MRFIC1818 [MOTOROLA]

1700-1900 MHz MMIC DCS1800/PCS1900 INTEGRATED POWER AMPLIFIER GaAs MONOLITHIC INTEGRATED CIRCUIT; 1700-1900 MHz的MMIC DCS1800 / PCS1900集成功率放大器砷化镓单片集成电路
MRFIC1818
型号: MRFIC1818
厂家: MOTOROLA    MOTOROLA
描述:

1700-1900 MHz MMIC DCS1800/PCS1900 INTEGRATED POWER AMPLIFIER GaAs MONOLITHIC INTEGRATED CIRCUIT
1700-1900 MHz的MMIC DCS1800 / PCS1900集成功率放大器砷化镓单片集成电路

放大器 功率放大器 过程控制系统 分布式控制系统 PCS DCS
文件: 总8页 (文件大小:220K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MRFIC1818/D  
SEMICONDUCTOR TECHNICAL DATA  
The MRFIC Line  
DesignedspecificallyforapplicationinPanEuropeandigital1.0wattDCS1800  
handheldradios,theMRFIC1818isspecifiedfor33dBmoutputpowerwithpower  
gainover30dBfroma4.8voltsupply.Withminortuningchanges,theMRFIC1818  
can be used for PCS1900 as well as PCS CDMA. To achieve this superior  
performance,Motorola’splanarGaAsMESFETprocessisemployed.Thedevice  
is packaged in the PFP–16 Power Flat Package which gives excellent thermal  
and electrical performance through a solderable backside contact while allowing  
the convenience and cost benefits of reflow soldering.  
1700–1900 MHz MMIC  
DCS1800/PCS1900  
INTEGRATED POWER AMPLIFIER  
GaAs MONOLITHIC  
INTEGRATED CIRCUIT  
Minimum Output Power Capabilities  
33 dBm @ 4.8 Volts  
32 dBm @ 4.0 Volts  
Specified 4.8 Volt Characteristics  
RF Input Power = 3.0 dBm  
RF Output Power = 33 dBm  
Minimum PAE = 35%  
Low Current required from Negative Supply – 2 mA max  
Guaranteed Stability and Ruggedness  
CASE 978–02  
(PFP–16)  
Order MRFIC1818R2 for Tape and Reel.  
R2 Suffix = 1,500 Units per 16 mm, 13 inch Reel.  
Device Marking = M1818  
ABSOLUTE MAXIMUM RATINGS (T = 25°C, Z = 50 , unless otherwise noted)  
A
O
Rating  
Symbol  
Value  
Unit  
Vdc  
Vdc  
dBm  
dBm  
°C  
DC Positive Supply Voltage  
DC Negative Supply Voltage  
RF Input Power  
V
7.5  
D1, 2, 3  
V
SS  
–5  
10  
P
in  
RF Output Power  
P
out  
36  
Operating Case Temperature Range  
Storage Temperature Range  
T
C
35 to +85  
–55 to +150  
10  
T
stg  
°C  
Thermal Resistance, Junction to Case  
R
°C/W  
θJC  
8
V
GND  
9
G
V
10  
11  
12  
D2  
7
6
V
D3  
V
RF OUT  
RF OUT  
D2  
V
5
4
D1  
N/C 13  
GND 14  
RF OUT  
3
2
RF OUT  
N/C  
15  
RF IN  
N/C 16  
1
GND  
Pin Connections and Functional Block Diagram  
REV 2  
Motorola, Inc. 1997  
RECOMMENDED OPERATING RANGES  
Parameter  
Symbol  
Value  
2.7 to 6  
Unit  
Vdc  
Supply Voltage  
V
D1, 2, 3  
Gate Voltage  
V
–3.5 to –4.5  
1700 to 1900  
0 to 6  
Vdc  
SS  
RF  
RF Frequency Range  
RF Input Power  
f
MHz  
dBm  
P
RF  
ELECTRICAL CHARACTERISTICS (V  
,
= 4.8 V, V  
= –4 V, P = 3 dBm, Peak Measurement at 12.5% Duty Cycle, 4.6 ms  
SS in  
D1 2, 3  
Period, T = 25°C unless otherwise noted. Measured in Reference Circuit Shown in Figure 1.)  
A
Characteristic  
Min  
1710  
33  
35  
Typ  
Max  
1785  
Unit  
MHz  
dBm  
%
Frequency Range  
Output Power  
34.5  
42  
Power Added Efficiency  
Output Power (Tuned for PCS Band, 1850 to 1910 MHz)  
Power Added Efficiency (Tuned for PCS Band, 1850 to 1910 MHz)  
Input VSWR  
34.5  
42  
dBm  
%
2:1  
–35  
33  
VSWR  
dBc  
Harmonic Output (2nd and 3rd)  
–30  
Output Power at Low voltage (V , V , V = 4.0 V)  
D1 D2 D3  
32  
dBm  
dBm  
dBm  
dBc  
Output Power, Isolation (V , V , V = 0 V)  
–40  
85  
–35  
–80  
–60  
D1 D2 D3  
Noise Power (In 100 kHz, 1805 to 1880 MHz)  
Stability – Spurious Output (P = 5 dBm, P  
= 0 to 33 dBm, Load  
out  
in  
VSWR = 6:1 at any Phase Angle, Source VSWR = 3:1, at any Phase Angle)  
(1)  
Load Mismatch stress (P = 33 dBm, Load VSWR = 10:1 at  
any Phase Angle)  
No Degradation in Output Power after Returning to  
Standard Conditions  
out  
(1)  
3 dB V Bandwidth  
2
2
MHz  
mA  
DD  
Negative Supply Current  
(1) Adjust V (0 to 4.8 V) for specified P ; Duty Cycle = 12.5%, Period = 4.6 ms.  
0.7  
D1, 2, 3  
out  
V
D2  
V
D3  
V
D1  
V
SS  
R1  
R2  
C1  
9
8
7
6
5
4
3
2
1
T4  
T3  
L1  
C2  
10  
11  
12  
13  
C3  
C4  
C9 C8  
C10  
T1  
NC  
NC  
RF OUT  
C7 C6  
L2  
14  
15  
16  
T2  
C5  
NC  
RF IN  
C1  
6.8 nF  
C5  
L1  
L2  
3.9 pF, NPO/COG  
18 nH, Coilcraft  
1.8 nH, Toko 2012  
T1  
1.4 mm 25 Microstrip Line  
5 mm 50 Microstrip Line  
4 mm 50 Microstrip Line  
0.5 mm 50 Microstrip Line  
C2, C6, C8 22 pF, NPO/COG  
C3, C7, C9 47 nF  
C4  
T2  
T3  
T4  
27 pF, NPO/COG  
0.5 pF  
R1, R2 = 2.7 KΩ  
C10  
Board Material: Glass/Epoxy, ε = 4.45,  
Thickness = 0.5 mm  
r
NOTE: For PCS/DCS1900 applications, the following components are used.  
C5 = 2.7 pF, 0603 NPO/COG  
L2 = 1.5 nH, Toko 2012  
T3 = 1 mm 50 Microstrip Line  
Figure 1. Reference Circuit Configuration  
MRFIC1818  
2
MOTOROLA RF DEVICE DATA  
D
D
D
D
5
6
7
8
G
S
S
V
BAT  
4
V
reg  
3.0 V  
3.0 V  
3
VRAMP  
IDLE  
R3  
0 V  
0 V  
2
1
C18  
C15  
C14  
1
2
14  
13  
Q1  
C19  
R5  
C16  
C17  
3
4
5
12  
11  
–4.0 V  
R2  
R1  
CR1  
C13  
10  
9
6
7
C11  
V
TUNE  
L1  
G
8
8
9
T4  
C1  
7
6
5
4
3
2
1
U2  
10  
11  
C2  
T1  
C3  
R4  
T3  
C10  
C9  
C12  
12  
13  
14  
15  
16  
C4  
RF  
OUT  
NC  
NC  
T2  
C6  
RF IN  
NC  
IN  
L2  
U1  
C1  
6.8 nF  
C14, C15 1 µF  
R3, R4 100 Ω  
C2, C9, C10 22 pF, 0603 NPO/COG  
C3, C11 47 nF  
C18  
CR1  
L1  
1 µF  
MMBD701LT1  
R5  
T1  
T2  
T3  
T4  
U1  
U2  
470 Ω  
2 mm 25 Microstrip Line  
5 mm 50 Microstrip Line  
8 mm 40 Microstrip Line  
1 mm 40 Microstrip Line  
MRFIC1818  
C4  
C6  
C12  
27 pF, 0603 NPO/COG  
3.9 pF, 0603 NPO/COG  
220 nF  
18 nH, Coilcraft or 20 mm  
50 Microstrip Line  
1.8 nH, Toko 2012  
or 5 mm 50 Line  
MMSF4N01HD  
L2  
C13, C16, C17, C19 1 µF  
Q1  
MC33169 (–4 V Version)  
R1, R2 2.7 kΩ  
Board Material: Glass/Epoxy, ε = 4.45,  
Thickness = 0.5 mm  
r
NOTE: For PCS/DCS1900 applications, the following  
component values are changed.  
C6 = 2.7 pF, 0603 NPO/COG  
L2 = 1.5 nH, Toko 2012  
T3 = 1 mm 50 Microstrip Line  
Figure 2. DCS1800 Applications Circuit Configuration  
MOTOROLA RF DEVICE DATA  
MRFIC1818  
3
Typical Characteristics  
35  
34  
33  
32  
46  
T
= –35°C  
44  
42  
40  
38  
A
T
= –35°C  
A
25°C  
25  
°C  
85°C  
85°  
C
P
= 3 dBm  
P
V
V
= 3 dBm  
in  
in  
31  
30  
36  
34  
V
V
, V  
V
= 4.8 V  
, V  
V
= 4 V  
D1 D2, D3  
D1 D2, D3  
= –4 V  
= –4 V  
SS  
SS  
1.7  
1.72  
1.74  
1.76  
1.78  
1.8  
1.8  
1.8  
1.7  
1.72  
1.74  
1.76  
1.78  
1.8  
1.8  
6
f, FREQUENCY (GHz)  
f, FREQUENCY (GHz)  
Figure 3. Output Power versus Frequency  
Figure 4. Power Added Efficiency  
versus Frequency  
36  
35  
34  
44  
42  
V
= V = 5.6 V  
D2  
D1  
T
= –35°C  
A
4.8 V  
25°C  
4 V  
85°C  
40  
38  
P
= 3 dBm  
= 25°C  
= –4 V  
33  
32  
P
V
V
= 3 dBm  
in  
in  
T
, V  
V
= 4.8 V  
A
D1 D2, D3  
V
= –4 V  
SS  
SS  
1.7  
1.72  
1.74  
1.76  
1.78  
1.7  
1.72  
1.74  
1.76  
1.78  
f, FREQUENCY (GHz)  
f, FREQUENCY (GHz)  
Figure 5. Output Power versus Frequency  
Figure 6. Power Added Efficiency  
versus Frequency  
40  
30  
37  
36  
25°C AND 85°C  
20  
10  
T
= –35°C  
A
T
= –35°C  
A
0
–10  
–20  
–30  
–40  
25°C  
85°C  
35  
34  
f = 1.75 GHz  
P
V
V
= 3 dBm  
in  
P
V
= 3 dBm  
= –4 V  
in  
SS  
, V = 5.6 V  
V
D1 D2, D3  
SS  
–50  
–60  
= –4 V  
0
1
2
3
4
5
1.7  
1.72  
1.74  
1.76  
1.78  
V
, V , DRAIN VOLTAGE (VOLTS)  
f, FREQUENCY (GHz)  
D1 D2  
Figure 7. Output Power versus Frequency  
Figure 8. Output Power versus Drain Voltage  
MRFIC1818  
4
MOTOROLA RF DEVICE DATA  
Typical Characteristics  
45  
40  
35  
30  
25  
20  
15  
10  
5
35  
33  
31  
29  
27  
25  
23  
21  
T
= –35°C  
A
85°C  
T
= –35°C  
A
25°C  
25°C  
85°C  
f = 1.75 GHz  
f = 1.75 GHz  
19  
P
V
= 3 dBm  
= –4 V  
V
, V  
= –4 V  
V
= 4.8 V  
in  
SS  
D1 D2, D3  
V
17  
15  
–20  
SS  
0
0
1
2
3
4
5
6
–15  
–10  
–5  
P , INPUT POWER (dBm)  
in  
0
5
10  
V
, V , DRAIN VOLTAGE (VOLTS)  
D1 D2  
Figure 9. Power Added Efficiency versus  
Drain Voltage  
Figure 10. Output Power versus Input Power  
45  
40  
35  
30  
25  
20  
15  
50  
48  
46  
44  
42  
40  
38  
36  
34  
T
= –35°C  
A
25  
°
C
85  
°
C
25°C  
T
= –35°C  
A
85°C  
f = 1.75 GHz  
f = 1.75 GHz  
10  
5
V
, V = 4.8 V  
= –4 V  
V
D1 D2, D3  
P
V
= 3 dBm  
= –4 V  
in  
SS  
V
SS  
32  
30  
0
–20  
–15  
–10  
–5  
0
5
10  
0
2
4
6
P
, INPUT POWER (dBm)  
V
, V , DRAIN VOLTAGE (VOLTS)  
in  
D1 D2  
Figure 11. Power Added Efficiency versus  
Input Power  
Figure 12. Second Harmonic versus  
Drain Voltage  
41  
36  
35.5  
35  
39  
37  
35  
33  
31  
T
= –35°C  
A
T
= –35°C  
A
25  
°
C
C
25°C  
85°  
34.5  
34  
85°C  
29  
27  
25  
f = 1.75 GHz  
P
V
V
= 3 dBm  
in  
P
V
= 3 dBm  
= –4 V  
, V , V  
= 4.8 V  
in  
SS  
D1 D2 D3  
= –4 V  
SS  
33.5  
0
2
4
6
1.85  
1.86  
1.87  
1.88  
1.89  
1.9  
1.91  
V
, V , DRAIN VOLTAGE (VOLTS)  
f, FREQUENCY (GHz)  
D1 D2  
Figure 13. Third Harmonic versus  
Drain Voltage  
Figure 14. Output Power Versus Frequency –  
PCS Band  
MOTOROLA RF DEVICE DATA  
MRFIC1818  
5
Typical Characteristics  
50  
47  
45  
43  
41  
39  
5.6 V  
T
= –35°C  
A
45  
40  
35  
V
, V , V = 4.8 V  
D1 D2 D3  
25  
°
C
C
85°  
f = 1880 MHz  
Carrier BW = 30 kHz  
Channel BW = 30 kHz  
P
V
V
= 3 dBm  
in  
30  
, V  
= –4 V  
V
= 4.8 V  
D1 D2, D3  
SS  
Temp = 25°C  
25  
1.85  
1.86  
1.87  
1.88  
1.89  
1.9  
1.91  
10  
15  
20  
25  
30  
35  
f, FREQUENCY (GHz)  
P
, OUTPUT POWER (dBm)  
out  
Figure 15. Power Added Efficiency versus  
Frequency – PCS Band  
Figure 16. CDMA ACPR at 885 kHz Offset versus  
Output Power  
50  
49  
48  
47  
46  
Table 1. Optimum Loads Derived from  
Circuit Characterization  
V
, V , V  
= 5.6 V  
D1 D2 D3  
Z
Z
*
in  
OHMS  
OL  
OHMS  
f
4.8 V  
R
jX  
R
jX  
MHz  
1710  
1720  
1730  
1740  
1750  
1760  
1770  
1780  
1785  
9.19  
9.35  
9.50  
9.65  
9.60  
9.42  
9.11  
8.77  
8.54  
–30.10  
–29.60  
–29.30  
–29.10  
–29.00  
–28.79  
–28.60  
–28.30  
–28.15  
6.00  
5.96  
5.88  
5.80  
5.75  
5.67  
5.60  
5.51  
5.45  
3.80  
3.71  
3.60  
3.46  
3.33  
3.20  
3.07  
2.93  
2.79  
f = 1880 MHz  
Carrier BW = 30 kHz  
Channel BW = 30 kHz  
Temp = 25  
°C  
10  
15  
20  
25  
30  
35  
P
, OUTPUT POWER (dBm)  
out  
Z
Z
represents the input impedance of the device.  
* represents the conjugate of the optimum output load to present  
to the device.  
in  
OL  
Figure 17. CDMA ACPR at 1980 kHz Offset  
versus Output Power  
Table 2. Optimum Loads Derived from  
Circuit Characterization – PCS Board  
Z
Z
*
in  
OHMS  
OL  
OHMS  
f
R
jX  
R
jX  
MHz  
1850  
1860  
1870  
1880  
1890  
1900  
1910  
3.92  
4.01  
4.08  
4.19  
4.29  
4.31  
4.37  
–43.30  
–43.56  
–43.78  
–44.00  
–44.29  
–44.49  
–44.81  
7.70  
7.64  
7.57  
7.51  
7.50  
7.44  
7.35  
0.39  
0.23  
0.15  
0.07  
–0.04  
–0.06  
–0.19  
Z
Z
represents the input impedance of the device.  
in  
* represents the conjugate of the optimum output load to present  
OL  
to the device.  
MRFIC1818  
6
MOTOROLA RF DEVICE DATA  
APPLICATIONS INFORMATION  
Design Philosophy  
The MRFIC1818 is a 3–stage Integrated Power Amplifier  
designed for use in cellular phones, especially for those used  
in DCS1800 (PCN) 4.8 V operation. With matching circuit  
modifications, it is also applicable for use in DCS1900 (PCS)  
equipment. Due to the fact that the input, output and some of  
the interstage matching is accomplished off chip, the device  
can be tuned to operate anywhere within the 1500 to  
2000 MHz frequency range. Typical performance at different  
battery voltages is:  
space. For applications where the amplifier is operated close  
to saturation, such as TDMA amplifiers, the gate bias can be  
set with resistors. Variations in process and tempera–ture  
will not affect amplifier performance significantly in these ap-  
plications. The values shown in the Figure 1 will set quies–  
cent currents of 20 to 40 mA for the first stage, 150 to 300 for  
the second stage and 400 to 800 mA for the final stage. For  
linear modes of operation which are required for CDMA am-  
plifiers, the quiescent current must be more carefully con-  
trolled. For these applications, the V pins can be referenced  
G
36 dBm @ 6.0 V  
34.5 dBm @ 4.8 V  
32.0 dBm @ 3.6 V  
to some tunable voltage which is set at the time of radio  
manufacturing. Less than 1 mA is required in the divider net-  
work so a DAC can be used as the voltage source.  
This capability makes the MRFIC1818 suitable for portable  
cellular applications such as:  
Power Control Using the MC33169  
The MC33169 is a dedicated GaAs power amplifier sup-  
6V and 4.8 V DCS1800 Class I  
6V and 4.8 V PCS tag5  
port IC which provides the –4 V required for V , an N–MOS  
SS  
drain switch interface and driver and power supply sequenc-  
ing. The MC33169 can be used for power control in applica-  
tions where the amplifier is operated in saturation since the  
3.6 V DCS1800 Class II  
RF Circuit Considerations  
output power in non–linear operation is proportional to V  
.
D2  
The MRFIC1818 can be tuned by changing the values  
and/or positions of the appropriate external components. Re-  
fer to Figure 2, a typical DCS1800 Class I applications circuit.  
The input match is a shunt–L, series–C, High–pass structure  
and can be retuned as desired with the only limitation being  
the on–chip 6 pF blocking capacitor. For saturated applica-  
tions such as DCS1800 and DCS1900, the input match  
should be optimized at the rated RF input power. Interstage  
matching can be optimized by changing the value and/or  
This provides a very linear and repeatable power control  
transfer function. This technique can be used open loop to  
achieve 40–45 dB dynamic range over process and temper-  
ature variation. With careful design and selection of calibra-  
tion points, this technique can be used for DCS1800 control  
where 30 dB dynamic range is required, eliminating the need  
for the complexity and cost of closed–loop control. The trans-  
mit waveform ramping function required for systems such as  
DCS1800 can be implemented with a simple Sallen and Key  
filter on the MC33169 control loop. The amplifier is then  
position of the decoupling capacitor on the V and V sup-  
D1 D2  
ply lines. Moving the capacitor closer to the device or reduc-  
ing the value increases the frequency of resonance with the  
in–ductance of the device’s wirebonds and leadframe pin.  
Output matching is accomplished with a one–stage low–  
pass network as a compromise between bandwidth and har-  
monic rejection. Implementation is through chip capacitors  
mounted along a 30 or 50 microstrip transmission line. Val-  
ues and positions are chosen to present a 2.5 W loadline to  
the device while conjugating the device output parasitics.  
The network must also properly terminate the second and  
third harmonics to optimize efficiency and reduce harmonic  
output. Low–Q commercial chip capacitors are used for the  
shunt capacitors, as shown in Figure 2. Loss in circuit traces  
must also be considered. The output transmission line and  
the bias supply lines should be at least 0.6 mm in width to  
accommodate the peak circulating currents which can be as  
high as 2 amperes under worst case conditions. The bias  
supply line which supplies the output should include an RF  
choke of at least 18 nH, surface mount solenoid inductors or  
quarter wave microstrip lines. Discrete inductors will usually  
give better efficiency and conserve board space. The DC  
blocking capacitor required at the output of the device is best  
mounted at the 50 impedance point in the circuit where the  
RF current is at a minimum and the capacitor loss will have  
less effect.  
ramped on as the V  
pin is taken from 0 V to 3 V. To im-  
RAMP  
plement the different power steps required for DCS1800, the  
pin is ramped between 0 V and the appropriate volt-  
V
RAMP  
age between 0 V and 3 V for the desired output power. For  
closed–loop configurations using the MC33169,  
MMSF4N01HD N–MOS switch and the MRFIC1818 provide  
a typical 1 MHz 3 dB loop bandwidth. The STANDBY pin  
must be enabled (3 V) at least 800 µs before the V  
goes high and disabled (0 V) at least 20 µs before the V  
pin goes low. This STANDBY function allows for the enabling  
of the MC33169 one burst before the active burst thus reduc-  
ing power consumption.  
pin  
RAMP  
RAMP  
Conclusion  
The MRFIC1818 offers the flexibility in matching circuitry  
and gate biasing required for portable cellular applications.  
Together with the MC33169 support IC, the device offers an  
efficient system solution for TDMA applications such as  
DCS1800 where saturated amplifier operation is used.  
For more information about the power control using the  
MC33169, refer to application note AN1599, “Power Control  
with the MRFIC0913 GaAs Integrated Power Amplifier and  
MC33169 Support IC.”  
Evaluation Boards  
Two versions of the MRFIC1818 evaluation board are  
available. Order MRFIC1818DCSTF for the 1.8 GHz version  
and order MRFIC1818PCSTF for the 1.9 GHz version. For a  
complete list of currently available boards and ones in devel-  
opment for newly introduced product, please contact your lo-  
cal Motorola Distributor or Sales Office.  
Biasing Considerations  
Gate bias lines are tied together and connected to the V  
SS  
voltage, allowing gate biasing through use of external resis-  
tors or positive voltages. This allows setting the quiescent  
current of all stage in the same time while saving some board  
MOTOROLA RF DEVICE DATA  
MRFIC1818  
7
PACKAGE DIMENSIONS  
h X 45  
A
D
E2  
1
16  
NOTES:  
1. CONTROLLING DIMENSION: MILLIMETER.  
2. DIMENSIONS AND TOLERANCES PER ASME  
Y14.5M, 1994.  
3. DATUM PLANE –H– IS LOCATED AT BOTTOM OF  
LEAD AND IS COINCIDENT WITH THE LEAD  
WHERE THE LEAD EXITS THE PLASTIC BODY AT  
THE BOTTOM OF THE PARTING LINE.  
4. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS  
0.250 PER SIDE. DIMENSIONS D AND E1 DO  
INCLUDE MOLD MISMATCH AND ARE  
DETERMINED AT DATUM PLANE –H–.  
5. DIMENSION b DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION IS 0.127 TOTAL IN EXCESS OF THE  
b DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
D1  
8
9
E1  
B
BOTTOM VIEW  
8X E  
M
S
bbb  
C B  
6. DATUMS –A– AND –B– TO BE DETERMINED AT  
DATUM PLANE –H–.  
b1  
DATUM  
PLANE  
H
MILLIMETERS  
c
c1  
DIM  
A
A1  
A2  
D
D1  
E
E1  
E2  
L
MIN  
MAX  
2.350  
0.152  
2.100  
7.100  
5.180  
9.150  
7.100  
5.180  
0.720  
A2  
A
2.000  
0.025  
1.950  
6.950  
4.372  
8.850  
6.950  
4.372  
0.466  
b
M
S
aaa  
C A  
DETAIL Y  
SEATING  
PLANE  
C
SECT W–W  
L1  
b
b1  
c
c1  
e
0.250 BSC  
0.300  
0.300  
0.180  
0.180  
0.432  
0.375  
0.279  
0.230  
ccc  
C
0.800 BSC  
W
W
GAUGE  
PLANE  
h
–––  
0
0.200  
0.200  
0.100  
0.600  
7
aaa  
bbb  
ccc  
L
A1  
1.000  
0.039  
DETAIL Y  
CASE 978–02  
ISSUE A  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
Mfax is a trademark of Motorola, Inc.  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447  
JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4–32–1,  
Nishi–Gotanda, Shinagawa–ku, Tokyo 141, Japan. 81–3–5487–8488  
Mfax : RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
– US & Canada ONLY 1–800–774–1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
INTERNET: http://motorola.com/sps  
MRFIC1818/D  

相关型号:

MRFIC1819R2

Narrow Band Medium Power Amplifier, 1700MHz Min, 1900MHz Max, 1 Func, GAAS, PLASTIC, TSSOP-16EP, 16 PIN
MOTOROLA

MRFIC1830DMR2

1800 MHz - 1880 MHz RF/MICROWAVE NARROW BAND LOW POWER AMPLIFIER, PLASTIC, CASE 846A, MICROPAK-8
MOTOROLA

MRFIC1856R2

824 MHz - 849 MHz RF/MICROWAVE NARROW BAND MEDIUM POWER AMPLIFIER, PLASTIC, TSSOP-20EP, 20 PIN
MOTOROLA

MRFIC1859R2

Narrow Band High Power Amplifier, 880MHz Min, 915MHz Max, 2 Func, GAAS, PLASTIC, TQFP-32EP
MOTOROLA

MRFIC1869

IC,RF AMPLIFIER,DUAL,LLCC,32PIN,PLASTIC
NXP

MRFIC1870

3.2 V DCS/PCS GaAs Integrated Power Amplifier
MOTOROLA

MRFIC1870D

3.2 V DCS/PCS GaAs Integrated Power Amplifier
MOTOROLA

MRFIC1870PP

3.2 V DCS/PCS GaAs Integrated Power Amplifier
MOTOROLA

MRFIC1870R2

RF/MICROWAVE NARROW BAND MEDIUM POWER AMPLIFIER, PLASTIC, CASE 1308-02, QFN-20
MOTOROLA

MRFIC1884

Dual-Band CDMA Upconverter
MOTOROLA

MRFIC1884R2

Dual-Band CDMA Upconverter
MOTOROLA

MRFIC2001

900 MHz DOWNCONVERTER LNA/MIXER SILICON MONOLITHIC INTEGRATED CIRCUIT
MOTOROLA