UC2843BD1 [MOTOROLA]

HIGH PERFORMANCE CURRENT MODE CONTROLLERS; 高性能电流模式控制器
UC2843BD1
型号: UC2843BD1
厂家: MOTOROLA    MOTOROLA
描述:

HIGH PERFORMANCE CURRENT MODE CONTROLLERS
高性能电流模式控制器

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管
文件: 总16页 (文件大小:405K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document by UC3842B/D  
HIGH PERFORMANCE  
CURRENT MODE  
CONTROLLERS  
The UC3842B, UC3843B series are high performance fixed frequency  
current mode controllers. They are specifically designed for Off–Line and  
dc–to–dc converter applications offering the designer a cost–effective  
solution with minimal external components. These integrated circuits feature  
a trimmed oscillator for precise duty cycle control, a temperature  
compensated reference, high gain error amplifier, current sensing  
comparator, and a high current totem pole output ideally suited for driving a  
power MOSFET.  
N SUFFIX  
Also included are protective features consisting of input and reference  
undervoltage lockouts each with hysteresis, cycle–by–cycle current limiting,  
programmable output deadtime, and a latch for single pulse metering.  
These devices are available in an 8–pin dual–in–line and surface mount  
(SO–8) plastic package as well as the 14–pin plastic surface mount (SO–14).  
The SO–14 package has separate power and ground pins for the totem pole  
output stage.  
PLASTIC PACKAGE  
8
CASE 626  
1
D1 SUFFIX  
PLASTIC PACKAGE  
8
CASE 751  
(SO–8)  
1
The UCX842B has UVLO thresholds of 16 V (on) and 10 V (off), ideally  
suited for off–line converters. The UCX843B is tailored for lower voltage  
applications having UVLO thresholds of 8.5 V (on) and 7.6 V (off).  
D SUFFIX  
PLASTIC PACKAGE  
14  
CASE 751A  
(SO–14)  
Trimmed Oscillator for Precise Frequency Control  
Oscillator Frequency Guaranteed at 250 kHz  
Current Mode Operation to 500 kHz  
1
PIN CONNECTIONS  
Automatic Feed Forward Compensation  
Latching PWM for Cycle–By–Cycle Current Limiting  
Internally Trimmed Reference with Undervoltage Lockout  
High Current Totem Pole Output  
Undervoltage Lockout with Hysteresis  
Low Startup and Operating Current  
1
2
3
4
8
7
6
5
Compensation  
Voltage Feedback  
Current Sense  
V
ref  
V
CC  
Output  
R /C  
Gnd  
T
T
(Top View)  
Compensation  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
V
ref  
NC  
NC  
Voltage Feedback  
V
V
CC  
NC  
Current Sense  
NC  
C
Output  
Gnd  
Simplified Block Diagram  
8
R /C  
Power Ground  
T
T
V
7(12)  
CC  
(Top View)  
V
V
CC  
ref  
5.0V  
Reference  
Undervoltage  
Lockout  
8(14)  
ORDERING INFORMATION  
Operating  
R
R
V
ref  
V
C
Undervoltage  
Lockout  
Device  
Package  
Temperature Range  
7(11)  
UC384XBD  
UC384XBD1  
UC384XBN  
UC284XBD  
UC284XBD1  
UC284XBN  
UC384XBVD  
UC384XBVD1  
UC384XBVN  
SO–14  
SO–8  
Plastic  
SO–14  
SO–8  
R
/C  
Output  
T
T
T
= 0° to +70°C  
A
Oscillator  
6(10)  
4(7)  
Latching  
PWM  
Power  
Ground  
5(8)  
Voltage  
Feedback  
Input  
+
T
= – 25° to +85°C  
= 40° to +105°C  
A
Plastic  
SO–14  
SO–8  
2(3)  
Error  
Amplifier  
Current  
Sense  
Input  
Output  
Compensation  
1(1)  
3(5)  
T
A
Plastic  
Gnd  
5(9)  
X indicates either a 2 or 3 to define specific device part  
numbers.  
Pin numbers in parenthesis are for the D suffix SO–14 package.  
Motorola, Inc. 1996  
Rev 1  
UC3842B, 43B UC2842B, 43B  
MAXIMUM RATINGS  
Rating  
Symbol  
(I + I )  
Value  
Unit  
mA  
A
Total Power Supply and Zener Current  
Output Current, Source or Sink (Note 1)  
Output Energy (Capacitive Load per Cycle)  
Current Sense and Voltage Feedback Inputs  
Error Amp Output Sink Current  
30  
CC  
Z
I
O
1.0  
5.0  
W
µJ  
V
in  
– 0.3 to + 5.5  
10  
V
I
O
mA  
Power Dissipation and Thermal Characteristics  
D Suffix, Plastic Package, SO–14 Case 751A  
Maximum Power Dissipation @ T = 25°C  
Thermal Resistance, Junction–to–Air  
D1 Suffix, Plastic Package, SO–8 Case 751  
P
862  
145  
mW  
°C/W  
A
D
R
R
R
θJA  
Maximum Power Dissipation @ T = 25°C  
P
702  
178  
mW  
°C/W  
A
D
θJA  
Thermal Resistance, Junction–to–Air  
N Suffix, Plastic Package, Case 626  
Maximum Power Dissipation @ T = 25°C  
P
1.25  
100  
W
°C/W  
A
D
θJA  
Thermal Resistance, Junction–to–Air  
Operating Junction Temperature  
T
+150  
°C  
°C  
J
Operating Ambient Temperature  
UC3842B, UC3843B  
T
A
0 to + 70  
UC2842B, UC2843B  
UC3842BV, UC3843BV  
– 25 to + 85  
–40 to +105  
Storage Temperature Range  
T
stg  
– 65 to +150  
°C  
ELECTRICAL CHARACTERISTICS (V  
CC  
= 15 V [Note 2], R = 10 k, C = 3.3 nF. For typical values T = 25°C, for min/max values T is  
T
T
A
A
the operating ambient temperature range that applies [Note 3], unless otherwise noted.)  
UC284XB  
Typ  
UC384XB, XBV  
Typ  
Characteristics  
REFERENCE SECTION  
Symbol  
Min  
Max  
Min  
Max  
Unit  
Reference Output Voltage (I = 1.0 mA, T = 25°C)  
V
ref  
4.95  
5.0  
2.0  
3.0  
0.2  
5.05  
20  
25  
4.9  
5.0  
2.0  
3.0  
0.2  
5.1  
20  
25  
V
mV  
mV  
mV/°C  
V
O
J
Line Regulation (V  
CC  
= 12 V to 25 V)  
Reg  
line  
load  
S
Load Regulation (I = 1.0 mA to 20 mA)  
O
Reg  
T
Temperature Stability  
Total Output Variation over Line, Load, and Temperature  
Output Noise Voltage (f = 10 Hz to 10 kHz, T = 25°C)  
V
ref  
4.9  
5.1  
4.82  
5.18  
V
n
50  
50  
µV  
J
Long Term Stability (T = 125°C for 1000 Hours)  
S
5.0  
– 85  
5.0  
mV  
mA  
A
Output Short Circuit Current  
I
– 30  
–180  
– 30  
– 85  
–180  
SC  
OSCILLATOR SECTION  
Frequency  
f
kHz  
OSC  
T = 25°C  
49  
48  
225  
52  
250  
55  
56  
275  
49  
48  
225  
52  
250  
55  
56  
275  
J
A
T
= T  
to T  
high  
T
low  
T = 25°C (R = 6.2 k, C = 1.0 nF)  
J
T
Frequency Change with Voltage (V  
= 12 V to 25 V)  
f  
f  
/V  
/T  
0.2  
1.0  
1.0  
0.2  
0.5  
1.0  
%
%
CC  
Frequency Change with Temperature  
= T to T  
OSC  
OSC  
T
A
low  
Oscillator Voltage Swing (Peak–to–Peak)  
Discharge Current (V = 2.0 V)  
high  
V
1.6  
1.6  
V
OSC  
I
mA  
OSC  
dischg  
T = 25°C  
7.8  
7.5  
8.3  
8.8  
8.8  
7.8  
7.6  
7.2  
8.3  
8.8  
8.8  
8.8  
J
T
= T  
= T  
to T  
to T  
(UC284XB, UC384XB)  
(UC384XBV)  
A
A
low  
low  
high  
high  
T
NOTES: 1. Maximum Package power dissipation limits must be observed.  
2. Adjust V above the Startup threshold before setting to 15 V.  
CC  
3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.  
T
T
T
= 0°C for UC3842B, UC3843B  
= –25°C for UC2842B, UC2843B  
= –40°C for UC3842BV, UC3843BV  
T
T
T
= +70°C for UC3842B, UC3843B  
= +85°C for UC2842B, UC2843B  
= +105°C for UC3842BV, UC3843BV  
low  
low  
low  
high  
high  
high  
2
MOTOROLA ANALOG IC DEVICE DATA  
UC3842B, 43B UC2842B, 43B  
ELECTRICAL CHARACTERISTICS (V  
CC  
= 15 V [Note 2], R = 10 k, C = 3.3 nF. For typical values T = 25°C, for min/max values T is  
the operating ambient temperature range that applies [Note 3], unless otherwise noted.)  
T
T
A
A
UC284XB  
UC384XB, XBV  
Characteristics  
ERROR AMPLIFIER SECTION  
Voltage Feedback Input (V = 2.5 V)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
V
I
2.45  
2.5  
– 0.1  
90  
2.55  
–1.0  
2.42  
2.5  
– 0.1  
90  
2.58  
V
µA  
O
FB  
Input Bias Current (V  
= 5.0 V)  
– 2.0  
FB  
IB  
Open Loop Voltage Gain (V = 2.0 V to 4.0 V)  
A
VOL  
65  
0.7  
60  
65  
0.7  
60  
dB  
O
Unity Gain Bandwidth (T = 25°C)  
BW  
1.0  
70  
1.0  
70  
MHz  
dB  
J
Power Supply Rejection Ratio (V  
= 12 V to 25 V)  
PSRR  
CC  
Output Current  
mA  
Sink (V = 1.1 V, V  
Source (V = 5.0 V, V  
O
= 2.7 V)  
I
Sink  
Source  
2.0  
– 0.5  
12  
–1.0  
2.0  
– 0.5  
12  
–1.0  
O
FB  
= 2.3 V)  
I
FB  
Output Voltage Swing  
V
High State (R = 15 k to ground, V  
= 2.3 V)  
FB  
= 2.7 V)  
V
OH  
V
OL  
5.0  
6.2  
5.0  
6.2  
L
Low State (R = 15 k to V , V  
L
ref FB  
(UC284XB, UC384XB)  
0.8  
1.1  
0.8  
0.8  
1.1  
1.2  
(UC384XBV)  
CURRENT SENSE SECTION  
Current Sense Input Voltage Gain (Notes 4 & 5)  
(UC284XB, UC384XB)  
A
V/V  
V
V
2.85  
3.0  
3.15  
2.85  
2.85  
3.0  
3.0  
3.15  
3.25  
(UC384XBV)  
Maximum Current Sense Input Threshold (Note 4)  
(UC284XB, UC384XB)  
V
th  
0.9  
1.0  
1.1  
0.9  
0.85  
1.0  
1.0  
1.1  
1.1  
(UC384XBV)  
Power Supply Rejection Ratio  
PSRR  
70  
70  
dB  
V
CC  
= 12 V to 25 V, Note 4  
Input Bias Current  
I
– 2.0  
150  
–10  
300  
– 2.0  
150  
–10  
300  
µA  
IB  
Propagation Delay (Current Sense Input to Output)  
t
ns  
PLH(In/Out)  
OUTPUT SECTION  
Output Voltage  
V
V
Low State (I  
(I  
= 20 mA)  
= 200 mA) (UC284XB, UC384XB)  
(UC384XBV)  
= 20 mA) (UC284XB, UC384XB)  
(UC384XBV)  
= 200 mA)  
V
13  
12  
0.1  
1.6  
13.5  
0.4  
2.2  
13  
12.9  
12  
0.1  
1.6  
1.6  
13.5  
13.5  
13.4  
0.4  
2.2  
2.3  
Sink  
Sink  
OL  
High State (I  
V
OH  
Source  
(I  
13.4  
Source  
Output Voltage with UVLO Activated  
= 6.0 V, I = 1.0 mA  
V
0.1  
1.1  
0.1  
1.1  
OL(UVLO)  
V
CC  
Sink  
Output Voltage Rise Time (C = 1.0 nF, T = 25°C)  
t
r
50  
50  
150  
150  
50  
50  
150  
150  
ns  
ns  
L
J
Output Voltage Fall Time (C = 1.0 nF, T = 25°C)  
t
f
L
J
UNDERVOLTAGE LOCKOUT SECTION  
Startup Threshold (V  
UCX842B, BV  
)
V
V
V
CC  
th  
15  
7.8  
16  
8.4  
17  
9.0  
14.5  
7.8  
16  
8.4  
17.5  
9.0  
UCX843B, BV  
Minimum Operating Voltage After Turn–On (V  
UCX842B, BV  
)
V
CC(min)  
CC  
9.0  
7.0  
10  
7.6  
11  
8.2  
8.5  
7.0  
10  
7.6  
11.5  
8.2  
UCX843B, BV  
NOTES: 2. Adjust V  
above the Startup threshold before setting to 15 V.  
CC  
3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.  
T
T
T
= 0°C for UC3842B, UC3843B  
= –25°C for UC2842B, UC2843B  
= –40°C for UC3842BV, UC3843BV  
T
T
T
= +70°C for UC3842B, UC3843B  
= +85°C for UC2842B, UC2843B  
= +105°C for UC3842BV, UC3843BV  
= 0 V.  
low  
low  
low  
high  
high  
high  
4. This parameter is measured at the latch trip point with V  
FB  
V Output Compensation  
5. Comparator gain is defined as: A  
V
V Current Sense Input  
3
MOTOROLA ANALOG IC DEVICE DATA  
UC3842B, 43B UC2842B, 43B  
ELECTRICAL CHARACTERISTICS (V  
CC  
= 15 V [Note 2], R = 10 k, C = 3.3 nF, for typical values T = 25°C, for min/max values T  
T
T
A
A
is the operating ambient temperature range that applies [Note 3], unless otherwise noted.)  
UC284XB  
Typ  
UC384XB, BV  
Typ  
Characteristics  
Symbol  
Min  
Max  
Min  
Max  
Unit  
PWM SECTION  
Duty Cycle  
%
Maximum (UC284XB, UC384XB)  
Maximum (UC384XBV)  
Minimum  
DC  
94  
96  
0
94  
93  
96  
96  
0
(max)  
DC  
(min)  
TOTAL DEVICE  
Power Supply Current  
I
+ I  
mA  
V
CC  
C
Startup (V  
Startup (V  
Operating (Note 2)  
= 6.5 V for UCX843B,  
14 V for UCX842B, BV)  
0.3  
0.5  
0.3  
0.5  
CC  
CC  
12  
36  
17  
12  
36  
17  
Power Supply Zener Voltage (I  
= 25 mA)  
V
30  
30  
CC  
Z
NOTES: 2. Adjust V  
above the Startup threshold before setting to 15 V.  
CC  
3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.  
T
T
T
= 0°C for UC3842B, UC3843B  
= –25°C for UC2842B, UC2843B  
= –40°C for UC3842BV, UC3843BV  
T
T
T
= +70°C for UC3842B, UC3843B  
= +85°C for UC2842B, UC2843B  
= +105°C for UC3842BV, UC3843BV  
low  
low  
low  
high  
high  
high  
Figure 1. Timing Resistor  
versus Oscillator Frequency  
Figure 2. Output Deadtime  
versus Oscillator Frequency  
80  
50  
100  
1. C = 10 nF  
4
T
2. C = 5.0 nF  
50  
T
3
3. C = 2.0 nF  
T
2
4. C = 1.0 nF  
T
20  
5. C = 500 pF  
T
20  
10  
6. C = 200 pF  
T
1
7. C = 100 pF  
T
8.0  
5.0  
7
6
5
5.0  
V
= 15 V  
2.0  
0.8  
CC  
= 25°C  
V
= 15 V  
= 25°C  
2.0  
1.0  
CC  
T
A
T
A
10 k  
20 k  
50 k  
100 k  
200 k  
500 k  
1.0 M  
10 k  
20 k  
50 k  
100 k  
200 k  
500 k  
1.0 M  
f
, OSCILLATOR FREQUENCY (kHz)  
f , OSCILLATOR FREQUENCY (kHz)  
OSC  
OSC  
Figure 3. Oscillator Discharge Current  
versus Temperature  
Figure 4. Maximum Output Duty Cycle  
versus Timing Resistor  
9.0  
8.5  
8.0  
7.5  
7.0  
100  
90  
80  
70  
60  
50  
40  
V
V
= 15 V  
CC  
= 2.0 V  
OSC  
I
= 7.5 mA  
dischg  
I
= 8.8 mA  
dischg  
V
C
= 15 V  
= 3.3 nF  
= 25°C  
CC  
T
T
A
– 55  
– 25  
0
25  
50  
75  
C)  
100  
125  
0.8 1.0  
2.0  
3.0  
4.0  
5.0 6.0 7.0 8.0  
T , AMBIENT TEMPERATURE (  
°
R , TIMING RESISTOR (k)  
A
T
4
MOTOROLA ANALOG IC DEVICE DATA  
UC3842B, 43B UC2842B, 43B  
Figure 5. Error Amp Small Signal  
Transient Response  
Figure 6. Error Amp Large Signal  
Transient Response  
2.55 V  
2.50 V  
2.45 V  
V
= 15 V  
= –1.0  
V
= 15 V  
CC  
CC  
A = –1.0  
V
3.0 V  
2.5 V  
A
V
A
T
= 25  
°C  
T = 25°C  
A
2.0 V  
0.5  
µs/DIV  
1.0 µs/DIV  
Figure 7. Error Amp Open Loop Gain and  
Phase versus Frequency  
Figure 8. Current Sense Input Threshold  
versus Error Amp Output Voltage  
100  
80  
60  
40  
20  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0
V
V
R
= 15 V  
= 2.0 V to 4.0 V  
= 100 K  
CC  
O
L
V
= 15 V  
CC  
30  
60  
90  
120  
Gain  
T
= 25°C  
A
T
= 25°C  
A
T
= 125°C  
Phase  
1.0 M  
A
T
= –55  
4.0  
°C  
A
0
150  
180  
– 20  
10  
100  
1.0 k  
10 k  
100 k  
10 M  
0
2.0  
6.0  
8.0  
f, FREQUENCY (Hz)  
V
, ERROR AMP OUTPUT VOLTAGE (V)  
O
Figure 9. Reference Voltage Change  
versus Source Current  
Figure 10. Reference Short Circuit Current  
versus Temperature  
0
– 4.0  
– 8.0  
–12  
110  
90  
V
R
= 15 V  
0.1 Ω  
CC  
L
V
= 15 V  
CC  
T
= –55°C  
A
T
= 125°C  
A
–16  
70  
– 20  
– 24  
T
= 25°C  
A
50  
0
20  
40  
60  
80  
100  
120  
– 55  
– 25  
0
25  
50  
75  
C)  
100  
125  
I
, REFERENCE SOURCE CURRENT (mA)  
T , AMBIENT TEMPERATURE (  
°
ref  
A
5
MOTOROLA ANALOG IC DEVICE DATA  
UC3842B, 43B UC2842B, 43B  
Figure 11. Reference Load Regulation  
Figure 12. Reference Line Regulation  
V
= 15 V  
= 1.0 mA to 20 mA  
= 25°C  
CC  
V
= 12 V to 25  
CC  
= 25°C  
I
T
O
T
A
A
2.0 ms/DIV  
2.0 ms/DIV  
Figure 13. Output Saturation Voltage  
versus Load Current  
Figure 14. Output Waveform  
0
–1.0  
– 2.0  
Source Saturation  
(Load to Ground)  
V
µ
= 15 V  
CC  
s Pulsed Load  
120 Hz Rate  
V
CC  
T
V
C
= 15 V  
= 1.0 nF  
= 25°C  
80  
CC  
L
90%  
= 25°C  
A
T
A
T
= – 55°C  
A
3.0  
2.0  
1.0  
0
T
= – 55°C  
A
T
= 25°C  
A
10%  
Sink Saturation  
Gnd  
600  
(Load to V  
)
CC  
0
200  
400  
800  
50 ns/DIV  
I
, OUTPUT LOAD CURRENT (mA)  
O
Figure 15. Output Cross Conduction  
Figure 16. Supply Current versus Supply Voltage  
25  
20  
15  
10  
5
V
C
= 30 V  
= 15 pF  
= 25°C  
CC  
L
T
A
R
C
T
T
V
FB  
I
Sense  
T
A
0
0
10  
20  
, SUPPLY VOLTAGE (V)  
30  
40  
100 ns/DIV  
V
CC  
6
MOTOROLA ANALOG IC DEVICE DATA  
UC3842B, 43B UC2842B, 43B  
PIN FUNCTION DESCRIPTION  
Pin  
8–Pin  
14–Pin  
Function  
Description  
1
2
1
3
Compensation  
This pin is the Error Amplifier output and is made available for loop compensation.  
Voltage  
Feedback  
This is the inverting input of the Error Amplifier. It is normally connected to the switching power  
supply output through a resistor divider.  
3
4
5
7
Current  
Sense  
A voltage proportional to inductor current is connected to this input. The PWM uses this  
information to terminate the output switch conduction.  
R /C  
T
The Oscillator frequency and maximum Output duty cycle are programmed by  
T
connecting resistor R to V and capacitor C to ground. Operation to 500 kHz  
T
ref  
T
is possible.  
5
6
Gnd  
This pin is the combined control circuitry and power ground.  
10  
Output  
This output directly drives the gate of a power MOSFET. Peak currents up to 1.0 A are sourced  
and sunk by this pin.  
7
8
12  
14  
8
V
This pin is the positive supply of the control IC.  
CC  
V
ref  
This is the reference output. It provides charging current for capacitor C through resistor R .  
T T  
Power  
Ground  
This pin is a separate power ground return that is connected back to the power source. It is used  
to reduce the effects of switching transient noise on the  
control circuitry.  
11  
V
C
The Output high state (V ) is set by the voltage applied to this pin. With a separate power  
OH  
source connection, it can reduce the effects of switching transient noise on the control circuitry.  
This pin is the control circuitry ground return and is connected back to the power source ground.  
No connection. These pins are not internally connected.  
9
Gnd  
NC  
2,4,6,13  
7
MOTOROLA ANALOG IC DEVICE DATA  
UC3842B, 43B UC2842B, 43B  
OPERATING DESCRIPTION  
or at the beginning of a soft–start interval (Figures 23, 24).  
The Error Amp minimum feedback resistance is limited by the  
amplifier’s source current (0.5 mA) and the required output  
The UC3842B, UC3843B series are high performance,  
fixed frequency, current mode controllers. They are  
specifically designed for Off–Line and dc–to–dc converter  
applications offering the designer a cost–effective solution  
with minimal external components. A representative block  
diagram is shown in Figure 17.  
voltage (V  
) to reach the comparator’s 1.0 V clamp level:  
OH  
3.0 (1.0 V) + 1.4 V  
R
= 8800 Ω  
f(min)  
0.5 mA  
Oscillator  
The oscillator frequency is programmed by the values  
Current Sense Comparator and PWM Latch  
selected for the timing components R and C . Capacitor C  
is charged from the 5.0 V reference through resistor R to  
T
approximately 2.8 V and discharged to 1.2 V by an internal  
T
T
T
The UC3842B, UC3843B operate as a current mode  
controller, whereby output switch conduction is initiated by  
the oscillator and terminated when the peak inductor current  
reaches the threshold level established by the Error Amplifier  
Output/Compensation (Pin 1). Thus the error signal controls  
the peak inductor current on a cycle–by–cycle basis. The  
Current Sense Comparator PWM Latch configuration used  
ensures that only a single pulse appears at the Output during  
any given oscillator cycle. The inductor current is converted  
to a voltage by inserting the ground–referenced sense  
current sink. During the discharge of C , the oscillator  
T
generates an internal blanking pulse that holds the center  
input of the NOR gate high. This causes the Output to be in a  
low state, thus producing a controlled amount of output  
deadtime. Figure 1 shows R versus Oscillator Frequency  
T
and Figure 2, Output Deadtime versus Frequency, both for  
given values of C . Note that many values of R and C will  
T
T
T
give the same oscillator frequency but only one combination  
will yield a specific output deadtime at a given frequency. The  
oscillator thresholds are temperature compensated to within  
±6% at 50 kHz. Also because of industry trends moving the  
UC384X into higher and higher frequency applications, the  
UC384XB is guaranteed to within ±10% at 250 kHz. These  
internal circuit refinements minimize variations of oscillator  
frequency and maximum output duty cycle. The results are  
shown in Figures 3 and 4.  
resistor R in series with the source of output switch Q1. This  
S
voltage is monitored by the Current Sense Input (Pin 3) and  
compared to a level derived from the Error Amp Output. The  
peak inductor current under normal operating conditions is  
controlled by the voltage at pin 1 where:  
V
– 1.4 V  
(Pin 1)  
3 R  
S
I
pk  
=
In many noise–sensitive applications it may be desirable  
to frequency–lock the converter to an external system clock.  
This can be accomplished by applying a clock signal to the  
circuit shown in Figure 20. For reliable locking, the  
free–running oscillator frequency should be set about 10%  
less than the clock frequency. A method for multi–unit  
synchronization is shown in Figure 21. By tailoring the clock  
waveform, accurate Output duty cycle clamping can be  
achieved.  
Abnormal operating conditions occur when the power  
supply output is overloaded or if output voltage sensing is  
lost. Under these conditions, the Current Sense Comparator  
threshold will be internally clamped to 1.0 V. Therefore the  
maximum peak switch current is:  
1.0 V  
I
=
pk(max)  
R
S
Error Amplifier  
When designing a high power switching regulator it  
becomes desirable to reduce the internal clamp voltage in  
A fully compensated Error Amplifier with access to the  
inverting input and output is provided. It features a typical dc  
voltage gain of 90 dB, and a unity gain bandwidth of 1.0 MHz  
with 57 degrees of phase margin (Figure 7). The  
non–inverting input is internally biased at 2.5 V and is not  
pinned out. The converter output voltage is typically divided  
down and monitored by the inverting input. The maximum  
input bias current is –2.0 µA which can cause an output  
voltage error that is equal to the product of the input bias  
current and the equivalent input divider source resistance.  
The Error Amp Output (Pin 1) is provided for external loop  
compensation (Figure 31). The output voltage is offset by two  
diode drops (1.4 V) and divided by three before it connects  
to the non–inverting input of the Current Sense Comparator.  
This guarantees that no drive pulses appear at the Output  
order to keep the power dissipation of R to a reasonable  
S
level. A simple method to adjust this voltage is shown in  
Figure 22. The two external diodes are used to compensate  
the internal diodes, yielding a constant clamp voltage over  
temperature. Erratic operation due to noise pickup can result  
if there is an excessive reduction of the I  
voltage.  
clamp  
pk(max)  
A narrow spike on the leading edge of the current  
waveform can usually be observed and may cause the power  
supply to exhibit an instability when the output is lightly  
loaded. This spike is due to the power transformer  
interwinding capacitance and output rectifier recovery time.  
The addition of an RC filter on the Current Sense Input with a  
time constant that approximates the spike duration will  
usually eliminate the instability (refer to Figure 26).  
(Pin 6) when pin 1 is at its lowest state (V ). This occurs  
when the power supply is operating and the load is removed,  
OL  
8
MOTOROLA ANALOG IC DEVICE DATA  
UC3842B, 43B UC2842B, 43B  
Figure 17. Representative Block Diagram  
V
V
in  
CC  
V
CC  
7(12)  
36V  
V
ref  
Reference  
Regulator  
8(14)  
(See  
Text)  
+
V
R
R
CC  
UVLO  
V
Internal  
Bias  
C
2.5V  
R
C
T
7(11)  
+
3.6V  
V
ref  
UVLO  
Output  
Q1  
Oscillator  
4(7)  
6(10)  
T
+
1.0mA  
S
Power Ground  
2R  
Q
Voltage  
Feedback  
Input  
PWM  
Latch  
R
5(8)  
2(3)  
1(1)  
R
Error  
Amplifier  
1.0V  
Current Sense Input  
Output/  
Compensation  
Current Sense  
Comparator  
3(5)  
R
S
Gnd  
5(9)  
Pin numbers adjacent to terminals are for the 8–pin dual–in–line package.  
Pin numbers in parenthesis are for the D suffix SO–14 package.  
= Sink Only Positive True Logic  
Figure 18. Timing Diagram  
Capacitor C  
T
Latch  
“Set” Input  
Output/  
Compensation  
Current Sense  
Input  
Latch  
“Reset” Input  
Output  
Small R /Large C  
T
Large R /Small C  
T
T
T
9
MOTOROLA ANALOG IC DEVICE DATA  
UC3842B, 43B UC2842B, 43B  
possible using heavy copper runs to minimize radiated EMI.  
Undervoltage Lockout  
The Error Amp compensation circuitry and the converter  
output voltage divider should be located close to the IC and  
as far as possible from the power switch and other  
noise–generating components.  
Current mode converters can exhibit subharmonic  
oscillations when operating at a duty cycle greater than 50%  
with continuous inductor current. This instability is  
independent of the regulator’s closed loop characteristics  
and is caused by the simultaneous operating conditions of  
fixed frequency and peak current detecting. Figure 19A  
Two undervoltage lockout comparators have been  
incorporated to guarantee that the IC is fully functional before  
the output stage is enabled. The positive power supply  
terminal (V ) and the reference output (V ) are each  
CC  
ref  
monitored by separate comparators. Each has built–in  
hysteresis to prevent erratic output behavior as their  
respective thresholds are crossed. The V  
comparator  
CC  
upper and lower thresholds are 16 V/10 V for the UCX842B,  
and 8.4 V/7.6 V for the UCX843B. The V comparator upper  
ref  
and lower thresholds are 3.6 V/3.4 V. The large hysteresis  
and low startup current of the UCX842B makes it ideally  
suited in off–line converter applications where efficient  
bootstrap startup techniques are required (Figure 33). The  
UCX843B is intended for lower voltage dc–to–dc converter  
applications. A 36 V zener is connected as a shunt regulator  
shows the phenomenon graphically. At t , switch conduction  
0
begins, causing the inductor current to rise at a slope of m .  
1
This slope is a function of the input voltage divided by the  
inductance. At t , the Current Sense Input reaches the  
1
threshold established by the control voltage. This causes the  
switch to turn off and the current to decay at a slope of m ,  
from V  
to ground. Its purpose is to protect the IC from  
2
CC  
excessive voltage that can occur during system startup. The  
until the next oscillator cycle. The unstable condition can be  
shown if a perturbation is added to the control voltage,  
resulting in a small I (dashed line). With a fixed oscillator  
period, the current decay time is reduced, and the minimum  
current at switch turn–on (t ) is increased by I + I m /m .  
minimum operating voltage (V ) for the UCX842B is 11 V  
and 8.2 V for the UCX843B.  
CC  
These devices contain a single totem pole output stage  
that was specifically designed for direct drive of power  
MOSFETs. It is capable of up to ±1.0 A peak drive current and  
has a typical rise and fall time of 50 ns with a 1.0 nF load.  
Additional internal circuitry has been added to keep the  
Output in a sinking mode whenever an undervoltage lockout  
is active. This characteristic eliminates the need for an  
external pull–down resistor.  
2
2
1
The minimum current at the next cycle (t ) decreases to (I +  
3
I m /m ) (m /m ). This perturbation is multiplied by m /m  
2
1
2
1
2
1
on each succeeding cycle, alternately increasing and  
decreasing the inductor current at switch turn–on. Several  
oscillator cycles may be required before the inductor current  
reaches zero causing the process to commence again. If  
m /m is greater than 1, the converter will be unstable. Figure  
The SO–14 surface mount package provides separate  
2
1
19B shows that by adding an artificial ramp that is  
synchronized with the PWM clock to the control voltage, the  
I perturbation will decrease to zero on succeeding cycles.  
pins for V (output supply) and Power Ground. Proper  
implementation will significantly reduce the level of switching  
transient noise imposed on the control circuitry. This  
C
This compensating ramp (m ) must have a slope equal to or  
becomesparticularlyusefulwhenreducingtheI  
clamp  
3
pk(max)  
slightly greater than m /2 for stability. With m /2 slope  
level. The separate V supply input allows the designer  
2
2
C
compensation, the average inductor current follows the  
control voltage, yielding true current mode operation. The  
compensating ramp can be derived from the oscillator and  
added to either the Voltage Feedback or Current Sense  
inputs (Figure 32).  
added flexibility in tailoring the drive voltage independent of  
V
. A zener clamp is typically connected to this input when  
CC  
driving power MOSFETs in systems where V  
is greater  
CC  
than 20 V. Figure 25 shows proper power and control ground  
connections in a current–sensing power MOSFET  
application.  
Figure 19. Continuous Current Waveforms  
Reference  
(A)  
I  
The 5.0 V bandgap reference is trimmed to ±1.0%  
tolerance at T = 25°C on the UC284XB, and ±2.0% on the  
J
Control Voltage  
UC384XB. Its primary purpose is to supply charging current  
to the oscillator timing capacitor. The reference has short–  
circuit protection and is capable of providing in excess of  
20 mA for powering additional control system circuitry.  
m
m
2
1
Inductor  
Current  
m
m
2
1
l
l
m
m
m
m
2
1
2
1
l
l
Oscillator Period  
Design Considerations  
Do not attempt to construct the converter on  
wire–wrap or plug–in prototype boards. High frequency  
circuit layout techniques are imperative to prevent  
pulse–width jitter. This is usually caused by excessive noise  
pick–up imposed on the Current Sense or Voltage Feedback  
inputs. Noise immunity can be improved by lowering circuit  
impedances at these points. The printed circuit layout should  
contain a ground plane with low–current signal and  
high–current switch and output grounds returning on  
separate paths back to the input filter capacitor. Ceramic  
bypass capacitors (0.1 µF) connected directly to V , V ,  
t
t
t
t
3
0
1
2
(B)  
Control Voltage  
m
3
I  
m
1
m
2
Inductor  
Current  
Oscillator Period  
t
CC  
C
and V may be required depending upon circuit layout. This  
ref  
provides a low impedance path for filtering the high frequency  
noise. All high current loops should be kept as short as  
t
t
4
5
6
10  
MOTOROLA ANALOG IC DEVICE DATA  
UC3842B, 43B UC2842B, 43B  
Figure 20. External Clock Synchronization  
Figure 21. External Duty Cycle Clamp and  
Multi–Unit Synchronization  
V
ref  
8(14)  
R
8(14)  
R
R
Bias  
R
R
A
B
Bias  
R
T
R
8
4
5.0k  
5.0k  
5.0k  
External  
Sync  
Input  
3
Osc  
6
Osc  
4(7)  
C
T
+
R
4(7)  
0.01  
+
5
2
Q
2R  
7
2R  
S
R
2(3)  
1(1)  
EA  
47  
R
2(3)  
EA  
C
MC1455  
1
1(1)  
5(9)  
5(9)  
To Additional  
UCX84XBs  
The diode clamp is required if the Sync amplitude is large enough to cause the bottom  
side of C to go more than 300 mV below ground.  
1.44  
2R )C  
R
B
T
f
D
(max)  
R
2R  
B
(R  
A
A
B
Figure 22. Adjustable Reduction of Clamp Level  
Figure 23. Soft–Start Circuit  
V
V
in  
CC  
7(12)  
5.0V Ref  
8(14)  
5.0V Ref  
R
R
8(14)  
Bias  
R
R
+
Bias  
+
7(11)  
6(10)  
+
Q1  
Osc  
Osc  
4(7)  
2(3)  
+
4(7)  
V
+
Clamp  
1.0V  
S
R
R
R
1.0mA  
2
1
S
R
1.0 mA  
2R  
Q
Q
2R  
R
5(8)  
3(5)  
EA  
1.0V  
5(9)  
2(3)  
1(1)  
EA  
R
1.0M  
Comp/Latch  
R
S
1(1)  
5(9)  
C
t
3600C in µF  
Soft–Start  
1.67  
R
R
2
R
Where: 0  
V
1.0 V  
1
–3  
+ 0.33x10  
Clamp  
V
Clamp  
R
1
2
R
R
2
1
1
V
Clamp  
I
pk(max)  
R
S
11  
MOTOROLA ANALOG IC DEVICE DATA  
UC3842B, 43B UC2842B, 43B  
Figure 24. Adjustable Buffered Reduction of  
Figure 25. Current Sensing Power MOSFET  
Clamp Level with Soft–Start  
V
V
in  
CC  
V
V
in  
CC  
R
I
r
pk DS(on)  
S
V
(12)  
Pin 5  
7(12)  
r
R
S
DM(on)  
If: SENSEFET = MTP10N10M  
= 200  
R
S
5.0V Ref  
5.0V Ref  
Then :  
V
0.075 I  
pk  
Pin  
5
8(14)  
4(7)  
+
+
R
Bias  
D
SENSEFET  
R
7(11)  
6(10)  
(11)  
(10)  
+
+
Q1  
S
K
G
Osc  
V
+
Clamp  
M
S
R
1.0 mA  
2R  
S
R
Q
Q
5(8)  
3(5)  
EA  
(8)  
(5)  
2(3)  
1(1)  
R
Comp/Latch  
1.0V  
5(9)  
Comp/Latch  
R
2
Power Ground:  
To Input Source  
Return  
R
R
S
S
R
1/4 W  
C
1
MPSA63  
Control Circuitry Ground:  
To Pin (9)  
1.67  
Where: 0  
V
R
1.0 V  
V
Clamp  
Clamp  
R
R
2
1
1
Virtually lossless current sensing can be achieved with the implementation of  
SENSEFET power switch. For proper operation during over–current conditions,  
a
a
reduction of the I clamp level must be implemented. Refer to Figures 22 and 24.  
V
V
V
R
C
Clamp  
R
S
pk(max)  
C
1
2
R
2
t
In  
1
I
pk(max)  
Soft-Start  
R
3
1
Clamp  
Figure 26. Current Waveform Spike Suppression  
Figure 27. MOSFET Parasitic Oscillations  
V
V
V
V
in  
CC  
in  
CC  
7(12)  
7(12)  
5.0V Ref  
5.0V Ref  
+
+
7(11)  
7(11)  
+
+
R
Q1  
Q1  
g
6(10)  
5(8)  
6(10)  
S
R
S
R
Q
Q
5(8)  
3(5)  
3(5)  
R
Comp/Latch  
Comp/Latch  
C
R
S
R
S
Series gate resistor R will damp any high frequency parasitic oscillations  
g
The addition of the RC filter will eliminate instability caused by the leading  
edge spike on the current waveform.  
caused by the MOSFET input capacitance and any series wiring inductance in  
the gate–source circuit.  
12  
MOTOROLA ANALOG IC DEVICE DATA  
UC3842B, 43B UC2842B, 43B  
Figure 28. Bipolar Transistor Drive  
Figure 29. Isolated MOSFET Drive  
I
B
V
in  
V
V
in  
CC  
+
0
7(12)  
Isolation  
Boundary  
Base Charge  
Removal  
5.0V Ref  
+
V
Waveforms  
+
GS  
C1  
+
0
7(11)  
Q1  
+
Q1  
0
6(10)  
50% DC  
V
25% DC  
6(10)  
5(8)  
S
R
1.4  
5(8)  
(Pin1)  
N
N
S
Q
I
k
p
3
R
S
p
R
3(5)  
Comp/Latch  
3(5)  
R
S
C
R
S
N
S
N
P
Thetotempoleoutputcanfurnishnegativebasecurrentforenhancedtransistor  
turn–off, with the addition of capacitor C  
.
1
Figure 30. Latched Shutdown  
Figure 31. Error Amplifier Compensation  
From V  
2.5V  
O
+
8(14)  
R
1.0mA  
R
i
2R  
Bias  
2(3)  
R
EA  
R
C
R
f
f
R
d
Osc  
1(1)  
4(7)  
+
R
8.8 k  
f
5(9)  
1.0 mA  
2R  
Error Amp compensation circuit for stabilizing any current mode topology except for boost and flyback  
converters operating with continuous inductor current.  
R
EA  
2(3)  
1(1)  
From V  
2.5V  
O
+
1.0mA  
R
p
2R  
MCR  
101  
2N  
3905  
R
2(3)  
i
5(9)  
R
EA  
2N  
3903  
C
C
R
f
f
p
R
d
1(1)  
5(9)  
The MCR101 SCR must be selected for a holding of < 0.5 mA @ T  
be used in place of the SCR as shown. All resistors are 10 k.  
. The simple two transistor circuit can  
A(min)  
Error Amp compensation circuit for stabilizing current mode boost and flyback  
topologies operating with continuous inductor current.  
13  
MOTOROLA ANALOG IC DEVICE DATA  
UC3842B, 43B UC2842B, 43B  
Figure 32. Slope Compensation  
V
V
in  
CC  
7(12)  
36V  
5.0V Ref  
+
8(14)  
R
T
R
R
Bias  
MPS3904  
+
7(11)  
6(10)  
Osc  
R
Slope  
From V  
4(7)  
2(3)  
O
C
T
+
–m  
S
R
1.0mA  
R
R
i
2R  
Q
5(8)  
3(5)  
EA  
R
C
1.0V  
f
Comp/Latch  
R
f
d
m
R
1(1)  
S
– 3.0m  
5(9)  
The buffered oscillator ramp can be resistively summed with either the voltage  
feedback or current sense inputs to provide slope compensation.  
Figure 33. 27 W Off–Line Flyback Regulator  
L1  
MBR1635  
2200  
5.0V/4.0A  
4.7  
+
T1  
4.7k  
+
+
250  
MDA  
202  
3300  
pF  
1000  
56k  
115 Vac  
5.0V RTN  
12V/0.3A  
MUR110  
1000  
1N4935  
1N4935  
L2  
10  
+
+
+
+
68  
7(12)  
+
+
47  
±12V RTN  
100  
1000  
10  
L3  
1N4937  
5.0V Ref  
–12V/0.3A  
0.01  
8(14)  
10k  
R
R
+
MUR110  
680pF  
2.7k  
Bias  
7(11)  
+
1N4937  
22  
Osc  
4(7)  
2(3)  
MTP  
4N50  
4700pF  
6(10)  
+
1N5819  
S
R
18k  
Q
5(8)  
3(5)  
EA  
100  
pF  
150k  
1.0k  
Comp/Latch  
4.7k  
0.5  
1(1)  
470pF  
5(9)  
L1 – 15  
L2, L3 – 25  
µ
µ
H at 5.0 A, Coilcraft Z7156  
H at 5.0 A, Coilcraft Z7157  
Test  
Conditions  
Results  
T1 – Primary: 45 Turns #26 AWG  
Secondary  
Wound  
±12 V: 9 Turns #30 AWG (2 Strands) Bifiliar  
Line Regulation: 5.0 V  
V
= 95 to 130 Vac  
= 50 mV or ± 0.5%  
= 24 mV or ± 0.1%  
in  
±12V  
Secondary 5.0 V: 4 Turns (six strands) #26 Hexfiliar Wound  
Secondary Feedback: 10 Turns #30 AWG (2 strands)  
Bifiliar Wound  
Core: Ferroxcube EC35–3C8  
Bobbin: Ferroxcube EC35PCB1  
Load Regulation: 5.0 V  
V
V
= 115 Vac,  
= 1.0 A to 4.0 A  
out  
= 115 Vac,  
= 300 mV or ± 3.0%  
= 60 mV or ± 0.25%  
in  
I
±12V  
in  
I
= 100 mA to 300 mA  
out  
Gap:  
0.10” for a primary inductance of 1.0 mH  
Output Ripple:  
Efficiency  
5.0 V  
±12V  
V
= 115 Vac  
40 mV  
80 mV  
in  
pp  
pp  
V
in  
= 115 Vac  
70%  
All outputs are at nominal load currents, unless otherwise noted  
14  
MOTOROLA ANALOG IC DEVICE DATA  
UC3842B, 43B UC2842B, 43B  
OUTLINE DIMENSIONS  
N SUFFIX  
PLASTIC PACKAGE  
CASE 626–05  
8
5
NOTES:  
ISSUE K  
1. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
2. PACKAGE CONTOUR OPTIONAL (ROUND OR  
SQUARE CORNERS).  
3. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
–B–  
1
4
MILLIMETERS  
INCHES  
F
DIM  
A
B
C
D
F
MIN  
9.40  
6.10  
3.94  
0.38  
1.02  
MAX  
10.16  
6.60  
4.45  
0.51  
1.78  
MIN  
MAX  
0.400  
0.260  
0.175  
0.020  
0.070  
–A–  
0.370  
0.240  
0.155  
0.015  
0.040  
NOTE 2  
L
G
H
J
K
L
2.54 BSC  
0.100 BSC  
C
0.76  
0.20  
2.92  
1.27  
0.30  
3.43  
0.030  
0.008  
0.115  
0.050  
0.012  
0.135  
J
–T–  
SEATING  
PLANE  
7.62 BSC  
0.300 BSC  
N
M
N
–––  
0.76  
10  
1.01  
–––  
0.030  
10  
0.040  
M
D
K
G
H
M
M
M
0.13 (0.005)  
T
A
B
D1 SUFFIX  
PLASTIC PACKAGE  
CASE 751–06  
(SO–8)  
ISSUE T  
NOTES:  
D
A
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
C
2. DIMENSIONS ARE IN MILLIMETER.  
3. DIMENSION D AND E DO NOT INCLUDE MOLD  
PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.  
5. DIMENSION B DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS  
OF THE B DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
8
1
5
4
M
M
0.25  
B
H
E
h X 45  
MILLIMETERS  
B
e
DIM  
A
A1  
B
C
D
E
e
H
h
MIN  
1.35  
0.10  
0.35  
0.19  
4.80  
3.80  
MAX  
1.75  
0.25  
0.49  
0.25  
5.00  
4.00  
A
C
SEATING  
PLANE  
L
1.27 BSC  
0.10  
5.80  
0.25  
0.40  
0
6.20  
0.50  
1.25  
7
A1  
B
L
M
S
S
0.25  
C
B
A
15  
MOTOROLA ANALOG IC DEVICE DATA  
UC3842B, 43B UC2842B, 43B  
OUTLINE DIMENSIONS  
D SUFFIX  
PLASTIC PACKAGE  
CASE 751A–03  
(SO–14)  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
ISSUE F  
–A–  
14  
1
8
7
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
–B–  
P 7 PL  
M
M
0.25 (0.010)  
B
MILLIMETERS  
INCHES  
G
DIM  
A
B
C
D
F
G
J
K
M
P
MIN  
8.55  
3.80  
1.35  
0.35  
0.40  
MAX  
8.75  
4.00  
1.75  
0.49  
1.25  
MIN  
MAX  
0.344  
0.157  
0.068  
0.019  
0.049  
F
R X 45  
C
0.337  
0.150  
0.054  
0.014  
0.016  
–T–  
SEATING  
PLANE  
J
M
1.27 BSC  
0.050 BSC  
K
D 14 PL  
0.19  
0.10  
0
0.25  
0.25  
7
0.008  
0.004  
0
0.009  
0.009  
7
M
S
S
0.25 (0.010)  
T
B
A
5.80  
0.25  
6.20  
0.50  
0.228  
0.010  
0.244  
0.019  
R
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arisingoutof,directlyorindirectly,anyclaimofpersonalinjuryordeathassociatedwithsuchunintendedorunauthorizeduse,evenifsuchclaimallegesthatMotorola  
was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
Mfax is a trademark of Motorola, Inc.  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 141,  
P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447 4–32–1 Nishi–Gotanda, Shagawa–ku, Tokyo, Japan. 03–5487–8488  
Customer Focus Center: 1–800–521–6274  
Mfax : RMFAX0@email.sps.mot.com – TOUCHTONE 1–602–244–6609  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
Motorola Fax Back System  
– US & Canada ONLY 1–800–774–1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
– http://sps.motorola.com/mfax/  
HOME PAGE: http://motorola.com/sps/  
UC3842B/D  

相关型号:

UC2843BD1013TR

HIGH PERFORMANCE CURRENT MODE PWM CONTROLLER
STMICROELECTR

UC2843BD1G

High Performance Current Mode Controllers
ONSEMI

UC2843BD1R2

High Performance Current Mode Controllers
ONSEMI

UC2843BD1R2

1A SWITCHING CONTROLLER, 500kHz SWITCHING FREQ-MAX, PDSO8, PLASTIC, SO-8
MOTOROLA

UC2843BD1R2G

High Performance Current Mode Controllers
ONSEMI

UC2843BDG

High Performance Current Mode Controllers
ONSEMI

UC2843BDR2

HIGH PERFORMANCE CURRENT MODE CONTROLLERS
ONSEMI

UC2843BDR2

1A SWITCHING CONTROLLER, 500kHz SWITCHING FREQ-MAX, PDSO14, PLASTIC, SO-14
MOTOROLA

UC2843BDR2G

High Performance Current Mode Controllers
ONSEMI

UC2843BG-D08-R

Switching Controller, Current-mode, 1A, PDIP8, HALOGEN FREE, DIP-8
UTC

UC2843BG-D08-T

Switching Controller, Current-mode, 1A, 500kHz Switching Freq-Max, PDIP8, DIP-8
UTC

UC2843BG-S08-R

HIGH-PERFORMANCE CURRENT-MODE PWM CONTROLLERS
UTC