Motorolareserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representationorguaranteeregarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,  
andspecifically disclaims any and all liability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters can and do vary in different  
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does  
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in  
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of  
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintendedor unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
How to reach us:  
USA / EUROPE: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447  
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609  
INTERNET: http://Design–NET.com  
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MOC2R60–10/D  

相关型号:

MOC3000

1 CHANNEL SCR OUTPUT OPTOCOUPLER, DIP-6
MOTOROLA

MOC3000R

1 CHANNEL SCR OUTPUT OPTOCOUPLER, DIP-6
MOTOROLA

MOC3000S

1 CHANNEL SCR OUTPUT OPTOCOUPLER, DIP-6
MOTOROLA

MOC3000T

1 CHANNEL SCR OUTPUT OPTOCOUPLER, DIP-6
MOTOROLA

MOC3001

1 CHANNEL SCR OUTPUT OPTOCOUPLER, DIP-6
MOTOROLA

MOC3001S

SCR Output Optocoupler, 1-Element, 7500V Isolation, DIP-6
MOTOROLA

MOC3001T

1 CHANNEL SCR OUTPUT OPTOCOUPLER, DIP-6
MOTOROLA

MOC3002

1 CHANNEL SCR OUTPUT OPTOCOUPLER, DIP-6
MOTOROLA

MOC3002R

1 CHANNEL SCR OUTPUT OPTOCOUPLER, DIP-6
MOTOROLA

MOC3002S

1 CHANNEL SCR OUTPUT OPTOCOUPLER, DIP-6
MOTOROLA

MOC3002T

1 CHANNEL SCR OUTPUT OPTOCOUPLER, DIP-6
MOTOROLA

MOC3003

SCR Output Optocoupler, 1-Element, 7500V Isolation, DIP-6
MOTOROLA