MTP20N06 [MOTOROLA]

TMOS POWER FET 20 AMPERES 60 VOLTS RDS(on) = 0.080 OHM; TMOS功率FET 20安培60伏特的RDS(on ) = 0.080 OHM
MTP20N06
型号: MTP20N06
厂家: MOTOROLA    MOTOROLA
描述:

TMOS POWER FET 20 AMPERES 60 VOLTS RDS(on) = 0.080 OHM
TMOS功率FET 20安培60伏特的RDS(on ) = 0.080 OHM

文件: 总8页 (文件大小:212K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MTP20N06V/D  
SEMICONDUCTOR TECHNICAL DATA  
N–Channel Enhancement–Mode Silicon Gate  
TMOS POWER FET  
TMOS V is a new technology designed to achieve an on–resis-  
tance area product about one–half that of standard MOSFETs. This  
new technology more than doubles the present cell density of our  
50 and 60 volt TMOS devices. Just as with our TMOS E–FET  
designs, TMOS V is designed to withstand high energy in the  
avalanche and commutation modes. Designed for low voltage, high  
speed switching applications in power supplies, converters and  
power motor controls, these devices are particularly well suited for  
bridge circuits where diode speed and commutating safe operating  
areas are critical and offer additional safety margin against  
unexpected voltage transients.  
20 AMPERES  
60 VOLTS  
R
= 0.080 OHM  
DS(on)  
TM  
D
New Features of TMOS V  
On–resistance Area Product about One–half that of Standard  
MOSFETs with New Low Voltage, Low R Technology  
DS(on)  
Faster Switching than E–FET Predecessors  
G
S
Features Common to TMOS V and TMOS E–FETS  
Avalanche Energy Specified  
and V Specified at Elevated Temperature  
Static Parameters are the Same for both TMOS V and TMOS E–FET  
CASE 221A–06, Style 5  
TO–220AB  
I
DSS  
DS(on)  
MAXIMUM RATINGS (T = 25°C unless otherwise noted)  
C
Rating  
Symbol  
Value  
60  
Unit  
Vdc  
Vdc  
Drain–to–Source Voltage  
V
DSS  
Drain–to–Gate Voltage (R  
= 1.0 M)  
V
DGR  
60  
GS  
Gate–to–Source Voltage — Continuous  
Gate–to–Source Voltage — Non–Repetitive (t 10 ms)  
V
± 20  
± 25  
Vdc  
Vpk  
GS  
V
GSM  
p
Drain Current — Continuous  
Drain Current — Continuous @ 100°C  
Drain Current — Single Pulse (t 10 µs)  
I
I
20  
13  
70  
Adc  
Apk  
D
D
I
p
DM  
Total Power Dissipation  
Derate above 25°C  
P
D
60  
0.40  
Watts  
W/°C  
Operating and Storage Temperature Range  
T , T  
stg  
55 to 175  
200  
°C  
J
Single Pulse Drain–to–Source Avalanche Energy — Starting T = 25°C  
E
AS  
mJ  
J
(V  
DD  
= 25 Vdc, V = 10 Vdc, Peak I = 20 Apk, L = 1.0 mH, R = 25 )  
GS L G  
Thermal Resistance — Junction to Case  
Thermal Resistance — Junction to Ambient  
R
R
2.5  
62.5  
°C/W  
°C  
θJC  
θJA  
Maximum Lead Temperature for Soldering Purposes, 1/8from case for 10 seconds  
T
260  
L
Designer’s Data for “Worst Case” Conditions — The Designer’s Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit  
curves — representing boundaries on device characteristics — are given to facilitate “worst case” design.  
E–FET, Designer’s, and TMOS V are trademarks of Motorola, Inc. TMOS is a registered trademark of Motorola, Inc.  
REV 1  
Motorola, Inc. 1996  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
J
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Drain–to–Source Breakdown Voltage  
(V = 0 Vdc, I = 0.25 mAdc)  
Temperature Coefficient (Positive)  
(Cpk 2.0) (3)  
V
(BR)DSS  
60  
69  
Vdc  
mV/°C  
GS  
D
Zero Gate Voltage Drain Current  
I
µAdc  
DSS  
(V  
DS  
(V  
DS  
= 60 Vdc, V  
= 60 Vdc, V  
= 0 Vdc)  
= 0 Vdc, T = 150°C)  
10  
100  
GS  
GS  
J
Gate–Body Leakage Current (V  
= ± 20 Vdc, V  
DS  
= 0 Vdc)  
I
100  
nAdc  
GS  
GSS  
ON CHARACTERISTICS (1)  
Gate Threshold Voltage  
(Cpk 2.0) (3)  
(Cpk 2.0) (3)  
V
GS(th)  
(V  
= V , I = 250 µAdc)  
2.0  
2.8  
5.0  
4.0  
Vdc  
mV/°C  
DS  
GS  
D
Threshold Temperature Coefficient (Negative)  
Static Drain–to–Source On–Resistance  
R
V
Ohm  
Vdc  
DS(on)  
(V  
GS  
= 10 Vdc, I = 10 Adc)  
0.065  
0.080  
D
Drain–to–Source On–Voltage  
DS(on)  
(V  
GS  
(V  
GS  
= 10 Vdc, I = 20 Adc)  
2.0  
1.9  
D
= 10 Vdc, I = 10 Adc, T = 150°C)  
D
J
Forward Transconductance (V  
DS  
= 6.0 Vdc, I = 10 Adc)  
g
6.0  
8.0  
mhos  
pF  
D
FS  
DYNAMIC CHARACTERISTICS  
Input Capacitance  
C
590  
180  
40  
830  
250  
80  
iss  
(V  
DS  
= 25 Vdc, V = 0 Vdc,  
GS  
f = 1.0 MHz)  
Output Capacitance  
C
oss  
Reverse Transfer Capacitance  
C
rss  
SWITCHING CHARACTERISTICS (2)  
Turn–On Delay Time  
t
8.7  
77  
20  
150  
50  
90  
40  
ns  
d(on)  
(V  
DD  
= 30 Vdc, I = 20 Adc,  
D
Rise Time  
t
r
V
= 10 Vdc,  
GS  
G
Turn–Off Delay Time  
Fall Time  
t
26  
d(off)  
R
= 9.1 )  
t
f
46  
Gate Charge  
Q
T
Q
1
Q
2
Q
3
28  
nC  
4.0  
9.0  
8.0  
(V  
DS  
= 48 Vdc, I = 20 Adc,  
D
V
GS  
= 10 Vdc)  
SOURCE–DRAIN DIODE CHARACTERISTICS  
Forward On–Voltage (1)  
V
Vdc  
ns  
SD  
(I = 20 Adc, V  
(I = 20 Adc, V  
GS  
= 0 Vdc)  
= 0 Vdc, T = 150°C)  
S
GS  
1.05  
0.96  
1.6  
S
J
Reverse Recovery Time  
t
60  
52  
rr  
t
a
(I = 20 Adc, V  
= 0 Vdc,  
dI /dt = 100 A/µs)  
S
GS  
S
t
8.0  
b
Reverse Recovery Stored Charge  
Q
0.172  
µC  
RR  
INTERNAL PACKAGE INDUCTANCE  
Internal Drain Inductance  
(Measured from contact screw on tab to center of die)  
(Measured from the drain lead 0.25from package to center of die)  
L
D
nH  
3.5  
4.5  
Internal Source Inductance  
(Measured from the source lead 0.25from package to source bond pad)  
L
S
nH  
7.5  
(1) Pulse Test: Pulse Width 300 µs, Duty Cycle 2%.  
(2) Switching characteristics are independent of operating junction temperature.  
(3) Reflects typical values.  
Max limit – Typ  
C
=
pk  
3 x SIGMA  
2
Motorola TMOS Power MOSFET Transistor Device Data  
TYPICAL ELECTRICAL CHARACTERISTICS  
40  
40  
35  
30  
25  
20  
15  
10  
9 V  
V
= 10V  
V
DS  
10 V  
T
= –55°C  
GS  
J
8 V  
7 V  
25°C  
35  
30  
25  
20  
15  
10  
5
T
= 25°C  
J
100°C  
6 V  
5 V  
4 V  
5
0
0
0
1
2
3
4
5
6
7
8
9
10  
2
3
4
5
6
7
8
9
V
, DRAIN–TO–SOURCE VOLTAGE (VOLTS)  
V
, GATE–TO–SOURCE VOLTAGE (VOLTS)  
DS  
GS  
Figure 1. On–Region Characteristics  
Figure 2. Transfer Characteristics  
0.18  
0.16  
0.14  
0.12  
0.1  
0.11  
0.1  
V
= 10 V  
T
= 25°C  
GS  
J
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
T
= 100°C  
J
V
= 10 V  
15 V  
GS  
25°C  
0.08  
0.06  
0.04  
0.02  
0
55°C  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
I
, DRAIN CURRENT (AMPS)  
I
, DRAIN CURRENT (AMPS)  
D
D
Figure 3. On–Resistance versus Drain Current  
and Temperature  
Figure 4. On–Resistance versus Drain Current  
and Gate Voltage  
2.0  
1.75  
1.5  
1.25  
1
35  
30  
25  
20  
15  
10  
5
V
= 0 V  
GS  
V
= 10 V  
GS  
= 10 A  
I
D
T
= 125°C  
J
0.75  
0.5  
0.25  
0
100°C  
0
50  
, DRAIN–TO–SOURCE VOLTAGE (VOLTS)  
–50 –25  
0
25  
50  
75  
100  
125  
C)  
150  
175  
60  
0
10  
V
20  
30  
40  
T , JUNCTION TEMPERATURE (  
°
J
DS  
Figure 5. On–Resistance Variation with  
Temperature  
Figure 6. Drain–To–Source Leakage  
Current versus Voltage  
Motorola TMOS Power MOSFET Transistor Device Data  
3
POWER MOSFET SWITCHING  
Switching behavior is most easily modeled and predicted  
by recognizing that the power MOSFET is charge controlled.  
The lengths of various switching intervals (t) are deter-  
mined by how fast the FET input capacitance can be charged  
by current from the generator.  
The capacitance (C ) is read from the capacitance curve at  
iss  
a voltage corresponding to the off–state condition when cal-  
culating t  
and is read at a voltage corresponding to the  
d(on)  
on–state when calculating t  
.
d(off)  
At high switching speeds, parasitic circuit elements com-  
plicate the analysis. The inductance of the MOSFET source  
lead, inside the package and in the circuit wiring which is  
common to both the drain and gate current paths, produces a  
voltage at the source which reduces the gate drive current.  
The voltage is determined by Ldi/dt, but since di/dt is a func-  
tion of drain current, the mathematical solution is complex.  
The MOSFET output capacitance also complicates the  
mathematics. And finally, MOSFETs have finite internal gate  
resistance which effectively adds to the resistance of the  
driving source, but the internal resistance is difficult to mea-  
sure and, consequently, is not specified.  
The resistive switching time variation versus gate resis-  
tance (Figure 9) shows how typical switching performance is  
affected by the parasitic circuit elements. If the parasitics  
were not present, the slope of the curves would maintain a  
value of unity regardless of the switching speed. The circuit  
used to obtain the data is constructed to minimize common  
inductance in the drain and gate circuit loops and is believed  
readily achievable with board mounted components. Most  
power electronic loads are inductive; the data in the figure is  
taken with a resistive load, which approximates an optimally  
snubbed inductive load. Power MOSFETs may be safely op-  
erated into an inductive load; however, snubbing reduces  
switching losses.  
The published capacitance data is difficult to use for calculat-  
ing rise and fall because drain–gate capacitance varies  
greatly with applied voltage. Accordingly, gate charge data is  
used. In most cases, a satisfactory estimate of average input  
current (I  
the drive circuit so that  
) can be made from a rudimentary analysis of  
G(AV)  
t = Q/I  
G(AV)  
During the rise and fall time interval when switching a resis-  
tive load, V remains virtually constant at a level known as  
GS  
the plateau voltage, V  
. Therefore, rise and fall times may  
SGP  
be approximated by the following:  
t = Q x R /(V  
– V )  
GSP  
r
2
G
GG  
t = Q x R /V  
f
2
G
GSP  
where  
V
= the gate drive voltage, which varies from zero to V  
= the gate drive resistance  
GG  
GG  
R
G
and Q and V  
GSP  
are read from the gate charge curve.  
2
During the turn–on and turn–off delay times, gate current is  
not constant. The simplest calculation uses appropriate val-  
ues from the capacitance curves in a standard equation for  
voltage change in an RC network. The equations are:  
t
t
= R  
= R  
C
C
In [V  
/(V  
GG GG  
– V  
)]  
GSP  
d(on)  
G
iss  
In (V  
/V  
GG GSP  
)
d(off)  
G
iss  
1600  
1400  
V
= 0 V  
V
= 0 V  
DS  
GS  
T
= 25°C  
J
C
iss  
1200  
1000  
800  
600  
400  
200  
0
C
rss  
C
iss  
C
oss  
C
rss  
10  
0
5
10  
15  
20  
25  
5
V
V
DS  
GS  
GATE–TO–SOURCE OR DRAIN–TO–SOURCE VOLTAGE (VOLTS)  
Figure 7. Capacitance Variation  
4
Motorola TMOS Power MOSFET Transistor Device Data  
10  
9
30  
27  
24  
21  
18  
15  
1000  
100  
T
= 25°C  
= 20 A  
V
J
GS  
QT  
I
D
8
V
V
= 30 V  
= 10 V  
DD  
GS  
7
t
r
6
Q2  
Q1  
t
f
5
t
d(off)  
d(on)  
4
12  
9
10  
1
t
3
2
6
T
= 25°C  
= 20 A  
Q3  
J
I
D
1
0
3
0
V
DS  
1
10  
, GATE RESISTANCE (OHMS)  
G
100  
0
5
10  
15  
20  
25  
30  
Q , TOTAL GATE CHARGE (nC)  
R
g
Figure 8. Gate–To–Source and Drain–To–Source  
Voltage versus Total Charge  
Figure 9. Resistive Switching Time  
Variation versus Gate Resistance  
DRAIN–TO–SOURCE DIODE CHARACTERISTICS  
20  
T
V
= 25°C  
J
18  
16  
14  
12  
10  
8
= 0 V  
GS  
6
4
2
0
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95  
1
1.05 1.1  
V
, SOURCE–TO–DRAIN VOLTAGE (VOLTS)  
SD  
Figure 10. Diode Forward Voltage versus Current  
SAFE OPERATING AREA  
The Forward Biased Safe Operating Area curves define  
the maximum simultaneous drain–to–source voltage and  
drain current that a transistor can handle safely when it is for-  
ward biased. Curves are based upon maximum peak junc-  
able operation, the stored energy from circuit inductance dis-  
sipated in the transistor while in avalanche must be less than  
the rated limit and adjusted for operating conditions differing  
from those specified. Although industry practice is to rate in  
terms of energy, avalanche energy capability is not a  
constant. The energy rating decreases non–linearly with an  
increase of peak current in avalanche and peak junction tem-  
perature.  
tion temperature and a case temperature (T ) of 25°C. Peak  
C
repetitive pulsed power limits are determined by using the  
thermal response data in conjunction with the procedures  
discussed in AN569, “Transient Thermal Resistance–General  
Data and Its Use.”  
Although many E–FETs can withstand the stress of drain–  
to–source avalanche at currents up to rated pulsed current  
Switching between the off–state and the on–state may tra-  
verse any load line provided neither rated peak current (I  
)
DM  
) is exceeded and the transition time  
(I  
), the energy rating is specified at rated continuous cur-  
DM  
nor rated voltage (V  
DSS  
rent (I ), in accordance with industry custom. The energy rat-  
D
(t ,t ) do not exceed 10 µs. In addition the total power aver-  
r f  
ing must be derated for temperature as shown in the  
accompanying graph (Figure 12). Maximum energy at cur-  
aged over a complete switching cycle must not exceed  
(T  
– T )/(R ).  
J(MAX)  
C
θJC  
rents below rated continuous I can safely be assumed to  
A Power MOSFET designated E–FET can be safely used  
D
in switching circuits with unclamped inductive loads. For reli-  
Motorola TMOS Power MOSFET Transistor Device Data  
equal the values indicated.  
5
SAFE OPERATING AREA  
200  
180  
160  
100  
10  
V
= 20 V  
I
= 20 A  
GS  
SINGLE PULSE  
= 25  
D
T
°C  
C
10 µs  
140  
120  
100  
80  
100 µs  
1 ms  
10 ms  
dc  
1
60  
R
LIMIT  
DS(on)  
40  
THERMAL LIMIT  
PACKAGE LIMIT  
20  
0
0.1  
25  
50  
75  
100  
125  
150  
C)  
175  
0.1  
1
10  
100  
V
, DRAIN–TO–SOURCE VOLTAGE (VOLTS)  
T , STARTING JUNCTION TEMPERATURE (  
°
DS  
J
Figure 11. Maximum Rated Forward Biased  
Safe Operating Area  
Figure 12. Maximum Avalanche Energy versus  
Starting Junction Temperature  
1.00  
D = 0.5  
0.2  
0.1  
P
(pk)  
0.10  
0.01  
0.05  
R
(t) = r(t) R  
JC θJC  
θ
0.02  
0.01  
SINGLE PULSE  
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
READ TIME AT t  
t
1
1
t
T
– T = P  
R (t)  
(pk) θJC  
2
J(pk)  
C
DUTY CYCLE, D = t /t  
1 2  
1.0E–05  
1.0E–04  
1.0E–03  
1.0E–02  
1.0E–01  
1.0E+00  
1.0E+01  
t, TIME (s)  
Figure 13. Thermal Response  
di/dt  
I
S
t
rr  
t
t
a
b
TIME  
0.25 I  
t
S
p
I
S
Figure 14. Diode Reverse Recovery Waveform  
6
Motorola TMOS Power MOSFET Transistor Device Data  
PACKAGE DIMENSIONS  
NOTES:  
SEATING  
PLANE  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
–T–  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION Z DEFINES A ZONE WHERE ALL  
BODY AND LEAD IRREGULARITIES ARE  
ALLOWED.  
C
S
B
F
T
4
INCHES  
MIN  
MILLIMETERS  
DIM  
A
B
C
D
F
G
H
J
K
L
N
Q
R
S
MAX  
0.620  
0.405  
0.190  
0.035  
0.147  
0.105  
0.155  
0.025  
0.562  
0.060  
0.210  
0.120  
0.110  
0.055  
0.255  
0.050  
–––  
MIN  
14.48  
9.66  
4.07  
0.64  
3.61  
2.42  
2.80  
0.46  
12.70  
1.15  
4.83  
2.54  
2.04  
1.15  
5.97  
0.00  
1.15  
–––  
MAX  
15.75  
10.28  
4.82  
0.88  
3.73  
2.66  
3.93  
0.64  
14.27  
1.52  
5.33  
3.04  
2.79  
1.39  
6.47  
1.27  
–––  
A
K
Q
Z
0.570  
0.380  
0.160  
0.025  
0.142  
0.095  
0.110  
0.018  
0.500  
0.045  
0.190  
0.100  
0.080  
0.045  
0.235  
0.000  
0.045  
–––  
STYLE 5:  
1
2
3
U
PIN 1. GATE  
2. DRAIN  
3. SOURCE  
4. DRAIN  
H
L
R
V
J
G
T
U
V
D
N
Z
0.080  
2.04  
CASE 221A–06  
ISSUE Y  
Motorola TMOS Power MOSFET Transistor Device Data  
7
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,  
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
INTERNET: http://Design–NET.com  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MTP20N06V/D  

相关型号:

MTP20N0616

Power Field-Effect Transistor, 20A I(D), 60V, 0.085ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB
MOTOROLA

MTP20N06A

Power Field-Effect Transistor, 20A I(D), 60V, 0.085ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB
MOTOROLA

MTP20N06A16A

20A, 60V, 0.085ohm, N-CHANNEL, Si, POWER, MOSFET, TO-220AB
MOTOROLA

MTP20N06AF

20 A, 60 V, 0.085 ohm, N-CHANNEL, Si, POWER, MOSFET, TO-220AB
MOTOROLA

MTP20N06C

20 A, 60 V, 0.085 ohm, N-CHANNEL, Si, POWER, MOSFET, TO-220AB
MOTOROLA

MTP20N06D1

20 A, 60 V, 0.085 ohm, N-CHANNEL, Si, POWER, MOSFET, TO-220AB
MOTOROLA

MTP20N06L

Power Field-Effect Transistor, 20A I(D), 60V, 0.085ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB
MOTOROLA

MTP20N06N

Power Field-Effect Transistor, 20A I(D), 60V, 0.085ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB
MOTOROLA

MTP20N06S

Power Field-Effect Transistor, 20A I(D), 60V, 0.085ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB
MOTOROLA

MTP20N06T

20A, 60V, 0.085ohm, N-CHANNEL, Si, POWER, MOSFET, TO-220AB
MOTOROLA

MTP20N06U

Power Field-Effect Transistor, 20A I(D), 60V, 0.085ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB
MOTOROLA

MTP20N06U2

20 A, 60 V, 0.085 ohm, N-CHANNEL, Si, POWER, MOSFET, TO-220AB
MOTOROLA