TIP116 [MOTOROLA]

DARLINGTON 2 AMPERE COMPLEMENTARY SILICON POWER TRANSISTORS; 达林顿2安培互补硅功率晶体管
TIP116
型号: TIP116
厂家: MOTOROLA    MOTOROLA
描述:

DARLINGTON 2 AMPERE COMPLEMENTARY SILICON POWER TRANSISTORS
达林顿2安培互补硅功率晶体管

晶体 晶体管 局域网
文件: 总6页 (文件大小:272K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by TIP110/D  
SEMICONDUCTOR TECHNICAL DATA  
. . . designed for general–purpose amplifier and low–speed switching applications.  
High DC Current Gain —  
= 2500 (Typ) @ I = 1.0 Adc  
Collector–Emitter Sustaining Voltage — @ 30 mAdc  
h
FE  
C
V
V
V
= 60 Vdc (Min) — TIP110, TIP115  
= 80 Vdc (Min) — TIP111, TIP116  
= 100 Vdc (Min) — TIP112, TIP117  
CEO(sus)  
CEO(sus)  
CEO(sus)  
Low Collector–Emitter Saturation Voltage —  
= 2.5 Vdc (Max) @ I = 2.0 Adc  
V
CE(sat)  
C
Monolithic Construction with Built–in Base–Emitter Shunt Resistors  
TO–220AB Compact Package  
*MAXIMUM RATINGS  
*Motorola Preferred Device  
TIP110,  
TIP115  
TIP111,  
TIP116  
TIP112,  
TIP117  
Rating  
Symbol  
Unit  
DARLINGTON  
2 AMPERE  
COMPLEMENTARY SILICON  
POWER TRANSISTORS  
6080100 VOLTS  
50 WATTS  
Collector–Emitter Voltage  
V
CEO  
60  
60  
80  
80  
100  
100  
Vdc  
Collector–Base Voltage  
Emitter–Base Voltage  
V
Vdc  
Vdc  
Adc  
CB  
EB  
V
5.0  
Collector Current — Continuous  
Peak  
I
C
2.0  
4.0  
Base Current  
I
B
50  
mAdc  
Total Power Dissipation @ T = 25 C  
C
Derate above 25 C  
P
D
50  
0.4  
Watts  
W/ C  
Total Power Dissipation @ T = 25 C  
A
Derate above 25 C  
P
D
2.0  
0.016  
Watts  
W/ C  
Unclamped Inductive Load Energy —  
Figure 13  
E
25  
mJ  
Operating and Storage Junction  
T , T  
J stg  
65 to +150  
C
THERMAL CHARACTERISTICS  
Characteristics  
CASE 221A–06  
TO–220AB  
Symbol  
Max  
Unit  
Thermal Resistance, Junction to Case  
R
2.5  
C/W  
θJC  
θJA  
Thermal Resistance, Junction to Ambient  
R
62.5  
C/W  
T
T
C
A
3.0 60  
2.0 40  
T
C
1.0 20  
T
A
0
0
0
20  
40  
60  
80  
100  
C)  
120  
140  
160  
T, TEMPERATURE (  
°
Figure 1. Power Derating  
Preferred devices are Motorola recommended choices for future use and best overall value.  
REV 1  
Motorola, Inc. 1995
ELECTRICAL CHARACTERISTICS (T = 25 C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Max  
Unit  
OFF CHARACTERISTICS  
Collector–Emitter Sustaining Voltage (1)  
V
Vdc  
CEO(sus)  
(I = 30 mAdc, I = 0)  
TIP110, TIP115  
TIP111, TIP116  
TIP112, TIP117  
60  
80  
100  
C
B
Collector Cutoff Current  
I
I
mAdc  
mAdc  
CEO  
CBO  
(V  
CE  
(V  
CE  
(V  
CE  
= 30 Vdc, I = 0)  
TIP110, TIP115  
TIP111, TIP116  
TIP112 ,TIP117  
2.0  
2.0  
2.0  
B
= 40 Vdc, I = 0)  
B
= 50 Vdc, I = 0)  
B
Collector Cutoff Current  
(V  
CB  
(V  
CB  
(V  
CB  
= 60 Vdc, I = 0)  
TIP110, TIP115  
TIP111, TIP116  
TIP112, TIP117  
1.0  
1.0  
1.0  
E
= 80 Vdc, I = 0)  
E
= 100 Vdc, I = 0)  
E
Emitter Cutoff Current  
(V = 5.0 Vdc, I = 0)  
I
2.0  
mAdc  
EBO  
BE  
C
ON CHARACTERISTICS (1)  
DC Current Gain  
h
FE  
(I = 1.0 Adc, V  
(I = 2.0 Adc, V  
C
= 4.0 Vdc)  
= 4.0 Vdc)  
1000  
500  
C
CE  
CE  
Collector–Emitter Saturation Voltage  
(I = 2.0 Adc, I = 8.0 mAdc)  
V
2.5  
Vdc  
Vdc  
CE(sat)  
C
B
Base–Emitter On Voltage  
(I = 2.0 Adc, V = 4.0 Vdc)  
V
BE(on)  
2.8  
C
CE  
DYNAMIC CHARACTERISTICS  
Small–Signal Current Gain  
h
fe  
25  
(I = 0.75 Adc, V  
CE  
= 10 Vdc, f = 1.0 MHz)  
C
Output Capacitance  
(V = 10 Vdc, I = 0, f = 0.1 MHz)  
C
pF  
ob  
TIP115, TIP116, TIP117  
TIP110, TIP111, TIP112  
200  
100  
CB  
E
(1) Pulse Test: Pulse Width  
300 µs, Duty Cycle  
2%.  
4.0  
V
V
= 30 V  
I
T
= I  
= 25°C  
CC  
– 30 V  
CC  
/I = 250  
B1 B2  
J
R
& R VARIED TO OBTAIN DESIRED CURRENT LEVELS  
C
B
t
s
I
C B  
D , MUST BE FAST RECOVERY TYPE, eg:  
1
2.0  
1N5825 USED ABOVE I  
100 mA  
100 mA  
B
R
C
SCOPE  
MSD6100 USED BELOW I  
B
TUT  
V
2
R
B
t
f
approx  
+ 8.0 V  
1.0  
0.8  
D
1
t
8.0 k  
51  
60  
r
0
0.6  
V
1
+ 4.0 V  
for t and t , D is disconnected  
approx  
–12 V  
0.4  
25 µs  
t
@ V  
BE(off)  
= 0  
d
d
r
1
PNP  
NPN  
and V = 0, R and R are varied  
2
B
C
t , t  
10 ns  
r
f
to obtain desired test currents.  
DUTY CYCLE = 1.0%  
0.2  
0.04 0.06  
For NPN test circuit, reverse diode,  
polarities and input pulses.  
0.1  
0.2  
0.4 0.6  
1.0  
2.0  
4.0  
I
, COLLECTOR CURRENT (AMP)  
C
Figure 2. Switching Times Test Circuit  
Figure 3. Switching Times  
2
Motorola Bipolar Power Transistor Device Data  
1.0  
0.7  
0.5  
D = 0.5  
0.2  
0.3  
0.2  
0.1  
0.1  
P
(pk)  
Z
R
= r(t) R  
θ
θ
θ
JC(t)  
JC  
JC  
°C/W MAX  
0.05  
0.07  
0.05  
= 2.5  
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
READ TIME AT t  
0.02  
t
0.03  
0.02  
1
1
t
2
T
– T = P  
C
Z
0.01  
J(pk)  
(pk)  
θ
JC(t)  
DUTY CYCLE, D = t /t  
1 2  
SINGLE PULSE  
0.05 0.1  
0.01  
0.01  
0.02  
0.2  
0.5  
1.0  
2.0  
5.0  
10  
20  
50  
100  
200  
500  
1.0 k  
t, TIME (ms)  
Figure 4. Thermal Response  
ACTIVE–REGION SAFE–OPERATING AREA  
10  
10  
4.0  
2.0  
4.0  
1 ms  
5 ms  
dc  
2.0  
T
= 150°C  
J
T
= 150°C  
dc  
J
BONDING WIRE LIMITED  
THERMALLY LIMITED  
1.0  
1.0  
BONDING WIRE LIMITED  
THERMALLY LIMITED  
@ T = 25°C (SINGLE PULSE)  
C
@ T = 25  
°C (SINGLE PULSE)  
C
SECONDARY BREAKDOWN LIMITED  
SECONDARY BREAKDOWN LIMITED  
TIP115  
TIP116  
TIP117  
TIP110  
TIP111  
TIP112  
CURVES APPLY BELOW  
RATED V  
CURVES APPLY BELOW  
RATED V  
CEO  
CEO  
0.1  
1.0  
0.1  
1.0  
10  
40  
60 80 100  
10  
60 80 100  
V
, COLLECTOR–EMITTER VOLTAGE (VOLTS)  
V
, COLLECTOR–EMITTER VOLTAGE (VOLTS)  
CE  
CE  
Figure 5. TIP115, 116, 117  
Figure 6. TIP110, 111, 112  
200  
There are two limitations on the power handling ability of a  
transistor: average junction temperature and second break-  
T
= 25°C  
C
100  
70  
down. Safe operating area curves indicate I – V  
limits of  
C
CE  
the transistor that must be observed for reliable operation;  
i.e., the transistor must not be subjected to greater dissipa-  
tion than the curves indicate.  
50  
The data of Figures 5 and 6 is based on T  
= 150 C;  
J(pk)  
is variable depending on conditions. Second breakdown  
C
ob  
T
C
30  
20  
C
ib  
pulse limits are valid for duty cycles to 10% provided T  
J(pk)  
may be calculated from the data in Figure 4.  
< 150 C. T  
J(pk)  
At high case temperatures, thermal limitations will reduce the  
power that can be handled to values less than the limitations  
imposed by second breakdown.  
PNP  
NPN  
10  
0.04 0.06 0.1  
0.2  
0.4 0.6 1.0  
2.0  
4.0 6.0 10  
20  
40  
V
, REVERSE VOLTAGE (VOLTS)  
R
Figure 7. Capacitance  
3
Motorola Bipolar Power Transistor Device Data  
NPN  
PNP  
TIP110, 111, 112  
TIP115, 116, 117  
6.0 k  
6.0 k  
V
= 3.0 V  
T
= 125°C  
V
= 3.0 V  
CE  
J
CE  
T
= 125°C  
4.0 k  
3.0 k  
4.0 k  
3.0 k  
J
25°C  
25°C  
2.0 k  
2.0 k  
55°C  
55°C  
1.0 k  
800  
1.0 k  
800  
600  
600  
400  
300  
400  
300  
0.04 0.06  
0.1  
0.2  
0.4 0.6  
1.0  
2.0  
4.0  
0.04 0.06  
0.1  
0.2  
I , COLLECTOR CURRENT (AMP)  
C
0.4 0.6  
1.0  
2.0  
4.0  
I
, COLLECTOR CURRENT (AMP)  
C
Figure 8. DC Current Gain  
3.4  
3.0  
2.6  
2.2  
1.8  
3.4  
T
= 25°C  
T
= 25°C  
J
J
I
=
C
3.0  
2.6  
2.2  
1.8  
1.4  
0.5 A  
I
=
C
1.0 A  
4.0 A  
2.0 A  
0.5 A  
1.0 A  
2.0 A  
4.0 A  
1.4  
1.0  
0.6  
1.0  
0.6  
0.1  
0.2  
0.5  
1.0  
2.0  
5.0  
10  
20  
50  
100  
0.1  
0.2  
0.5  
1.0  
2.0  
5.0  
10  
20  
50  
100  
I
, BASE CURRENT (mA)  
I , BASE CURRENT (mA)  
B
B
Figure 9. Collector Saturation Region  
2.2  
1.8  
1.4  
2.2  
T
= 25°C  
T
= 25°C  
J
J
1.8  
1.4  
V
@ I /I = 250  
C B  
BE(sat)  
V
@ I /I = 250  
C B  
BE(sat)  
V
BE  
@ V = 3.0 V  
CE  
V
@ V  
CE  
= 3.0 V  
BE  
1.0  
0.6  
0.2  
1.0  
0.6  
0.2  
V
@ I /I = 250  
C B  
V
@ I /I = 250  
CE(sat)  
CE(sat) C B  
0.04 0.06  
0.1  
0.2  
0.4  
0.6  
1.0  
2.0  
4.0  
0.04 0.06  
0.1  
0.2  
I , COLLECTOR CURRENT (AMP)  
C
0.4  
0.6  
1.0  
2.0  
4.0  
I
, COLLECTOR CURRENT (AMP)  
C
Figure 10. “On” Voltages  
4
Motorola Bipolar Power Transistor Device Data  
NPN  
PNP  
TIP110, 111, 112  
TIP115, 116, 117  
+0.8  
0
+0.8  
0
*APPLIES FOR I /I  
C B  
h
/3  
*APPLIES FOR I /I  
h
/3  
FE  
C B  
FE  
0.8  
1.6  
2.4  
0.8  
1.6  
25°C to 150°C  
25°C to 150°C  
*
θ
for V  
VC CE(sat)  
*
θ
for V  
CE(sat)  
VC  
55°C to 25°C  
2.4  
3.2  
55°C to 25°C  
25°  
C to 150°C  
25°C to 150°C  
3.2  
θ
for V  
BE  
VC  
55  
°C to 25°C  
θ
for V  
BE  
VC  
55°C to 25°C  
4.0  
4.8  
4.0  
4.8  
0.04 0.06  
0.1  
0.2  
0.4 0.6  
1.0  
2.0  
4.0  
0.04 0.06  
0.1  
0.2  
0.4 0.6  
1.0  
2.0  
4.0  
I
, COLLECTOR CURRENT (AMP)  
I , COLLECTOR CURRENT (AMP)  
C
C
Figure 11. Temperature Coefficients  
5
4
5
10  
10  
REVERSE  
FORWARD  
REVERSE  
FORWARD  
10  
4
10  
10  
3
3
10  
10  
V
= 30 V  
CE  
V
= 30 V  
CE  
2
2
1
0
10  
10  
10  
T
= 150°C  
J
T
= 150°C  
J
1
10  
10  
100°C  
0
100°C  
25  
°
C
25  
°C  
–1  
–1  
10  
10  
0.6 0.4 0.2  
0
+0.2 +0.4 +0.6 +0.8 +1.0 +1.2 +1.4  
0.6 0.4 0.2  
0
+0.2 +0.4 +0.6 +0.8 +1.0 +1.2 +1.4  
V
, BASE-EMITTER VOLTAGE (VOLTS)  
V , BASE-EMITTER VOLTAGE (VOLTS)  
BE  
BE  
Figure 12. Collector Cut-Off Region  
VOLTAGE AND CURRENT WAVEFORMS  
TEST CIRCUIT  
t
3.5 ms (SEE NOTE A)  
w
V
MONITOR  
CE  
0 V  
INPUT  
VOLTAGE  
MJE254  
–5 V  
100 mH  
+
R
BB1  
INPUT  
TUT  
100 ms  
2 k  
V
= 20 V  
0.71 A  
CC  
COLLECTOR  
CURRENT  
50  
I
R
100  
C
BB2  
50  
MONITOR  
0 V  
R
=
+
S
V
V
BB1  
= 10 V  
CER  
0.1  
V
= 0  
BB2  
COLLECTOR  
VOLTAGE  
20 V  
V
CE(sat)  
Note A: Input pulse width is increased until I  
NPN test shown; for PNP test  
= 0.71 A,  
CM  
reverse all polarity and use MJE224 driver.  
Figure 13. Inductive Load Switching  
5
Motorola Bipolar Power Transistor Device Data  
PACKAGE DIMENSIONS  
NOTES:  
SEATING  
PLANE  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
–T–  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION Z DEFINES A ZONE WHERE ALL  
BODY AND LEAD IRREGULARITIES ARE  
ALLOWED.  
C
S
B
F
T
4
INCHES  
MIN  
MILLIMETERS  
DIM  
A
B
C
D
F
G
H
J
K
L
N
Q
R
S
MAX  
0.620  
0.405  
0.190  
0.035  
0.147  
0.105  
0.155  
0.025  
0.562  
0.060  
0.210  
0.120  
0.110  
0.055  
0.255  
0.050  
–––  
MIN  
14.48  
9.66  
4.07  
0.64  
3.61  
2.42  
2.80  
0.46  
12.70  
1.15  
4.83  
2.54  
2.04  
1.15  
5.97  
0.00  
1.15  
–––  
MAX  
15.75  
10.28  
4.82  
0.88  
3.73  
2.66  
3.93  
0.64  
14.27  
1.52  
5.33  
3.04  
2.79  
1.39  
6.47  
1.27  
–––  
A
K
Q
Z
0.570  
0.380  
0.160  
0.025  
0.142  
0.095  
0.110  
0.018  
0.500  
0.045  
0.190  
0.100  
0.080  
0.045  
0.235  
0.000  
0.045  
–––  
1
2
3
U
H
L
R
J
V
G
T
U
V
D
N
Z
0.080  
2.04  
STYLE 1:  
PIN 1. BASE  
2. COLLECTOR  
3. EMITTER  
4. COLLECTOR  
CASE 221A–06  
TO–220AB  
ISSUE Y  
Motorolareserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representationorguaranteeregarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,  
andspecifically disclaims any and all liability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters can and do vary in different  
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does  
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in  
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of  
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintendedor unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
How to reach us:  
USA / EUROPE: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447  
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609  
INTERNET: http://Design–NET.com  
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
TIP110/D  

相关型号:

TIP116-6200

2A, 80V, PNP, Si, POWER TRANSISTOR, TO-220AB
RENESAS

TIP116-6203

2A, 80V, PNP, Si, POWER TRANSISTOR, TO-220AB
RENESAS

TIP116-6255

2A, 80V, PNP, Si, POWER TRANSISTOR, TO-220AB
RENESAS

TIP116-6261

Power Bipolar Transistor, 2A I(C), 80V V(BR)CEO, 1-Element, PNP, Silicon, TO-220AB, Plastic/Epoxy, 3 Pin
RENESAS

TIP116-6263

Power Bipolar Transistor, 2A I(C), 80V V(BR)CEO, 1-Element, PNP, Silicon, TO-220AB, Plastic/Epoxy, 3 Pin
RENESAS

TIP116-6264

2A, 80V, PNP, Si, POWER TRANSISTOR, TO-220AB
RENESAS

TIP116-6265

2A, 80V, PNP, Si, POWER TRANSISTOR, TO-220AB
RENESAS

TIP116-BP

Power Bipolar Transistor, 2A I(C), 80V V(BR)CEO, 1-Element, PNP, Silicon, TO-220AB, Plastic/Epoxy, 3 Pin, ROHS COMPLIANT, TO-220, 3 PIN
MCC

TIP116-DR6274

2A, 80V, PNP, Si, POWER TRANSISTOR, TO-220AB
RENESAS

TIP116-DR6280

Power Bipolar Transistor, 2A I(C), 80V V(BR)CEO, 1-Element, PNP, Silicon, TO-220AB, Plastic/Epoxy, 3 Pin
RENESAS

TIP11616A

2A, 80V, PNP, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA

TIP116A

2A, 80V, PNP, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA