SC41343P [MOTOROLA]

Encoder and Decoder Pairs; 编码器和译码器对
SC41343P
型号: SC41343P
厂家: MOTOROLA    MOTOROLA
描述:

Encoder and Decoder Pairs
编码器和译码器对

消费电路 商用集成电路 光电二极管 编码器
文件: 总20页 (文件大小:237K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MC145026/D  
SEMICONDUCTOR TECHNICAL DATA  
CMOS  
These devices are designed to be used as encoder/decoder pairs in remote  
control applications.  
The MC145026 encodes nine lines of information and serially sends this  
information upon receipt of a transmit enable (TE) signal. The nine lines may be  
encoded with trinary data (low, high, or open) or binary data (low or high). The  
words are transmitted twice per encoding sequence to increase security.  
The MC145027 decoder receives the serial stream and interprets five of the  
trinary digits as an address code. Thus, 243 addresses are possible. If binary  
data is used at the encoder, 32 addresses are possible. The remaining serial  
information is interpreted as four bits of binary data. The valid transmission (VT)  
output goes high on the MC145027 when two conditions are met. First, two  
addresses must be consecutively received (in one encoding sequence) which  
both match the local address. Second, the 4 bits of data must match the last  
valid data received. The active VT indicates that the information at the Data  
output pins has been updated.  
P SUFFIX  
PLASTIC DIP  
CASE 648  
16  
1
D SUFFIX  
SOG PACKAGE  
CASE 751B  
16  
The MC145028 decoder treats all nine trinary digits as an address which  
allows 19,683 codes. If binary data is encoded, 512 codes are possible. The VT  
output goes high on the MC145028 when two addresses are consecutively  
received (in one encoding sequence) which both match the local address.  
1
DW SUFFIX  
SOG PACKAGE  
CASE 751G  
16  
Operating Temperature Range: – 40 to + 85°C  
Very–Low Standby Current for the Encoder: 300 nA Maximum @ 25°C  
Interfaces with RF, Ultrasonic, or Infrared Modulators and Demodulators  
RC Oscillator, No Crystal Required  
High External Component Tolerance; Can Use ± 5% Components  
Internal Power–On Reset Forces All Decoder Outputs Low  
1
ORDERING INFORMATION  
MC145026P  
MC145026D  
Plastic DIP  
SOG Package  
Operating Voltage Range: MC145026 = 2.5 to 18 V*  
MC145027, MC145028 = 4.5 to 18 V  
MC145027P, SC41343P  
MC145027DW, SC41343DW  
Plastic DIP  
SOG Package  
Low–Voltage Versions Available:  
MC145028P, SC41344P  
Plastic DIP  
MC145028DW, SC41344DW  
SOG Package  
SC41343 = 2.8 to 10 V Version of the MC145027  
SC41344 = 2.8 to 10 V Version of the MC145028  
For Infrared Applications, See Application Note AN1016/D  
PIN ASSIGNMENTS  
MC145026  
ENCODER  
MC145027/SC41343  
DECODERS  
MC145028/SC41344  
DECODERS  
A1  
A2  
1
2
16  
15  
V
A1  
A2  
1
2
16  
15  
V
A1  
A2  
1
2
16  
15  
V
DD  
DD  
DD  
D
D6  
A6  
out  
A3  
A4  
3
4
14  
13  
TE  
A3  
A4  
3
4
14  
13  
D7  
D8  
A3  
A4  
3
4
14  
13  
A7  
A8  
R
TC  
A5  
5
6
12  
11  
C
A5  
5
6
12  
11  
D9  
VT  
A5  
5
6
12  
11  
A9  
VT  
TC  
S
A6/D6  
R
R
R
C
1
1
1
A7/D7  
7
8
10  
9
A9/D9  
A8/D8  
C
7
8
10  
9
R /C  
2
7
8
10  
9
R /C  
2
2
1
2
V
V
V
SS  
D
in  
D
in  
SS  
SS  
* All MC145026 devices manufactured after date code 9314 or 314 are guaranteed over this wider voltage range. All previous designs using the  
low–voltage SC41342 should convert to the MC145026, which is a drop–in replacement. The SC41342 part number has been discontinued.  
REV 2  
1/98  
Motorola, Inc. 1998  
R
R
TC  
S
C
TC  
11  
14  
12  
3–PIN  
OSCILLATOR  
AND  
13  
TE  
DATA SELECT  
AND  
BUFFER  
÷
4
15  
D
out  
DIVIDER  
ENABLE  
RING COUNTER AND 1–OF–9 DECODER  
9
8
7
6
5
4
3
2
1
1
2
A1  
A2  
A3  
A4  
A5  
3
4
5
TRINARY  
DETECTOR  
6
A6/D6  
A7/D7  
A8/D8  
A9/D9  
7
9
V
V
= PIN 16  
= PIN 8  
DD  
SS  
10  
Figure 1. MC145026 Encoder Block Diagram  
11  
15  
VT  
D6  
D7  
CONTROL  
LOGIC  
14  
13  
D8  
D9  
12  
SEQUENCER CIRCUIT  
5
4
3
2
1
1
2
3
4
5
A1  
A2  
A3  
A4  
A5  
DATA  
EXTRACTOR  
9
D
in  
C
C
1
2
V
V
= PIN 16  
= PIN 8  
DD  
SS  
7
6
10  
R
1
R
2
Figure 2. MC145027 Decoder Block Diagram  
MC145026MC145027MC145028SC41343SC41344  
MOTOROLA  
2
11  
CONTROL  
LOGIC  
VT  
SEQUENCER CIRCUIT  
9
8
7
6
5
4
3
2
1
1
2
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
9–BIT  
SHIFT  
REGISTER  
3
4
DATA  
EXTRACTOR  
5
9
D
in  
15  
14  
13  
12  
C
C
1
2
7
6
V
= PIN 16  
= PIN 8  
10  
DD  
V
R
1
SS  
R
2
Figure 3. MC145028 Decoder Block Diagram  
MAXIMUM RATINGS* (Voltages Referenced to V  
)
SS  
This device contains protection circuitry to  
guard against damage due to high static  
voltages or electric fields. However, precau-  
tionsmustbetakentoavoidapplicationsofany  
voltage higher than maximum rated voltages  
to this high–impedance circuit. For proper  
Rating  
Symbol  
Value  
Unit  
V
DD  
DC Supply Voltage (except SC41343,  
SC41344)  
– 0.5 to + 18  
V
V
DD  
DC Supply Voltage (SC41343, SC41344  
only)  
– 0.5 to + 10  
V
operation, V and V  
should be constrained  
in out  
to the range V  
(V or V ) V  
.
DD  
V
in  
DC Input Voltage  
– 0.5 to V  
+ 0.5  
V
V
SS in out  
DD  
V
out  
DC Output Voltage  
– 0.5 to V  
+ 0.5  
DD  
I
DC Input Current, per Pin  
DC Output Current, per Pin  
Power Dissipation, per Package  
Storage Temperature  
± 10  
mA  
mA  
mW  
°C  
in  
I
± 10  
out  
P
500  
D
T
stg  
– 65 to + 150  
260  
T
Lead Temperature, 1 mm from Case for  
10 Seconds  
°C  
L
* MaximumRatingsarethosevaluesbeyondwhichdamagetothedevicemayoccur. Func-  
tional operation should be restricted to the limits in the Electrical Characteristics tables or  
Pin Descriptions section.  
MOTOROLA  
MC145026MC145027MC145028SC41343SC41344  
3
ELECTRICAL CHARACTERISTICS — MC145026*, MC145027, and MC145028 (Voltage Referenced to V  
)
SS  
Guaranteed Limit  
– 40°C  
25°C  
85°C  
V
DD  
V
Symbol  
Characteristic  
Low–Level Output Voltage  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
V
OL  
(V = V  
in  
or 0)  
DD  
5.0  
10  
15  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
V
V
High–Level Output Voltage  
Low–Level Input Voltage  
(V = 0 or V  
in  
)
DD  
5.0  
10  
15  
4.95  
9.95  
14.95  
4.95  
9.95  
14.95  
4.95  
9.95  
14.95  
V
V
OH  
V
IL  
(V  
(V  
= 4.5 or 0.5 V)  
= 9.0 or 1.0 V)  
= 13.5 or 1.5 V)  
5.0  
10  
15  
1.5  
3.0  
4.0  
1.5  
3.0  
4.0  
1.5  
3.0  
4.0  
out  
out  
(V  
out  
V
High–Level Input Voltage  
High–Level Output Current  
V
IH  
(V  
= 0.5 or 4.5 V)  
= 1.0 or 9.0 V)  
= 1.5 or 13.5 V)  
5.0  
10  
15  
3.5  
7.0  
11  
3.5  
7.0  
11  
3.5  
7.0  
11  
out  
(V  
out  
(V  
out  
I
mA  
OH  
(V  
out  
out  
= 2.5 V)  
= 4.6 V)  
= 9.5 V)  
5.0  
5.0  
10  
– 2.5  
– 0.52  
– 1.3  
– 3.6  
– 2.1  
– 0.44  
– 1.1  
– 3.0  
– 1.7  
– 0.36  
– 0.9  
– 2.4  
(V  
(V  
(V  
out  
out  
= 13.5 V)  
15  
I
Low–Level Output Current  
mA  
OL  
(V  
out  
out  
(V  
out  
= 0.4 V)  
= 0.5 V)  
= 1.5 V)  
5.0  
10  
15  
0.52  
1.3  
3.6  
0.44  
1.1  
3.0  
0.36  
0.9  
2.4  
(V  
I
in  
Input Current — TE  
(MC145026, Pull–Up Device)  
5.0  
10  
15  
3.0  
16  
35  
11  
60  
120  
µA  
I
I
Input Current  
15  
± 0.3  
± 0.3  
± 1.0  
µA  
µA  
in  
R
(MC145026), D (MC145027, MC145028)  
in  
S
Input Current  
in  
A1 – A5, A6/D6 – A9/D9 (MC145026),  
A1 – A5 (MC145027),  
A1 – A9 (MC145028)  
5.0  
10  
15  
± 110  
± 500  
± 1000  
C
Input Capacitance (V = 0)  
in  
7.5  
pF  
in  
I
Quiescent Current — MC145026  
5.0  
10  
15  
0.1  
0.2  
0.3  
µA  
DD  
I
Quiescent Current — MC145027, MC145028  
Dynamic Supply Current — MC145026  
5.0  
10  
15  
50  
100  
150  
µA  
µA  
µA  
DD  
I
5.0  
10  
15  
200  
400  
600  
dd  
(f = 20 kHz)  
c
I
Dynamic Supply Current — MC145027, MC145028  
(f = 20 kHz)  
c
5.0  
10  
15  
400  
800  
1200  
dd  
* Also see next Electrical Characteristics table for 2.5 V specifications.  
MC145026MC145027MC145028SC41343SC41344  
MOTOROLA  
4
ELECTRICAL CHARACTERISTICS — MC145026 (Voltage Referenced to V  
)
SS  
Guaranteed Limit  
– 40°C  
Min  
25°C  
85°C  
V
DD  
V
Symbol  
Characteristic  
Low–Level Output Voltage (V = 0 V or V  
Unit  
V
Max  
0.05  
Min  
Max  
0.05  
Min  
Max  
0.05  
V
OL  
)
)
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.45  
in  
(V = 0 V or V  
DD  
DD  
V
OH  
High–Level Output Voltage  
Low–Level Input Voltage  
High–Level Input Voltage  
High–Level Output Current  
Low–Level Output Current  
2.45  
2.45  
V
in  
V
(V  
out  
= 0.5 V or 2.0 V)  
= 0.5 V or 2.0 V)  
0.3  
0.3  
0.3  
V
IL  
IH  
V
(V  
out  
2.2  
0.28  
0.22  
2.2  
0.25  
0.2  
0.09  
2.2  
0.2  
0.16  
V
I
(V  
out  
= 1.25 V)  
= 0.4 V)  
mA  
mA  
µA  
µA  
µA  
µA  
OH  
I
(V  
out  
OL  
I
Input Current (TE — Pull–Up Device)  
Input Current (A1–A5, A6/D6–A9/D9)  
Quiescent Current  
1.8  
± 25  
0.05  
40  
in  
in  
I
I
DD  
I
dd  
Dynamic Supply Current (f = 20 kHz)  
c
ELECTRICAL CHARACTERISTICS — SC41343 and SC41344 (Voltage Referenced to V  
)
SS  
Guaranteed Limit  
– 40°C  
25°C  
85°C  
V
DD  
V
Symbol  
Characteristic  
Low–Level Output Voltage (V = 0 V or V  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
V
OL  
)
)
2.8  
5.0  
10  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
V
in  
DD  
DD  
V
OH  
High–Level Output Voltage  
Low–Level Input Voltage  
(V = 0 V or V  
in  
2.8  
5.0  
10  
2.75  
4.95  
9.95  
2.75  
4.95  
9.95  
2.75  
4.95  
9.95  
V
V
V
IL  
(V  
out  
out  
(V  
out  
= 2.3 V or 0.5 V)  
= 4.5 V or 0.5 V)  
= 9.0 V or 1.0 V)  
2.8  
5.0  
10  
0.84  
1.5  
3.0  
0.84  
1.5  
3.0  
0.84  
1.5  
3.0  
(V  
V
High–Level Input Voltage  
High–Level Output Current  
Low–Level Output Current  
V
IH  
(V  
out  
out  
(V  
out  
= 0.5 V or 2.3 V)  
= 0.5 V or 4.5 V)  
= 1.0 V or 9.0 V)  
2.8  
5.0  
10  
1.96  
3.5  
7.0  
1.96  
3.5  
7.0  
1.96  
3.5  
7.0  
(V  
I
mA  
mA  
OH  
(V  
out  
out  
(V  
out  
= 1.4 V)  
= 4.5 V)  
= 9.0 V)  
2.8  
5.0  
10  
– 0.73  
– 0.59  
– 1.3  
– 0.7  
– 0.5  
– 1.1  
– 0.55  
– 0.41  
– 0.9  
(V  
I
OL  
(V  
out  
out  
(V  
out  
= 0.4 V)  
= 0.5 V)  
= 1.0 V)  
2.8  
5.0  
10  
0.35  
0.8  
3.5  
0.3  
0.6  
2.9  
0.24  
0.4  
2.3  
(V  
I
I
Input Current — D  
Input Current  
10  
± 0.3  
± 0.3  
± 1.0  
µA  
µA  
in  
in  
2.8  
5.0  
10  
± 30  
± 140  
± 600  
in  
A1 – A5 (SC41343)  
A1 – A9 (SC41344)  
C
Input Capacitance (V = 0)  
in  
7.5  
pF  
in  
I
Quiescent Current  
2.8  
5.0  
10  
60  
75  
150  
µA  
DD  
I
dd  
Dynamic Supply Current (f = 20 kHz)  
2.8  
5.0  
10  
300  
500  
1000  
µA  
c
MOTOROLA  
MC145026MC145027MC145028SC41343SC41344  
5
SWITCHING CHARACTERISTICS — MC145026*, MC145027, and MC145028 (C = 50 pF, T = 25°C)  
L
A
Guaranteed Limit  
Figure  
No.  
Symbol  
, t  
Characteristic  
Output Transition Time  
V
DD  
Unit  
Min  
Max  
t
4,8  
5.0  
10  
15  
200  
100  
80  
ns  
TLH THL  
t
D
D
Rise Time — Decoders  
5
5.0  
10  
15  
15  
15  
15  
µs  
µs  
r
in  
in  
t
Fall Time — Decoders  
5
5.0  
10  
15  
15  
5.0  
4.0  
f
f
Encoder Clock Frequency  
6
5.0  
10  
15  
0.001  
0.001  
0.001  
2.0  
5.0  
10  
MHz  
kHz  
ns  
osc  
f
Decoder Frequency — Referenced to Encoder Clock  
TE Pulse Width — Encoders  
12  
7
5.0  
10  
15  
1.0  
1.0  
1.0  
240  
410  
450  
t
w
5.0  
10  
15  
65  
30  
20  
* Also see next Switching Characteristics table for 2.5 V specifications.  
SWITCHING CHARACTERISTICS — MC145026 (C = 50 pF, T = 25°C)  
L
A
Guaranteed Limit  
Figure  
No.  
Symbol  
, t  
Characteristic  
Output Transition Time  
V
Unit  
ns  
Min  
Max  
450  
250  
DD  
t
4, 8  
6
2.5  
TLH THL  
f
Encoder Clock Frequency  
TE Pulse Width  
2.5  
2.5  
1.0  
1.5  
kHz  
µs  
osc  
t
w
7
SWITCHING CHARACTERISTICS — SC41343 and SC41344 (C = 50 pF, T = 25°C)  
L
A
Guaranteed Limit  
Figure  
No.  
Symbol  
, t  
Characteristic  
Output Transition Time  
V
DD  
Unit  
Min  
Max  
t
4, 8  
2.8  
5.0  
10  
320  
200  
100  
ns  
TLH THL  
t
D
D
Rise Time  
Fall Time  
5
2.8  
5.0  
10  
15  
15  
15  
µs  
µs  
r
in  
in  
t
5
2.8  
5.0  
10  
15  
15  
5.0  
f
f
Decoder Frequency — Referenced to Encoder Clock  
12  
2.8  
5.0  
10  
1.0  
1.0  
1.0  
100  
240  
410  
kHz  
MC145026MC145027MC145028SC41343SC41344  
MOTOROLA  
6
90%  
10%  
t
t
r
f
ANY OUTPUT  
V
V
DD  
90%  
D
in  
t
t
TLH  
THL  
10%  
SS  
Figure 4.  
Figure 5.  
1 / f  
osc  
V
V
DD  
TE  
50%  
50%  
R
TC  
SS  
t
w
Figure 6.  
Figure 7.  
TEST POINT  
OUTPUT  
DEVICE  
UNDER  
TEST  
C *  
L
* Includes all probe and fixture capacitance.  
Figure 8. Test Circuit  
MOTOROLA  
MC145026MC145027MC145028SC41343SC41344  
7
data output is available. The VT output is used to indicate that  
a valid address has been received. For transmission security,  
two identical transmitted words must be consecutively re-  
ceived before a VT output signal is issued.  
The MC145028 allows 19,683 addresses when trinary lev-  
els are used. 512 addresses are possible when binary levels  
are used.  
OPERATING CHARACTERISTICS  
MC145026  
The encoder serially transmits trinary data as defined by  
the state of the A1 – A5 and A6/D6 – A9/D9 input pins. These  
pins may be in either of three states (low, high, or open) allow-  
ing 19,683 possible codes. The transmit sequence is initiated  
by a low level on the TE input pin. Upon power–up, the  
MC145026 can continuously transmit as long as TE remains  
low (also, the device can transmit two–word sequences by  
pulsing TE low). However, no MC145026 application should  
be designed to rely upon the first data word transmitted im-  
mediately after power–up because this word may be invalid.  
Between the two data words, no signal is sent for three data  
periods (see Figure 10).  
Each transmitted trinary digit is encoded into pulses (see  
Figure 11). A logic 0 (low) is encoded as two consecutive  
short pulses, a logic 1 (high) as two consecutive long pulses,  
and an open (high impedance) as a long pulse followed by a  
short pulse. The input state is determined by using a weak  
“output” device to try to force each input high then low. If only  
a high state results from the two tests, the input is assumed to  
PIN DESCRIPTIONS  
MC145026 ENCODER  
A1 – A5, A6/D6 – A9/D9  
Address, Address/Data Inputs (Pins 1 – 7, 9, and 10)  
These address/data inputs are encoded and the data is  
sent serially from the encoder via the D  
pin.  
out  
R , C , R  
S
TC TC  
(Pins 11, 12, and 13)  
These pins are part of the oscillator section of the encoder  
(see Figure 9).  
If an external signal source is used instead of the internal  
oscillator, it should be connected to the R input and the R  
S
TC  
and C  
pins should be left open.  
TC  
be hardwired to V . If only a low state is obtained, the input  
is assumed to be hardwired to V . If both a high and a low  
SS  
DD  
TE  
Transmit Enable (Pin 14)  
can be forced at an input, an open is assumed and is encoded  
as such. The “high” and “low” levels are 70% and 30% of the  
supply voltage as shown in the Electrical Characteristics  
table. The weak “output” device sinks/sources up to 110 µA at  
a 5 V supply level, 500 µA at 10 V, and 1 mA at 15 V.  
This active–low transmit enable input initiates transmission  
when forced low. An internal pull–up device keeps this input  
normally high. The pull–up current is specified in the Electri-  
cal Characteristics table.  
D
The TE input has an internal pull–up device so that a simple  
switch may be used to force the input low. While TE is high  
and the second–word transmission has timed out, the encod-  
er is completely disabled, the oscillator is inhibited, and the  
current drain is reduced to quiescent current. When TE is  
brought low, the oscillator is started and the transmit se-  
quence begins. The inputs are then sequentially selected,  
and determinations are made as to the input logic states. This  
out  
Data Out (Pin 15)  
This is the output of the encoder that serially presents the  
encoded data word.  
V
SS  
Negative Power Supply (Pin 8)  
The most–negative supply potential. This pin is usually  
ground.  
information is serially transmitted via the D  
pin.  
out  
V
DD  
MC145027  
Positive Power Supply (Pin 16)  
This decoder receives the serial data from the encoder and  
outputs the data, if it is valid. The transmitted data, consisting  
of two identical words, is examined bit by bit during reception.  
The first five trinary digits are assumed to be the address. If  
the received address matches the local address, the next four  
(data) bits are internally stored, but are not transferred to the  
output data latch. As the second encoded word is received,  
the address must again match. If a match occurs, the new  
data bits are checked against the previously stored data bits.  
If the two nibbles of data (four bits each) match, the data is  
transferred to the output data latch by VT and remains until  
new data replaces it. At the same time, the VT output pin is  
brought high and remains high until an error is received or un-  
til no input signal is received for four data periods (see Figure  
10).  
The most–positive power supply pin.  
MC145027 AND MC145028 DECODERS  
A1 – A5, A1 – A9  
Address Inputs (Pins 1 – 5) — MC145027,  
Address Inputs (Pins 1 – 5, 15, 14, 13, 12) — MC145028  
These are the local address inputs. The states of these  
pins must match the appropriate encoder inputs for the VT pin  
to go high. The local address may be encoded with trinary or  
binary data.  
D6 – D9  
Data Outputs (Pins 15, 14, 13, 12) — MC145027 Only  
These outputs present the binary information that is on  
encoder inputs A6/D6 through A9/D9. Only binary data is  
acknowledged; a trinary open at the MC145026 encoder is  
decoded as a high level (logic 1).  
Although the address information may be encoded in tri-  
nary, the data information must be either a 1 or 0. A trinary  
(open) data line is decoded as a logic 1.  
D
in  
Data In (Pin 9)  
MC145028  
This pin is the serial data input to the decoder. The input  
voltage must be at CMOS logic levels. The signal source driv-  
ing this pin must be dc coupled.  
This decoder operates in the same manner as the  
MC145027 except that nine address lines are used and no  
MC145026MC145027MC145028SC41343SC41344  
MOTOROLA  
8
R , C  
VT  
1
1
Resistor 1, Capacitor 1 (Pins 6, 7)  
Valid Transmission Output (Pin 11)  
As shown in Figures 2 and 3, these pins accept a resistor  
and capacitor that are used to determine whether a narrow  
pulse or wide pulse has been received. The time constant  
This valid transmission output goes high after the second  
word of an encoding sequence when the following conditions  
are satisfied:  
R x C should be set to 1.72 encoder clock periods:  
1
1
1. thereceivedaddressesofbothwordsmatchthelocalde-  
coder address, and  
2. the received data bits of both words match.  
R C = 3.95 R  
C
1
1
TC TC  
R /C  
2
2
VT remains high until either a mismatch is received or no  
input signal is received for four data periods.  
Resistor 2/Capacitor 2 (Pin 10)  
As shown in Figures 2 and 3, this pin accepts a resistor and  
capacitor that are used to detect both the end of a received  
V
SS  
word and the end of a transmission. The time constant R x  
Negative Power Supply (Pin 8)  
2
C should be 33.5 encoder clock periods (four data periods  
2
The most–negative supply potential. This pin is usually  
ground.  
per Figure 11): R C = 77 R  
C
. This time constant is  
2
2
TC TC  
used to determine whether the D pin has remained low for  
in  
four data periods (end of transmission). A separate on–chip  
comparator looks at the voltage–equivalent two data periods  
V
DD  
Positive Power Supply (Pin 16)  
(0.4 R C ) to detect the dead time between received words  
2
2
within a transmission.  
The most–positive power supply pin.  
MOTOROLA  
MC145026MC145027MC145028SC41343SC41344  
9
R
S
C
TC  
R
TC  
11  
12  
13  
INTERNAL  
ENABLE  
This oscillator operates at a frequency determined by the  
external RC network; i.e.,  
1
f ≈  
(Hz)  
ThevalueforR shouldbechosentobe2timesR .Thisrangeensures  
S TC  
2.3 R ′  
C
TC TC  
thatcurrentthroughR isinsignificantcomparedtocurrentthroughR . The  
S
TC  
upperlimitforR mustensurethatR x5pF(inputcapacitance)issmallcom-  
S
S
for 1 kHz f 400 kHz  
where: C = C + C + 12 pF  
pared to R  
TC  
x C  
.
TC  
TC  
TC  
layout  
For frequencies outside the indicated range, the formula is less accurate.  
Theminimumrecommendedoscillationfrequencyofthiscircuitis1kHz. Sus-  
ceptibilitytoexternallyinducednoisesignalsmayoccurforfrequenciesbelow  
1 kHz and/or when resistors utilized are greater than 1 M.  
R
R
R
2 R  
S
S
TC  
20 k  
10 k  
TC  
400 pF < C  
< 15 µF  
TC  
Figure 9. Encoder Oscillator Information  
ENCODER  
PW  
min  
2 WORD TRANSMISSION  
TE  
CONTINUOUS TRANSMISSION  
ENCODER  
OSCILLATOR  
(PIN 12)  
1ST  
DIGIT  
9TH  
DIGIT  
1ST  
DIGIT  
9TH  
DIGIT  
D
out  
(PIN 15)  
OPEN  
LOW  
HIGH  
1ST WORD  
2ND WORD  
ENCODING SEQUENCE  
1.1 (R C )  
2
2
DECODER  
VT  
(PIN 11)  
DATA OUTPUTS  
Figure 10. Timing Diagram  
MC145026MC145027MC145028SC41343SC41344  
MOTOROLA  
10  
ENCODER  
OSCILLATOR  
(PIN 12)  
ENCODED  
“ONE”  
D
ENCODED  
“ZERO”  
out  
(PIN 15)  
ENCODED  
“OPEN”  
DATA PERIOD  
Figure 11. Encoder Data Waveforms  
500  
400  
300  
V
= 15 V  
DD  
V
= 10 V  
DD  
200  
100  
V
= 5 V  
DD  
10  
20  
30  
40  
50  
C
(pF) ON PINS 1 – 5 (MC145027); PINS 1 – 5 AND 12 – 15 (MC145028)  
layout  
Figure 12. f  
max  
vs C — Decoders Only  
layout  
MOTOROLA  
MC145026MC145027MC145028SC41343SC41344  
11  
HAS  
NO  
THE TRANSMISSION  
BEGUN?  
YES  
DOES  
THE 5–BIT  
ADDRESS MATCH  
THE ADDRESS  
PINS?  
DISABLE VT  
ON THE 1ST  
ADDRESS MISMATCH  
NO  
YES  
STORE  
THE  
4–BIT  
DATA  
DOES  
THIS DATA  
MATCH THE PREVIOUSLY  
STORED  
DISABLE VT  
ON THE 1ST  
DATA MISMATCH  
NO  
DATA?  
YES  
IS THIS  
AT LEAST THE  
2ND CONSECUTIVE  
MATCH SINCE VT  
DISABLE?  
NO  
YES  
LATCH DATA  
ONTO OUTPUT  
PINS AND  
ACTIVATE VT  
HAVE  
4–BIT TIMES  
PASSED?  
YES  
DISABLE  
VT  
NO  
HAS  
A NEW  
NO  
TRANSMISSION  
BEGUN?  
YES  
Figure 13. MC145027 Flowchart  
MC145026MC145027MC145028SC41343SC41344  
MOTOROLA  
12  
HAS  
NO  
THE TRANSMISSION  
BEGUN?  
YES  
DOES  
THE ADDRESS  
MATCH THE  
ADDRESS  
PINS?  
DISABLE VT ON THE 1ST  
ADDRESS MISMATCH  
AND IGNORE THE REST  
OF THIS WORD  
NO  
YES  
IS  
THIS AT LEAST  
THE 2ND CONSECUTIVE  
MATCH SINCE VT  
DISABLE?  
NO  
YES  
ACTIVATE VT  
HAVE  
4–BIT TIMES  
PASSED?  
YES  
DISABLE VT  
NO  
HAS A  
NEW TRANSMISSION  
BEGUN?  
NO  
YES  
Figure 14. MC145028 Flowchart  
MOTOROLA  
MC145026MC145027MC145028SC41343SC41344  
13  
V
MC145027 AND MC145028 TIMING  
DD  
D
in  
To verify the MC145027 or MC145028 timing, check the  
waveforms on C1 (Pin 7) and R2/C2 (Pin 10) as compared to  
0 V  
the incoming data waveform on D (Pin 9).  
The R–C decay seen on C1 discharges down to 1/3 V  
before being reset to V . This point of reset (labelled “DOS”  
DD  
in Figure 15) is the point in time where the decision is made  
in  
DD  
V
DD  
2/3  
1/3  
0 V  
C1  
whether the data seen on D is a 1 or 0. DOS should not be  
in  
too close to the D data edges or intermittent operation may  
in  
DOS  
DOS  
occur.  
The other timing to be checked on the MC145027 and  
MC145028 is on R2/C2 (see Figure 16). The R–C decay is  
Figure 15. R–C Decay on Pin 7 (C1)  
continually reset to V  
as data is being transmitted. Only  
between words and after the end–of–transmission (EOT)  
DD  
does R2/C2 decay significantly from V . R2/C2 can be used  
to identify the internal end–of–word (EOW) timing edge which  
DD  
EOW  
is generated when R2/C2 decays to 2/3 V . The internal  
V
DD  
DD  
EOT timing edge occurs when R2/C2 decays to 1/3 V  
.
DD  
When the waveform is being observed, the R–C decay  
should go down between the 2/3 and 1/3 V levels, but not  
2/3  
1/3  
0 V  
R2/C2  
DD  
too close to either level before data transmission on D re-  
in  
sumes.  
EOT  
Verification of the timing described above should ensure a  
good match between the MC145026 transmitter and the  
MC145027 and MC145028 receivers.  
Figure 16. R–C Decay on Pin 10 (R2/C2)  
MC145026MC145027MC145028SC41343SC41344  
MOTOROLA  
14  
V
V
DD  
DD  
V
DD  
TE  
V
DD  
0.1  
µF  
0.1 µF  
A1  
A1  
14  
16  
16  
A2  
A3  
A4  
A5  
D6  
D7  
D8  
D9  
5
A2  
A3  
15  
D
D
9
1
2
3
out  
in  
1
2
TRINARY  
ADDRESSES  
5
6
TRINARY  
ADDRESSES  
3
4
A4  
A5  
4
R1  
MC145027  
OR  
SC41343  
7
5
6
5
15  
14  
MC145026  
R
TC  
13  
12  
C
1
D6  
D7  
D8  
D9  
7
9
C
TC  
4–BIT  
BINARY  
DATA  
13  
12  
11  
10  
11  
10  
R
S
VT  
C
8
R2  
2
8
C
= C  
100 pF C  
+ C  
+ 12 pF  
TC  
TC  
layout  
15 µF  
1
TC  
10 k; R 2 R  
TC  
REPEAT OF ABOVE  
REPEAT OF ABOVE  
f
=
osc  
R
R
C
R
C
2.3 R ′  
C
TC  
S
TC TC  
10 kΩ  
1
1
2
2
400 pF  
100 kΩ  
700 pF  
R C = 3.95 R  
1 1  
C
TC TC  
C
TC TC  
R C = 77 R  
2 2  
Example R/C Values (All Resistors and Capacitors are ± 5%)  
(C = C  
TC  
+ 20 pF)  
TC  
(kHz)  
f
R
C
R
R
C
R
C
2
osc  
TC  
TC′  
S
1
1
2
362  
10 k  
10 k  
10 k  
10 k  
10 k  
10 k  
50 k  
120 pF  
240 pF  
490 pF  
1020 pF  
2020 pF  
5100 pF  
5100 pF  
20 k  
20 k  
20 k  
20 k  
20 k  
20 k  
100 k  
10 k  
10 k  
10 k  
10 k  
10 k  
10 k  
50 k  
470 pF  
910 pF  
100 k  
100 k  
100 k  
100 k  
100 k  
200 k  
200 k  
910 pF  
1800 pF  
3900 pF  
7500 pF  
0.015 µF  
0.02 µF  
0.1 µF  
181  
88.7  
42.6  
21.5  
8.53  
1.71  
2000 pF  
3900 pF  
8200 pF  
0.02 µF  
0.02 µF  
Figure 17. Typical Application  
MOTOROLA  
MC145026MC145027MC145028SC41343SC41344  
15  
detected and filtered by a diode/RC network to extract the  
data envelope from the burst. Comparator A5 boosts the sig-  
nal to logic levels compatible with the MC145027/28 data  
APPLICATIONS INFORMATION  
INFRARED TRANSMITTER  
input. The D pin of these decoders is a standard CMOS  
in  
In Figure 18, the MC145026 encoder is set to run at an os-  
cillator frequency of about 4 to 9 kHz. Thus, the time required  
for a complete two–word encoding sequence is about 20 to  
40 ms. The data output from the encoder gates an RC oscilla-  
tor running at 50 kHz; the oscillator shown starts rapidly  
enough to be used in this application. When the “send” button  
is not depressed, both the MC145026 and oscillator are in a  
low–power standby state. The RC oscillator has to be  
trimmed for 50 kHz and has some drawbacks for frequency  
stability. A superior system uses a ceramic resonator oscilla-  
tor running at 400 kHz. This oscillator feeds a divider as  
shown in Figure 19. The unused inputs of the MC14011UB  
must be grounded.  
The MLED81 IRED is driven with the 50 kHz square wave  
at about 200 to 300 mA to generate the carrier. If desired, two  
IREDs wired in series can be used (see Application Note  
AN1016 for more information). The bipolar IRED switch,  
shown in Figure 18, offers two advantages over a FET. First,  
a logic FET has too much gate capacitance for the  
MC14011UB to drive without waveform distortion. Second,  
the bipolar drive permits lower supply voltages, which are an  
advantage in portable battery–powered applications.  
The configuration shown in Figure 18 operates over a  
supply range of 4.5 to 18 V. A low–voltage system which  
operates down to 2.5 V could be realized if the oscillator sec-  
tion of a MC74HC4060 is used in place of the MC14011UB.  
The data output of the MC145026 is inverted and fed to the  
RESET pin of the MC74HC4060. Alternately, the  
MC74HCU04 could be used for the oscillator.  
high–impedance input which must not be allowed to float.  
Therefore, direct coupling from A5 to the decoder input is  
utilized.  
Shielding should be used on at least A1 and A2, with good  
ground and high–sensitivity circuit layout techniques applied.  
For operation with supplies higher than + 5 V, limiter A4’s  
positive output swing needs to be limited to 3 to 5 V. This is  
accomplished via adding a zener diode in the negative feed-  
back path, thus avoiding excessive system noise. The bias-  
ing resistor stack should be adjusted such that V3 is 1.25 to  
1.5 V.  
This system works up to a range of about 10 meters. The  
gains of the system may be adjusted to suit the individual  
design needs. The 100 resistor in the emitter of the first  
2N5088 and the 1 kresistor feeding A2 may be altered if  
different gain is required. In general, more gain does not nec-  
essarily result in increased range. This is due to noise floor  
limitations. The designer should increase transmitter power  
and/or increase receiver aperature with Fresnal lensing to  
greatly improve range. See Application Note AN1016 for  
additional information.  
Information on the MC34074 is in data book DL128/D.  
TRINARY SWITCH MANUFACTURERS  
Midland Ross–Electronic Connector Div.  
Greyhill  
Augat/Alcoswitch  
Aries Electronics  
Information on the MC14011UB is in book number  
DL131/D. The MC74HCU04 and MC74HC4060 are found in  
book number DL129/D.  
The above companies may not have the switches in a DIP.  
For more information, call them or consult eem Electronic En-  
gineers Master Catalog or the Gold Book. Ask for SPDT with  
center OFF.  
INFRARED RECEIVER  
The receiver in Figure 20 couples an IR–sensitive diode to  
input preamp A1, followed by band–pass amplifier A2 with a  
gain of about 10. Limiting stage A3 follows, with an output of  
about 800 mV p–p. The limited 50 kHz burst is detected by  
comparator A4 that passes only positive pulses, and peak–  
Alternative: An SPST can be placed in series between a  
SPDT and the Encoder or Decoder to achieve trinary action.  
Motorola cannot recommend one supplier over another  
and in no way suggests that this is a complete listing of trinary  
switch manufacturers.  
MC145026MC145027MC145028SC41343SC41344  
MOTOROLA  
16  
V+  
SELECT FOR  
200 mA TO 300 mA  
USE OF 2 MLED81s  
IS OPTIONAL  
MLED81  
MC14011UB  
10 kΩ  
MPSA13  
OR  
SEND  
MPSW13  
MC14011UB  
TE  
D
out  
MC145026  
R
C
R
TC  
S
TC  
0.01 µF  
220 kΩ  
1000 pF  
100 k  
9
ADJUST/SELECT FOR  
f = 50 kHz (APPROX. 100 k)  
SWITCHES  
220 k  
FOR APPROX. 4 kHz  
47 kFOR APPROX. 9 kHz  
Figure 18. IRED Transmitter Using RC Oscillator to Generate Carrier Frequency  
V+  
MC14011UB  
MC14024  
50 kHZ TO  
CLK  
Q3  
DRIVER  
TRANSISTOR  
RESET  
1MΩ  
X1 = 400 kHz CERAMIC RESONATOR  
PANASONIC EFD–A400K04B  
OR EQUIVALENT  
V+  
MC14011UB  
X1  
D
out  
FROM MC145026  
470 pF  
470 pF  
Figure 19. Using a Ceramic Resonator to Generate Carrier Frequency  
MOTOROLA  
MC145026MC145027MC145028SC41343SC41344  
17  
+ 5 V  
10 k  
A1  
1 mH — TOKO TYPE 7PA OR 10PA  
OR EQUIVALENT  
10  
µF  
10 kΩ  
10 µF  
22 k  
0.01  
µF  
2N5088  
2N5086  
2N5088  
0.01 µF  
1 kΩ  
10 kΩ  
A2  
V1  
+
100  
6.8 kΩ  
2.2 kΩ  
OPTICAL  
FILTER  
1/4 MC34074  
1
µF  
1N914  
1N914  
4.7 kΩ  
0.01 µF  
1 M  
100 k  
1 M  
10 kΩ  
1N914  
A3  
+
1 kΩ  
22 kΩ  
V1  
+
+
A4  
V2  
A5  
1/4 MC34074  
V3  
1/4 MC34074  
1000 pF  
47 kΩ  
1/4 MC34074  
+ 5 V  
390 k  
180 k  
FOR APPROX. 4 kHz  
FOR APPROX. 9 kHz  
1000 pF  
750 k  
360 k  
FOR APPROX. 4 kHz  
FOR APPROX. 9 kHz  
0.01 µF  
4.7 kΩ  
V2  
V1  
2.7 V  
2.5 V  
R1  
R2/C2  
VT  
C1  
390  
MC145027/28  
D
V
in  
2.2 k  
DATA OUT  
MC145027 ONLY  
V
DD  
SS  
4
10 µF  
V3  
1.3 V  
10 µF  
9 FOR MC145027  
5 FOR MC145028  
10 µF  
+ 5 V  
2.7 k  
ADDRESS  
SWITCHES  
Figure 20. Infrared Receiver  
MC145026MC145027MC145028SC41343SC41344  
MOTOROLA  
18  
PACKAGE DIMENSIONS  
P SUFFIX  
PLASTIC DIP (DUAL IN–LINE PACKAGE)  
CASE 648–08  
NOTES:  
–A–  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.  
5. ROUNDED CORNERS OPTIONAL.  
16  
1
9
8
B
S
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
F
MIN  
MAX  
0.770  
0.270  
0.175  
0.021  
0.70  
MIN  
18.80  
6.35  
3.69  
0.39  
1.02  
MAX  
19.55  
6.85  
4.44  
0.53  
1.77  
F
0.740  
0.250  
0.145  
0.015  
0.040  
C
L
SEATING  
–T–  
G
H
J
K
L
0.100 BSC  
0.050 BSC  
2.54 BSC  
1.27 BSC  
PLANE  
K
M
0.008  
0.015  
0.130  
0.305  
10  
0.21  
0.38  
3.30  
7.74  
10  
H
J
0.110  
0.295  
0
2.80  
7.50  
0
G
D 16 PL  
0.25 (0.010)  
M
S
0.020  
0.040  
0.51  
1.01  
M
M
T
A
D SUFFIX  
SOG (SMALL OUTLINE GULL–WING) PACKAGE  
CASE 751B–05  
–A–  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
16  
9
8
–B–  
P 8 PL  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
M
S
0.25 (0.010)  
B
1
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
G
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
MIN  
9.80  
3.80  
1.35  
0.35  
0.40  
MAX  
10.00  
4.00  
1.75  
0.49  
1.25  
MIN  
MAX  
0.393  
0.157  
0.068  
0.019  
0.049  
F
0.386  
0.150  
0.054  
0.014  
0.016  
R X 45  
K
C
F
G
J
K
M
P
R
1.27 BSC  
0.050 BSC  
–T–  
SEATING  
PLANE  
0.19  
0.10  
0
0.25  
0.25  
7
0.008  
0.004  
0
0.009  
0.009  
7
J
M
D
16 PL  
5.80  
0.25  
6.20  
0.50  
0.229  
0.010  
0.244  
0.019  
M
S
S
0.25 (0.010)  
T
B
A
MOTOROLA  
MC145026MC145027MC145028SC41343SC41344  
19  
DW SUFFIX  
SOG (SMALL OUTLINE GULL–WING) PACKAGE  
CASE 751G–02  
–A–  
16  
9
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION.  
–B–  
8X P  
M
M
0.010 (0.25)  
B
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER  
SIDE.  
1
8
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN  
EXCESS OF D DIMENSION AT MAXIMUM  
MATERIAL CONDITION.  
J
16X D  
M
S
S
0.010 (0.25)  
T
A
B
F
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
MIN  
10.15  
7.40  
2.35  
0.35  
0.50  
MAX  
10.45  
7.60  
2.65  
0.49  
0.90  
MIN  
MAX  
0.411  
0.299  
0.104  
0.019  
0.035  
0.400  
0.292  
0.093  
0.014  
0.020  
R X 45  
C
F
G
J
K
M
P
R
1.27 BSC  
0.050 BSC  
–T–  
0.25  
0.10  
0
0.32  
0.25  
7
0.010  
0.004  
0
0.012  
0.009  
7
M
SEATING  
14X G  
K
PLANE  
10.05  
0.25  
10.55  
0.75  
0.395  
0.010  
0.415  
0.029  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
Mfax is a trademark of Motorola, Inc.  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; SPD, Strategic Planning Office; 4-32-1,  
P.O. Box 5405, Denver, Colorado, 80217. 1-303-675-2140 or 1-800-441-2447 Nishi-Gotanda; Shinagawa-ku, Tokyo 141, Japan. 81-3-5487-8488  
Mfax : RMFAX0@email.sps.mot.com – TOUCHTONE 1-602-244-6609 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
Motorola Fax Back System  
– US & Canada ONLY 1-800-774-1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298  
– http://sps.motorola.com/mfax/  
HOME PAGE: http://motorola.com/sps/  
CUSTOMER FOCUS CENTER: 1-800-521-6274  
MC145026/D  

相关型号:

SC41344

Encoder and Decoder Pairs CMOS
MOTOROLA

SC41344D

Encoder and Decoder Pairs CMOS
MOTOROLA

SC41344DW

Encoder and Decoder Pairs
MOTOROLA

SC41344DW

 Encoder and Decoder Pairs
FREESCALE

SC41344P

Encoder and Decoder Pairs
MOTOROLA

SC41344P

 Encoder and Decoder Pairs
FREESCALE

SC414

6A Integrated FET Regulator with 5V LDO
SEMTECH

SC414EVB

6A Integrated FET Regulator with 5V LDO
SEMTECH

SC414MLTRT

6A Integrated FET Regulator with 5V LDO
SEMTECH

SC415

Dual Synchronous Buck Controller
SEMTECH

SC4150

Negative Voltage Hot Swap Controller
SEMTECH

SC4150HIS-4TRT

Negative Voltage Hot Swap Controller
SEMTECH