MTP5P06V [MOTOROLA]

TMOS POWER FET 5 AMPERES 60 VOLTS RDS(on) = 0.450 OHM; TMOS功率场效应管5安培60伏特的RDS(on ) = 0.450 OHM
MTP5P06V
型号: MTP5P06V
厂家: MOTOROLA    MOTOROLA
描述:

TMOS POWER FET 5 AMPERES 60 VOLTS RDS(on) = 0.450 OHM
TMOS功率场效应管5安培60伏特的RDS(on ) = 0.450 OHM

文件: 总8页 (文件大小:195K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MTP5P06V/D  
SEMICONDUCTOR TECHNICAL DATA  
Motorola Preferred Device  
P–Channel Enhancement–Mode Silicon Gate  
TMOS POWER FET  
5 AMPERES  
TMOS V is a new technology designed to achieve an on–resis-  
tance area product about one–half that of standard MOSFETs. This  
new technology more than doubles the present cell density of our  
50 and 60 volt TMOS devices. Just as with our TMOS E–FET  
designs, TMOS V is designed to withstand high energy in the  
avalanche and commutation modes. Designed for low voltage, high  
speed switching applications in power supplies, converters and  
power motor controls, these devices are particularly well suited for  
bridge circuits where diode speed and commutating safe operating  
areas are critical and offer additional safety margin against  
unexpected voltage transients.  
60 VOLTS  
R
= 0.450 OHM  
DS(on)  
TM  
D
New Features of TMOS V  
On–resistance Area Product about One–half that of Standard  
MOSFETs with New Low Voltage, Low R Technology  
DS(on)  
Faster Switching than E–FET Predecessors  
G
Features Common to TMOS V and TMOS E–FETS  
S
Avalanche Energy Specified  
and V Specified at Elevated Temperature  
Static Parameters are the Same for both TMOS V and  
TMOS E–FET  
CASE 221A–06, Style 5  
TO–220AB  
I
DSS  
DS(on)  
MAXIMUM RATINGS (T = 25°C unless otherwise noted)  
C
Rating  
Symbol  
Value  
60  
Unit  
Drain–to–Source Voltage  
V
DSS  
Vdc  
Vdc  
Drain–to–Gate Voltage (R  
= 1.0 M)  
V
DGR  
60  
GS  
Gate–to–Source Voltage — Continuous  
Gate–to–Source Voltage — Non–repetitive (t 10 ms)  
V
± 15  
± 25  
Vdc  
Vpk  
GS  
V
GSM  
p
Drain Current — Continuous @ 25°C  
Drain Current — Continuous @ 100°C  
I
I
5
4
18  
Adc  
D
D
Drain Current — Single Pulse (t 10 µs)  
I
Apk  
p
DM  
Total Power Dissipation @ T = 25°C  
Derate above 25°C  
P
D
40  
0.27  
Watts  
W/°C  
C
Operating and Storage Temperature Range  
T , T  
stg  
55 to 175  
125  
°C  
J
Single Pulse Drain–to–Source Avalanche Energy — STARTING T = 25°C  
E
AS  
mJ  
J
(V  
DD  
= 25 Vdc, V = 10 Vdc, PEAK I = 5 Apk, L = 10 mH, R = 25 )  
GS L G  
Thermal Resistance — Junction to Case  
Thermal Resistance — Junction to Ambient  
R
θJC  
R
θJA  
3.75  
62.5  
°C/W  
Maximum Lead Temperature for Soldering Purposes, 1/8from Case for 10 seconds  
T
L
260  
°C  
Designer’s Data for “Worst Case” Conditions — The Designer’s Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit  
curves — representing boundaries on device characteristics — are given to facilitate “worst case” design.  
E–FET, Designer’s and TMOS V are trademarks of Motorola, Inc. TMOS is a registered trademark of Motorola, Inc.  
Preferred devices are Motorola recommended choices for future use and best overall value.  
REV 1  
Motorola, Inc. 1996  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
J
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Drain–Source Breakdown Voltage  
V
Vdc  
(BR)DSS  
(V  
= 0 Vdc, I = 0.25 mAdc)  
60  
61.2  
GS  
D
Temperature Coefficient (Positive)  
mV/°C  
µAdc  
Zero Gate Voltage Drain Current  
I
DSS  
(V  
DS  
(V  
DS  
= 60 Vdc, V  
= 60 Vdc, V  
= 0 Vdc)  
= 0 Vdc, T = 150°C)  
10  
100  
GS  
GS  
J
Gate–Body Leakage Current (V  
= ± 15 Vdc, V  
DS  
= 0 Vdc)  
I
100  
nAdc  
Vdc  
GS  
GSS  
ON CHARACTERISTICS (1)  
Gate Threshold Voltage  
V
GS(th)  
(V  
= V , I = 250 µAdc)  
2.0  
2.8  
4.7  
4.0  
DS  
GS  
D
Threshold Temperature Coefficient (Negative)  
mV/°C  
Ohm  
Vdc  
Static Drain–Source On–Resistance (V  
Drain–Source On–Voltage  
= 10 Vdc, I = 2.5 Adc)  
R
V
0.34  
0.45  
GS  
D
DS(on)  
DS(on)  
(V  
GS  
(V  
GS  
= 10 Vdc, I = 5 Adc)  
2.7  
2.6  
D
= 10 Vdc, I = 2.5 Adc, T = 150°C)  
D
J
Forward Transconductance  
(V = 15 Vdc, I = 2.5 Adc)  
g
Mhos  
pF  
FS  
1.5  
3.6  
DS  
D
DYNAMIC CHARACTERISTICS  
Input Capacitance  
C
367  
140  
29  
510  
200  
60  
iss  
(V  
DS  
= 25 Vdc, V = 0 Vdc,  
GS  
f = 1.0 MHz)  
Output Capacitance  
C
oss  
Transfer Capacitance  
C
rss  
SWITCHING CHARACTERISTICS (2)  
Turn–On Delay Time  
t
11  
26  
20  
50  
30  
40  
20  
ns  
d(on)  
(V  
= 30 Vdc, I = 5 Adc,  
D
Rise Time  
DD  
DS  
t
r
V
= 10 Vdc,  
GS  
G
Turn–Off Delay Time  
Fall Time  
t
17  
d(off)  
R
= 9.1 )  
t
f
19  
Gate Charge  
(See Figure 8)  
Q
T
Q
1
Q
2
Q
3
12  
nC  
3.0  
5.0  
5.0  
(V  
= 48 Vdc, I = 5 Adc,  
D
V
GS  
= 10 Vdc)  
SOURCE–DRAIN DIODE CHARACTERISTICS  
Forward On–Voltage  
V
Vdc  
ns  
SD  
(I = 5 Adc, V  
(I = 5 Adc, V  
GS  
= 0 Vdc)  
= 0 Vdc, T = 150°C)  
S
GS  
1.72  
1.34  
3.5  
S
J
Reverse Recovery Time  
t
97  
73  
rr  
t
a
(I = 5 Adc, V  
= 0 Vdc,  
dI /dt = 100 A/µs)  
S
GS  
S
t
24  
b
Reverse Recovery Stored Charge  
Q
0.42  
µC  
RR  
INTERNAL PACKAGE INDUCTANCE  
Internal Drain Inductance  
(Measured from contact screw on tab to center of die)  
(Measured from the drain lead 0.25from package to center of die)  
L
nH  
D
3.5  
4.5  
Internal Source Inductance  
(Measured from the source lead 0.25from package to source bond pad)  
L
7.5  
nH  
S
(1) Pulse Test: Pulse Width 300 µs, Duty Cycle 2%.  
(2) Switching characteristics are independent of operating junction temperature.  
2
Motorola TMOS Power MOSFET Transistor Device Data  
TYPICAL ELECTRICAL CHARACTERISTICS  
10  
8
10  
8 V  
T = –55°C  
J
V
= 10V  
V
10 V  
GS  
DS  
7 V  
9 V  
9
8
25°C  
100°C  
T
= 25°C  
J
7
6
5
4
3
6 V  
6
4
5 V  
2
0
2
1
0
4 V  
8
0
1
2
3
4
5
6
7
9
2
3
4
5
6
7
8
V
, DRAIN–TO–SOURCE VOLTAGE (VOLTS)  
V
, GATE–TO–SOURCE VOLTAGE (VOLTS)  
DS  
GS  
Figure 1. On–Region Characteristics  
Figure 2. Transfer Characteristics  
0.6  
0.4  
V
= 10 V  
T
= 25°C  
GS  
J
0.55  
T
= 100°C  
25°C  
V
= 10 V  
15 V  
J
GS  
0.5  
0.45  
0.4  
0.35  
0.3  
0.25  
0.2  
0.35  
0.3  
55°C  
0.25  
0.2  
1
2
3
4
5
6
7
8
9
10  
1
2
3
4
5
6
7
8
9
10  
I
, DRAIN CURRENT (AMPS)  
I , DRAIN CURRENT (AMPS)  
D
D
Figure 3. On–Resistance versus Drain Current  
and Temperature  
Figure 4. On–Resistance versus Drain Current  
and Gate Voltage  
100  
10  
1
1.8  
1.6  
1.4  
1.2  
1
V
= 0 V  
V
= 10 V  
GS  
GS  
= 2.5 A  
I
D
T
= 125°C  
J
0.8  
0.6  
0.4  
0.2  
50  
, DRAIN–TO–SOURCE VOLTAGE (VOLTS)  
–50  
–25  
0
25  
50  
75  
100  
125  
C)  
150  
175  
0
10  
20  
30  
40  
60  
T , JUNCTION TEMPERATURE (  
°
V
DS  
J
Figure 5. On–Resistance Variation with  
Temperature  
Figure 6. Drain–To–Source Leakage  
Current versus Voltage  
Motorola TMOS Power MOSFET Transistor Device Data  
3
POWER MOSFET SWITCHING  
Switching behavior is most easily modeled and predicted  
by recognizing that the power MOSFET is charge controlled.  
The lengths of various switching intervals (t) are deter-  
mined by how fast the FET input capacitance can be charged  
by current from the generator.  
The capacitance (C ) is read from the capacitance curve at  
iss  
a voltage corresponding to the off–state condition when cal-  
culating t  
and is read at a voltage corresponding to the  
d(on)  
on–state when calculating t  
.
d(off)  
At high switching speeds, parasitic circuit elements com-  
plicate the analysis. The inductance of the MOSFET source  
lead, inside the package and in the circuit wiring which is  
common to both the drain and gate current paths, produces a  
voltage at the source which reduces the gate drive current.  
The voltage is determined by Ldi/dt, but since di/dt is a func-  
tion of drain current, the mathematical solution is complex.  
The MOSFET output capacitance also complicates the  
mathematics. And finally, MOSFETs have finite internal gate  
resistance which effectively adds to the resistance of the  
driving source, but the internal resistance is difficult to mea-  
sure and, consequently, is not specified.  
The resistive switching time variation versus gate resis-  
tance (Figure 9) shows how typical switching performance is  
affected by the parasitic circuit elements. If the parasitics  
were not present, the slope of the curves would maintain a  
value of unity regardless of the switching speed. The circuit  
used to obtain the data is constructed to minimize common  
inductance in the drain and gate circuit loops and is believed  
readily achievable with board mounted components. Most  
power electronic loads are inductive; the data in the figure is  
taken with a resistive load, which approximates an optimally  
snubbed inductive load. Power MOSFETs may be safely op-  
erated into an inductive load; however, snubbing reduces  
switching losses.  
The published capacitance data is difficult to use for calculat-  
ing rise and fall because drain–gate capacitance varies  
greatly with applied voltage. Accordingly, gate charge data is  
used. In most cases, a satisfactory estimate of average input  
current (I  
the drive circuit so that  
) can be made from a rudimentary analysis of  
G(AV)  
t = Q/I  
G(AV)  
During the rise and fall time interval when switching a resis-  
tive load, V remains virtually constant at a level known as  
GS  
the plateau voltage, V  
. Therefore, rise and fall times may  
SGP  
be approximated by the following:  
t = Q x R /(V  
– V )  
GSP  
r
2
G
GG  
t = Q x R /V  
f
2
G
GSP  
where  
V
= the gate drive voltage, which varies from zero to V  
= the gate drive resistance  
GG  
GG  
R
G
and Q and V  
GSP  
are read from the gate charge curve.  
2
During the turn–on and turn–off delay times, gate current is  
not constant. The simplest calculation uses appropriate val-  
ues from the capacitance curves in a standard equation for  
voltage change in an RC network. The equations are:  
t
t
= R  
= R  
C
C
In [V  
/(V  
GG GG  
– V  
)]  
GSP  
d(on)  
G
iss  
In (V  
/V  
GG GSP  
)
d(off)  
G
iss  
1000  
900  
V
= 0 V  
DS  
T
= 25°C  
J
C
iss  
800  
700  
600  
C
rss  
500  
400  
300  
200  
C
iss  
C
C
oss  
rss  
100  
0
V
= 0 V  
GS  
10  
0
5
10  
15  
20  
25  
5
V
V
DS  
GS  
GATE–TO–SOURCE OR DRAIN–TO–SOURCE VOLTAGE (VOLTS)  
Figure 7. Capacitance Variation  
4
Motorola TMOS Power MOSFET Transistor Device Data  
10  
9
60  
54  
48  
42  
36  
30  
100  
V
T
= 25°C  
= 5 A  
GS  
J
QT  
I
D
8
V
V
= 30 V  
= 10 V  
DD  
GS  
t
r
7
Q2  
Q1  
t
d(off)  
6
t
f
5
10  
t
d(on)  
4
24  
18  
12  
3
2
T
I
= 25°C  
= 5 A  
Q3  
J
D
V
1
0
DS  
6
0
1
1
10  
, GATE RESISTANCE (OHMS)  
100  
0
2
4
6
8
10  
12  
14  
Q , TOTAL GATE CHARGE (nC)  
R
g
G
Figure 8. Gate–To–Source and Drain–To–Source  
Voltage versus Total Charge  
Figure 9. Resistive Switching Time  
Variation versus Gate Resistance  
DRAIN–TO–SOURCE DIODE CHARACTERISTICS  
5
T
V
= 25°C  
J
4.5  
= 0 V  
GS  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
V
, SOURCE–TO–DRAIN VOLTAGE (VOLTS)  
SD  
Figure 10. Diode Forward Voltage versus Current  
SAFE OPERATING AREA  
The Forward Biased Safe Operating Area curves define  
the maximum simultaneous drain–to–source voltage and  
drain current that a transistor can handle safely when it is for-  
ward biased. Curves are based upon maximum peak junc-  
able operation, the stored energy from circuit inductance dis-  
sipated in the transistor while in avalanche must be less than  
the rated limit and adjusted for operating conditions differing  
from those specified. Although industry practice is to rate in  
terms of energy, avalanche energy capability is not a  
constant. The energy rating decreases non–linearly with an  
increase of peak current in avalanche and peak junction tem-  
perature.  
tion temperature and a case temperature (T ) of 25°C. Peak  
C
repetitive pulsed power limits are determined by using the  
thermal response data in conjunction with the procedures  
discussed in AN569, “Transient Thermal Resistance–General  
Data and Its Use.”  
Although many E–FETs can withstand the stress of drain–  
to–source avalanche at currents up to rated pulsed current  
Switching between the off–state and the on–state may tra-  
verse any load line provided neither rated peak current (I  
)
DM  
) is exceeded and the transition time  
(I  
), the energy rating is specified at rated continuous cur-  
DM  
nor rated voltage (V  
DSS  
rent (I ), in accordance with industry custom. The energy rat-  
D
(t ,t ) do not exceed 10 µs. In addition the total power aver-  
r f  
ing must be derated for temperature as shown in the  
accompanying graph (Figure 12). Maximum energy at cur-  
aged over a complete switching cycle must not exceed  
(T  
– T )/(R ).  
J(MAX)  
C
θJC  
rents below rated continuous I can safely be assumed to  
A Power MOSFET designated E–FET can be safely used  
D
in switching circuits with unclamped inductive loads. For reli-  
Motorola TMOS Power MOSFET Transistor Device Data  
equal the values indicated.  
5
SAFE OPERATING AREA  
140  
120  
100  
10  
V
= 20 V  
GS  
SINGLE PULSE  
= 25  
I
= 5 A  
D
T
°C  
C
10 µs  
100  
80  
100 µs  
60  
1 ms  
10 ms  
1
40  
dc  
R
LIMIT  
DS(on)  
20  
0
THERMAL LIMIT  
PACKAGE LIMIT  
0.1  
25  
50  
75  
100  
125  
150  
C)  
175  
0.1  
1
10  
100  
V
, DRAIN–TO–SOURCE VOLTAGE (VOLTS)  
T , STARTING JUNCTION TEMPERATURE (°  
DS  
J
Figure 11. Maximum Rated Forward Biased  
Safe Operating Area  
Figure 12. Maximum Avalanche Energy versus  
Starting Junction Temperature  
1.0  
D = 0.5  
0.2  
0.1  
P
(pk)  
0.1  
0.05  
R
(t) = r(t) R  
JC θJC  
θ
0.02  
0.01  
SINGLE PULSE  
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
READ TIME AT t  
t
1
1
t
T
– T = P  
R (t)  
(pk) θJC  
2
J(pk)  
C
DUTY CYCLE, D = t /t  
1 2  
0.01  
1.0E–05  
1.0E–04  
1.0E–03  
1.0E–02  
1.0E–01  
1.0E+00  
1.0E+01  
t, TIME (s)  
Figure 13. Thermal Response  
di/dt  
I
S
t
rr  
t
t
a
b
TIME  
0.25 I  
t
S
p
I
S
Figure 14. Diode Reverse Recovery Waveform  
6
Motorola TMOS Power MOSFET Transistor Device Data  
PACKAGE DIMENSIONS  
NOTES:  
SEATING  
PLANE  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
–T–  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION Z DEFINES A ZONE WHERE ALL  
BODY AND LEAD IRREGULARITIES ARE  
ALLOWED.  
C
S
B
F
T
4
INCHES  
MIN  
MILLIMETERS  
DIM  
A
B
C
D
F
G
H
J
K
L
N
Q
R
S
MAX  
0.620  
0.405  
0.190  
0.035  
0.147  
0.105  
0.155  
0.025  
0.562  
0.060  
0.210  
0.120  
0.110  
0.055  
0.255  
0.050  
–––  
MIN  
14.48  
9.66  
4.07  
0.64  
3.61  
2.42  
2.80  
0.46  
12.70  
1.15  
4.83  
2.54  
2.04  
1.15  
5.97  
0.00  
1.15  
–––  
MAX  
15.75  
10.28  
4.82  
0.88  
3.73  
2.66  
3.93  
0.64  
14.27  
1.52  
5.33  
3.04  
2.79  
1.39  
6.47  
1.27  
–––  
A
K
Q
Z
0.570  
0.380  
0.160  
0.025  
0.142  
0.095  
0.110  
0.018  
0.500  
0.045  
0.190  
0.100  
0.080  
0.045  
0.235  
0.000  
0.045  
–––  
STYLE 5:  
1
2
3
U
PIN 1. GATE  
2. DRAIN  
3. SOURCE  
4. DRAIN  
H
L
R
V
J
G
T
U
V
D
N
Z
0.080  
2.04  
CASE 221A–06  
ISSUE Y  
Motorola TMOS Power MOSFET Transistor Device Data  
7
Motorolareserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representationorguaranteeregarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,  
andspecifically disclaims any and all liability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters can and do vary in different  
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does  
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in  
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of  
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintendedor unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
How to reach us:  
USA / EUROPE: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447  
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609  
INTERNET: http://Design–NET.com  
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MTP5P06V/D  

相关型号:

MTP5P18

5A, 180V, 1ohm, P-CHANNEL, Si, POWER, MOSFET, TO-220AB
MOTOROLA

MTP5P25

POWER FIELD EFFECT TRANSISTOR
MOTOROLA

MTP605K030P1D

Tantalum Capacitor, Polarized, Tantalum (wet), 30V, 10% +Tol, 10% -Tol, 6uF, Through Hole Mount, AXIAL LEADED
CDE

MTP606K020P1B

CAPACITOR, TANTALUM, NON SOLID, POLARIZED, 20V, 60uF, THROUGH HOLE MOUNT, AXIAL LEADED
CDE

MTP606M020P1B

CAPACITOR, TANTALUM, NON SOLID, POLARIZED, 20V, 60uF, THROUGH HOLE MOUNT, AXIAL LEADED
CDE

MTP60N05

TMOS POWER FET 60 AMPERES 50 VOLTS RDS(on) = 0.014 OHM
MOTOROLA

MTP60N05HDL

TMOS POWER FET 60 AMPERES 50 VOLTS RDS(on) = 0.014 OHM
MOTOROLA

MTP60N06

TMOS POWER FET 60 AMPERES 60 VOLTS RDS(on) = 0.014 OHM
MOTOROLA

MTP60N06HD

TMOS POWER FET 60 AMPERES 60 VOLTS RDS(on) = 0.014 OHM
MOTOROLA

MTP60N10E7L

60A, 100V, 0.024ohm, N-CHANNEL, Si, POWER, MOSFET, TO-220AB, TO-220AB, 3 PIN
MOTOROLA

MTP610G

MODULAR TELEPHONE PLUGS
ADAM-TECH

MTP610U

MODULAR TELEPHONE PLUGS
ADAM-TECH