MPSA70RLRF [MOTOROLA]

100mA, 40V, PNP, Si, SMALL SIGNAL TRANSISTOR, TO-92;
MPSA70RLRF
型号: MPSA70RLRF
厂家: MOTOROLA    MOTOROLA
描述:

100mA, 40V, PNP, Si, SMALL SIGNAL TRANSISTOR, TO-92

晶体 放大器 小信号双极晶体管
文件: 总8页 (文件大小:429K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MPSA70/D  
SEMICONDUCTOR TECHNICAL DATA  
PNP Silicon  
COLLECTOR  
3
2
BASE  
1
EMITTER  
1
2
3
CASE 29–04, STYLE 1  
TO–92 (TO–226AA)  
MAXIMUM RATINGS  
Rating  
CollectorEmitter Voltage  
EmitterBase Voltage  
Symbol  
Value  
Unit  
V
V
–40  
–4.0  
–100  
Vdc  
Vdc  
CEO  
EBO  
Collector Current — Continuous  
I
C
mAdc  
Total Device Dissipation @ T = 25°C  
Derate above 25°C  
P
D
625  
5.0  
mW  
mW/°C  
A
Total Device Dissipation @ T = 25°C  
Derate above 25°C  
P
D
1.5  
12  
Watts  
mW/°C  
C
Operating and Storage Junction  
Temperature Range  
T , T  
55 to +150  
°C  
J
stg  
THERMAL CHARACTERISTICS  
Characteristic  
Symbol  
Max  
200  
Unit  
°C/W  
°C/W  
Thermal Resistance, Junction to Ambient  
Thermal Resistance, Junction to Case  
R
R
JA  
JC  
83.3  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Max  
Unit  
OFF CHARACTERISTICS  
(1)  
CollectorEmitter Breakdown Voltage  
(I = –1.0 mAdc, I = 0)  
V
–40  
–4.0  
Vdc  
Vdc  
(BR)CEO  
C
B
EmitterBase Breakdown Voltage  
(I = –100 µAdc, I = 0)  
V
(BR)EBO  
E
C
Collector Cutoff Current  
(V = –30 Vdc, I = 0)  
I
–100  
nAdc  
CBO  
CB  
E
1. Pulse Test: Pulse Width  
300 s; Duty Cycle  
2.0%.  
Motorola, Inc. 1996  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted) (Continued)  
A
Characteristic  
ON CHARACTERISTICS  
Symbol  
Min  
Max  
Unit  
DC Current Gain  
(I = –5.0 mAdc, V  
C CE  
h
40  
400  
FE  
= –10 Vdc)  
CollectorEmitter Saturation Voltage  
(I = –10 mAdc, I = –1.0 mAdc)  
V
–0.25  
Vdc  
CE(sat)  
C
B
SMALLSIGNAL CHARACTERISTICS  
CurrentGain — Bandwidth Product  
f
125  
MHz  
pF  
T
(I = –5.0 mAdc, V  
C
= –10 Vdc, f = 100 MHz)  
CE  
Output Capacitance  
C
4.0  
obo  
(V  
CB  
= –10 Vdc, I = 0, f = 1.0 MHz)  
E
2
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
TYPICAL NOISE CHARACTERISTICS  
(V  
= 5.0 Vdc, T = 25°C)  
CE  
A
10  
7.0  
5.0  
1.0  
7.0  
5.0  
BANDWIDTH = 1.0 Hz  
BANDWIDTH = 1.0 Hz  
R
0  
S
R
≈∞  
S
I = 1.0 mA  
C
I
= 10  
µA  
3.0  
2.0  
C
300  
100  
µA  
30  
100  
300  
µA  
1.0  
3.0  
2.0  
µA  
0.7  
0.5  
µA  
µA  
1.0 mA  
0.3  
0.2  
30  
10  
µ
A
A
µ
1.0  
0.1  
10  
20  
50  
100  
200  
500 1.0 k 2.0 k  
5.0 k 10 k  
10  
20  
50  
100 200  
500  
1.0 k 2.0 k  
5.0 k 10 k  
f, FREQUENCY (Hz)  
f, FREQUENCY (Hz)  
Figure 1. Noise Voltage  
Figure 2. Noise Current  
NOISE FIGURE CONTOURS  
(V  
= 5.0 Vdc, T = 25°C)  
CE  
A
1.0 M  
500 k  
1.0 M  
500 k  
BANDWIDTH = 1.0 Hz  
BANDWIDTH = 1.0 Hz  
200 k  
100 k  
50 k  
200 k  
100 k  
50 k  
20 k  
10 k  
20 k  
10 k  
0.5 dB  
0.5 dB  
5.0 k  
2.0 k  
5.0 k  
2.0 k  
1.0 dB  
1.0 dB  
2.0 dB  
2.0 dB  
1.0 k  
500  
1.0 k  
500  
3.0 dB  
5.0 dB  
3.0 dB  
200  
100  
200  
100  
5.0 dB  
500 700 1.0 k  
10  
20 30  
50 70 100  
200 300  
A)  
500 700 1.0 k  
10  
20 30  
50 70 100  
200 300  
I
, COLLECTOR CURRENT (  
µ
I , COLLECTOR CURRENT (µ  
C
A)  
C
Figure 3. Narrow Band, 100 Hz  
Figure 4. Narrow Band, 1.0 kHz  
1.0 M  
500 k  
10 Hz to 15.7 kHz  
200 k  
100 k  
Noise Figure is Defined as:  
50 k  
2
R
n S  
2
1 2  
2
e
n
4KTR  
4KTR  
I
S
20 k  
10 k  
NF  
20 log  
10  
S
0.5 dB  
e
= Noise Voltage of the Transistor referred to the input. (Figure 3)  
= Noise Current of the Transistor referred to the input. (Figure 4)  
n
5.0 k  
2.0 k  
I
n
1.0 dB  
2.0 dB  
–23  
= Boltzman’s Constant (1.38 x 10  
K
T
R
j/°K)  
1.0 k  
500  
= Temperature of the Source Resistance (°K)  
= Source Resistance (Ohms)  
S
3.0 dB  
5.0 dB  
200  
100  
20  
30  
50 70 100  
200 300  
500 700 1.0 k  
10  
I
, COLLECTOR CURRENT (µA)  
C
Figure 5. Wideband  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
3
TYPICAL STATIC CHARACTERISTICS  
400  
200  
T
= 125°C  
J
25°C  
55°C  
100  
80  
MPSA70  
60  
V
V
= 1.0 V  
= 10 V  
CE  
CE  
40  
0.003 0.005  
0.01  
0.02 0.03 0.05 0.07 0.1  
0.2 0.3  
0.5 0.7 1.0  
3.0  
2.0  
5.0 7.0 10  
20  
30  
50 70 100  
I
, COLLECTOR CURRENT (mA)  
C
Figure 6. DC Current Gain  
1.0  
0.8  
100  
I
= 400 µA  
T
= 25°C  
T
= 25  
°
C
B
A
A
PULSE WIDTH = 300  
DUTY CYCLE 2.0%  
µ
s
MPSA70  
350 µA  
80  
60  
300 µA  
250  
200  
µA  
I
= 1.0 mA  
10 mA  
50 mA  
100 mA  
C
0.6  
0.4  
0.2  
0
µA  
150 µA  
40  
20  
0
100  
50  
µA  
µA  
0.002 0.005 0.01 0.02 0.05 0.1 0.2  
0.5 1.0 2.0  
5.0 10 20  
0
5.0  
10  
15  
20  
25  
30  
35  
40  
I
, BASE CURRENT (mA)  
V
, COLLECTOR–EMITTER VOLTAGE (VOLTS)  
B
CE  
Figure 7. Collector Saturation Region  
Figure 8. Collector Characteristics  
1.4  
1.2  
1.6  
0.8  
0
T
= 25°C  
J
*APPLIES for I /I  
C B  
h
/2  
FE  
1.0  
0.8  
0.6  
0.4  
25°C to 125°C  
*
for V  
CE(sat)  
VC  
55°C to 25°C  
V
@ I /I = 10  
C B  
BE(sat)  
0.8  
1.6  
2.4  
V
@ V = 1.0 V  
CE  
BE(on)  
25°C to 125°C  
55°C to 25°C  
for V  
BE  
0.2  
0
VB  
V
@ I /I = 10  
C B  
CE(sat)  
0.1  
0.2  
0.5  
1.0  
2.0  
5.0  
10  
20  
50 100  
0.1  
0.2  
0.5  
I
1.0  
2.0  
5.0  
10  
20  
50  
100  
I
, COLLECTOR CURRENT (mA)  
, COLLECTOR CURRENT (mA)  
C
C
Figure 9. “On” Voltages  
Figure 10. Temperature Coefficients  
4
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
TYPICAL DYNAMIC CHARACTERISTICS  
500  
1000  
V
I
= 3.0 V  
/I = 10  
= I  
= 25°C  
V
I
= 3.0 V  
CC  
C B  
CC  
/I = 10  
700  
500  
300  
200  
C B  
I
T
T
= 25°C  
B1 B2  
J
t
s
300  
200  
J
100  
70  
50  
100  
70  
50  
30  
20  
t
r
t
f
30  
20  
t
@ V  
BE(off)  
= 0.5 V  
10  
d
10  
7.0  
5.0  
1.0  
10  
–1.0  
2.0 3.0  
5.0 7.0  
20  
30  
50 70 100  
2.0 3.0  
–10  
20 30  
, COLLECTOR CURRENT (mA)  
C
–100  
50 70  
5.0 7.0  
I
, COLLECTOR CURRENT (mA)  
I
C
Figure 11. Turn–On Time  
Figure 12. Turn–Off Time  
500  
10  
7.0  
5.0  
T
J
= 25°C  
T
= 25°C  
J
V
= 20 V  
300  
200  
CE  
C
ib  
5.0 V  
3.0  
2.0  
100  
70  
C
ob  
50  
1.0  
0.05 0.1  
0.5 0.7 1.0  
2.0 3.0  
5.0 7.0 10  
20  
30  
50  
0.2  
0.5  
V , REVERSE VOLTAGE (VOLTS)  
R
1.0  
2.0  
5.0  
10  
20  
50  
I
, COLLECTOR CURRENT (mA)  
C
Figure 13. Current–Gain — Bandwidth Product  
Figure 14. Capacitance  
20  
10  
200  
100  
V
= –10 Vdc  
V
= 10 Vdc  
CE  
f = 1.0 kHz  
= 25  
CE  
f = 1.0 kHz  
= 25  
T
°C  
T
°C  
A
A
7.0  
5.0  
MPSA70  
200  
@ I = –1.0 mA  
70  
50  
h
fe  
MPSA70  
200  
@ I = 1.0 mA  
C
3.0  
2.0  
30  
20  
h
fe  
C
1.0  
0.7  
0.5  
10  
7.0  
5.0  
0.3  
0.2  
3.0  
2.0  
0.1  
0.1  
0.2  
0.5  
1.0  
2.0  
5.0  
10  
20  
50  
100  
0.2  
0.5  
1.0  
I , COLLECTOR CURRENT (mA)  
C
2.0  
5.0  
10  
20  
50  
100  
I
, COLLECTOR CURRENT (mA)  
C
Figure 15. Input Impedance  
Figure 16. Output Admittance  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
5
1.0  
0.7  
0.5  
D = 0.5  
0.2  
0.3  
0.2  
0.1  
0.1  
0.07  
0.05  
FIGURE 19  
1
0.05  
DUTY CYCLE, D = t /t  
1 2  
P
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
(pk)  
0.02  
0.01  
0.03  
0.02  
t
READ TIME AT t (SEE AN–569)  
1
θ
(pk)  
Z
T
= r(t)  
R
SINGLE PULSE  
θ
J(pk)  
JA(t)  
JA  
t
2
– T = P  
Z
θJA(t)  
A
0.01  
0.01 0.02  
0.05 0.1 0.2  
0.5  
1.0  
2.0  
5.0  
10  
20  
50  
100 200  
500 1.0 k 2.0 k  
5.0 k 10 k 20 k  
100 k  
50 k  
t, TIME (ms)  
Figure 17. Thermal Response  
400  
10  
µs  
1.0 ms  
dc  
The safe operating area curves indicate I –V  
limits of the  
CE  
C
200  
100  
transistor that must be observed for reliable operation. Collector load  
lines for specific circuits must fall below the limits indicated by the  
applicable curve.  
100 µs  
T
= 25°C  
C
1.0 s  
The data of Figure 18 is based upon T  
= 150°C; T or T is  
C A  
J(pk)  
variable depending upon conditions. Pulse curves are valid for duty  
cyclesto10%providedT 150°C. T maybecalculatedfrom  
60  
40  
T
= 25°C  
A
dc  
J(pk)  
J(pk)  
the data in Figure 17. At high case or ambient temperatures, thermal  
limitations will reduce the power than can be handled to values less  
than the limitations imposed by second breakdown.  
20  
10  
T = 150°C  
J
CURRENT LIMIT  
THERMAL LIMIT  
SECOND BREAKDOWN LIMIT  
6.0  
4.0  
40  
2.0  
4.0  
6.0  
8.0 10  
20  
V
, COLLECTOR–EMITTER VOLTAGE (VOLTS)  
CE  
Figure 18. Active–Region Safe Operating Area  
4
10  
10  
10  
DESIGN NOTE: USE OF THERMAL RESPONSE DATA  
V
= 30 V  
CC  
A train of periodical power pulses can be represented by the model  
as shown in Figure 19. Using the model and the device thermal  
response the normalized effective transient thermal resistance of  
Figure 17 was calculated for various duty cycles.  
3
2
I
CEO  
To find Z  
steady state value R  
, multiply the value obtained from Figure 17 by the  
θJA(t)  
.
1
θJA  
10  
10  
I
CBO  
Example:  
AND  
Dissipating 2.0 watts peak under the following conditions:  
= 1.0 ms, t = 5.0 ms (D = 0.2)  
I
@ V  
= 3.0 V  
0
CEX  
BE(off)  
t
1
2
Using Figure 17 at a pulse width of 1.0 ms and D = 0.2, the reading of  
r(t) is 0.22.  
–1  
10  
10  
The peak rise in junction temperature is therefore  
–2  
T = r(t) x P  
(pk)  
x R  
= 0.22 x 2.0 x 200 = 88°C.  
θJA  
–4  
0
–2  
0
0
+20 +40 +60 +80 +100 +120 +140 +160  
T , JUNCTION TEMPERATURE ( C)  
For more information, see AN–569.  
°
J
Figure 19. Typical Collector Leakage Current  
6
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
PACKAGE DIMENSIONS  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. CONTOUR OF PACKAGE BEYOND DIMENSION R  
IS UNCONTROLLED.  
A
B
4. DIMENSION F APPLIES BETWEEN P AND L.  
DIMENSION D AND J APPLY BETWEEN L AND K  
MINIMUM. LEAD DIMENSION IS UNCONTROLLED  
IN P AND BEYOND DIMENSION K MINIMUM.  
R
P
L
F
SEATING  
PLANE  
INCHES  
MIN  
MILLIMETERS  
K
DIM  
A
B
C
D
F
G
H
J
K
L
N
P
MAX  
0.205  
0.210  
0.165  
0.022  
0.019  
0.055  
0.105  
0.020  
–––  
MIN  
4.45  
4.32  
3.18  
0.41  
0.41  
1.15  
2.42  
0.39  
12.70  
6.35  
2.04  
–––  
MAX  
5.20  
5.33  
4.19  
0.55  
0.48  
1.39  
2.66  
0.50  
–––  
0.175  
0.170  
0.125  
0.016  
0.016  
0.045  
0.095  
0.015  
0.500  
0.250  
0.080  
–––  
D
J
X X  
G
H
V
SECTION X–X  
C
–––  
–––  
0.105  
0.100  
–––  
2.66  
2.54  
–––  
1
N
R
V
0.115  
0.135  
2.93  
3.43  
N
–––  
–––  
STYLE 1:  
PIN 1. EMITTER  
CASE 029–04  
(TO–226AA)  
ISSUE AD  
2. BASE  
3. COLLECTOR  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
7
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,  
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
INTERNET: http://Design–NET.com  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MPSA70/D  

相关型号:

MPSA70RLRM

Amplifier Transistor PNP Silicon
ONSEMI

MPSA70RLRM

Small Signal Bipolar Transistor, 0.1A I(C), 40V V(BR)CEO, 1-Element, PNP, Silicon, TO-92
MOTOROLA

MPSA70RLRMG

Amplifier Transistor PNP Silicon
ONSEMI

MPSA70RLRP

Small Signal Bipolar Transistor, 0.1A I(C), 40V V(BR)CEO, 1-Element, PNP, Silicon, TO-92
MOTOROLA

MPSA70TRA

Small Signal Bipolar Transistor, 40V V(BR)CEO, 1-Element, PNP, Silicon, TO-92,
CENTRAL

MPSA70TRB

Small Signal Bipolar Transistor, 40V V(BR)CEO, 1-Element, PNP, Silicon, TO-92,
CENTRAL

MPSA70TRE

Small Signal Bipolar Transistor, 40V V(BR)CEO, 1-Element, PNP, Silicon, TO-92,
CENTRAL

MPSA70TRELEADFREE

Small Signal Bipolar Transistor, 40V V(BR)CEO, 1-Element, PNP, Silicon, TO-92,
CENTRAL

MPSA70ZL1

100mA, 40V, PNP, Si, SMALL SIGNAL TRANSISTOR, TO-92
MOTOROLA

MPSA70_06

Amplifier Transistor PNP Silicon
ONSEMI

MPSA75

Darlington Transistors
MOTOROLA

MPSA75

Darlington Transistors(PNP Silicon)
ONSEMI