SC931FAR2 [MOTOROLA]

PLL BASED CLOCK DRIVER, 6 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP32, TQFP-32;
SC931FAR2
型号: SC931FAR2
厂家: MOTOROLA    MOTOROLA
描述:

PLL BASED CLOCK DRIVER, 6 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP32, TQFP-32

驱动 输出元件 逻辑集成电路
文件: 总8页 (文件大小:154K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SEMICONDUCTOR TECHNICAL DATA  
The SC931 is a 3.3V compatible, PLL based clock driver device targeted for high performance clock applications. With output  
frequencies of up to 140MHz and output skews of 300ps the SC931 is ideal for the most demanding clock distribution designs.  
The device employs a fully differential PLL design to minimize cycle to cycle and long term jitter. This parameter is of significant  
importance when the clock driver is providing the reference clock for PLL’s on board todays microprocessors and ASiC’s. The  
device offers 6 low skew outputs, and a choice between internal or external feedback. The feedback option adds to the flexibility  
of the device, providing numerous input to output frequency relationships.  
Differential LVPECL Reference Input  
Fully Integrated PLL  
Output Shut Down Mode  
Output Frequency up to 140MHz  
FA SUFFIX  
32–LEAD TQFP PACKAGE  
CASE 873A–02  
Compatible with PowerPC and Intel Microprocessors  
32–Lead TQFP Packaging  
Power Down Mode  
±100ps Typical Cycle–to–Cycle Jitter  
The SC931 offers two power saving features for power conscious portable or “green” designs. The power down pin will  
seemlessly reduce all of the clock rates by one half so that the system will run at half the potential clock rate to extend battery life.  
The POWER_DN pin is synchronized internally to the slowest output clock rate. This allows the transition in and out of the  
power–down mode to be output glitch free. In addition, the shut down control pins will turn off various combinations of clock  
outputs while leaving a subset active to allow for total processor shut down while maintaining system monitors to “wake up” the  
system when signaled. During shut down, the PLL will remain locked, if internal feedback is used, so that wake up time will be  
minimized. The shut down and power down pins can be combined for the ultimate in power savings. The Shut_Dn pins are  
synchronized to the clock internal to the chip to eliminate the possibility of generating runt pulses.  
An internal feedback divide by 8 of the VCO frequency is compared with the input reference provided. The internal VCO is  
running at 8x the input reference clock. The outputs can be configured to run at 4x, 2x, 1.25x or 0.66x the input reference  
frequency. If the external feedback is selected, one of the SC931’s outputs must be connected to the Ext_FB pin. Using the  
external feedback, numerous input/output frequency relationships can be developed.  
The SC931 is fully 3.3V compatible and requires no external loop filter components. All control inputs accept LVCMOS or  
LVTTL compatible levels while the outputs provide LVCMOS levels with the capability to drive terminated 50transmission lines.  
For series terminated applications, each output can drive two 50transmission lines, effectively increasing the fanout to 1:12.  
The device is packaged in a 32–lead TQFP package to provide the optimum combination of board density and cost.  
PowerPC is a trademark of International Business Machines Corporation. Pentium is a trademark of Intel Corporation.  
This document contains information on a product under development. Motorola reserves the right to change or  
discontinue this product without notice.  
6/98  
REV 0  
Motorola, Inc. 1998  
SC931  
FUNCTION TABLES  
TCLK_Sel  
Reference  
0
1
PECL_CLK  
TCLK  
24  
23  
22  
21  
20  
19  
18  
17  
PLL_En  
PLL Status  
GNDO  
Qa1  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
GNDO  
Qc1  
0
1
Test Mode  
PLL Enabled  
Qa0  
Qc0  
ExtFB_Sel  
Reference  
VCCO  
Div_Sela  
Div_Selb  
Div_Selc  
NC  
VCCO  
Ext_FB  
Shut_Dn1  
Shut_Dn0  
NC  
0
1
Int. ÷8  
Ext_FB  
SC931  
Power_Dn  
PLL Status  
0
1
VCO/1  
VCO/2  
Div_Sela,b,c  
Qa  
Qb  
Qc  
1
2
3
4
5
6
7
8
0
1
÷2  
÷4  
÷2  
÷4  
÷4  
÷6  
MR/Tristate  
PLL Status  
0
1
Disabled  
Enabled  
Shut_Dn1 Shut_Dn0  
Div_Seln  
Figure 1. 32–Lead Pinout (Top View)  
0
0
1
1
0
1
0
1
Qb & Qc Low, Qa Toggle  
Qa & Qb Low, Qc Toggle  
Qb Low, Qa & Qc Toggle  
All Toggle  
(Pullup)  
(Pullup)  
Power_Dn  
PLL_En  
(Pulldown)  
(Pullup)  
TCLK_Sel  
TCLK  
SC931  
(Pullup)  
Qa0  
PECL_CLK  
÷
2/  
÷
4
4
PHASE  
DETECTOR  
VCO  
(None)  
PECL_CLK  
Ext_FB  
Qa1  
÷2  
LPF  
(Pullup)  
Qb0  
Qb1  
÷2/  
÷
÷8  
(Pulldown)  
ExtFB_Sel  
(Pulldown)  
(Pulldown)  
Div_Sela  
Div_Selb  
Qc0  
Qc1  
÷4/÷6  
(Pullup)  
Shut_Dn0  
Shut_Dn1  
Div_Selc  
DISABLE  
LOGIC  
(Pullup)  
(Pulldown)  
POWER–ON RESET  
(Pullup)  
MR/Tristate  
Figure 2. Logic Diagram  
MOTOROLA  
2
SC931  
VCO  
VCO/2  
Power_Dn  
Qa (  
Qb (  
Qc (  
÷2)  
÷4)  
÷6)  
Figure 3. Power_Dn Timing Diagram  
Qa  
Qb  
Qc  
SHUT_DN0  
SHUT_DN1  
Qa (  
Qb (  
Qc (  
÷2)  
÷4)  
÷6)  
SHUT_DN0  
SHUT_DN1  
Figure 4. Shut_Dn Timing Diagram  
3
MOTOROLA  
SC931  
ABSOLUTE MAXIMUM RATINGS*  
Symbol  
Parameter  
Min  
–0.3  
–0.3  
Max  
Unit  
V
V
V
Supply Voltage  
Input Voltage  
Input Current  
4.6  
CC  
V
+ 0.3  
V
I
DD  
I
IN  
±20  
mA  
°C  
T
Stor  
Storage Temperature Range  
–40  
125  
* Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or  
conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute–maximum–rated conditions is  
not implied.  
PLL INPUT REFERENCE CHARACTERISTICS (T = 0 to 70°C)  
A
Symbol  
Characteristic  
TCLK Input Rise/Falls  
Min  
Max  
3.0  
Unit  
ns  
Condition  
t , t  
r f  
f
Reference Input Frequency  
Reference Input Duty Cycle  
10  
25  
Note 1.  
75  
MHz  
%
ref  
f
refDC  
1. Maximum input reference frequency is limited by the VCO lock range and the feedback divider.  
DC CHARACTERISTICS (T = 0° to 70°C, V  
= 3.3V ±5%)  
CC  
A
Symbol  
Characteristic  
Input HIGH Voltage  
Min  
Typ  
Max  
3.6  
Unit  
V
Condition  
V
V
V
V
2.0  
IH  
Input LOW Voltage  
0.8  
V
IL  
Output HIGH Voltage  
Output LOW Voltage  
Input Current  
2.4  
V
I
I
= –20mA (Note 2.)  
= 20mA (Note 2.)  
OH  
OL  
OH  
0.5  
±120  
85  
V
OL  
I
I
I
µA  
mA  
mA  
pF  
pF  
Note 3.  
IN  
Maximum Core Supply Current  
Maximum PLL Supply Current  
65  
15  
CC  
20  
CCPLL  
C
C
4
IN  
25  
Per Output  
pd  
2. The SC931 outputs can drive series or parallel terminated 50(or 50to V /2) transmission lines on the incident edge (see Applications Info  
CC  
section).  
3. Inputs have pull–up/pull–down resistors which affect input current.  
MOTOROLA  
4
SC931  
SC931 AC CHARACTERISTICS (T = 0° to 70°C, V  
= 3.3V ±5%)  
Min  
A
CC  
Symbol  
Characteristic  
Crystal Oscillator Frequency Range  
Input Reference Frequency  
Typ  
Max  
20  
Unit  
MHz  
MHz  
ps  
Condition  
f
f
t
10  
Note NO TAG, Note 6.  
Ref = TCLK  
xtal  
Note 6.  
Note 6.  
ref  
os  
Output–to–Output Skew  
(Note 4.)  
Same Frequency  
Diff Frequency  
Same Frequency  
Diff Frequency  
200  
300  
300  
450  
300  
400  
400  
600  
f
f
f
f
100MHz  
100MHz  
> 100MHz  
> 100MHz  
max  
max  
max  
max  
f
f
VCO Lock Range  
Power_Dn = 0  
100  
280  
MHz  
MHz  
VCO  
Maximum Output Frequency  
Qa, Qb (÷2)  
Qa, Qb, Qc (÷4)  
Qc (÷6)  
140  
80  
47  
Note 4.  
max  
t
t
TCLK to EXT_FB Delay  
–600  
–100  
400  
ps  
ps  
f
= 50MHz, FB = ÷4  
pd  
ref  
Output Duty Cycle (Note 4.)  
t
/2  
t
/2  
t
/2  
pw  
CYCLE  
–750  
CYCLE  
±500  
CYCLE  
+750  
t , t  
r f  
Output Rise/Fall Time (Note 4.)  
Output Disable Time  
0.1  
2.0  
2.0  
1.0  
8.0  
10  
ns  
ns  
ns  
ps  
ms  
0.8 to 2.0V  
50to V /2  
t
t
t
t
, t  
PLZ PHZ  
CC  
Output Enable Time  
50to V /2  
PZL  
jitter  
lock  
CC  
Cycle–to–Cycle Jitter (Peak–to–Peak)  
Maximum PLL Lock Time  
±100  
Note 5.  
10  
4. Measured with 50to V /2 termination.  
CC  
5. See Applications Info section for more jitter information.  
6. Input reference frequency is bounded by VCO lock range and feedback divide selection.  
5
MOTOROLA  
SC931  
APPLICATIONS INFORMATION  
Programming the SC931  
The relationship between the input reference and the  
output frequency is also very flexible. Table 2 shows the  
multiplication factors between the inputs and outputs when  
the internal feedback option is used. For external feedback  
Table 1 can be used to determine the multiplication factor,  
there are too many potential combinations to tabularize the  
external feedback condition. Figure 5 and Figure 6 illustrate  
some programming possibilities, although not exhaustive it is  
representative of the potential applications.  
The SC931 clock driver outputs can be configured into  
several frequency relationships, in addition the external  
feedback option allows for a great deal of flexibility in  
establishing unique input to output frequency relationships.  
The output dividers for the three output groups allows the  
user to configure the outputs into 1:1, 2:1, 3:1, 3:2 and 3:2:1  
frequency ratios. The use of even dividers ensures that the  
output duty cycle is always 50%. Table 1 illustrates the  
various output configurations, the table describes the outputs  
using the VCO frequency as a reference. As an example for a  
3:2:1 relationship the Qa outputs would be set at VCO/2, the  
Qb’s at VCO/4 and the Qc’s at VCO/6. These settings will  
provide output frequencies with a 3:2:1 relationship.  
The division settings establish the output relationship, but  
one must still ensure that the VCO will be stable given the  
frequency of the outputs desired. The VCO lock range can be  
found in the specification tables. The feedback frequency  
and the Power_Dn pin can be used to situate the VCO into a  
frequency range in which the PLL will be stable. The design  
of the PLL is such that for output frequencies between 25 and  
140MHz the SC931 can generally be configured into a stable  
region.  
Table 1. Programmable Output Frequency Relationships  
(Power_Dn = ‘0’)  
INPUTS  
OUTPUTS  
Qb  
Div_Sela Div_Selb Div_Selc  
Qa  
Qc  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
VCO/2 VCO/2 VCO/4  
VCO/2 VCO/2 VCO/6  
VCO/2 VCO/4 VCO/4  
VCO/2 VCO/4 VCO/6  
VCO/4 VCO/2 VCO/4  
VCO/4 VCO/2 VCO/6  
VCO/4 VCO/4 VCO/4  
VCO/4 VCO/4 VCO/6  
Table 2. Input Reference/Output Frequency Relationships (Internal Feedback Only)  
INPUTS  
OUTPUTS  
Qb  
Qa  
Qc  
Div_Sela  
Div_Selb  
Div_Selc  
Power_Dn=0 Power_Dn=1 Power_Dn=0 Power_Dn=1 Power_Dn=0 Power_Dn=1  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
4x  
4x  
4x  
4x  
2x  
2x  
2x  
2x  
2x  
2x  
2x  
2x  
x
x
x
x
4x  
4x  
2x  
2x  
4x  
4x  
2x  
2x  
2x  
2x  
x
2x  
4/3x  
2x  
4/3x  
2x  
4/3x  
2x  
4/3x  
x
2/3x  
x
2/3x  
x
2/3x  
x
2/3x  
x
2x  
2x  
x
x
SC931  
SC931  
2
2
2
2
‘0’  
Div_Sela  
Div_Selb  
Div_Selc  
ExtFB_Sel  
‘1’  
‘1’  
‘0’  
‘0’  
Div_Sela  
Div_Selb  
Div_Selc  
Qa  
Qb  
Qc  
66.66MHz (Processor)  
Qa  
Qb  
Qc  
33.33MHz  
33.33MHz  
33.33MHz  
‘1’  
‘0’  
‘0’  
33.33MHz (PCI)  
33.33MHz (PCI)  
ExtFB_Sel  
2
2
16.66MHz  
Input Ref  
16.66MHz  
Input Ref  
Figure 5. Dual Frequency Configuration  
Figure 6. Single Frequency Configuration  
MOTOROLA  
6
SC931  
OUTLINE DIMENSIONS  
FA SUFFIX  
TQFP PACKAGE  
CASE 873A–02  
ISSUE A  
4X  
A
A1  
0.20 (0.008) AB T–U  
Z
32  
25  
1
–U–  
V
–T–  
B
AE  
AE  
P
B1  
DETAIL Y  
–Z–  
V1  
17  
8
DETAIL Y  
9
4X  
0.20 (0.008) AC T–U  
Z
9
NOTES:  
S1  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
S
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLANE –AB– IS LOCATED AT BOTTOM OF  
LEAD AND IS COINCIDENT WITH THE LEAD  
WHERE THE LEAD EXITS THE PLASTIC BODY AT  
THE BOTTOM OF THE PARTING LINE.  
4. DATUMS –T–, –U–, AND –Z– TO BE DETERMINED  
AT DATUM PLANE –AB–.  
DETAIL AD  
G
5. DIMENSIONS S AND V TO BE DETERMINED AT  
SEATING PLANE –AC–.  
–AB–  
–AC–  
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS  
0.250 (0.010) PER SIDE. DIMENSIONS A AND B  
DO INCLUDE MOLD MISMATCH AND ARE  
DETERMINED AT DATUM PLANE –AB–.  
7. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. DAMBAR PROTRUSION SHALL  
NOT CAUSE THE D DIMENSION TO EXCEED  
0.520 (0.020).  
SEATING  
PLANE  
0.10 (0.004) AC  
BASE  
METAL  
N
8. MINIMUM SOLDER PLATE THICKNESS SHALL BE  
0.0076 (0.0003).  
9. EXACT SHAPE OF EACH CORNER MAY VARY  
FROM DEPICTION.  
F
D
8X M  
MILLIMETERS  
MIN MAX  
7.000 BSC  
3.500 BSC  
7.000 BSC  
3.500 BSC  
INCHES  
MIN MAX  
0.276 BSC  
0.138 BSC  
0.276 BSC  
0.138 BSC  
R
J
DIM  
A
A1  
B
B1  
C
D
E
F
G
H
J
SECTION AE–AE  
E
C
1.400  
1.600  
0.450  
1.450  
0.400  
0.055  
0.063  
0.018  
0.057  
0.016  
0.300  
1.350  
0.300  
0.012  
0.053  
0.012  
W
0.800 BSC  
0.031 BSC  
Q
H
K
X
0.050  
0.090  
0.500  
0.150  
0.200  
0.700  
0.002  
0.004  
0.020  
0.006  
0.008  
0.028  
K
M
N
P
12 REF  
12 REF  
DETAIL AD  
0.090  
0.160  
0.004  
0.006  
0.400 BSC  
0.016 BSC  
Q
R
1
5
1
5
0.150  
0.250  
0.006  
0.010  
S
9.000 BSC  
0.354 BSC  
S1  
V
V1  
W
X
4.500 BSC  
9.000 BSC  
4.500 BSC  
0.200 REF  
1.000 REF  
0.177 BSC  
0.354 BSC  
0.177 BSC  
0.008 REF  
0.039 REF  
7
MOTOROLA  
SC931  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
Mfax is a trademark of Motorola, Inc.  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; SPD, Strategic Planning Office, 141,  
P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan. 81–3–5487–8488  
Customer Focus Center: 1–800–521–6274  
Mfax : RMFAX0@email.sps.mot.com – TOUCHTONE 1–602–244–6609  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
Motorola Fax Back System  
– US & Canada ONLY 1–800–774–1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
– http://sps.motorola.com/mfax/  
HOME PAGE: http://motorola.com/sps/  
SC931/D  

相关型号:

SC9351

AUDIO SYSTEM CONTROL MCU
SILAN

SC941110

Power Solid State Relay
CELDUC

SC941160

Power Solid State Relay
CELDUC

SC942110

Power Solid State Relay
CELDUC

SC942120

Power Solid State Relay
CELDUC

SC942160

Power Solid State Relay
CELDUC

SC942900

Power Solid State Relay
CELDUC

SC944110

Power Solid State Relay
CELDUC

SC944160

Power Solid State Relay
CELDUC

SC945

Mini size of Discrete semiconductor elements
ETC

SC945100

Power Solid State Relay
CELDUC

SC945160

Power Solid State Relay
CELDUC