MUN5234T1 [MOTOROLA]

NPN SILICON BIAS RESISTOR TRANSISTORS; NPN硅偏置电阻晶体管
MUN5234T1
型号: MUN5234T1
厂家: MOTOROLA    MOTOROLA
描述:

NPN SILICON BIAS RESISTOR TRANSISTORS
NPN硅偏置电阻晶体管

晶体 小信号双极晶体管 开关 光电二极管
文件: 总12页 (文件大小:233K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MUN5211T1/D  
SEMICONDUCTOR TECHNICAL DATA  
NPN Silicon Surface Mount Transistor with  
Monolithic Bias Resistor Network  
Motorola Preferred Devices  
This new series of digital transistors is designed to replace a single device  
and its external resistor bias network. The BRT (Bias Resistor Transistor)  
contains a single transistor with a monolithic bias network consisting of two  
resistors; a series base resistor and a base-emitter resistor. The BRT eliminates  
these individual components by integrating them into a single device. The use  
of a BRT can reduce both system cost and board space. The device is housed  
in the SC-70/SOT-323 package which is designed for low power surface mount  
applications.  
NPN SILICON  
BIAS RESISTOR  
TRANSISTORS  
Simplifies Circuit Design  
Reduces Board Space  
PIN3  
COLLECTOR  
(OUTPUT)  
Reduces Component Count  
The SC-70/SOT-323 package can be soldered using  
wave or reflow. The modified gull-winged leads absorb  
thermal stress during soldering eliminating the possibility  
of damage to the die.  
3
R1  
R2  
PIN1  
BASE  
(INPUT)  
1
2
Available in 8 mm embossed tape and reel  
Use the Device Number to order the 7 inch/3000 unit reel.  
Replace “T1” with “T3” in the Device Number to order the  
13 inch/10,000 unit reel.  
PIN2  
EMITTER  
(GROUND)  
CASE 419-02, STYLE 3  
SC-70/SOT-323  
MAXIMUM RATINGS (T = 25°C unless otherwise noted)  
A
Rating  
Symbol  
Value  
Unit  
Collector-Base Voltage  
Collector-Emitter Voltage  
Collector Current  
V
V
50  
50  
Vdc  
Vdc  
CBO  
CEO  
I
C
100  
mAdc  
(1)  
Total Power Dissipation @ T = 25°C  
Derate above 25°C  
P
D
*150  
1.2  
mW  
mW/°C  
A
THERMAL CHARACTERISTICS  
Thermal Resistance — Junction-to-Ambient (surface mounted)  
Operating and Storage Temperature Range  
R
833  
°C/W  
°C  
θJA  
T , T  
65 to +150  
J
stg  
Maximum Temperature for Soldering Purposes,  
Time in Solder Bath  
T
L
260  
10  
°C  
Sec  
DEVICE MARKING AND RESISTOR VALUES  
Device  
Marking  
R1 (K)  
R2 (K)  
MUN5211T1  
MUN5212T1  
MUN5213T1  
MUN5214T1  
MUN5215T1  
8A  
8B  
8C  
8D  
8E  
8F  
8G  
8H  
8J  
10  
22  
47  
10  
10  
10  
22  
47  
47  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
MUN5216T1  
MUN5230T1  
MUN5231T1  
MUN5232T1  
MUN5233T1  
MUN5234T1  
4.7  
1.0  
2.2  
4.7  
4.7  
22  
1.0  
2.2  
4.7  
47  
47  
8K  
8L  
1. Device mounted on a FR-4 glass epoxy printed circuit board using the minimum recommended footprint.  
2. New devices. Updated curves to follow in subsequent data sheets.  
Thermal Clad is a trademark of the Bergquist Company  
Preferred devices are Motorola recommended choices for future use and best overall value.  
REV 2  
Motorola, Inc. 1996  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Collector-Base Cutoff Current (V  
= 50 V, I = 0)  
I
I
100  
500  
nAdc  
nAdc  
mAdc  
CB  
E
CBO  
Collector-Emitter Cutoff Current (V  
= 50 V, I = 0)  
B
CE  
CEO  
Emitter-Base Cutoff Current  
MUN5211T1  
I
0.5  
0.2  
0.1  
0.2  
0.9  
1.9  
4.3  
2.3  
1.5  
0.18  
0.13  
EBO  
(V  
EB  
= 6.0 V, I = 0)  
MUN5212T1  
MUN5213T1  
MUN5214T1  
MUN5215T1  
MUN5216T1  
MUN5230T1  
MUN5231T1  
MUN5232T1  
MUN5233T1  
MUN5234T1  
C
Collector-Base Breakdown Voltage (I = 10 µA, I = 0)  
V
V
50  
50  
Vdc  
Vdc  
C
E
(BR)CBO  
(3)  
Collector-Emitter Breakdown Voltage (I = 2.0 mA, I = 0)  
C
B
(BR)CEO  
(3)  
ON CHARACTERISTICS  
DC Current Gain  
MUN5211T1  
MUN5212T1  
MUN5213T1  
MUN5214T1  
MUN5215T1  
MUN5216T1  
MUN5230T1  
MUN5231T1  
MUN5232T1  
MUN5233T1  
MUN5234T1  
h
FE  
35  
60  
80  
60  
100  
140  
140  
350  
350  
5.0  
15  
(V  
CE  
= 10 V, I = 5.0 mA)  
C
80  
160  
160  
3.0  
8.0  
15  
30  
200  
150  
80  
80  
Collector-Emitter Saturation Voltage (I = 10 mA, I = 0.3 mA)  
V
CE(sat)  
0.25  
Vdc  
Vdc  
C
B
(I = 10 mA, I = 5 mA) MUN5230T1/MUN5231T1  
C
B
(I = 10 mA, I = 1 mA) MUN5215T1/MUN5216T1  
C
B
MUN5232T1/MUN5233T1/MUN5234T1  
Output Voltage (on)  
(V = 5.0 V, V = 2.5 V, R = 1.0 k)  
V
OL  
MUN5211lT1  
MUN5212T1  
MUN5214T1  
MUN5215T1  
MUN5216T1  
MUN5230T1  
MUN5231T1  
MUN5232T1  
MUN5233T1  
MUN5234T1  
MUN5213T1  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
CC  
B
L
(V  
CC  
= 5.0 V, V = 3.5 V, R = 1.0 k)  
B L  
3. Pulse Test: Pulse Width < 300 µs, Duty Cycle < 2.0%  
2
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted) (Continued)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Output Voltage (off) (V  
= 5.0 V, V = 0.5 V, R = 1.0 k)  
V
OH  
4.9  
Vdc  
CC  
B
L
(V  
CC  
(V  
CC  
= 5.0 V, V = 0.050 V, R = 1.0 k)  
MUN5230T1  
B
L
= 5.0 V, V = 0.25 V, R = 1.0 k)  
MUN5215T1  
MUN5216T1  
MUN5233T1  
B
L
Input Resistor  
MUN5211T1  
MUN5212T1  
MUN5213T1  
MUN5214T1  
MUN5215T1  
MUN5216T1  
MUN5230T1  
MUN5231T1  
MUN5232T1  
MUN5233T1  
MUN5234T1  
R1  
7.0  
15.4  
32.9  
7.0  
7.0  
3.3  
0.7  
1.5  
3.3  
3.3  
10  
22  
47  
10  
10  
4.7  
1.0  
2.2  
4.7  
4.7  
22  
13  
28.6  
61.1  
13  
k Ω  
13  
6.1  
1.3  
2.9  
6.1  
6.1  
28.6  
15.4  
Resistor Ratio  
MUN5211T1/MUN5212T1/MUN5213T1  
MUN5214T1  
MUN5215T1/MUN5216T1  
MUN5230T1/MUN5231T1/MUN5232T1  
MUN5233T1  
R1/R2  
0.8  
0.17  
0.8  
0.055  
0.38  
1.0  
0.21  
1.0  
0.1  
1.2  
0.25  
1.2  
0.185  
0.56  
MUN5234T1  
0.47  
250  
200  
150  
100  
R
= 833  
JA  
°
C/W  
θ
50  
0
50  
0
50  
100  
C)  
150  
T , AMBIENT TEMPERATURE (  
°
A
Figure 1. Derating Curve  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
3
TYPICAL ELECTRICAL CHARACTERISTICS — MUN5211T1  
1
1000  
I
/I = 10  
V
= 10 V  
C B  
T
= –25°C  
CE  
A
25°C  
T
= 75  
°C  
°C  
A
25  
0.1  
–25°C  
75°C  
100  
0.01  
0.001  
10  
0
20  
40  
, COLLECTOR CURRENT (mA)  
50  
1
10  
100  
I
I
, COLLECTOR CURRENT (mA)  
C
C
Figure 2. V  
versus I  
Figure 3. DC Current Gain  
CE(sat)  
C
4
3
100  
10  
25°C  
75°C  
f = 1 MHz  
= 0 V  
I
E
T
= –25°C  
A
T
= 25  
°
C
A
1
0.1  
2
1
0
0.01  
0.001  
V
= 5 V  
9
O
0
10  
20  
30  
40  
50  
0
1
2
3
4
5
6
7
8
10  
V
, REVERSE BIAS VOLTAGE (VOLTS)  
V
, INPUT VOLTAGE (VOLTS)  
R
in  
Figure 4. Output Capacitance  
Figure 5. Output Current versus Input Voltage  
10  
V
= 0.2 V  
T
= –25°C  
O
A
25°C  
75°C  
1
0.1  
0
10  
20  
30  
40  
50  
I
, COLLECTOR CURRENT (mA)  
C
Figure 6. Input Voltage versus Output Current  
4
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
TYPICAL ELECTRICAL CHARACTERISTICS — MUN5212T1  
1000  
1
V
= 10 V  
CE  
I
/I = 10  
C B  
T
= 75°C  
A
25°C  
25°C  
T
= –25°C  
A
0.1  
–25°C  
75°C  
100  
0.01  
10  
0.001  
1
10  
100  
0
20  
, COLLECTOR CURRENT (mA)  
40  
50  
I
I
, COLLECTOR CURRENT (mA)  
C
C
Figure 7. V  
versus I  
Figure 8. DC Current Gain  
CE(sat)  
C
4
3
2
1
0
100  
10  
1
75°C  
25°C  
f = 1 MHz  
= 0 V  
T
= –25°C  
A
I
E
T
= 25°C  
A
0.1  
0.01  
V
= 5 V  
O
0.001  
0
10  
20  
30  
40  
50  
0
2
4
6
8
10  
V
, REVERSE BIAS VOLTAGE (VOLTS)  
V
, INPUT VOLTAGE (VOLTS)  
R
in  
Figure 9. Output Capacitance  
Figure 10. Output Current versus Input Voltage  
100  
V
= 0.2 V  
O
T
= –25°C  
A
10  
1
25°C  
75°C  
0.1  
0
10  
20  
30  
40  
50  
I
, COLLECTOR CURRENT (mA)  
C
Figure 11. Input Voltage versus Output Current  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
5
TYPICAL ELECTRICAL CHARACTERISTICS — MUN5213T1  
10  
1
1000  
V
= 10 V  
I
/I = 10  
CE  
C B  
T
= 75°C  
A
25°C  
–25°C  
25°C  
100  
T
= –25°C  
A
75°C  
0.1  
0.01  
10  
0
20  
, COLLECTOR CURRENT (mA)  
40  
50  
1
10  
100  
I
I
, COLLECTOR CURRENT (mA)  
C
C
Figure 12. V  
versus I  
Figure 13. DC Current Gain  
CE(sat)  
C
1
100  
10  
1
25°C  
f = 1 MHz  
= 0 V  
75°C  
I
E
T = –25  
°C  
0.8  
T
= 25  
°
C
A
A
0.6  
0.4  
0.1  
0.01  
0.2  
0
V
= 5 V  
O
0.001  
0
10  
20  
30  
40  
50  
0
2
4
V , INPUT VOLTAGE (VOLTS)  
in  
6
8
10  
V
, REVERSE BIAS VOLTAGE (VOLTS)  
R
Figure 14. Output Capacitance  
Figure 15. Output Current versus Input Voltage  
100  
V
= 0.2 V  
O
T
= –25°C  
A
25°C  
10  
1
75°C  
0.1  
0
10  
20  
30  
40  
50  
I
, COLLECTOR CURRENT (mA)  
C
Figure 16. Input Voltage versus Output Current  
6
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
TYPICAL ELECTRICAL CHARACTERISTICS — MUN5214T1  
1
0.1  
300  
T
= 75°C  
A
V
= 10  
I
/I = 10  
CE  
C B  
T
= –25°C  
250  
200  
150  
A
25°C  
25°C  
–25°C  
75°C  
0.01  
100  
50  
0
0.001  
0
20  
40  
60  
80  
1
2
4
6
8
10 15 20 40 50 60 70 80 90 100  
I , COLLECTOR CURRENT (mA)  
C
I
, COLLECTOR CURRENT (mA)  
C
Figure 17. V  
versus I  
Figure 18. DC Current Gain  
CE(sat)  
C
4
3.5  
3
100  
10  
1
f = 1 MHz  
= 0 V  
T
A
= 75°C  
25°C  
l
E
T
= 25°C  
A
–25°C  
2.5  
2
1.5  
1
0.5  
0
V
= 5 V  
O
0
2
4
6
8
10 15 20  
25 30  
35 40 45 50  
0
2
4
6
8
10  
V
, REVERSE BIAS VOLTAGE (VOLTS)  
V
, INPUT VOLTAGE (VOLTS)  
R
in  
Figure 19. Output Capacitance  
Figure 20. Output Current versus Input Voltage  
10  
V
= 0.2 V  
O
T
= –25°C  
A
25°C  
75°C  
1
0.1  
0
10  
20  
30  
40  
50  
I
, COLLECTOR CURRENT (mA)  
C
Figure 21. Input Voltage versus Output Current  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
7
TYPICAL APPLICATIONS FOR NPN BRTs  
+12 V  
ISOLATED  
LOAD  
FROM  
µP OR  
OTHER LOGIC  
Figure 22. Level Shifter: Connects 12 or 24 Volt Circuits to Logic  
+12 V  
V
CC  
OUT  
IN  
LOAD  
Figure 23. Open Collector Inverter: Inverts the Input Signal  
Figure 24. Inexpensive, Unregulated Current Source  
8
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS  
Surface mount board layout is a critical portion of the total  
design. The footprint for the semiconductor packages must  
be the correct size to insure proper solder connection  
interface between the board and the package. With the  
correct pad geometry, the packages will self align when  
subjected to a solder reflow process.  
0.025  
0.65  
0.025  
0.65  
0.075  
1.9  
0.035  
0.9  
0.028  
0.7  
inches  
mm  
SC-70/SOT-323 POWER DISSIPATION  
The power dissipation of the SC-70/SOT-323 is a function  
of the pad size. This can vary from the minimum pad size for  
soldering to the pad size given for maximum power  
dissipation. Power dissipation for a surface mount device is  
the equation for an ambient temperature T of 25°C, one can  
calculate the power dissipation of the device which in this  
case is 150 milliwatts.  
A
150°C – 25°C  
determinedby T  
ture of the die, R  
θJA  
, themaximumratedjunctiontempera-  
, the thermal resistance from the device  
J(max)  
P
=
= 150 milliwatts  
D
833°C/W  
junction to ambient; and the operating temperature, T .  
A
Using the values provided on the data sheet, P can be  
D
The 833°C/W assumes the use of the recommended  
footprint on a glass epoxy printed circuit board to achieve a  
power dissipation of 150 milliwatts. Another alternative would  
be to use a ceramic substrate or an aluminum core board  
such as Thermal Clad . Using a board material such as  
Thermal Clad, a power dissipation of 300 milliwatts can be  
achieved using the same footprint.  
calculated as follows.  
T
– T  
A
J(max)  
P
=
D
R
θJA  
The values for the equation are found in the maximum  
ratings table on the data sheet. Substituting these values into  
SOLDERING PRECAUTIONS  
The melting temperature of solder is higher than the rated  
temperature of the device. When the entire device is heated  
to a high temperature, failure to complete soldering within a  
short time could result in device failure. Therefore, the  
following items should always be observed in order to  
minimize the thermal stress to which the devices are  
subjected.  
The soldering temperature and time should not exceed  
260°C for more than 10 seconds.  
When shifting from preheating to soldering, the  
maximum temperature gradient should be 5°C or less.  
After soldering has been completed, the device should  
be allowed to cool naturally for at least three minutes.  
Gradual cooling should be used as the use of forced  
cooling will increase the temperature gradient and result  
in latent failure due to mechanical stress.  
Always preheat the device.  
The delta temperature between the preheat and  
soldering should be 100°C or less.*  
Mechanical stress or shock should not be applied during  
cooling  
When preheating and soldering, the temperature of the  
leads and the case must not exceed the maximum  
temperature ratings as shown on the data sheet. When  
using infrared heating with the reflow soldering method,  
the difference should be a maximum of 10°C.  
* Soldering a device without preheating can cause excessive  
thermal shock and stress which can result in damage to the  
device.  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
9
SOLDER STENCIL GUIDELINES  
Prior to placing surface mount components onto a printed  
or stainless steel with a typical thickness of 0.008 inches.  
The stencil opening size for the surface mounted package  
should be the same as the pad size on the printed circuit  
board, i.e., a 1:1 registration.  
circuit board, solder paste must be applied to the pads. A  
solder stencil is required to screen the optimum amount of  
solder paste onto the footprint. The stencil is made of brass  
TYPICAL SOLDER HEATING PROFILE  
For any given circuit board, there will be a group of control  
settings that will give the desired heat pattern. The operator  
must set temperatures for several heating zones, and a  
figure for belt speed. Taken together, these control settings  
make up a heating “profile” for that particular circuit board.  
On machines controlled by a computer, the computer  
remembers these profiles from one operating session to the  
next. Figure 25 shows a typical heating profile for use when  
soldering a surface mount device to a printed circuit board.  
This profile will vary among soldering systems but it is a good  
starting point. Factors that can affect the profile include the  
type of soldering system in use, density and types of  
components on the board, type of solder used, and the type  
of board or substrate material being used. This profile shows  
temperature versus time. The line on the graph shows the  
actual temperature that might be experienced on the surface  
of a test board at or near a central solder joint. The two  
profiles are based on a high density and a low density board.  
The Vitronics SMD310 convection/infrared reflow soldering  
system was used to generate this profile. The type of solder  
used was 62/36/2 Tin Lead Silver with a melting point  
between 177189°C. When this type of furnace is used for  
solder reflow work, the circuit boards and solder joints tend to  
heat first. The components on the board are then heated by  
conduction. The circuit board, because it has a large surface  
area, absorbs the thermal energy more efficiently, then  
distributes this energy to the components. Because of this  
effect, the main body of a component may be up to 30  
degrees cooler than the adjacent solder joints.  
STEP 5  
HEATING  
ZONES 4 & 7  
“SPIKE”  
STEP 6 STEP 7  
VENT COOLING  
STEP 1  
PREHEAT  
ZONE 1  
“RAMP”  
STEP 2  
VENT  
“SOAK” ZONES 2 & 5  
“RAMP”  
STEP 3  
HEATING  
STEP 4  
HEATING  
ZONES 3 & 6  
“SOAK”  
205  
PEAK AT  
SOLDER JOINT  
° TO 219°C  
200  
°
C
C
170°C  
DESIRED CURVE FOR HIGH  
MASS ASSEMBLIES  
160°C  
150°C  
150°  
SOLDER IS LIQUID FOR  
40 TO 80 SECONDS  
(DEPENDING ON  
140°C  
100°C  
MASS OF ASSEMBLY)  
100  
°
C
C
DESIRED CURVE FOR LOW  
MASS ASSEMBLIES  
50°  
TIME (3 TO 7 MINUTES TOTAL)  
T
MAX  
Figure 25. Typical Solder Heating Profile  
10  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
PACKAGE DIMENSIONS  
A
NOTES:  
L
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3
INCHES  
MILLIMETERS  
B
S
DIM  
A
B
C
D
G
H
J
MIN  
MAX  
0.087  
0.053  
0.049  
0.016  
0.055  
0.004  
0.010  
MIN  
1.80  
1.15  
0.90  
0.30  
1.20  
0.00  
0.10  
MAX  
2.20  
1.35  
1.25  
0.40  
1.40  
0.10  
0.25  
1
2
0.071  
0.045  
0.035  
0.012  
0.047  
0.000  
0.004  
D
V
G
K
L
N
R
S
0.017 REF  
0.026 BSC  
0.028 REF  
0.425 REF  
0.650 BSC  
0.700 REF  
R
N
J
0.031  
0.079  
0.012  
0.039  
0.087  
0.016  
0.80  
2.00  
0.30  
1.00  
2.20  
0.40  
C
V
0.05 (0.002)  
K
H
STYLE 3:  
PIN 1. BASE  
2. EMITTER  
3. COLLECTOR  
CASE 419-02  
ISSUE H  
SC–70/SOT–323  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
11  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,  
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
INTERNET: http://Design–NET.com  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MUN5211T1/D  

相关型号:

MUN5234T1G

Bias Resistor Transistor
ONSEMI

MUN5234T3

Small Signal Bipolar Transistor, 0.1A I(C), 50V V(BR)CEO, 1-Element, NPN, Silicon, SC-70, 3 PIN
MOTOROLA

MUN5234T3

100mA, 50V, NPN, Si, SMALL SIGNAL TRANSISTOR, SC-70, 3 PIN
ONSEMI

MUN5235

Dual Bias Resistor Transistors
ONSEMI

MUN5235

NPN Silicon Bias Resistor Transistor
WEITRON

MUN5235-G

Transistor
WEITRON

MUN5235DW

Surface Mount Dual Bias Resistor Transistor NPN Silicon
WEITRON

MUN5235DW-G

Transistor
WEITRON

MUN5235DW1

Dual Bias Resistor Transistors
ONSEMI

MUN5235DW1T1

Dual Bias Resistor Trasnsistors
MOTOROLA

MUN5235DW1T1

Dual Bias Resistor Transistors
LRC

MUN5235DW1T1

Dual Bias Resistor Transistors
ONSEMI