MPX50GVSX [MOTOROLA]

0 to 50 kPa (0-7.25 psi) 60 mV FULL SCALE SPAN (TYPICAL); 0〜50千帕( 0-7.25磅) 60 mV的满量程(典型值)
MPX50GVSX
型号: MPX50GVSX
厂家: MOTOROLA    MOTOROLA
描述:

0 to 50 kPa (0-7.25 psi) 60 mV FULL SCALE SPAN (TYPICAL)
0〜50千帕( 0-7.25磅) 60 mV的满量程(典型值)

文件: 总10页 (文件大小:190K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MPX50/D  
SEMICONDUCTOR TECHNICAL DATA  
The MPX50 silicon piezoresistive pressure sensor provides a very accurate and linear  
voltage output — directly proportional to the applied pressure. This standard, low cost,  
uncompensated sensor permits manufacturers to design and add their own external  
temperature compensating and signal conditioning networks. Compensation techniques  
are simplified because of the predictability of Motorola’s single element strain gauge  
design.  
0 to 50 kPa (07.25 psi)  
60 mV FULL SCALE SPAN  
(TYPICAL)  
Features  
Low Cost  
Patented Silicon Shear Stress Strain Gauge Design  
Ratiometric to Supply Voltage  
Easy to Use Chip Carrier Package Options  
60 mV Span (Typ)  
BASIC CHIP  
CARRIER ELEMENT  
CASE 344–15, STYLE 1  
Differential and Gauge Options  
±0.25% (Max) Linearity  
Application Examples  
Air Movement Control  
Environmental Control Systems  
Level Indicators  
Leak Detection  
Medical Instrumentation  
Industrial Controls  
DIFFERENTIAL  
PORT OPTION  
CASE 344C–01, STYLE 1  
Pneumatic Control Systems  
Robotics  
Figure 1 shows a schematic of the internal circuitry on the stand–alone pressure  
sensor chip.  
NOTE: Pin 1 is the notched pin.  
PIN 3  
+ V  
PIN NUMBER  
S
1
2
Gnd  
+V  
3
4
V
S
PIN 2  
+ V  
–V  
out  
out  
out  
X–ducer  
PIN 4  
– V  
out  
PIN 1  
Figure 1. Uncompensated Pressure Sensor Schematic  
VOLTAGE OUTPUT versus APPLIED DIFFERENTIAL PRESSURE  
The differential voltage output of the X–ducer is directly proportional to the differential  
pressure applied.  
The output voltage of the differential or gauge sensor increases with increasing  
pressure applied to the pressure side (P1) relative to the vacuum side (P2). Similarly,  
output voltage increases as increasing vacuum is applied to the vacuum side (P2)  
relative to the pressure side (P1).  
Senseon and X–ducer are trademarks of Motorola, Inc.  
REV 5  
Motorola, Inc. 1997  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
200  
Unit  
kPa  
kPa  
°C  
(8)  
Overpressure (P1 > P2)  
P
max  
(8)  
Burst Pressure (P1 > P2)  
P
burst  
500  
Storage Temperature  
Operating Temperature  
T
stg  
40 to +125  
40 to +125  
T
A
°C  
OPERATING CHARACTERISTICS (V = 3.0 Vdc, T = 25°C unless otherwise noted, P1 > P2)  
S
A
Characteristic  
Symbol  
Min  
0
Typ  
Max  
50  
Unit  
kPa  
Vdc  
mAdc  
mV  
(1)  
Pressure Range  
P
OP  
(2)  
Supply Voltage  
Supply Current  
Full Scale Span  
V
S
3.0  
6.0  
60  
6.0  
I
o
(3)  
V
FSS  
45  
90  
(4)  
Offset  
V
off  
0
20  
35  
mV  
Sensitivity  
(5)  
V/P  
1.2  
mV/kPa  
Linearity  
Pressure Hysteresis (0 to 50 kPa)  
(5)  
0.25  
0.25  
%V  
%V  
%V  
FSS  
FSS  
FSS  
(5)  
± 0.1  
± 0.5  
Temperature Hysteresis (– 40°C to +125°C)  
(5)  
Temperature Coefficient of Full Scale Span  
(5)  
TCV  
FSS  
0.22  
0.16  
%V  
/°C  
µV/°C  
FSS  
Temperature Coefficient of Offset  
TCV  
off  
± 15  
(5)  
Temperature Coefficient of Resistance  
Input Impedance  
TCR  
0.21  
400  
750  
0.27  
550  
1800  
%Z /°C  
in  
Z
in  
Output Impedance  
Z
out  
(6)  
Response Time (10% to 90%)  
t
R
1.0  
20  
ms  
ms  
Warm–Up  
(9)  
Offset Stability  
± 0.5  
%V  
FSS  
MECHANICAL CHARACTERISTICS  
Characteristic  
Symbol  
Min  
Typ  
2.0  
Max  
Unit  
Weight (Basic Element Case 344–15)  
Grams  
kPa  
(7)  
Common Mode Line Pressure  
690  
NOTES:  
1. 1.0 kPa (kiloPascal) equals 0.145 psi.  
2. Device is ratiometric within this specified excitation range. Operating the device above the specified excitation range may induce additional  
error due to device self–heating.  
3. Full Scale Span (V  
) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the  
minimum rated pressure.  
FSS  
4. Offset (V ) is defined as the output voltage at the minimum rated pressure.  
off  
5. Accuracy (error budget) consists of the following:  
Linearity:  
Output deviation from a straight line relationship with pressure, using end point method, over the specified  
pressure range.  
Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is  
cycled to and from the minimum or maximum operating temperature points, with zero differential pressure  
applied.  
Pressure Hysteresis:  
Output deviation at any pressure within the specified range, when this pressure is cycled to and from the  
minimum or maximum rated pressure, at 25°C.  
TcSpan:  
TcOffset:  
Output deviation at full rated pressure over the temperature range of 0 to 85°C, relative to 25°C.  
Output deviation with minimum rated pressure applied, over the temperature range of 0 to 85°C, relative  
to 25°C.  
TCR:  
Z
deviation with minimum rated pressure applied, over the temperature range of 40°C to +125°C,  
in  
relative to 25°C.  
6. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to  
a specified step change in pressure.  
7. Common mode pressures beyond specified may result in leakage at the case–to–lead interface.  
8. Exposure beyond these limits may cause permanent damage or degradation to the device.  
9. Offset stability is the product’s output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test.  
2
Motorola Sensor Device Data  
TEMPERATURE COMPENSATION  
Figure 2 shows the typical output characteristics of the  
MPX50 series over temperature.  
or by designing your system using the MPX2050 series  
sensors.  
Several approaches to external temperature compensa-  
tion over both 40 to +125°C and 0 to +80°C ranges are  
presented in Motorola Applications Note AN840.  
The X–ducer piezoresistive pressure sensor element is a  
semiconductor device which gives an electrical output signal  
proportional to the pressure applied to the device. This de-  
vice uses a unique transverse voltage diffused semiconduc-  
tor strain gauge which is sensitive to stresses produced in a  
thin silicon diaphragm by the applied pressure.  
Because this strain gauge is an integral part of the silicon  
diaphragm, there are no temperature effects due to differ-  
ences in the thermal expansion of the strain gauge and the  
diaphragm, as are often encountered in bonded strain gauge  
pressure sensors. However, the properties of the strain  
gauge itself are temperature dependent, requiring that the  
device be temperature compensated if it is to be used over  
an extensive temperature range.  
LINEARITY  
Linearity refers to how well a transducer’s output follows  
the equation: V  
= V + sensitivity x P over the operating  
out  
off  
pressure range (see Figure 3). There are two basic methods  
for calculating nonlinearity: (1) end point straight line fit or (2)  
a least squares best line fit. While a least squares fit gives  
the “best case” linearity error (lower numerical value), the  
calculations required are burdensome.  
Conversely, an end point fit will give the “worst case” error  
(often more desirable in error budget calculations) and the  
calculations are more straightforward for the user. Motorola’s  
specified pressure sensor linearities are based on the end  
point straight line method measured at the midrange  
pressure.  
Temperature compensation and offset calibration can be  
achieved rather simply with additional resistive components,  
70  
100  
90  
LINEARITY  
60  
40°C  
MPX50  
= 3 Vdc  
P1 > P2  
80  
70  
60  
50  
40  
30  
+25°C  
50  
V
S
ACTUAL  
40  
SPAN  
RANGE  
(TYP)  
+125°C  
SPAN  
(V  
)
FSS  
30  
20  
THEORETICAL  
20  
10  
0
PSI  
kPa  
OFFSET  
(TYP)  
10  
0
OFFSET  
(V  
)
OFF  
0
0
1
2
3
20  
4
5
6
7
8
0
MAX  
P
10  
30  
40  
50  
OP  
PRESSURE DIFFERENTIAL  
PRESSURE (kPA)  
Figure 2. Output versus Pressure Differential  
Figure 3. Linearity Specification Comparison  
SILICONE  
DIE COAT  
STAINLESS STEEL  
METAL COVER  
EPOXY  
DIE  
P1  
P2  
WIRE BOND  
CASE  
RTV DIE  
BOND  
LEAD FRAME  
Figure 4. Cross–Sectional Diagram (not to scale)  
Figure 4 illustrates the differential or gauge configuration  
in the basic chip carrier (Case 344–15). A silicone gel iso-  
lates the die surface and wire bonds from the environment,  
while allowing the pressure signal to be transmitted to the sil-  
icon diaphragm.  
tics and internal reliability and qualification tests are based  
on use of dry air as the pressure media. Media other than dry  
air may have adverse effects on sensor performance and  
long term reliability. Contact the factory for information re-  
garding media compatibility in your application.  
The MPX50 series pressure sensor operating characteris-  
Motorola Sensor Device Data  
3
PRESSURE (P1)/VACUUM (P2) SIDE IDENTIFICATION TABLE  
Motorola designates the two sides of the pressure sensor  
pressure sensor is designed to operate with positive differen-  
as the Pressure (P1) side and the Vacuum (P2) side. The  
Pressure (P1) side is the side containing silicone gel which  
isolates the die from the environment. The Motorola MPX  
tial pressure applied, P1 > P2.  
The Pressure (P1) side may be identified by using the  
table below:  
Part Number  
Case Type  
344–15  
Pressure (P1) Side Identifier  
Stainless Steel Cap  
MPX50D  
MPX50DP  
MPX50GP  
344C–01  
344B–01  
344D–01  
344E–01  
344A–01  
344F–01  
344G–01  
Side with Part Marking  
Side with Port Attached  
Stainless Steel Cap  
MPX50GVP  
MPX50GS  
Side with Port Attached  
Stainless Steel Cap  
MPX50GVS  
MPX50GSX  
MPX50GVSX  
Side with Port Attached  
Stainless Steel Cap  
ORDERING INFORMATION  
MPX50 series pressure sensors are available in differential and gauge configurations. Devices are available with basic  
element package or with pressure port fittings which provide printed circuit board mounting ease and barbed hose pressure  
connections.  
MPX Series  
Device Type  
Basic Element  
Ported Elements  
Options  
Case Type  
Case 344–15  
Order Number  
MPX50D  
Device Marking  
MPX50D  
Differential  
Differential  
Gauge  
Case 344C–01  
Case 344B–01  
Case 344D–01  
Case 344E–01  
Case 344A–01  
Case 344F–01  
Case 344G–01  
MPX50DP  
MPX50DP  
MPX50GP  
MPX50GVP  
MPX50D  
MPX50D  
MPX50D  
MPX50D  
MPX50GP  
MPX50GVP  
MPX50GS  
MPX50GVS  
MPX50GSX  
MPX50GVSX  
Gauge Vacuum  
Gauge Stovepipe  
Gauge Vacuum Stovepipe  
Gauge Axial  
Gauge Vacuum Axial  
4
Motorola Sensor Device Data  
PACKAGE DIMENSIONS  
NOTES:  
C
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2. CONTROLLING DIMENSION: INCH.  
POSITIVE  
PRESSURE (P1)  
R
3. DIMENSION –A– IS INCLUSIVE OF THE MOLD  
STOP RING. MOLD STOP RING NOT TO EXCEED  
16.00 (0.630).  
M
INCHES  
MILLIMETERS  
B
–A–  
DIM  
A
B
C
D
MIN  
MAX  
0.630  
0.534  
0.220  
0.020  
0.064  
MIN  
15.11  
13.06  
5.08  
MAX  
16.00  
13.56  
5.59  
0.595  
0.514  
0.200  
0.016  
0.048  
N
L
1
2
3
4
PIN 1  
0.41  
0.51  
–T–  
F
1.22  
1.63  
SEATING  
G
J
L
M
N
R
0.100 BSC  
2.54 BSC  
PLANE  
0.014  
0.695  
0.016  
0.725  
0.36  
0.40  
G
POSITIVE  
PRESSURE  
(P1)  
J
17.65  
18.42  
F
30 NOM  
30 NOM  
D 4 PL  
0.475  
0.430  
0.495  
0.450  
12.07  
10.92  
12.57  
11.43  
M
M
0.136 (0.005)  
T
A
STYLE 1:  
PIN 1. GROUND  
2. + OUTPUT  
3. + SUPPLY  
4. – OUTPUT  
CASE 344–15  
ISSUE W  
NOTES:  
PORT #2  
VACUUM  
PRESSURE  
(P2)  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
C
A
POSITIVE  
PRESSURE  
(P1)  
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
F
MIN  
MAX  
0.720  
0.255  
0.820  
0.020  
0.064  
MIN  
17.53  
6.22  
MAX  
18.28  
6.48  
0.690  
0.245  
0.780  
0.016  
0.048  
PIN 1  
–B–  
V
19.81  
0.41  
20.82  
0.51  
2
3
1
4
1.22  
1.63  
G
J
K
N
R
S
0.100 BSC  
2.54 BSC  
0.014  
0.345  
0.300  
0.178  
0.220  
0.182  
0.016  
0.375  
0.310  
0.186  
0.240  
0.194  
0.36  
8.76  
7.62  
4.52  
5.59  
4.62  
0.41  
9.53  
7.87  
4.72  
6.10  
4.93  
K
S
J
V
N
G
F
R
STYLE 1:  
PIN 1. GROUND  
2. + OUTPUT  
3. + SUPPLY  
4. – OUTPUT  
D 4 PL  
0.13 (0.005)  
SEATING  
–T–  
M
M
T
B
PLANE  
CASE 344A–01  
ISSUE B  
Motorola Sensor Device Data  
5
PACKAGE DIMENSIONS — CONTINUED  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5, 1982.  
2. CONTROLLING DIMENSION: INCH.  
–A–  
SEATING  
PLANE  
–T–  
U
L
R
INCHES  
MILLIMETERS  
H
DIM  
A
B
C
D
F
MIN  
MAX  
1.175  
0.715  
0.325  
0.020  
0.064  
MIN  
29.08  
17.40  
7.75  
0.41  
1.22  
MAX  
29.85  
18.16  
8.26  
0.51  
1.63  
1.145  
0.685  
0.305  
0.016  
0.048  
N
B
PORT #1  
–Q–  
POSITIVE  
PRESSURE  
(P1)  
G
H
J
K
L
N
P
Q
R
S
0.100 BSC  
2.54 BSC  
0.182  
0.014  
0.695  
0.290  
0.420  
0.153  
0.153  
0.230  
0.220  
0.194  
0.016  
0.725  
0.300  
0.440  
0.159  
0.159  
0.250  
0.240  
4.62  
0.36  
17.65  
7.37  
10.67  
3.89  
3.89  
5.84  
5.59  
4.93  
0.41  
18.42  
7.62  
11.18  
4.04  
4.04  
6.35  
6.10  
1
2
3
4
PIN 1  
K
–P–  
S
M
S
0.25 (0.010)  
T
Q
J
F
U
0.910 BSC  
23.11 BSC  
G
C
D 4 PL  
M
S
S
0.13 (0.005)  
T
S
Q
STYLE 1:  
PIN 1. GROUND  
2. + OUTPUT  
3. + SUPPLY  
4. – OUTPUT  
CASE 344B–01  
ISSUE B  
NOTES:  
–A–  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
V
U
PORT #1  
W
L
R
H
INCHES  
MILLIMETERS  
PORT #2  
DIM  
A
B
C
D
F
MIN  
MAX  
1.175  
0.715  
0.435  
0.020  
0.064  
MIN  
29.08  
17.40  
10.29  
0.41  
MAX  
29.85  
18.16  
11.05  
0.51  
PORT #1  
POSITIVE PRESSURE  
(P1)  
PORT #2  
VACUUM  
(P2)  
1.145  
0.685  
0.405  
0.016  
0.048  
N
–Q–  
1.22  
1.63  
G
H
J
K
L
N
P
Q
R
S
0.100 BSC  
2.54 BSC  
SEATING  
PLANE  
SEATING  
PLANE  
B
0.182  
0.014  
0.695  
0.290  
0.420  
0.153  
0.153  
0.063  
0.220  
0.194  
0.016  
0.725  
0.300  
0.440  
0.159  
0.159  
0.083  
0.240  
4.62  
0.36  
17.65  
7.37  
10.67  
3.89  
3.89  
1.60  
5.59  
4.93  
0.41  
18.42  
7.62  
11.18  
4.04  
4.04  
2.11  
1
2
3 4  
PIN 1  
K
–P–  
M
S
0.25 (0.010)  
T
Q
–T–  
–T–  
S
F
J
6.10  
G
C
U
V
W
0.910 BSC  
23.11 BSC  
D 4 PL  
0.248  
0.310  
0.278  
0.330  
6.30  
7.87  
7.06  
8.38  
M
S
S
0.13 (0.005)  
T
S
Q
STYLE 1:  
PIN 1. GROUND  
2. + OUTPUT  
3. + SUPPLY  
4. – OUTPUT  
CASE 344C–01  
ISSUE B  
6
Motorola Sensor Device Data  
PACKAGE DIMENSIONS — CONTINUED  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5, 1982.  
2. CONTROLLING DIMENSION: INCH.  
–A–  
U
SEATING  
PLANE  
INCHES  
MILLIMETERS  
–T–  
L
DIM  
A
B
C
D
F
MIN  
MAX  
1.175  
0.715  
0.325  
0.020  
0.064  
MIN  
29.08  
17.40  
7.75  
0.41  
1.22  
MAX  
29.85  
18.16  
8.26  
0.51  
1.63  
PORT #2  
VACUUM  
(P2)  
1.145  
0.685  
0.305  
0.016  
0.048  
H
R
POSITIVE  
PRESSURE  
(P1)  
N
–Q–  
G
H
J
K
L
N
P
Q
R
S
0.100 BSC  
2.54 BSC  
0.182  
0.014  
0.695  
0.290  
0.420  
0.153  
0.153  
0.230  
0.220  
0.194  
0.016  
0.725  
0.300  
0.440  
0.159  
0.158  
0.250  
0.240  
4.62  
0.36  
17.65  
7.37  
10.67  
3.89  
3.89  
5.84  
5.59  
4.93  
0.41  
18.42  
7.62  
11.18  
4.04  
4.04  
6.35  
6.10  
B
1
2
3
4
K
PIN 1  
S
U
0.910 BSC  
23.11 BSC  
C
F
–P–  
G
STYLE 1:  
J
PIN 1. GROUND  
2. + OUTPUT  
3. + SUPPLY  
4. – OUTPUT  
M
S
0.25 (0.010)  
T
Q
D 4 PL  
M
S
S
0.13 (0.005)  
T
S
Q
CASE 344D–01  
ISSUE B  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
PORT #1  
POSITIVE  
PRESSURE  
(P1)  
C
A
BACK SIDE  
VACUUM  
(P2)  
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
F
MIN  
MAX  
0.720  
0.255  
0.820  
0.020  
0.064  
MIN  
17.53  
6.22  
19.81  
0.41  
MAX  
18.28  
6.48  
20.82  
0.51  
0.690  
0.245  
0.780  
0.016  
0.048  
–B–  
V
3
2
4
1
1.22  
1.63  
PIN 1  
G
J
K
N
R
S
0.100 BSC  
2.54 BSC  
0.014  
0.345  
0.300  
0.178  
0.220  
0.182  
0.016  
0.375  
0.310  
0.186  
0.240  
0.194  
0.36  
8.76  
7.62  
4.52  
5.59  
4.62  
0.41  
9.53  
7.87  
4.72  
6.10  
4.93  
K
S
V
J
N
G
STYLE 1:  
F
R
PIN 1. GROUND  
2. + OUTPUT  
3. + SUPPLY  
4. – OUTPUT  
D 4 PL  
SEATING  
PLANE  
M
M
–T–  
0.13 (0.005)  
T B  
CASE 344E–01  
ISSUE B  
Motorola Sensor Device Data  
7
PACKAGE DIMENSIONS — CONTINUED  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
–T–  
C
A
–Q–  
E
U
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
E
F
G
J
K
N
P
Q
R
S
MIN  
MAX  
1.120  
0.760  
0.650  
0.020  
0.180  
0.064  
MIN  
27.43  
18.80  
16.00  
0.41  
4.06  
1.22  
2.54 BSC  
0.36  
5.59  
1.78  
3.81  
3.81  
11.18  
17.65  
21.34  
4.62  
MAX  
28.45  
19.30  
16.51  
0.51  
1.080  
0.740  
0.630  
0.016  
0.160  
0.048  
N
S
B
4.57  
1.63  
V
0.100 BSC  
R
0.014  
0.220  
0.070  
0.150  
0.150  
0.440  
0.695  
0.840  
0.182  
0.016  
0.240  
0.080  
0.160  
0.160  
0.460  
0.725  
0.860  
0.194  
0.41  
6.10  
2.03  
4.06  
4.06  
11.68  
18.42  
21.84  
4.92  
PORT #1  
POSITIVE  
PRESSURE  
(P1)  
PIN 1  
–P–  
M
M
0.25 (0.010)  
T Q  
4
3
2
1
K
U
V
F
J
G
STYLE 1:  
D 4 PL  
0.13 (0.005)  
PIN 1. GROUND  
2. V (+) OUT  
3. V SUPPLY  
4. V (–) OUT  
M
S
S
T
P
Q
CASE 344F–01  
ISSUE B  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
–T–  
C
A
U
–Q–  
E
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
E
F
G
J
K
N
P
Q
R
S
MIN  
MAX  
1.120  
0.760  
0.650  
0.020  
0.180  
0.064  
MIN  
27.43  
18.80  
16.00  
0.41  
4.06  
1.22  
2.54 BSC  
0.36  
5.59  
1.78  
3.81  
3.81  
11.18  
17.65  
21.34  
4.62  
MAX  
28.45  
19.30  
16.51  
0.51  
1.080  
0.740  
0.630  
0.016  
0.160  
0.048  
POSITIVE  
PRESSURE  
(P1)  
4.57  
1.63  
N
B
R
V
0.100 BSC  
0.014  
0.220  
0.070  
0.150  
0.150  
0.440  
0.695  
0.840  
0.182  
0.016  
0.240  
0.080  
0.160  
0.160  
0.460  
0.725  
0.860  
0.194  
0.41  
6.10  
2.03  
4.06  
4.06  
11.68  
18.42  
21.84  
4.92  
PIN 1  
PORT #2  
VACUUM  
(P2)  
–P–  
M
M
0.25 (0.010)  
T Q  
1
2
3
4
S
U
V
K
F
J
STYLE 1:  
G
PIN 1. GROUND  
2. V (+) OUT  
3. V SUPPLY  
4. V (–) OUT  
D 4 PL  
0.13 (0.005)  
M
S
S
T
P
Q
CASE 344G–01  
ISSUE B  
8
Motorola Sensor Device Data  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
Motorola Sensor Device Data  
9
Mfax is a trademark of Motorola, Inc.  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,  
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 81–3–3521–8315  
Mfax : RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
– US & Canada ONLY 1–800–774–1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
INTERNET: http://motorola.com/sps  
MPX50/D  

相关型号:

MPX5100

Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated
MOTOROLA

MPX5100

Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated
FREESCALE

MPX5100A

Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated
MOTOROLA

MPX5100A

Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated
FREESCALE

MPX5100AP

Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated
MOTOROLA

MPX5100AP

Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated
FREESCALE

MPX5100AS

ABSOLUTE, PEIZORESISTIVE PRESSURE SENSOR, 2.17-16.67Psi, 2.5%, 0.20-4.70V, ROUND, THROUGH HOLE MOUNT, PLASTIC, UNIBODY PACKAGE-6
MOTOROLA

MPX5100ASX

暂无描述
MOTOROLA

MPX5100D

Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated
MOTOROLA

MPX5100D

Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated
FREESCALE

MPX5100DP

Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated
MOTOROLA

MPX5100DP

Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated
FREESCALE