MPC7410RX400LE [MOTOROLA]

32-BIT, 400MHz, RISC PROCESSOR, CBGA360, 25 X 25 MM, 3.20 MM HEIGHT, 1.27 MM PITCH, CERAMIC, BGA-360;
MPC7410RX400LE
型号: MPC7410RX400LE
厂家: MOTOROLA    MOTOROLA
描述:

32-BIT, 400MHz, RISC PROCESSOR, CBGA360, 25 X 25 MM, 3.20 MM HEIGHT, 1.27 MM PITCH, CERAMIC, BGA-360

时钟 外围集成电路
文件: 总73页 (文件大小:873K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Advance Information  
MPC7410EC  
Rev. 2, 10/2003  
MPC7410 RISC  
Microprocessor  
Hardware Specications  
The MPC7410 is a PowerPC™ microprocessor. The MPC7410 is a reduced instruction set  
computing (RISC) microprocessor that implements the PowerPC instruction set architecture.  
This document describes pertinent electrical and physical characteristics of the MPC7410. For  
functional characteristics of the processor, refer to the MPC7410 RISC Microprocessor User’s  
Manual.  
This document contains the following topics:  
Topic  
Page  
2
Section 1.1, “Overview”  
Section 1.2, “Features”  
2
Section 1.3, “General Parameters”  
Section 1.4, “Electrical and Thermal Characteristics”  
Section 1.5, “Pin Assignments”  
Section 1.6, “Pinout Listings”  
Section 1.7, “Package Description”  
Section 1.8, “System Design Information”  
Section 1.9, “Document Revision History”  
Section 1.10, “Ordering Information”  
7
8
24  
25  
29  
31  
44  
47  
To locate any published errata or updates for this document, refer to the web site at  
http://www.motorola.com/semiconductors.  
Overview  
1.1 Overview  
The MPC7410 is the second implementation of the fourth generation (G4) microprocessors from Motorola.  
The MPC7410 implements the full PowerPC 32-bit architecture and is targeted at both computing and  
embedded systems applications.  
Some comments on the MPC7410 with respect to the MPC750:  
The MPC7410 adds an implementation of the new AltiVec™ technology instruction set.  
The MPC7410 includes significant improvements in memory subsystem (MSS) bandwidth and  
offers an optional, high-bandwidth MPX bus interface.  
The MPC7410 adds full hardware-based multiprocessing capability, including a five-state cache  
coherency protocol (four MESI states plus a fifth state for shared intervention).  
The MPC7410 is implemented in a next generation process technology for core frequency  
improvement.  
The MPC7410 floating-point unit has been improved to make latency equal for double- and  
single-precision operations involving multiplication.  
The completion queue has been extended to eight slots.  
There are no other significant changes to scalar pipelines, decode/dispatch/completion mechanisms,  
or the branch unit. The MPC750 four-stage pipeline model is unchanged (fetch, decode/dispatch,  
execute, complete/writeback).  
Some comments on the MPC7410 with respect to the MPC7400:  
The MPC7410 adds configurable direct-mapped SRAM capability to the L2 cache interface.  
The MPC7410 adds 32-bit interface support to the L2 cache interface. The MPC7410 implements  
a 19th L2 address pin (L2ASPARE on the MPC7400) in order to support additional address range.  
The MPC7410 removes support for 3.3-V I/O on the L2 cache interface.  
Figure 1 shows a block diagram of the MPC7410.  
1.2 Features  
This section summarizes features of the MPC7410 implementation of the PowerPC architecture. Major  
features of the MPC7410 are as follows:  
Branch processing unit  
— Four instructions fetched per clock  
— One branch processed per cycle (plus resolving two speculations)  
— Up to one speculative stream in execution, one additional speculative stream in fetch  
— 512-entry branch history table (BHT) for dynamic prediction  
— 64-entry, four-way set-associative branch target instruction cache (BTIC) for eliminating  
branch delay slots  
Dispatch unit  
— Full hardware detection of dependencies (resolved in the execution units)  
— Dispatch two instructions to eight independent units (system, branch, load/store, fixed-point  
unit 1, fixed-point unit 2, floating-point, AltiVec permute, AltiVec ALU)  
— Serialization control (predispatch, postdispatch, execution serialization)  
2
MPC7410 RISC Microprocessor Hardware Specications  
MOTOROLA  
Features  
Figure 1. MPC7410 Block Diagram  
MOTOROLA  
MPC7410 RISC Microprocessor Hardware Specications  
3
Features  
Decode  
— Register file access  
— Forwarding control  
— Partial instruction decode  
Completion  
— Eight-entry completion buffer  
— Instruction tracking and peak completion of two instructions per cycle  
— Completion of instructions in program order while supporting out-of-order instruction  
execution, completion serialization, and all instruction flow changes  
Fixed point units (FXUs) that share 32 GPRs for integer operands  
— Fixed point unit 1 (FXU1)—multiply, divide, shift, rotate, arithmetic, logical  
— Fixed point unit 2 (FXU2)—shift, rotate, arithmetic, logical  
— Single-cycle arithmetic, shifts, rotates, logical  
— Multiply and divide support (multi-cycle)  
— Early out multiply  
Three-stage floating-point unit and a 32-entry FPR file  
— Support for IEEE-754 standard single- and double-precision floating-point arithmetic  
— Three-cycle latency, one-cycle throughput (single- or double-precision)  
— Hardware support for divide  
— Hardware support for denormalized numbers  
— Time deterministic non-IEEE mode  
System unit  
— Executes CR logical instructions and miscellaneous system instructions  
— Special register transfer instructions  
AltiVec unit  
— Full 128-bit data paths  
— Two dispatchable units: vector permute unit and vector ALU unit.  
— Contains its own 32-entry 128-bit vector register file (VRF) with 6 renames  
— The vectorALU unit is further subdivided into the vector simple integer unit (VSIU), the vector  
complex integer unit (VCIU), and the vector floating-point unit (VFPU).  
— Fully pipelined  
Load/store unit  
— One-cycle load or store cache access (byte, half word, word, double word)  
— Two-cycle load latency with 1-cycle throughput  
— Effective address generation  
— Hits under misses (multiple outstanding misses)  
— Single-cycle unaligned access within double-word boundary  
— Alignment, zero padding, sign extend for integer register file  
— Floating-point internal format conversion (alignment, normalization)  
— Sequencing for load/store multiples and string operations  
— Store gathering  
4
MPC7410 RISC Microprocessor Hardware Specications  
MOTOROLA  
Features  
— Executes the cache and TLB instructions  
— Big- and little-endian byte addressing supported  
— Misaligned little-endian supported  
— Supports FXU, FPU, and AltiVec load/store traffic  
— Complete support for all four architecture AltiVec DST streams  
Level 1 (L1) cache structure  
— 32K, 32-byte line, eight-way set-associative instruction cache (iL1)  
— 32K, 32-byte line, eight-way set-associative data cache (dL1)  
— Single-cycle cache access  
— Pseudo least-recently-used (LRU) replacement  
— Data cache supports AltiVec LRU and transient instructions algorithm  
— Copy-back or write-through data cache (on a page-per-page basis)  
— Supports all PowerPC memory coherency modes  
— Nonblocking instruction and data cache  
— Separate copy of data cache tags for efficient snooping  
— No snooping of instruction cache except for ICBI instruction  
Level 2 (L2) cache interface  
— Internal L2 cache controller and tags; external data SRAMs  
— 512K, 1M, and 2-Mbyte two-way set-associative L2 cache support  
— Copy-back or write-through data cache (on a page basis, or for all L2)  
— 32-byte (512-K), 64-byte (1-M), or 128-byte (2-M) sectored line size  
— Supports pipelined (register-register) synchronous BurstRAMs and pipelined (register-register)  
late write synchronous BurstRAMs  
— Supports direct-mapped mode for 256K, 512K, 1M, or 2-Mbyte of SRAM (either all, half, or  
none of L2 SRAM must be configured as direct-mapped)  
— Core-to-L2 frequency divisors of ÷1, ÷1.5, ÷2, ÷2.5, ÷3, ÷3.5, and ÷4 supported  
— 64-bit data bus which also supports 32-bit bus mode  
— Selectable interface voltages of 1.8 and 2.5 V  
Memory management unit  
— 128-entry, two-way set-associative instruction TLB  
— 128-entry, two-way set-associative data TLB  
— Hardware reload for TLBs  
— Four instruction BATs and four data BATs  
52  
— Virtual memory support for up to 4 exabytes (2 ) of virtual memory  
32  
— Real memory support for up to 4 gigabytes (2 ) of physical memory  
— Snooped and invalidated for TLBI instructions  
Efficient data flow  
— All data buses between VRF, load/store unit, dL1, iL1, L2, and the bus are 128 bits wide  
— dL1 is fully pipelined to provide 128 bits/cycle to/from the VRF  
— L2 is fully pipelined to provide 128 bits per L2 clock cycle to the L1s  
— Up to eight outstanding, out-of-order, cache misses between dL1 and L2/bus  
MOTOROLA  
MPC7410 RISC Microprocessor Hardware Specications  
5
Features  
— Up to seven outstanding, out-of-order transactions on the bus  
— Load folding to fold new dL1 misses into older, outstanding load and store misses to the same  
line  
— Store miss merging for multiple store misses to the same line. Only coherency action taken (that  
is, address only) for store misses merged to all 32 bytes of a cache line (no data tenure needed).  
— Two-entry finished store queue and four-entry completed store queue between load/store unit  
and dL1  
— Separate additional queues for efficient buffering of outbound data (castouts, write throughs,  
etc.) from dL1 and L2  
Bus interface  
— MPX bus extension to 60x processor interface  
— Mode-compatible with 60x processor interface  
— 32-bit address bus  
— 64-bit data bus  
— Bus-to-core frequency multipliers of 2x, 2.5x, 3x, 3.5x, 4x, 4.5x, 5x, 5.5x, 6x, 6.5x, 7x, 7.5x,  
8x, 9x supported  
— Selectable interface voltages of 1.8, 2.5, and 3.3 V  
Power management  
— Low-power design with thermal requirements very similar to MPC740 and MPC750  
— Low-voltage processor core  
— Selectable interface voltages can reduce power in output buffers  
— Three static power saving modes: doze, nap, and sleep  
— Dynamic power management  
Testability  
— LSSD scan design  
— IEEE 1149.1 JTAG interface  
— Array built-in self test (ABIST)—factory test only  
— Redundancy on L1 data arrays and L2 tag arrays  
Reliability and serviceability  
— Parity checking on 60x and L2 cache buses  
6
MPC7410 RISC Microprocessor Hardware Specications  
MOTOROLA  
General Parameters  
1.3 General Parameters  
The following list provides a summary of the general parameters of the MPC7410:  
Technology  
Die size  
0.18 µm CMOS, six-layer metal  
2
6.32 mm × 8.26 mm (52 mm )  
Transistor count  
Logic design  
Packages  
10.5 million  
Fully static  
Surface mount 360 ceramic ball grid array (CBGA)  
Surface mount 360 high coefficient of thermal expansion  
ceramic ball grid array (HCTE)  
Core power supply  
I/O power supply  
1.8 V ± 100 mV DC (nominal; see Table 3 for recommended  
operating conditions)  
1.8 V ± 100 mV DC or  
2.5 V ± 100 mV  
3.3 V ± 165 mV (system bus only)  
(input thresholds are configuration pin selectable)  
MOTOROLA  
MPC7410 RISC Microprocessor Hardware Specications  
7
Electrical and Thermal Characteristics  
1.4 Electrical and Thermal Characteristics  
This section provides the AC and DC electrical specifications and thermal characteristics for the MPC7410.  
1.4.1 DC Electrical Characteristics  
The tables in this section describe the MPC7410 DC electrical characteristics. Table 1 provides the absolute  
maximum ratings.  
1
Table 1. Absolute Maximum Ratings  
Characteristic  
Symbol  
Maximum Value  
Unit  
Notes  
Core supply voltage  
PLL supply voltage  
V
–0.3 to 2.1  
–0.3 to 2.1  
–0.3 to 2.1  
–0.3 to 3.6  
–0.3 to 2.8  
V
V
4
4
DD  
AV  
DD  
L2 DLL supply voltage  
Processor bus supply voltage  
L2 bus supply voltage  
Input voltage  
L2AV  
V
4
DD  
OV  
V
3, 6  
3
DD  
L2OV  
V
DD  
Processor bus  
L2 bus  
V
V
V
–0.3 to OV + 0.2 V  
V
2, 5  
2, 5  
in  
in  
in  
DD  
–0.3 to L2OV + 0.2 V  
V
DD  
JTAG signals  
–0.3 to OV + 0.2 V  
V
DD  
Storage temperature range  
Rework temperature  
Notes:  
T
–55 to 150  
260  
°C  
°C  
stg  
T
rwk  
1. Functional and tested operating conditions are given in Table 3. Absolute maximum ratings are stress ratings only,  
and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device  
reliability or cause permanent damage to the device.  
2. Caution: V must not exceed OV or L2OV by more than 0.2 V at any time including during power-on reset.  
in  
DD  
DD  
3. Caution: L2OV /OV must not exceed V /AV /L2AV by more than 2.0 V at any time including during  
DD  
DD  
DD  
DD  
DD  
power-on reset; this limit may be exceeded for a maximum of 20 ms during power-on reset and power-down  
sequences.  
4. Caution: V /AV /L2AV must not exceed L2OV /OV by more than 0.4 V at any time including during  
DD  
DD  
DD  
DD  
DD  
power-on reset; this limit may be exceeded for a maximum of 20 ms during power-on reset and power-down  
sequences.  
5. V may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 2.  
in  
6. MPC7410RXnnnLE (Rev. 1.4) and later only. Previous revisions do not support 3.3 V OV and have a maximum  
DD  
value OV of –0.3 to 2.8 V.  
DD  
8
MPC7410 RISC Microprocessor Hardware Specications  
MOTOROLA  
Electrical and Thermal Characteristics  
Figure 2 shows the allowable undershoot and overshoot voltage for the MPC7410.  
(L2)OV  
DD  
+ 20%  
+ 5%  
(L2)OV  
DD  
(L2)OV  
DD  
V
IH  
V
IL  
GND  
GND – 0.3 V  
GND – 0.7 V  
Not to Exceed 10%  
of t (OV  
)
DD  
SYSCLK  
or t  
(L2OV  
)
L2CLK  
DD  
Figure 2. Overshoot/Undershoot Voltage  
The MPC7410 provides several I/O voltages to support both compatibility with existing systems and  
migration to future systems. The MPC7410 core voltage must always be provided at nominal voltage (see  
Table 3 for actual recommended core voltage). Voltage to the L2 I/Os and processor interface I/Os are  
provided through separate sets of supply pins and may be provided at the voltages shown in Table 2. Voltage  
must be provided to the L2OV power pins even if the interface is not used. The input voltage threshold  
DD  
for each bus is selected by sampling the state of the voltage select pins BVSEL and L2VSEL at the negation  
of the signal HRESET. These signals must remain stable during part operation and cannot change. The  
output voltage will swing from GND to the maximum voltage applied to the OV or L2OV power pins.  
DD  
DD  
Table 2. Input Threshold Voltage Setting  
Processor Bus Input  
Threshold is Relative to:  
L2 Bus Input Threshold is  
Relative to:  
3
3
BVSEL Signal  
L2VSEL Signal  
Notes  
0
1.8 V  
2.5 V  
3.3 V  
3.3 V  
0
1.8 V  
2.5 V  
1
1, 2  
1, 4, 5  
6
HRESET  
1
HRESET  
1
2.5 V  
¬HRESET  
¬HRESET  
Not Supported  
Notes:  
1. Caution: The input threshold selection must agree with the OV /L2OV voltages supplied.  
DD  
DD  
2. To select the 2.5-V threshold option, BVSEL and/or L2VSEL should be tied to HRESET so that the two signals  
change state together. This is the preferred method for selecting this mode of operation.  
3. To overcome the internal pull-up resistance, a pull-down resistance less than 250 should be used.  
4. Default voltage setting if left unconnected (internal pulled-up). MPC7410RXnnnLE (Rev 1.4) and later only.  
Previous revisions do not support 3.3 V OV , the default voltage setting if left unconnected is 2.5 V.  
DD  
5. MPC7410RXnnnLE (Rev. 1.4) and later only. Previous revisions do not support 3.3 V OV , having BVSEL = 1  
DD  
selects the 2.5-V threshold.  
6. MPC7410RXnnnLE (Rev. 1.4) and later only. Previous revisions do not support BVSEL = ¬HRESET. (¬HRESET is  
the inverse of HRESET.)  
MOTOROLA  
MPC7410 RISC Microprocessor Hardware Specications  
9
Electrical and Thermal Characteristics  
Table 3 provides the recommended operating conditions for the MPC7410.  
1
Table 3. Recommended Operating Conditions  
Recommended  
Value  
Characteristic  
Core supply voltage  
Symbol  
Unit  
Notes  
V
1.8 V ± 100 mV  
1.8 V ± 100 mV  
1.8 V ± 100 mV  
1.8 V ± 100 mV  
2.5 V ± 100 mV  
3.3 V ± 165 mV  
V
V
V
V
V
V
DD  
PLL supply voltage  
AV  
DD  
L2 DLL supply voltage  
L2AV  
DD  
Processor bus supply  
voltage  
BVSEL = 0  
OV  
OV  
OV  
DD  
BVSEL = HRESET  
DD  
DD  
BVSEL = ¬HRESET or  
BVSEL = 1  
2, 3  
L2 bus supply voltage  
Input voltage  
L2VSEL = 0  
L2OV  
L2OV  
1.8 V ± 100 mV  
2.5 V ± 100 mV  
V
V
DD  
L2VSEL = HRESET or  
L2VSEL = 1  
DD  
Processor bus and  
JTAG signals  
V
GND to OV  
V
in  
DD  
L2 bus  
V
GND to L2OV  
0 to 105  
V
in  
DD  
Die-junction temperature  
T
°C  
j
Notes:  
1. These are the recommended and tested operating conditions. Proper device operation outside of these conditions  
is not guaranteed.  
2. MPC7410RXnnnLE (Rev. 1.4) and later only. Previous revisions do not support 3.3 V OV and have a  
DD  
recommended OV value of 2.5 V ± 100 mV for BVSEL = 1.  
DD  
3. MPC7410RXnnnLE (Rev. 1.4) and later only. Previous revisions do not support BVSEL = ¬HRESET.  
Table 4 provides the package thermal characteristics for the MPC7410.  
Table 4. Package Thermal Characteristics  
Value  
Characteristic  
Symbol  
MPC7410  
HCTE  
CBGA  
Unit  
Notes  
MPC7410  
CBGA  
Junction-to-ambient thermal resistance, natural convection,  
single-layer (1s) board  
R
24  
17  
18  
16  
14  
30  
22  
23  
21  
19  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1, 2  
1, 3  
1, 3  
JA  
θ
Junction-to-ambient thermal resistance, natural convection,  
four-layer (2s2p) board  
R
JMA  
JMA  
JMA  
JMA  
θ
θ
θ
θ
Junction-to-ambient thermal resistance, 200 ft/min airow,  
single-layer (1s) board  
R
R
R
Junction-to-ambient thermal resistance, 400 ft/min airow,  
single-layer (1s) board  
Junction-to-ambient thermal resistance, 200 ft/min airow,  
1, 3  
four-layer (2s2p) board  
10  
MPC7410 RISC Microprocessor Hardware Specications  
MOTOROLA  
Electrical and Thermal Characteristics  
Table 4. Package Thermal Characteristics (continued)  
Value  
Characteristic  
Symbol  
MPC7410  
HCTE  
CBGA  
Unit  
Notes  
MPC7410  
CBGA  
Junction-to-ambient thermal resistance, 400 ft/min airow,  
R
13  
18  
°C/W  
JMA  
θ
four-layer (2s2p) board  
Junction-to-board thermal resistance  
Junction-to-case thermal resistance  
Notes:  
R
R
8
14  
°C/W  
°C/W  
4
5
JB  
JC  
θ
< 0.1  
< 0.1  
θ
1. Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, airow, power dissipation of other components on the board, and board thermal  
resistance.  
2. Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.  
3. Per JEDEC JESD51-6 with the board horizontal.  
4. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is  
measured on the top surface of the board near the package.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method  
(MIL SPEC-883 Method 1012.1) with the calculated case temperature. The actual value of R  
for the part is less  
θJC  
than 0.1˚C/W.  
Note: Refer to Section 1.8.8, “Thermal Management Information,” for more details about thermal management.  
Table 5 provides the DC electrical characteristics for the MPC7410.  
Table 5. DC Electrical Specications  
At recommended operating conditions (see Table 3)  
Nominal  
Characteristic  
Bus  
Voltage  
Symbol  
Min  
Max  
Unit  
Notes  
1
Input high voltage (all inputs except  
SYSCLK)  
1.8  
2.5  
3.3  
1.8  
2.5  
3.3  
1.8  
2.5  
3.3  
1.8  
2.5  
3.3  
V
V
V
0.65 × (L2)OV  
1.7  
(L2)OV + 0.2  
V
2, 3, 8  
IH  
IH  
IH  
DD  
DD  
(L2)OV + 0.2  
DD  
2.0  
OV + 0.3  
DD  
Input low voltage (all inputs except  
SYSCLK)  
V
V
V
–0.3  
–0.3  
–0.3  
1.5  
0.35 × (L2)OV  
V
V
V
8
2, 8  
8
IL  
IL  
IL  
DD  
DD  
0.2 × (L2)OV  
0.8  
SYSCLK input high voltage  
SYSCLK input low voltage  
CV  
CV  
CV  
OV + 0.2  
DD  
IH  
IH  
IH  
2.0  
OV + 0.2  
DD  
2.4  
OV + 0.3  
DD  
CV  
CV  
CV  
–0.3  
–0.3  
–0.3  
0.2  
0.4  
0.4  
IL  
IL  
IL  
MOTOROLA  
MPC7410 RISC Microprocessor Hardware Specications  
11  
Electrical and Thermal Characteristics  
Table 5. DC Electrical Specications (continued)  
At recommended operating conditions (see Table 3)  
Nominal  
Characteristic  
Bus  
Voltage  
Symbol  
Min  
Max  
Unit  
Notes  
1
Input leakage current,  
1.8  
2.5  
3.3  
1.8  
2.5  
3.3  
1.8  
2.5  
3.3  
1.8  
2.5  
3.3  
I
I
I
20  
35  
µA  
2, 3,  
6, 7  
in  
in  
in  
V
= L2OV /OV  
in  
DD DD  
70  
High-Z (off-state) leakage current,  
= L2OV /OV  
I
I
I
20  
µA  
V
2, 3,  
5, 7  
TSI  
TSI  
TSI  
V
in  
DD  
DD  
35  
70  
Output high voltage, I = –6 mA  
V
V
V
(L2)OV – 0.45  
8
8
OH  
OH  
OH  
OH  
DD  
1.7  
2.4  
Output low voltage, I = 6 mA  
V
V
V
0.45  
0.4  
0.4  
6.0  
V
OL  
OL  
OL  
OL  
Capacitance, V = 0 V, f = 1 MHz  
C
pF  
3, 4, 7  
in  
in  
Notes:  
1. Nominal voltages; see Table 3 for recommended operating conditions.  
2. For processor bus signals, the reference is OV while L2OV is the reference for the L2 bus signals.  
DD  
DD  
3. Excludes factory test signals.  
4. Capacitance is periodically sampled rather than 100% tested.  
5. The leakage is measured for nominal OV and L2OV , or both OV and L2OV must vary in the same  
DD  
DD  
DD  
DD  
direction (for example, both OV and L2OV vary by either +5% or –5%).  
DD  
DD  
6. Measured at max OV /L2OV  
.
DD  
DD  
7. Excludes IEEE 1149.1 boundary scan (JTAG) signals.  
8. For JTAG support: all signals controlled by BVSEL and L2VSEL will see V /V /V /V /CV /CV DC limits of  
IL IH OL OH  
IH  
IL  
1.8 V mode while either the EXTEST or CLAMP instruction is loaded into the IEEE 1149.1 instruction register by  
the UpdateIR TAP state until a different instruction is loaded into the instruction register by either another UpdateIR  
or a Test-Logic-Reset TAP state. If only TSRT is asserted to the part, and then a SAMPLE instruction is executed,  
there is no way to control or predict what the DC voltage limits are. If HRESET is asserted before executing a  
SAMPLE instruction, the DC voltage limits will be controlled by the BVSEL/L2VSEL settings during HRESET.  
Anytime HRESET is not asserted (that is, just asserting TRST), the voltage mode is not known until either EXTEST  
or CLAMP is executed, at which time the voltage level will be at the DC limits of 1.8 V.  
12  
MPC7410 RISC Microprocessor Hardware Specications  
MOTOROLA  
Electrical and Thermal Characteristics  
Table 6 provides the power consumption for the MPC7410.  
Table 6. Power Consumption for MPC7410  
Processor (CPU) Frequency  
450 MHz  
Unit  
Notes  
400 MHz  
500 MHz  
Full-On Mode  
4.7  
Typical  
4.2  
9.5  
5.3  
W
W
1, 3  
1, 2  
Maximum  
10.7  
11.9  
Doze Mode  
Nap Mode  
Maximum  
Maximum  
Maximum  
4.3  
1.35  
1.3  
4.8  
5.3  
1.65  
1.6  
W
W
W
1
1
1
1.5  
Sleep Mode  
1.45  
Sleep Mode—PLL and DLL Disabled  
Typical  
600  
1.1  
600  
1.1  
600  
1.1  
mW  
W
1
1
Maximum  
Notes:  
1. These values apply for all valid processor bus and L2 bus ratios.The values do not include I/O supply power (OV  
DD  
and L2OV ) or PLL/DLL supply power (AV and L2AV ). OV and L2OV power is system dependent, but  
DD  
DD  
DD  
DD  
DD  
is typically <10% of V power. Worst case power consumption for AV = 15 mW and L2AV = 15 mW.  
DD  
DD  
DD  
2. Maximum power is measured at 105°C and V = 1.8 V while running an entirely cache-resident, contrived  
DD  
sequence of instructions which keep the execution units, including AltiVec, maximally busy.  
3. Typical power is an average value measured at 65°C and V = 1.8 V in a system while running typical  
DD  
benchmarks.  
1.4.2 AC Electrical Characteristics  
This section provides the AC electrical characteristics for the MPC7410. After fabrication, functional parts  
are sorted by maximum processor core frequency, see Section 1.4.2.1, “ClockAC Specifications,” and tested  
for conformance to the AC specifications for that frequency. The processor core frequency is determined by  
the bus (SYSCLK) frequency and the settings of the PLL_CFG[0:3] signals. Parts are sold by maximum  
processor core frequency; see Section 1.10, “Ordering Information.”  
1.4.2.1  
Clock AC Specications  
Table 7 provides the clock AC timing specifications as defined in Figure 3.  
MOTOROLA  
MPC7410 RISC Microprocessor Hardware Specications  
13  
Electrical and Thermal Characteristics  
Table 7. Clock AC Timing Specications  
At recommended operating conditions (see Table 3)  
Maximum Processor Core Frequency  
400 MHz 450 MHz 500 MHz  
Characteristic  
Symbol  
Unit  
Notes  
Min  
Max  
Min  
Max  
Min  
Max  
Processor frequency  
VCO frequency  
f
350  
700  
33  
400  
800  
133  
30  
350  
700  
33  
450  
900  
133  
30  
350  
700  
33  
500  
1000  
133  
30  
MHz  
MHz  
MHz  
ns  
1
1
1
core  
f
VCO  
SYSCLK frequency  
SYSCLK cycle time  
SYSCLK rise and fall time  
SYSCLK duty cycle  
f
t
SYSCLK  
SYSCLK  
7.5  
7.5  
7.5  
t
and t  
0.5  
60  
0.5  
60  
0.5  
ns/V  
%
2
3
KR  
KF  
t
/t  
40  
40  
40  
60  
KHKL SYSCLK  
measured at OV /2  
DD  
SYSCLK jitter  
Internal PLL-relock time  
Notes:  
±150  
100  
±150  
100  
±150  
100  
ps  
4
5
µs  
1. Caution: The SYSCLK frequency and PLL_CFG[0:3] settings must be chosen such that the resulting SYSCLK  
(bus) frequency, CPU (core) frequency, and PLL (VCO) frequency do not exceed their respective maximum or  
minimum operating frequencies.Refer to the PLL_CFG[0:3] signal description in Section 1.8.1, “PLL Conguration,”  
for valid PLL_CFG[0:3] settings.  
2. Rise and fall times measurement are determined by the slew rates of the bus interface, rather than by time. As a  
result, the 0.5 ns rise/fall time spec of the 1.8- and 2.5-V bus interfaces is equivalent to the 1 ns rise/fall time of the  
3.3-V bus interface. Both interfaces required a 2 V/ns slew rate. The slew rate is measured as a 1-V change (from  
0.2 to 1.2 V) in 0.5 ns for the 1.8- and 2.5-V bus interfaces, whereas the 3.3-V bus interface required a 2-V change  
(from 0.4 to 2.4 V) in 1 ns.  
3. Timing is guaranteed by design and characterization.  
4. This represents total input jitter—short- and long-term combined—and is guaranteed by design.  
5. Relock timing is guaranteed by design and characterization. PLL-relock time is the maximum amount of time  
required for PLL lock after a stable V and SYSCLK are reached during the power-on reset sequence. This  
DD  
specication also applies when the PLL has been disabled and subsequently re-enabled during sleep mode. Also  
note that HRESET must be held asserted for a minimum of 255 bus clocks after the PLL-relock time during the  
power-on reset sequence.  
Figure 3 provides the SYSCLK input timing diagram.  
CV  
IH  
SYSCLK  
VM  
t
VM  
VM  
CV  
IL  
t
KHKL  
t
KR  
KF  
t
SYSCLK  
VM = Midpoint Voltage (OV /2)  
DD  
Figure 3. SYSCLK Input Timing Diagram  
14  
MPC7410 RISC Microprocessor Hardware Specications  
MOTOROLA  
Electrical and Thermal Characteristics  
1.4.2.2  
Processor Bus AC Specications  
Table 8 provides the processor bus AC timing specifications for the MPC7410 as defined in Figure 4 and  
Figure 5. Timing specifications for the L2 bus are provided in Section 1.4.2.3, “L2 Clock AC  
Specifications.”  
1
Table 8. Processor Bus AC Timing Specications  
At recommended operating conditions (see Table 3)  
400, 450, 500 MHz  
2
Parameter  
Symbol  
Unit  
Notes  
Min  
Max  
Input setup  
t
t
1.0  
0
ns  
ns  
ns  
4
4
IVKH  
Input hold  
IXKH  
Output valid times:  
5, 6  
TS  
ARTRY, SHD0, SHD1  
All other outputs  
t
t
t
3.0  
2.3  
3.0  
KHTSV  
KHARV  
KHOV  
Output hold times:  
ns  
5
9
TS  
ARTRY, SHD0, SHD1  
All other outputs  
t
t
t
0.5  
0.5  
0.5  
KHTSX  
KHARX  
KHOX  
SYSCLK to output enable  
t
0.5  
ns  
ns  
KHOE  
SYSCLK to output high impedance (all except  
ABB/AMON(0), ARTRY/SHD, DBB/DMON(0), SHD0,  
SHD1)  
t
3.5  
KHOZ  
SYSCLK to ABB/AMON(0), DBB/DMON(0) high  
impedance after precharge  
t
1
1
t
t
3, 7, 9  
3, 8, 9  
KHABPZ  
SYSCLK  
Maximum delay to ARTRY, SHD0, SHD1 precharge  
t
KHARP  
SYSCLK  
MOTOROLA  
MPC7410 RISC Microprocessor Hardware Specications  
15  
Electrical and Thermal Characteristics  
Table 8. Processor Bus AC Timing Specications (continued)  
1
At recommended operating conditions (see Table 3)  
400, 450, 500 MHz  
2
Parameter  
Symbol  
Unit  
Notes  
Min  
Max  
SYSCLK to ARTRY, SHD0, SHD1 high impedance after  
precharge  
t
2
t
3, 8, 9  
KHARPZ  
SYSCLK  
Notes:  
1. All input specications are measured from the midpoint of the signal in question to the midpoint of the rising edge  
of the input SYSCLK. All output specications are measured from the midpoint of the rising edge of SYSCLK to the  
midpoint of the signal in question. All output timings assume a purely resistive 50-load (see Figure 4). Input and  
output timings are measured at the pin; time-of-ight delays must be added for trace lengths, vias, and connectors  
in the system.  
2. The symbology used for timing specications herein follows the pattern of t  
for inputs and  
(signal)(state)(reference)(state)  
t
for outputs. For example, t  
symbolizes the time input signals (I) reach the valid state  
(reference)(state)(signal)(state)  
IVKH  
(V) relative to the SYSCLK reference (K) going to the high (H) state or input setup time. And t  
symbolizes the  
KHOV  
time from SYSCLK(K) going high (H) until outputs (O) are valid (V) or output valid time. Input hold time can be read  
as the time that the input signal (I) went invalid (X) with respect to the rising clock edge (KH)— note the position of  
the reference and its state for inputs—and output hold time can be read as the time from the rising edge (KH) until  
the output went invalid (OX).  
3. t  
is the period of the external clock (SYSCLK) in ns. The numbers given in the table must be multiplied by  
SYSCLK  
the period of SYSCLK to compute the actual time duration (in ns) of the parameter in question.  
4. Includes mode select signals: BVSEL, EMODE, L2VSEL. See Figure 5 for mode select timing with respect to  
HRESET.  
5. All other output signals are composed of the following— A[0:31], AP[0:3], TT[0:4], TS, TBST, TSIZ[0:2], GBL, WT,  
CI, DH[0:31], DL[0:31], DP[0:7], BR, CKSTP_OUT, DRDY, HIT, QREQ, RSRV.  
6. Output valid time is measured from 2.4 to 0.8 V which may be longer than the time required to discharge from V  
to 0.8 V.  
DD  
7. According to the 60x bus protocol, ABB and DBB are driven only by the currently active bus master. They are  
asserted low then precharged high before returning to high-Z as shown in Figure 6. The nominal precharge width  
for ABB or DBB is 0.5 × t , that is, less than the minimum t period, to ensure that another master  
SYSCLK  
SYSCLK  
asserting ABB, or DBB on the following clock will not contend with the precharge. Output valid and output hold  
timing is tested for the signal asserted. Output valid time is tested for precharge.The high-Z behavior is guaranteed  
by design.  
8. According to the 60x bus protocol, ARTRY can be driven by multiple bus masters through the clock period  
immediately following AACK. Bus contention is not an issue since any master asserting ARTRY will be driving it  
low. Any master asserting it low in the rst clock following AACK will then go to high-Z for one clock before  
precharging it high during the second cycle after the assertion of AACK. The nominal precharge width for ARTRY  
is 1.0 t  
; that is, it should be high-Z as shown in Figure 6 before the rst opportunity for another master to  
SYSCLK  
assert ARTRY. Output valid and output hold timing are tested for the signal asserted. Output valid time is tested for  
precharge. The high-Z behavior is guaranteed by design.  
9. Guaranteed by design and not tested.  
Figure 4 provides the AC test load for the MPC7410.  
Z = 50 Ω  
Output  
OV /2  
DD  
0
R = 50 Ω  
L
Figure 4. AC Test Load  
16  
MPC7410 RISC Microprocessor Hardware Specications  
MOTOROLA  
Electrical and Thermal Characteristics  
Figure 5 provides the mode select input timing diagram for the MPC7410. The mode select inputs are  
sampled twice, once before and once after HRESET negation.  
VM  
VM  
SYSCLK  
HRESET  
Mode Signals  
First sample  
Second sample  
VM = Midpoint Voltage (OV /2)  
DD  
Figure 5. Mode Input Timing Diagram  
Figure 6 provides the input/output timing diagram for the MPC7410.  
SYSCLK  
VM  
VM  
VM  
t
IXKH  
t
IVKH  
All Inputs  
t
KHOV  
t
KHOX  
All Outputs  
(Except TS, ABB,  
ARTRY, DBB)  
t
khoe  
t
KHOZ  
All Outputs  
(Except TS, ABB,  
ARTRY, DBB)  
t
KHABPZ  
t
KHTSV  
t
KHTSX  
t
TS,  
KHTSV  
ABB/AMON(0),  
DBB/DMON(0)  
t
KHARPZ  
t
KHARV  
t
t
KHARV  
KHARP  
ARTRY,  
SHD0,  
SHD1  
t
KHARX  
VM = Midpoint Voltage (OV /2)  
DD  
Figure 6. Input/Output Timing Diagram  
MOTOROLA  
MPC7410 RISC Microprocessor Hardware Specications  
17  
Electrical and Thermal Characteristics  
1.4.2.3  
L2 Clock AC Specications  
The L2CLK frequency is programmed by the L2 Configuration Register (L2CR[4:6]) core-to-L2 divisor  
ratio. See Table 14 for example core and L2 frequencies at various divisors. Table 9 provides the potential  
range of L2CLK output AC timing specifications as defined in Figure 7.  
The L2SYNC_OUT signal is intended to be routed halfway out to the SRAMs and then returned to the  
L2SYNC_IN input of the MPC7410 to synchronize L2CLK_OUT at the SRAM with the processor’s  
internal clock. L2CLK_OUT at the SRAM can be offset forward or backward in time by shortening or  
lengthening the routing of L2SYNC_OUT to L2SYNC_IN. See Motorola Application Note AN1794/D,  
Backside L2 Timing Analysis for the PCB Design Engineer.  
The minimum L2CLK frequency in Table 9 is specified by the maximum delay of the internal DLL. The  
variable-tap DLL introduces up to a full clock period delay in the L2CLK_OUTA, L2CLK_OUTB, and  
L2SYNC_OUT signals so that the returning L2SYNC_IN signal is phase-aligned with the next core clock  
(divided by the L2 divisor ratio). Do not choose a core-to-L2 divisor which results in an L2 frequency below  
this minimum, or the L2CLK_OUT signals provided for SRAM clocking will not be phase-aligned with the  
MPC7410 core clock at the SRAMs.  
The maximum L2CLK frequency shown in Table 9 is the core frequency divided by one. Very few L2  
SRAM designs will be able to operate in this mode. Most designs will select a greater core-to-L2 divisor to  
provide a longer L2CLK period for read and write access to the L2 SRAMs. The maximum L2CLK  
frequency for any application of the MPC7410 will be a function of the AC timings of the MPC7410, the  
AC timings for the SRAM, bus loading, and printed-circuit board trace length.  
Motorola is similarly limited by system constraints and cannot perform tests of the L2 interface on a  
socketed part on a functional tester at the maximum frequencies in Table 9. Therefore, functional operation  
and AC timing information are tested at core-to-L2 divisors of two or greater.  
L2 input and output signals are latched or enabled, respectively, by the internal L2CLK (which is SYSCLK  
multiplied up to the core frequency and divided down to the L2CLK frequency). In other words, the AC  
timings in Table 10 are entirely independent of L2SYNC_IN. In a closed loop system, where L2SYNC_IN  
is driven through the board trace by L2SYNC_OUT, L2SYNC_IN only controls the output phase of  
L2CLK_OUTA and L2CLK_OUTB which are used to latch or enable data at the SRAMs. However, since  
in a closed loop system L2SYNC_IN is held in phase-alignment with the internal L2CLK, the signals in  
Table 10 are referenced to this signal rather than the not-externally-visible internal L2CLK. During  
manufacturing test, these times are actually measured relative to SYSCLK.  
Table 9. L2CLK Output AC Timing Specications  
At recommended operating conditions (see Table 3)  
400 MHz  
450 MHz  
500 MHz  
Parameter  
Symbol  
Unit  
Notes  
Min  
Max  
Min  
Max  
Min  
Max  
L2CLK frequency  
f
t
133  
2.5  
400  
7.5  
133  
2.5  
400  
7.5  
133  
2.5  
400  
7.5  
MHz  
ns  
1, 4  
L2CLK  
L2CLK cycle time  
L2CLK  
L2CLK duty cycle  
t
/t  
50  
50  
50  
%
2
3
5
6
CHCL L2CLK  
Internal DLL-relock time  
DLL capture window  
640  
0
10  
50  
640  
0
10  
50  
640  
0
10  
50  
L2CLK  
ns  
L2CLK_OUT  
t
ps  
L2CSKW  
output-to-output skew  
18  
MPC7410 RISC Microprocessor Hardware Specications  
MOTOROLA  
Electrical and Thermal Characteristics  
Table 9. L2CLK Output AC Timing Specications (continued)  
At recommended operating conditions (see Table 3)  
400 MHz  
450 MHz  
500 MHz  
Parameter  
Symbol  
Unit  
Notes  
Min  
Max  
Min  
Max  
Min  
Max  
L2CLK_OUT output jitter  
±150  
±150  
±150  
ps  
6
Notes:  
1. L2CLK outputs are L2CLK_OUTA, L2CLK_OUTB, and L2SYNC_OUT pins. The L2CLK frequency to core  
frequency settings must be chosen such that the resulting L2CLK frequency and core frequency do not exceed their  
respective maximum or minimum operating frequencies. The maximum L2CLK frequency will be system  
dependent. L2CLK_OUTA and L2CLK_OUTB must have equal loading.  
2. The nominal duty cycle of the L2CLK is 50% measured at midpoint voltage.  
3. The DLL-relock time is specied in terms of L2CLKs. The number in the table must be multiplied by the period of  
L2CLK to compute the actual time duration in ns. Relock timing is guaranteed by design and characterization.  
4. The L2CR[L2SL] bit should be set for L2CLK frequencies less than 150 MHz. This adds more delay to each tap of  
the DLL.  
5. Allowable skew between L2SYNC_OUT and L2SYNC_IN.  
6. Guaranteed by design and not tested. This output jitter number represents the maximum delay of one tap forward  
or one tap back from the current DLL tap as the phase comparator seeks to minimize the phase difference between  
L2SYNC_IN and the internal L2CLK.This number must be comprehended in the L2 timing analysis.The input jitter  
on SYSCLK affects L2CLK_OUT and the L2 address/data/control signals equally and, therefore, is already  
comprehended in the AC timing and does not have to be considered in the L2 timing analysis.  
The L2CLK_OUT timing diagram is shown in Figure 7.  
L2 Single-Ended Clock Mode  
t
t
L2CF  
L2CR  
t
L2CLK  
t
CHCL  
L2CLK_OUTA  
L2CLK_OUTB  
VM  
VM  
VM  
VM  
VM  
VM  
VM  
VM  
VM  
VM  
VM  
t
L2CSKW  
L2SYNC_OUT  
L2 Differential Clock Mode  
t
L2CLK  
t
CHCL  
L2CLK_OUTB  
L2CLK_OUTA  
VM  
VM  
VM  
VM  
VM  
VM  
L2SYNC_OUT  
VM = Midpoint Voltage (L2OV /2)  
DD  
Figure 7. L2CLK_OUT Output Timing Diagram  
MOTOROLA  
MPC7410 RISC Microprocessor Hardware Specications  
19  
Electrical and Thermal Characteristics  
1.4.2.4  
L2 Bus AC Specications  
Table 10 provides the L2 bus interfaceAC timing specifications for the MPC7410 as defined in Figure 8 and  
Figure 9 for the loading conditions described in Figure 10.  
Table 10. L2 Bus Interface AC Timing Specications  
At recommended operating conditions (see Table 3)  
400, 450, 500 MHz  
Parameter  
Symbol  
Unit  
Notes  
Min  
Max  
L2SYNC_IN rise and fall time  
Setup times: Data and parity  
Input hold times: Data and parity  
Valid times:  
t
and t  
1.5  
1.0  
ns  
ns  
ns  
ns  
1
2
L2CR  
L2CF  
t
DVL2CH  
DXL2CH  
L2CHOV  
t
t
0.0  
2
3, 4  
All outputs when L2CR[14–15] = 00  
2.5  
2.5  
2.9  
3.5  
All outputs when L2CR[14–15] = 01  
All outputs when L2CR[14–15] = 10  
All outputs when L2CR[14–15] = 11  
Output hold times  
t
ns  
ns  
3
L2CHOX  
L2CHOZ  
All outputs when L2CR[14–15] = 00  
All outputs when L2CR[14–15] = 01  
All outputs when L2CR[14–15] = 10  
All outputs when L2CR[14–15] = 11  
0.4  
0.8  
1.2  
1.6  
L2SYNC_IN to high impedance:  
t
All outputs when L2CR[14–15] = 00  
All outputs when L2CR[14–15] = 01  
All outputs when L2CR[14–15] = 10  
All outputs when L2CR[14–15] = 11  
2.0  
2.5  
3.0  
3.5  
Notes:  
1. Rise and fall times for the L2SYNC_IN input are measured from 20% to 80% of L2OV  
.
DD  
2. All input specications are measured from the midpoint of the signal in question to the midpoint voltage of the rising  
edge of the input L2SYNC_IN (see Figure 8). Input timings are measured at the pins.  
3. All output specications are measured from the midpoint voltage of the rising edge of L2SYNC_IN to the midpoint  
of the signal in question.The output timings are measured at the pins. All output timings assume a purely resistive  
50-load (see Figure 10).  
4. The outputs are valid for both single-ended and differential L2CLK modes. For pipelined registered synchronous  
BurstRAMs, L2CR[14–15] = 00 is recommended. For pipelined late write synchronous BurstRAMs, L2CR[14–15]  
= 10 is recommended.  
20  
MPC7410 RISC Microprocessor Hardware Specications  
MOTOROLA  
Electrical and Thermal Characteristics  
Figure 8 shows the L2 bus input timing diagrams for the MPC7410.  
t
t
L2CF  
L2CR  
L2SYNC_IN  
VM  
t
DVL2CH  
t
DXL2CH  
L2 Data and  
Data Parity  
Inputs  
VM = Midpoint Voltage (L2OV /2)  
DD  
Figure 8. L2 Bus Input Timing Diagrams  
Figure 9 shows the L2 bus output timing diagrams for the MPC7410.  
L2SYNC_IN  
All Outputs  
L2DATA Bus  
VM  
VM  
t
L2CHOV  
t
L2CHOX  
t
L2CHOZ  
VM = Midpoint Voltage (L2OV /2)  
DD  
Figure 9. L2 Bus Output Timing Diagrams  
Figure 10 provides the AC test load for L2 interface of the MPC7410.  
Output  
L2OV /2  
DD  
Z = 50 Ω  
0
R = 50 Ω  
L
Figure 10. AC Test Load for the L2 Interface  
1.4.2.5  
IEEE 1149.1 AC Timing Specications  
Table 11 provides the IEEE 1149.1 (JTAG) AC timing specifications as defined in Figure 12 through  
Figure 15.  
1
Table 11. JTAG AC Timing Specications (Independent of SYSCLK)  
At recommended operating conditions (see Table 3)  
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
TCK frequency of operation  
TCK cycle time  
f
0
30  
15  
0
33.3  
MHz  
ns  
TCLK  
t
TCLK  
TCK clock pulse width measured at OV /2  
t
ns  
DD  
JHJL  
TCK rise and fall times  
t
and t  
2
ns  
JR  
JF  
MOTOROLA  
MPC7410 RISC Microprocessor Hardware Specications  
21  
Electrical and Thermal Characteristics  
1
Table 11. JTAG AC Timing Specications (Independent of SYSCLK) (continued)  
At recommended operating conditions (see Table 3)  
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
TRST assert time  
Input setup times:  
t
25  
ns  
ns  
2
TRST  
Boundary-scan data  
TMS, TDI  
t
t
4
0
3
3
4
DVJH  
IVJH  
Input hold times:  
Valid times:  
ns  
ns  
ns  
Boundary-scan data  
TMS, TDI  
t
20  
25  
DXJH  
t
IXJH  
Boundary-scan data  
TDO  
t
t
4
4
20  
25  
JLDV  
JLOV  
TCK to output high impedance:  
Boundary-scan data  
TDO  
t
t
3
3
19  
9
4, 5  
5
JLDZ  
JLOZ  
Notes:  
1. All outputs are measured from the midpoint voltage of the falling/rising edge of TCLK to the midpoint of the signal  
in question. The output timings are measured at the pins. All output timings assume a purely resistive 50-load  
(see Figure 11). Time-of-ight delays must be added for trace lengths, vias, and connectors in the system.  
2. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.  
3. Non-JTAG signal input timing with respect to TCK.  
4. Non-JTAG signal output timing with respect to TCK.  
5. Guaranteed by design and characterization.  
Figure 11 provides the AC test load for TDO and the boundary-scan outputs of the MPC7410.  
Output  
OV /2  
DD  
Z = 50 Ω  
0
R = 50 Ω  
L
Figure 11. Alternate AC Test Load for the JTAG Interface  
Figure 12 provides the JTAG clock input timing diagram.  
TCLK  
VM  
t
VM  
VM  
JHJL  
t
t
JF  
JR  
t
TCLK  
VM = Midpoint Voltage (OV /2)  
DD  
Figure 12. JTAG Clock Input Timing Diagram  
Figure 13 provides the TRST timing diagram.  
VM  
VM  
TRST  
t
TRST  
VM = Midpoint Voltage (OV /2)  
DD  
Figure 13. TRST Timing Diagram  
22  
MPC7410 RISC Microprocessor Hardware Specications  
MOTOROLA  
Electrical and Thermal Characteristics  
Figure 14 provides the boundary-scan timing diagram.  
TCK  
VM  
VM  
t
DVJH  
t
DXJH  
Boundary  
Data Inputs  
Input  
Data Valid  
t
JLDV  
t
JLDX  
Boundary  
Data Outputs  
Output Data Valid  
t
JLDZ  
Boundary  
Data Outputs  
Output Data Valid  
VM = Midpoint Voltage (OV /2)  
DD  
Figure 14. Boundary-Scan Timing Diagram  
Figure 15 provides the test access port timing diagram.  
TCK  
TDI, TMS  
TDO  
VM  
VM  
t
IVJH  
t
IXJH  
Input  
Data Valid  
t
JLOV  
t
JLOX  
Output Data Valid  
t
JLOZ  
TDO  
Output Data Valid  
VM = Midpoint Voltage (OV /2)  
DD  
Figure 15. Test Access Port Timing Diagram  
MOTOROLA  
MPC7410 RISC Microprocessor Hardware Specications  
23  
Pin Assignments  
1.5 Pin Assignments  
Figure 16 (in part A) shows the pinout for both the MPC7410, 360 CBGA and 360 HCTE packages as  
viewed from the top surface. Part B shows the side profile of the package to indicate the direction of the top  
surface view.  
Part A  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Not to Scale  
Part B  
View  
Substrate Assembly  
Encapsulant  
Die  
Figure 16. Pinout of the MPC7410, 360 CBGA and 360 HCTE Packages  
as Viewed from the Top Surface  
24  
MPC7410 RISC Microprocessor Hardware Specications  
MOTOROLA  
Pinout Listings  
1.6 Pinout Listings  
Table 12 provides the pinout listing for the MPC7410, 360 CBGA and 360 HCTE packages.  
Table 12. Pinout Listing for the MPC7410, 360 CBGA and 360 HCTE Packages  
1
Signal Name  
Pin Number  
Active  
I/O  
I/F Select  
Notes  
A[0:31]  
A13, D2, H11, C1, B13, F2, C13, E5, D13, G7,  
F12, G3, G6, H2, E2, L3, G5, L4, G4, J4, H7, E1,  
G2, F3, J7, M3, H3, J2, J6, K3, K2, L2  
High  
I/O  
BVSEL  
AACK  
ABB  
N3  
Low  
Low  
High  
Low  
Input  
Output  
I/O  
BVSEL  
BVSEL  
BVSEL  
BVSEL  
L7  
12, 16  
AP[0:3]  
ARTRY  
C4, C5, C6, C7  
L6  
I/O  
AV  
A8  
H1  
E7  
W1  
Input  
Input  
Output  
Input  
V
DD  
DD  
BG  
Low  
Low  
High  
BVSEL  
BVSEL  
N/A  
BR  
BVSEL  
1, 3, 8,  
9, 14  
CHK  
K11  
C2  
B8  
D7  
E3  
K5  
K1  
Low  
Low  
Low  
Low  
High  
Low  
Low  
High  
Input  
I/O  
BVSEL  
BVSEL  
BVSEL  
BVSEL  
BVSEL  
BVSEL  
BVSEL  
BVSEL  
2, 8, 9  
CI  
CKSTP_IN  
CKSTP_OUT  
CLK_OUT  
DBB  
Input  
Output  
Output  
Output  
Input  
I/O  
12, 16  
DBG  
DH[0:31]  
W12, W11, V11, T9, W10, U9, U10, M11, M9, P8,  
W7, P9, W9, R10, W6, V7, V6, U8, V9, T7, U7,  
R7, U6, W5, U5, W4, P7, V5, V4, W3, U4, R5  
DL[0:31]  
M6, P3, N4, N5, R3, M7, T2, N6, U2, N7, P11,  
V13, U12, P12, T13, W13, U13, V10, W8, T11,  
U11, V12, V8, T1, P1, V1, U1, N1, R2, V3, U3, W2  
High  
I/O  
BVSEL  
DP[0:7]  
DRDY  
L1, P2, M2, V2, M1, N2, T3, R1  
High  
Low  
Low  
I/O  
BVSEL  
BVSEL  
BVSEL  
K9  
D1  
Output  
Input  
6, 8, 13  
DBWO  
DTI[0]  
DTI[1:2]  
EMODE  
H6, G1  
A3  
High  
Low  
Input  
Input  
BVSEL  
BVSEL  
5, 10, 13  
7, 10  
MOTOROLA  
MPC7410 RISC Microprocessor Hardware Specications  
25  
Pinout Listings  
Table 12. Pinout Listing for the MPC7410, 360 CBGA and 360 HCTE Packages (continued)  
1
Signal Name  
GBL  
Pin Number  
Active  
I/O  
I/F Select  
Notes  
B1  
Low  
I/O  
BVSEL  
N/A  
GND  
D10, D14, D16, D4, D6, E12, E8, F4, F6, F10,  
F14, F16, G9, G11, H5, H8, H10, H12, H15, J9,  
J11, K4, K6, K8, K10, K12, K14, K16, L9, L11, M5,  
M8, M10, M12, M15, N9, N11, P4, P6, P10, P14,  
P16, R8, R12, T4, T6, T10, T14, T16  
HIT  
B5  
Low  
Low  
Low  
High  
High  
Output  
Input  
BVSEL  
BVSEL  
BVSEL  
BVSEL  
L2VSEL  
6, 8  
HRESET  
INT  
B6  
C11  
F8  
Input  
L1_TSTCLK  
L2ADDR[0:16]  
Input  
2
8
L17, L18, L19, M19, K18, K17, K15, J19, J18,  
J17, J16, H18, H17, J14, J13, H19, G18  
Output  
L2ADDR[17:18] K19,W19  
High  
Output  
Input  
L2VSEL  
L2AV  
L13  
P17  
N15  
L16  
V
DD  
DD  
L2CE  
Low  
High  
High  
High  
Output  
Output  
Output  
I/O  
L2VSEL  
L2VSEL  
L2VSEL  
L2VSEL  
L2CLK_OUTA  
L2CLK_OUTB  
L2DATA[0:63]  
U14, R13, W14, W15, V15, U15, W16, V16, W17,  
V17, U17, W18, V18, U18, V19, U19, T18, T17,  
R19, R18, R17, R15, P19, P18, P13, N14, N13,  
N19, N17, M17, M13, M18, H13, G19, G16, G15,  
G14, G13, F19, F18, F13, E19, E18, E17, E15,  
D19, D18, D17, C18, C17, B19, B18, B17, A18,  
A17, A16, B16, C16, A14, A15, C15, B14, C14,  
E13  
L2DP[0:7]  
V14, U16, T19, N18, H14, F17, C19, B15  
High  
I/O  
L2VSEL  
N/A  
L2OV  
D15, E14, E16, H16, J15, L15, M16, K13, P15,  
R14, R16, T15, F15  
11  
DD  
L2SYNC_IN  
L14  
High  
High  
High  
High  
Input  
Output  
Input  
L2VSEL  
L2VSEL  
BVSEL  
N/A  
L2SYNC_OUT M14  
L2_TSTCLK  
L2VSEL  
F7  
2
A19  
Input  
1, 3, 8,  
9, 14  
L2WE  
N16  
G17  
F9  
Low  
High  
Low  
Output  
Output  
Input  
L2VSEL  
L2VSEL  
BVSEL  
L2ZZ  
LSSD_MODE  
2
26  
MPC7410 RISC Microprocessor Hardware Specications  
MOTOROLA  
Pinout Listings  
Table 12. Pinout Listing for the MPC7410, 360 CBGA and 360 HCTE Packages (continued)  
1
Signal Name  
Pin Number  
Active  
I/O  
I/F Select  
Notes  
MCP  
OV  
B11  
Low  
Input  
BVSEL  
N/A  
15  
D5, D8, D12, E4, E6, E9, E11, F5, H4, J5, L5, M4,  
P5, R4, R6, R9, R11, T5, T8, T12  
DD  
PLL_CFG[0:3]  
QACK  
QREQ  
RSRV  
SHD0  
SHD1  
SMI  
A4, A5, A6, A7  
High  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Input  
Input  
Output  
Output  
I/O  
BVSEL  
BVSEL  
BVSEL  
BVSEL  
BVSEL  
BVSEL  
BVSEL  
BVSEL  
BVSEL  
BVSEL  
BVSEL  
BVSEL  
BVSEL  
BVSEL  
BVSEL  
BVSEL  
BVSEL  
BVSEL  
BVSEL  
BVSEL  
BVSEL  
BVSEL  
4
B2  
J3  
D3  
B3  
8
B4  
I/O  
5, 8  
A12  
Input  
Input  
Input  
Input  
Input  
Output  
Input  
Input  
Output  
Input  
Input  
Input  
I/O  
SRESET  
SYSCLK  
TA  
E10  
H9  
F1  
Low  
High  
Low  
High  
High  
High  
Low  
High  
Low  
Low  
High  
High  
Low  
TBEN  
TBST  
TCK  
A2  
A11  
B10  
TDI  
B7  
9
TDO  
D9  
TEA  
J1  
TMS  
C8  
9
9
TRST  
TS  
A10  
K7  
TSIZ[0:2]  
TT[0:4]  
WT  
A9, B9, C9  
Output  
I/O  
C10, D11, B12, C12, F11  
C3  
I/O  
MOTOROLA  
MPC7410 RISC Microprocessor Hardware Specications  
27  
Pinout Listings  
Table 12. Pinout Listing for the MPC7410, 360 CBGA and 360 HCTE Packages (continued)  
1
Signal Name  
Pin Number  
Active  
I/O  
I/F Select  
Notes  
V
G8, G10, G12, J8, J10, J12, L8, L10, L12, N8,  
N10, N12  
N/A  
DD  
Notes:  
1. OV  
supplies power to the processor bus, JTAG, and all control signals except the L2 cache controls (L2CE,  
DD  
L2WE, and L2ZZ); L2OV supplies power to the L2 cache interface (L2ADDR[0:18], L2DATA[0:63], L2DP[0:7],  
DD  
and L2SYNC_OUT) and the L2 control signals; and V supplies power to the processor core and the PLL and  
DD  
DLL (after ltering to become AV and L2AV , respectively). These columns serve as a reference for the  
DD  
DD  
nominal voltage supported on a given signal as selected by the BVSEL/L2VSEL pin congurations of Table 2 and  
the voltage supplied. For actual recommended value of V or supply voltages, see Table 3.  
in  
2. These are test signals for factory use only and must be pulled up to OV for normal machine operation.  
DD  
3. To allow for future I/O voltage changes, provide the option to connect BVSEL and L2VSEL independently to either  
OV , GND, HRESET, or ¬HRESET. For the MPC7410 the L2 bus only supports 2.5- and 1.8-V options. The  
DD  
default selection, if L2VSEL is left unconnected, is 2.5-V operation. For the MPC7410 the processor bus supports  
3.3-, 2.5-, and 1.8-V options. The default selection, if BVSEL is left unconnected, is 3.3-V operation. Refer to  
Table 2 for supported BVSEL and L2VSEL settings.  
4. PLL_CFG[0:3] must remain stable during operation; should only be changed during the assertion of HRESET or  
during sleep mode and must adhere to the internal PLL-relock time requirement.  
5. Ignored input in 60x bus mode.  
6. Unused output in 60x bus mode. Signal is three-stated in 60x mode.  
7. Deasserted (pulled high) at HRESET negation for 60x bus mode. Asserted (pulled low) at HRESET negation for  
MPX bus mode.  
8. Uses one of nine existing no connects in the MPC750 360 BGA package.  
9. Internal pull up on die. Pulled-up signals are V based.  
DD  
10. Reuses MPC750 DRTRY, DBDIS, and TLBISYNC pins (DTI1, DTI2, and EMODE, respectively).  
11. The VOLTDET pin position on the MPC750 360 CBGA package is now an L2OV pin on the MPC7410  
DD  
360 CBGA package.  
12. Output only for MPC7410, was I/O for MPC750.  
13. MPX bus mode only.  
14. If necessary, to overcome the internal pull-up resistance and ensure this input will recognize a low signal, a  
pull-down resistance less than 250 should be used.  
15. MCP minimum pulse width: asynchronous, falling-edge input needs to be held asserted for a minimum of 2 cycles  
to guarantee that it is latched by the processor.  
16. In MPX bus mode the ABB signal is called AMON and the DBB signal is called DMON. These signals are not a  
requirement of the MPX bus protocol and may not be available on future products.  
28  
MPC7410 RISC Microprocessor Hardware Specications  
MOTOROLA  
Package Description  
1.7 Package Description  
The following sections provide the package parameters and mechanical dimensions for both the MPC7410,  
360 CBGA and 360 HCTE packages.  
1.7.1 Package Parameters for the MPC7410  
The package parameters are as provided in the following list. The package types are the 25 × 25 mm,  
360-lead ceramic ball grid array package (CBGA) or the 25 × 25 mm, 360-lead high coefficient of thermal  
expansion CBGA package (HCTE).  
Package outline  
Interconnects  
25 × 25 mm  
360 (19 × 19 ball array – 1)  
1.27 mm (50 mil)  
2.65 mm  
Pitch  
Minimum module height  
Maximum module height  
Ball diameter  
3.20 mm  
0.89 mm (35 mil)  
1.7.2 Mechanical Dimensions for the MPC7410  
Figure 17 provides the mechanical dimensions and bottom surface nomenclature of the MPC7410,  
360 CBGA and 360 HCTE packages.  
MOTOROLA  
MPC7410 RISC Microprocessor Hardware Specications  
29  
Package Description  
2X  
0.2  
Millimeters  
D
A
DIM  
MIN  
MAX  
A1 CORNER  
D2  
D3  
A
A1  
A2  
A3  
A4  
b
2.72  
0.80  
1.10  
3.20  
1.00  
1.30  
0.60  
0.90  
0.93  
C
C6-2  
C6-1  
12X  
J2  
C1-1  
C1-2  
C5-1  
C5-2  
0.15 A  
0.25 A  
//  
0.82  
0.82  
C4-1  
0.35 A  
//  
E2  
E
E3  
C4-2  
D
25.00 BSC  
L2 L1  
D2  
D3  
e
10.0 typ.  
6.32  
C2-2  
C2-1  
1.27 BSC  
25.00 BSC  
12.6 typ.  
8.26  
2X  
12X  
J3  
12X  
E
K2  
K1  
J1  
0.2  
C3-1  
C3-2  
E2  
E3  
J1  
J2  
J3  
K1  
K2  
L1  
L2  
B
0.89 BSC  
3.2 BSC  
0.68 BSC  
6.56  
1
2
3
4
5
6
7
8
9 10 111213141516 171819  
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
8.13  
8.61  
7.04  
A3  
A2  
A4  
A1  
A
Package  
Caps  
Value  
Voltage  
µF  
Reference  
C1-1  
C1-2  
C2-1  
C2-2  
C3-1  
C3-2  
C4-1  
C4-2  
C5-1  
C5-2  
C6-1  
C6-2  
L2OVDD  
GND  
0.01  
e
L2OVDD  
GND  
0.01  
0.01  
0.01  
0.01  
0.01  
360X  
b
VDD  
0.3 C A B  
GND  
C
0.15  
NOTES:  
OVDD  
GND  
1. DIMENSIONING ANDTOLERANCING  
PER ASME Y14.5M, 1994.  
2. DIMENSIONS IN MILLIMETERS.  
3. TOP SIDE A1 CORNER INDEX IS A  
METALIZED FEATURE WITH  
OVDD  
GND  
VDD  
VARIOUS SHAPES.BOTTOM SIDE A1  
CORNER IS DESIGNATED WITH A  
BALL MISSING FROM THE ARRAY.  
GND  
Figure 17. Mechanical Dimensions and Bottom Surface Nomenclature for the MPC7410,  
360 CBGA and 360 HCTE Packages  
30  
MPC7410 RISC Microprocessor Hardware Specications  
MOTOROLA  
System Design Information  
1.8 System Design Information  
This section provides electrical and thermal design recommendations for successful application of the  
MPC7410.  
1.8.1 PLL Conguration  
The MPC7410 PLL is configured by the PLL_CFG[0:3] signals. For a given SYSCLK (bus) frequency, the  
PLL configuration signals set the internal CPU and VCO frequency of operation. The PLL configuration  
for the MPC7410 is shown in Table 13 for example frequencies. In this example, shaded cells represent  
settings that, for a given SYSCLK frequency, result in core and/or VCO frequencies that do not comply with  
the minimum and maximum core frequencies listed in Table 8.  
Table 13. MPC7410 Microprocessor PLL Conguration  
Example Bus-to-Core Frequency in MHz (VCO Frequency in MHz)  
PLL_CFG  
Bus-to-  
Core  
Multiplier Multiplier  
Core-to  
VCO  
[0:3]  
Bus  
Bus  
Bus  
Bus  
Bus  
Bus  
Bus  
33.3 MHz 50 MHz 66.6 MHz 75 MHz 83.3 MHz 100 MHz 133 MHz  
0100  
0110  
1000  
2x  
2.5x  
3x  
2x  
2x  
2x  
400  
(800)  
1110  
1010  
0111  
1011  
1001  
1101  
0101  
0010  
0001  
1100  
0000  
3.5x  
4x  
2x  
2x  
2x  
2x  
2x  
2x  
2x  
2x  
2x  
2x  
2x  
350  
(700)  
465  
(930)  
400  
(800)  
4.5x  
5x  
375  
(750)  
450  
(900)  
375  
(750)  
416  
(833)  
500  
(1000)  
5.5x  
6x  
366  
(733)  
412  
(825)  
458  
(916)  
400  
(800)  
450  
(900)  
500  
(1000)  
6.5x  
7x  
433  
(866)  
488  
(967)  
350  
(700)  
466  
(933)  
7.5x  
8x  
375  
(750)  
500  
(1000)  
400  
(800)  
9x  
450  
(900)  
MOTOROLA  
MPC7410 RISC Microprocessor Hardware Specications  
31  
System Design Information  
Table 13. MPC7410 Microprocessor PLL Conguration (continued)  
Example Bus-to-Core Frequency in MHz (VCO Frequency in MHz)  
PLL_CFG  
[0:3]  
Bus-to-  
Core  
Multiplier Multiplier  
Core-to  
VCO  
Bus  
Bus  
Bus  
Bus  
Bus  
Bus  
Bus  
33.3 MHz 50 MHz 66.6 MHz 75 MHz 83.3 MHz 100 MHz 133 MHz  
0011  
1111  
PLL off/bypass  
PLL off  
PLL off, SYSCLK clocks core circuitry directly, 1x bus-to-core implied  
PLL off, no core clocking occurs  
Notes:  
1. PLL_CFG[0:3] settings not listed are reserved.  
2. The sample bus-to-core frequencies shown are for reference only. Some PLL congurations may select bus, core,  
or VCO frequencies which are not useful, not supported, or not tested for by the MPC7410; see Section 1.4.2.1,  
“Clock AC Specications,” for valid SYSCLK, core, and VCO frequencies.  
3. In PLL-bypass mode, the SYSCLK input signal clocks the internal processor directly, the PLL is disabled, and the  
bus mode is set for 1:1 mode operation. This mode is intended for factory use and third-party emulator tool  
development only.  
Note: The AC timing specications given in this document do not apply in PLL-bypass mode.  
4. In PLL-off mode, no clocking occurs inside the MPC7410 regardless of the SYSCLK input.  
5. PLL-off mode should not be used during chip power-up sequencing.  
The MPC7410 generates the clock for the external L2 synchronous data SRAMs by dividing the core clock  
frequency of the MPC7410. The divided-down clock is then phase-adjusted by an on-chip delay-lock-loop  
(DLL) circuit and should be routed from the MPC7410 to the external RAMs. A separate clock output,  
L2SYNC_OUT is sent out half the distance to the SRAMs and then returned as an input to the DLL on pin  
L2SYNC_IN so that the rising-edge of the clock as seen at the external RAMs can be aligned to the clocking  
of the internal latches in the L2 bus interface.  
The core-to-L2 frequency divisor for the L2 PLL is selected through the L2CLK bits of the L2CR register.  
Generally, the divisor must be chosen according to the frequency supported by the external RAMs, the  
frequency of the MPC7410 core, and the phase adjustment range that the L2 DLL supports. Table 14 shows  
various example L2 clock frequencies that can be obtained for a given set of core frequencies. The minimum  
L2 frequency target is 133 MHz. Sample core-to-L2 frequencies for the MPC7410 is shown in Table 14. In  
this example, shaded cells represent settings that, for a given core frequency, result in L2 frequencies that  
do not comply with the minimum and maximum L2 frequencies listed in Table 10.  
Table 14. Sample Core-to-L2 Frequencies  
Core Frequency  
÷1  
÷1.5  
÷2  
÷2.5  
÷3  
÷3.5  
÷4  
(MHz)  
350  
366  
400  
433  
450  
350  
366  
400  
233  
244  
266  
288  
300  
175  
183  
200  
216  
225  
140  
147  
160  
173  
180  
133  
144  
150  
32  
MPC7410 RISC Microprocessor Hardware Specications  
MOTOROLA  
System Design Information  
Table 14. Sample Core-to-L2 Frequencies (continued)  
Core Frequency  
(MHz)  
÷1  
÷1.5  
÷2  
÷2.5  
÷3  
÷3.5  
÷4  
466  
500  
311  
333  
233  
250  
186  
200  
155  
166  
133  
143  
Note: The core and L2 frequencies are for reference only. Some examples may  
represent core or L2 frequencies which are not useful, not supported, or not tested  
for by the MPC7410; see Section 1.4.2.3, “L2 Clock AC Specications,” for valid  
L2CLK frequencies.The L2CR[L2SL] bit should be set for L2CLK frequencies less  
than 150 MHz.  
1.8.2 PLL and DLL Power Supply Filtering  
The AV and L2AV power signals are provided on the MPC7410 to supply power to the PLL and DLL,  
DD  
DD  
respectively.  
On systems that use the MPC7410 CBGA device, the L2AV lter should implement the circuit shown in  
DD  
Figure 18. The AV  
Figure 19.  
filter on the MPC7410 CBGA device should implement the circuit shown in  
DD  
On systems that use the MPC7410 HCTE device, the AV  
implement the circuit shown in Figure 18.  
and L2AV  
input signals should both  
DD  
DD  
The circuit shown below should be placed as close as possible to the AV pin to minimize noise coupled  
DD  
from nearby circuits. A separate circuit should be placed as close as possible to the L2AV pin. It is often  
DD  
possible to route directly from the capacitors to the AV pin, which is on the periphery of the 360 CBGA  
DD  
footprint, without the inductance of vias. The L2AV  
proportionately less critical.  
pin may be more difficult to route, but is  
DD  
It is the recommendation of Motorola, that systems that implement the AV  
filter shown in Figure 19  
DD  
design in the pads for the removed capacitors (shown in Figure 18), to provide for the possible  
reintroduction of the filter in Figure 18. This would be necessary in case there is a planned transition to the  
HCTE package of the MPC7410.  
10 Ω  
AV (or L2AV  
)
V
DD  
DD  
DD  
2.2 µF  
2.2 µF  
Low ESL Surface Mount Capacitors  
GND  
Figure 18. PLL Power Supply Filter Circuit #1  
51 Ω  
AV  
V
DD  
DD  
Capacitor  
Pad Sites  
GND  
Figure 19. PLL Power Supply Filter Circuit #2  
MOTOROLA  
MPC7410 RISC Microprocessor Hardware Specications  
33  
System Design Information  
1.8.3 Decoupling Recommendations  
Due to the MPC7410 dynamic power management feature, large address and data buses, and high operating  
frequencies, the MPC7410 can generate transient power surges and high frequency noise in its power  
supply, especially while driving large capacitive loads. This noise must be prevented from reaching other  
components in the MPC7410 system, and the MPC7410 itself requires a clean, tightly regulated source of  
power. Therefore, it is recommended that the system designer place at least one decoupling capacitor at each  
V
, OV , and L2OV pin of the MPC7410. It is also recommended that these decoupling capacitors  
DD  
DD DD  
receive their power from separate V , (L2)OV , and GND power planes in the PCB, utilizing short  
DD  
DD  
traces to minimize inductance.  
These capacitors should have a value of 0.01 µF or 0.1 µF. Only ceramic SMT (surface mount technology)  
capacitors should be used to minimize lead inductance, preferably 0508 or 0603 orientations, where  
connections are made along the length of the part.  
In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB,  
feeding the V , L2OV , and OV planes, to enable quick recharging of the smaller chip capacitors.  
DD  
DD  
DD  
These bulk capacitors should have a low ESR (equivalent series resistance) rating to ensure the quick  
response time necessary. They should also be connected to the power and ground planes through two vias  
to minimize inductance. Suggested bulk capacitors—100–330 µF (AVX TPS tantalum or Sanyo OSCON).  
1.8.4 Connection Recommendations  
To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal  
level through a resistor. Unused active low inputs should be tied to OV . Unused active high inputs should  
DD  
be connected to GND. All NC (no connect) signals must remain unconnected.  
Power and ground connections must be made to all external V , OV , L2OV , and GND pins of the  
DD  
DD  
DD  
MPC7410. Note that power must be supplied to L2OV even if the L2 interface of the MPC7410 will not  
DD  
be used; the remainder of the L2 interface may be left unterminated.  
1.8.5 Output Buffer DC Impedance  
The MPC7410 60x and L2 I/O drivers are characterized over process, voltage, and temperature. To measure  
Z , an external resistor is connected from the chip pad to OV or GND. Then, the value of each resistor is  
0
DD  
varied until the pad voltage is OV /2 (see Figure 20).  
DD  
The output impedance is the average of two components, the resistances of the pull-up and pull-down  
devices. When data is held low, SW2 is closed (SW1 is open), and R is trimmed until the voltage at the  
N
pad equals (L2)OV /2. R then becomes the resistance of the pull-down devices. When data is held high,  
DD  
N
SW1 is closed (SW2 is open), and R is trimmed until the voltage at the pad equals (L2)OV /2. R then  
P
DD  
P
becomes the resistance of the pull-up devices. R and R are designed to be close to each other in value.  
P
N
Then, Z = (R + R )/2.  
0
P
N
34  
MPC7410 RISC Microprocessor Hardware Specications  
MOTOROLA  
System Design Information  
Figure 20 describes the driver impedance measurement circuit described above.  
OV  
DD  
R
N
SW2  
SW1  
Pad  
Data  
R
P
OGND  
Figure 20. Driver Impedance Measurement Circuit  
Alternately, the following is another method to determine the output impedance of the MPC7410. A voltage  
source, V  
, is connected to the output of the MPC7410, as in Figure 21. Data is held low, the voltage  
force  
source is set to a value that is equal to (L2)OV /2, and the current sourced by V  
is measured. The  
DD  
force  
voltage drop across the pull-down device, which is equal to (L2)OV /2, is divided by the measured current  
DD  
to determine the output impedance of the pull-down device, R . Similarly, the impedance of the pull-up  
N
device is determined by dividing the voltage drop of the pull-up, (L2)OV /2, by the current sank by the  
DD  
pull-up when the data is high and V  
is equal to (L2)OV /2. This method can be employed with either  
force  
DD  
empirical data from a test setup or with data from simulation models, such as IBIS.  
R and R are designed to be close to each other in value. Then, Z = (R + R )/2. Figure 21 describes the  
P
N
0
P
N
alternate driver impedance measurement circuit.  
(L2)OV  
DD  
BGA  
Pin  
V
Data  
force  
OGND  
Figure 21. Alternate Driver Impedance Measurement Circuit  
MOTOROLA  
MPC7410 RISC Microprocessor Hardware Specications  
35  
System Design Information  
Table 15 summarizes the signal impedance results. The driver impedance values were characterized at 0°,  
65°, and 105°C. The impedance increases with junction temperature and is relatively unaffected by bus  
voltage.  
Table 15. Impedance Characteristics  
V
= 1.8 V, OV = 2.5 V, T = 0° 105°C  
DD  
DD  
j
Impedance  
Processor Bus  
L2 Bus  
Symbol  
Unit  
R
N
41.5–54.3  
37.3–55.3  
42.7–54.1  
39.3–50.0  
Z
Z
0
R
P
0
1.8.6 Pull-Up Resistor Requirements  
The MPC7410 requires pull-up resistors (1 k–5 k) on several control pins of the bus interface to maintain  
the control signals in the negated state after they have been actively negated and released by the MPC7410  
or other bus masters. These pins are: TS, ARTRY, SHDO, SHD1.  
Four test pins also require pull-up resistors (100 Ω−1 kΩ). These pins are CHK, L1_TSTCLK,  
L2_TSTCLK, and LSSD_MODE. These signals are for factory use only and must be pulled up to  
OV for normal machine operation.  
DD  
If pull-down resistors are used to configure BVSEL or L2VSEL, the resistors should be less than 250 (see  
Table 12). Because PLL_CFG[0:3] must remain stable during normal operation, strong pull-up and  
pull-down resistors (1 kor less) are recommended to configure these signals in order to protect against  
erroneous switching due to ground bounce, power supply noise or noise coupling.  
In addition, CKSTP_OUT is an open-drain style output that requires a pull-up resistor (1 k–5 k) if it is  
used by the system. The CKSTP_IN signal should likewise be pulled up through a pull-up resistor  
(1 k–5 k) to prevent erroneous assertions of this signal.  
During inactive periods on the bus, the address and transfer attributes may not be driven by any master and  
may, therefore, float in the high-impedance state for relatively long periods of time. Since the MPC7410  
must continually monitor these signals for snooping, this float condition may cause excessive power draw  
by the input receivers on the MPC7410 or by other receivers in the system. These signals can be pulled up  
through weak (10-k) pull-up resistors by the system, address bus driven mode can be enabled (see the  
MPC7410 RISC Microporcessor Family Users’ Manual for more information on this mode), or these  
signals may be otherwise driven by the system during inactive periods of the bus to avoid this additional  
power draw. The snooped address and transfer attribute inputs are: A[0:31], AP[0:3], TT[0:4], CI, WT, and  
GBL.  
In systems where GBL is not connected and other devices may be asserting TS for a snoopable transaction  
while not driving GBL to the processor, we recommend that a strong (1 k) pull-up resistor be used on  
GBL. Note that the MPC7410 will only snoop transactions when GBL is asserted.  
The data bus input receivers are normally turned off when no read operation is in progress and, therefore,  
do not require pull-up resistors on the bus. Other data bus receivers in the system, however, may require  
pull-ups, or that those signals be otherwise driven by the system during inactive periods by the system. The  
data bus signals are: DH[0:31], DL[0:31], and DP[0:7].  
If address or data parity is not used by the system, and the respective parity checking is disabled through  
HID0, the input receivers for those pins are disabled, and those pins do not require pull-up resistors and  
should be left unconnected by the system. If parity checking is disabled through HID0, and parity generation  
36  
MPC7410 RISC Microprocessor Hardware Specications  
MOTOROLA  
System Design Information  
is not required by the MPC7410 (note that the MPC7410 always generates parity), then all parity pins may  
be left unconnected by the system.  
The L2 interface does not normally require pull-up resistors.  
1.8.7 JTAG Conguration Signals  
Boundary-scan testing is enabled through the JTAG interface signals. The TRST signal is optional in the  
IEEE 1149.1 specification, but is provided on all processors that implement the PowerPC architecture.  
While it is possible to force the TAP controller to the reset state using only the TCK and TMS signals, more  
reliable power-on reset performance will be obtained if the TRST signal is asserted during power-on reset.  
Because the JTAG interface is also used for accessing the common on-chip processor (COP) function,  
simply tying TRST to HRESET is not practical.  
The COP function of these processors allows a remote computer system (typically, a PC with dedicated  
hardware and debugging software) to access and control the internal operations of the processor. The COP  
interface connects primarily through the JTAG port of the processor, with some additional status monitoring  
signals. The COP port requires the ability to independently assert HRESET or TRST in order to fully control  
the processor. If the target system has independent reset sources, such as voltage monitors, watchdog timers,  
power supply failures, or push-button switches, then the COP reset signals must be merged into these signals  
with logic.  
The arrangement shown in Figure 22 allows the COP port to independently assert HRESET or TRST, while  
ensuring that the target can drive HRESET as well. If the JTAG interface and COP header will not be used,  
TRST should be tied to HRESET through a 0-isolation resistor so that it is asserted when the system reset  
signal (HRESET) is asserted, ensuring that the JTAG scan chain is initialized during power-on. While  
Motorola recommends that the COP header be designed into the system as shown in Figure 22, if this is not  
possible, the isolation resistor will allow future access to TRST in the case where a JTAG interface may need  
to be wired onto the system in debug situations.  
The COP header shown in Figure 22 adds many benefits—breakpoints, watchpoints, register and memory  
examination/modification, and other standard debugger features are possible through this interface—and  
can be as inexpensive as an unpopulated footprint for a header to be added when needed.  
The COP interface has a standard header for connection to the target system, based on the 0.025"  
square-post 0.100" centered header assembly (often called a Berg header). The connector typically has  
pin 14 removed as a connector key.  
There is no standardized way to number the COP header shown in Figure 22; consequently, many different  
pin numbers have been observed from emulator vendors. Some are numbered top-to-bottom then  
left-to-right, while others use left-to-right then top-to-bottom, while still others number the pins counter  
clockwise from pin 1 (as with an IC). Regardless of the numbering, the signal placement recommended in  
Figure 22 is common to all known emulators.  
The QACK signal shown in Figure 22 is usually connected to the PCI bridge chip in a system and is an input  
to the MPC7410 informing it that it can go into the quiescent state. Under normal operation this occurs  
during a low-power mode selection. In order for COP to work, the MPC7410 must see this signal asserted  
(pulled down). While shown on the COP header, not all emulator products drive this signal. If the product  
does not, a pull-down resistor can be populated to assert this signal. Additionally, some emulator products  
implement open-drain type outputs and can only drive QACK asserted; for these tools, a pull-up resistor can  
be implemented to ensure this signal is deasserted when it is not being driven by the tool. Note that the  
pull-up and pull-down resistors on the QACK signal are mutually exclusive and it is never necessary to  
MOTOROLA  
MPC7410 RISC Microprocessor Hardware Specications  
37  
System Design Information  
populate both in a system. To preserve correct power-down operation, QACK should be merged via logic  
so that it also can be driven by the PCI bridge.  
SRESET  
From Target  
SRESET  
HRESET  
Board Sources HRESET  
6
(if any)  
QACK  
10 kΩ  
10 kΩ  
10 kΩ  
10 kΩ  
HRESET  
13  
11  
OV  
DD  
SRESET  
OV  
OV  
DD  
DD  
DD  
OV  
5
0 Ω  
6
TRST  
1
3
5
7
9
2
4
TRST  
4
VDD_SENSE  
6
OV  
OV  
DD  
10 kΩ  
2 kΩ  
6
1
5
DD  
8
CHKSTP_OUT  
CHKSTP_OUT  
15  
10 kΩ  
10  
OV  
OV  
DD  
Key  
14  
11 12  
KEY  
10 kΩ  
2
DD  
13  
CHKSTP_IN  
TMS  
No Pin  
CHKSTP_IN  
TMS  
8
9
1
3
7
2
15  
16  
TDO  
TDI  
COP Connector  
Physical Pin Out  
TDO  
TDI  
TCK  
TCK  
QACK  
QACK  
10  
12  
16  
NC  
NC  
3
OV  
2 kΩ  
DD  
4
10 kΩ  
Notes:  
1. RUN/STOP, normally found on pin 5 of the COP header, is not implemented on the MPC7410. Connect  
pin 5 of the COP header to OV with a 10-kpull-up resistor.  
DD  
2. Key location; pin 14 is not physically present on the COP header.  
3. Component not populated. Populate only if debug tool does not drive QACK.  
4. Populate only if debug tool uses an open-drain type output and does not actively deassert QACK.  
5. If the JTAG interface is implemented, connect HRESET from the target source to TRST from the COP  
header though an AND gate to TRST of the part. If the JTAG interface is not implemented, connect  
HRESET from the target source to TRST of the part through a 0-isolation reisistor.  
6. The COP port and target board should be able to independently assert HRESET and TRST to the  
processor in order to fully control the processor as shown above.  
Figure 22. COP Connector Diagram  
38  
MPC7410 RISC Microprocessor Hardware Specications  
MOTOROLA  
System Design Information  
1.8.8 Thermal Management Information  
This section provides thermal management information for the MPC7410 for air-cooled applications.  
Proper thermal control design is primarily dependent on the system-level design—the heat sink, airflow, and  
thermal interface material. To reduce the die-junction temperature, heat sinks may be attached to the  
package by several methods—adhesive, spring clip to holes in the printed-circuit board or package, and  
mounting clip and screw assembly; see Figure 23. This spring force should not exceed 5.5 pounds of force.  
Note that care should be taken to avoid focused forces being applied to die corners and/or edges when  
mounting heat sinks.  
CBGA Package  
Heat Sink  
Heat Sink  
Clip  
Adhesive or  
Thermal Interface Material  
Printed-Circuit Board  
Option  
Figure 23. Package Exploded Cross-Sectional View with Several Heat Sink Options  
The board designer can choose between several types of heat sinks to place on the MPC7410. There are  
several commercially-available heat sinks for the MPC7410 provided by the following vendors:  
Aavid Thermalloy  
80 Commercial St.  
Concord, NH 03301  
Internet: www.aavidthermalloy.com  
603-224-9988  
408-749-7601  
800-347-4572  
Alpha Novatech  
473 Sapena Ct. #15  
Santa Clara, CA 95054  
Internet: www.alphanovatech.com  
The Bergquist Company  
18930 West 78th St.  
Chanhassen, MN 55317  
Internet: www.bergquistcompany.com  
International Electronic Research Corporation (IERC) 818-842-7277  
413 North Moss St.  
Burbank, CA 91502  
Internet: www.ctscorp.com  
MOTOROLA  
MPC7410 RISC Microprocessor Hardware Specications  
39  
System Design Information  
Tyco Electronics  
Chip Coolers  
P.O. Box 3668  
Harrisburg, PA 17105-3668  
Internet: www.chipcoolers.com  
800-522-6752  
603-635-5201  
TM  
Wakefield Engineering  
33 Bridge St.  
Pelham, NH 03076  
Internet: www.wakefield.com  
Ultimately, the final selection of an appropriate heat sink depends on many factors, such as thermal  
performance at a given air velocity, spatial volume, mass, attachment method, assembly, and cost.  
1.8.8.1 Internal Package Conduction Resistance  
For the exposed-die packaging technology, shown in Table 3, the intrinsic conduction thermal resistance  
paths are as follows:  
The die junction-to-case (or top-of-die for exposed silicon) thermal resistance  
The die junction-to-ball thermal resistance  
Figure 24 depicts the primary heat transfer path for a package with an attached heat sink mounted to a  
printed-circuit board.  
Heat generated on the active side of the chip is conducted through the silicon, then through the heat sink  
attach material (or thermal interface material), and finally to the heat sink where it is removed by forced-air  
convection.  
Since the silicon thermal resistance is quite small, for a first-order analysis, the temperature drop in the  
silicon may be neglected. Thus, the heat sink attach material and the heat sink conduction/convective  
thermal resistances are the dominant terms.  
External Resistance  
Radiation  
Convection  
Heat Sink  
Thermal Interface Material  
Die/Package  
Die Junction  
Package/Leads  
Internal Resistance  
Printed-Circuit Board  
Radiation  
Convection  
External Resistance  
Note the internal versus external package resistance.  
Figure 24. C4 Package with Heat Sink Mounted to a Printed-Circuit Board  
40  
MPC7410 RISC Microprocessor Hardware Specications  
MOTOROLA  
System Design Information  
1.8.8.2 Adhesives and Thermal Interface Materials  
A thermal interface material is recommended at the package lid-to-heat sink interface to minimize the  
thermal contact resistance. For those applications where the heat sink is attached by spring clip mechanism,  
Figure 25 shows the thermal performance of three thin-sheet thermal-interface materials (silicone,  
graphite/oil, floroether oil), a bare joint, and a joint with thermal grease as a function of contact pressure.  
As shown, the performance of these thermal interface materials improves with increasing contact pressure.  
The use of thermal grease significantly reduces the interface thermal resistance. That is, the bare joint results  
in a thermal resistance approximately seven times greater than the thermal grease joint.  
Heat sinks are attached to the package by means of a spring clip to holes in the printed-circuit board (see  
Figure 23). This spring force should not exceed 5.5 pounds of force. Therefore, the synthetic grease offers  
the best thermal performance, considering the low interface pressure. Of course, the selection of any thermal  
interface material depends on many factors—thermal performance requirements, manufacturability, service  
temperature, dielectric properties, cost, etc.  
Figure 25 describes the thermal performance of selected thermal interface materials.  
Silicone Sheet (0.006”)  
Bare Joint  
2
Floroether Oil Sheet (0.007”)  
Graphite/Oil Sheet (0.005”)  
Synthetic Grease  
1.5  
1
0.5  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
Contact Pressure (psi)  
Figure 25. Thermal Performance of Select Thermal Interface Material  
MOTOROLA  
MPC7410 RISC Microprocessor Hardware Specications  
41  
System Design Information  
The board designer can choose between several types of thermal interface. Heat sink adhesive materials  
should be selected based upon high conductivity, yet adequate mechanical strength to meet equipment  
shock/vibration requirements. There are several commercially-available thermal interfaces and adhesive  
materials provided by the following vendors:  
Chomerics, Inc.  
781-935-4850  
77 Dragon Court  
Woburn, MA 01888-4014  
Internet: www.chomerics.com  
Dow-Corning Corporation  
Dow-Corning Electronic Materials  
2200 W. Salzburg Rd.  
800-248-2481  
Midland, MI 48686-0997  
Internet: www.dow.com  
Shin-Etsu MicroSi, Inc  
10028 S. 51st St.  
Phoenix, AZ 85044  
888-642-7674  
888-246-9050  
Internet: www.microsi.com  
Thermagon Inc.  
4707 Detroit Ave.  
Cleveland, OH 44102  
Internet: www.thermagon.com  
1.8.8.3 Heat Sink Selection Example  
For preliminary heat sink sizing, the die-junction temperature can be expressed as follows:  
T = T + T + (θ + θ + θ ) × P  
j
a
r
jc  
int  
sa  
d
where:  
T is the die-junction temperature  
j
T is the inlet cabinet ambient temperature  
a
T is the air temperature rise within the computer cabinet  
r
θ is the junction-to-case thermal resistance  
jc  
θ
is the adhesive or interface material thermal resistance  
int  
θ is the heat sink base-to-ambient thermal resistance  
sa  
P is the power dissipated by the device  
d
During operation the die-junction temperatures (T ) should be maintained less than the value specified in  
j
Table 3. The temperature of the air cooling the component greatly depends upon the ambient inlet air  
temperature and the air temperature rise within the electronic cabinet. An electronic cabinet inlet-air  
temperature (T ) may range from 30° to 40°C. The air temperature rise within a cabinet (T ) may be in the  
a
r
range of 5° to 10°C. The thermal resistance of the thermal interface material (θ ) is typically about 1°C/W.  
int  
Assuming a T of 30°C, a T of 5°C, a CBGA package θ = 0.03, and a power consumption (P ) of 5.0 W,  
a
r
jc  
d
the following expression for T is obtained:  
j
Die-junction temperature: T = 30°C + 5°C + (0.03°C/W + 1.0°C/W + θ ) × 5.0 W  
j
sa  
For a Thermalloy heat sink #2328B, the heat sink-to-ambient thermal resistance (θ ) versus airflow  
sa  
velocity is shown in Figure 26.  
42  
MPC7410 RISC Microprocessor Hardware Specications  
MOTOROLA  
System Design Information  
Assuming an air velocity of 0.5 m/s, we have an effective R of 7°C/W, thus  
sa  
T = 30°C + 5°C + (0.03°C/W + 1.0°C/W + 7°C/W) × 5.0 W,  
j
resulting in a die-junction temperature of approximately 75°C which is well within the maximum operating  
temperature of the component.  
Other heat sinks offered by Aavid Thermalloy, Alpha Novatech, The Bergquist Company, IERC, Chip  
Coolers, and Wakefield Engineering offer different heat sink-to-ambient thermal resistances, and may or  
may not need airflow.  
8
Thermalloy #2328B Pin-Fin Heat Sink  
(25 × 28 × 15 mm)  
7
6
5
4
3
2
1
0
0.5  
1
1.5  
2
2.5  
3
3.5  
Approach Air Velocity (m/s)  
Figure 26. Thermalloy #2328B Heat Sink-to-Ambient Thermal Resistance Versus Airow Velocity  
Though the die junction-to-ambient and the heat sink-to-ambient thermal resistances are a common  
figure-of-merit used for comparing the thermal performance of various microelectronic packaging  
technologies, one should exercise caution when only using this metric in determining thermal management  
because no single parameter can adequately describe three-dimensional heat flow. The final die-junction  
operating temperature, is not only a function of the component-level thermal resistance, but the system-level  
design and its operating conditions. In addition to the component's power consumption, a number of factors  
affect the final operating die-junction temperature—airflow, board population (local heat flux of adjacent  
components), heat sink efficiency, heat sink attach, heat sink placement, next-level interconnect technology,  
system air temperature rise, altitude, etc.  
Due to the complexity and the many variations of system-level boundary conditions for today's  
microelectronic equipment, the combined effects of the heat transfer mechanisms (radiation, convection,  
and conduction) may vary widely. For these reasons, we recommend using conjugate heat transfer models  
for the board, as well as, system-level designs.  
MOTOROLA  
MPC7410 RISC Microprocessor Hardware Specications  
43  
Document Revision History  
1.9 Document Revision History  
Table 16 provides a revision history for this hardware specification.  
Table 16. Document Revision History  
Rev. No.  
Substantive Change(s)  
0
Initial release.  
Minor updates.  
0.1  
0.2  
Corrected Section 1.3—technology from 0.13 µm to 0.18 µm.  
Updated Table 7—adds power consumption numbers; adds note on estimated decrease w/o AltiVec.  
Updated Table 8—adds minimun values for processor frequency and VCO frequency.  
Updated Table 9—input setup, output valid times, output hold times, SYSCLK to output high impedance.  
Updated Table 11—L2SYNC_IN to high impedance.  
Updated Figure 17—mechanical dimensions, adds capacitor pad dimensions.  
Added 3.3 V support on the processor bus (BVSEL).  
0.3  
Table 7—update typical and maximum power numbers for full-on mode in. Removed note 4. Reworded  
notes 2 and 3.  
Table 9, Note 2—removed reference to application note.  
Figure 17—corrected side view datum A to be datum C.  
Section 1.8.7—added CI and WT to transfer attribute signals requiring pull-ups.  
Section 1.8.7—added 1-kpull-up recommendation to GBL when GBL is not connected.  
Table 2— added pull-down resistance necessary for internally pulled-up voltage select pins. Added  
3.3-V support for BVSEL.  
Table 13—added note 14 for BVSEL, L2VSEL, and TRST pins to address pull-down resistance  
necessary for these internally pulled-up pins to recognize a low signal.  
Table 6—lowered 2.5V CV from 2.2 to 2.0V to be compatible withV of the MPC107.Added support  
IH  
OH  
for 3.3-V processor bus.  
Table 15—modied note 1, use L2CR[L2SL] for L2CLK frequency less than 150 MHz.  
Table 8—revised note 2 discussing for 3.3-V bus voltage support.  
Table 14—added note 5, do not use PL off during power-up sequence.  
Table 1—update output hold times (t  
).  
L2CHOX  
1.0  
Section 1.3 and Table 3—revised OV  
DD  
from 3.3 V ± 100 mV to 3.3 V ± 165 mV.  
Table 13—removed unsupported PLL congurations.  
Table 12—added note 15 for minimum MCP pulse width, correct note 3 for 3.3-V processor bus support.  
Table 13—revised note 3 to include emulator tool development.  
Table 14—removed unsupported Core-to-L2 example frequencies.  
Section 1.8.8—updated heat sink vendors list.  
Section 1.8.8.2—updated interface vendors list.  
44  
MPC7410 RISC Microprocessor Hardware Specications  
MOTOROLA  
Document Revision History  
Table 16. Document Revision History (continued)  
Rev. No.  
Substantive Change(s)  
Table 1—updated voltage sequencing requirements notes 3 and 4.  
Table 4—Updated/added thermal characteristics.  
Table 5—removed table and TAU related information, TAU is no longer supported.  
Table 6—updated I and I  
leakage current specs.  
in  
TSI  
Section 1.8.3—removed section.  
Section 1.10—reformatted section.  
Section 1.8.6—changed recommended pull-up resistor value to 1 kW–5 kW. Added AACK, TEA, and  
TS to control signals needing pull-ups. Added pull-up resistor value recomendation for L1_TSTCLK,  
L2_TSTCLK, and LSSD_MODE factory test signals.  
Section 1.8.7—revised text regarding connection of TRST. Combined Figure 22, Figure 23, and Table  
17, into Figure 21.  
Table 7—corrected min VCO frequencies from 450 to 700 MHz to match min processor frequency of  
350 MHz.  
Table 2—added note 3 to clarify BVSEL for revisions prior to Rev. E which do not support 3.3 V OV  
.
DD  
Table 3—added notes 5 and 6 to clarify BVSEL for revisions prior to Rev. E which do not support 3.3 V  
OV  
.
DD  
Table 5—added note 8 regarding DC voltage limits for JTAG signals.  
Internal release.  
1.1  
Table 12—added note 16 for ABB/AMON and DBB/DMON signal clarication.  
Table 12—changed CHK note 4 reference to note 2, signal is for factory test only. Changed previous  
note 4 (CHK related) to now provide additional PLL info.  
Table 1—modied maximum value for OV from –0.3 to 3.465 to now be –0.3 to 3.6 and L2OV from  
DD  
DD  
–0.3 to 2.6 to now be –0.3 to 2.8. Modied note 6, OV for revisions prior to Rev. 1.4 have maximum  
DD  
value for OV of –0.3 to 2.8.  
DD  
Table 8—removed note 12. L2_TSTCLK is for factory use only (see Table 12, note 2).  
Section 1.10.2—revised section to include nomenclature tables for part markings not covered by this  
spec.  
Figure 2—added that under/overshoot for L2OV references t  
while OV references t  
.
DD  
L2CLK  
DD  
SYSCLK  
Table 4—added HCTE package (HX package descriptor) thermal characteristics.  
Section 1.5—added HCTE package (HX package descriptor). Both the CBGA and HCTE packages  
have the same pin assignments.  
Section 1.6—added HCTE package (HX package descriptor). Both the CBGA and HCTE packages  
have the same pinout listings.  
Section 1.7—added HCTE package (HX package descriptor). Both the CBGA and HCTE packages  
have the same package parameters and dimensions.  
Table 17—added HCTE package (HX package descriptor) to part numbering nomenclature.  
Table 21—added MPC7410THXnnnLE extended temperature HCTE package part numbers and part  
number specication document reference.  
MOTOROLA  
MPC7410 RISC Microprocessor Hardware Specications  
45  
Document Revision History  
Table 16. Document Revision History (continued)  
Rev. No.  
Substantive Change(s)  
Public release, includes Rev 1.1 changes.  
2
Section 1.7.2—added package capacitor values.  
Section 1.8.6—added recommendation that strong pull-up/down resistors be used on the  
PLL_CFG[0:3] signals.  
Table 8—removed mode input setup and hold times. These inputs adhere to the general input setup  
and hold specications.  
Figure 5—revised mode input diagram to show sample points around HRESET negation.  
Section 1.3—added HCTE package description.  
Figure 22—added note 6 to emphasize that COP emulator and target board need to be able to drive  
HRESET and TRST independently to the CPU.  
Section 1.8.2—revised section for HCTE package. Added text and gure for AV lter for the CBGA  
DD  
package.  
Section 1.8.6—removed AACK, TEA, and TS from control signals requiring pull-ups. Removed TBST  
from snooped transfer attribute list. TBST is an output and is not snooped.  
46  
MPC7410 RISC Microprocessor Hardware Specications  
MOTOROLA  
Ordering Information  
1.10 Ordering Information  
Ordering information for the parts fully covered by this specification document is provided in  
Section 1.10.1, “Part Numbers Addressed by This Specification.” Section 1.10.2, “Part Numbers Not Fully  
Addressed by This Document,” lists the part numbers which do not fully conform to the specifications of  
this document. These special part numbers require an additional document called a part number  
specification.  
1.10.1 Part Numbers Addressed by This Specication  
Table 17 provides the Motorola part numbering nomenclature for the MPC7410 Note that the individual part  
numbers correspond to a maximum processor core frequency. For available frequencies, contact your local  
Motorola sales office. In addition to the processor frequency, the part numbering scheme also includes an  
application modifier which may specify special application conditions. Each part number also contains a  
revision code which refers to the die mask revision number.  
Table 17. Part Numbering Nomenclature  
MPC 7410  
xx  
nnn  
x
x
Product  
Code  
Part  
Identier  
Processor  
Frequency  
Application  
Modier  
1
Package  
Revision Level  
2
MPC  
7410  
RX = CBGA  
HX = HCTE  
400  
450  
500  
L: 1.8 V ± 100 mV C: 1.2; PVR = 800C 1102  
0° to 105°C  
D: 1.3; PVR = 800C 1103  
E: 1.4; PVR = 800C 1104  
E: 1.4; PVR = 800C 1104  
Notes:  
1. See Section 1.7, “Package Description,” for more information on available package types and Table 4 for more  
information on thermal characteristics.  
2. Processor core frequencies supported by parts addressed by this specication only. Not all parts described in this  
specication support all core frequencies. Additionally, parts addressed by part number specications may support  
other maximum core frequencies.  
MOTOROLA  
MPC7410 RISC Microprocessor Hardware Specications  
47  
Ordering Information  
1.10.2 Part Numbers Not Fully Addressed by This Document  
Parts with application modifiers or revision levels not fully addressed in this specification document are  
described in separate part number specifications which supplement and supersede this document, as  
described in the following tables.  
Table 18. Part Numbers Address by MPC7410RXnnnPx Series Part Numbers Specications  
MPC 7410  
RX  
nnn  
P
x
Product  
Code  
Part  
Identier  
Processor  
Frequency  
Application  
Modier  
Package  
RX = CBGA  
Revision Level  
1
1
MPC  
7410  
450  
500  
550  
P: 2.0 V ± 50 mV  
C: 1.2; PVR = 800C 1102  
D: 1.3; PVR = 800C 1103  
2
0° to 65°C  
3
E: 1.4; PVR = 800C 1104  
Notes: Document order numbers:  
1. MPC7410PCPNS.  
2. MPC7410PDPNS.  
3. MPC7410PEPNS.  
Table 19. Part Numbers Address by MPC7410RXnnnNE Part Numbers Specication  
MPC 7410  
RX  
nnn  
N
E
Revision Level  
Product  
Code  
Part  
Identier  
Processor  
Frequency  
Application  
Modier  
Package  
1
MPC  
7410  
RX = CBGA  
400  
450  
500  
N: 1.5 V ± 50 mV  
E: 1.4; PVR = 800C 1104  
Note: Document order number: MPC7410NEPNS.  
Table 20. Part Numbers Address by MPC7410TRXnnnNE Part Numbers Specication  
MPC 7410  
T
RX  
nnn  
N
E
Product  
Code  
Part  
Identier  
Process  
Descriptor  
Processor  
Frequency  
Application  
Modier  
Package  
Revision Level  
1
MPC  
7410  
T: –40° to 105°C RX = CBGA  
400  
450  
N: 1.5 V ±50 mV  
E: 1.4; PVR = 800C 1104  
Note: Document order number: MPC7410TRXNEPNS.  
48  
MPC7410 RISC Microprocessor Hardware Specications  
MOTOROLA  
Ordering Information  
Table 21. Part Numbers Address by MPC7410TRXnnnLE and MPC7410THXnnnLE  
Part Numbers Specications  
MPC 7410  
T
xx  
nnn  
L
E
Product  
Code  
Part  
Identier  
Process  
Descriptor  
Processor  
Frequency  
Application  
Modier  
Package  
Revision Level  
1
1
MPC  
7410  
T: –40 to 105°C RX = CBGA  
400  
450  
500  
L: 1.8 V ± 100 mV E: 1.4; PVR = 800C 1104  
2
HX = HCTE  
Notes: Document order number:  
1. MPC7410TRXLEPNS.  
2. MPC7410THXLEPNS.  
MOTOROLA  
MPC7410 RISC Microprocessor Hardware Specications  
49  
Ordering Information  
1.10.3 Part Marking  
Parts are marked as the example shown in Figure 27.  
MPC7410  
RXnnnLE  
MMMMMM  
ATWLYYWWA  
7410  
CBGA  
Notes:  
MMMMMM is the 6-digit mask number.  
ATWLYYWWA is the traceability code.  
CCCCC is the country of assembly. This space is left blank if parts are assembled in the United States.  
Figure 27. Part Marking for BGA Device  
50  
MPC7410 RISC Microprocessor Hardware Specications  
MOTOROLA  
Ordering Information  
THIS PAGE INTENTIONALLY LEFT BLANK  
MOTOROLA  
MPC7410 RISC Microprocessor Hardware Specications  
51  
HOW TO REACH US:  
USA/EUROPE/LOCATIONS NOT LISTED:  
Motorola Literature Distribution  
P.O. Box 5405, Denver, Colorado 80217  
1-480-768-2130  
(800) 521-6274  
JAPAN:  
Motorola Japan Ltd.  
SPS, Technical Information Center  
3-20-1, Minami-Azabu Minato-ku  
Tokyo 106-8573 Japan  
Information in this document is provided solely to enable system and software implementers to use  
Motorola products.There are no express or implied copyright licenses granted hereunder to design  
or fabricate any integrated circuits or integrated circuits based on the information in this document.  
81-3-3440-3569  
ASIA/PACIFIC:  
Motorola Semiconductors H.K. Ltd.  
Silicon Harbour Centre, 2 Dai King Street  
Tai Po Industrial Estate, Tai Po, N.T., Hong Kong  
852-26668334  
Motorola reserves the right to make changes without further notice to any products herein.  
Motorola makes no warranty, representation or guarantee regarding the suitability of its products  
for any particular purpose, nor does Motorola assume any liability arising out of the application or  
use of any product or circuit, and specically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters which may be provided in  
Motorola data sheets and/or specications can and do vary in different applications and actual  
performance may vary over time. All operating parameters, including “Typicals” must be validated  
for each customer application by customer’s technical experts. Motorola does not convey any  
license under its patent rights nor the rights of others. Motorola products are not designed,  
intended, or authorized for use as components in systems intended for surgical implant into the  
body, or other applications intended to support or sustain life, or for any other application in which  
the failure of the Motorola product could create a situation where personal injury or death may  
occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold Motorola and its ofcers, employees, subsidiaries,  
afliates, and distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was  
negligent regarding the design or manufacture of the part.  
TECHNICAL INFORMATION CENTER:  
(800) 521-6274  
HOME PAGE:  
www.motorola.com/semiconductors  
Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Ofce.  
digital dna is a trademark of Motorola, Inc. The described product is a PowerPC microprocessor.  
The PowerPC name is a trademark of IBM Corp. and used under license. All other product or  
service names are the property of their respective owners. Motorola, Inc. is an Equal  
Opportunity/Afrmative Action Employer.  
© Motorola, Inc. 2003  
MPC7410EC  
Search  
Advanced | Parametric | Part Number | FAQ  
Select Country  
Motorola Home | Semiconductors Home | Contact Us  
Products | Design Support | Register | Login  
Semiconductors  
Motorola > Semiconductors >  
MPC7410 : Host Processor  
Page Contents:  
The MPC7410 Host Processor is a high-performance, low-power, 32-bit PowerPC processor combined  
with a full 128-bit implementation of Motorola's AltiVec™ technology. This creates a microprocessor ideal  
for leading-edge computing, embedded network control, and signal processing applications. The  
MPC7410 offers the high-bandwidth MPX bus with minimized signal setup times and reduced idle cycles  
to increase maximum operating frequency to over 100 MHz, in addition to increased address and data bus  
bandwidth. To maintain compatibility for existing designs, the MPC7410 also supports the 60x bus  
protocol. MPC7410 microprocessors offer single-cycle double precision floating-point performance, full  
symmetric multi-procesing (SMP) capabilities, and support for up to 2MB of backside L2 cache. While the  
MPC7410 is software-compatible with existing MPC603e, MPC740, and MPC750 microprocessors, to  
utilize the full potential of the AltiVec technology changes to existing source code is required.  
Features  
Documentation  
Tools  
Applications  
Orderable Parts  
Related Links  
Other Info:  
FAQs  
3rd Party Design Help  
Training  
Product Picture  
Block Diagram  
3rd Party Tool  
Vendors  
MPC7410 Features  
3rd Party Trainers  
Rate this Page  
Superscalar Microprocessor  
MPC7410 microprocessors feature a high-frequency, superscalar PowerPC processor core, capable of  
issuing three instructions per clock cycle (two instructions + branch) into eight independent execution  
units:  
--  
-
0
+
++  
Submit  
Care to Comment?  
Two integer units and Double-precision floating-point unit  
Vector permute unit  
Vector arithmetic logic unit  
Load/store unit and System unit  
Branch processing unit  
MPX Bus Interface  
MPC7410 microprocessors support the MPX bus protocol with 64-bit data bus and 32-bit address bus.  
Support is included for burst, split, pipelined and out-of-order transactions, in addition to data streaming,  
and data intervention (in SMP systems). The interface provides snooping for data cache coherency. The  
MPC7410 implements the MERSI cache coherency protocol for multiprocessing support in hardware,  
allowing access to system memory for additional caching bus masters, such as DMA devices.  
Power Management  
MPC7410 microprocessors feature a low-power 1.8-volt design with three power-saving user-  
programmable modes -- nap, doze (with bus snoop) and sleep -- which progressively reduce the power  
drawn by the processor. The MPC7410 also provides a thermal assist unit and instruction cache throttling  
for software-controllable thermal management.  
Cache and MMU Support  
The MPC7410 microprocessor has separate 32-Kbyte, physically addressed instruction and data caches.  
Both caches feature cache locking and are eight-way set-associative. The MPC7410 microprocessor's  
dedicated L2 cache interface with on-chip L2 tags features a very fast (up to core speed, 1:1) interface to  
memory, instruction-only or data-only modes, and parity checking on L2 data. The L2 data bus has both  
32-bit and 64-bit modes, which can also be configured as private memory. The MPC7410 microprocessor  
contains separate memory management units (MMUs) for instructions and data, supporting 4 Petabytes  
(252) of virtual memory and 4 Gigabytes (232) of physical memory. The MPC7410 also has four  
instruction block address translation (iBAT) and four data block address translation (dBAT) registers.  
AltiVec Technology  
The AltiVec technology expands the capabilities of Motorola's fourth generation processors by providing  
leading-edge, general purpose processing performance while concurrently addressing high-bandwidth  
data processing and algorithmic-intensive computations in a single-chip solution. AltiVec technology:  
Meets the computational demands of networking infrastructure such as echo cancellation  
equipment, and basestation processing.  
Enables faster, more secure encryption methods optimized for the SIMD processing model.  
Provides compelling performance for multimedia-oriented desktop computers, desktop publishing,  
and digital video processing.  
Enables real-time processing of the most demanding data streams (MPEG-2 encode, continuous  
speech recognition, real-time high-resolution 3D memory for additional caching bus masters, such  
as DMA devices.)  
Return to Top  
MPC7410 Documentation  
Documentation  
Application Note  
Size Rev Date Last  
Order  
ID  
Name  
Vendor ID Format  
K
#
Modified Availability  
MOTOROLA  
pdf  
AN1794/D  
AN1795/D  
AN1809  
AN1812/D  
AN2077  
AN2097  
AN2106/D  
AN2114/D  
AN2115/D  
AN2161  
AN2180  
AN2203/D  
AN2273  
AN2424/D  
AN2435  
Backside L2 Timing Analysis for PCB Design Engineers  
Designing PowerPC(TM) MPC7400 Systems  
87 0.2 5/22/2003  
97 1.1 6/05/2003  
MOTOROLA  
pdf  
Minimal Boot Sequence for Executing Compiled C  
Programs on PowerPC(TM) Devices  
MOTOROLA  
pdf  
11/11/2003  
270 1.2  
Common Footprint for the MPC750, MPC755, MPC7400, MOTOROLA  
and MPC7410 Application Note  
12/17/2001  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
pdf  
283  
1
Design Checklist for Motorola PowerPC(TM)  
Microprocessors  
MOTOROLA  
MOTOROLA  
MOTOROLA  
11/11/2003  
309 1.6  
PowerPC(TM) 60X Bus Implementation Differences  
PowerPC(TM) MPX Bus Implementation Differences  
135 0.3 8/06/2003  
76 0.1 6/05/2003  
158 2.1 6/03/2003  
151 2.1 6/03/2003  
95 0.1 8/04/2003  
Complex Fixed-Point Fast Fourier Transform Optimization MOTOROLA  
for Altivec(TM)  
Complex Floating Point Fast Fourier Transform  
Optimization for AltiVec(TM)  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
Outstanding Data Tenures on the MPX Bus  
Cache Latencies of the 7451  
87 0.2 8/04/2003  
1152  
MPC7450 RISC Microprocessor Family Software  
Optimization Guide  
1
7/30/2002  
Building an NFS DHCP/BOOTP Server for Use with  
Sandpoint and MVP Linux  
0
1.1 6/10/2003  
12/20/2002  
0
MPC7410 and MPC7450: Comparison and Compatibility  
Thermal Solutions for PowerPC(TM) Processors  
194  
125  
0
7/28/2003  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
11/11/2003  
9/30/2003  
AN2436  
AN2491  
AN2540  
AN2581  
Specifying Power Consumption  
pdf  
pdf  
pdf  
pdf  
225 0.2  
Simplified Mnemonics for PowerPC Instructions  
524  
0
0
Synchronizing Instructions for PowerPC(TM) Instruction  
Set Architecture  
0.1 7/03/2003  
AltiVec Performance Enhancement in a Multiprocessing  
Environment  
10/10/2003  
0
341  
Data Sheets  
ID  
Size Rev Date Last  
Order  
Name  
Vendor ID Format  
K
#
Modified Availability  
MPC7410 RISC Microprocessor Hardware  
Specifications  
MOTOROLA  
pdf  
616  
10/03/2003  
MPC7410EC  
2.0  
MPC7410 Part Number Specifications for the  
RXxxxNE Series  
MOTOROLA  
pdf  
10/21/2002  
-
MPC7410NEPNS  
MPC7410PCPNS  
MPC7410PDPNS  
MPC7410PEPNS  
96  
1
1
1
1
0
1
MPC7410 Part Number Specifications for the  
RXxxxPC Series  
MOTOROLA  
pdf  
229  
10/21/2002  
-
MPC7410 Part Number Specifications for the  
RXxxxPD Series  
MOTOROLA  
pdf  
157  
10/21/2002  
-
MPC7410 Part Number Specifications for the  
RXxxxPE Series  
MOTOROLA  
pdf  
10/21/2002  
-
71  
52  
MPC7410 Part Number Specification for the  
MPC7410THXnnnLE Series  
MOTOROLA  
pdf  
10/03/2003  
10/21/2002  
MPC7410THXLEPNS  
MPC7410TRXLEPNS/D  
MPC7410 Part Number Specification for the  
MPC7410TRXnnnLE Series  
MOTOROLA  
pdf  
76  
MPC7410TRXNEPNS/D  
MPC7410 Part Number Specification for the  
MPC7410TRXnnnNE Series  
MOTOROLA  
pdf  
112  
1.1 5/28/2003  
Errata - Click here for important errata information  
Size  
K
Date Last  
Modified  
Order  
Availability  
ID  
Name  
Vendor ID Format  
Rev #  
14  
MPC7410CE  
MPC7410 RISC Microprocessor Chip Errata MOTOROLA  
pdf  
156  
10/20/2003  
Fact Sheets  
ID  
Size Rev Date Last  
Order  
Name  
Vendor ID Format  
K
#
Modified Availability  
MOTOROLA  
pdf  
160  
2/20/2003  
ALTIVECFACT/D  
ALTIVECWP  
AltiVec Fact Sheet  
Motorola's AltiVec Technology  
2
MOTOROLA  
pdf  
171  
1/01/1998  
4/08/2002  
2/17/2003  
0
3
1
MPC7410 Fact Sheet High Performance, Low-Power 32- MOTOROLA  
Bit RISC Microprocessor  
MPC7410FACT/D  
pdf  
pdf  
35  
PPCSALESFACT/D  
MOTOROLA  
234  
PowerPC Processors At-A-Glance  
Packaging Information  
Date Last  
Modified  
Order  
Availability  
ID  
Name  
Vendor ID Format Size K Rev #  
PBGAPRES  
PBGA Packaging Customer Tutorial  
TBGA Packaging Customer Tutorial  
MOTOROLA  
MOTOROLA  
pdf  
pdf  
1923  
1784  
1
0
8/05/2003  
8/05/2003  
-
-
TBGAPRESPKG  
Product Brief  
ID  
Size Rev Date Last  
Order  
Name  
Vendor ID Format  
pdf  
K
#
Modified Availability  
MPC7410TS/D  
MPC7410 RISC Microprocessor Technical Summary MOTOROLA  
311  
0
10/04/2000  
Product Change Notices  
Size  
K
Date Last  
Modified  
Order  
Availability  
ID  
Name  
Vendor ID Format  
Rev #  
PCN8657  
FC CBGA HIGH TEMP REFLOW CAPABLITY MOTOROLA htm  
14  
0
3/19/2003  
-
Reference Manual  
ID  
Size Rev Date Last  
Order  
Name  
Vendor ID Format  
K
#
Modified Availability  
MOTOROLA  
pdf  
3893  
ALTIVECPEM/D  
ALTIVECPIM_D  
MPC7410UM  
AltiVec Technology Programming Environments Manual  
AltiVec Technology Programming Interface Manual  
MPC7410 RISC Microprocessor Users Manual  
2.0 2/28/2002  
MOTOROLA  
pdf  
0
0
0
1
1
0
2
6/01/1999  
-
MOTOROLA  
pdf  
11/18/2002  
Errata to MPC7410 RISC Microprocessor Users Manual MOTOROLA  
Rev. 1  
MPC7410UMAD  
MPCBUSIF/AD  
MPCFPE32B/AD  
MPCFPE32BAD/AD  
pdf  
pdf  
pdf  
69  
8/29/2003  
The Bus Interface for 32-Bit Microprocessors that  
Implement the PowerPC Architecture  
MOTOROLA  
916  
3/31/1997  
Programming Environments Manual for 32-Bit  
Implementations of the PowerPC Architecture  
MOTOROLA  
6909  
12/21/2001  
Errata to MPCFPE32B, Programming Environments  
Manual for 32-Bit Implementations of the Power PC  
Architecture, Rev. 2  
MOTOROLA  
MOTOROLA  
10/11/2002  
1/01/1996  
pdf  
pdf  
40  
0
0
-
PowerPC Microprocessor Family: The Programmer's  
Pocket Reference Guide  
MPCPRGREF/D  
375  
Reliability and Quality Information  
Size Rev Date Last  
Order  
Availability  
ID  
Name  
Vendor ID Format  
K
84  
21  
13  
#
Modified  
FPCREPORT  
FRCALC  
Board Level Failure Prediction Calculation Report MOTOROLA  
pdf  
pdf  
pdf  
-
-
-
-
-
-
-
Component Level Failure Rate Calculation  
MPC7410 Reliability and Qualification Data  
MOTOROLA  
MOTOROLA  
-
-
MPC7410QI  
Reports or Presentations  
Size Rev Date Last  
Order  
Availability  
ID  
Name  
Vendor ID Format  
K
#
Modified  
9/21/1999  
2/10/2003  
ALTIVECPR  
AltiVec Technology Presentation  
MOTOROLA  
pdf  
pdf  
0
-
-
-
PPCCPUSUMM  
Motorola Host and Integrated Processor Summary MOTOROLA  
6
1
Roadmap  
ID  
Size  
K
Date Last  
Modified  
Order  
Availability  
Name  
Vendor ID Format  
pdf  
Rev #  
PPCRMAP  
Motorola Host Processor Strategy Roadmap MOTOROLA  
122  
-
11/30/2001  
-
Selector Guide  
ID  
Size Rev Date Last  
Order  
Name  
Vendor ID Format  
K
#
Modified Availability  
MOTOROLA  
pdf  
11/11/2003  
SG2000CR  
Application Selector Guide Index and Cross-Reference.  
95  
3
Supporting Information  
Size Rev Date Last  
Order  
Availability  
ID  
Name  
Vendor ID Format  
pdf  
K
#
Modified  
PPCPVR  
Motorola Host Processor Version Register Settings MOTOROLA  
6
16 10/17/2003  
-
White Paper  
ID  
Size Rev Date Last  
Order  
Name  
Vendor ID Format  
K
#
Modified Availability  
MOTOROLA  
pdf  
G4WP  
G4 Architecture White Paper  
53  
0
1/23/2001  
5/01/1996  
-
-
Motorola PowerPC 603 and PowerPC 604 RISC  
Microprocessor: The C4/Ceramic-Ball-Grid Array  
Interconnect Technology  
MPC603OVERALLWP/D  
MOTOROLA  
pdf  
112  
0
0
Thermal Management of a C4/Ceramic-Ball-Grid  
Array: The Motorola PowerPC 603 and PowerPC  
604 RISC Microprocessors  
MPC603THERMALWP/D  
MPC74XXMBUSWP_D  
MOTOROLA  
pdf  
86  
5/01/1996  
-
-
MOTOROLA  
pdf  
11/20/2003  
Memory Bus Throughput of the MPC74xx  
95 1.1  
Return to Top  
MPC7410 Tools  
Hardware Tools  
Board Testers  
ID  
Name  
Vendor ID  
Format  
Size K  
Rev #  
Order Availability  
SCANPLUS  
CORELIS  
ScanPlus  
-
-
-
-
Emulators/Probes/Wigglers  
ID  
Name  
Vendor ID  
ABATRON  
CORELIS  
Format Size K Rev #  
Order Availability  
BDI1000/BDI2000  
10200A  
BDI1000/BDI2000  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
NetICE-R option 2/2M  
PROBE  
GREENHILLS  
WINDRIV  
Green Hills Probe & Slingshot  
visionICE II  
VISIONICE  
VISIONPROBE  
WPICE  
WINDRIV  
visionPROBE II  
WINDRIV  
WIND®POWER ICE  
Evaluation/Development Boards and Systems  
Size Rev  
Order  
Availability  
ID  
Name  
Vendor ID Format  
K
#
MOTOROLA  
-
SANDPOINTX3  
Sandpoint X3 Evaluation System - Motherboard  
-
-
-
PPCEVAL-SP3-  
7410  
MOTOROLA  
-
Sandpoint X3 Motherboard with Altimus X3 MPC7410 PMC Module  
-
-
Models  
BSDL  
Size Rev  
Order  
Availability  
ID  
Name  
Vendor ID Format  
MOTOROLA txt  
K
#
MPC7410R1CBSDL  
MPC7410 BSDL for Rev. 1.2 and above of Silicon  
60  
-
-
Bus Functional Models  
ID  
Name  
Vendor ID  
Format Size K Rev # Order Availability  
tar 1185 1.6  
MPC7400 Bus Functional Model  
(07/16/2002)  
MPC7400BFM  
MOTOROLA  
-
Full Functional Models  
ID  
Name  
Vendor ID Format Size K Rev #  
Order Availability  
EP100  
EUREKA  
EUREKA  
EUREKA  
EUREKA  
EUREKA  
PowerPC Bus Slave  
PowerPC Bus Master  
PowerPC Bus Arbiter  
PowerPC-PCI Bridge  
PowerPC System Controller  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EP201  
EP300  
EP433  
ES100  
IBIS  
Size Rev  
Order  
Availability  
ID  
Name  
Vendor ID Format  
K
#
MPC7410, All Revisions, 360 CBGA Package, 2.5V I/O, 2.5V MOTOROLA  
L2 IBIS  
103  
MPC7410AIBIS  
MPC7410BIBIS  
MPC7410CIBIS  
MPC7410DIBIS  
MPC7410EIBIS  
MPC7410FIBIS  
MPC7410PAIBIS  
MPC7410PBIBIS  
MPC7410PCIBIS  
MPC7410PDIBIS  
MPC7410PEIBIS  
MPC7410PFIBIS  
txt  
txt  
txt  
txt  
txt  
txt  
txt  
txt  
txt  
txt  
txt  
txt  
0.1  
-
-
-
-
-
-
-
-
-
-
-
-
MPC7410, All Revisions, 360 CBGA Package, 2.5V I/O, 1.8V MOTOROLA  
L2 IBIS  
100  
0.1  
MPC7410, All Revisions,360 CBGA Package, 1.8V I/O, 2.5V MOTOROLA  
L2 IBIS  
99 0.1  
95 0.1  
MPC7410, All Revisions,360 CBGA Package, 1.8V I/O, 1.8V MOTOROLA  
L2 IBIS  
MPC7410, All Revisions,360 CBGA Package, 3.3V I/O, 2.5V MOTOROLA  
L2 IBIS  
109  
0.1  
MPC7410, All Revisions,360 CBGA Package, 3.3V I/O, 1.8V MOTOROLA  
L2 IBIS  
105  
0.1  
MPC7410, All Revisions,360 PBGA Package, 2.5V I/O, 2.5V  
L2 IBIS  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
111  
0.1  
MPC7410, All Revisions,360 PBGA Package, 2.5V I/O, 1.8V  
L2 IBIS  
102  
0.1  
MPC7410, All Revisions,360 PBGA Package, 1.8V I/O, 2.5V  
L2 IBIS  
101  
0.1  
MPC7410, All Revisions,360 PBGA Package, 1.8V I/O, 1.8V  
L2 IBIS  
97 0.1  
MPC7410, All Revisions,360 PBGA Package, 3.3V I/O, 2.5V  
L2 IBIS  
111  
0.1  
MPC7410, All Revisions,360 PBGA Package, 3.3V I/O, 1.8V  
L2 IBIS  
107  
0.1  
Timing Models  
ID  
Name  
Vendor ID  
Format Size K Rev # Order Availability  
SimG4 Timing Model (for Linux)  
(01/2002)  
MPC7400LINTIME  
MPC7400SOLTIME  
MOTOROLA  
gz  
gz  
310  
279  
1.3.2  
1.3.1  
-
-
SimG4 Timing Model (for Solaris)  
(01/2002)  
MOTOROLA  
Software  
Application Software  
Application Development Framework  
ID  
Name  
Vendor ID Format Size K Rev # Order Availability  
NPMGMT  
KENATI  
NP Management Application Framework  
-
-
-
-
DINK32  
ID  
Name  
Vendor ID  
Format Size K Rev # Order Availability  
DINK32  
ROM-Based Debug Monitor, R13.1.1  
MOTOROLA  
-
-
-
-
Board Support Packages  
ID  
Name  
Vendor ID Format Size K Rev #  
Order Availability  
ARC-MOT-MQXBSP  
ARC  
MQX Board Support Packages  
NP Linux  
-
-
-
-
-
-
-
-
NPLINUX  
KENATI  
Device Drivers  
ID  
Name  
Vendor ID  
KENATI  
Format  
Size K  
Rev #  
Order Availability  
NPLINUX  
NP Linux  
-
-
-
-
Operating Systems  
Size Rev  
Order  
Availability  
ID  
Name  
Vendor ID Format  
K
#
ARC-MOT-MQX  
ARC  
ARC  
Precise/MQX? Real Time Operating System  
-
-
-
-
-
ARC-MOT-  
OSCHANGER  
OS Changer  
INTEGRITY  
-
-
-
-
-
INTEGRITY® is a secure, royalty-free Real-Time Operating System  
intended for use in embedded systems that require maximum  
reliability.  
INTEGRITY  
GREENHILLS  
-
-
JAL100  
JAL200  
NPLINUX  
JALUNA  
JALUNA  
KENATI  
Jaluna-1  
Jaluna-2  
NP Linux  
-
-
-
-
-
-
-
-
-
-
-
-
Protocol Stacks  
ID  
Name  
Vendor ID  
ARC  
Format Size K Rev #  
Order Availability  
ARC-MOT-IPSHIELD  
IPShield Security Solution  
Precise/RTCS  
CMX TCP/IP  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ARC-MOT-RTCS  
CMX TCP/IP  
NPSTACK  
ARC  
CMX  
KENATI  
NP Network Stack  
Software Tools  
Code Translation  
ID  
Name  
Vendor ID  
MICROAPL  
MICROAPL  
Format Size K Rev #  
Order Availability  
PA68K-PPC  
PortAsm/68K for PowerPC  
PortAsm/86 for PowerPC  
-
-
-
-
-
-
-
-
PA86-PPC  
Compilers  
ID  
Size Rev  
Order  
Availability  
Name  
Vendor ID  
Format  
K
#
CWEPPC  
METROWERKS  
METROWERKS  
CodeWarrior Development Studio for PowerPC ISA  
-
-
-
-
CodeWarrior Development Studio. Linux Application Edition for  
PowerPC  
CWLINPPC  
-
-
-
-
ARC-MOT-  
COMPILER  
ARC  
MetaWare C/C++ Compiler Tool Suite  
-
-
MULTI  
COMPILER  
GREENHILLS  
WINDRIV  
MULTI Compiler For PowerPC  
Diab C/C++ Compiler  
-
-
-
-
-
-
-
-
DIAB  
Debuggers  
ID  
Size Rev  
Order  
Availability  
Name  
Vendor ID  
Format  
K
#
CodeWarrior Development Studio. Linux Application Edition for  
PowerPC  
CWLINPPC  
METROWERKS  
-
-
-
-
ARC-MOT-  
DEBUGGER  
ARC  
SeeCode C/C++ Debugger  
MULTI Debugger  
-
-
-
-
-
-
POWERPC  
DEBUGGER  
GREENHILLS  
-
IDE (Integrated Development Environment)  
Size Rev  
Order  
Availability  
ID  
Name  
Vendor ID  
Format  
K
#
CodeWarrior Development Studio. Linux Application Edition for  
PowerPC  
CWLINPPC  
METROWERKS  
-
-
-
IC-SW-OPR  
WPIDE  
ISYS  
winIDEA  
-
-
-
-
-
-
-
-
WINDRIV  
WIND®POWER IDE  
Models  
Instruction Set Simulator  
ID  
Name  
Vendor ID  
Format Size K Rev #  
Order Availability  
MPC7410 Generic Library ISS  
(04/07/2003)  
MPC7410GENISS  
MOTOROLA  
gz  
gz  
2293  
1489  
1.12.17  
1.12.17  
-
MPC7410 Standalone ISS  
(04/07/2003)  
MPC7410ISS  
MOTOROLA  
-
Return to Top  
Applications  
Networking and Communications  
Access  
Cable Modem Termination System  
Return to Top  
Orderable Parts Information  
Budgetary  
Price  
QTY 1000+  
($US)  
Tape  
and  
Reel  
Additional  
Info  
Order  
Availability  
Life Cycle Description (code)  
PartNumber  
Package Info  
FCCBGA 360  
25SQ*3.2P1.27  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
more  
more  
more  
more  
MPC7410HX400LE  
MPC7410HX450LE  
MPC7410HX500LE  
MPC7410RX400LE  
No  
No  
No  
No  
-
-
-
-
FCCBGA 360  
25SQ*3.2P1.27  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
FCCBGA 360  
25SQ*3.2P1.27  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
FCCBGA 360  
25SQ*3.2P1.27  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
FCCBGA 360  
25SQ*3.2P1.27  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
more  
more  
more  
more  
more  
more  
more  
more  
more  
MPC7410RX400NE  
MPC7410RX450LE  
MPC7410RX450NE  
MPC7410RX500LE  
MPC7410TRX400LE  
MPC7410TRX400NE  
MPC7410TRX450LE  
MPC7410TRX450NE  
MPC7410TRX500LE  
No  
No  
No  
No  
No  
No  
No  
No  
No  
-
-
-
-
-
-
-
-
-
FCCBGA 360  
25SQ*3.2P1.27  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
FCCBGA 360  
25SQ*3.2P1.27  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
FCCBGA 360  
25SQ*3.2P1.27  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
FCCBGA 360  
25SQ*3.2P1.27  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
FCCBGA 360  
25SQ*3.2P1.27  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
FCCBGA 360  
25SQ*3.2P1.27  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
FCCBGA 360  
25SQ*3.2P1.27  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
FCCBGA 360  
25SQ*3.2P1.27  
PRODUCT STABLE  
GROWTH/MATURITY(3)  
NOTE: Are you looking for an obsolete orderable part? Click HERE to check our distributors' inventory.  
Return to Top  
Related Links  
C-Port™ Network Processors  
Networking  
PowerPC™ Processors  
PowerQUICC™ Communication Processors  
AltiVec Technology  
Return to Top  
http://www.motorola.com/ | Site Map | Contact Motorola | Terms of Use | Privacy Practices  
© Copyright 1994-2003 Motorola, Inc. All Rights Reserved.  
mit Q  
Search  
Select Country  
Motorola Home | Semiconductors Home | Contact Us  
Semiconductors  
Advanced | Parametric | Part Number | FAQ  
Products | Design Support | Register | Login  
spacer  
Motorola > Semiconductors > Products > 32-Bit Embedded Processors > PowerPC™ Processors > MPC7XXX, MPC7XX and  
MPC6XX Host Processors > MPC7410  
spacer  
MPC7410 : Host Processor  
Page Contents:  
Features  
The MPC7410 Host Processor is a high-performance, low-power, 32-bit PowerPC processor  
combined with a full 128-bit implementation of Motorola's AltiVec™ technology. This creates a  
microprocessor ideal for leading-edge computing, embedded network control, and signal processing  
applications. The MPC7410 offers the high-bandwidth MPX bus with minimized signal setup times  
and reduced idle cycles to increase maximum operating frequency to over 100 MHz, in addition to  
increased address and data bus bandwidth. To maintain compatibility for existing designs, the  
MPC7410 also supports the 60x bus protocol. MPC7410 microprocessors offer single-cycle double  
precision floating-point performance, full symmetric multi-procesing (SMP) capabilities, and  
support for up to 2MB of backside L2 cache. While the MPC7410 is software-compatible with  
existing MPC603e, MPC740, and MPC750 microprocessors, to utilize the full potential of the  
AltiVec technology changes to existing source code is required.  
Parametrics  
Documentation  
Tools  
Applications  
Orderable Parts  
Related Links  
Other Info:  
FAQs  
Literature Services  
3rd Party Design  
Help  
Link  
Product Picture  
Link  
Block Diagram  
Training  
3rd Party Tool  
Vendors  
MPC7410 Features  
3rd Party Trainers  
Rate this Page  
Superscalar Microprocessor  
MPC7410 microprocessors feature a high-frequency, superscalar PowerPC processor core, capable  
of issuing three instructions per clock cycle (two instructions + branch) into eight independent  
execution units:  
--  
-
0
+
++  
Submit  
Care to Comment?  
Two integer units and Double-precision floating-point unit  
Vector permute unit  
Vector arithmetic logic unit  
Load/store unit and System unit  
Branch processing unit  
MPX Bus Interface  
MPC7410 microprocessors support the MPX bus protocol with 64-bit data bus and 32-bit address  
bus. Support is included for burst, split, pipelined and out-of-order transactions, in addition to data  
streaming, and data intervention (in SMP systems). The interface provides snooping for data cache  
coherency. The MPC7410 implements the MERSI cache coherency protocol for multiprocessing  
support in hardware, allowing access to system memory for additional caching bus masters, such as  
DMA devices.  
Power Management  
MPC7410 microprocessors feature a low-power 1.8-volt design with three power-saving user-  
programmable modes -- nap, doze (with bus snoop) and sleep -- which progressively reduce the  
power drawn by the processor. The MPC7410 also provides a thermal assist unit and instruction  
cache throttling for software-controllable thermal management.  
Cache and MMU Support  
The MPC7410 microprocessor has separate 32-Kbyte, physically addressed instruction and data  
caches. Both caches feature cache locking and are eight-way set-associative. The MPC7410  
microprocessor's dedicated L2 cache interface with on-chip L2 tags features a very fast (up to core  
speed, 1:1) interface to memory, instruction-only or data-only modes, and parity checking on L2  
data. The L2 data bus has both 32-bit and 64-bit modes, which can also be configured as private  
memory. The MPC7410 microprocessor contains separate memory management units (MMUs) for  
instructions and data, supporting 4 Petabytes (252) of virtual memory and 4 Gigabytes (232) of  
physical memory. The MPC7410 also has four instruction block address translation (iBAT) and four  
data block address translation (dBAT) registers.  
AltiVec Technology  
The AltiVec technology expands the capabilities of Motorola's fourth generation processors by  
providing leading-edge, general purpose processing performance while concurrently addressing high-  
bandwidth data processing and algorithmic-intensive computations in a single-chip solution. AltiVec  
technology:  
Meets the computational demands of networking infrastructure such as echo cancellation  
equipment, and basestation processing.  
Enables faster, more secure encryption methods optimized for the SIMD processing model.  
Provides compelling performance for multimedia-oriented desktop computers, desktop  
publishing, and digital video processing.  
Enables real-time processing of the most demanding data streams (MPEG-2 encode,  
continuous speech recognition, real-time high-resolution 3D memory for additional caching  
bus masters, such as DMA devices.)  
Return to Top  
R
MPC7410 Parametrics  
Core  
Operating  
Voltage  
(Spec)  
(V)  
Junction  
Operating  
Temperature  
(Max)  
Operating  
Frequency  
(Max)  
Power  
Dissipation  
(Typ)  
Power  
Dissipation  
(Max)  
I/O Operating Ambient  
CPU Performance  
(Max)  
Voltage  
(Max)  
(V)  
Temp  
(Min)  
(oC)  
(MIPS)  
(MHz)  
(W)  
(W)  
(oC)  
2.92,  
3.29,  
4.2,  
4.7,  
5.3  
6.6,  
7.43,  
9.5,  
10.7,  
11.9  
968,  
1089,  
1210  
400,  
450,  
500  
1.5,  
1.8  
-40,  
0
3.3  
105  
L1 Cache Instructional L1 Cache Data L2 Cache External  
External Bus Speed  
(Max)  
(Max)  
(Max)  
(Max)  
Bus Interface  
Package Description  
(KByte)  
(KByte)  
(KByte)  
(MHz)  
60x,  
MPX  
32  
32  
2000  
133  
FCCBGA 360 25SQ*3.2P1.27  
Link  
View expanded set of parameters  
Return to Top  
R
MPC7410 Documentation  
Documentation  
Application Note  
Size Rev Date Last  
Order  
ID  
Name  
Vendor ID Format  
MOTOROLA  
K
#
Modified Availability  
Backside L2 Timing Analysis for PCB Design  
Engineers  
AN1794/D  
AN1795/D  
AN1809  
AN1812/D  
AN2077  
AN2097  
AN2106/D  
AN2114/D  
AN2115/D  
AN2161  
AN2180  
AN2203/D  
AN2273  
AN2424/D  
AN2435  
AN2436  
AN2491  
AN2540  
pdf 87 0.2 5/22/2003  
pdf 97 1.1 6/05/2003  
MOTOROLA  
Designing PowerPC(TM) MPC7400 Systems  
Minimal Boot Sequence for Executing Compiled C MOTOROLA  
Programs on PowerPC(TM) Devices  
11/11/2003  
pdf 270 1.2  
Common Footprint for the MPC750, MPC755,  
MPC7400, and MPC7410 Application Note  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
12/17/2001  
pdf 283  
1
Design Checklist for Motorola PowerPC(TM)  
Microprocessors  
11/11/2003  
pdf 309 1.6  
PowerPC(TM) 60X Bus Implementation  
Differences  
pdf 135 0.3 8/06/2003  
pdf 76 0.1 6/05/2003  
pdf 158 2.1 6/03/2003  
pdf 151 2.1 6/03/2003  
pdf 95 0.1 8/04/2003  
PowerPC(TM) MPX Bus Implementation  
Differences  
Complex Fixed-Point Fast Fourier Transform  
Optimization for Altivec(TM)  
Complex Floating Point Fast Fourier Transform  
Optimization for AltiVec(TM)  
Outstanding Data Tenures on the MPX Bus  
Cache Latencies of the 7451  
pdf 87 0.2 8/04/2003  
1152  
MPC7450 RISC Microprocessor Family Software MOTOROLA  
Optimization Guide  
pdf  
1
7/30/2002  
Building an NFS DHCP/BOOTP Server for Use  
with Sandpoint and MVP Linux  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
pdf 213 1.1 6/10/2003  
12/20/2002  
MPC7410 and MPC7450: Comparison and  
Compatibility  
pdf 194  
0
Thermal Solutions for PowerPC(TM) Processors  
Specifying Power Consumption  
pdf 125  
0
7/28/2003  
11/11/2003  
pdf 225 0.2  
pdf 524  
Simplified Mnemonics for PowerPC Instructions  
0
9/30/2003  
Synchronizing Instructions for PowerPC(TM)  
Instruction Set Architecture  
pdf 67 0.1 7/03/2003  
AltiVec Performance Enhancement in a  
Multiprocessing Environment  
MOTOROLA  
10/10/2003  
AN2581  
pdf 341  
0
Data Sheets  
Size Rev Date Last  
Order  
ID  
Name  
Vendor ID Format  
K
#
Modified Availability  
MPC7410 RISC Microprocessor Hardware MOTOROLA  
Specifications  
947  
pdf  
4
5/14/2004  
MPC7410EC  
MPC7410 Part Number Specifications for MOTOROLA  
the RXxxxNE Series  
10/21/2002  
-
MPC7410NEPNS  
MPC7410PCPNS  
pdf 96  
1
1
1
1
0
1
MPC7410 Part Number Specifications for MOTOROLA  
the RXxxxPC Series  
229  
157  
10/21/2002  
-
pdf  
pdf  
MPC7410 Part Number Specifications for MOTOROLA  
the RXxxxPD Series  
10/21/2002  
-
MPC7410PDPNS  
MPC7410 Part Number Specifications for MOTOROLA  
the RXxxxPE Series  
10/21/2002  
-
MPC7410PEPNS  
pdf 71  
pdf 52  
pdf 76  
MPC7410 Part Number Specification for the MOTOROLA  
MPC7410THXnnnLE Series  
10/03/2003  
10/21/2002  
MPC7410THXLEPNS  
MPC7410TRXLEPNS/D  
MPC7410TRXNEPNS/D  
MPC7410 Part Number Specification for the MOTOROLA  
MPC7410TRXnnnLE Series  
MPC7410 Part Number Specification for the MOTOROLA  
MPC7410TRXnnnNE Series  
112  
pdf  
1.1 5/28/2003  
Errata - Click here for important errata information  
Size Rev Date Last  
Order  
ID  
Name  
Vendor ID Format  
K
#
Modified Availability  
MPC7410 RISC Microprocessor Chip Errata MOTOROLA pdf 193 15 5/13/2004  
MPC7410CE  
Fact Sheets  
Size Rev Date Last  
Order  
ID  
Name  
Vendor ID Format  
K
#
Modified Availability  
MOTOROLA  
pdf  
160  
2/20/2003  
1/01/1998  
4/08/2002  
2/17/2003  
ALTIVECFACT  
ALTIVECWP  
AltiVec Fact Sheet  
Motorola's AltiVec Technology  
2
MOTOROLA  
pdf  
171  
0
3
1
MPC7410 Fact Sheet High Performance, Low- MOTOROLA  
Power 32-Bit RISC Microprocessor  
MPC7410FACT/D  
PPCSALESFACT/D  
pdf 35  
234  
MOTOROLA  
PowerPC Processors At-A-Glance  
pdf  
Packaging Information  
Date Last  
Modified  
Order  
Availability  
ID  
Name  
Vendor ID Format Size K Rev #  
PBGAPRES  
PBGA Packaging Customer Tutorial MOTOROLA pdf 1923  
TBGA Packaging Customer Tutorial MOTOROLA pdf 1784  
1
0
8/05/2003  
8/05/2003  
-
-
TBGAPRESPKG  
Product Brief  
Size Rev Date Last  
Order  
ID  
Name  
Vendor ID Format  
K
#
Modified Availability  
MPC7410 RISC Microprocessor Technical  
Summary  
MOTOROLA  
pdf  
311  
10/04/2000  
MPC7410TS/D  
0
Product Change Notices  
Size Rev Date Last  
Order  
ID  
Name  
Vendor ID Format  
MOTOROLA  
K
#
Modified Availability  
PCN8657  
PCN9224  
PCN9383  
PCN9842  
FC CBGA HIGH TEMP REFLOW CAPABLITY  
htm 14  
htm 62  
htm 14  
0
3/19/2003  
-
-
-
-
NEW TRAY FOR 25 X 25 FLIPCHIP BGA  
PACKAGE  
MOTOROLA  
MOTOROLA  
MOTOROLA  
10/14/2003  
0
0
0
11/24/2003  
4/30/2004  
MPC7410 TEST PLATFORM TRANSFER.  
CHANGE ON NITRO VOL/VOH TEST  
CONDITIONS  
htm  
4
Reference Manual  
Size Rev Date Last  
Order  
ID  
Name  
Vendor ID Format  
K
#
Modified Availability  
AltiVec Technology Programming  
Environments Manual  
MOTOROLA  
pdf  
3893  
ALTIVECPEM/D  
ALTIVECPIM  
2.0 2/28/2002  
AltiVec Technology Programming Interface  
Manual  
MOTOROLA  
pdf  
0
0
6/01/1999  
The Bus Interface for 32-Bit Microprocessors MOTOROLA  
that Implement the PowerPC Architecture  
2527  
MPC60XBUSRM  
MPC7410UM  
pdf  
pdf  
0.1 1/14/2004  
MPC7410 RISC Microprocessor Users Manual MOTOROLA  
7772  
11/18/2002  
1
Errata to MPC7410 RISC Microprocessor  
Users Manual Rev. 1  
MOTOROLA  
MPC7410UMAD  
MPCFPE32B/AD  
pdf 69  
1
2
8/29/2003  
Programming Environments Manual for 32-Bit MOTOROLA  
Implementations of the PowerPC Architecture  
6909  
12/21/2001  
pdf  
Errata to MPCFPE32B, Programming  
Environments Manual for 32-Bit  
Implementations of the Power PC Architecture,  
Rev. 2  
MOTOROLA  
10/11/2002  
MPCFPE32BAD/AD  
pdf 40  
0
Reliability and Quality Information  
Size Rev Date Last  
Order  
ID  
Name  
Vendor ID Format  
MOTOROLA  
K
#
Modified Availability  
FPCREPORT  
FRCALC  
MPC7410QI  
Board Level Failure Prediction Calculation Report  
Component Level Failure Rate Calculation  
MPC7410 Reliability and Qualification Data  
pdf 84  
pdf 21  
pdf 13  
-
-
-
-
-
-
-
MOTOROLA  
MOTOROLA  
-
-
Reports or Presentations  
Size Rev Date Last  
Order  
ID  
Name  
Vendor ID Format  
K
#
Modified Availability  
MOTOROLA  
pdf  
726  
9/21/1999  
-
ALTIVECPR  
PPCCPUSUMM  
AltiVec Technology Presentation  
Motorola Host and Integrated Processor Summary  
-
MOTOROLA  
pdf  
2/10/2003  
-
6
1
Roadmap  
Size Rev Date Last  
Order  
ID  
Name  
Vendor ID Format  
MOTOROLA  
K
#
Modified Availability  
Freescale High-Performance PowerPC Processors  
Roadmap  
4/26/2004  
-
PPCRMAP  
pdf 27  
1
Selector Guide  
Size Rev Date Last  
Order  
ID  
Name  
Vendor ID Format  
MOTOROLA  
K
#
Modified Availability  
Application Selector Guide Index and Cross-  
Reference.  
12/29/2003  
SG2000CR  
pdf 46  
4
Supporting Information  
Size Rev Date Last  
Order  
ID  
Name  
Vendor ID Format  
K
#
Modified Availability  
MOTOROLA  
pdf  
4/05/2004  
-
PPCPVR  
Motorola Host Processor Version Register Settings  
6
17  
White Paper  
Size Rev Date Last  
Order  
ID  
Name  
Vendor ID Format  
MOTOROLA  
K
#
Modified Availability  
G4WP  
G4 Architecture White Paper  
pdf 53  
0
1/23/2001  
5/01/1996  
-
-
Motorola PowerPC 603 and PowerPC 604  
RISC Microprocessor: The C4/Ceramic-  
Ball-Grid Array Interconnect Technology  
MOTOROLA  
112  
MPC603OVERALLWP/D  
pdf  
0
Thermal Management of a C4/Ceramic-  
Ball-Grid Array: The Motorola PowerPC MOTOROLA  
603 and PowerPC 604 RISC  
Microprocessors  
MPC603THERMALWP/D  
MPC74XXMBUSWP_D  
pdf 86  
0
5/01/1996  
-
-
Memory Bus Throughput of the MPC74xx MOTOROLA  
103  
11/24/2003  
pdf  
1.1  
Return to Top  
R
MPC7410 Tools  
Hardware Tools  
Board Testers  
Size Rev  
Order  
ID  
Name  
Vendor ID Format  
K
# Availability  
SCANPLUS  
CORELIS  
ScanPlus  
-
-
-
-
-
µMaster 4031  
Functional Test and Debug Solutions for boards carrying  
Motorola™ and IBM® PowerPC™ processors with COP debug  
port (740, 750, 750DD2, 750DD3, 755, 603e, 8240, 8250A,  
8255A, 8260A, 8264A, 8265A, 8266A, 7400, 7410, etc.)  
4000-994020-  
001  
INTLTEST  
-
-
-
Emulators/Probes/Wigglers  
Size Rev  
Order  
ID  
Name  
Vendor ID Format  
K
# Availability  
BDI1000/BDI2000  
Abatron develops and produces high-quality, high-speed  
BDM and JTAG Debug Tools (BDI Family) for software  
development environments from leading vendors.  
BDI1000/BDI2000  
ABATRON  
-
-
-
-
10200A  
PROBE  
CORELIS  
NetICE-R option 2/2M  
-
-
-
-
-
-
-
-
GREENHILLS  
Green Hills Probe & Slingshot  
µMaster 4031  
Functional Test and Debug Solutions for boards carrying  
Motorola™ and IBM® PowerPC™ processors with COP  
debug port (740, 750, 750DD2, 750DD3, 755, 603e, 8240,  
8250A, 8255A, 8260A, 8264A, 8265A, 8266A, 7400, 7410,  
etc.)  
4000-994020--001  
INTLTEST  
-
-
-
-
VISIONICE  
VISIONPROBE  
WPICE  
WINDRIV  
WINDRIV  
WINDRIV  
visionICE II  
-
-
-
-
-
-
-
-
-
-
-
-
visionPROBE II  
WIND®POWER ICE  
Evaluation/Development Boards and Systems  
Size Rev  
Order  
ID  
Name  
Vendor ID Format  
K
# Availability  
PPCEVAL-SP3-  
7410  
Sandpoint X3 Motherboard with Altimus X3 MPC7410 PMC  
Module  
MOTOROLA  
-
-
-
SANDPOINTX3  
MOTOROLA  
-
Sandpoint X3 Evaluation System - Motherboard  
-
-
Models  
BSDL  
Size Rev  
Order  
ID  
Name  
Vendor ID Format  
K
# Availability  
MOTOROLA  
txt  
MPC7410R1CBSDL  
MPC7410 BSDL for Rev. 1.2 and above of Silicon  
60  
-
-
Bus Functional Models  
ID  
Name  
Vendor ID  
Format Size K Rev # Order Availability  
gz 1175 1.7  
MPC7400 Bus Functional Model  
(01/05/2004)  
MPC7400BFM  
MOTOROLA  
-
Full Functional Models  
ID  
Name  
Vendor ID Format Size K Rev # Order Availability  
EP100  
EP201  
EP300  
EP433  
ES100  
EUREKA  
EUREKA  
EUREKA  
EUREKA  
EUREKA  
PowerPC Bus Slave  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PowerPC Bus Master  
PowerPC Bus Arbiter  
PowerPC-PCI Bridge  
PowerPC System Controller  
IBIS  
Size Rev  
Order  
ID  
Name  
Vendor ID Format  
K
# Availability  
MPC7410, All Revisions, 360 CBGA Package, 2.5V  
I/O, 2.5V L2 IBIS  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
MOTOROLA  
103  
MPC7410AIBIS  
MPC7410BIBIS  
MPC7410CIBIS  
MPC7410DIBIS  
MPC7410EIBIS  
MPC7410FIBIS  
MPC7410PAIBIS  
MPC7410PBIBIS  
MPC7410PCIBIS  
MPC7410PDIBIS  
MPC7410PEIBIS  
MPC7410PFIBIS  
txt  
txt  
txt  
txt  
txt  
txt  
txt  
txt  
txt  
txt  
txt  
txt  
0.1  
-
-
-
-
-
-
-
-
-
-
-
-
MPC7410, All Revisions, 360 CBGA Package, 2.5V  
I/O, 1.8V L2 IBIS  
100  
0.1  
MPC7410, All Revisions,360 CBGA Package, 1.8V  
I/O, 2.5V L2 IBIS  
99 0.1  
95 0.1  
MPC7410, All Revisions,360 CBGA Package, 1.8V  
I/O, 1.8V L2 IBIS  
MPC7410, All Revisions,360 CBGA Package, 3.3V  
I/O, 2.5V L2 IBIS  
109  
0.1  
MPC7410, All Revisions,360 CBGA Package, 3.3V  
I/O, 1.8V L2 IBIS  
105  
0.1  
MPC7410, All Revisions,360 PBGA Package, 2.5V  
I/O, 2.5V L2 IBIS  
111  
0.1  
MPC7410, All Revisions,360 PBGA Package, 2.5V  
I/O, 1.8V L2 IBIS  
102  
0.1  
MPC7410, All Revisions,360 PBGA Package, 1.8V  
I/O, 2.5V L2 IBIS  
101  
0.1  
MPC7410, All Revisions,360 PBGA Package, 1.8V  
I/O, 1.8V L2 IBIS  
97 0.1  
MPC7410, All Revisions,360 PBGA Package, 3.3V  
I/O, 2.5V L2 IBIS  
111  
0.1  
MPC7410, All Revisions,360 PBGA Package, 3.3V  
I/O, 1.8V L2 IBIS  
107  
0.1  
Timing Models  
ID  
Name  
Vendor ID Format Size K Rev # Order Availability  
SimG4 Timing Model (for Linux)  
(01/2002)  
MPC7400LINTIME  
MPC7400SOLTIME  
MOTOROLA  
MOTOROLA  
gz  
gz  
310 1.3.2  
279 1.3.1  
-
-
SimG4 Timing Model (for Solaris)  
(01/2002)  
Software  
Application Software  
Application Development Framework  
ID  
Name  
Vendor ID Format Size K Rev # Order Availability  
KENATI  
NPMGMT  
NP Management Application Framework  
-
-
-
-
DINK32  
ID  
Name  
Vendor ID Format Size K Rev # Order Availability  
DINK32  
ROM-Based Debug Monitor, R13.1.1  
MOTOROLA  
-
-
-
Board Support Packages  
ID  
Name  
Vendor ID  
KENATI  
Format  
Size K  
Rev #  
-
Order Availability  
-
NPLINUX  
NP Linux  
-
-
Device Drivers  
ID  
Name  
Vendor ID  
KENATI  
Format  
-
Size K  
-
Rev #  
-
Order Availability  
-
NPLINUX  
NP Linux  
Libraries  
Vendor  
ID  
Size Rev  
Order  
ID  
Name  
KwikPeg GUI  
Format  
-
K
# Availability  
KADAK's KwikPeg Graphical User Interface (GUI) is derived from  
PEG, a professional, high-quality graphic system created by Swell  
Software, Inc. to enable you, the embedded system developer, to  
easily add graphics to your products.  
PN311-1  
KADAK  
-
-
-
Operating Systems  
Size Rev  
Order  
ID  
Name  
Vendor ID Format  
K
# Availability  
ARC-OS Changer  
Provides developers the freedom to migrate from either  
ARC-MOT-  
ARC  
ENEA  
-
-
-
-
-
-
-
-
OSCHANGER pSOSystem or VxWorks to MQX RTOS while reusing an  
existing code base  
DPP.7XXX.KRN  
OSE Real-Time Operating System  
-
-
-
ThreadX  
RTOS. Royalty-free real-time operating system (RTOS) for  
embedded applications. ThreadX is small, fast, and royalty-  
free making it ideal for high-volume electronic products.  
THREADX  
EXPRESSLOG  
-
MorphOS  
MorphOS is designed around the concept of shared resources  
and the ability to build up applications using shared system  
components. MorphOS is not unix based.  
MORPHOS  
GENESI  
-
-
-
-
INTEGRITY  
INTEGRITY? is a secure, royalty-free Real-Time Operating  
System intended for use in embedded systems that require  
maximum reliability.  
INTEGRITY  
JAL100  
GREENHILLS  
JALUNA  
-
-
-
-
-
-
-
-
Jaluna-1  
JAL200  
JALUNA  
KADAK  
KENATI  
Jaluna-2  
-
-
-
-
-
-
-
-
-
-
AMX PPC32  
AMX is a full featured RTOS for the PowerPC family. AMX  
has been tested on the EST SBC8260, Embedded Planet RPX  
Lite MPC823 and Motorola Ultra 603, MBX860, MPC860  
ADS and MPC860 FADS.  
PX382-1  
NPLINUX  
-
-
NP Linux  
Protocol Stacks  
Size Rev  
Order  
ID  
Name  
Vendor ID Format  
K
# Availability  
AnviMSTP  
Avnisoft's AvniMSTP is a completely portable ANSI C compliant  
implementation of the IEEE 802.1s MSTP. It is implemented on  
top of, and includes the AvniPORT platform abstraction layer to  
simplify integration with target platforms.  
MSTP  
AVNISOFT  
CMX  
-
-
-
-
-
-
-
-
-
-
CMX TCP/IP  
PN713-1  
CMX TCP/IP  
-
-
-
-
KwikNet  
The KwikNet TCP/IP Stack enables you to add networking  
features to your products with a minimum of time and expense.  
KwikNet is a compact, high performance stack built with  
KADAK's characteristic simplicity, flexibility and reliability.  
KADAK  
KENATI  
-
NPSTACK  
NP Network Stack  
-
Software Tools  
Code Translation  
ID  
Name  
Vendor ID  
MICROAPL  
MICROAPL  
Format Size K Rev #  
Order Availability  
PA68K-PPC  
PortAsm/68K for PowerPC  
PortAsm/86 for PowerPC  
-
-
-
-
-
-
-
-
PA86-PPC  
Compilers  
ID  
Size Rev  
Order  
Name  
Vendor ID  
Format  
K
# Availability  
CWEPPC  
METROWERKS  
METROWERKS  
CodeWarrior Development Studio for PowerPC ISA  
-
-
-
-
CodeWarrior Development Studio. Linux Application  
Edition for PowerPC  
CWLINPPC  
-
-
-
-
ARC-MOT-  
COMPILER  
MetaWare C/C++ Compiler Tool Suite  
Optimized compiler for Motorola processors  
ARC  
-
-
MULTI  
COMPILER  
GREENHILLS  
WINDRIV  
MULTI Compiler For PowerPC  
Diab C/C++ Compiler  
-
-
-
-
-
-
-
-
DIAB  
Debuggers  
ID  
Name  
Vendor ID  
Format Size K Rev # Order Availability  
MetaWare SeeCode Debugger  
C/C++ Debugger  
ARC-MOT-DEBUGGER  
POWERPC DEBUGGER  
ARC  
-
-
-
-
-
-
-
-
GREENHILLS  
MULTI Debugger  
IDE (Integrated Development Environment)  
ID  
Name  
Vendor ID  
GREENHILLS  
ISYS  
Format Size K Rev #  
Order Availability  
MULTI  
IC-SW-OPR  
WPIDE  
MULTI  
-
-
-
-
-
-
-
-
-
-
-
-
winIDEA  
WINDRIV  
WIND®POWER IDE  
Models  
Instruction Set Simulator  
ID  
Name  
Vendor ID  
Format Size K Rev # Order Availability  
MPC7410 Generic Library ISS  
(04/07/2003)  
MPC7410GENISS  
MPC7410ISS  
MOTOROLA  
MOTOROLA  
gz  
gz  
2293 1.12.17  
1489 1.12.17  
-
-
MPC7410 Standalone ISS  
(04/07/2003)  
Return to Top  
R
Applications  
Networking and Communications  
Access  
Cable Modem Termination System  
Return to Top  
R
Orderable Parts Information  
Budgetary  
Price  
QTY  
1000+  
($US)  
Application/  
Qualification  
Tier  
Tape  
and  
Reel  
Pb-Free  
Terminations  
Package  
Description  
Part Number  
Status  
Info Order  
FCCBGA 360  
25SQ*3.2P1.27  
No Longer  
Manufactured  
more  
more  
more  
more  
more  
MPC7410HX400LE  
MPC7410HX450LE  
MPC7410HX500LE  
MPC7410RX400LE  
MPC7410RX400NE  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
-
-
-
-
-
FCCBGA 360  
25SQ*3.2P1.27  
Available  
FCCBGA 360  
25SQ*3.2P1.27  
COMMERCIAL,  
INDUSTRIAL  
Available  
Available  
Available  
FCCBGA 360  
25SQ*3.2P1.27  
FCCBGA 360  
25SQ*3.2P1.27  
FCCBGA 360  
25SQ*3.2P1.27  
more  
more  
more  
more  
more  
more  
more  
more  
more  
more  
more  
MPC7410RX450LE  
MPC7410RX450NE  
MPC7410RX500LE  
MPC7410THX400LE  
MPC7410THX450LE  
MPC7410THX500LE  
MPC7410TRX400LE  
MPC7410TRX400NE  
MPC7410TRX450LE  
MPC7410TRX450NE  
MPC7410TRX500LE  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
Available  
Available  
Available  
-
-
-
-
-
-
-
-
-
-
-
FCCBGA 360  
25SQ*3.2P1.27  
FCCBGA 360  
25SQ*3.2P1.27  
FCCBGA 360  
25SQ*3.2P1.27  
No Longer  
Manufactured  
FCCBGA 360  
25SQ*3.2P1.27  
No Longer  
Manufactured  
FCCBGA 360  
25SQ*3.2P1.27  
Available  
Available  
Available  
Available  
Available  
Available  
FCCBGA 360  
25SQ*3.2P1.27  
FCCBGA 360  
25SQ*3.2P1.27  
FCCBGA 360  
25SQ*3.2P1.27  
FCCBGA 360  
25SQ*3.2P1.27  
FCCBGA 360  
25SQ*3.2P1.27  
NOTE: Are you looking for an obsolete orderable part? Click HERE to check our distributors' inventory.  
Return to Top  
R
Related Links  
Link  
Link  
Link  
Link  
Link  
C-Port™ Network Processors  
Networking  
PowerPC™ Processors  
PowerQUICC™ Communication Processors  
AltiVec Technology  
Return to Top  
R
© Copyright 1994-2004 Motorola, Inc.  
All Rights Reserved.  
http://www.motorola.com/ | Site Map | Contact Motorola | Terms of Use | Privacy Practices  

相关型号:

MPC7410RX400NE

MPC7410 RISC Microprocessor Hardware Specifications Addendum
FREESCALE

MPC7410RX400NE

32-BIT, 400MHz, RISC PROCESSOR, CBGA360, 25 X 25 MM, 3.20 MM HEIGHT, 1.27 MM PITCH, CERAMIC, BGA-360
MOTOROLA

MPC7410RX400NE

MPC7410 RISC Microprocessor Hardware Specifications Addendum for the MPC7410xxnnnNE Series
NXP

MPC7410RX450LC

32-BIT, 450 MHz, RISC PROCESSOR, CBGA360, 25 X 25 MM, 3.20 MM HEIGHT, 1.27 MM PITCH, CERAMIC, BGA-360
MOTOROLA

MPC7410RX450LD

RISC Microprocessor, 32-Bit, 450MHz, CMOS, CBGA360, 25 X 25 MM, 3.20 MM HEIGHT, 1.27 MM PITCH, CERAMIC, BGA-360
MOTOROLA

MPC7410RX450LE

RISC Microprocessor, 32-Bit, 450MHz, CMOS, CBGA360, 25 X 25 MM, 3.20 MM HEIGHT, 1.27 MM PITCH, CERAMIC, BGA-360
MOTOROLA

MPC7410RX450NE

MPC7410 RISC Microprocessor Hardware Specifications Addendum
FREESCALE

MPC7410RX450NE

MPC7410 RISC Microprocessor Hardware Specifications Addendum for the MPC7410xxnnnNE Series
NXP

MPC7410RX450TE

Microprocessor
MOTOROLA

MPC7410RX500LD

32-BIT, 500MHz, RISC PROCESSOR, CBGA360, 25 X 25 MM, 3.20 MM HEIGHT, 1.27 MM PITCH, CERAMIC, BGA-360
NXP

MPC7410RX500LE

32-BIT, 500MHz, RISC PROCESSOR, CBGA360, 25 X 25 MM, 3.20 MM HEIGHT, 1.27 MM PITCH, CERAMIC, BGA-360
MOTOROLA

MPC7410RX500NE

MPC7410 RISC Microprocessor Hardware Specifications Addendum for the MPC7410xxnnnNE Series
NXP