MTW16N40E [MOTOROLA]

TMOS POWER FET 16 AMPERES 400 VOLTS RDS(on) = 0.24 OHM; TMOS功率FET 16安培400伏的RDS(on ) = 0.24 OHM
MTW16N40E
型号: MTW16N40E
厂家: MOTOROLA    MOTOROLA
描述:

TMOS POWER FET 16 AMPERES 400 VOLTS RDS(on) = 0.24 OHM
TMOS功率FET 16安培400伏的RDS(on ) = 0.24 OHM

晶体 晶体管 功率场效应晶体管 局域网
文件: 总8页 (文件大小:220K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MTW16N40E/D  
SEMICONDUCTOR TECHNICAL DATA  
Motorola Preferred Device  
TMOS POWER FET  
16 AMPERES  
400 VOLTS  
N–Channel Enhancement–Mode Silicon Gate  
This high voltage MOSFET uses an advanced termination  
scheme to provide enhanced voltage–blocking capability without  
degrading performance over time. In addition, this advanced TMOS  
E–FET is designed to withstand high energy in the avalanche and  
commutation modes. The new energy efficient design also offers a  
drain–to–source diode with a fast recovery time. Designed for high  
voltage, high speed switching applications in power supplies,  
converters and PWM motor controls, these devices are particularly  
well suited for bridge circuits where diode speed and commutating  
safe operating areas are critical and offer additional safety margin  
against unexpected voltage transients.  
R
= 0.24 OHM  
DS(on)  
D
Robust High Voltage Termination  
Avalanche Energy Specified  
Source–to–Drain Diode Recovery Time Comparable to a  
Discrete Fast Recovery Diode  
G
CASE 340K–01, Style 1  
TO–247AE  
Diode is Characterized for Use in Bridge Circuits  
S
I
and V  
Specified at Elevated Temperature  
DSS  
Isolated Mounting Hole Reduces Mounting Hardware  
DS(on)  
MAXIMUM RATINGS (T = 25°C unless otherwise noted)  
C
Rating  
Symbol  
Value  
400  
Unit  
Vdc  
Vdc  
Drain–Source Voltage  
V
DSS  
Drain–Gate Voltage (R  
GS  
= 1.0 M)  
V
DGR  
400  
Gate–Source Voltage — Continuous  
— Non–Repetitive (t 10 ms)  
V
± 20  
± 40  
Vdc  
Vpk  
GS  
V
GSM  
p
Drain Current — Continuous  
— Continuous @ 100°C  
— Single Pulse (t 10 µs)  
I
I
16  
9.0  
56  
Adc  
Apk  
D
D
I
p
DM  
Total Power Dissipation  
Derate above 25°C  
P
D
180  
1.4  
Watts  
W/°C  
Operating and Storage Temperature Range  
T , T  
stg  
55 to 150  
870  
°C  
J
Single Pulse Drain–to–Source Avalanche Energy — Starting T = 25°C  
E
AS  
mJ  
J
(V  
DD  
= 100 Vdc, V  
= 10 Vdc, I = 16 Apk, L = 6.8 mH, R = 25 )  
GS L G  
Thermal Resistance — Junction to Case  
— Junction to Ambient  
R
θJC  
R
θJA  
0.70  
40  
°C/W  
Maximum Lead Temperature for Soldering Purposes, 1/8from case for 10 seconds  
T
L
260  
°C  
Designer’s Data for “Worst Case” Conditions — The Designer’s Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit  
curves — representing boundaries on device characteristics — are given to facilitate “worst case” design.  
E–FET and Designer’s are trademarks of Motorola, Inc. TMOS is a registered trademark of Motorola, Inc.  
Preferred devices are Motorola recommended choices for future use and best overall value.  
REV 3  
Motorola, Inc. 1996  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
J
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Drain–to–Source Breakdown Voltage  
V
(BR)DSS  
(V  
GS  
= 0 Vdc, I = 250 µAdc)  
400  
420  
Vdc  
mV/°C  
D
Temperature Coefficient (Positive)  
Zero Gate Voltage Drain Current  
I
mAdc  
DSS  
(V  
DS  
(V  
DS  
= 400 Vdc, V  
= 320 Vdc, V  
= 0 Vdc)  
= 0 Vdc, T = 125°C)  
0.25  
1.0  
GS  
GS  
J
Gate–Body Leakage Current (V  
= ± 20 Vdc, V  
= 0)  
DS  
I
100  
nAdc  
Vdc  
GS  
GSS  
ON CHARACTERISTICS (1)  
Gate Threshold Voltage  
V
GS(th)  
(V  
= V , I = 0.25 mAdc)  
2.0  
3.0  
7.0  
4.0  
DS  
GS  
D
Temperature Coefficient (Negative)  
mV/°C  
Ohm  
Vdc  
Static Drain–Source On–Resistance (V  
= 10 Vdc, I = 8.0 Adc)  
R
V
0.225  
0.24  
GS  
D
DS(on)  
Drain–Source On–Voltage (V  
= 10 Vdc)  
GS  
DS(on)  
(I = 16 Adc)  
4.8  
4.3  
D
(I = 8.0 Adc, T = 125°C)  
D
J
Forward Transconductance (V  
= 15 Vdc, I = 8.0 Adc)  
g
FS  
8.0  
10  
mhos  
pF  
DS  
D
DYNAMIC CHARACTERISTICS  
Input Capacitance  
C
2570  
330  
82  
3600  
460  
iss  
(V  
= 25 Vdc, V  
= 0 Vdc,  
DS  
DD  
GS  
f = 1.0 MHz)  
Output Capacitance  
C
oss  
Reverse Transfer Capacitance  
C
164  
rss  
SWITCHING CHARACTERISTICS (2)  
Turn–On Delay Time  
t
29  
62  
76  
57  
66  
50  
70  
ns  
d(on)  
(V  
= 200 Vdc, I = 16 Adc,  
Rise Time  
D
t
r
V
R
= 10 Vdc,  
= 9.1 )  
GS  
Turn–Off Delay Time  
Fall Time  
t
170  
95  
d(off)  
G
t
f
Gate Charge  
(See Figure 8)  
Q
93  
nC  
T
(V  
DS  
= 320 Vdc, I = 16 Adc,  
D
Q
Q
Q
17  
31  
30  
1
2
3
V
= 10 Vdc)  
GS  
SOURCE–DRAIN DIODE CHARACTERISTICS  
Forward On–Voltage (1)  
V
Vdc  
ns  
SD  
(I = 16 Adc, V  
= 0 Vdc)  
S
GS  
= 0 Vdc, T = 125°C)  
1.0  
0.9  
1.6  
(I = 16 Adc, V  
S
GS  
J
Reverse Recovery Time  
(See Figure 9)  
t
340  
228  
112  
4.3  
rr  
t
a
(I = 16 Adc, V  
= 0 Vdc,  
S
GS  
dI /dt = 100 A/µs)  
S
t
b
Reverse Recovery Stored Charge  
Q
µC  
RR  
INTERNAL PACKAGE INDUCTANCE  
Internal Drain Inductance  
(Measured from the drain lead 0.25from package to center of die)  
L
5.0  
13  
nH  
nH  
D
Internal Source Inductance  
(Measured from the source lead 0.25from package to source bond pad)  
L
S
(1) Pulse Test: Pulse Width 300 µs, Duty Cycle 2%.  
(2) Switching characteristics are independent of operating junction temperature.  
2
Motorola TMOS Power MOSFET Transistor Device Data  
TYPICAL ELECTRICAL CHARACTERISTICS  
40  
30  
25  
20  
15  
T
= 25  
°C  
V
= 10 V  
8 V  
V
= 50 V  
J
GS  
DS  
35  
7 V  
30  
25  
6.5 V  
6 V  
20  
15  
10  
5
100°C  
10  
5
4.5 V  
16  
T
= –55°C  
25°C  
J
0
0
0
2
4
6
8
10  
12  
14  
18  
20  
0
2
4
6
8
V
, DRAIN–TO–SOURCE VOLTAGE (VOLTS)  
V
, GATE–TO–SOURCE VOLTAGE (VOLTS)  
DS  
GS  
Figure 1. On–Region Characteristics  
Figure 2. Transfer Characteristics  
0.75  
0.6  
0.32  
0.30  
0.28  
V
= 10 V  
T
= 25°C  
GS  
J
T
= 100°C  
J
0.45  
0.3  
0.26  
0.24  
V
= 10 V  
GS  
25°C  
0.15  
0
55°C  
15 V  
16  
0.22  
0.20  
0
5
10  
15  
20  
25  
30  
0
4
8
12  
20  
24  
28  
32  
I
, DRAIN CURRENT (AMPS)  
I , DRAIN CURRENT (AMPS)  
D
D
Figure 3. On–Resistance versus Drain Current  
and Temperature  
Figure 4. On–Resistance versus Drain Current  
and Gate Voltage  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1000  
100  
10  
V = 0 V  
GS  
V
= 10 V  
GS  
= 8 A  
I
D
T
= 125°C  
J
100°C  
1.0  
–50  
–25  
0
25  
50  
75  
100  
C)  
125  
150  
0
50  
100  
150  
200  
250  
300  
350  
400  
T , JUNCTION TEMPERATURE (  
°
V
DS  
, DRAIN–TO–SOURCE VOLTAGE (VOLTS)  
J
Figure 5. On–Resistance Variation with  
Temperature  
Figure 6. Drain–To–Source Leakage  
Current versus Voltage  
Motorola TMOS Power MOSFET Transistor Device Data  
3
POWER MOSFET SWITCHING  
Switching behavior is most easily modeled and predicted  
by recognizing that the power MOSFET is charge controlled.  
The lengths of various switching intervals (t) are deter-  
mined by how fast the FET input capacitance can be charged  
by current from the generator.  
The capacitance (C ) is read from the capacitance curve at  
iss  
a voltage corresponding to the off–state condition when cal-  
culating t  
and is read at a voltage corresponding to the  
d(on)  
on–state when calculating t  
.
d(off)  
At high switching speeds, parasitic circuit elements com-  
plicate the analysis. The inductance of the MOSFET source  
lead, inside the package and in the circuit wiring which is  
common to both the drain and gate current paths, produces a  
voltage at the source which reduces the gate drive current.  
The voltage is determined by Ldi/dt, but since di/dt is a func-  
tion of drain current, the mathematical solution is complex.  
The MOSFET output capacitance also complicates the  
mathematics. And finally, MOSFETs have finite internal gate  
resistance which effectively adds to the resistance of the  
driving source, but the internal resistance is difficult to mea-  
sure and, consequently, is not specified.  
The resistive switching time variation versus gate resis-  
tance (Figure 9) shows how typical switching performance is  
affected by the parasitic circuit elements. If the parasitics  
were not present, the slope of the curves would maintain a  
value of unity regardless of the switching speed. The circuit  
used to obtain the data is constructed to minimize common  
inductance in the drain and gate circuit loops and is believed  
readily achievable with board mounted components. Most  
power electronic loads are inductive; the data in the figure is  
taken with a resistive load, which approximates an optimally  
snubbed inductive load. Power MOSFETs may be safely op-  
erated into an inductive load; however, snubbing reduces  
switching losses.  
The published capacitance data is difficult to use for calculat-  
ing rise and fall because drain–gate capacitance varies  
greatly with applied voltage. Accordingly, gate charge data is  
used. In most cases, a satisfactory estimate of average input  
current (I  
) can be made from a rudimentary analysis of  
G(AV)  
the drive circuit so that  
t = Q/I  
G(AV)  
During the rise and fall time interval when switching a resis-  
tive load, V remains virtually constant at a level known as  
GS  
the plateau voltage, V  
. Therefore, rise and fall times may  
SGP  
be approximated by the following:  
t = Q x R /(V  
– V )  
GSP  
r
2
G
GG  
t = Q x R /V  
f
2
G
GSP  
where  
V
= the gate drive voltage, which varies from zero to V  
GG  
GG  
R
= the gate drive resistance  
G
and Q and V  
are read from the gate charge curve.  
GSP  
2
During the turn–on and turn–off delay times, gate current is  
not constant. The simplest calculation uses appropriate val-  
ues from the capacitance curves in a standard equation for  
voltage change in an RC network. The equations are:  
t
t
= R  
= R  
C
C
In [V  
/(V  
GG GG  
– V  
)]  
GSP  
d(on)  
G
iss  
In (V  
/V  
GG GSP  
)
d(off)  
G
iss  
10000  
5000  
T
J
= 25°C  
V
= 0 V  
T
= 25°C  
V
= 0 V  
GS  
J
GS  
C
iss  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
C
iss  
C
C
iss  
rss  
C
oss  
1000  
C
rss  
C
oss  
500  
0
10  
V
= 0 V  
5
DS  
C
rss  
100  
0
5
10  
15  
20  
25  
0
50  
100  
150  
200  
V
V
DS  
GS  
V
, DRAIN–TO–SOURCE VOLTAGE (VOLTS)  
DS  
GATE–TO–SOURCE OR DRAIN–TO–SOURCE VOLTAGE (VOLTS)  
Figure 7b. High Voltage Capacitance  
Variation  
Figure 7a. Capacitance Variation  
4
Motorola TMOS Power MOSFET Transistor Device Data  
15  
12  
9
10000  
1000  
350  
280  
V
= 200 V  
= 16 A  
= 10 V  
= 25°C  
DD  
I
T
= 16 A  
= 25°C  
D
J
I
V
T
D
GS  
QT  
J
V
210  
140  
GS  
Q2  
Q1  
t
d(off)  
6
100  
10  
t
t
r
f
3
70  
0
Q3  
t
d(on)  
V
DS  
10 15 20 25 30 35 40 45 50 55 60 65  
, TOTAL GATE CHARGE (nC)  
0
0
1
10  
R , GATE RESISTANCE (OHMS)  
G
100  
1000  
5
Q
G
Figure 8. Gate–To–Source and Drain–To–Source  
Voltage versus Total Charge  
Figure 9. Resistive Switching Time  
Variation versus Gate Resistance  
DRAIN–TO–SOURCE DIODE CHARACTERISTICS  
8
V
= 0 V  
GS  
= 25°C  
7
6
5
T
J
4
3
2
1
0
0.50 0.54  
0.58  
0.62  
0.66  
0.70  
0.74  
0.78  
0.82  
0.86  
V
, SOURCE–TO–DRAIN VOLTAGE (VOLTS)  
SD  
Figure 10. Diode Forward Voltage versus Current  
SAFE OPERATING AREA  
The Forward Biased Safe Operating Area curves define  
the maximum simultaneous drain–to–source voltage and  
drain current that a transistor can handle safely when it is for-  
ward biased. Curves are based upon maximum peak junc-  
able operation, the stored energy from circuit inductance dis-  
sipated in the transistor while in avalanche must be less than  
the rated limit and adjusted for operating conditions differing  
from those specified. Although industry practice is to rate in  
terms of energy, avalanche energy capability is not a con-  
stant. The energy rating decreases non–linearly with an in-  
crease of peak current in avalanche and peak junction  
temperature  
tion temperature and a case temperature (T ) of 25°C. Peak  
C
repetitive pulsed power limits are determined by using the  
thermal response data in conjunction with the procedures  
discussed in AN569, “Transient Thermal Resistance–General  
Data and Its Use.”  
Although many E–FETs can withstand the stress of drain–  
to–source avalanche at currents up to rated pulsed current  
Switching between the off–state and the on–state may tra-  
verse any load line provided neither rated peak current (I  
)
DM  
) is exceeded and the transition time  
(I  
), the energy rating is specified at rated continuous cur-  
DM  
nor rated voltage (V  
DSS  
rent (I ), in accordance with industry custom. The energy rat-  
D
(t ,t ) do not exceed 10 µs. In addition the total power aver-  
r f  
ing must be derated for temperature as shown in the  
accompanying graph (Figure 12). Maximum energy at cur-  
aged over a complete switching cycle must not exceed  
(T  
– T )/(R ).  
J(MAX)  
C
θJC  
rents below rated continuous I can safely be assumed to  
A Power MOSFET designated E–FET can be safely used  
D
in switching circuits with unclamped inductive loads. For reli-  
Motorola TMOS Power MOSFET Transistor Device Data  
equal the values indicated.  
5
SAFE OPERATING AREA  
900  
800  
100  
V
= 20 V  
GS  
SINGLE PULSE  
= 25  
I
= 16 A  
D
10  
µ
s
T
°C  
C
700  
600  
500  
400  
20  
10  
100  
µ
s
1 ms  
2
1
10 ms  
dc  
300  
200  
THERMAL LIMIT  
PACKAGE LIMIT  
100  
0
0.2  
0.1  
R
LIMIT  
DS(on)  
1
2
10  
20  
100  
200  
1000  
25  
50  
75  
100  
125  
C)  
150  
V
, DRAIN–TO–SOURCE VOLTAGE (VOLTS)  
DS  
T , STARTING JUNCTION TEMPERATURE (  
°
J
Figure 11. Maximum Rated Forward Biased  
Safe Operating Area  
Figure 12. Maximum Avalanche Energy versus  
Starting Junction Temperature  
1.0  
D = 0.5  
0.2  
0.1  
P
(pk)  
0.1  
R
(t) = r(t) R  
JC θJC  
θ
0.05  
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
0.02  
t
READ TIME AT t  
0.01  
SINGLE PULSE  
1
1
t
T
– T = P  
R (t)  
(pk) θJC  
2
J(pk)  
C
DUTY CYCLE, D = t /t  
1 2  
0.01  
0.00001  
0.0001  
0.001  
0.01  
t, TIME (ms)  
0.1  
1.0  
10  
Figure 13. Thermal Response  
di/dt  
I
S
t
rr  
t
t
a
b
TIME  
0.25 I  
t
S
p
I
S
Figure 14. Diode Reverse Recovery Waveform  
6
Motorola TMOS Power MOSFET Transistor Device Data  
PACKAGE DIMENSIONS  
–T–  
E
–Q–  
M
M
0.25 (0.010)  
T B  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
–B–  
C
4
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
U
L
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
E
MIN  
19.7  
15.3  
4.7  
1.0  
1.27 REF  
2.0  
5.5 BSC  
2.2  
0.4  
14.2  
MAX  
20.3  
15.9  
5.3  
MIN  
MAX  
0.799  
0.626  
0.209  
0.055  
A
K
0.776  
0.602  
0.185  
0.039  
0.050 REF  
0.079  
R
1
2
3
1.4  
F
2.4  
0.094  
–Y–  
G
H
J
K
L
0.216 BSC  
P
2.6  
0.8  
14.8  
0.087  
0.016  
0.559  
0.102  
0.031  
0.583  
5.5 NOM  
0.217 NOM  
P
3.7  
3.55  
5.0 NOM  
5.5 BSC  
3.0  
4.3  
3.65  
0.146  
0.140  
0.197 NOM  
0.217 BSC  
0.118 0.134  
0.169  
0.144  
V
H
Q
R
U
V
F
J
G
D
3.4  
M
S
0.25 (0.010)  
Y
Q
STYLE 1:  
PIN 1. GATE  
2. DRAIN  
3. SOURCE  
4. DRAIN  
CASE 340K–01  
ISSUE O  
Motorola TMOS Power MOSFET Transistor Device Data  
7
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,  
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
INTERNET: http://Design–NET.com  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MTW16N40E/D  

相关型号:

MTW20N50E

TMOS POWER FET 20 AMPERES 500 VOLTS RDS(on) = 0.24 OHM
MOTOROLA

MTW22N20E

22A, 200V, 0.15ohm, N-CHANNEL, Si, POWER, MOSFET, TO-247
MOTOROLA

MTW23N25E

TMOS POWER FET 23 AMPERES 250 VOLTS RDS(on) = 0.11 OHM
MOTOROLA

MTW24N40E

TMOS POWER FET 24 AMPERES 400 VOLTS RDS(on) = 0.16 OHM
MOTOROLA

MTW26N15E

TMOS POWER FET 26 AMPERES 150 VOLTS RDS(on) = 0.095 OHM
MOTOROLA

MTW2805S

DC/DC CONVERTERS 28 VOLT INPUT
CRANE

MTW2805S/ES

DC/DC CONVERTERS 28 VOLT INPUT
CRANE

MTW2805S_10

–55°C to +85°C operation 18 to 40 VDC input 50 V for 50 ms transient protection
CRANE

MTW2812D

DC/DC CONVERTERS 28 VOLT INPUT
CRANE

MTW2812D

–55°C to +85°C operation 18 to 40 VDC input 50 V for 50 ms transient protection
CRANE

MTW2812D/ES

DC/DC CONVERTERS 28 VOLT INPUT
CRANE

MTW2812DES

DC/DC CONVERTERS 28 VOLT INPUT
CRANE