MRF5035 [MOTOROLA]

N-CHANNEL BROADBAND RF POWER FET; N沟道宽带射频功率场效应管
MRF5035
型号: MRF5035
厂家: MOTOROLA    MOTOROLA
描述:

N-CHANNEL BROADBAND RF POWER FET
N沟道宽带射频功率场效应管

晶体 射频场效应晶体管 放大器 局域网
文件: 总8页 (文件大小:146K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MRF5035/D  
SEMICONDUCTOR TECHNICAL DATA  
The RF MOSFET Line  
N–Channel Enhancement–Mode  
Designed for broadband commercial and industrial applications at frequen-  
cies to 520 MHz. The high gain and broadband performance of this device  
makes it ideal for large–signal, common source amplifier applications in 12.5  
volt mobile, and base station FM equipment.  
Guaranteed Performance at 512 MHz, 12.5 Volt  
Output Power — 35 Watts  
35 W, 12.5 VOLTS, 512 MHz  
N–CHANNEL BROADBAND  
RF POWER FET  
Power Gain — 6.5 dB Min  
Efficiency — 50% Min  
Characterized with Series Equivalent Large–Signal Impedance Parameters  
S–Parameter Characterization at High Bias Levels  
Excellent Thermal Stability  
All Gold Metal for Ultra Reliability  
Capable of Handling 20:1 Load VSWR, @ 15.5 Volt, 512 MHz,  
2 dB Overdrive  
Circuit board photomaster available upon request by contacting  
RF Tactical Marketing in Phoenix, AZ.  
CASE 316–01, STYLE 3  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
36  
Unit  
Drain–Source Voltage  
V
DSS  
Vdc  
Vdc  
Vdc  
Adc  
Drain–Gate Voltage (RGS = 1 M)  
Gate–Source Voltage  
V
DGR  
36  
V
GS  
± 20  
15  
Drain Current — Continuous  
I
D
Total Device Dissipation @ T = 25°C  
Derate above 25°C  
P
D
97  
0.56  
Watts  
W/°C  
C
Storage Temperature Range  
Operating Junction Temperature  
THERMAL CHARACTERISTICS  
T
– 65 to +150  
200  
°C  
°C  
stg  
T
J
Characteristic  
Thermal Resistance, Junction to Case  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted.)  
Symbol  
Max  
Unit  
R
1.8  
°C/W  
θJC  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Drain–Source Breakdown Voltage (V  
GS  
= 0, I = 20 mAdc)  
V
36  
5
Vdc  
mAdc  
D
(BR)DSS  
Zero Gate Voltage Drain Current (V  
DS  
= 15 Vdc, V  
= 0)  
= 0)  
I
GS  
DSS  
Gate–Source Leakage Current (V  
GS  
= 20 Vdc, V  
DS  
I
5
µAdc  
GSS  
(continued)  
NOTE – CAUTION – MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and  
packaging MOS devices should be observed.  
REV 6  
Motorola, Inc. 1994  
ELECTRICAL CHARACTERISTICS — continued (T = 25°C unless otherwise noted.)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
ON CHARACTERISTICS  
Gate Threshold Voltage  
(V = 10 Vdc, I = 25 mAdc)  
V
1.25  
2.3  
3.5  
0.422  
Vdc  
Vdc  
S
GS(th)  
DS  
Drain–Source On–Voltage  
(V = 10 Vdc, I = 3 Adc)  
D
V
DS(on)  
GS  
Forward Transconductance  
(V = 10 Vdc, I = 3 Adc )  
D
g
fs  
3.2  
DS  
D
DYNAMIC CHARACTERISTICS  
Input Capacitance  
C
18  
88  
197  
24  
29  
pF  
pF  
pF  
iss  
(V  
DS  
= 12.5 Vdc, V  
= 0, f = 1 MHz)  
GS  
Output Capacitance  
(V = 12.5 Vdc, V  
C
oss  
= 0, f = 1 MHz)  
DS  
GS  
Reverse Transfer Capacitance  
(V = 12.5 Vdc, V = 0, f = 1 MHz)  
C
rss  
DS GS  
FUNCTIONAL TESTS (In Motorola Test Fixture)  
Common–Source Amplifier Power Gain  
G
dB  
%
ps  
(V  
DD  
= 12.5 Vdc, P  
= 400 mA)  
= 35 W,  
f = 512 MHz  
f = 175 MHz  
6.5  
7.5  
12  
out  
I
DQ  
Drain Efficiency  
(V = 12.5 Vdc, P  
η
= 35 W,  
f = 512 MHz  
f = 175 MHz  
50  
55  
55  
DD  
= 400 mA)  
out  
I
DQ  
Load Mismatch  
(V = 15.5 Vdc, 2 dB Overdrive, f = 512 MHz,  
ψ
No Degradation in Output Power  
DD  
Load VSWR = 20:1, All Phase Angles at Frequency of Test)  
Socket  
R1  
B1  
V
V
DD  
GG  
+
+
C1  
C13  
C14  
C2  
R2  
L1  
B2  
C3  
R4  
C12  
C7  
C6  
C8  
C9  
L2  
DUT  
R3  
N2  
N1  
C15  
Z7  
Z8  
C16  
Z9  
Z1  
Z2  
Z3  
Z4  
RF Input  
RF Output  
C10  
C4  
C5  
C11  
Components List  
B1, B2  
C1, C14  
C2  
C3  
C4, C11  
C5  
C6, C7  
C8, C9  
C10  
Short Ferrite Bead, Fair Rite Products  
10 µF, 50 V, Electrolytic  
1500 pF, Chip Capacitor  
140 pF, Chip Capacitor  
0–10pF, Trimmer Capacitor  
30 pF, Chip Capacitor  
43 pF, Chip Capacitor  
36 pF, Chip Capacitor  
3.6 pF, Chip Capacitor  
N1, N2  
R1  
R2  
R3  
R4  
Z1, Z9  
Z2  
Z3  
Z4  
Type N Flange Mount  
1 k, 1/4 W, Carbon  
1 M, 1/4 W, Carbon  
100 , 1/4 W, Carbon  
110 , 1/4 W, Carbon  
Transmission Line*  
Transmission Line*  
Transmission Line*  
Transmission Line*  
Transmission Line*  
Transmission Line*  
Glass Teflon 0.060″  
C12, C15, C16 120 pF, Chip Capacitor  
C13  
L1  
Z7  
Z8  
Board  
0.1 µF, Chip Capacitor  
5 Turns, 18 AWG, 0.116ID  
8 Turns, 20 AWG, 0.125ID  
L2  
*See Photomaster for Dimensions  
Figure 1. 512 MHz Narrowband Test Circuit Electrical Schematic  
MRF5035  
2
MOTOROLA RF DEVICE DATA  
TYPICAL CHARACTERISTICS  
50  
40  
30  
20  
55  
P
= 10 W  
f = 400 MHz  
470 MHz  
in  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
I
= 400 mA  
520 MHz  
DQ  
f = 400 MHz  
7 W  
5 W  
3 W  
10  
0
V
= 12.5 V  
= 400 mA  
DD  
DQ  
I
0
0
2
4
6
8
10  
12  
14  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
P
, INPUT POWER (WATTS)  
V , SUPPLY VOLTAGE (VOLTS)  
DD  
in  
Figure 2. Output Power versus Input Power  
Figure 3. Output Power versus Supply Voltage  
55  
50  
V
P
= 12.5 V  
DD  
= 7 W  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
f = 400 MHz  
520 MHz  
in  
P
= 10 W  
I
= 400 mA  
in  
DQ  
f = 520 MHz  
40  
30  
20  
10  
0
7 W  
5 W  
3 W  
Typical Device Shown  
0
0
1
2
3
4
5
6
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
V
, SUPPLY VOLTAGE (VOLTS)  
V
, GATE–SOURCE VOLTAGE (VOLTS)  
DD  
GS  
Figure 4. Output Power versus Supply Voltage  
Figure 5. Output Power versus Gate Voltage  
6
5
4
3
2
1
0
400  
V
= 10 V  
DS  
V
= 0 V  
GS  
f = 1 MHz  
350  
300  
250  
200  
150  
C
C
oss  
100  
50  
C
iss  
Typical Device Shown  
rss  
25  
0
0
1
2
3
4
5
0
5
10  
15  
20  
30  
V
, GATE–SOURCE VOLTAGE (VOLTS)  
V , DRAIN–SOURCE VOLTAGE (VOLTS)  
DS  
GS  
Figure 6. Drain Current versus Gate Voltage  
Figure 7. Capacitance versus Voltage  
MOTOROLA RF DEVICE DATA  
MRF5035  
3
TYPICAL CHARACTERISTICS  
1.04  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.97  
0.96  
0.95  
0.94  
I
= 5 A  
DQ  
3.5 A  
10  
2 A  
V
= 12.5 V  
25  
DD  
T
= 25°C  
1 A  
C
0.25 A  
1
– 25  
0
50  
75  
100  
125  
150  
175  
1
10  
100  
T
, CASE TEMPERATURE (  
°C)  
V
, DRAIN–SOURCE VOLTAGE (VOLTS)  
C
DS  
Figure 8. Gate–Source Voltage  
versus Case Temperature  
Figure 9. DC Safe Operating Area  
520  
460  
V
DD  
= 12.5 V, I  
DQ  
= 400 mA, P = 7.8 W,  
in  
Z
*
Tune for Maximum Output Power  
OL  
f = 400 MHz  
f
Z
()  
Z
OL  
()  
*
in  
(MHz)  
Z
in  
Z
= 5 Ω  
o
520  
400  
420  
440  
460  
480  
500  
520  
1.0 + j0.89  
0.90 + j0.83  
0.83 + j0.81  
0.82 + j0.83  
0.87 + j0.90  
0.97 + j1.0  
1.1 + j1.2  
0.87 + j2.1  
0.79 + j2.2  
0.73 + j2.3  
0.71 + j2.4  
0.71 + j2.5  
0.74 + j2.6  
0.80 + j2.7  
460  
f = 400 MHz  
Z
Z
= Conjugate of source impedance.  
in  
* = Conjugate of the load impedance at given  
input power, voltage and frequency that  
produces maximum output power.  
OL  
Figure 10. Series Equivalent Input and Output Impedance  
MRF5035  
4
MOTOROLA RF DEVICE DATA  
Table 1. Common Source Scattering Parameters (V  
= 12.5 V)  
DS  
I
D
= 100 mA  
f
S
11  
S
11  
S
11  
S
11  
S
S
S
S
S
S
S
S
S
22  
S
22  
S
22  
S
22  
21  
12  
MHz  
|S  
|
φ
|S  
|
φ
|S  
|
φ
|S  
|
φ
11  
21  
12  
22  
25  
50  
0.74  
0.74  
0.77  
0.81  
0.85  
0.90  
0.93  
0.94  
0.95  
0.96  
–153  
–164  
–168  
–170  
–171  
–174  
–178  
–179  
179  
6.9  
3.4  
1.6  
1
0.69  
0.38  
0.24  
0.20  
0.17  
0.12  
94  
82  
67  
56  
46  
32  
22  
19  
16  
13  
0.039  
0.039  
0.036  
0.032  
0.028  
0.019  
0.013  
0.010  
0.008  
0.008  
6
– 5  
0.87  
0.89  
0.90  
0.92  
0.93  
0.96  
0.97  
0.97  
0.98  
0.98  
–169  
–174  
–176  
–178  
–179  
179  
177  
175  
174  
172  
100  
150  
200  
300  
400  
450  
500  
600  
–16  
– 25  
– 31  
– 36  
– 30  
– 22  
– 8  
176  
27  
I
D
= 400 mA  
f
21  
21  
21  
12  
12  
12  
MHz  
|S  
11  
|
φ
|S  
21  
|
φ
|S  
12  
|
φ
|S  
22  
|
φ
25  
50  
0.88  
0.88  
0.88  
0.89  
0.89  
0.91  
0.92  
0.93  
0.94  
0.95  
–163  
–172  
–176  
–178  
–179  
180  
178  
177  
176  
174  
7.8  
3.9  
1.9  
1.3  
0.91  
0.57  
0.39  
0.33  
0.29  
0.22  
94  
87  
77  
70  
63  
51  
41  
37  
33  
27  
0.018  
0.018  
0.018  
0.017  
0.016  
0.014  
0.012  
0.012  
0.012  
0.014  
7
3
–1  
– 2  
–1  
3
14  
22  
29  
42  
0.93  
0.93  
0.94  
0.94  
0.94  
0.95  
0.96  
0.96  
0.97  
0.97  
–175  
–178  
–180  
179  
178  
177  
175  
174  
173  
171  
100  
150  
200  
300  
400  
450  
500  
600  
I
D
= 1 A  
f
MHz  
|S  
11  
|
φ
|S  
21  
|
φ
|S  
12  
|
φ
|S  
22  
|
φ
25  
50  
0.92  
0.91  
0.92  
0.92  
0.92  
0.93  
0.94  
0.94  
0.94  
0.95  
–165  
–173  
–177  
–179  
180  
178  
176  
175  
174  
7.8  
3.9  
1.9  
1.3  
0.95  
0.61  
0.43  
0.38  
0.33  
0.26  
95  
88  
81  
75  
69  
59  
50  
46  
43  
36  
0.013  
0.013  
0.013  
0.013  
0.012  
0.012  
0.013  
0.013  
0.014  
0.016  
9
6
7
9
12  
21  
32  
37  
42  
49  
0.94  
0.95  
0.95  
0.95  
0.95  
0.96  
0.96  
0.97  
0.97  
0.97  
–177  
–179  
179  
179  
178  
176  
174  
174  
173  
171  
100  
150  
200  
300  
400  
450  
500  
600  
173  
I
D
= 5 A  
f
MHz  
|S  
11  
|
φ
|S  
21  
|
φ
|S  
12  
|
φ
|S  
22  
|
φ
25  
50  
0.94  
0.94  
0.94  
0.94  
0.94  
0.95  
0.95  
0.95  
0.96  
0.96  
–164  
–172  
–177  
–179  
179  
177  
176  
175  
174  
7.2  
3.6  
1.8  
1.2  
0.89  
0.57  
0.42  
0.36  
0.32  
0.26  
95  
89  
81  
76  
70  
61  
52  
48  
45  
39  
0.010  
0.010  
0.010  
0.011  
0.011  
0.011  
0.013  
0.013  
0.014  
0.017  
10  
9
0.95  
0.95  
0.96  
0.96  
0.96  
0.96  
0.97  
0.97  
0.97  
0.97  
–178  
–180  
179  
178  
177  
176  
174  
173  
172  
171  
100  
150  
200  
300  
400  
450  
500  
600  
11  
16  
21  
31  
41  
45  
48  
54  
172  
MOTOROLA RF DEVICE DATA  
MRF5035  
5
DESIGN CONSIDERATIONS  
The MRF5035 is a common–source, RF power, N–Chan-  
nel enhancement mode, Metal–Oxide Semiconductor Field–  
Effect Transistor (MOSFET). Motorola RF MOSFETs feature  
a vertical structure with a planar design. Motorola Application  
Note AN211A, “FETs in Theory and Practice,” is suggested  
reading for those not familiar with the construction and char-  
acteristics of FETs.  
the linear region of the output characteristic and is specified  
at a specific gate–source voltage and drain current. The  
drain–source voltage under these conditions is termed  
V
. For MOSFETs, V has a positive temperature  
ds(on)  
ds(on)  
coefficient at high temperatures because it contributes to the  
power dissipation within the device.  
GATE CHARACTERISTICS  
This device was designed primarily for 12.5 volt VHF and  
UHF Land Mobile FM power amplifier applications. The ma-  
jor advantages of RF power MOSFETs include high gain,  
simple bias systems, relative immunity from thermal run-  
away, and the ability to withstand severely mismatched loads  
without suffering damage.  
The gate of the RF MOSFET is a polysilicon material, and  
is electrically isolated from the source by a layer of oxide.  
The input resistance is very high, on the order of 10 , re-  
sulting in a leakage current of a few nanoamperes.  
Gate control is achieved by applying a positive voltage to  
the gate greater than the gate–to–source threshold voltage,  
9
MOSFET CAPACITANCES  
V
.
GS(th)  
Gate Voltage Rating – Never exceed the gate voltage rat-  
ing. Exceeding the rated V can result in permanent dam-  
The physical structure of a MOSFET results in capacitors  
between all three terminals. The metal oxide gate structure  
GS  
determines the capacitors from gate–to–drain (C ), and  
age to the oxide layer in the gate region.  
gd  
gate–to–source (C ). The PN junction formed during fab-  
gs  
Gate Termination – The gates of these devices are es-  
sentially capacitors. Circuits that leave the gate open–cir-  
cuited or floating must be avoided. These conditions can  
result in turn–on of the devices due to voltage build–up on  
the input capacitor due to leakage currents or pickup.  
rication of the RF MOSFET results in a junction capacitance  
from drain–to–source (C ). These capacitances are charac-  
ds  
terized as input (C ), output (C  
) and reverse transfer  
oss  
iss  
(C ) capacitances on data sheets. The relationships be-  
rss  
tween the inter–terminal capacitances and those given on  
Gate Protection – These devices do not have an internal  
monolithic zener diode from gate–to–source. If gate protec-  
tion is required, an external zener diode is recommended  
with appropriate RF decoupling networks.  
data sheets are shown below. The C  
two ways:  
can be specified in  
iss  
1. Drain shorted to source and positive voltage at the gate.  
Using a resistor to keep the gate–to–source impedance  
low also helps dampen transients and serves another impor-  
tant function. Voltage transients on the drain can be coupled  
to the gate through the parasitic gate–drain capacitance. If  
the gate–to–source impedance and the rate of voltage  
change on the drain are both high, then the signal coupled to  
the gate may be large enough to exceed the gate–threshold  
voltage and turn the device on.  
2. Positivevoltageofthedraininrespecttosourceandzero  
volts at the gate.  
In the latter case, the numbers are lower. However, neither  
method represents the actual operating conditions in RF ap-  
plications.  
Drain  
DC BIAS  
C
gd  
gs  
Since the MRF5035 is an enhancement mode FET, drain  
current flows only when the gate is at a higher potential than  
the source. See Figure 6 for a typical plot of drain current  
versus gate voltage. RF power FETs operate optimally with a  
quiescent drain current (I  
DQ  
pendent. The MRF5035 was characterized at I  
C
C
C
= C + C  
gd gs  
Gate  
iss  
= C + C  
C
oss  
rss  
gd ds  
= C  
gd  
ds  
), whose value is application de-  
= 400 mA,  
C
DQ  
which is the suggested value of bias current for typical ap-  
plications. For special applications such as linear amplifica-  
Source  
tion, I  
parameters.  
may have to be selected to optimize the critical  
DQ  
The gate is a dc open circuit and draws essentially no cur-  
rent. Therefore, the gate bias circuit may generally be just a  
simple resistive divider network. Some special applications  
may require a more elaborate bias system.  
DRAIN CHARACTERISTICS  
One critical figure of merit for a FET is its static resistance  
inthefull–oncondition. Thison–resistance, R  
, occursin  
ds(on)  
MRF5035  
6
MOTOROLA RF DEVICE DATA  
GAIN CONTROL  
Power output of the MRF5035 may be controlled to some  
degree with a low power dc control signal applied to the gate,  
thus facilitating applications such as manual gain control,  
ALC/AGC and modulation systems. Figure 5 is an example  
of output power variation with gate–source bias voltage with  
a good first approximation. This is an additional advantage of  
RF power MOSFETs.  
Since RF power MOSFETs are triode devices, they are not  
unilateral. This coupled with the high gain of the MRF5035  
yield a device quite capable of self oscillation. Stability may  
be achieved by techniques such as drain loading, input shunt  
resistive loading, or output to input feedback. Different  
stabilizing techniques may be required depending on the  
desired gain and bandwidth of the application. The RF test  
fixture implements a resistor in shunt with the gate to im-  
prove stability. Two port stability analysis with the MRF5035  
S–parameters provides a useful tool for selection of loading  
or feedback circuitry to assure stable operation. See  
Motorola Application Note AN215A, “RF Small–Signal  
Design Using Two–Port Parameters,” for a discussion of two  
port network theory and stability.  
P
held constant. This characteristic is very dependent on  
in  
frequency and load line.  
AMPLIFIER DESIGN  
Impedance matching networks similar to those used with  
bipolar transistors are suitable for the MRF5035. For exam-  
ples see Motorola Application Note AN721, “Impedance  
Matching Networks Applied to RF Power Transistors.” Both  
small–signal S–parameters and large–signal impedances  
are provided. While the S–parameters will not produce an  
exact design solution for high power operation, they do yield  
MOTOROLA RF DEVICE DATA  
MRF5035  
7
PACKAGE DIMENSIONS  
F
D
NOTES:  
1. FLANGE IS ISOLATED IN ALL STYLES.  
4
R
Q
K
INCHES  
MILLIMETERS  
3
DIM  
MIN  
MAX  
25.14  
12.95  
7.62  
MIN  
0.960  
0.490  
0.235  
0.210  
0.085  
0.200  
0.720  
0.004  
0.405  
0.150  
0.150  
0.115  
0.120  
0.470  
MAX  
0.990  
0.510  
0.300  
0.220  
0.120  
0.210  
0.730  
0.006  
0.440  
0.160  
0.170  
0.130  
0.130  
0.495  
A
B
C
D
E
F
H
J
K
L
24.38  
12.45  
5.97  
5.33  
2.16  
5.08  
18.29  
0.10  
10.29  
3.81  
3.81  
2.92  
3.05  
11.94  
1
5.58  
3.04  
2
5.33  
18.54  
0.15  
L
11.17  
4.06  
N
Q
R
U
4.31  
3.30  
B
C
J
3.30  
12.57  
E
STYLE 3:  
PIN 1. SOURCE  
N
2. DRAIN  
3. SOURCE  
4. GATE  
H
A
U
CASE 316–01  
ISSUE D  
Motorolareserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representationorguaranteeregarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,  
andspecifically disclaims any and all liability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters can and do vary in different  
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does  
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in  
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of  
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintendedor unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
How to reach us:  
USA / EUROPE: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447  
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609  
INTERNET: http://Design–NET.com  
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MRF5035/D  

相关型号:

MRF511

VHF BAND, Si, NPN, RF POWER TRANSISTOR, TO-117
MOTOROLA

MRF515

UHF BAND, Si, NPN, RF SMALL SIGNAL TRANSISTOR, TO-39
MOTOROLA

MRF5160HX

UHF BAND, Si, PNP, RF SMALL SIGNAL TRANSISTOR, TO-39
MOTOROLA

MRF5160HXV

RF Small Signal Bipolar Transistor, 0.4A I(C), 1-Element, Ultra High Frequency Band, Silicon, PNP, TO-39
MOTOROLA

MRF517

RF & MICROWAVE DISCRETE LOW POWER TRANSISTORS
MICROSEMI

MRF517

NPN SILICON HIGH FREQUENCY TRANSISTOR
ASI

MRF5174

NPN RF POWER TRANSISTOR
ASI

MRF5175

1NPN SILICON RF POWER TRANSISTOR
ASI

MRF5176

RF POWER TRANSISTOR NPN SILICON
MOTOROLA

MRF5176

NPN SILICON RF POWER TRANSISTOR
ASI

MRF5177

30W, 400MHZ RF POWER TRANSISTOR NPN SILICON
MOTOROLA

MRF5177A

30W, 400MHZ RF POWER TRANSISTOR NPN SILICON
MOTOROLA