UC2845N [MOTOROLA]

HIGH PERFORMANCE CURRENT MODE CONTROLLERS; 高性能电流模式控制器
UC2845N
型号: UC2845N
厂家: MOTOROLA    MOTOROLA
描述:

HIGH PERFORMANCE CURRENT MODE CONTROLLERS
高性能电流模式控制器

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管
文件: 总14页 (文件大小:380K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document by UC3844/D  
HIGH PERFORMANCE  
CURRENT MODE  
CONTROLLERS  
The UC3844, UC3845 series are high performance fixed frequency  
current mode controllers. They are specifically designed for Off–Line and  
dc–to–dc converter applications offering the designer a cost effective  
solution with minimal external components. These integrated circuits feature  
an oscillator, a temperature compensated reference, high gain error  
amplifier, current sensing comparator, and a high current totem pole output  
ideally suited for driving a power MOSFET.  
Also included are protective features consisting of input and reference  
undervoltage lockouts each with hysteresis, cycle–by–cycle current limiting,  
a latch for single pulse metering, and a flip–flop which blanks the output off  
every other oscillator cycle, allowing output deadtimes to be programmed for  
50% to 70%.  
N SUFFIX  
PLASTIC PACKAGE  
CASE 626  
8
1
D SUFFIX  
These devices are available in an 8–pin dual–in–line plastic package as  
well as the 14–pin plastic surface mount (SO–14). The SO–14 package has  
separate power and ground pins for the totem pole output stage.  
The UCX844 has UVLO thresholds of 16 V (on) and 10 V (off), ideally  
suited for off–line converters. The UCX845 is tailored for lower voltage  
applications having UVLO thresholds of 8.5 V (on) and 7.6 V (off).  
PLASTIC PACKAGE  
14  
CASE 751A  
(SO–14)  
1
PIN CONNECTIONS  
Current Mode Operation to 500 kHz Output Switching Frequency  
Output Deadtime Adjustable from 50% to 70%  
Automatic Feed Forward Compensation  
Latching PWM for Cycle–By–Cycle Current Limiting  
Internally Trimmed Reference with Undervoltage Lockout  
High Current Totem Pole Output  
Input Undervoltage Lockout with Hysteresis  
Low Startup and Operating Current  
Direct Interface with Motorola SENSEFET Products  
Compensation  
Voltage Feedback  
Current Sense  
1
2
8
7
V
ref  
V
CC  
3
4
6
5
Output  
Gnd  
R
/C  
T
T
(Top View)  
1
14  
13  
Compensation  
NC  
V
ref  
2
NC  
3
4
12  
11  
Voltage Feedback  
NC  
V
V
CC  
C
5
6
10  
9
Current Sense  
NC  
Output  
Gnd  
Simplified Block Diagram  
R
/C  
7
8
Power Ground  
T
T
V
7(12)  
CC  
(Top View)  
V
V
CC  
ref  
8(14)  
5.0V  
Reference  
Undervoltage  
Lockout  
ORDERING INFORMATION  
Operating  
R
R
V
ref  
V
C
Undervoltage  
Lockout  
Temperature Range  
Device  
Package  
SO–14  
SO–14  
Plastic  
Plastic  
SO–14  
SO–14  
Plastic  
Plastic  
7(11)  
UC3844D  
UC3845D  
UC3844N  
UC3845N  
UC2844D  
UC2845D  
UC2844N  
UC2845N  
R
4(7)  
C
Output  
6(10)  
T
T
Flip  
Flop  
&
Latching  
PWM  
Oscillator  
T
= 0° to +70°C  
A
Voltage  
Feedback  
PWR GND  
5(8)  
+
2(3)  
Current  
Sense  
3(5)  
Error  
Amplifier  
1(1)  
Output  
Comp.  
T
= – 25° to +85°C  
A
Gnd  
5(9)  
Pin numbers in parenthesis are for the D suffix SO–14 package.  
Motorola, Inc. 1996  
Rev 1  
UC3844, 45 UC2844, 45  
MAXIMUM RATINGS  
Rating  
Symbol  
(I + I )  
Value  
Unit  
mA  
A
Total Power Supply and Zener Current  
Output Current, Source or Sink (Note 1)  
Output Energy (Capacitive Load per Cycle)  
Current Sense and Voltage Feedback Inputs  
Error Amp Output Sink Current  
30  
CC  
Z
I
O
1.0  
5.0  
W
µJ  
V
in  
– 0.3 to + 5.5  
10  
V
I
O
mA  
Power Dissipation and Thermal Characteristics  
D Suffix, Plastic Package, Case 751A  
Maximum Power Dissipation @ T = 25°C  
Thermal Resistance Junction–to–Air  
N Suffix, Plastic Package, Case 626  
P
862  
145  
mW  
°C/W  
A
D
R
θJA  
Maximum Power Dissipation @ T = 25°C  
Thermal Resistance Junction–to–Air  
P
1.25  
100  
W
°C/W  
A
D
R
θJA  
Operating Junction Temperature  
T
+ 150  
°C  
°C  
J
Operating Ambient Temperature  
UC3844, UC3845  
T
A
0 to + 70  
UC2844, UC2845  
– 25 to + 85  
Storage Temperature Range  
T
stg  
– 65 to + 150  
°C  
ELECTRICAL CHARACTERISTICS (V  
unless otherwise noted.)  
= 15 V, [Note 2], R = 10 k, C = 3.3 nF, T = T  
to T [Note 3],  
high  
CC  
T
T
A
low  
UC284X  
Typ  
UC384X  
Typ  
Characteristics  
Symbol  
Min  
Max  
Min  
Max  
Unit  
REFERENCE SECTION  
Reference Output Voltage (I = 1.0 mA, T = 25°C)  
V
ref  
4.95  
5.0  
2.0  
3.0  
0.2  
5.05  
20  
4.9  
5.0  
2.0  
3.0  
0.2  
5.1  
20  
V
mV  
mV  
mV/°C  
V
O
J
Line Regulation (V  
CC  
= 12 V to 25 V)  
Reg  
line  
load  
S
Load Regulation (I = 1.0 mA to 20 mA)  
O
Reg  
T
25  
25  
Temperature Stability  
Total Output Variation over Line, Load, Temperature  
Output Noise Voltage (f = 10 Hz to kHz, T = 25°C)  
V
ref  
4.9  
5.1  
4.82  
5.18  
V
n
50  
50  
µV  
J
Long Term Stability (T = 125°C for 1000 Hours)  
S
5.0  
– 85  
5.0  
– 85  
mV  
mA  
A
Output Short Circuit Current  
I
– 30  
– 180  
– 30  
– 180  
SC  
OSCILLATOR SECTION  
Frequency  
f
kHz  
osc  
T = 25°C  
47  
46  
52  
57  
60  
47  
46  
52  
57  
60  
J
A
T
= T  
to T  
high  
low  
Frequency Change with Voltage (V  
= 12 V to 25 V)  
f  
osc/ V  
0.2  
5.0  
1.0  
0.2  
5.0  
1.0  
%
%
CC  
Frequency Change with Temperature  
= T to T  
f  
osc/ T  
T
A
low  
Oscillator Voltage Swing (Peak–to–Peak)  
Discharge Current (V = 2.0 V, T = 25°C)  
high  
V
osc  
1.6  
1.6  
V
I
dischg  
10.8  
10.8  
mA  
osc  
J
NOTES: 1. Maximum Package power dissipation limits must be observed.  
2. Adjust V above the Startup threshold before setting to 15 V.  
CC  
3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible  
T
T
= –20°C for UC3844, UC3845  
= –25°C for UC2844, UC2845  
T
T
= +70°C for UC3844, UC3845  
= +85°C for UC2844, UC2845  
low  
low  
high  
high  
2
MOTOROLA ANALOG IC DEVICE DATA  
UC3844, 45 UC2844, 45  
ELECTRICAL CHARACTERISTICS (V  
unless otherwise noted,)  
= 15 V, [Note 2], R = 10 k, C = 3.3 nF, T = T  
to T  
[Note 3],  
high  
CC  
T
T
A
low  
UC284X  
Typ  
UC384X  
Characteristics  
Symbol  
Min  
Max  
Min  
Typ  
Max  
Unit  
ERROR AMPLIFIER SECTION  
Voltage Feedback Input (V = 2.5 V)  
V
I
2.45  
2.5  
–0.1  
90  
2.55  
–1.0  
2.42  
2.5  
–0.1  
90  
2.58  
–2.0  
V
µA  
O
FB  
Input Bias Current (V  
= 2.7 V)  
FB  
Open Loop Voltage Gain (V = 2.0 V to 4.0 V)  
IB  
A
VOL  
BW  
65  
0.7  
60  
65  
0.7  
60  
dB  
O
Unity Gain Bandwidth (T = 25°C)  
1.0  
70  
1.0  
70  
MHz  
dB  
J
Power Supply Rejection Ratio (V  
= 12 V to 25 V)  
PSRR  
CC  
Output Current  
mA  
Sink (V = 1.1 V, V  
Source (V = 5.0 V, V  
O
= 2.7 V)  
I
Sink  
Source  
2.0  
–0.5  
12  
–1.0  
2.0  
–0.5  
12  
–1.0  
O
FB  
= 2.3 V)  
I
FB  
Output Voltage Swing  
V
High State (R = 15 k to ground, V  
= 2.3 V)  
FB  
= 2.7 V)  
V
OH  
V
OL  
5.0  
6.2  
0.8  
1.1  
5.0  
6.2  
0.8  
1.1  
L
Low State (R = 15 k to V , V  
L
ref FB  
CURRENT SENSE SECTION  
Current Sense Input Voltage Gain (Notes 4 & 5)  
Maximum Current Sense Input Threshold (Note 4)  
Power Supply Rejection Ratio  
A
2.85  
0.9  
3.0  
1.0  
3.15  
1.1  
2.85  
0.9  
3.0  
1.0  
3.15  
1.1  
V/V  
V
V
V
th  
PSRR  
dB  
V
= 12 V to 25 V (Note 4)  
70  
70  
CC  
Input Bias Current  
I
–2.0  
150  
–10  
300  
–2.0  
150  
–10  
300  
µA  
IB  
Propagation Delay (Current Sense Input to Output)  
t
ns  
PLH(IN/OUT)  
OUTPUT SECTION  
Output Voltage  
V
Low State (I  
= 20 mA)  
= 200 mA)  
= 20 mA)  
= 200 mA)  
V
12  
12  
0.1  
1.6  
13.5  
13.4  
0.4  
2.2  
13  
12  
0.1  
1.6  
13.5  
13.4  
0.4  
2.2  
Sink  
Sink  
Sink  
Sink  
OL  
(I  
High State (I  
(I  
V
OH  
Output Voltage with UVLO Activated  
= 6.0 V, I = 1.0 mA  
V
OL(UVLO)  
V
V
CC  
0.1  
50  
50  
1.1  
150  
150  
0.1  
50  
50  
1.1  
150  
150  
Sink  
Output Voltage Rise Time (C = 1.0 nF, T = 25°C)  
t
r
ns  
ns  
L
J
Output Voltage Fall Time (C = 1.0 nF, T = 25°C)  
t
f
L
J
UNDERVOLTAGE LOCKOUT SECTION  
Startup Threshold  
UCX844  
UCX845  
V
V
V
th  
15  
7.8  
16  
8.4  
17  
9.0  
14.5  
7.8  
16  
8.4  
17.5  
9.0  
Minimum Operating Voltage After Turn–On  
UCX844  
UCX845  
V
CC(min)  
9.0  
7.0  
10  
7.6  
11  
8.2  
8.5  
7.0  
10  
7.6  
11.5  
8.2  
PWM SECTION  
Duty Cycle  
Maximum  
Minimum  
%
DC  
46  
48  
50  
0
47  
48  
50  
0
max  
DC  
min  
TOTAL DEVICE  
Power Supply Current (Note 2)  
Startup:  
I
mA  
V
CC  
(V  
(V  
CC  
= 6.5 V for UCX845A,  
14 V for UCX844) Operating  
0.5  
12  
1.0  
17  
0.5  
12  
1.0  
17  
CC  
Power Supply Zener Voltage (I = 25 mA)  
V
30  
36  
30  
36  
CC  
Z
NOTES: 2. Adjust V  
above the Startup threshold before setting to 15 V.  
CC  
3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible  
T
T
= –20°C for UC3844, UC3845  
= –25°C for UC2844, UC2845  
T
T
= +70°C for UC3844, UC3845  
= +85°C for UC2844, UC2845  
= 0 V.  
low  
low  
high  
high  
FB  
4. This parameter is measured at the latch trip point with V  
V Output Compensation  
5. Comparator gain is defined as: A  
V
V Current Sense Input  
3
MOTOROLA ANALOG IC DEVICE DATA  
UC3844, 45 UC2844, 45  
Figure 1. Timing Resistor versus  
Oscillator Frequency  
Figure 2. Output Deadtime versus  
Oscillator Frequency  
100  
50  
75  
70  
65  
V
T
= 15 V  
= 25°C  
CC  
A
1.0 nF  
2.0 nF  
20  
5.0 nF  
C
= 10 nF  
T
10  
60  
55  
50  
5.0  
2.0  
100 pF  
200 pF  
NOTE: Output switches  
at one–half the oscillator  
frequency.  
500 pF  
1.0  
10 k  
20 k  
50 k  
100 k  
200 k  
500 k  
1.0 M  
10 k  
20 k  
50 k  
100 k  
200 k  
500 k  
1.0 M  
f
, OSCILLATOR FREQUENCY (Hz)  
f
osc  
, OSCILLATOR FREQUENCY (Hz)  
osc  
Figure 3. Error Amp Small Signal  
Transient Response  
Figure 4. Error Amp Large Signal  
Transient Response  
V
= 15 V  
= –1.0  
V
= 15 V  
CC  
CC  
A = –1.0  
V
A
V
A
2.55 V  
3.0 V  
2.5 V  
2.0 V  
T
= 25  
°C  
T = 25°C  
A
2.5 V  
2.45 V  
0.5  
µs/DIV  
1.0 µs/DIV  
Figure 5. Error Amp Open Loop Gain and  
Phase versus Frequency  
Figure 6. Current Sense Input Threshold  
versus Error Amp Output Voltage  
100  
80  
60  
40  
20  
1.2  
0
V
V
R
= 15 V  
= 2.0 V to 4.0 V  
= 100 K  
CC  
O
L
V
= 15 V  
CC  
1.0  
0.8  
0.6  
0.4  
0.2  
0
30  
Gain  
T
= 25°C  
A
60  
T
= 25°C  
A
90  
T
= 125°C  
Phase  
1.0 M  
A
T
= –55  
4.0  
°C  
120  
A
0
150  
180  
– 20  
10  
100  
1.0 k  
10 k  
100 k  
10 M  
0
2.0  
6.0  
8.0  
f, FREQUENCY (Hz)  
V
, ERROR AMP OUTPUT VOLTAGE (V)  
O
4
MOTOROLA ANALOG IC DEVICE DATA  
UC3844, 45 UC2844, 45  
Figure 7. Reference Voltage Change  
versus Source Current  
Figure 8. Reference Short Circuit Current  
versus Temperature  
0
–4.0  
–8.0  
–12  
–16  
–20  
–24  
110  
V
= 15 V  
CC  
V
R
= 15 V  
0.1 Ω  
CC  
L
90  
70  
T
= 125°C  
A
T
= –55°C  
A
T
= 25°C  
A
50  
–55  
0
20  
40  
60  
80  
100  
120  
–25  
0
25  
50  
75  
C)  
100  
125  
I
, REFERENCE SOURCE CURRENT (mA)  
T , AMBIENT TEMPERATURE (  
°
ref  
A
Figure 9. Reference Load Regulation  
Figure 10. Reference Line Regulation  
V
= 15 V  
= 1.0 mA to 20 mA  
= 25°C  
CC  
V
= 12 V to 25 V  
CC  
= 25°C  
I
T
O
T
A
A
2.0 ms/DIV  
2.0 ms/DIV  
Figure 11. Output Saturation Voltage  
versus Load Current  
Figure 12. Output Waveform  
0
–1.0  
–2.0  
Source Saturation  
(Load to Ground)  
V
= 15 V  
CC  
V
CC  
80  
µs Pulsed Load  
120 Hz Rate  
V
C
= 15 V  
= 1.0 nF  
= 25°C  
CC  
L
T
= 25°C  
A
90%  
T
A
T
= –55°C  
A
3.0  
2.0  
1.0  
0
T
= –55°C  
A
T
= 25°C  
A
10%  
Sink Saturation  
Gnd  
600  
(Load to V  
)
CC  
50 ns/DIV  
0
200  
400  
800  
I
, OUTPUT LOAD CURRENT (mA)  
O
5
MOTOROLA ANALOG IC DEVICE DATA  
UC3844, 45 UC2844, 45  
Figure 14. Supply Current versus  
Supply Voltage  
Figure 13. Output Cross Conduction  
25  
20  
15  
10  
5
V
= 30 V  
= 15 pF  
= 25°C  
CC  
L
C
T
A
R
C
= 10 k  
= 3.3 nF  
= 0 V  
= 0 V  
T
T
V
I
T
FB  
Sense  
= 25°C  
A
0
0
10  
20  
30  
40  
100 ns/DIV  
V
, SUPPLY VOLTAGE (V)  
CC  
PIN FUNCTION DESCRIPTION  
Pin  
8–Pin  
14–Pin  
Function  
Description  
This pin is Error Amplifier output and is made available for loop compensation.  
1
2
1
3
Compensation  
Voltage  
Feedback  
This is the inverting input of the Error Amplifier. It is normally connected to the switching power  
supply output through a resistor divider.  
3
4
5
7
Current Sense  
A voltage proportional to inductor current is connected to this input. The PWM uses this  
information to terminate the output switch conduction.  
R /C  
T
The Oscillator frequency and maximum Output duty cycle are programmed by connecting  
T
resistor R to V and capacitor C to ground. Operation to 1.0 MHz is possible.  
T
ref  
T
5
6
Gnd  
This pin is combined control circuitry and power ground (8–pin package only).  
10  
Output  
This output directly drives the gate of a power MOSFET. Peak currents up to 1.0 A are sourced  
and sunk by this pin. The output switches at one–half the oscillator frequency.  
7
8
12  
14  
8
V
This pin is the positive supply of the control IC.  
CC  
V
ref  
This is the reference output. It provides charging current for capacitor C through resistor R .  
T T  
Power Ground  
This pin is a separate power ground return (14–pin package only) that is connected back to the  
power source. It is used to reduce the effects of switching transient noise on the control circuitry.  
11  
V
C
The Output high state (V  
a separate power source connection, it can reduce the effects of switching transient noise on the  
control circuitry.  
) is set by the voltage applied to this pin (14–pin package only). With  
OH  
9
Gnd  
NC  
This pin is the control circuitry ground return (14–pin package only) and is connected to back to  
the power source ground.  
2,4,6,13  
No connection (14–pin package only). These pins are not internally connected.  
6
MOTOROLA ANALOG IC DEVICE DATA  
UC3844, 45 UC2844, 45  
OPERATING DESCRIPTION  
Amp minimum feedback resistance is limited by the  
amplifier’s source current (0.5 mA) and the required output  
The UC3844, UC3845 series are high performance, fixed  
frequency, current mode controllers. They are specifically  
designed for Off–Line and dc–to–dc converter applications  
offering the designer a cost effective solution with minimal  
external components. A representative block diagram is  
shown in Figure 15.  
voltage (V  
) to reach the comparator’s 1.0 V clamp level:  
OH  
3.0 (1.0 V) + 1.4 V  
R
= 8800 Ω  
f(min)  
0.5 mA  
Oscillator  
Current Sense Comparator and PWM Latch  
The oscillator frequency is programmed by the values  
The UC3844, UC3845 operate as a current mode  
controller, whereby output switch conduction is initiated by  
the oscillator and terminated when the peak inductor current  
reaches the threshold level established by the Error Amplifier  
Output/Compensation (Pin1). Thus the error signal controls  
the inductor current on a cycle–by–cycle basis. The current  
Sense Comparator PWM Latch configuration used ensures  
that only a single pulse appears at the Output during any  
given oscillator cycle. The inductor current is converted to a  
selected for the timing components R and C . Capacitor C  
is charged from the 5.0 V reference through resistor R to  
T
approximately 2.8 V and discharged to 1.2 V by an internal  
T
T
T
current sink. During the discharge of C , the oscillator  
T
generates an internal blanking pulse that holds the center  
input of the NOR gate high. This causes the Output to be in a  
low state, thus producing a controlled amount of output  
deadtime. An internal flip–flop has been incorporated in the  
UCX844/5 which blanks the output off every other clock cycle  
by holding one of the inputs of the NOR gate high. This in  
voltage by inserting the ground referenced sense resistor R  
S
in series with the source of output switch Q1. This voltage is  
monitored by the Current Sense Input (Pin 3) and compared  
a level derived from the Error Amp Output. The peak inductor  
current under normal operating conditions is controlled by the  
voltage at pin 1 where:  
combination with the C discharge period yields output  
T
deadtimes programmable from 50% to 70%. Figure 1 shows  
R
versus Oscillator Frequency and figure 2, Output  
T
Deadtime versus Frequency, both for given values of C .  
Note that many values of R and C will give the same  
oscillator frequency but only one combination will yield a  
specific output deadtime at a given frequency.  
T
T
T
V
– 1.4 V  
(Pin 1)  
3 R  
S
I
pk  
=
In many noise sensitive applications it may be desirable to  
frequency–lock the converter to an external system clock.  
This can be accomplished by applying a clock signal to the  
circuit shown in Figure 17. For reliable locking, the  
free–running oscillator frequency should be set about 10%  
less than the clock frequency. A method for multi unit  
synchronization is shown in Figure 18. By tailoring the clock  
waveform, accurate Output duty cycle clamping can be  
achieved to realize output deadtimes of greater than 70%  
Abnormal operating conditions occur when the power  
supply output is overloaded or if output voltage sensing is  
lost. Under these conditions, the Current Sense Comparator  
threshold will be internally clamped to 1.0 V. Therefore the  
maximum peak switch current is:  
1.0 V  
I
=
pk(max)  
R
S
Error Amplifier  
When designing a high power switching regulator it  
becomes desirable to reduce the internal clamp voltage in  
A fully compensated Error Amplifier with access to the  
inverting input and output is provided. It features a typical dc  
voltage gain of 90 dB, and a unity gain bandwidth of 1.0 MHz  
with 57 degrees of phase margin (Figure 5). The noninverting  
input is internally biased at 2.5 V and is not pinned out. The  
converter output voltage is typically divided down and  
monitored by the inverting input. The maximum input bias  
current is –2.0 µA which can cause an output voltage error  
that is equal to the product of the input bias current and the  
equivalent input divider source resistance.  
The Error Amp Output (Pin 1) is provide for external loop  
compensation (Figure 28). The output voltage is offset by two  
diode drops (1.4 V) and divided by three before it connects  
to the inverting input of the Current Sense Comparator. This  
guarantees that no drive pulses appear at the Output (Pin 6)  
order to keep the power dissipation of R to a reasonable  
S
level. A simple method to adjust this voltage is shown in  
Figure 19. The two external diodes are used to compensate  
the internal diodes yielding a constant clamp voltage over  
temperature. Erratic operation due to noise pickup can result  
if there is an excessive reduction of the I  
voltage.  
clamp  
pk(max)  
A narrow spike on the leading edge of the current  
waveform can usually be observed and may cause the power  
supply to exhibit an instability when the output is lightly  
loaded. This spike is due to the power transformer  
interwinding capacitance and output rectifier recovery time.  
The addition of an RC filter on the Current Sense Input with a  
time constant that approximates the spike duration will  
usually eliminate the instability; refer to Figure 23.  
when Pin 1 is at its lowest state (V ). This occurs when the  
OL  
power supply is operating and the load is removed, or at the  
beginning of a soft–start interval (Figures 20, 21). The Error  
7
MOTOROLA ANALOG IC DEVICE DATA  
UC3844, 45 UC2844, 45  
Figure 15. Representative Block Diagram  
V
V
in  
CC  
V
CC  
7(12)  
36V  
V
+
ref  
Reference  
Regulator  
8(14)  
V
+
CC  
R
R
Internal  
Bias  
UVLO  
2.5V  
+
V
C
+
R
T
7(11)  
V
ref  
UVLO  
3.6V  
Q1  
Output  
6(10)  
Oscillator  
4(7)  
2(3)  
T
Q
Q
+
C
T
1.0mA  
Power Ground  
5(8)  
S
+
+
R
Voltage Feedback  
Input  
PWM  
Latch  
2R  
Error  
R
Current Sense Input  
3(5)  
1.0V  
Output  
Compensation  
Amplifier  
Current Sense  
Comparator  
1(1)  
R
S
Gnd  
5(9)  
+
Sink Only  
Positive True Logic  
=
Pin numbers in parenthesis are for the D suffix SO–14 package.  
Figure 16. Timing Diagram  
Capacitor C  
T
Latch  
‘‘Set’’ Input  
Output/  
Compensation  
Current Sense  
Input  
Latch  
‘‘Reset’’ Input  
Output  
Large R /Small C  
Small R /Large C  
T T  
T
T
8
MOTOROLA ANALOG IC DEVICE DATA  
UC3844, 45 UC2844, 45  
Undervoltage Lockout  
added flexibility in tailoring the drive voltage independent of  
A zener clamp is typically connected to this input when  
V
Two undervoltage lockout comparators have been  
incorporated to guartantee that the IC is fully functional before  
the output stage is enabled. The positive power supply  
CC.  
driving power MOSFETs in systems where V  
is greater the  
CC  
20 V. Figure 22 shows proper power and control ground  
connections in a current sensing power MOSFET  
application.  
terminal (V  
and the reference output (V ) are each  
CC  
ref  
monitored by separate comparators. Each has built–in  
hysteresis to prevent erratic output behavior as their  
Reference  
respective thresholds are crossed. The V  
comparator  
CC  
upper and lower thresholds are 16 V/10 V for the UCX844,  
and 8.4 V/7.6 V for the UCX845. The V comparator upper  
The 5.0 V bandgap reference is trimmed to ± 1.0%  
tolerance at T = 25°C on the UC284X, and ± 2.0% on the  
J
ref  
UC384X. Its primary purpose is to supply charging current to  
the oscillator timing capacitor. The reference has short circuit  
protection and is capable of providing in excess of 20 mA for  
powering additional control system circuitry.  
and lower thresholds are 3.6 V/3/4 V. The large hysteresis  
and low startup current of the UCX844 makes it ideally suited  
in off–line converter applications where efficient bootstrap  
startup techniques later required (Figure 29). The UCX845 is  
intended for lower voltage dc–to–dc converter applications. A  
Design Considerations  
36 V zener is connected as a shunt regulator from V  
to  
CC  
Do not attempt to construct the converter on  
wire–wrap or plug–in prototype boards. High frequency  
circuit layout techniques are imperative to prevent pulsewidth  
jitter. This is usually caused by excessive noise pick–up  
imposed on the Current Sense or Voltage Feedback inputs.  
Noise immunity can be improved by lowering circuit  
impedances at these points. The printed circuit layout should  
contain a ground plane with low–current signal and  
high–current switch and output grounds returning on  
separate paths back to the input filter capacitor. Ceramic  
ground. Its purpose is to protect the IC from excessive  
voltage that can occur during system startup. The minimum  
operating voltage for the UCX844 is 11 V and 8.2 V for the  
UCX845.  
Output  
These devices contain a single totem pole output stage  
that was specifically designed for direct drive of power  
MOSFETs. It is capable of up to ± 1.0 A peak drive current  
and has a typical rise and fall time of 50 ns with a 1.0 nF load.  
Additional internal circuitry has been added to keep the  
Output in a sinking mode whenever and undervoltage lockout  
is active. This characteristic eliminates the need for an  
external pull–down resistor.  
bypass capacitors (0.1 µF) connected directly to V , V ,  
CC  
C
and V may be required depending upon circuit layout. This  
ref  
provides a low impedance path for filtering the high frequency  
noise. All high current loops should be kept as short as  
possible using heavy copper runs to minimize radiated EMI.  
The Error Amp compensation circuitry and the converter  
output voltage divider should be located close to the IC and  
as far as possible from the power switch and other noise  
generating components.  
The SO–14 surface mount package provides separate  
pins for V (output supply) and Power Ground. Proper  
C
implementation will significantly reduce the level of switching  
transient noise imposed on the control circuitry. This  
becomesparticularlyusefulwhenreducingtheI  
clamp  
pk(max)  
level. The separate V supply input allows the designer  
C
Figure 18. External Duty Cycle Clamp and  
Multi–Unit Synchronization  
Figure 17. External Clock Synchronization  
V
ref  
8(14)  
R
R
8(14)  
R
R
Bias  
R
R
A
R
T
Bias  
4
8
B
5.0k  
6
Osc  
+
External  
Sync  
Input  
Osc  
+
4(7)  
R
S
C
T
3
0.01  
+
4(7)  
5
2
Q
+
+
+
2R  
R
7
EA  
47  
2(3)  
1(1)  
2R  
R
5.0k  
1
EA  
2(3)  
1(1)  
C
MC1455  
5(9)  
5(9)  
To Additional  
UCX84XA’s  
R
B
1.44  
(R + 2R )C  
The diode clamp is required if the Sync amplitude is large enough to  
cause the bottom side of CT to go more than 300 mV below ground.  
f =  
D
=
max  
R
+ 2R  
B
A
B
A
9
MOTOROLA ANALOG IC DEVICE DATA  
UC3844, 45 UC2844, 45  
Figure 19. Adjustable Reduction of Clamp Level  
Figure 20. Soft–Start Circuit  
V
CC  
V
in  
7(12)  
5.0V  
+
ref  
5.0V  
ref  
8(14)  
R
R
+
8(14)  
R
R
Bias  
+
Bias  
+
+
+
7(11)  
6(10)  
5(8)  
Q1  
Osc  
Osc  
T
+
4(7)  
2(3)  
T
+
4(7)  
V
Clamp  
S
1.0mA  
2R  
+
1.0mA  
2R  
S
Q
+
Q
R
+
R2  
R
EA  
+
EA  
2(3)  
1(1)  
R
Comp/Latch  
R
1.0V  
1.0V  
3(5)  
1(1)  
t
C
R
S
R1  
5(9)  
5(9)  
3600C in µF  
Soft–Start  
1.67  
2
R
R
2
V
1
Clamp  
–3  
+ 0.33 x 10  
V
Clamp  
I
pk(max)  
R
+ R  
R
1
2
S
R
R
+ 1  
Where: 0  
V
1.0 V  
Clamp  
1
Figure 21. Adjustable Buffered Reduction of  
Figure 22. Current Sensing Power MOSFET  
Clamp Level with Soft–Start  
V
CC  
R
I
r
S
pk DS(on)  
V
V
in  
CC  
V
5 ≈  
V
(12)  
Pin  
in  
r
+ R  
DM(on)  
S
7(12)  
If: SENSEFET = MTP10N10M  
+
R
= 200  
5.0V  
ref  
S
+
+
5.0V  
ref  
Then: V  
SENSEFET  
5 = 0.075 I  
pk  
+
pin  
8(14)  
4(7)  
R
R
+
D
Bias  
+
+
(11)  
(10)  
(8)  
+
S
7(11)  
6(10)  
5(8)  
Q1  
Osc  
G
T
K
T
M
+
V
Clamp  
S
S
Q
1.0mA  
2R  
+
R
Q
+
R
Power Ground  
To Input Source  
Return  
+
Comp/Latch  
EA  
2(3)  
1(1)  
Comp/Latch  
R
R2  
(5)  
R
1.0V  
3(5)  
S
1/4 W  
R
S
Control CIrcuitry  
Ground:  
To Pin (9)  
5(9)  
–3  
MPSA63  
C
R1  
1.67  
2
R
R
2
V
1
Clamp  
+ 0.33 x 10  
R
+ R  
R
R
1
2
Virtually lossless current sensing can be achieved with the implement of a SENSEFET  
power switch. For proper operation during over current conditions, a reduction of the  
+ 1  
1
V
I
clamp level must be implemented. Refer to Figures 19 and 21.  
Clamp  
pk(max)  
I
Where: 0  
V
V
1.0 V  
pk(max)  
Clamp  
C
R
S
R
R
C
1
2
t
= – In  
1 –  
Softstart  
3V  
R
+ R  
Clamp  
1 2  
Figure 23. Current Waveform Spike Suppression  
V
CC  
V
in  
7(12)  
+
5.0V  
ref  
+
+
+
7(11)  
6(10)  
5(8)  
Q1  
T
S
Q
R
+
R
Comp/Latch  
3(5)  
The addition of the RC filter will eliminate  
instabilitycaused by the leading edge spike on  
the current waveform.  
C
R
S
10  
MOTOROLA ANALOG IC DEVICE DATA  
UC3844, 45 UC2844, 45  
Figure 24. MOSFET Parasitic Oscillations  
Figure 25. Bipolar Transistor Drive  
V
I
CC  
B
V
in  
V
in  
7(12)  
+
0
+
5.0V  
ref  
Base Charge  
Removal  
+
+
C
1
+
7(11)  
6(10)  
5(8)  
R
Q1  
g
Q1  
T
6(1)  
S
Q
R
5(8)  
3(5)  
+
Comp/Latch  
3(5)  
R
R
S
S
The totem–pole output can furnish negative base current for enhanced  
Series gate resistor R will damp any high frequency parasitic oscillations  
g
causedbytheMOSFETinputcapacitanceandanyserieswiringinductance  
in the gate–source circuit.  
transistor turn–off, with the addition of capacitor C .  
1
Figure 26. Isolated MOSFET Drive  
Figure 27. Latched Shutdown  
V
V
CC  
in  
7(12)  
8(14)  
R
R
+
Isolation  
Boundary  
Bias  
5.0V  
ref  
+
+
V
Waveforms  
GS  
Q1  
+
Osc  
7(11)  
6(10)  
5(8)  
+
0
+
0
+
4(7)  
1.0mA  
2R  
T
+
50% DC  
V
25% DC  
S
EA  
– 1.4  
N
N
2(3)  
1(1)  
(pin 1)  
P
S
Q
I
=
R
R
pk  
+
3 R  
S
R
Comp/Latch  
3(5)  
C
N
S
R
S
N
p
2N  
3905  
MCR  
101  
5(9)  
2N  
3903  
The MCR101 SCR must be selected for a holding of less than 0.5 mA at  
. The simple two transistor circuit can be used in place of the SCR as  
T
A(min)  
shown. All resistors are 10 k.  
Figure 28. Error Amplifier Compensation  
From V  
O
From V  
O
2.5V  
+
2.5V  
+
R
i
1.0mA  
2R  
2(3)  
1.0mA  
2R  
+
R
p
2(3)  
R
+
i
EA  
R
C
d
I
R
EA  
f
R
C
R
I
R
d
f
R
C
p
1(1)  
1(1)  
5(9)  
R
8.8 k  
5(9)  
f
ErrorAmpcompensationcircuitforstabilizinganycurrent–modetopologyexcept  
for boost and flyback converters operating with continuous inductor current.  
Error Amp compensation circuit for stabilizing current–mode boost and flyback  
topologies operating with continuous inductor current.  
11  
MOTOROLA ANALOG IC DEVICE DATA  
UC3844, 45 UC2844, 45  
Figure 29. 27 Watt Off–Line Flyback Regulator  
L1  
MBR1635  
2200  
+
4.7Ω  
3300pF  
MDA  
202  
4.7k  
250  
5.0V/4.0A  
T1  
+
+
+
+
1000  
56k  
115Vac  
5.0V RTN  
12V/0.3A  
MUR110  
1000  
1N4935  
68  
1N4935  
L2  
10  
7(12)  
+
+
±
12V RTN  
47  
100  
1000  
10  
L3  
8(14)  
+
+
+
5.0V  
ref  
–12V/0.3A  
+
0.01  
MUR110  
680pF  
1N4937  
Bias  
+
+
33k  
7(11)  
1N4937  
2.7k  
4(7)  
2(3)  
22  
Osc  
T
S
6(10)  
+
MTP  
4N50  
1.0nF  
1N5819  
18k  
+
Q
+
5(8)  
3(5)  
R
EA  
Comp/Latch  
4.7k  
1.0k  
470pF  
1(1)  
0.5Ω  
5(9)  
T1 – Primary: 45 Turns # 26 AWG  
T1 – Secondary 12 V: 9 Turns # 30 AWG  
±
T1 – (2 strands) Bifiliar Wound  
T1 – Secondary 5.0 V: 4 Turns (six strands)  
T1 – #26 Hexfiliar Wound  
T1 – Secondary Feedback: 10 Turns #30 AWG  
T1 – (2 strands) Bifiliar Wound  
Test  
Conditions  
= 95 Vac to 130 Vac  
Results  
Line Regulation: 5.0 V  
V
in  
= 50 mV or ± 0.5%  
= 24 mV or ± 0.1%  
± 12 V  
T1 – Core: Ferroxcube EC35–3C8  
T1 – Bobbin: Ferroxcube EC35PCB1  
Load Regulation: 5.0 V  
V
V
= 115 Vac, I  
= 115 Vac, I  
= 1.0 A to 4.0 A  
= 100 mA to 300 mA = 60 mV or ± 0.25%  
= 300 mV or ± 3.0%  
in  
in  
out  
out  
T1 – Gap  
0.01” for a primary inductance of 1.0 mH  
± 12 V  
L1 – 15  
µH at 5.0 A, Coilcraft Z7156.  
Output Ripple:  
5.0 V  
V
in  
= 115 Vac  
40 mV  
80 mV  
pp  
pp  
L2, L3 – 25  
µH at 1.0 A, Coilcraft Z7157.  
± 12 V  
Efficiency  
V
in  
= 115 Vac  
70%  
All outputs are at nominal load currents, unless otherwise noted.  
12  
MOTOROLA ANALOG IC DEVICE DATA  
UC3844, 45 UC2844, 45  
Figure 30. Step–Up Charge Pump Converter  
V
= 15V  
in  
+
UC3845  
Output Load Regulation  
(open loop configuration)  
7(12)  
47  
I
(mA)  
V
(V)  
O
O
34V  
8(14)  
+
Reference  
Regulator  
0
2
9
18  
36  
29.9  
28.8  
28.3  
27.4  
24.4  
V
+
1N5819  
CC  
UVLO  
R
R
Internal  
Bias  
2.5V  
+
7(11)  
6(10)  
5(8)  
+
10k  
V
ref  
UVLO  
3.6V  
15 10  
1N5819  
4(7)  
Oscillator  
V
2 (V )  
in  
O
+
+
T
47  
+
1.0nF  
Connect to  
Pin 2 for  
closed loop  
operation.  
0.5mA  
S
R2  
2R  
+
Q
2(3)  
1(1)  
+
R
PWM  
Latch  
Error  
Amplifier  
R
1.0V  
3(5)  
R2  
R2  
V
R1  
O = 2.5  
+ 1  
Current Sense  
Comparator  
5(9)  
The capacitor’s equivalent series resistance must limit the Drive Output current to 1.0 A. An additional series  
resistor may be required when using tantalum or other low ESR capacitors. The converter’s output can provide  
excellent line and load regulation by connecting the R2/R1 resistor divider as shown.  
Figure 31. Voltage–Inverting Charge Pump Converter  
V
= 15V  
in  
+
UC3845  
7(12)  
47  
34V  
8(14)  
+
Reference  
Regulator  
V
+
CC  
UVLO  
R
R
Internal  
Bias  
2.5V  
+
7(11)  
+
10k  
V
ref  
UVLO  
3.6V  
15 10  
1N5819  
+
4(7)  
6(10)  
+
Oscillator  
V
– (V )  
in  
O
T
1N5819  
47  
+
1.0nF  
0.5mA  
5(8)  
S
2R  
+
Q
2(3)  
1(1)  
+
R
PWM  
Latch  
Output Load Regulation  
Error  
R
1.0V  
3(5)  
I
(mA)  
V
(V)  
O
O
Amplifier  
0
2
9
18  
32  
–14.4  
–13.2  
–12.5  
–11.7  
–10.6  
Current Sense  
Comparator  
5(9)  
The capacitor’s equivalent series resistance must limit the Drive Output current to 1.0 A.  
An additional series resistor may be required when using tantalum or other low ESR capacitors.  
13  
MOTOROLA ANALOG IC DEVICE DATA  
UC3844, 45 UC2844, 45  
OUTLINE DIMENSIONS  
N SUFFIX  
PLASTIC PACKAGE  
CASE 626–05  
ISSUE K  
8
5
NOTES:  
1. DIMENSION L TO CENTER OF LEAD WHEN  
–B–  
FORMED PARALLEL.  
2. PACKAGE CONTOUR OPTIONAL (ROUND OR  
SQUARE CORNERS).  
1
4
3. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
F
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
F
MIN  
9.40  
6.10  
3.94  
0.38  
1.02  
MAX  
10.16  
6.60  
4.45  
0.51  
1.78  
MIN  
MAX  
0.400  
0.260  
0.175  
0.020  
0.070  
–A–  
NOTE 2  
0.370  
0.240  
0.155  
0.015  
0.040  
L
C
G
H
J
K
L
2.54 BSC  
0.100 BSC  
0.76  
0.20  
2.92  
1.27  
0.30  
3.43  
0.030  
0.008  
0.115  
0.050  
0.012  
0.135  
J
–T–  
SEATING  
PLANE  
7.62 BSC  
0.300 BSC  
N
M
N
–––  
10  
–––  
10  
M
0.76  
1.01  
0.030  
0.040  
D
K
G
H
M
M
M
0.13 (0.005)  
T
A
B
D SUFFIX  
PLASTIC PACKAGE  
CASE 751A–03  
(SO–14)  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
–A–  
ISSUE F  
14  
1
8
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
–B–  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
P 7 PL  
M
M
0.25 (0.010)  
B
7
MILLIMETERS  
INCHES  
G
DIM  
A
B
C
D
F
G
J
K
M
P
MIN  
8.55  
3.80  
1.35  
0.35  
0.40  
MAX  
8.75  
4.00  
1.75  
0.49  
1.25  
MIN  
MAX  
0.344  
0.157  
0.068  
0.019  
0.049  
F
R X 45  
C
0.337  
0.150  
0.054  
0.014  
0.016  
–T–  
SEATING  
PLANE  
J
M
1.27 BSC  
0.050 BSC  
K
D 14 PL  
0.25 (0.010)  
0.19  
0.10  
0
0.25  
0.25  
7
0.008  
0.004  
0
0.009  
0.009  
7
M
S
S
T
B
A
5.80  
0.25  
6.20  
0.50  
0.228  
0.010  
0.244  
0.019  
R
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arisingoutof,directlyorindirectly,anyclaimofpersonalinjuryordeathassociatedwithsuchunintendedorunauthorizeduse,evenifsuchclaimallegesthatMotorola  
was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
re registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,  
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
INTERNET: http://Design–NET.com  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
UC3844/D

相关型号:

UC2845NG

High Performance Current Mode Controllers
ONSEMI

UC2845NG4

CURRENT MODE PWM CONTROLLER
TI

UC2845P

Current-Mode SMPS Controller
ETC

UC2845Q

Current-Mode SMPS Controller
ETC

UC2845QTR

Current-Mode SMPS Controller
ETC

UC2845W

SMPS Controller
ETC

UC2845_15

HIGH PERFORMANCE CURRENT MODE PWM CONTROLLERS
UTC

UC2846

Current Mode PWM Controller
TI

UC2846AN

1.5A SWITCHING CONTROLLER, 500kHz SWITCHING FREQ-MAX, PDIP16
TI

UC2846DW

Current Mode PWM Controller
TI

UC2846DWG4

Current Mode PWM Controller
TI

UC2846DWTR

Current Mode PWM Controller
TI