SN54LS90J [MOTOROLA]

DECADE COUNTER; DIVIDE-BY-TWELVE COUNTER; 4-BIT BINARY COUNTER; 十进制计数器;除以十二个月的计数器; 4位二进制计数器
SN54LS90J
型号: SN54LS90J
厂家: MOTOROLA    MOTOROLA
描述:

DECADE COUNTER; DIVIDE-BY-TWELVE COUNTER; 4-BIT BINARY COUNTER
十进制计数器;除以十二个月的计数器; 4位二进制计数器

计数器 触发器 逻辑集成电路
文件: 总6页 (文件大小:113K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN54/74LS90  
SN54/74LS92  
SN54/74LS93  
DECADE COUNTER;  
DIVIDE-BY-TWELVE COUNTER;  
4-BIT BINARY COUNTER  
DECADE COUNTER;  
DIVIDE-BY-TWELVE COUNTER;  
4-BIT BINARY COUNTER  
The SN54/74LS90, SN54/74LS92 and SN54/74LS93 are high-speed  
4-bit ripple type counters partitioned into two sections. Each counter has a di-  
vide-by-two section and either a divide-by-five (LS90), divide-by-six (LS92) or  
divide-by-eight (LS93) section which are triggered by a HIGH-to-LOW transi-  
tion on the clock inputs. Each section can be used separately or tied together  
(Q to CP) to form BCD, bi-quinary, modulo-12, or modulo-16 counters. All of  
the counters have a 2-input gated Master Reset (Clear), and the LS90 also  
has a 2-input gated Master Set (Preset 9).  
LOW POWER SCHOTTKY  
Low Power Consumption . . . Typically 45 mW  
High Count Rates . . . Typically 42 MHz  
Choice of Counting Modes . . . BCD, Bi-Quinary, Divide-by-Twelve,  
Binary  
J SUFFIX  
CERAMIC  
CASE 632-08  
14  
1
Input Clamp Diodes Limit High Speed Termination Effects  
PIN NAMES  
LOADING (Note a)  
N SUFFIX  
HIGH  
LOW  
PLASTIC  
CASE 646-06  
CP  
CP  
CP  
Clock (Active LOW going edge) Input to  
÷2 Section  
0.5 U.L.  
1.5 U.L.  
0
1
1
14  
1
Clock (Active LOW going edge) Input to  
÷5 Section (LS90), ÷6 Section (LS92)  
0.5 U.L.  
0.5 U.L.  
2.0 U.L.  
1.0 U.L.  
Clock (Active LOW going edge) Input to  
÷8 Section (LS93)  
D SUFFIX  
SOIC  
CASE 751A-02  
MR , MR  
1
MS , MS  
Master Reset (Clear) Inputs  
0.5 U.L.  
0.5 U.L.  
10 U.L.  
10 U.L.  
0.25 U.L.  
0.25 U.L.  
5 (2.5) U.L.  
5 (2.5) U.L.  
2
2
14  
Master Set (Preset-9, LS90) Inputs  
Output from ÷2 Section (Notes b & c)  
Outputs from ÷5 (LS90), ÷6 (LS92),  
÷ 8 (LS93) Sections (Note b)  
1
1
Q
0
Q , Q , Q  
1 3  
2
ORDERING INFORMATION  
NOTES:  
a. 1 TTL Unit Load (U.L.) = 40 µA HIGH/1.6 mA LOW.  
b. The Output LOW drive factor is 2.5 U.L. for Military, (54) and 5 U.L. for commercial (74)  
b. Temperature Ranges.  
SN54LSXXJ  
SN74LSXXN  
SN74LSXXD  
Ceramic  
Plastic  
SOIC  
c. The Q Outputs are guaranteed to drive the full fan-out plus the CP input of the device.  
0
1
d. To insure proper operation the rise (t ) and fall time (t ) of the clock must be less than 100 ns.  
r
f
LOGIC SYMBOL  
LS92  
LS90  
LS93  
6
1
7
2
MS  
14  
1
CP  
CP  
14  
1
CP  
0
14  
1
CP  
CP  
0
0
CP  
1
1
1
MR  
Q Q Q Q  
0 1 2 3  
MR  
Q Q Q Q  
0 1 2 3  
MR  
Q Q Q Q  
0 1 2 3  
1 2  
1
2
7
1
2
2
3
12  
9
8 11  
2
3
12  
9
8
11  
6
12 11  
= PIN 5  
9
8
V
= PIN 5  
V
V
= PIN 5  
CC  
CC  
GND = PIN 10  
NC = PINS 2, 3, 4, 13  
CC  
GND = PIN 10  
NC = PIN 4, 6, 7, 13  
GND = PIN 10  
NC = PINS 4, 13  
FAST AND LS TTL DATA  
5-90  
SN54/74LS90 SN54/74LS92 SN54/74LS93  
LOGIC DIAGRAM  
CONNECTION DIAGRAM  
DIP (TOP VIEW)  
LS90  
6
MS  
1
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
CP  
MR  
MR  
CP  
1
1
2
0
MS  
2
7
NC  
S
S
S
D
S
D
D
D
J
Q
J
Q
Q
R
Q
Q
J
Q
Q
14  
Q
0
CP  
CP  
K
CP  
K
CP  
S
CP  
K
0
Q
3
NC  
CC  
Q
C
C
C
C
D
D
D
D
GND  
V
1
2
Q
1
MS  
1
2
CP  
1
8
Q
2
MS  
MR  
MR  
1
2
12  
9
8
11  
3
Q
Q
Q
Q
3
0
1
2
NC = NO INTERNAL CONNECTION  
= PIN NUMBERS  
= PIN 5  
NOTE:  
The Flatpak version has the same  
pinouts (Connection Diagram) as  
the Dual In-Line Package.  
V
CC  
GND = PIN 10  
LOGIC DIAGRAM  
CONNECTION DIAGRAM  
DIP (TOP VIEW)  
LS92  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
CP  
CP  
1
0
NC  
NC  
NC  
NC  
J
Q
Q
J
Q
J
Q
J
Q
Q
14  
Q
0
CP  
0
CP  
K
CP  
K
CP  
K
CP  
K
Q
Q
Q
1
C
C
C
C
D
D
D
D
GND  
V
CC  
1
CP  
1
Q
2
MR  
1
2
6
MR  
MR  
1
2
8
12  
11  
9
8
MR  
Q
3
7
Q
Q
Q
Q
3
0
1
2
NC = NO INTERNAL CONNECTION  
= PIN NUMBERS  
= PIN 5  
GND = PIN 10  
NOTE:  
V
The Flatpak version has the same  
pinouts (Connection Diagram) as  
the Dual In-Line Package.  
CC  
LOGIC DIAGRAM  
CONNECTION DIAGRAM  
DIP (TOP VIEW)  
LS93  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
CP  
MR  
MR  
CP  
1
1
2
0
J
Q
Q
J
Q
J
Q
Q
J
Q
Q
NC  
14  
CP  
CP  
0
CP  
K
CP  
K
CP  
K
CP  
K
Q
0
Q
D
C
C
C
C
D
D
D
Q
3
NC  
1
2
GND  
V
CC  
1
Q
1
NC  
MR  
MR  
1
2
12  
9
8
11  
3
8
Q
2
NC  
Q
Q
Q
Q
3
0
1
2
NC = NO INTERNAL CONNECTION  
= PIN NUMBERS  
= PIN 5  
GND = PIN 10  
V
CC  
NOTE:  
The Flatpak version has the same  
pinouts (Connection Diagram) as  
the Dual In-Line Package.  
FAST AND LS TTL DATA  
5-91  
SN54/74LS90 SN54/74LS92 SN54/74LS93  
FUNCTIONAL DESCRIPTION  
The LS90, LS92, and LS93 are 4-bit ripple type Decade,  
Divide-By-Twelve, and Binary Counters respectively. Each  
device consists of four master/slave flip-flops which are  
internally connected to provide a divide-by-two section and a  
divide-by-five (LS90), divide-by-six (LS92), or divide-by-eight  
(LS93) section. Each section has a separate clock input which  
initiates state changes of the counter on the HIGH-to-LOW  
clock transition. State changes of the Q outputs do not occur  
simultaneously because of internal ripple delays. Therefore,  
decoded output signals are subject to decoding spikes and  
C. Divide-By-Two and Divide-By-Five Counter — No external  
interconnectionsare required. The first flip-flop is used as a  
binary element for the divide-by-two function (CP as the  
0
inputand Q astheoutput). TheCP inputisusedtoobtain  
0
1
binary divide-by-five operation at the Q output.  
3
LS92  
A. Modulo 12, Divide-By-Twelve Counter — The CP input  
1
must be externally connected to the Q output. The CP in-  
0
0
put receives the incoming count and Q produces a sym-  
3
should not be used for clocks or strobes. The Q output of  
0
metrical divide-by-twelve square wave output.  
each device is designed and specified to drive the rated  
fan-out plus the CP input of the device.  
A gated AND asynchronous Master Reset (MR MR ) is  
provided on all counters which overrides and clocks and  
resets (clears) all the flip-flops. A gated AND asynchronous  
1
B. Divide-By-Two and Divide-By-Six Counter —No external  
interconnectionsare required. The first flip-flop is used as a  
1
2
binary element for the divide-by-two function. The CP in-  
1
put is used to obtain divide-by-three operation at the Q  
1
Master Set (MS MS ) is provided on the LS90 which  
1
2
and Q outputs and divide-by-six operation at the Q out-  
2
3
overrides the clocks and the MR inputs and sets the outputs to  
nine (HLLH).  
put.  
Since the output from the divide-by-two section is not  
internally connected to the succeeding stages, the devices  
may be operated in various counting modes.  
LS93  
A. 4-Bit Ripple Counter — The output Q must be externally  
0
connected to input CP . The input count pulses are applied  
1
LS90  
to input CP . Simultaneous divisions of 2, 4, 8, and 16 are  
0
performed at the Q , Q , Q , and Q outputs as shown in  
A. BCD Decade (8421) Counter — The CP input must be ex-  
1
0
1
2
3
the truth table.  
ternallyconnectedtotheQ output.TheCP inputreceives  
0
0
the incoming count and a BCD count sequence is pro-  
duced.  
B. 3-Bit Ripple Counter— The input count pulses are applied  
to input CP . Simultaneous frequency divisions of 2, 4, and  
1
8 are available at the Q , Q , and Q outputs. Independent  
B. Symmetrical Bi-quinary Divide-By-Ten Counter — The Q  
3
1
2
3
use of the first flip-flop is available if the reset function coin-  
cides with reset of the 3-bit ripple-through counter.  
output must be externally connected to the CP input. The  
0
inputcount is then applied to the CP input and a divide-by-  
1
ten square wave is obtained at output Q .  
0
FAST AND LS TTL DATA  
5-92  
SN54/74LS90 SN54/74LS92 SN54/74LS93  
LS90  
LS92 AND LS93  
MODE SELECTION  
MODE SELECTION  
RESET/SET INPUTS  
MR MR MS MS  
OUTPUTS  
RESET  
INPUTS  
OUTPUTS  
Q
Q
Q
Q
3
1
2
1
2
0
1
2
MR MR  
Q
Q
Q
Q
3
1
2
0
1
2
H
H
X
L
X
L
H
H
X
X
L
L
X
H
L
X
X
L
X
L
H
X
L
L
L
H
L
L
L
L
H
L
L
L
L
H
L
H
L
H
H
L
L
L
L
L
Count  
Count  
Count  
Count  
Count  
Count  
Count  
L
X
L
L
X
H = HIGH Voltage Level  
L = LOW Voltage Level  
X = Don’t Care  
X
H = HIGH Voltage Level  
L = LOW Voltage Level  
X = Don’t Care  
LS90  
LS92  
TRUTH TABLE  
LS93  
TRUTH TABLE  
BCD COUNT SEQUENCE  
OUTPUT  
COUNT  
OUTPUT  
OUTPUT  
COUNT  
COUNT  
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
3
0
1
2
3
0
1
2
3
0
1
2
0
1
2
3
4
5
6
7
8
9
L
H
L
H
L
H
L
H
L
H
L
L
L
L
L
L
L
L
L
L
L
L
H
H
0
1
2
3
4
5
6
7
8
L
H
L
H
L
H
L
H
L
H
L
L
L
L
L
L
L
L
L
L
0
1
2
3
4
5
6
7
8
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
L
L
L
L
L
L
L
L
L
L
L
L
H
H
H
H
H
H
H
H
L
H
H
L
L
H
H
L
L
L
L
H
H
L
L
L
L
H
H
H
H
L
H
H
L
L
L
L
H
H
H
H
H
H
L
L
L
L
H
H
H
H
L
L
L
H
H
L
H
H
H
H
H
H
H
H
L
L
H
H
L
L
L
9
10  
11  
9
L
10  
11  
12  
13  
14  
15  
H
H
L
L
H
H
NOTE: Output Q is connected to Input  
0
CP for BCD count.  
H
L
1
NOTE: Output Q is connected to Input  
0
CP .  
1
H
NOTE: Output Q is connected to Input  
0
CP .  
1
FAST AND LS TTL DATA  
5-93  
SN54/74LS90 SN54/74LS92 SN54/74LS93  
GUARANTEED OPERATING RANGES  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
V
CC  
Supply Voltage  
54  
74  
4.5  
4.75  
5.0  
5.0  
5.5  
5.25  
V
T
A
Operating Ambient Temperature Range  
54  
74  
55  
0
25  
25  
125  
70  
°C  
I
I
Output Current — High  
Output Current — Low  
54, 74  
0.4  
mA  
mA  
OH  
54  
74  
4.0  
8.0  
OL  
DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)  
Limits  
Min  
Typ  
Max  
Symbol  
Parameter  
Input HIGH Voltage  
Unit  
Test Conditions  
Guaranteed Input HIGH Voltage for  
All Inputs  
V
IH  
2.0  
V
54  
74  
0.7  
0.8  
Guaranteed Input LOW Voltage for  
All Inputs  
V
V
V
Input LOW Voltage  
V
IL  
Input Clamp Diode Voltage  
Output HIGH Voltage  
0.65  
3.5  
1.5  
V
V
V
V
V
= MIN, I = 18 mA  
IN  
IK  
CC  
54  
74  
2.5  
2.7  
= MIN, I  
OH  
= MAX, V = V  
IN  
CC  
IH  
OH  
or V per Truth Table  
IL  
3.5  
V
V
= V  
CC  
MIN,  
= V or V  
IL IH  
54, 74  
74  
0.25  
0.35  
0.4  
0.5  
V
V
I
I
= 4.0 mA  
= 8.0 mA  
CC  
IN  
OL  
V
Output LOW Voltage  
Input HIGH Current  
OL  
per Truth Table  
OL  
20  
µA  
V
V
= MAX, V = 2.7 V  
IN  
CC  
I
IH  
0.1  
mA  
= MAX, V = 7.0 V  
IN  
CC  
Input LOW Current  
MS, MR  
0.4  
2.4  
3.2  
1.6  
I
IL  
CP  
mA  
V
CC  
= MAX, V = 0.4 V  
IN  
0
CP (LS90, LS92)  
1
CP (LS93)  
1
I
I
Short Circuit Current (Note 1)  
Power Supply Current  
20  
–100  
15  
mA  
mA  
V
V
= MAX  
= MAX  
OS  
CC  
CC  
CC  
Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.  
FAST AND LS TTL DATA  
5-94  
SN54/74LS90 SN54/74LS92 SN54/74LS93  
AC CHARACTERISTICS (T = 25°C, V  
CC  
= 5.0 V, C = 15 pF)  
L
A
Limits  
LS92  
Typ  
LS90  
Typ  
LS93  
Typ  
Min  
32  
Max  
Min  
32  
Max  
Min  
32  
Max  
Unit  
MHz  
MHz  
Symbol  
Parameter  
CP Input Clock Frequency  
f
f
MAX  
0
CP Input Clock Frequency  
1
16  
16  
16  
MAX  
t
t
Propagation Delay,  
10  
12  
16  
18  
10  
12  
16  
18  
10  
12  
16  
18  
PLH  
PHL  
ns  
ns  
ns  
ns  
ns  
CP Input to Q Output  
0
0
t
t
32  
34  
48  
50  
32  
34  
48  
50  
46  
46  
70  
70  
PLH  
PHL  
CP Input to Q Output  
0
3
t
t
10  
14  
16  
21  
10  
14  
16  
21  
10  
14  
16  
21  
PLH  
PHL  
CP Input to Q Output  
1
1
t
t
21  
23  
32  
35  
10  
14  
16  
21  
21  
23  
32  
35  
PLH  
PHL  
CP Input to Q Output  
1
2
t
t
21  
23  
32  
35  
21  
23  
32  
35  
34  
34  
51  
51  
PLH  
PHL  
CP Input to Q Output  
1
3
t
t
t
MS Input to Q and Q Outputs  
20  
26  
26  
30  
40  
40  
ns  
ns  
ns  
PLH  
PHL  
PHL  
0
3
MS Input to Q and Q Outputs  
1
2
MR Input to Any Output  
26  
40  
26  
40  
AC SETUP REQUIREMENTS (T = 25°C, V  
CC  
= 5.0 V)  
A
Limits  
LS92  
LS90  
LS93  
Min  
15  
30  
15  
15  
25  
Max  
Min  
15  
Max  
Min  
Max  
Symbol  
Parameter  
CP Pulse Width  
Unit  
ns  
t
15  
30  
W
W
W
W
rec  
0
t
t
t
t
CP Pulse Width  
1
30  
ns  
MS Pulse Width  
ns  
MR Pulse Width  
15  
25  
15  
25  
ns  
Recovery Time MR to CP  
ns  
RECOVERY TIME (t ) is defined as the minimum time required between the end of the reset pulse and the clock transition from HIGH-to-LOW in order to recognize  
rec  
and transfer HIGH data to the Q outputs  
AC WAVEFORMS  
*CP  
1.3 V  
1.3 V  
1.3 V  
t
W
t
t
PLH  
PHL  
Q
1.3 V  
1.3 V  
Figure 1  
*The number of Clock Pulses required between the t  
and t measurements can be determined from the appropriate Truth Tables.  
PHL  
PLH  
MR & MS  
1.3 V  
1.3 V  
PLH  
1.3 V  
1.3 V  
MS  
CP  
t
t
t
t
rec  
W
W
rec  
1.3 V  
1.3 V  
CP  
Q
t
t
PHL  
Q
Q  
3
(LS90)  
0
1.3 V  
1.3 V  
Figure 2  
Figure 3  
FAST AND LS TTL DATA  
5-95  

相关型号:

SN54LS90J-00

LS SERIES, ASYN NEGATIVE EDGE TRIGGERED 3-BIT UP DECADE COUNTER, CDIP14, CERAMIC, DIP-14
TI

SN54LS90JD

LS SERIES, ASYN NEGATIVE EDGE TRIGGERED 3-BIT UP DECADE COUNTER, CDIP14, CERAMIC, DIP-14
MOTOROLA

SN54LS90W

DECADE, DIVIDE-BY-TWELVE AND BINARY COUNTERS
TI

SN54LS90W-10

LS SERIES, ASYN NEGATIVE EDGE TRIGGERED 3-BIT UP DECADE COUNTER, CDFP14
TI

SN54LS91

8-BIT SHIFT REGISTERS
TI

SN54LS91J

8-BIT SHIFT REGISTERS
TI

SN54LS91J-00

LS SERIES, 8-BIT RIGHT SERIAL IN SERIAL OUT SHIFT REGISTER, COMPLEMENTARY OUTPUT, CDIP14
TI

SN54LS91W

8-BIT SHIFT REGISTERS
TI

SN54LS91W-00

LS SERIES, 8-BIT RIGHT SERIAL IN SERIAL OUT SHIFT REGISTER, COMPLEMENTARY OUTPUT, CDFP14
TI

SN54LS91W-10

LS SERIES, 8-BIT RIGHT SERIAL IN SERIAL OUT SHIFT REGISTER, COMPLEMENTARY OUTPUT, CDFP14
TI

SN54LS92

DECADE, DIVIDE-BY-TWELVE AND BINARY COUNTERS
TI

SN54LS92J

DECADE COUNTER; DIVIDE-BY-TWELVE COUNTER; 4-BIT BINARY COUNTER
MOTOROLA