SPC5200CBV400 [MOTOROLA]

MPC5200 Hardware Specifications; MPC5200硬件规格
SPC5200CBV400
型号: SPC5200CBV400
厂家: MOTOROLA    MOTOROLA
描述:

MPC5200 Hardware Specifications
MPC5200硬件规格

微控制器和处理器 外围集成电路 微处理器 PC 时钟
文件: 总76页 (文件大小:1363K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor, Inc.  
MPC5200/D  
Rev. 2, 5/2004  
MPC5200 Hardware  
Specifications  
Topic  
Page  
NOTE:  
The information in this document is subject to  
1
2
3
Overview ......................................1  
change. For the latest data on the MPC5200, visit  
www.mobilegt.com and proceed to the MPC5200  
Product Summary Page.  
Features .......................................1  
Electrical and Thermal  
Characteristics..............................5  
4
5
6
7
Package Description ..................60  
System Design Information ........69  
Ordering Information ..................74  
Document Revision History........75  
1
Overview  
The MPC5200 integrates a high performance MPC603e series G2_LE core with a  
rich set of peripheral functions focused on communications and systems  
integration. The G2_LE core design is based on the PowerPC® core architecture.  
MPC5200 incorporates an innovative BestComm I/O subsystem, which isolates  
routine maintenance of peripheral functions from the embedded G2_LE core. The  
MPC5200 contains a SDRAM/DDR Memory Controller, a flexible External Bus  
Interface, PCI Controller, USB, ATA, Ethernet, six Programmable Serial Controllers  
(PSC), I2C, SPI, CAN, J1850, Timers, and GPIOs.  
2
Features  
Key features are shown below.  
MPC603e series G2_LE core  
— Superscalar architecture  
— 760 MIPS at 400 MHz (-40 to +85 oC)  
— 16 k Instruction cache, 16 k Data cache  
— Double precision FPU  
— Instruction and Data MMU  
— Standard and Critical interrupt capability  
SDRAM / DDR Memory Interface  
— up to 132-MHz operation  
— SDRAM and DDR SDRAM support  
— 256-MByte addressing range per CS, two CS available  
— 32-bit data bus  
— Built-in initialization and refresh  
Flexible multi-function External Bus Interface  
— Supports interfacing to ROM/Flash/SRAM memories or other memory  
mapped devices  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Features  
— 8 programmable Chip Selects  
— Non multiplexed data access using 8/16/32 bit databus with up to 26-bit address  
— Short or Long Burst capable  
— Multiplexed data access using 8/16/32 bit databus with up to 25-bit address  
Peripheral Component Interconnect (PCI) Controller  
— Version 2.2 PCI compatibility  
— PCI initiator and target operation  
— 32-bit PCI Address/Data bus  
— 33- and 66-MHz operation  
— PCI arbitration function  
ATA Controller  
— Version 4 ATA compatible external interface—IDE Disk Drive connectivity  
BestComm DMA subsystem  
— Intelligent virtual DMA Controller  
— Dedicated DMA channels to control peripheral reception and transmission  
— Local memory (SRAM 16 kBytes)  
6 Programmable Serial Controllers (PSC), configurable for the following:  
— UART or RS232 interface  
— CODEC interface for Soft Modem, Master/Slave CODEC Mode, I2S and AC97  
— Full duplex SPI mode  
— IrDA mode from 2400 bps to 4 Mbps  
Fast Ethernet Controller (FEC)  
— Supports 100Mbps IEEE 802.3 MII, 10 Mbps IEEE 802.3 MII, 10 Mbps 7-wire interface  
Universal Serial Bus Controller (USB)  
— USB Revision 1.1 Host  
— Open Host Controller Interface (OHCI)  
— Integrated USB Hub, with two ports.  
Two Inter-Integrated Circuit Interfaces (I2C)  
Serial Peripheral Interface (SPI)  
Dual CAN 2.0 A/B Controller (MSCAN)  
— Motorola Scalable Controller Area Network (MSCAN) architecture  
— Implementation of version 2.0A/B CAN protocol  
— Standard and extended data frames  
J1850 Byte Data Link Controller (BDLC)  
— J1850 Class B data communication network interface compatible and ISO compatible for low  
speed (<125 kbps) serial data communications in automotive applications.  
— Supports 4X mode, 41.6 kbps  
— In-frame response (IFR) types 0, 1, 2, and 3 supported  
2
MPC5200HardwareSpecifications  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Features  
Systems level features  
— Interrupt Controller supports four external interrupt request lines and 47 internal interrupt  
sources  
— GPIO/Timer functions  
– Up to 56 total GPIO pins (depending on functional multiplexing selections) that support a  
variety of interrupt/WakeUp capabilities.  
– Eight GPIO pins with timer capability supporting input capture, output compare, and pulse  
width modulation (PWM) functions  
— Real-time Clock with one-second resolution  
— Systems Protection (watch dog timer, bus monitor)  
— Individual control of functional block clock sources  
— Power management: Nap, Doze, Sleep, Deep Sleep modes  
— Support of WakeUp from low power modes by different sources (GPIO, RTC, CAN)  
Test/Debug features  
— JTAG (IEEE 1149.1 test access port)  
— Common On-chip Processor (COP) debug port  
On-board PLL and clock generation  
Figure 1 shows a simplified MPC5200 block diagram.  
MOTOROLA  
MPC5200HardwareSpecifications  
3
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Features  
MSCAN  
2x  
J1850  
USB  
2x  
SPI  
I2C  
2x  
BestComm DMA  
SRAM 16K  
Ethernet  
PSC  
6x  
Figure 1 Simplified Block Diagram—MPC5200  
MPC5200HardwareSpecifications  
4
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
3
Electrical and Thermal Characteristics  
3.1 DC Electrical Characteristics  
3.1.1 Absolute Maximum Ratings  
The tables in this section describe the MPC5200 DC Electrical characteristics. Table 1 gives the absolute  
maximum ratings.  
1
Table 1 Absolute Maximum Ratings  
Characteristic  
Symbol  
MinMax it SUpnecID  
Supply voltage - G2_LE core and peripheral logic  
Supply voltage - I/O buffers  
VDD_CORE  
–0.3  
–0.3  
1.8  
3.6  
V
V
D1.1  
D1.2  
VDD_IO,  
VDD_MEM_IO  
Supply voltage - System APLL  
Supply voltage - G2_LE APLL  
Input voltage (VDD_IO)  
SYS_PLL_AVDD  
–0.3  
–0.3  
–0.3  
2.1  
2.1  
V
V
V
V
D1.3  
D1.4  
D1.5  
D1.6  
CORE_PLL_AVDD  
Vin  
Vin  
VDD_IO + 0.3  
Input voltage (VDD_MEM_IO)  
–0.3 VDD_MEM_IO  
+ 0.3  
Input voltage overshoot  
Input voltage undershoot  
Storage temperature range  
Vinos  
Vinus  
Tstg  
1.0  
1.0  
150  
V
V
D1.7  
D1.8  
D1.9  
oC  
–55  
1
Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses  
beyond those listed may affect device reliability or cause permanent damage.  
3.1.2 Recommended Operating Conditions  
Table 2 gives the recommended operating conditions.  
Table 2 Recommended Operating Conditions  
Min 1  
Max1  
Characteristic  
Symbol  
Unit SpecID  
Supply voltage - G2_LE core and periph-  
eral logic  
VDD_CORE  
1.42  
1.58  
V
D2.1  
Supply voltage - standard I/O buffers  
VDD_IO  
3.0  
3.0  
3.6  
3.6  
V
V
D2.2  
D2.3  
Supply voltage - memory I/O buffers  
(SDR)  
VDD_MEM_IOSDR  
Supply voltage - memory I/O buffers  
(DDR)  
VDD_MEM_IODDR  
2.42  
2.63  
V
D2.4  
Supply voltage - System APLL  
SYS_PLL_AVDD  
CORE_PLL_AVDD  
Vin  
1.42  
1.42  
0
1.58  
1.58  
V
V
V
V
D2.5  
D2.6  
D2.7  
D2.8  
Supply voltage - G2_LE APLL  
Input voltage - standard I/O buffers  
Input voltage - memory I/O buffers (SDR)  
VDD_IO  
VinSDR  
0
VDD_MEM_IOSDR  
Input voltage - memory I/O buffers (DDR)  
VinDDR  
0
VDD_MEM_IODDR  
V
D2.9  
MOTOROLA  
MPC5200HardwareSpecifications  
5
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
Table 2 Recommended Operating Conditions (continued)  
Min 1  
-40  
Max1  
+85  
Characteristic  
Symbol  
Unit SpecID  
Ambient operating temperature range 2  
TA  
D2.10  
D2.11  
oC  
oC  
Extended ambient operating temperature  
range 3  
TAext  
-40  
+105  
oC  
oC  
Die junction operating temperature range  
Tj  
-40  
-40  
+115  
+125  
D2.12  
D2.13  
Extended die junction operating tempera-  
ture range  
Tjext  
1
These are recommended and tested operating conditions. Proper device operation outside these conditions is not guar-  
anteed.  
2
3
Maximum G2_LE core operating frequency is 400 MHz  
Maximum G2_LE core operating frequency is 264 MHz  
3.1.3 DC Electrical Specifications  
Table 3 gives the DC Electrical characteristics for the MPC5200 at recommended operating conditions  
(see Table 2).  
Table 3 DC Electrical Specifications  
Characteristic  
Input high voltage  
Condition  
Symbol  
Min  
Max  
Unit SpecID  
Input type = TTL  
VDD_IO/VDD_MEM_IOSDR  
VIH  
2.0  
V
V
V
V
D3.1  
D3.2  
D3.3  
D3.4  
Input high voltage  
Input high voltage  
Input high voltage  
Input type = TTL  
VDD_MEM_IODDR  
VIH  
VIH  
VIH  
1.7  
2.0  
2.0  
Input type = PCI  
VDD_IO  
Input type = SCHMITT  
VDD_IO  
Input high voltage  
Input high voltage  
Input low voltage  
SYS_XTAL_IN  
RTC_XTAL_IN  
CVIH  
CVIH  
VIL  
2.0  
2.0  
V
V
V
D3.5  
D3.6  
D3.7  
Input type = TTL  
0.8  
VDD_IO/VDD_MEM_IOSDR  
Input low voltage  
Input type = TTL  
VIL  
0.7  
V
D3.8  
VDD_MEM_IODDR  
Input low voltage  
Input low voltage  
Input type = PCI  
VDD_IO  
VIL  
VIL  
0.8  
0.8  
V
V
D3.9  
Input type = SCHMITT  
VDD_IO  
D3.10  
Input low voltage  
Input low voltage  
Input leakage current  
SYS_XTAL_IN  
RTC_XTAL_IN  
CVIL  
CVIL  
IIN  
0.8  
0.8  
V
V
D3.11  
D3.12  
D3.13  
Vin = 0 or  
+10  
µA  
VDD_IO/VDD_IO_MEMSDR  
(depending on input type 1)  
6
MPC5200HardwareSpecifications  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
Table 3 DC Electrical Specifications (continued)  
Characteristic  
Condition  
Symbol  
Min  
Max  
Unit SpecID  
Input leakage current  
SYS_XTAL_IN  
Vin = 0 or VDD_IO  
IIN  
+10  
µA  
µA  
µA  
D3.14  
D3.15  
D3.16  
Input leakage current  
RTC_XTAL_IN  
Vin = 0 or VDD_IO  
IIN  
+10  
109  
Input current, pullup resis-  
tor  
PULLUP  
VDD_IO  
Vin = 0  
IINpu  
40  
Input current, pullup resis-  
tor - memory I/O buffers  
PULLUP_MEM  
VDD_IO_MEMSDR  
IINpu  
41  
36  
111  
106  
µA  
µA  
D3.17  
D3.18  
Vin = 0  
Input current, pulldown  
resistor  
PULLDOWN  
VDD_IO  
IINpd  
Vin = VDD_IO  
IOH is driver dependent 2  
VDD_IO, VDD_IO_MEMSDR  
Output high voltage  
Output high voltage  
Output low voltage  
Output low voltage  
VOH  
VOHDDR  
VOL  
2.4  
1.7  
V
V
V
V
D3.19  
D3.20  
D3.21  
D3.22  
IOH is driver dependent2  
VDD_IO_MEMDDR  
IOL is driver dependent2  
VDD_IO, VDD_IO_MEMSDR  
0.4  
0.4  
IOL is driver dependent2  
VDD_IO_MEMDDR  
VOLDDR  
DC Injection Current Per  
Pin 3  
ICS  
Cin  
-1.0  
1.0  
15  
mA  
p
D3.23  
F
Capacitance  
Vin = 0V, f = 1 MHz  
D3.24  
1
2
Leakage current is measured with output drivers disabled and pull-up/pull-downs inactive.  
See Table 4 for the typical drive capability of a specific signal pin based on the type of output driver associated with that  
pin as listed in Table 51.  
3
All injection current is transferred to VDD_IO/VDD_IO_MEM. An external load is required to dissipate this current to main-  
tain the power supply within the specified voltage range.  
Total injection current for all digital input-only and all digital input/output pins must not exceed 10 mA. Exceeding this limit  
can cause disruption of normal operation.  
Table 4 Drive Capability of MPC5200 Output Pins  
IOH  
IOL  
Driver Type  
Supply Voltage  
Unit SpecID  
DRV4  
VDD_IO = 3.3V  
VDD_IO = 3.3V  
4
8
4
8
mA  
mA  
mA  
mA  
mA  
mA  
D3.25  
D3.26  
D3.27  
D3.28  
D3.29  
D3.30  
DRV8  
DRV8_OD  
DRV16_MEM  
DRV16_MEM  
PCI  
VDD_IO = 3.3V  
-
8
VDD_IO_MEM = 3.3V  
VDD_IO_MEM = 2.5V  
VDD_IO = 3.3V  
16  
16  
16  
16  
16  
16  
MOTOROLA  
MPC5200HardwareSpecifications  
7
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
3.1.4 Electrostatic Discharge  
CAUTION —  
This device contains circuitry that protects against damage due to high-static voltage  
or electrical fields. However, it is advised that normal precautions be taken to avoid  
application of any voltages higher than maximum-rated voltages. Operational reliability  
is enhanced if unused inputs are tied to an appropriate logic voltage level (i.e., either  
GND or VCC ). Table 7 gives package thermal characteristics for this device.  
Table 5 ESD and Latch-Up Protection Characteristics  
Sym  
Rating  
Min  
2000  
200  
Max  
Unit SpecID  
VHBM Human Body Model (HBM)—JEDEC JESD22-A114-B  
VMM Machine Model (MM)—JEDEC JESD22-A115  
V
V
V
D4.1  
D4.2  
D4.3  
D4.4  
VCDM Charge Device Model (CDM)—JEDEC JESD22-C101  
500  
ILAT Latch-up Current at TA=85oC  
positive  
negative  
+100  
-100  
mA  
mA  
ILAT Latch-up Current at TA=27oC  
D4.5  
positive  
negative  
+200  
-200  
3.1.5 Power Dissipation  
Power dissipation of the MPC5200 is caused by 3 different components: the dissipation of the internal or  
core digital logic (supplied by VDD_CORE), the dissipation of the analog circuitry (supplied by  
SYS_PLL_AVDD and CORE_PLL_AVDD) and the dissipation of the IO logic (supplied by VDD_IO_MEM  
and VDD_IO). Table 6 details typical measured core and analog power dissipation figures for a range of  
operating modes. However, the dissipation due to the switching of the IO pins can not be given in general,  
but must be calculated by the user for each application case using the following formula  
PIO = PIOint  
+
N × C × VDD_IO2 × f  
M
where N is the number of output pins switching in a group M, C is the capacitance per pin, VDD_IO is the  
IO voltage swing, f is the switching frequency and PIOint is the power consumed by the unloaded IO stage.  
The total power consumption of the MPC5200 processor  
Ptotal = Pcore + Panalog + PIO  
must not exceed the value, which would cause the maximum junction temperature to be exceeded.  
8
MPC5200HardwareSpecifications  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
Table 6 Power Dissipation  
Core Power Supply (VDD_CORE)  
SYS_XTAL/XLB/PCI/IPG/CORE (MHz)  
SpecID  
Mode  
33/66/33/33/264  
33/132/66/132/396  
Unit  
Notes  
Typ  
727.5  
Typ  
1080  
600  
1
2
Operational  
Doze  
mW  
mW  
D5.1  
D5.2  
D5.3  
D5.4  
D5.5  
,
1 3  
,
1 4  
Nap—  
225  
225  
mW  
mW  
52.5  
,
1 5  
Sleep—  
Deep-Sleep  
,
1 6  
52.5  
mW  
,
PLL Power Supplies (SYS_PLL_AVDD, CORE_PLL_AVDD)  
Mode  
Typ  
Unit  
Notes  
7
Typical  
2
mW  
D5.6  
D5.7  
Unloaded I/O Power Supplies (VDD_IO, VDD_MEM_IO 8)  
Mode  
Typ  
Unit  
Notes  
9
Typical  
33  
mW  
1
2
Typical core power is measured at VDD_CORE = 1.5 V, Tj = 25 C  
Operational power is measured while running an entirely cache-resident program with floating-point multiplication  
instructions in parallel with a continuous PCI transaction via BestComm.  
3
4
5
6
Doze power is measured with the G2_LE core in Doze mode, the system oscillator, System PLL and Core PLL are  
active, all other system modules are inactive  
Nap power is measured with the G2_LE core in Nap mode, the stem oscillator, System PLL and Core PLL are ac-  
tive, all other system modules are inactive  
Sleep power is measured with the G2_LE core in Sleep mode, the stem oscillator, System PLL and Core PLL are  
active, all other system modules are inactive  
Deep-Sleep power is measured with the G2_LE core in Sleep mode, the stem oscillator, System PLL, Core PLL  
and all other system modules are inactive  
7
8
Typical PLL power is measured at SYS_PLL_AVDD = CORE_PLL_AVDD = 1.5 V, Tj = 25 C  
IO power figures given in the table represent the worst case scenario. For the mem_io rail connected to 2.5V the  
IO power is expected to be lower and bounded by the worst case with VDD_MEM_IO connected to 3.3V.  
9
Unloaded typical I/O power is measured in Deep-Sleep mode at VDD_IO = VDD_MEM_IO  
= 3.3 V, Tj = 25 C  
SDR  
MOTOROLA  
MPC5200HardwareSpecifications  
9
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
3.1.6 Thermal Characteristics  
Table 7 Thermal Resistance Data  
Value  
30  
Rating  
Unit  
Notes  
SpecID  
1 2  
Junction to Ambient  
Natural Convection  
Single layer board  
(1s)  
RθJA  
°C/W  
,
D6.1  
1 3  
Junction to Ambient  
Natural Convection  
Four layer board (2s2p)  
RθJMA 22  
RθJMA 24  
RθJMA 19  
°C/W  
°C/W  
°C/W  
,
D6.2  
D6.3  
D6.4  
1 3  
Junction to Ambient  
(@200 ft/min)  
Single layer board  
(1s)  
,
1 3  
Junction to Ambient  
(@200 ft/min)  
Four layer board  
(2s2p)  
,
4
5
6
Junction to Board  
Junction to Case  
RθJB  
RθJC  
14  
8
°C/W  
°C/W  
°C/W  
D6.5  
D6.6  
D6.7  
Junction to Package TopNatural Convection ΨJT  
2
1
Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
thermal resistance.  
2
3
4
Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.  
Per JEDEC JESD51-6 with the board horizontal.  
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is mea-  
sured on the top surface of the board near the package.  
5
6
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883  
Method 1012.1).  
Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is  
written as Psi-JT.  
3.1.6.1  
Heat Dissipation  
An estimation of the chip-junction temperature, TJ, can be obtained from the following equation:  
T = T +(R × P ) Eqn 1  
.
J
A
θJA  
D
where:  
TA = ambient temperature for the package (ºC)  
RθJA = junction to ambient thermal resistance (ºC/W)  
PD = power dissipation in package (W)  
The junction to ambient thermal resistance is an industry standard value, which provides a quick and easy  
estimation of thermal performance. Unfortunately, there are two values in common usage: the value  
determined on a single layer board, and the value obtained on a board with two planes. For packages such  
as the PBGA, these values can be different by a factor of two. Which value is correct depends on the power  
dissipated by other components on the board. The value obtained on a single layer board is appropriate for  
the tightly packed printed circuit board. The value obtained on the board with the internal planes is usually  
appropriate if the board has low power dissipation and the components are well separated.  
Historically, the thermal resistance has frequently been expressed as the sum of a junction to case thermal  
resistance and a case to ambient thermal resistance:  
10  
MPC5200HardwareSpecifications  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
R
= R  
+R  
θJC θCA  
Eqn. 2  
θJA  
where:  
RθJA = junction to ambient thermal resistance (ºC/W)  
RθJC = junction to case thermal resistance (ºC/W)  
RθCA = case to ambient thermal resistance (ºC/W)  
R
θJC is device related and cannot be influenced by the user. The user controls the thermal environment to  
change the case to ambient thermal resistance, RθCA. For instance, the user can change the air flow  
around the device, add a heat sink, change the mounting arrangement on printed circuit board, or change  
the thermal dissipation on the printed circuit board surrounding the device. This description is most useful  
for ceramic packages with heat sinks where some 90% of the heat flow is through the case to the heat sink  
to ambient. For most packages, a better model is required.  
A more accurate thermal model can be constructed from the junction to board thermal resistance and the  
junction to case thermal resistance1-3. The junction to case covers the situation where a heat sink will be  
used or where a substantial amount of heat is dissipated from the top of the package. The junction to  
board thermal resistance describes the thermal performance when most of the heat is conducted to the  
printed circuit board. This model can be used for either hand estimations or for a computational fluid  
dynamics (CFD) thermal model.  
To determine the junction temperature of the device in the application after prototypes are available, the  
Thermal Characterization Parameter (ΨJT) can be used to determine the junction temperature with a  
measurement of the temperature at the top center of the package case using the following equation:  
T = T +(Ψ × P ) Eqn 3  
.
J
T
JT  
D
where:  
TT = thermocouple temperature on top of package (ºC)  
ΨJT = thermal characterization parameter (ºC/W)  
PD = power dissipation in package (W)  
The thermal characterization parameter is measured per JESD51-2 specification using a 40-gauge type T  
thermocouple epoxied to the top center of the package case. The thermocouple should be positioned, so  
that the thermocouple junction rests on the package. A small amount of epoxy is placed over the  
thermocouple junction and over approximately one mm of wire extending from the junction. The  
thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling  
effects of the thermocouple wire.  
MOTOROLA  
MPC5200HardwareSpecifications  
11  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
3.2 Oscillator and PLL Electrical Characteristics  
The MPC5200 System requires a system-level clock input SYS_XTAL. This clock input may be driven  
directly from an external oscillator or with a crystal using the internal oscillator.  
There is a separate oscillator for the independent Real-Time Clock (RTC) system.  
The MPC5200 clock generation uses two phase locked loop (PLL) blocks.  
The system PLL (SYS_PLL) takes an external reference frequency and generates the internal  
system clock. The system clock frequency is determined by the external reference frequency and  
the settings of the SYS_PLL configuration.  
The G2_LE core PLL (CORE_PLL) generates a master clock for all of the CPU circuitry. The G2_LE  
core clock frequency is determined by the system clock frequency and the settings of the  
CORE_PLL configuration.  
3.2.1 System Oscillator Electrical Characteristics  
Table 8 System Oscillator Electrical Characteristics  
Characteristic  
SYS_XTAL frequency  
Oscillator start-up time  
Symbol  
fsys_xtal  
tup_osc  
Notes  
MinTypical  
Max  
itUn SpecID  
15.6  
33.3  
35.0  
100  
MHz  
O1.1  
O1.2  
µs  
3.2.2 RTC Oscillator Electrical Characteristics  
Table 9 RTC Oscillator Electrical Characteristics  
Characteristic  
Symbol  
Notes  
MinTypical  
32.768  
Max  
itUn SpecID  
RTC_XTAL frequency  
frtc_xtal  
kHz  
O2.1  
12  
MPC5200HardwareSpecifications  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
3.2.3 System PLL Electrical Characteristics  
Table 10 System PLL Specifications  
Characteristic  
SYS_XTAL frequency  
SYS_XTAL cycle time  
SYS_XTAL clock input jitter  
System VCO frequency  
System PLL relock time  
Symbol  
fsys_xtal  
Tsys_xtal  
tjitter  
Notes  
MinTypical  
Max  
itUn SpecID  
1
15.6  
66.6  
33.3  
35.0  
28.5  
150  
800  
100  
MHz  
ns  
O3.1  
O3.2  
O3.3  
O3.4  
O3.5  
1
2
1
3
30.0  
ps  
fVCOsys  
tlock  
250  
533  
MHz  
µs  
1
The SYS_XTAL frequency and PLL Configuration bits must be chosen such that the resulting system frequency, CPU  
(core) frequency, and PLL (VCO) frequency do not exceed their respective maximum or minimum operating frequen-  
cies.  
2
This represents total input jitter - short term and long term combined - and is guaranteed by design. Two different types  
of jitter can exist on the input to core_sysclk, systemic and true random jitter. True random jitter is rejected, but the PLL.  
Systemic jitter will be passed into and through the PLL to the internal clock circuitry, directly reducing the operating fre-  
quency.  
3
Relock time is guaranteed by design and characterization. PLL-relock time is the maximum amount of time required for  
the PLL lock after a stable Vdd and core_sysclk are reached during the power-on reset sequence. This specification  
also applies when the PLL has been disabled and subsequently re-enabled during sleep modes.  
MOTOROLA  
MPC5200HardwareSpecifications  
13  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
3.2.4 G2_LE Core PLL Electrical Characteristics  
The internal clocking of the G2_LE core is generated from and synchronized to the system clock by means  
of a voltage-controlled core PLL.  
Table 11 G2_LE PLL Specifications  
Characteristic  
G2_LE frequency  
Symbol  
fcore  
Notes  
MinTypical  
Max  
itUn SpecID  
1
50  
2.85  
400  
25  
550  
MHz  
ns  
O4.1  
O4.2  
O4.3  
O4.4  
O4.5  
O4.6  
O4.7  
1
1
G2_LE cycle time  
tcore  
40.0  
G2_LE VCO frequency  
G2_LE input clock frequency  
G2_LE input clock cycle time  
G2_LE input clock jitter  
G2_LE PLL relock time  
fVCOcore  
fSYSCLK  
tSYSCLK  
tjitter  
1200  
367  
MHz  
MHz  
ns  
2.73  
50.0  
150  
2
3
ps  
tlock  
100  
µs  
1
The SYSCLK frequency and G2_LE PLL Configuration bits must be chosen such that the resulting system frequencies,  
CPU (core) frequency, and G2_LE PLL (VCO) frequency do not exceed their respective maximum or minimum oper-  
ating frequencies.  
2
This represents total input jitter - short term and long term combined - and is guaranteed by design. Two different types  
of jitter can exist on the input to core_sysclk, systemic and true random jitter. True random jitter is rejected, but the PLL.  
Systemic jitter will be passed into and through the PLL to the internal clock circuitry, directly reducing the operating fre-  
quency.  
3
Relock time is guaranteed by design and characterization. PLL-relock time is the maximum amount of time required for  
the PLL lock after a stable Vdd and core_sysclk are reached during the power-on reset sequence. This specification  
also applies when the PLL has been disabled and subsequently re-enabled during sleep modes.  
14  
MPC5200HardwareSpecifications  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
3.3 AC Electrical Characteristics  
Hyperlinks to the indicated timing specification sections are provided below.  
AC Operating Frequency Data  
Clock AC Specifications  
Resets  
USB  
SPI  
MSCAN  
I2C  
External Interrupts  
SDRAM  
PCI  
J1850  
PSC  
Local Plus Bus  
ATA  
GPIOs and Timers  
IEEE 1149.1 (JTAG) AC Specifications  
Ethernet  
AC Test Timing Conditions:  
Unless otherwise noted, all test conditions are as follows:  
TA = -40 to 85 oC  
Tj = -40 to 115 oC  
VDD_CORE = 1.42 to 1.58 V  
VDD_IO = 3.0 to 3.6 V  
Input conditions:  
All Inputs: tr, tf <= TBD  
Output Loading:  
All Outputs: 50 pF  
3.3.1 AC Operating Frequency Data  
Table 12 provides the operating frequency information for the MPC5200.  
Table 12 Clock Frequencies  
MinMax its  
SUpnecID  
400  
1
2
3
4
5
6
G2_LE Processor Core  
SDRAM Clock  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
A1.1  
A1.2  
A1.3  
A1.4  
A1.5  
A1.6  
133  
133  
133  
66  
XL Bus Clock  
IP Bus Clock  
PCI / Local Plus Bus Clock  
PLL Input Range  
15.6  
35  
MOTOROLA  
MPC5200HardwareSpecifications  
15  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
3.3.2 Clock AC Specifications  
tCYCLE  
tDUTY  
tDUTY  
tRISE  
tFALL  
CVIH  
CVIL  
VM  
VM  
VM  
SYSCLK  
Figure 2 Timing Diagram—SYS_XTAL_IN  
Table 13 SYS_XTAL_IN Timing  
Sym  
its SpecID Max DeUsncriptionMin  
tCYCLE  
tRISE  
tFALL  
tDUTY  
CVIH  
CVIL  
SYS_XTAL_IN cycle time. 1  
28.6  
64.1  
5.0  
5.0  
60.0  
ns  
ns  
ns  
%
V
A2.1  
SYS_XTAL_IN rise time.  
A2.2  
A2.3  
A2.4  
A2.5  
A2.6  
SYS_XTAL_IN fall time.  
SYS_XTAL_IN duty cycle (measured at VM). 2  
SYS_XTAL_IN input voltage high  
SYS_XTAL_IN input voltage low  
40.0  
2.0  
0.8  
V
1
CAUTION—The SYS_XTAL_IN frequency and system PLL_CFG[0-6] settings must be chosen such that the resulting  
system frequencies do not exceed their respective maximum or minimum operating frequencies. See the MPC5200  
User Manual [1].  
2
SYS_XTAL_IN duty cycle is measured at V .  
M
16  
MPC5200HardwareSpecifications  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
3.3.3 Resets  
The MPC5200 has three reset pins:  
PORESET - Power on Reset  
HRESET - Hard Reset  
SRESET - Software Reset  
These signals are asynchronous I/O signals and can be asserted at any time. The input side uses a  
Schmitt trigger and requires the same input characteristics as other MPC5200 inputs, as specified in the  
DC Electrical Specifications section. Table 14 specifies the pulse widths of the Reset inputs.  
Table 14 Reset Pulse Width  
Max Pulse  
Name  
DescriptionMin Pulse  
Width  
Reference Clock  
SpecID  
Width  
PORESET Power On Reset tVDD_stable+tup_osc+tlock  
SYS_XTAL_IN  
A3.1  
HRESET  
Hardware Reset  
Software Reset  
4 clock cycles  
4 clock cycles  
SYS_XTAL_IN  
SYS_XTAL_IN  
A3.2  
A3.3  
SRESET  
Notes:  
1. For PORESET the value of the minimum pulse width reflects the power on sequence. If PORESET is asserted after-  
wards its minimum pulse width equals the minimum given for HRESET related to the same reference clock.  
2. The t  
describes the time which is needed to get all power supplies stable.  
VDD_stable  
3. For t  
4. For t  
refer to the Oscillator/PLL section of this specification for further details.  
lock,  
refer to the Oscillator/PLL section of this specification for further details.  
up_osc,  
5. Following the deassertion of PORESET, HRESET and SRESET remain low for 4096 reference clock cycles.  
6. The deassertion of HRESET for at least the minimum pulse width forces the internal resets to be active for an additional  
4096 clock cycles.  
NOTE:  
As long as VDD is not stable the HRESET output is not stable.  
Table 15 Reset Rise / Fall Timing  
DMeasxcriptionMinit  
PORESET fall time  
SpecID  
Un  
1
ms  
ms  
ns  
ns  
ns  
ns  
A3.4  
A3.5  
A3.6  
A3.7  
A3.8  
A3.9  
PORESET rise time  
HRESET fall time  
HRESET rise time  
SRESET fall time  
SRESET rise time  
1
TBD  
TBD  
TBD  
TBD  
For additional information, see the MPC5200 User Manual [1].  
NOTE:  
Make sure that the PORESET does not carry any glitches. The MPC5200  
has no filter to prevent them from getting into the chip.  
MOTOROLA  
MPC5200HardwareSpecifications  
17  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
3.3.3.1 Reset Configuration Word  
During reset (HRESET and PORESET) the Reset Configuration Word is cached in the related Reset  
Configuration Word Register with each rising edge of the SYS_XTAL signal. If both resets (HRESET and  
PORESET) are inactive (high), the contents of this register get locked after two further SYS_XTAL cycles  
(see Figure 3).  
4096 clocks  
2 clocks  
SYS_XTAL  
PORESET  
HRESET  
RST_CFG_WRD  
sample  
sample  
sample  
sample  
sample  
sample  
sample  
sample  
sample  
sample  
sample  
sample  
LOCK  
Figure 3 Reset Configuration Word Locking  
NOTE:  
Beware of changing the values on the pins of the reset configuration word  
after the deassertion of PORESET. This may cause problems because it  
may change the internal clock ratios and so extend the PLL locking  
process.  
18  
MPC5200HardwareSpecifications  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
3.3.4 External Interrupts  
The MPC5200 provides three different kinds of external interrupts:  
Four IRQ interrupts  
Eight GPIO interrupts with simple interrupt capability (not available in power-down mode)  
Eight WakeUp interrupts (special GPIO pins)  
The propagation of these three kinds of interrupts to the core is shown in the following graphic:  
IRQ0  
cint  
int  
core_cint  
core_int  
Encoder  
8
8
8 GPIOs  
8 GPIOs  
IRQ1  
GPIO Std  
GPIO WakeUp  
G2_LE Core  
Grouper  
Encoder  
IRQ2  
PIs  
Main Interrupt  
Controller  
IRQ3  
Notes:  
1. PIs = Programmable Inputs  
2. Grouper and Encoder functions imply programmability in software  
Figure 4 External interrupt scheme  
Due to synchronization, prioritization, and mapping of external interrupt sources, the propagation of  
external interrupts to the core processor is delayed by several IP_CLK clock cycles. The following table  
specifies the interrupt latencies in IP_CLK cycles. The IP_CLK frequency is programmable in the Clock  
Distribution Module (see Note Table 16).  
Table 16 External interrupt latencies  
Interrupt Type  
Pin Name  
IRQ0  
Clock Cycles Reference Clock Core Interrupt SpecID  
Interrupt Requests  
10  
10  
10  
10  
10  
IP_CLK  
IP_CLK  
IP_CLK  
IP_CLK  
IP_CLK  
critical (cint)  
normal (int)  
normal (int)  
normal (int)  
normal (int)  
A4.1  
A4.2  
A4.3  
A4.5  
A4.6  
IRQ0  
IRQ1  
IRQ2  
IRQ3  
MOTOROLA  
MPC5200HardwareSpecifications  
19  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
Table 16 External interrupt latencies (continued)  
Pin Name Clock Cycles Reference Clock Core Interrupt SpecID  
Interrupt Type  
Standard GPIO Interrupts GPIO_PSC3_4  
GPIO_PSC3_5  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
IP_CLK  
IP_CLK  
IP_CLK  
IP_CLK  
IP_CLK  
IP_CLK  
IP_CLK  
IP_CLK  
IP_CLK  
IP_CLK  
IP_CLK  
IP_CLK  
IP_CLK  
IP_CLK  
IP_CLK  
normal (int)  
normal (int)  
normal (int)  
normal (int)  
normal (int)  
normal (int)  
normal (int)  
normal (int)  
normal (int)  
normal (int)  
normal (int)  
normal (int)  
normal (int)  
normal (int)  
normal (int)  
A4.7  
A4.8  
GPIO_PSC3_8  
A4.9  
GPIO_USB_9  
A4.10  
A4.11  
A4.12  
A4.13  
A4.14  
A4.15  
A4.16  
A4.17  
A4.18  
A4.19  
A4.20  
A4.21  
GPIO_ETHI_4  
GPIO_ETHI_5  
GPIO_ETHI_6  
GPIO_ETHI_7  
GPIO WakeUp Interrupts GPIO_PSC1_4  
GPIO_PSC2_4  
GPIO_PSC3_9  
GPIO_ETHI_8  
GPIO_IRDA_0  
DGP_IN0  
DGP_IN1  
Notes:  
1) The frequency of IP_CLK depends on register settings in Clock Distribution Module. See the MPC5200 User Manual [1].  
2) The interrupt latency descriptions in the table above are related to non competitive, non masked but enabled external  
interrupt sources. Take care of interrupt prioritization which may increase the latencies.  
Since all external interrupt signals are synchronized into the internal processor bus clock domain, each of  
these signals has to exceed a minimum pulse width of more than one IP_CLK cycle.  
Table 17 Minimum pulse width for external interrupts to be recognized  
Name  
Min Pulse Width Max Pulse Width Reference Clock SpecID  
> 1 clock cycle IP_CLK A4.22  
All external interrupts (IRQs, GPIOs)  
Notes:  
1) The frequency of the IP_CLK depends on the register settings in Clock Distribution Module. See the MPC5200 User  
Manual [1] for further information.  
2) If the same interrupt occurs a second time while its interrupt service routine has not cleared the former one, the second  
interrupt will not be recognized at all.  
Besides synchronization, prioritization, and mapping the latency of an external interrupt to the start of its  
associated interrupt service routine also depends on the following conditions: To get a minimum interrupt  
service response time, it is recommended to enable the instruction cache and set up the maximum core  
clock, XL bus, and IP bus frequencies (depending on board design and programming). In addition, it is  
advisable to execute an interrupt handler, which has been implemented in assembly code.  
20  
MPC5200HardwareSpecifications  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
3.3.5 SDRAM  
3.3.5.4  
Memory Interface Timing-Standard SDRAM Read Command  
Table 18 Standard SDRAM Memory Read Timing  
Sym  
DesitcsripStiMpoenacMxIDin  
Un  
tmem_clk MEM_CLK period  
7.5  
ns  
ns  
A5.1  
A5.2  
tvalid  
Control Signals, Address and MBA Valid  
after rising edge of MEM_CLK  
tmem_clk*0.5+0.4  
thold  
Control Signals, Address and MBA Hold  
after rising edge of MEM_CLK  
tmem_clk*0.5  
ns  
ns  
A5.3  
A5.4  
DMvalid DQM valid after rising edge of  
MEM_CLK  
tmem_clk*0.25+0.4  
DMhold DQM hold after rising edge of MEM_CLK tmem_clk*0.25-0.7  
0.3  
ns  
ns  
ns  
A5.5  
A5.6  
A5.7  
datasetup MDQ setup to rising edge of MEM_CLK  
datahold MDQ hold after rising edge of MEM_CLK  
0.2  
MEM_CLK  
t
valid  
t
hold  
Control Signals  
Active  
NOP  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
DM  
DM  
valid  
hold  
DQM (Data Mask)  
data  
setup  
data  
hold  
MDQ (Data)  
t
t
valid  
t
hold  
Row  
Column  
MA (Address)  
valid  
t
hold  
MBA (Bank Selects)  
NOTE: Control Signals are composed of RAS, CAS, MEM_WE, MEM_CS, MEM_CS1 and CLK_EN  
Figure 5 Timing Diagram—Standard SDRAM Memory Read Timing  
MOTOROLA  
MPC5200HardwareSpecifications  
21  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
3.3.5.5 Memory Interface Timing-Standard SDRAM Write Command  
In Standard SDRAM, all signals are activated on the Mem_clk from the Memory Controller and captured on  
the Mem_clk clock at the memory device.  
Table 19 Standard SDRAM Write Timing  
Sym  
tmem_clk MEM_CLK period  
tvalid Control Signals, Address and MBA  
DescirtisptiSoMnpaMexcinID  
Un  
7.5  
ns  
ns  
A5.8  
A5.9  
tmem_clk*0.5+0.4  
Valid after rising edge of MEM_CLK  
thold  
Control Signals, Address and MBA  
Hold after rising edge of MEM_CLK  
tmem_clk*0.5  
ns  
ns  
A5.10  
A5.11  
DMvalid  
DMhold  
DQM valid after rising edge of  
MEM_CLK  
tmem_clk*0.25+0.4  
DQM hold after rising edge of Mem_clk tmem_clk*0.25-0.7  
ns  
ns  
A5.12  
A5.13  
datavalid MDQ valid after rising edge of  
MEM_CLK  
tmem_clk*0.75+0.4  
datahold MDQ hold after rising edge of  
MEM_CLK  
tmem_clk*0.75-0.7  
ns  
A5.14  
MEM_CLK  
t
valid  
t
hold  
Active  
DM  
NOP WRITE  
NOP  
DM  
NOP  
NOP  
NOP  
NOP  
Control Signals  
hold  
valid  
DQM (Data Mask)  
data  
valid  
data  
hold  
MDQ (Data)  
t
valid  
t
hold  
Row  
Column  
MA (Address)  
t
valid  
t
hold  
MBA (Bank Selects)  
NOTE: Control Signals are composed of RAS, CAS, MEM_WE, MEM_CS, MEM_CS1 and CLK_EN  
Figure 6 Timing Diagram—Standard SDRAM Memory Write Timing  
22  
MPC5200HardwareSpecifications  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
3.3.5.6  
Memory Interface Timing-DDR SDRAM Read Command  
The SDRAM Memory Controller uses an internally skewed clock for reading DDR memory. The  
programmable bits in the Reset Configuration Register used to account for unknown board delays are in  
the CDM module. The internal read clock can be delayed up to 3 ns under worst operating conditions in 32  
increments of 95 ps, (1.4 ns in 45 ps increments under best case operating conditions) by programming  
the CDM Reset Configuration Register tap delay bits. Note: These bits in the CDM Reset Configuration  
register are not ‘reset configured’ but have a hard coded reset value and are writable during operation.  
Table 20 DDR SDRAM Memory Read Timing  
Sym  
tmem_clk MEM_CLK period  
tvalid Control Signals, Address and MBA  
DesictsripStipoMenacMxIDin  
Un  
7.5  
ns  
ns  
A5.15  
A5.16  
tmem_clk*0.5+0.4  
valid after rising edge of MEM_CLK  
thold  
Control Signals, Address and MBA  
hold after rising edge of MEM_CLK  
tmem_clk*0.5  
0.4  
ns  
ns  
ns  
A5.17  
A5.18  
A5.19  
datasetup Setup time skewed by CDM Reset  
Config Reg [3:7] = 0b00010  
datahold Hold time skewed by CDM Reset Con-  
fig Reg [3:7] = 0b00010  
2.34  
MEM_CLK  
MEM_CLK  
t
valid  
t
hold  
Active  
NOP  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
Control Signals  
MDQS (Data Strobe)  
MDQ (Data)  
data  
setup  
data  
hold  
t
valid  
t
t
hold  
Row  
Column  
MA (Address)  
t
valid  
hold  
MBA (Bank Selects)  
NOTE: Control Signals signals are composed of RAS, CAS, MEM_WE, MEM_CS, MEM_CS1 and CLK_EN  
Figure 7 Timing Diagram—DDR SDRAM Memory Read Timing  
MOTOROLA  
MPC5200HardwareSpecifications  
23  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
3.3.5.7  
Memory Interface Timing-DDR SDRAM Write Command  
Table 21 DDR SDRAM Memory Write Timing  
Sym  
DescriptiMotsnaMxSinpecID Un  
A5.20  
A5.21  
tmem_clk MEM_CLK period  
7.5  
ns  
ns  
tDQSS  
Delay from write command to first rising  
edge of MDQS  
tmem_clk+0.4  
MEM_CLK  
MEM_CLK  
Write  
Write  
Write  
Write  
Control Signals  
MDQS (Data Strobe)  
MDQ (Data)  
t
dqss  
NOTE: Control Signals signals are composed of RAS, CAS, MEM_WE, MEM_CS, MEM_CS1 and CLK_EN  
Figure 8 DDR SDRAM Memory Write Timing  
24  
MPC5200HardwareSpecifications  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
3.3.6 PCI  
The PCI interface on the MPC5200 is designed to PCI Version 2.2 and supports 33-MHz and 66-MHz PCI  
operations. See the PCI Local Bus Specification [4]; the component section specifies the electrical and  
timing parameters for PCI components with the intent that components connect directly together whether  
on the planar or an expansion board, without any external buffers or other “glue logic.” Parameters apply at  
the package pins, not at expansion board edge connectors.  
The MPC5200 is always the source of the PCI CLK. The clock waveform must be delivered to each  
33-MHz or 66-MHz PCI component in the system. Figure 9 shows the clock waveform and required  
measurement points for 3.3 V signaling environments. Table 22 summarizes the clock specifications.  
Tcyc  
Thigh  
Tlow  
0.6Vcc  
0.5Vcc  
0.4Vcc, p-to-p  
(minimum)  
0.4Vcc  
0.3Vcc  
PCI CLK  
0.2Vcc  
Figure 9 PCI CLK Waveform  
Table 22 PCI CLK Specifications  
66 MHz  
MinMax  
33 MHz  
Sym  
Description  
Units Notes SpecID  
MinMax  
30  
Tcyc  
PCI CLK Cycle Time  
15  
6
30  
ns  
ns  
1,3  
A6.1  
A6.2  
A6.3  
A6.4  
Thigh PCI CLK High Time  
11  
tlow  
PCI CLK Low Time  
6
-
PCI CLK Slew Rate  
1.5  
4
1
4
V/ns  
2
NOTES:  
1. In general, all 66-MHz PCI components must work with any clock frequency up to 66 MHz. CLK requirements vary de-  
pending upon whether the clock frequency is above 33 MHz.  
2. Rise and fall times are specified in terms of the edge rate measured in V/ns. This slew rate must be met across the  
minimum peak-to-peak portion of the clock waveform as shown in Figure 9.  
3. The minimum clock period must not be violated for any single clock cycle, i.e., accounting for all system jitter.  
Table 23 PCI Timing Parameters  
66 MHz  
MinMax  
33 MHz  
Sym  
Description  
Units  
ns  
Notes SpecID  
MinMax  
Tval  
CLK to Signal Valid Delay -  
bused signals  
2
2
2
6
6
2
11  
1,2,3  
1,2,3  
A6.5  
A6.6  
T
val(ptp) CLK to Signal Valid Delay -  
point to point  
2
2
12  
ns  
Ton  
Toff  
Float to Active Delay  
Active to Float Delay  
ns  
ns  
1
1
A6.7  
A6.8  
14  
28  
MOTOROLA  
MPC5200HardwareSpecifications  
25  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
Table 23 PCI Timing Parameters (continued)  
66 MHz 33 MHz  
Sym  
Description  
Units  
ns  
Notes SpecID  
MinMax  
MinMax  
Tsu  
Input Setup Time to CLK -  
bused signals  
3
5
0
7
3,4  
3,4  
4
A6.9  
A6.10  
A6.11  
Tsu(ptp) Input Setup Time to CLK -  
point to point  
10,12  
ns  
Th  
Input Hold Time from CLK  
0
ns  
NOTES:  
1. See the timing measurement conditions in the PCI Local Bus Specification [4]. It is important that all driven signal tran-  
sitions drive to their Voh or Vol level within one Tcyc.  
2. Minimum times are measured at the package pin with the load circuit, and maximum times are measured with the load  
circuit as shown in the PCI Local Bus Specification [4].  
3. REQ# and GNT# are point-to-point signals and have different input setup times than do bused signals. GNT# and REQ#  
have a setup of 5 ns at 66 MHz. All other signals are bused.  
4. See the timing measurement conditions in the PCI Local Bus Specification [4].  
For Measurement and Test Conditions, see the PCI Local Bus Specification [4].  
3.3.7 Local Plus Bus  
The Local Plus Bus is the external bus interface of the MPC5200. Eight configurable Chip-selects are  
provided. There are two main modes of operation: non-MUXed and MUXED. The reference clock is the  
PCI CLK. Refer to PCI CLK specification. The maximum bus frequency is 66 MHz.  
The following timing numbers indicate when data will be latched or driven onto the external bus, relative to  
the PCI CLK.  
PCI CLK  
2
3
1
OUTPUT  
SIGNALS  
1 PCI CLK to Signal hold  
2 PCI CLK to Signal valid  
3 PCI CLK to Signal Hi Z  
Figure 10 Output Signals Timing  
3.3.7.1  
Non-MUXed Mode  
Table 24 Non-MUXed Mode Timing  
its NoDtMeesasxcSrippetcioUIDnnMin  
Sym  
tAV  
PCI CLK to ADDR valid  
PCI CLK to ADDR hold  
-
2
-
ns  
ns  
A7.1  
A7.2  
tAH  
1
26  
MPC5200HardwareSpecifications  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
Table 24 Non-MUXed Mode Timing (continued)  
its NoDtMeesasxcSrippeticoUIDnnMin  
Sym  
tDV  
PCI CLK to DATA output valid  
PCI CLK to DATA output Hi Z  
-
-
2
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
A7.3  
A7.4  
tDZ  
tCSA PCI CLK to CS assertion  
tCSN PCI CLK to CS negation  
tOEA PCI CLK to OE assertion  
tOEN PCI CLK to OE negation  
tRWV PCI CLK to RW valid  
tRWH PCI CLK to RW hold  
tTSIZV PCI CLK to TSIZ valid  
tTSIZH PCI CLK to TSIZ hold  
-
1.8  
1.8  
1.5  
1.5  
1
A7.5  
-
A7.6  
-
A7.7  
-
A7.8  
-
A7.9  
1
-
-
A7.10  
A7.11  
A7.12  
A7.13  
A7.14  
2
1
2
-
-
tDS  
DATA input to PCI CLK setup  
DATA input to PCI CLK hold  
-
tDH  
1
NOTES:  
1. Wait states for Reads and Writes can be specified as 0 to 127.  
2. Dead cycles can be specified as 0 to 3. Dead cycles will be added to the end of Chip Select read access and will occur  
in addition to any cycles which may already exist. These cycles provide a peripheral additional time to tri-state its bus  
after a read operation. This is for all access types.  
3. Transfer Size TSIZE(1:0) are available in Non-MUXed mode for MOST Graphics or Large Flash Modes only.  
For understanding the different hold/valid/assertion/negation times refer to Figure 10.  
The timing values in the above table are for a clock ratio of IP_CLK : PCI_CLK = 1 : 1 only.  
The values will be different for other IP_CLK : PCI_CLK clock ratios.  
MOTOROLA  
MPC5200HardwareSpecifications  
27  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
PCI_CLK  
ADDR  
Valid Address  
or t  
t
RD  
WR  
CS[x]  
R/W  
DATA (wr)  
DATA (rd)  
Valid Write Data  
Valid Read Data  
t
OE  
OE  
Note: 1. The t /t  
is wait states as programmed for corresponding access and chip select.  
RD WR  
2. OE is active during Read only, tOE is the Output Enable to Output Delay time  
3. Read data has nominal setup/hold requirements around the CSnegation.  
Figure 11 Timing Diagram—Non-MUXed Mode  
MUXed Mode  
3.3.7.2  
Table 25 MUXed Mode Timing  
its NoDtMeesasxcSrippetcioUIDnnMin  
Sym  
tAV  
PCI CLK to ADDR valid  
-
1
-
2
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
A7.15  
A7.16  
A7.17  
A7.18  
A7.19  
A7.20  
A7.21  
A7.22  
A7.23  
A7.24  
A7.25  
A7.26  
A7.27  
tAH  
tDV  
tDZ  
PCI CLK to ADDR hold  
PCI CLK to DATA output valid  
PCI CLK to DATA output Hi Z  
2
-
2
tCSA PCI CLK to CS assertion  
tCSN PCI CLK to CS negation  
tOEA PCI CLK to OE assertion  
tOEN PCI CLK to OE negation  
tRWV PCI CLK to RW valid  
-
1.8  
1.8  
1.5  
1.5  
1
-
-
-
-
tRWH PCI CLK to RW hold  
1
-
-
tALEA PCI CLK to ALE assertion  
tALEN PCI CLK to ALE negation  
2
-
2
tDS  
DATA input to PCI CLK setup  
2
-
28  
MPC5200HardwareSpecifications  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
Table 25 MUXed Mode Timing (continued)  
its NoDtMeesasxcSrippeticoUIDnnMin  
DATA input to PCI CLK hold  
Sym  
tDH  
-
1
ns  
A7.28  
NOTES:  
1. Wait states for Reads and Writes can be inserted when configured.  
2. Dead cycles can be specified as 0 to 3. Dead cycles will be added to the end of Chip Select read access and will occur  
in addition to any cycles which may already exist. These cycles provide a peripheral additional time to tri-state its bus  
after a read operation. This is for all access types.  
3. Transfer Size TSIZE(1:0) are available in Non-MUXed mode for MOST Graphics or Large Flash Modes only.  
For understanding the different hold/valid/assertion/negation times refer to Figure 10.  
The timing values in the above table are for a clock ratio of IP_CLK : PCI_CLK = 1 : 1 only.  
The values will be different for other IP_CLK : PCI_CLK clock ratios.  
Start Bus Tenure  
End Bus Tenure  
PCI CLK  
AD[31,27]  
AD[30:28]  
AD[26:25]  
AD[24:0]  
ALE  
Data or tri-state  
Data or tri-state  
Data or tri-state  
Data or tri-state  
tri-state  
tri-state  
tri-state  
tri-state  
TSIZ[0:2] bits  
Bank[0:1] bits  
Address[7:31]  
short  
long  
short  
TS  
long  
Wait States Dead Cycles  
(0-3)  
(0-127)  
CSx  
RW  
ACK Input  
"Dack"  
Address "tenure"  
Data "tenure"  
Figure 12 Timing Diagram - MUXed Mode  
MOTOROLA  
MPC5200HardwareSpecifications  
29  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
3.3.8 ATA  
The MPC5200 ATA Controller is completely software programmable. It can be programmed to operate with  
ATA protocols using their respective timing, as described in the ANSI ATA-4 specification. The ATA  
interface is completely asynchronous in nature. Signal relationships are based on specific fixed timing in  
terms of timing units (nano seconds).  
ATA data setup and hold times, with respect to Read/Write strobes, are software programmable inside the  
ATA Controller. Data setup and hold times are implemented using counters. The counters count the  
number of ATA clock cycles needed to meet the ANSI ATA-4 timing specifications. For details, see the  
ANSI ATA-4 specification [5] and how to program an ATA Controller and ATA drive for different ATA  
protocols and their respective timing. See the MPC5200 User Manual [1].  
The MPC5200 ATA Host Controller design makes data available coincidentally with the active edge of the  
WRITE strobe in PIO and Multiword DMA modes.  
Write data is latched by the drive at the inactive edge of the WRITE strobe. This gives ample  
setup-time beyond that required by the ATA-4 specification.  
Data is held unchanged until the next active edge of the WRITE strobe. This gives ample hold-time  
beyond that required by the ATA-4 specification.  
All ATA transfers are programmed in terms of system clock cycles (IP bus clocks) in the ATA Host  
Controller timing registers. This puts constraints on the ATA protocols and their respective timing modes in  
which the ATA Controller can communicate with the drive.  
Faster ATA modes (i.e., UDMA 0, 1, 2) are supported when the system is running at a sufficient frequency  
to provide adequate data transfer rates. Adequate data transfer rates are a function of the following:  
The MPC5200 operating frequency (IP bus clock frequency)  
Internal MPC5200 bus latencies  
Other system load dependent variables  
The ATA clock is the same frequency as the IP bus clock in MPC5200. See the MPC5200 User Manual [1].  
NOTE:  
All output timing numbers are specified for nominal 50 pF loads.  
Table 26 PIO Mode Timing Specifications  
Min/Ma  
x
(ns)  
Mode 0 Mode 1 Mode 2 Mode 3 Mode 4  
PIO Timing Parameter  
SpecID  
(ns)  
(ns)  
(ns)  
(ns)  
(ns)  
t0 Cycle Time  
min  
min  
600  
70  
383  
50  
240  
30  
180  
30  
120  
25  
A8.1  
A8.2  
t1 Address valid to DIOR/DIOW  
setup  
t2 DIOR/DIOW pulse width 16-bit  
8-bit  
min  
min  
165  
290  
125  
290  
100  
290  
80  
80  
70  
70  
A8.3  
t2i DIOR/DIOW recovery time  
min  
setup  
min  
60  
20  
50  
5
45  
15  
35  
5
70  
30  
10  
20  
5
25  
30  
10  
20  
5
A8.4  
20  
t3 DIOW  
data  
min  
30  
min  
5
A8.5  
A8.7  
t4 DIOW data hold  
t5 DIOR  
A8.6  
20  
data  
setup  
min  
t6 DIOR data hold  
A8.8  
30  
MPC5200HardwareSpecifications  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
Table 26 PIO Mode Timing Specifications (continued)  
Min/Ma  
x
(ns)  
Mode 0 Mode 1 Mode 2 Mode 3 Mode 4  
PIO Timing Parameter  
SpecID  
(ns)  
(ns)  
(ns)  
(ns)  
(ns)  
t9 IOR/DIOW to address  
valid hold  
min  
20  
15  
10  
10  
10  
A8.9  
tA IORDY  
setup  
max  
max  
35  
35  
35  
35  
35  
A8.10  
A8.11  
tB IORDY pulse width  
1250  
1250  
1250  
1250  
1250  
CS[0]/CS[3]/DA[2:0]  
DIOR/DIOW  
t2  
t9  
t8  
t1  
t0  
t3 t4  
WDATA  
RDATA  
t5  
t6  
tA  
tB  
IORDY  
Figure 13 PIO Mode Timing  
Table 27 Multiword DMA Timing Specifications  
Multiword DMA Timing Parameters Min/Max Mode 0(ns) Mode 1(ns) Mode 2(ns) SpecID  
t0 Cycle Time  
min  
max  
min  
480  
150  
120  
A8.12  
A8.13  
A8.14  
A8.15  
tC DMACK to DMARQ delay  
tD DIOR/DIOW pulse width (16-bit)  
tE DIOR data access  
215  
150  
setupmin  
5
80  
60  
70  
50  
max  
tG DIOR/DIOW  
data  
100  
30  
20  
A8.16  
tF DIOR data hold  
tH DIOW data hold  
min  
min  
5
5
A8.17  
A8.18  
20  
15  
10  
MOTOROLA  
MPC5200HardwareSpecifications  
31  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
Table 27 Multiword DMA Timing Specifications (continued)  
Multiword DMA Timing Parameters Min/Max Mode 0(ns) Mode 1(ns) Mode 2(ns) SpecID  
tI DMACK to DIOR/DIOW  
tJ DIOR/DIOW to DMACK hold  
tKr DIOR negated pulse width  
tKw DIOW negated pulse width  
tLr DIOR to DMARQ delay  
tLw DIOW to DMARQ delay  
setupmin  
min  
0
0
0
A8.19  
A8.20  
A8.21  
A8.22  
A8.23  
A8.24  
20  
5
5
min  
50  
50  
50  
40  
40  
25  
25  
35  
35  
min  
215  
120  
40  
max  
max  
t0  
DMARQ  
(Drive)  
tL  
tC  
DMACK  
(Host)  
tJ  
tI  
tD  
tK  
DIOR  
DIOW  
(Host)  
tE  
RDATA  
(Drive)  
tS  
tF  
WDATA  
(Host)  
tG  
tH  
NOTE:Thedirectionof signalassertionis towardsthe  
top of the page, and the direction of negation is  
towards the bottom of the page, irrespective of the  
electrical properties of the signal.  
Figure 14 Multiword DMA Timing  
Table 28 Ultra DMA Timing Specification  
MODE 0  
(ns)  
MODE 1  
(ns)  
MODE 2  
(ns)  
Name  
Comment  
SpecID  
MinMax MinMax MinMax  
240 160 120  
(t)2CYC  
Typical sustained average two cycle time.  
A8.25  
32  
MPC5200HardwareSpecifications  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
Table 28 Ultra DMA Timing Specification (continued)  
MODE 0  
(ns)  
MODE 1  
(ns)  
MODE 2  
(ns)  
Name  
Comment  
SpecID  
MinMax MinMax MinMax  
(t)CYC  
114  
75  
55  
Cycle time allowing for asymmetry and clock  
variations from STROBE edge to STROBE  
edge  
A8.26  
(t)2CYC 235  
156  
117  
Two-cycle time allowing for clock variations,  
from rising edge to next rising edge or from fall-  
ing edge to next falling edge of STROBE.  
A8.27  
(t)DS  
(t)DH  
15  
5
10  
5
7
5
Data setup time at recipient.  
Data hold time at recipient.  
A8.28  
A8.29  
A8.30  
(t)DVS  
70  
48  
34  
Data valid setup time at sender, to STROBE  
edge.  
(t)DVH  
(t)FS  
6
0
6
0
6
0
Data valid hold time at sender, from STROBE  
edge.  
A8.31  
A8.32  
230  
200  
170 First STROBE time for drive to first negate  
DSTROBE from STOP during a data-in burst.  
(t)LI  
(t)MLI  
(t)UI  
0
20  
0
150  
0
20  
0
150  
0
20  
0
150 Limited Interlock time. 1 2  
A8.33  
A8.34  
A8.35  
A8.36  
Interlock time with minimum.1 2  
Unlimited interlock time. 1 2  
(t)AZ  
10  
10  
10 Maximum time allowed for output drivers to  
release from being asserted or negated  
(t)ZAH  
(t)ZAD  
(t)ENV  
20  
0
70  
20  
0
70  
20  
0
Minimum delay time required for output drivers A8.37  
to assert or negate from released state  
A8.38  
20  
20  
20  
70 Envelope time—from DMACK to STOP and  
HDMARDY during data out burst initiation.  
A8.39  
A8.40  
(t)SR  
50  
30  
20 STROBE to DMARDY time, if DMARDY is  
negated before this long after STROBE edge,  
the recipient receives no more than one addi-  
tional data word.  
(t)RFS  
75  
60  
50 Ready-to-Final STROBE time—no STROBE  
edges are sent this long after negation of  
DMARDY.  
A8.41  
(t)RP  
160  
125  
100  
Ready-to-Pause time—the time recipient waits A8.42  
to initiate pause after negating DMARDY.  
(t)IORDYZ  
20  
20  
20 Pull-up time before allowing IORDY to be  
released.  
A8.43  
MOTOROLA  
MPC5200HardwareSpecifications  
33  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
Table 28 Ultra DMA Timing Specification (continued)  
MODE 0  
(ns)  
MODE 1  
(ns)  
MODE 2  
(ns)  
Name  
Comment  
SpecID  
MinMax MinMax MinMax  
(t)ZIORDY  
(t)ACK  
(t)SS  
0
0
0
Minimum time drive waits before driving  
IORDY  
A8.44  
A8.45  
A8.46  
20  
50  
20  
50  
20  
50  
Setup and hold times for DMACK, before  
assertion or negation.  
Time from STROBE edge to negation of  
DMARQ or assertion of STOP, when sender  
terminates a burst.  
1
2
t , t , t indicate sender-to-recipient or recipient-to-sender interlocks. That is, one agent (either sender or recipient) is  
UI MLI LI  
waiting for the other agent to respond with a signal before proceeding.  
• t is an unlimited interlock that has no maximum time value.  
UI  
• t  
is a limited time-out that has a defined minimum.  
MLI  
• t is a limited time-out that has a defined maximum.  
LI  
All timing parameters are measured at the connector of the drive to which the parameter applies. For example, the sender  
shall stop generating STROBE edges t  
after negation of DMARDY. Both STROBE and DMARDY timing measure-  
RFS  
ments are taken at the connector of the sender. Even though the sender stops generating STROBE edges, the receiver  
may receive additional STROBE edges due to propagation delays. All timing measurement switching points (low to high  
and high to low) are taken at 1.5 V.  
DMARQ  
(device)  
tUI  
DMACK  
(device)  
tACK  
tENV  
tFS  
tZAD  
STOP  
(host)  
tACK  
tENV  
tFS  
HDMARDY  
(host)  
tZAD  
tZIORDY  
DSTROBE  
(device)  
tDVS  
tDVH  
tAZ  
DD(0:15)  
tACK  
DA0, DA1, DA2,  
CS[0:1]1  
Figure 15 Timing Diagram—Initiating an Ultra DMA Data In Burst  
MPC5200HardwareSpecifications  
34  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
t2CYC  
tCYC  
tCYC  
t2CYC  
DSTROBE  
at device  
tDVH  
tDVS  
tDVH  
tDVS  
tDVH  
DD(0:15)  
at device  
DSTROBE  
at host  
tDH  
tDS  
tDH  
tDS  
tDH  
DD(0:15)  
at host  
Figure 16 Timing Diagram—Sustained Ultra DMA Data In Burst  
DMARQ  
(device)  
DMARQ  
(host)  
tRP  
STOP  
(host)  
tSR  
HDMARDY  
(host)  
tRFS  
DSTROBE  
(device)  
DD[0:15]  
(device)  
Figure 17 Timing Diagram—Host Pausing an Ultra DMA Data In Burst  
MOTOROLA  
MPC5200HardwareSpecifications  
35  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
DMARQ  
(device)  
DMACK  
(host)  
tLI  
tLI  
tMLI  
tACK  
STOP  
(host)  
tLI  
tACK  
HDMARDY  
(host)  
tSS  
tIORDYZ  
DSTROBE  
(device)  
tZAH  
tDVS  
tAZ  
tDVH  
CRC  
DD[0:15]  
tACK  
DA0,DA1,DA2,  
CS[0:1]  
Figure 18 Timing Diagram—Drive Terminating Ultra DMA Data In Burst  
DMARQ  
(device)  
tLI  
tMLI  
DMACK  
(host)  
tRP  
tZAH  
tACK  
STOP  
(host)  
tACK  
HDMARDY  
(host)  
tMLI  
tRFS  
tLI  
tIORDYZ  
DSTROBE  
(device)  
tDVS  
tDVH  
CRC  
DD[0:15]  
tACK  
DA0,DA1,DA2,  
CS[0:1]  
Figure 19 Timing Diagram—Host Terminating Ultra DMA Data In Burst  
36  
MPC5200HardwareSpecifications  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
DMARQ  
(device)  
tUI  
DMACK  
(host)  
tENV  
tACK  
STOP  
(host)  
tLI  
tUI  
tZIORDY  
DDMARDY  
(host)  
tACK  
HSTROBE  
(device)  
tDVS  
tDVH  
DD[0:15]  
(host)  
tACK  
DA0,DA1,DA2,  
CS[0:1]  
Figure 20 Timing Diagram—Initiating an Ultra DMA Data Out Burst  
t2CYC  
tCYC  
tCYC  
t2CYC  
HSTROBE  
(host)  
tDVS  
tDVS  
tDVH  
tDVH  
tDVH  
DD[0:15]  
(host)  
HSTROBE  
(device)  
tDS  
tDS  
tDH  
tDH  
tDH  
DD[0:15]  
(device)  
Figure 21 Timing Diagram—Sustained Ultra DMA Data Out Burst  
MOTOROLA  
MPC5200HardwareSpecifications  
37  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
tRP  
DMARQ  
(device)  
DMACK  
(host)  
STOP  
(host)  
tSR  
DDMARDY  
(device)  
tRFS  
HSTROBE  
DD[0:15]  
(host)  
Figure 22 Timing Diagram—Drive Pausing an Ultra DMA Data Out Burst  
DMARQ  
(device)  
tLI  
tMLI  
DMACK  
(host)  
tSS  
tACK  
tLI  
STOP  
(host)  
tLI  
tIORDYZ  
DDMARDY  
(device)  
tACK  
HSTROBE  
(host)  
tDVS  
tDVH  
DD[0:15]  
(host)  
CRC  
tACK  
DA0,DA1,DA2,  
CS[0:1]  
Figure 23 Timing Diagram—Host Terminating Ultra DMA Data Out Burst  
38  
MPC5200HardwareSpecifications  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
DMARQ  
(device)  
DMACK  
(host)  
tLI  
tMLI  
tACK  
STOP  
(host)  
tRP  
tIORDYZ  
DDMARDY  
(device)  
tRFS  
tLI  
tMLI  
tACK  
HSTROBE  
(host)  
tDVS  
t DVH  
DD[0:15]  
(host)  
CRC  
tACK  
DA0,DA1,DA2,  
CS[0:1]  
Figure 24 Timing Diagram—Drive Terminating Ultra DMA Data Out Burst  
Table 29 Timing Specification ata_isolation  
Sym  
its  
MDaSexspcerciIpDtionUMnin  
1
2
ata_isolation setup time  
ata_isolation hold time  
7
-
-
IP Bus cycles  
IP Bus cycles  
A8.47  
A8.48  
19  
DIOR  
ATA_ISOLATION  
1
2
Figure 25 Timing Diagram-ATA-ISOLATION  
MPC5200HardwareSpecifications  
MOTOROLA  
39  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
3.3.9 Ethernet  
AC Test Timing Conditions:  
Output Loading  
All Outputs: 25 pF  
Table 30 MII Rx Signal Timing  
DitMesacxriptionSMpiencIDUn  
RX_DV, RX_ER  
Sym  
M1 RXD[3:0],  
to  
RX_CLK  
10  
setup10  
ns  
A9.2  
A9.3  
A9.1  
M2 RX_CLK to RXD[3:0], RX_DV, RX_ER hold  
M3 RX_CLK pulse width high  
ns  
RX_CLK Period 1  
RX_CLK Period1  
35%  
65%  
65%  
M4 RX_CLK pulse width low  
35%  
A9.4  
1
RX_CLK shall have a frequency of 25% of data rate of the received signal. See the IEEE 802.3 Specification [6].  
M3  
RX_CLK (Input)  
M4  
RXD[3:0] (inputs)  
RX_DV  
RX_ER  
M1  
M2  
Figure 26 Ethernet Timing Diagram—MII Rx Signal  
Table 31 MII Tx Signal Timing  
it MDeasxcripStpioencIMDinUn  
Sym  
M5 TX_CLK rising edge to TXD[3:0], TX_EN,  
TX_ER Delay  
0
25  
ns  
A9.5  
TX_CLK Period 1  
TX_CLK Period1  
M6 TX_CLK pulse width high  
M7 TX_CLK pulse width low  
35%  
35%  
65%  
65%  
A9.6  
A9.7  
40  
MPC5200HardwareSpecifications  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
1
the TX_CLK frequency shall be 25% of the nominal transmit frequency, e.g., a PHY operating at 100 Mb/s must provide  
a TX_CLK frequency of 25 MHz and a PHY operating at 10 Mb/s must provide a TX_CLK frequency of 2.5 MHz. See the  
IEEE 802.3 Specification [6].  
M6  
TX_CLK (Input)  
M5  
M7  
TXD[3:0] (Outputs)  
TX_EN  
TX_ER  
Figure 27 Ethernet Timing Diagram—MII Tx Signal  
Table 32 MII Async Signal Timing  
Sym  
it  
MDeasxScpriepctiIoDnMUinn  
M8 CRS, COL minimum pulse width  
1.5  
TX_CLK Period A9.8  
CRS, COL  
M8  
Figure 28 Ethernet Timing Diagram—MII Async  
Table 33 MII Serial Management Channel Signal Timing  
it DMeasxcriSptpioencIMDinUn  
Sym  
M9 MDC falling edge to MDIO output delay  
M10 MDIO (input) to MDC rising edge setup  
M11 MDIO (input) to MDC rising edge hold  
M12 MDC pulse width high 1  
M13 MDC pulse width low1  
M14 MDC period 2  
0
25  
ns  
ns  
ns  
ns  
ns  
ns  
A9.9  
10  
A9.10  
A9.11  
A9.12  
A9.13  
A9.14  
10  
160  
160  
400  
1
MDC is generated by MPC5200 with a duty cycle of 50% except when MII_SPEED in the FEC MII_SPEED control  
register is changed during operation. See the MPC5200 User Manual [1].  
MOTOROLA  
MPC5200HardwareSpecifications  
41  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
2
The MDC period must be set to a value of less then or equal to 2.5 MHz (to be compliant with the IEEE MII character-  
istic) by programming the FEC MII_SPEED control register. See the MPC5200 User Manual [1].  
M12  
M13  
MDC (Output)  
M14  
M9  
MDIO (Output)  
MDIO (Input)  
M10 M11  
Figure 29 Ethernet Timing Diagram—MII Serial Management  
3.3.10 USB  
Table 34 Timing Specifications—USB Output Line  
its MSDpaexesccIrDiptionUMnin  
USB Bit width 1  
Transceiver enable time  
Sym  
1
2
3
4
1
83.3  
83.3  
667  
667  
7.9  
ns  
ns  
ns  
ns  
A10.1  
A10.2  
A10.3  
A10.4  
Signal falling time  
Signal rising time  
7.9  
Defined in the USB config register, (12 Mbit/s or 1.5 Mbit/s mode).  
NOTE:  
Output timing was specified at a nominal 50 pF load.  
42  
MPC5200HardwareSpecifications  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
2
USB_OE  
4
3
3
4
USB_TXN  
USB_TXP  
1
1
Figure 30 Timing Diagram—USB Output Line  
3.3.11 SPI  
Table 35 Timing Specifications — SPI Master Mode, Format 0 (CPHA = 0)  
its MSDpaexesccIrDiptionUMnin  
Sym  
1
Cycle time  
4
1024  
IP-Bus  
Cycle 1  
A11.1  
A11.2  
2
Clock high or low time  
2
512  
IP-Bus  
Cycle1  
3
4
5
6
7
8
9
Slave select clock delay  
Output Data valid after Slave Select (SS)  
Output Data valid after SCK  
Input Data setup time  
15.0  
20.0  
20.0  
ns  
ns  
ns  
ns  
ns  
ns  
A11.3  
A11.4  
A11.5  
A11.6  
A11.7  
A11.8  
A11.9  
20.0  
20.0  
15.0  
1
Input Data hold time  
Slave disable lag time  
Sequential transfer delay  
IP-Bus  
Cycle1  
10  
11  
1
Clock falling time  
7.9  
7.9  
ns  
ns  
A11.10  
A11.11  
Clock rising time  
Inter Peripheral Clock is defined in the MPC5200 User Manual [1].  
NOTE:  
Output timing was specified at a nominal 50 pF load.  
MOTOROLA  
MPC5200HardwareSpecifications  
43  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
1
11  
10  
10  
11  
SCK  
(CLKPOL=0)  
Output  
2
2
SCK  
(CLKPOL=1)  
Output  
9
8
3
SS  
Output  
5
4
MOSI  
Output  
6
6
MISO  
Input  
7
7
Figure 31 Timing Diagram — SPI Master Mode, Format 0 (CPHA = 0)  
Table 36 Timing Specifications — SPI Slave Mode, Format 0 (CPHA = 0)  
iDtseMscarxiptioSnpMeicnIDUn  
Sym  
IP-Bus Cycle 1  
1
2
Cycle time  
4
2
1024  
512  
A11.12  
A11.13  
IP-Bus Cycle1  
Clock high or low time  
3
4
5
6
7
8
9
Slave select clock delay  
Output Data valid after Slave Select (SS)  
Output Data valid after SCK  
Input Data setup time  
15.0  
50.0  
50.0  
ns  
ns  
ns  
ns  
ns  
ns  
A11.14  
A11.15  
A11.16  
A11.17  
A11.18  
A11.19  
A11.20  
50.0  
0.0  
15.0  
1
Input Data hold time  
Slave disable lag time  
IP-Bus Cycle1  
Sequential Transfer delay  
1
Inter Peripheral Clock is defined in the MPC5200 User Manual [1].  
NOTE:  
Output timing was specified at a nominal 50 pF load.  
44  
MPC5200HardwareSpecifications  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
1
SCK  
(CLKPOL=0)  
Input  
2
2
SCK  
(CLKPOL=1)  
Input  
9
8
3
SS  
Input  
6
7
MOSI  
Input  
4
5
MISO  
Output  
Figure 32 Timing Diagram — SPI Slave Mode, Format 0 (CPHA = 0)  
Table 37 Timing Specifications — SPI Master Mode, Format 1 (CPHA = 1)  
Sym  
its  
MSDpaexesccIrDiptionUMnin  
1
Cycle time  
4
2
1024  
512  
IP-Bus  
Cycle 1  
A11.21  
A11.22  
2
Clock high or low time  
IP-Bus  
Cycle1  
3
4
5
6
7
8
Slave select clock delay  
Output data valid  
15.0  
20.0  
ns  
ns  
ns  
ns  
ns  
A11.23  
A11.24  
A11.25  
A11.26  
A11.27  
A11.28  
Input Data setup time  
Input Data hold time  
Slave disable lag time  
Sequential Transfer delay  
20.0  
20.0  
15.0  
1
IP-Bus  
Cycle1  
9
10  
1
Clock falling time  
7.9  
7.9  
ns  
ns  
A11.29  
A11.30  
Clock rising time  
Inter Peripheral Clock is defined in the MPC5200 User Manual [1].  
NOTE:  
Output timing was specified at a nominal 50 pF load.  
MOTOROLA  
MPC5200HardwareSpecifications  
45  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
1
10  
9
9
SCK  
(CLKPOL=0)  
Output  
2
2
10  
SCK  
(CLKPOL=1)  
Output  
8
7
3
4
SS  
Output  
MOSI  
Output  
5
MISO  
Input  
6
Figure 33 Timing Diagram — SPI Master Mode, Format 1 (CPHA = 1)  
Table 38 Timing Specifications — SPI Slave Mode, Format 1 (CPHA = 1)  
Sym  
its  
Cycle time  
SMpDaeexcsIcDriptioUnnMin  
1
4
2
1024  
512  
IP-Bus  
Cycle 1  
A11.31  
A11.32  
2
Clock high or low time  
IP-Bus  
Cycle1  
3
4
5
6
7
8
Slave select clock delay  
Output data valid  
15.0  
50.0  
ns  
ns  
ns  
ns  
ns  
A11.33  
A11.34  
A11.35  
A11.36  
A11.37  
A11.38  
Input Data setup time  
Input Data hold time  
Slave disable lag time  
Sequential Transfer delay  
50.0  
0.0  
15.0  
1
IP-Bus  
Cycle1  
1
Inter Peripheral Clock is defined in the MPC5200 User Manual [1].  
NOTE:  
Output timing was specified at a nominal 50 pF load.  
46  
MPC5200HardwareSpecifications  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
1
SCK  
(CLKPOL=0)  
Input  
2
2
SCK  
(CLKPOL=1)  
Input  
8
7
3
SS  
Input  
5
6
MOSI  
Input  
4
MISO  
Output  
Figure 34 Timing Diagram — SPI Slave Mode, Format 1 (CPHA = 1)  
MOTOROLA  
MPC5200HardwareSpecifications  
47  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
3.3.12 MSCAN  
The CAN functions are available as RX and TX pins at normal IO pads (I2C1+GPTimer or PSC2). There is  
no filter for the WakeUp dominant pulse. Any High-to-Low edge can cause WakeUp, if configured.  
2
3.3.13 I C  
2
Table 39 I C Input Timing Specifications—SCL and SDA  
Sym  
its  
MSDpaexesccIrDiptionUMnin  
1
Start condition hold time  
2
8
IP-Bus  
Cycle 1  
A13.1  
A13.2  
2
Clock low period  
IP-Bus  
Cycle1  
4
6
Data hold time  
Clock high time  
0.0  
4
ns  
A13.3  
A13.4  
IP-Bus  
Cycle1  
7
8
Data setup time  
0.0  
2
ns  
A13.5  
A13.6  
Start condition setup time (for repeated start con-  
dition only)  
IP-Bus  
Cycle1  
9
Stop condition setup time  
2
IP-Bus  
Cycle1  
A13.7  
1
Inter Peripheral Clock is defined in the MPC5200 User Manual [1].  
2
Table 40 I C Output Timing Specifications—SCL and SDA  
Sym  
Description  
Start condition hold time  
Min  
Max  
Units  
SpecID  
1 1  
6
IP-Bus  
Cycle3  
A13.8  
21  
Clock low period  
10  
IP-Bus  
Cycle3  
A13.9  
3 2  
41  
SCL/SDA rise time  
Data hold time  
7
7.9  
ns  
A13.10  
A13.11  
IP-Bus  
Cycle3  
51  
61  
SCL/SDA fall time  
Clock high time  
7.9  
ns  
A13.12  
A13.13  
10  
IP-Bus  
Cycle3  
71  
81  
91  
Data setup time  
2
IP-Bus  
Cycle3  
A13.14  
A13.15  
A13.16  
Start condition setup time (for repeated start con-  
dition only)  
20  
10  
IP-Bus  
Cycle3  
Stop condition setup time  
IP-Bus  
Cycle 3  
48  
MPC5200HardwareSpecifications  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
2
1
Programming IFDR with the maximum frequency (IFDR=0x20) results in the minimum output timings listed. The I C  
interface is designed to scale the data transition time, moving it to the middle of the SCL low period. The actual posi-  
tion is affected by the prescale and division values programmed in IFDR.  
2
3
Because SCL and SDA are open-drain-type outputs, which the processor can only actively drive low, the time SCL  
or SDA takes to reach a high level depends on external signal capacitance and pull-up resistor values  
Inter Peripheral Clock is defined in the MPC5200 User Manual [1].  
NOTE:  
Output timing was specified at a nominal 50 pF load.  
2
6
5
SCL  
3
1
7
8
4
9
SDA  
2
Figure 35 Timing Diagram—I C Input/Output  
3.3.14 J1850  
See the MPC5200 User Manual [1].  
3.3.15 PSC  
2
3.3.15.1 Codec Mode (8,16,24 and 32-bit) / I S Mode  
2
Table 41 Timing Specifications—8,16, 24 and 32-bit CODEC / I S Master Mode  
Sym  
Description  
Min  
Typ  
Max  
Units SpecID  
1
2
Bit Clock cycle time, programmed in CCS register  
Clock pulse width  
40.0  
ns  
A15.1  
A15.2  
1
50  
%
3
4
5
6
7
8
1
Bit Clock fall time  
6.0  
7.9  
7.9  
8.4  
8.4  
9.3  
ns  
ns  
ns  
ns  
ns  
ns  
A15.3  
A15.4  
A15.5  
A15.6  
A15.7  
A15.8  
Bit Clock rise time  
FrameSync valid after clock edge  
FrameSync invalid after clock edge  
Output Data valid after clock edge  
Input Data setup time  
Bit Clock cycle time  
NOTE:  
Output timing was specified at a nominal 50 pF load.  
MOTOROLA  
MPC5200HardwareSpecifications  
49  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
1
BitClk  
(CLKPOL=0)  
Output  
3
2
2
4
BitClk  
(CLKPOL=1)  
Output  
4
3
5
Frame  
(SyncPol = 1)  
6
Output  
Frame  
(SyncPol = 0)  
Output  
7
TxD  
Output  
8
RxD  
Input  
2
Figure 36 Timing Diagram — 8,16, 24, and 32-bit CODEC / I S Master Mode  
2
Table 42 Timing Specifications — 8,16, 24, and 32-bit CODEC / I S Slave Mode  
Sym  
itDTsyepsScpriepctiIoDMnaMxin Un  
Bit Clock cycle time  
1
2
40.0  
ns  
A15.9  
1
Clock pulse width  
50  
A15.10  
%
3
4
5
6
1
FrameSync setup time  
Output Data valid after clock edge  
Input Data setup time  
Input Data hold time  
1.0  
14.0  
ns  
ns  
ns  
ns  
A15.11  
A15.12  
A15.13  
A15.14  
1.0  
1.0  
Bit Clock cycle time  
NOTE:  
Output timing was specified at a nominal 50 pF load.  
50  
MPC5200HardwareSpecifications  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
1
BitClk  
(CLKPOL=0)  
Input  
2
2
BitClk  
(CLKPOL=1)  
Input  
3
Frame  
(SyncPol = 1)  
Input  
Frame  
(SyncPol = 0)  
Input  
4
TxD  
Output  
5
RxD  
Input  
6
2
Figure 37 Timing Diagram — 8,16, 24, and 32-bit CODEC / I S Slave Mode  
3.3.15.2 AC97 Mode  
Table 43 Timing Specifications — AC97 Mode  
itDTsyepsScpriepctIiDoMnaMxin Un  
Sym  
1
2
3
4
5
6
7
Bit Clock cycle time  
81.4  
40.7  
40.7  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
A15.15  
A15.16  
A15.17  
A15.18  
A15.19  
A15.20  
A15.21  
Clock pulse high time  
Clock pulse low time  
Frame valid after rising clock edge  
Output Data valid after rising clock edge  
Input Data setup time  
13.0  
14.0  
1.0  
1.0  
Input Data hold time  
NOTE:  
Output timing was specified at a nominal 50 pF load.  
MOTOROLA  
MPC5200HardwareSpecifications  
51  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
1
BitClk  
(CLKPOL=0)  
Input  
3
2
4
5
Sync  
(SyncPol = 1)  
Output  
Sdata_out  
Output  
6
7
Sdata_in  
Input  
Figure 38 Timing Diagram — AC97 Mode  
3.3.15.3 IrDA Mode  
Table 44 Timing Specifications — IrDA Transmit Line  
its SpecID MaxDescUrniptionMin  
Sym  
1
2
3
4
Pulse high time, defined in the IrDA protocol definition  
Pulse low time, defined in the IrDA protocol definition  
Transmitter rising time  
0.125  
0.125  
10000  
10000  
7.9  
µs  
µs  
ns  
ns  
A15.22  
A15.23  
A15.24  
A15.25  
Transmitter falling time  
7.9  
NOTE:  
Output timing was specified at a nominal 50 pF load.  
bcfb  
4
IrDA_TX  
(SIR / FIR / MIR)  
3
1
2
Figure 39 Timing Diagram — IrDA Transmit Line  
52  
MPC5200HardwareSpecifications  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
3.3.15.4 SPI Mode  
Table 45 Timing Specifications — SPI Master Mode, Format 0 (CPHA = 0)  
its SpecID MaxDescUrniptionMin  
Sym  
1
2
3
SCK cycle time, programable in the PSC CCS register  
SCK pulse width, 50% SCK cycle time  
30.0  
15.0  
30.0  
ns  
ns  
ns  
A15.26  
A15.27  
A15.28  
Slave select clock delay, programable in the PSC CCS  
register  
4
5
6
7
8
9
Output Data valid after Slave Select (SS)  
Output Data valid after SCK  
Input Data setup time  
8.9  
8.9  
ns  
ns  
ns  
ns  
ns  
ns  
A15.29  
A15.30  
A15.31  
A15.32  
A15.33  
A15.34  
6.0  
1.0  
Input Data hold time  
Slave disable lag time  
8.9  
Sequential Transfer delay, programable in the PSC  
CTUR / CTLR register  
15.0  
10  
11  
Clock falling time  
Clock rising time  
NOTE:  
7.9  
7.9  
ns  
ns  
A15.35  
A15.36  
Output timing was specified at a nominal 50 pF load.  
1
11  
10  
SCK  
(CLKPOL=0)  
2
2
Output  
10  
11  
SCK  
(CLKPOL=1)  
Output  
9
8
3
SS  
Output  
5
4
MOSI  
Output  
6
6
MISO  
Input  
7
7
Figure 40 Timing Diagram — SPI Master Mode, Format 0 (CPHA = 0)  
MPC5200HardwareSpecifications  
MOTOROLA  
53  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
Table 46 Timing Specifications — SPI Slave Mode, Format 0 (CPHA = 0)  
its SpecID MaxDescUrniptionMin  
Sym  
1
2
3
4
5
6
7
8
9
SCK cycle time, programable in the PSC CCS register  
SCK pulse width, 50% SCK cycle time  
Slave select clock delay  
30.0  
15.0  
1.0  
1.0  
1.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
A15.37  
A15.38  
A15.39  
A15.40  
A15.41  
A15.42  
A15.43  
A15.44  
A15.45  
Input Data setup time  
Input Data hold time  
Output data valid after SS  
14.0  
14.0  
Output data valid after SCK  
Slave disable lag time  
0.0  
30.0  
Minimum Sequential Transfer delay = 2 * IP Bus clock  
cycle time  
NOTE:  
Output timing was specified at a nominal 50 pF load.  
1
SCK  
(CLKPOL=0)  
2
2
Input  
SCK  
(CLKPOL=1)  
Input  
9
8
3
SS  
Input  
5
4
MOSI  
Input  
7
6
MISO  
Output  
Figure 41 Timing Diagram — SPI Slave Mode, Format 0 (CPHA = 0)  
54  
MPC5200HardwareSpecifications  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
Table 47 Timing Specifications — SPI Master Mode, Format 1 (CPHA = 1)  
its SpecID MaxDescUrniptionMin  
Sym  
1
2
3
SCK cycle time, programable in the PSC CCS register  
SCK pulse width, 50% SCK cycle time  
30.0  
15.0  
30.0  
ns  
ns  
ns  
A15.46  
A15.47  
A15.48  
Slave select clock delay, programable in the PSC CCS  
register  
4
5
6
7
8
Output data valid  
6.0  
1.0  
8.9  
ns  
ns  
ns  
ns  
ns  
A15.49  
A15.50  
A15.51  
A15.52  
A15.53  
Input Data setup time  
Input Data hold time  
Slave disable lag time  
8.9  
Sequential Transfer delay, programable in the PSC  
CTUR / CTLR register  
15.0  
9
Clock falling time  
Clock rising time  
7.9  
7.9  
ns  
ns  
A15.54  
A15.55  
10  
NOTE:  
Output timing was specified at a nominal 50 pF load.  
1
10  
9
SCK  
(CLKPOL=0)  
2
2
Output  
9
10  
SCK  
(CLKPOL=1)  
Output  
8
7
3
4
SS  
Output  
MOSI  
Output  
5
MISO  
Input  
6
Figure 42 Timing Diagram — SPI Master Mode, Format 1 (CPHA = 1)  
MPC5200HardwareSpecifications  
MOTOROLA  
55  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
Table 48 Timing Specifications — SPI Slave Mode, Format 1 (CPHA = 1)  
its SpecID MaxDescUrniptionMin  
Sym  
1
2
3
4
5
6
7
8
SCK cycle time, programable in the PSC CCS register  
SCK pulse width, 50% SCK cycle time  
Slave select clock delay  
30.0  
15.0  
0.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
A15.56  
A15.57  
A15.58  
A15.59  
A15.60  
A15.61  
A15.62  
A15.63  
Output data valid  
14.0  
Input Data setup time  
2.0  
Input Data hold time  
1.0  
Slave disable lag time  
0.0  
Minimum Sequential Transfer delay = 2 * IP-Bus clock  
cycle time  
30.0  
NOTE:  
Output timing was specified at a nominal 50 pF load.  
1
SCK  
(CLKPOL=0)  
2
2
Input  
SCK  
(CLKPOL=1)  
Input  
8
7
3
SS  
Input  
5
6
MOSI  
Input  
4
MISO  
Output  
Figure 43 Timing Diagram — SPI Slave Mode, Format 1 (CPHA = 1)  
56  
MPC5200HardwareSpecifications  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
3.3.16 GPIOs and Timers  
3.3.16.1 General and Asynchronous Signals  
The MPC5200 contains several sets if I/Os that do not require special setup, hold, or valid requirements.  
Most of these are asynchronous to the system clock. The following numbers are provided for test and  
validation purposes only, and they assume a 133 MHz internal bus frequency.  
Figure 44 shows the GPIO Timing Diagram. Table 49 gives the timing specifications.  
Table 49 Asynchronous Signals  
Sym  
tCK  
tIS  
its  
SpecIDMaxDescrUipntionMin  
Clock Period  
7.52  
12  
1
ns  
ns  
ns  
ns  
ns  
A16.1  
A16.2  
A16.3  
A16.4  
A16.5  
Input Setup for Async Signal  
Input Hold for Async Signals  
Output Valid  
tIH  
tDV  
tDH  
1
15.33  
Output Hold  
tCK  
tDH  
tDV  
Output  
Input  
valid  
valid  
tIH  
tIS  
Figure 44 Timing Diagram—Asynchronous Signals  
3.3.17 IEEE 1149.1 (JTAG) AC Specifications  
Table 50 JTAG Timing Specification  
Characteristic MinMax it UnSpecID  
TCK frequency of operation.  
Sym  
1
0
40  
25  
3
MHz  
ns  
A17.1  
A17.2  
A17.3  
A17.4  
TCK cycle time.  
2
TCK clock pulse width measured at 1.5V.  
TCK rise and fall times.  
1.08  
0
ns  
3
ns  
MOTOROLA  
MPC5200HardwareSpecifications  
57  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
Table 50 JTAG Timing Specification (continued)  
Sym  
Characteristic  
MinMax it UnSpecID  
4
5
TRST setup time to tck falling edge 1.  
10  
5
30  
30  
15  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
A17.5  
A17.6  
TRST assert time.  
Input data setup time 2.  
Input data hold time2.  
TCK to output data valid 3.  
TCK to output high impedance3.  
TMS, TDI data setup time.  
TMS, TDI data hold time.  
TCK to TDO data valid.  
6
5
A17.7  
7
15  
0
A17.8  
8
A17.9  
9
0
A17.10  
A17.11  
A17.12  
A17.13  
A17.14  
10  
11  
12  
13  
5
1
0
TCK to TDO high impedance.  
0
1
2
3
TRST is an asynchronous signal. The setup time is for test purposes only.  
Non-test, other than TDI and TMS, signal input timing with respect to TCK.  
Non-test, other than TDO, signal output timing with respect to TCK.  
1
2
2
TCK  
VM  
VM  
VM  
3
3
VM = Midpoint Voltage  
Numbers shown reference Table 50.  
Figure 45 Timing Diagram—JTAG Clock Input  
TCK  
4
TRST  
5
Numbers shown reference Table 50.  
Figure 46 Timing Diagram—JTAG TRST  
58  
MPC5200HardwareSpecifications  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical and Thermal Characteristics  
TCK  
DATA INPUTS  
6
7
INPUT DATA VALID  
8
9
OUTPUT DATA VALID  
DATA OUTPUTS  
DATA OUTPUTS  
Numbers shown reference Table 50.  
Figure 47 Timing Diagram—JTAG Boundary Scan  
TCK  
TDI, TMS  
TDO  
10  
11  
INPUT DATA VALID  
12  
13  
OUTPUT DATA VALID  
TDO  
Numbers shown reference Table 50.  
Figure 48 Timing Diagram—Test Access Port  
MOTOROLA  
MPC5200HardwareSpecifications  
59  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Package Description  
Package Description  
4
4.1 Package Parameters  
The MPC5200 uses a 27 mm x 27 mm TE-PBGA package. The package parameters are as provided in the  
following list:  
Package outline27 mm x 27 mm  
Interconnects272  
Pitch1.27 mm  
4.2 Mechanical Dimensions  
Figure 49 provides the mechanical dimensions, top surface, side profile, and pinout for the MPC5200, 272  
TE-PBGA package.  
60  
MPC5200HardwareSpecifications  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Package Description  
PIN A1  
INDEX  
D
C
4X  
0.2  
A
272X  
A
0.2  
A
0.35  
E
E2  
NOTES:  
1. DIMENSIONS AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2. DIMENSIONS IN MILLIMETERS.  
3. DIMENSION IS MEASURED AT THE MAXIMUM  
SOLDER BALL DIAMETER PARALLEL TO  
PRIMARY DATUM A.  
4. PRIMARY DATUM A AND THE SEATING PLANE  
ARE DEFINED BY THE SPHERICAL CROWNS OF  
THE SOLDER BALLS.  
M
A
B C  
D2  
0.2  
B
TOP VIEW  
MILLIMETERS  
DIM  
A
A1  
A2  
A3  
b
MIN  
2.05  
0.50  
0.50  
1.05  
0.60  
27.00 BSC  
24.13 REF  
23.30 24.70  
MAX  
2.65  
0.70  
0.70  
1.25  
0.90  
(D1)  
19X  
e
Y
W
V
U
T
R
P
N
M
L
D
19X  
e
D1  
D2  
E
E1  
E2  
e
27.00 BSC  
24.13 REF  
23.30  
24.70  
1.27 BSC  
(E1)  
K
J
H
G
F
A1  
4X  
e
/2  
A3  
A2  
E
D
C
B
A
A
SIDE VIEW  
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20  
3
b
272X  
M
A
A
B C  
0.3  
BOTTOM VIEW  
M
0.15  
CASE 1135A–01  
ISSUE B  
Figure 49 Mechanical Dimensions and Pinout Assignments for the MPC5200, 272  
TE-PBGA  
MOTOROLA  
MPC5200HardwareSpecifications  
61  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Package Description  
5.3 Pinout Listings  
See details in the MPC5200 User Manual [1].  
Table 51 MPC5200 Pinout Listing  
Power  
Supply  
Output  
Driver Type  
Input  
Type  
Pull-up/  
down  
Name  
Alias  
Type  
SDRAM  
MEM_CAS  
CAS  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VDD_MEM_IO DRV16_MEM  
VDD_MEM_IO DRV16_MEM  
VDD_MEM_IO DRV16_MEM  
VDD_MEM_IO DRV16_MEM  
VDD_MEM_IO DRV16_MEM  
VDD_MEM_IO DRV16_MEM  
VDD_MEM_IO DRV16_MEM  
VDD_MEM_IO DRV16_MEM  
VDD_MEM_IO DRV16_MEM  
VDD_MEM_IO DRV16_MEM  
VDD_MEM_IO DRV16_MEM  
VDD_MEM_IO DRV16_MEM  
PCI  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
MEM_CLK_EN  
MEM_CS  
CLK_EN  
MEM_DQM[3:0]  
MEM_MA[12:0]  
MEM_MBA[1:0]  
MEM_MDQS[3:0]  
MEM_MDQ[31:0]  
MEM_CLK  
DQM  
MA  
MBA  
MDQS  
MDQ  
MEM_CLK  
MEM_RAS  
RAS  
MEM_WE  
EXT_AD[31:0]  
PCI_CBE_0  
PCI_CBE_1  
PCI_CBE_2  
PCI_CBE_3  
PCI_CLOCK  
PCI_DEVSEL  
PCI_FRAME  
PCI_GNT  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
TTL  
TTL  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
DRV8  
DRV8  
PCI  
PCI_IDSEL  
PCI_IRDY  
PCI_PAR  
PCI  
62  
MPC5200HardwareSpecifications  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Package Description  
Table 51 MPC5200 Pinout Listing (continued)  
Power  
Supply  
Output  
Driver Type  
Input  
Type  
Pull-up/  
down  
Name  
PCI_PERR  
Alias  
Type  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
Local Plus  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
ATA  
PCI  
DRV8  
PCI  
PCI  
TTL  
PCI  
PCI  
PCI  
PCI  
PCI_REQ  
PCI_RESET  
PCI_SERR  
PCI_STOP  
PCI_TRDY  
PCI  
PCI  
PCI  
LP_ACK  
LP_ALE  
LP_OE  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
DRV8  
DRV8  
DRV8  
DRV8  
DRV8  
DRV8  
DRV8  
DRV8  
DRV8  
DRV8  
DRV8  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
PULLUP  
LP_RW  
LP_TS  
LP_CS0  
LP_CS1  
LP_CS2  
LP_CS3  
LP_CS4  
LP_CS5  
ATA_DACK  
ATA_DRQ  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
Ethernet  
VDD_IO  
DRV8  
DRV8  
DRV8  
DRV8  
DRV8  
DRV8  
DRV8  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
PULLDOWN  
PULLDOWN  
PULLUP  
ATA_INTRQ  
ATA_IOCHRDY  
ATA_IOR  
ATA_IOW  
ATA_ISOLATION  
ETH_0  
TX, TX_EN  
I/O  
DRV4  
TTL  
MOTOROLA  
MPC5200HardwareSpecifications  
63  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Package Description  
Name  
Table 51 MPC5200 Pinout Listing (continued)  
Power  
Supply  
Output  
Driver Type  
Input  
Type  
Pull-up/  
down  
Alias  
Type  
ETH_1  
ETH_2  
RTS, TXD[0]  
I/O  
I/O  
VDD_IO  
VDD_IO  
DRV4  
DRV4  
TTL  
TTL  
USB_TXP, TX,  
TXD[1]  
ETH_3  
ETH_4  
ETH_5  
ETH_6  
USB_PRTPWR,  
TXD[2]  
I/O  
I/O  
I/O  
I/O  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
DRV4  
DRV4  
DRV4  
DRV4  
TTL  
TTL  
TTL  
TTL  
USB_SPEED,  
TXD[3]  
USB_SUPEND,  
TX_ER  
USB_OE, RTS,  
MDC  
ETH_7  
TXN, MDIO  
RX_DV  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
DRV4  
DRV4  
DRV4  
DRV4  
DRV4  
DRV4  
DRV4  
TTL  
TTL  
ETH_8  
ETH_9  
CD, RX_CLK  
CTS, COL  
TX_CLK  
Schmitt  
TTL  
ETH_10  
ETH_11  
ETH_12  
ETH_13  
Schmitt  
TTL  
RXD[0]  
USB_RXD,  
TTL  
CTS, RXD[1]  
ETH_14  
USB_RXP,  
UART_RX,  
RXD[2]  
I/O  
VDD_IO  
DRV4  
TTL  
ETH_15  
ETH_16  
ETH_17  
USB_RXN, RX,  
RXD[3]  
I/O  
I/O  
I/O  
VDD_IO  
VDD_IO  
VDD_IO  
DRV4  
DRV4  
DRV4  
TTL  
TTL  
TTL  
USB_OVRCNT,  
CTS, RX_ER  
CD, CRS  
IRDA  
PSC6_0  
PSC6_1  
PSC6_2  
PSC6_3  
IRDA_RX, TxD  
RxD  
I/O  
I/O  
I/O  
I/O  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
DRV4  
DRV4  
DRV4  
DRV4  
TTL  
TTL  
TTL  
TTL  
Frame, CTS  
IR_USB_CLK,Bi  
tClk, RTS  
64  
MPC5200HardwareSpecifications  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Package Description  
Table 51 MPC5200 Pinout Listing (continued)  
Power  
Supply  
Output  
Driver Type  
Input  
Type  
Pull-up/  
down  
Name  
Alias  
Type  
USB  
USB_0  
USB_OE  
USB_TXN  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
DRV4  
DRV4  
DRV4  
DRV4  
DRV4  
DRV4  
DRV4  
DRV4  
DRV4  
DRV4  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
USB_1  
USB_2  
USB_3  
USB_4  
USB_5  
USB_6  
USB_7  
USB_8  
USB_9  
USB_TXP  
USB_RXD  
USB_RXP  
USB_RXN  
USB_PRTPWR  
USB_SPEED  
USB_SUPEND  
USB_OVRCNT  
I2C  
I2C_0  
I2C_1  
I2C_2  
I2C_3  
SCL  
SDA  
SCL  
SDA  
I/O  
I/O  
I/O  
I/O  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
PSC  
DRV4  
DRV4  
DRV4  
DRV4  
Schmitt  
Schmitt  
Schmitt  
Schmitt  
PSC1_0  
PSC1_1  
TxD, Sdata_out,  
MOSI, TX  
I/O  
I/O  
VDD_IO  
DRV4  
DRV4  
TTL  
TTL  
RxD, Sdata_in,  
MISO, TX  
VDD_IO  
PSC1_2  
PSC1_3  
Mclk, Sync, RTS  
I/O  
I/O  
VDD_IO  
VDD_IO  
DRV4  
DRV4  
TTL  
TTL  
BitClk, SCK,  
CTS  
PSC1_4  
PSC2_0  
Frame, SS, CD  
I/O  
I/O  
VDD_IO  
VDD_IO  
DRV4  
DRV4  
TTL  
TTL  
TxD, Sdata_out,  
MOSI, TX  
PSC2_1  
PSC2_2  
RxD, Sdata_in,  
MISO, TX  
I/O  
I/O  
VDD_IO  
VDD_IO  
DRV4  
DRV4  
TTL  
TTL  
Mclk, Sync, RTS  
MOTOROLA  
MPC5200HardwareSpecifications  
65  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Package Description  
Table 51 MPC5200 Pinout Listing (continued)  
Power  
Supply  
Output  
Driver Type  
Input  
Type  
Pull-up/  
down  
Name  
Alias  
Type  
PSC2_3  
BitClk, SCK,  
CTS  
I/O  
VDD_IO  
DRV4  
TTL  
PSC2_4  
PSC3_0  
Frame, SS, CD  
I/O  
I/O  
VDD_IO  
VDD_IO  
DRV4  
DRV4  
TTL  
TTL  
USB_OE, TxDS,  
TX  
PSC3_1  
PSC3_2  
PSC3_3  
USB_TXN,RxD,  
RX  
I/O  
I/O  
I/O  
VDD_IO  
VDD_IO  
VDD_IO  
DRV4  
DRV4  
DRV4  
TTL  
TTL  
TTL  
USB_TXP,  
BitClk, RTS  
USB_RXD,  
Frame, SS, CTS  
PSC3_4  
PSC3_5  
PSC3_6  
USB_RXP, CD  
USB_RXN  
I/O  
I/O  
I/O  
VDD_IO  
VDD_IO  
VDD_IO  
DRV4  
DRV4  
DRV4  
TTL  
TTL  
TTL  
USB_PRTPWR,  
Mclk, MOSI  
PSC3_7  
PSC3_8  
PSC3_9  
USB_SPEED.  
MISO  
I/O  
I/O  
I/O  
VDD_IO  
VDD_IO  
DRV4  
DRV4  
DRV4  
TTL  
TTL  
TTL  
USB_SUPEND,  
SS  
USB_OVRCNT,  
SCK  
VDD_IO  
GPIO/TIMER  
GPIO_WKUP_6  
GPIO_WKUP_7  
TIMER_0  
MEM_CS1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VDD_MEM_IO DRV16_MEM  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
PULLUP_MEM  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
DRV8  
DRV4  
DRV4  
DRV4  
DRV4  
DRV4  
DRV4  
DRV4  
DRV4  
TIMER_1  
TIMER_2  
MOSI  
MISO  
SS  
TIMER_3  
TIMER_4  
TIMER_5  
SCK  
TIMER_6  
TIMER_7  
66  
MPC5200HardwareSpecifications  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Package Description  
Table 51 MPC5200 Pinout Listing (continued)  
Power  
Supply  
Output  
Driver Type  
Input  
Type  
Pull-up/  
down  
Name  
Alias  
Type  
Clock  
SYS_XTAL_IN  
SYS_XTAL_OUT  
RTC_XTAL_IN  
RTC_XTAL_OUT  
Input  
Output  
Input  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
Output  
Misc  
PORRESET  
HRESET  
Input  
I/O  
VDD_IO  
VDD_IO  
DRV4  
Schmitt  
Schmitt  
DRV8_OD 1  
DRV8_OD1  
DRV4  
SRESET  
I/O  
VDD_IO  
Schmitt  
IRQ0  
IRQ1  
IRQ2  
IRQ3  
I/O  
I/O  
I/O  
I/O  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
TTL  
TTL  
TTL  
TTL  
DRV4  
DRV4  
DRV4  
Test/Configuration  
SYS_PLL_TPA  
TEST_MODE_0  
TEST_MODE_1  
TEST_SEL_0  
TEST_SEL_1  
JTAG_TCK  
I/O  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
DRV4  
DRV4  
DRV4  
DRV4  
DRV8  
DRV4  
DRV4  
DRV8  
DRV4  
DRV4  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
Input  
Input  
I/O  
PULLUP  
I/O  
TCK  
TDI  
Input  
Input  
I/O  
PULLUP  
PULLUP  
JTAG_TDI  
JTAG_TDO  
TDO  
TMS  
TRST  
JTAG_TMS  
Input  
Input  
PULLUP  
PULLUP  
JTAG_TRST  
Power and Ground  
VDD_IO  
-
-
VDD_MEM_IO  
MOTOROLA  
MPC5200HardwareSpecifications  
67  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Package Description  
Name  
Table 51 MPC5200 Pinout Listing (continued)  
Power  
Supply  
Output  
Driver Type  
Input  
Type  
Pull-up/  
down  
Alias  
Type  
VDD_CORE  
-
-
-
-
VSS_IO/CORE  
SYS_PLL_AVDD  
CORE_PLL_AVDD  
1
All “open drain” outputs of the MPC5200 are actually regular three-state output drivers with the output data tied low  
and the output enable controlled. Thus, unlike a true open drain, there is a current path from the external system to the  
MPC5200 I/O power rail if the external signal is driven above the MPC5200 I/O power rail voltage.  
68  
MPC5200HardwareSpecifications  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
System Design Information  
6
System Design Information  
6.1 Power UP/Down Sequencing  
Figure 50 shows situations in sequencing the I/O VDD (VDD_IO), Memory VDD (VDD_IO_MEM), PLL  
VDD (PLL_AVDD), and Core VDD (VDD_CORE).  
VDD_IO,  
3.3V  
2.5V  
VDD_IO_MEM (SDR)  
VDD_IO_MEM (DDR)  
1
VDD_CORE,  
PLL_AVDD  
1.5V  
2
0
Time  
Note:  
1. VDD_CORE should not exceed VDD_IO, VDD_IO_MEM or PLL_AVDD by more than 0.4 V at any time,  
including power-up.  
2. It is recommended that VDD_CORE/PLL_AVDD should track VDD_IO/VDD_IO_MEM up to 0.9 V  
then separate for completion of ramps.  
3. Input voltage must not be greater than the supply voltage (VDD_IO, VDD_IO_MEM, VDD_CORE, or  
PLL_AVDD) by more than 0.5 V at any time, including during power-up.  
4. Use 1 microsecond or slower rise time for all supplies.  
Figure 50 Supply Voltage Sequencing  
The relationship between VDD_IO_MEM and VDD_IO is non-critical during power-up and power-down  
sequences. Both VDD_IO_MEM (2.5 V or 3.3 V) and VDD_IO are specified relative to VDD_CORE.  
6.1.1 Power Up Sequence  
If VDD_IO/VDD_IO_MEM are powered up with the VDD_CORE at 0V, the sense circuits in the I/O pads  
will cause all pad output drivers connected to the VDD_IO/VDD_IO_MEM to be in a high-impedance state.  
There is no limit to how long after VDD_IO/VDD_IO_MEM powers up before VDD_CORE must power up.  
VDD_CORE should not lead the VDD_IO, VDD_IO_MEM or PLL_AVDD by more than 0.4 V during power  
ramp up or there will be high current in the internal ESD protection diodes. The rise times on the power  
supplies should be slower than 1 microsecond to avoid turning on the internal ESD protection clamp  
diodes.  
The recommended power up sequence is as follows:  
Use one microsecond or slower rise time for all supplies.  
MOTOROLA  
MPC5200HardwareSpecifications  
69  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
System Design Information  
VDD_CORE/PLL_AVDD and VDD_IO/VDD_IO_MEM should track up to 0.9 V and then separate for the  
completion of ramps with VDD_IO/VDD_IO_MEM going to the higher external voltages. One way to  
accomplish this is to use a low drop-out voltage regulator.  
6.1.2 Power Down Sequence  
If VDD_CORE/PLL_AVDD are powered down first, then sense circuits in the I/O pads will cause all output  
drivers to be in a high impedance state. There is no limit on how long after VDD_CORE and PLL_AVDD  
power down before VDD_IO or VDD_IO_MEM must power down. VDD_CORE should not lag VDD_IO,  
VDD_IO_MEM, or PLL_AVDD going low by more than 0.4V during power down or there will be undesired  
high current in the ESD protection diodes. There are no requirements for the fall times of the power  
supplies.  
The recommended power down sequence is as follows:  
Drop VDD_CORE/PLL_AVDD to 0V.  
Drop VDD_IO/VDD_IO_MEM supplies.  
6.2 System and CPU Core AVDD power supply filtering  
Each of the independent PLL power supplies require filtering external to the device. The following drawing  
is a recommendation for the required filter circuit.  
< 1 Ω  
10 Ω  
Power  
Supply  
source  
AVDD device pin  
10 µF  
200-400 pF  
Figure 51 Power Supply Filtering  
6.3 Pull-up/Pull-down Resistor Requirements  
The MPC5200 requires external pull-up or pull-down resistors on certain pins.  
6.3.1 Pull-down Resistor Requirements for TEST pins  
The MPC5200 requires pull-down resistors on the test pins TEST_MODE_0, TEST_MODE_1,  
TEST_SEL_1.  
6.3.2 Pull-up Requirements for the PCI Control Lines  
If the PCI interface is NOT used (and internally disabled) the PCI control pins must be terminated as  
indicated by the PCI Local Bus specification [4]. This is also required for MOST/Graphics and Large Flash  
Mode.  
PCI control signals always require pull-up resistors on the motherboard (not the expansion board) to  
ensure that they contain stable values when no agent is actively driving the bus. This includes  
PCI_FRAME, PCI_TRDY, PCI_IRDY, PCI_DEVSEL, PCI_STOP, PCI_SERR, PCI_PERR, and PCI_REQ.  
70  
MPC5200HardwareSpecifications  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
System Design Information  
6.3.3 Pull-up/Pull-down Requirements for MEM_MDQS pins (SDRAM)  
The MEM_MDQS[3:0] signals are not used with SDR memories and require pull-up or pull-down resistors  
in SDRAM mode.  
6.4 Information about JTAG_TRST  
Boundary scan testing is enabled through the JTAG interface signals. The JTAG_TRST signal is optional  
in the IEEE 1149.1 specification but is provided on all processors that implement the PowerPC  
architecture. To obtain a reliable power-on reset performance, the JTAG_TRST signal must be asserted  
during power-on reset.  
6.4.1 JTAG_TRST and PORRESET  
The JTAG interface can control the direction of the MPC5200 I/O pads via the boundary scan chain. The  
JTAG module must be reset before the MPC5200 comes out of power-on reset; do this by asserting  
JTAG_TRST before PORRESET is released.  
For more details refer to the Reset and JTAG Timing Specification.  
PORRESET  
required assertion of JTAG_TRST  
JTAG_TRST  
optional assertion of JTAG_TRST  
Figure 52 PORRESET vs. JTAG_TRST  
6.5 Connecting JTAG_TRST  
The wiring of the JTAG_TRST is dependent of the existence of a board-related debug interface.  
Normally this interface is implemented, using a COP (common on-chip processor) connector. The COP  
allows a remote computer system (typically, a PC with dedicated hardware and debugging software) to  
access and control the internal operations of the MPC5200. The COP port requires the ability to  
independently assert HRESET and JTAG_TRST in order to fully control the processor.  
There are two possibilities to connect the JTAG interface: using it with a COP connector and without a  
COP connector.  
6.5.1 Boards interfacing the JTAG port via a COP connector  
For a board with a COP (common on-chip processor) connector, which accesses the JTAG interface and  
which needs to reset the JTAG module, simply wiring TRST and PORRESET is not recommended.  
To reset the MPC5200 via the COP connector, the HRESET pin of the COP should be connected to the  
HRESET pin of the MPC5200.  
The circuitry shown in Figure 53 allows the COP to assert HRESET or JTAG_TRST separately, while any  
other board sources can drive PORRESET.  
MOTOROLA  
MPC5200HardwareSpecifications  
71  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
System Design Information  
PORRESET  
PORRESET  
HRESET  
COP Header  
MPC5200  
10Kohm  
HRESET  
SRESET  
VDD  
13  
11  
16  
VDD  
10Kohm  
10Kohm  
SRESET  
VDD  
COP Connector  
Physical Pinout  
TRST  
TMS  
4
JTAG_TRST  
1
3
5
7
9
2
4
Key 14  
10Kohm  
10Kohm  
VDD  
9
JTAG_TMS  
6
12  
8
TCK  
VDD  
VDD  
7
10  
62  
JTAG_TCK  
11 12  
13  
15 16  
10Kohm  
TDI  
3
VDD  
K
Key  
JTAG_TDI  
CKSTP_OUT  
TDO  
TEST_SEL_0  
JTAG_TDO  
15  
1
halted  
NC  
53  
24  
10  
8
qack  
NC  
NC  
NC  
Figure 53 COP Connector Diagram  
6.5.2 Boards without COP connector  
If the JTAG interface is not used, JTAG_TRST should be tied to PORRESET, so that it is asserted when  
the system reset signal (PORRESET) is asserted. This ensures that the JTAG scan chain is initialized  
during power on. Figure 54 shows the connection of the JTAG interface without COP connector.  
72  
MPC5200HardwareSpecifications  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
System Design Information  
PORRESET  
PORRESET  
HRESET  
MPC5200  
10Kohm  
10Kohm  
HRESET  
SRESET  
VDD  
VDD  
SRESET  
JTAG_TRST  
10Kohm  
10Kohm  
VDD  
JTAG_TMS  
VDD  
JTAG_TCK  
10Kohm  
VDD  
JTAG_TDI  
TEST_SEL_0  
JTAG_TDO  
Figure 54 JTAG_TRST wiring for boards without COP connector  
MOTOROLA  
MPC5200HardwareSpecifications  
73  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Ordering Information  
7
Ordering Information  
Table 52 Ordering Information  
Part Number  
Speed Ambient Temp  
Qualification  
MPC5200BV400 400  
MPC5200CBV266 266  
MPC5200CBV400 400  
SPC5200CBV400 400  
0C to 70C  
-40C to 85C  
-40C to 85C  
Commercial  
Industrial  
Industrial  
-40C to 85C Automotive - AEC  
74  
MPC5200HardwareSpecifications  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Document Revision History  
8
Document Revision History  
Table 53 provides a revision history for this hardware specification.  
Table 53 Document Revision History  
Rev.  
Substantive Change(s)  
No.  
0.1  
0.2  
First Preliminary release with some TBD’s in spec tables (6/2003)  
Added AC specs for missing modules, power-on sequence, misc other updates (7/2003)  
Corrected maximum core operating frequency (7/2003)  
0.2.1  
0.3  
Added Memory Interface Timing values, misc other updates (8/2003)  
Added Information about JTAG_TRST (11/2003)  
1.0  
2.0  
Added Power Numbers (Section 3.1.5), updated Oscillator and PLL Characteristics (Section  
3.2), updated SDRAM AC Characteristics (Section 3.3.5)  
For more detailed information, refer to the following documentation:  
[1] MPC5200 User Manual MPC5200UM  
[2] PowerPC Microprocessor Family: The Programming Environments for 32-bit Microprocessors,  
Rev. 2: MPCFPE32B/AD  
[3] G2 Core Reference Manual, Rev. 0: G2CORERM/D  
[4] PCI Local Bus Specification, Revision 2.2, December 18, 1998  
[5] ANSI ATA-4 Specification  
[6] IEEE 802.3 Specification (ETHERNET)  
MOTOROLA  
MPC5200HardwareSpecifications  
75  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
HOW TO REACH US:  
USA/EUROPE/LOCATIONS NOT LISTED:  
Motorola Literature Distribution  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-521-6274 or 480-768-2130  
JAPAN:  
Motorola Japan Ltd.  
SPS, Technical Information Center  
3-20-1, Minami-Azabu, Minato-ku  
Tokyo 106-8573, Japan  
81-3-3440-3569  
ASIA/PACIFIC:  
Motorola Semiconductors H.K. Ltd.  
Silicon Harbour Centre  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
852-26668334  
HOME PAGE:  
http://motorola.com/semiconductors  
Information in this document is provided solely to enable system and software implementers to use Motorola products.  
There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or  
integrated circuits based on the information in this document.  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty,  
representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume  
any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Motorola  
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical  
experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not  
designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could  
create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,  
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising  
out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even  
if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
MOTOROLA and the Stylized M Logo are registered in the US Patent and Trademark Office. All other product or service  
names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
© Motorola Inc. 2004  
MPC5200/D  
Rev. 2  
5/2004  
For More Information On This Product,  
Go to: www.freescale.com  

相关型号:

SPC5200CBV400B

SDRAM/DDR Memory Controller
FREESCALE

SPC5200CBV400B

Freescale 32-bit MCU, e300 MPU, 400MHz, -40/+85degC, Automotive Grade, PBGA 272
NXP

SPC5200CBV400R2

400MHz, MICROPROCESSOR, PBGA272, 27 X 27 MM, 1.27 MM PITCH, PLASTIC, BGA-272
NXP

SPC5200CVR400

32-bit MCU, Power Architecture core, 64KB Flash, 400MHz, -40/+85degC, Automotive Qualified, PBGA 272
NXP

SPC5200CVR400B

SDRAM/DDR Memory Controller
FREESCALE

SPC5200CVR400B

Freescale 32-bit MCU, e300 MPU, 400MHz, -40/+85degC, Automotive Grade, PBGA 272
NXP

SPC5200CVR400BR2

32-BIT, 400MHz, MICROPROCESSOR, PBGA272, 27 X 27 MM, 1.27 MM PITCH, ROHS COMPLIANT, PLASTIC, BGA-272
NXP

SPC5200CVR466B

466MHz, MICROPROCESSOR, PBGA272, 27 X 27 MM, 1.27 MM PITCH, ROHS COMPLIANT, PLASTIC, BGA-272
NXP

SPC5200CVR466BR2

466MHz, MICROPROCESSOR, PBGA272, 27 X 27 MM, 1.27 MM PITCH, ROHS COMPLIANT, PLASTIC, BGA-272
NXP

SPC5200VVR266B

SDRAM/DDR Memory Controller
FREESCALE

SPC5514EBMLQ66

Freescale 32-bit MCU, Power Arch core, 512KB Flash, 66MHz, -40/+125degC, Automotive Grade, QFP 144
NXP

SPC5514EBVLQ66

Freescale 32-bit MCU, Power Arch core, 512KB Flash, 66MHz, -40/+105degC, Automotive Grade, QFP 144
NXP