XPC860DHZP33C1 [MOTOROLA]

32-BIT, 33MHz, RISC PROCESSOR, PBGA357, PLASTIC, BGA-357;
XPC860DHZP33C1
型号: XPC860DHZP33C1
厂家: MOTOROLA    MOTOROLA
描述:

32-BIT, 33MHz, RISC PROCESSOR, PBGA357, PLASTIC, BGA-357

时钟 外围集成电路
文件: 总64页 (文件大小:785K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MPC860EC/D  
(Motorola Order Number)  
10/1999  
REV. 4  
ª
Advance Information  
MPC860 Family Hardware  
SpeciÞcations  
This document contains detailed information on power considerations, DC/AC electrical  
characteristics, and AC timing speciÞcations for the MPC860 family. These same  
speciÞcations also apply to the MPC860P. In this document, the term ÔMPC860Õ generally  
refers to all MPC860 family members including the MPC860P.  
This document contains the following topics:  
Topic  
Page  
Section 1.1, ÒOverviewÓ  
2
Section 1.2, ÒFeaturesÓ  
2
Section 1.3, ÒElectrical and Thermal CharacteristicsÓ  
Section 1.4, ÒThermal CharacteristicsÓ  
Section 1.5, ÒPower ConsiderationsÓ  
5
6
7
Section 1.6, ÒBus Signal TimingÓ  
8
Section 1.7, ÒIEEE 1149.1 Electrical SpeciÞcationsÓ  
Section 1.8, ÒCPM Electrical CharacteristicsÓ  
Section 1.9, ÒMechanical Data and Ordering InformationÓ  
Section 1.10, ÒDocument Revision HistoryÓ  
33  
35  
57  
62  
This document contains information on a new product under development by Motorola. Motorola reserves the right to change or discontinue this product  
without notice.  
© Motorola Inc., 1998. All rights reserved.  
1.1 Overview  
The MPC860 PowerPCª Quad Integrated Communications Controller (PowerQUICCª) is a versatile  
one-chip integrated microprocessor and peripheral combination designed for a variety of controller  
applications. It particularly excels in both communications and networking systems. The PowerQUICC unit  
is referred to as the MPC860 in this manual.  
The MPC860 is a PowerPC architecture-based derivative of MotorolaÕs MC68360 Quad Integrated  
ª
Communications Controller (QUICC ), referred to here as the QUICC. The CPU on the MPC860 is a 32-  
bit PowerPC implementation that incorporates memory management units (MMUs) and instruction and  
data caches. The communications processor module (CPM) from the MC68360 QUICC has been enhanced  
2
by the addition of the inter-integrated controller (I C) channel. Digital signal processing (DSP) functionality  
has been added to the CPM. The memory controller has been enhanced, enabling the MPC860 to support  
any type of memory, including high-performance memories and new types of DRAMs. A PCMCIA socket  
controller supports up to two sockets. A real-time clock has also been integrated.  
1.2 Features  
The following list summarizes the key MPC860 features:  
¥
¥
Embedded PowerPC core  
Single-issue, 32-bit version of the core (compatible the PowerPC architecture deÞnition) with 32,  
32-bit general-purpose registers (GPRs)  
Ñ The core performs branch prediction with conditional prefetch, without conditional execution  
Ñ 4-Kbyte data cache and 4-Kbyte instruction cache  
Ñ Instruction and data caches are two-way, set-associative, physical address, least recently used  
(LRU) replacement, lockable on-line granularity  
Ñ MMUs with 32 entry TLB, fully associative instruction and data TLBs  
Ñ MMUs support multiple page sizes of 4, 16, and 512 Kbytes, and 8 Mbytes; 16 virtual address  
spaces and 16 protection groups  
Ñ Advanced on-chip-emulation debug mode  
Up to 32-bit data bus (dynamic bus sizing for 8, 16, and 32 bits)  
32 address lines  
¥
¥
¥
¥
Complete static design (0Ð40 MHz operation)  
Memory controller (eight banks)  
Ñ Contains complete dynamic RAM (DRAM) controller  
Ñ Each bank can be a chip select or RAS to support a DRAM bank  
Ñ Up to 15 wait states programmable per memory bank  
Ñ Glueless interface to DRAM, SIMMS, SRAM, EPROM, ßash EPROM, and other memory  
devices.  
Ñ DRAM controller programmable to support most size and speed memory interfaces  
Ñ Four CAS lines, four WE lines, one OE line  
Ñ Boot chip-select available at reset (options for 8-, 16-, or 32-bit memory)  
Ñ Variable block sizes (32 KbyteÐ256 Mbyte)  
2
MPC860 Hardware SpeciÞcations  
MOTOROLA  
Ñ Selectable write protection  
Ñ On-chip bus arbitration logic  
General-purpose timers  
¥
¥
Ñ Four 16-bit timers or two 32-bit timers  
Ñ Gate mode can enable/disable counting  
Ñ Interrupt can be masked on reference match and event capture  
System integration unit (SIU)  
Ñ Bus monitor  
Ñ Software watchdog  
Ñ Periodic interrupt timer (PIT)  
Ñ Low-power stop mode  
Ñ Clock synthesizer  
Ñ PowerPC decrementer, time base, and real-time clock (RTC)  
Ñ Reset controller  
Ñ IEEE 1149.1 test access port (JTAG)  
Interrupts  
¥
¥
Ñ Seven external interrupt request (IRQ) lines  
Ñ 12 port pins with interrupt capability  
Ñ 23 internal interrupt sources  
Ñ Programmable priority between SCCs  
Ñ Programmable highest priority request  
Communications processor module (CPM)  
Ñ RISC communications processor (CP)  
Ñ Communication-speciÞc commands (for example, GRACEFUL STOP TRANSMIT, ENTER HUNT  
MODE, and RESTART TRANSMIT)  
Ñ Supports continuous mode transmission and reception on all serial channels  
Ñ Up to 5 Kbytes of dual-port RAM  
Ñ 16 serial DMA (SDMA) channels  
Ñ Three parallel I/O registers with open-drain capability  
On-chip 16x16 multiply accumulate controller (MAC)  
Ñ One operation per clock (two clock latency, one clock blockage)  
Ñ MAC operates concurrently with other instructions  
Ñ FIR loop: four clocks per four multiplies  
Four baud-rate generators (BRGs)  
¥
¥
¥
Ñ Independent (can be connected to any SCC or SMC)  
Ñ Allow changes during operation  
Ñ Autobaud support option  
Four serial communications controllers (SCCs)  
MOTOROLA  
MPC860 Hardware SpeciÞcations  
3
Ñ Ethernet/IEEE 802.3 optional on SCC1Ð4, supporting full 10-Mbps operation (Available only  
on specially programmed devices)  
Ñ HDLC/SDLC (all channels supported at 2 Mbps)  
Ñ HDLC bus (implements an HDLC-based local area network (LAN))  
Ñ Asynchronous HDLC to support PPP (point-to-point protocol)  
Ñ AppleTalk  
Ñ Universal asynchronous receiver transmitter (UART)  
Ñ Synchronous UART  
Ñ Serial infrared (IrDA)  
Ñ Binary synchronous communication (BISYNC)  
Ñ Totally transparent (bit streams)  
Ñ Totally transparent (frame based with optional cyclic redundancy check (CRC))  
Two SMCs (serial management channels)  
Ñ UART  
¥
¥
Ñ Transparent  
Ñ General circuit interface (GCI) controller  
Ñ Can be connected to the time-division multiplexed (TDM) channels  
One SPI (serial peripheral interface)  
Ñ Supports master and slave modes  
Ñ Supports multimaster operation on the same bus  
2
¥
¥
One I C (inter-integrated circuit) port  
Ñ Supports master and slave modes  
Ñ Multiple-master environment support  
Time-slot assigner (TSA)  
Ñ Allows SCCs and SMCs to run in multiplexed and/or non-multiplexed operation  
Ñ Supports T1, CEPT, PCM highway, ISDN basic rate, ISDN primary rate, user deÞned  
Ñ 1- or 8-bit resolution  
Ñ Allows independent transmit and receive routing, frame synchronization, clocking  
Ñ Allows dynamic changes  
Ñ Can be internally connected to six serial channels (four SCCs and two SMCs)  
Parallel interface port (PIP)  
¥
¥
Ñ Centronics interface support  
Ñ Supports fast connection between compatible ports on the MPC860 or the MC68360  
PCMCIA interface  
Ñ Master (socket) interface, release 2.1 compliant  
Ñ Supports two independent PCMCIA sockets  
Ñ 8 memory or I/O windows supported  
4
MPC860 Hardware SpeciÞcations  
MOTOROLA  
¥
Low power support  
Ñ Full onÑAll units fully powered  
Ñ DozeÑCore functional units disabled except time base decrementer, PLL, memory controller,  
RTC, and CPM in low-power standby  
Ñ SleepÑAll units disabled except RTC and PIT, PLL active for fast wake up  
Ñ Deep sleepÑAll units disabled including PLL except RTC and PIT  
Ñ Power down modeÑ All units powered down except PLL, RTC, PIT, time base and  
decrementer  
¥
Debug interface  
Ñ Eight comparators: four operate on instruction address, two operate on data address, and two  
operate on data  
Ñ Supports conditions: = ¹ < >  
Ñ Each watch-point can generate a break-point internally  
3.3 V operation with 5-V TTL compatibility  
357-pin ball grid array (BGA) package  
¥
¥
1.3 Electrical and Thermal Characteristics  
This section provides the AC and DC electrical speciÞcations and thermal characteristics for the MPC860.  
Table 4 provides the maximum ratings.  
Table 4. Maximum Ratings  
(GND = 0V)  
Rating  
Symbol  
VDDH  
VDDL  
KAPWR  
VDDSYN  
Value  
Unit  
1
Supply voltage  
-0.3 to 4.0  
-0.3 to 4.0  
-0.3 to 4.0  
-0.3 to 4.0  
V
V
V
V
2
Input voltage  
V
GND-0.3 to VDDH + 2.5V  
0
95  
-40  
V
in  
3
Temperature (standard)  
T
ûC  
ûC  
ûC  
ûC  
ûC  
A(min)  
T
j(max)  
3
Temperature (extended)  
T
A(min)  
T
T
95  
j(max)  
stg  
Storage temperature range  
-55 to +150  
1
The power supply of the device must start its ramp from 0.0 V.  
2
Functional operating conditions are provided with the DC electrical speciÞcations in Table 7. Absolute maximum  
ratings are stress ratings only; functional operation at the maxima is not guaranteed. Stress beyond those listed may  
affect device reliability or cause permanent damage to the device.  
Caution: All inputs that tolerate 5 V cannot be more than 2.5 V greater than the supply voltage.This restriction applies  
to power-up and normal operation (that is, if the MPC860 is unpowered, voltage greater than 2.5 V must not be applied  
to its inputs).  
3
Minimum temperatures are guaranteed as ambient temperature, T Maximum temperatures are guaranteed as  
A.  
junction temperature, T  
j
This device contains circuitry protecting against damage due to high-static voltage or electrical Þelds;  
however, it is advised that normal precautions be taken to avoid application of any voltages higher than  
maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused  
MOTOROLA  
MPC860 Hardware SpeciÞcations  
5
inputs are tied to an appropriate logic voltage level (for example, either GND or V ). Table 5 provides the  
CC  
package thermal characteristics for the MPC860.  
1.4 Thermal Characteristics  
Table 5 shows the thermal characteristics for the MPC860.  
Table 5. Thermal Characteristics  
Characteristic  
Symbol  
Value  
Unit  
1
2
Thermal resistance for BGA  
qJA  
qJA  
qJA  
qJC  
47  
°C/W  
°C/W  
°C/W  
°C/W  
3
30  
15  
4
Thermal Resistance for BGA (junction-to-case)  
4.9  
1
For more information on the design of thermal vias on multilayer boards and BGA layout considerations in  
general, refer to AN-1231/D, Plastic Ball Grid Array Application Note available from your local Motorola sales  
ofÞce.  
2
Assumes natural convection and a single layer board (no thermal vias).  
3
Assumes natural convection, a multilayer board with thermal vias, 1-W MPC860 dissipation, and a board  
temperature rise of 20°C above ambient.  
4
Assumes natural convection, a multilayer board with thermal vias,1-W MPC860 dissipation, and a board  
temperature rise of 10°C above ambient.  
TJ = TA + (PD qJA  
)
¥
P
D = (VDD IDD) + PI/O  
¥
where:  
PI/O is the power dissipation on pins.  
Table 6 provides power dissipation information.  
Table 6. Power Dissipation (P )  
D
1
2
Die Revision  
Frequency  
25 MHz  
Typical  
450  
Maximum  
Unit  
mW  
A.3 and previous  
550  
40 MHz  
50 MHz  
33 MHz  
50 MHz  
66 MHz  
700  
870  
375  
575  
750  
850  
mW  
mW  
mW  
mW  
mW  
1050  
TBD  
TBD  
TBD  
B.1 and later  
1
Maximum power dissipation is measured at 3.65V.  
Typical power dissipation is measured at 3.3V.  
2
Table 7 provides the DC electrical characteristics for the MPC860.  
Table 7. DC Electrical Specifications  
Symbol  
Characteristic  
Min  
Max  
Unit  
Operating voltage at 40 MHz or less  
VDDH,  
3.0  
3.6  
V
VDDL, VDDSYN  
KAPWR (power-down mode) 2.0  
KAPWR (all other operating VDDH - 0.4 VDDH  
modes)  
3.6  
V
V
6
MPC860 Hardware SpeciÞcations  
MOTOROLA  
Table 7. DC Electrical Specifications (Continued)  
Characteristic  
Operating voltage at 40 MHz or higher  
Symbol  
Min  
3.135  
Max  
3.465  
Unit  
VDDH,  
VDDL, KAPWR, VDDSYN  
KAPWR (power-down mode) 2.0  
KAPWR (all other operating VDDH - 0.4 VDDH  
modes)  
V
3.6  
V
V
Input High Voltage (all inputs except EXTAL and EXTCLK) VIH  
2.0  
GND  
5.5  
0.8  
V
V
Input Low Voltage  
VIL  
EXTAL, EXTCLK Input High Voltage  
VIHC  
0.7*(VCC) VCC+0.3 V  
Input Leakage Current, Vin = 5.5V (Except TMS, TRST,  
DSCK and DSDI pins)  
Input Leakage Current, Vin = 3.6V (Except TMS, TRST,  
DSCK, and DSDI)  
Input Leakage Current, Vin = 0V (Except TMS, TRST,  
DSCK and DSDI pins)  
I
I
I
Ñ
Ñ
Ñ
100  
µA  
µA  
µA  
in  
In  
In  
10  
10  
Input Capacitance  
Output High Voltage, IOH = -2.0 mA, VDDH = 3.0V  
Except XTAL, XFC, and Open drain pins  
C
VOH  
Ñ
2.4  
20  
Ñ
pF  
V
in  
Output Low Voltage  
VOL  
Ñ
0.5  
V
IOL = 2.0 mA CLKOUT  
1
IOL = 3.2 mA  
2
IOL = 5.3 mA  
IOL = 7.0 mA TXD1/PA14, TXD2/PA12  
IOL = 8.9 mA TS, TA, TEA, BI, BB, HRESET, SRESET  
1
A(0:31), TSIZ0/REG, TSIZ1, D(0:31), DP(0:3)/IRQ(3:6), RD/WR, BURST, RSV/IRQ2, IP_B(0:1)/IWP(0:1)/  
VFLS(0:1), IP_B2/IOIS16_B/AT2, IP_B3/IWP2/VF2, IP_B4/LWP0/VF0, IP_B5/LWP1/VF1, IP_B6/DSDI/AT0, IP_B7/  
PTR/AT3, RXD1 /PA15, RXD2/PA13, L1TXDB/PA11, L1RXDB/PA10, L1TXDA/PA9, L1RXDA/PA8, TIN1/L1RCLKA/  
BRGO1/CLK1/PA7, BRGCLK1/TOUT1/CLK2/PA6, TIN2/L1TCLKA/BRGO2/CLK3/PA5, TOUT2/CLK4/PA4, TIN3/  
BRGO3/CLK5/PA3, BRGCLK2/L1RCLKB/TOUT3/CLK6/PA2, TIN4/BRGO4/CLK7/PA1, L1TCLKB/TOUT4/CLK8/PA0,  
REJCT1/SPISEL/PB31, SPICLK/PB30, SPIMOSI/PB29, BRGO4/SPIMISO/PB28, BRGO1/I2CSDA/PB27, BRGO2/  
I2CSCL/PB26, SMTXD1/PB25, SMRXD1/PB24, SMSYN1/SDACK1/PB23, SMSYN2/SDACK2/PB22, SMTXD2/  
L1CLKOB/PB21, SMRXD2/L1CLKOA/PB20, L1ST1/RTS1/PB19, L1ST2/RTS2/PB18, L1ST3/L1RQB/PB17, L1ST4/  
L1RQA/PB16, BRGO3/PB15, RSTRT1/PB14, L1ST1/RTS1/DREQ0/PC15, L1ST2/RTS2/DREQ1/PC14, L1ST3/  
L1RQB/PC13, L1ST4/L1RQA/PC12, CTS1/PC11, TGATE1/CD1/PC10, CTS2/PC9, TGATE2/CD2/PC8, SDACK2/  
L1TSYNCB/PC7, L1RSYNCB/PC6, SDACK1/L1TSYNCA/PC5, L1RSYNCA/PC4, PD15, PD14, PD13, PD12, PD11,  
PD10, PD9, PD8, PD5, PD6, PD7, PD4, PD3  
2
BDIP/GPL_B(5), BR, BG, FRZ/IRQ6, CS(0:5), CS(6)/CE(1)_B, CS(7)/CE(2)_B, WE0/BS_B0/IORD, WE1/BS_B1/  
IOWR, WE2/BS_B2/PCOE, WE3/BS_B3/PCWE, BS_A(0:3), GPL_A0/GPL_B0, OE/GPL_A1/GPL_B1, GPL_A(2:3)/  
GPL_B(2:3)/CS(2:3), UPWAITA/GPL_A4, UPWAITB/GPL_B4, GPL_A5, ALE_A, CE1_A, CE2_A, ALE_B/DSCK/AT1,  
OP(0:1), OP2/MODCK1/STS, OP3/MODCK2/DSDO, BADDR(28:30)  
1.5 Power Considerations  
The average chip-junction temperature, T , in °C can be obtained from the equation:  
J
T = T + (P  
q )(1)  
JA  
J
A
¥
D
where  
TA = Ambient temperature, ¡C  
qJA = Package thermal resistance, junction to ambient, ¡C/W  
PD = PINT + PI/O  
MOTOROLA  
MPC860 Hardware SpeciÞcations  
7
PINT = IDD x VDD, wattsÑchip internal power  
PI/O = Power dissipation on input and output pinsÑuser determined  
For most applications PI/O < 0.3 PINT and can be neglected. If PI/O is neglected, an approximate relationship  
¥
between PD and TJ is:  
PD = K Ö (TJ + 273¡C)(2)  
Solving equations (1) and (2) for K gives:  
2
K = PD ¥ (TA + 273¡C) + qJA ¥ PD (3)  
where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring  
PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ can be obtained by solving  
equations (1) and (2) iteratively for any value of TA.  
1.5.1 Layout Practices  
Each VCC pin on the MPC860 should be provided with a low-impedance path to the boardÕs supply. Each  
GND pin should likewise be provided with a low-impedance path to ground. The power supply pins drive  
distinct groups of logic on chip. The VCC power supply should be bypassed to ground using at least four 0.1  
µF by-pass capacitors located as close as possible to the four sides of the package. The capacitor leads and  
associated printed circuit traces connecting to chip VCC and GND should be kept to less than half an inch  
per capacitor lead.A four-layer board is recommended, employing two inner layers asVCC and GND planes.  
All output pins on the MPC860 have fast rise and fall times. Printed circuit (PC) trace interconnection length  
should be minimized in order to minimize undershoot and reßections caused by these fast output switching  
times. This recommendation particularly applies to the address and data busses. Maximum PC trace lengths  
of six inches are recommended. Capacitance calculations should consider all device loads as well as  
parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes  
especially critical in systems with higher capacitive loads because these loads create higher transient  
currents in the VCC and GND circuits. Pull up all unused inputs or signals that will be inputs during reset.  
Special care should be taken to minimize the noise levels on the PLL supply pins.  
1.6 Bus Signal Timing  
Table 8 provides the bus operation timing for the MPC860 (devices marked with date code 9829 and later)  
at 33 MHz and 50 MHz. Timing information for other bus speeds can be interpolated by equation using the  
MPC860 Electrical SpeciÞcations Spreadsheet v2.0 found at http://www.mot.com/netcomm. For devices  
marked with date codes earlier than 9829, refer to the MPC860 Electrical SpeciÞcations Spreadsheet v1.1.  
The maximum bus speed supported by the MPC860 is 50 MHz. Higher-speed parts must be operated in half-  
speed bus mode (for example, an MPC860 used at 66 MHz must be conÞgured for a 33 MHz bus).  
The timing for the MPC860 bus shown assumes a 50-pF load for maximum delays and a 0-pF load for  
minimum delays. For loads other than 50 pF, maximum delays can be derated by 1 ns per 10 pF. Derating  
calculations can also be performed using either version of the MPC860 Electrical SpeciÞcations  
Spreadsheet.  
When operating at frequencies other than the frequency marked on the part, new bus timing must be  
calculated for all frequency-dependent AC parameters. Frequency-dependent AC parameters are those with  
an entry in the ÔFFACT.Õ column. AC parameters without an FFactor entry are not frequency-dependent and  
therefore do not need to be recalculated.  
8
MPC860 Hardware SpeciÞcations  
MOTOROLA  
To calculate the AC parameters for a frequency F, the following equation should be applied to each one of  
the above parameters:  
for minima:  
FFACTOR(1000 - 20 x F)  
D = D  
+
50  
F
where  
D is the parameter value in nanoseconds for the frequency required  
F is the operation frequency in MHz  
D50 is the parameter deÞned for 50 MHz  
FFACTOR is the one deÞned for each on of the parameters in the table.  
Table 8 shows the bus operation timings for the MPC860.  
Table 8. Bus Operation Timings  
50 MHz  
1
33 MHz  
Num  
Characteristic  
Unit  
FFACT.  
Min  
Max  
Min  
Max  
B1 CLKOUT period  
B1a EXTCLK to CLKOUT phase skew (EXTCLK > 15 MHz  
and MF <= 2)  
B1b EXTCLK to CLKOUT phase skew (EXTCLK > 10 MHz  
and MF < 10)  
20  
30.30  
ns  
ns  
-0.90 0.90 -0.90  
0.90  
2.30  
0.60  
-2.30 2.30 -2.30  
ns  
ns  
B1c CLKOUT phase jitter (EXTCLK > 15 MHz and MF <= 2) -0.60 0.60 -0.60  
2
2
B1d CLKOUT phase jitter  
-2.00 2.00 -2.00  
2.00  
0.50  
2.00  
3.00  
0.50  
ns  
%
%
%
%
2
B1e CLKOUT frequency jitter (MF < 10)  
B1f CLKOUT frequency jitter (10 < MF < 500)  
B1g CLKOUT frequency jitter (MF > 500)  
B1h Frequency jitter on EXTCLK  
0.50  
2.00  
3.00  
0.50  
2
2
3
B2 CLKOUT pulse width low  
B3 CLKOUT width high  
B4 CLKOUT rise time  
B5 CLKOUT fall time  
B6  
8.00  
8.00  
12.12  
12.12  
ns  
ns  
ns  
ns  
4.00  
4.00  
4.00  
4.00  
B7 CLKOUT to A(0:31), BADDR(28:30), RD/WR, BURST,  
D(0:31), DP(0:3) invalid  
B7a CLKOUT to TSIZ(0:1), REG, RSV, AT(0:3), BDIP, PTR  
invalid  
5.00  
5.00  
7.58  
7.58  
7.58  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.250  
0.250  
0.250  
0.250  
0.250  
0.250  
0.250  
B7b CLKOUT to BR, BG, FRZ, VFLS(0:1), VF(0:2) IWP(0:2), 5.00  
4
LWP(0:1), STS invalid  
B8 CLKOUT to A(0:31), BADDR(28:30) RD/WR, BURST,  
D(0:31), DP(0:3) valid  
B8a CLKOUT to TSIZ(0:1), REG, RSV, AT(0:3) BDIP, PTR  
valid  
5.00 11.75 7.58 14.33  
5.00 11.75 7.58 14.33  
5.00 11.75 7.58 14.33  
5.00 11.75 7.58 14.33  
B8b CLKOUT to BR, BG, VFLS(0:1), VF(0:2), IWP(0:2),  
4
FRZ, LWP(0:1), STS Valid  
B9 CLKOUT to A(0:31), BADDR(28:30), RD/WR, BURST,  
D(0:31), DP(0:3), TSIZ(0:1), REG, RSV, AT(0:3), PTR  
High-Z  
B10  
B11 CLKOUT to TS, BB assertion  
5.00 11.00 7.58 13.58  
ns  
0.250  
MOTOROLA  
MPC860 Hardware SpeciÞcations  
9
Table 8. Bus Operation Timings (Continued)  
1
50 MHz  
33 MHz  
Num  
Characteristic  
Unit  
FFACT.  
Min  
Max  
Min  
Max  
B11a CLKOUT to TA, BI assertion (when driven by the  
memory controller or PCMCIA interface)  
2.50  
9.25  
2.50  
9.25  
ns  
B12 CLKOUT to TS, BB negation  
B12a CLKOUT to TA, BI negation (when driven by the  
memory controller or PCMCIA interface)  
B13 CLKOUT to TS, BB High-Z  
B13a CLKOUT to TA, BI High-Z (when driven by the memory 2.50 15.00 2.50 15.00  
controller or PCMCIA interface)  
5.00 11.75 7.58 14.33  
2.50 11.00 2.50 11.00  
ns  
ns  
0.250  
0.250  
5.00 19.00 7.58 21.58  
ns  
ns  
B14 CLKOUT to TEA assertion  
B15 CLKOUT to TEA High-Z  
B16 TA, BI valid to CLKOUT (setup time)  
B16a TEA, KR, RETRY, CR valid to CLKOUT (setup time)  
B16b BB, BG, BR, valid to CLKOUT (setup time)  
2.50 10.00 2.50 10.00  
2.50 15.00 2.50 15.00  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
9.75  
10.00  
8.50  
1.00  
2.00  
6.00  
9.75  
10.00  
8.50  
1.00  
2.00  
6.00  
5
B17 CLKOUT to TA, TEA, BI, BB, BG, BR valid (hold time).  
B17a CLKOUT to KR, RETRY, CR valid (hold time)  
B18 D(0:31), DP(0:3) valid to CLKOUT rising edge (setup  
6
time)  
B19 CLKOUT rising edge to D(0:31), DP(0:3) valid (hold  
1.00  
4.00  
2.00  
1.00  
4.00  
2.00  
ns  
ns  
6
time)  
B20 D(0:31), DP(0:3) valid to CLKOUT falling edge (setup  
7
time)  
B21 CLKOUT falling edge to D(0:31), DP(0:3) valid (hold  
7
Time)  
B22 CLKOUT rising edge to CS asserted GPCM ACS = 00  
B22a CLKOUT falling edge to CS asserted GPCM ACS = 10,  
TRLX = 0  
5.00 11.75 7.58 14.33  
8.00 8.00  
ns  
ns  
0.250  
B22b CLKOUT falling edge to CS asserted GPCM ACS = 11, 5.00 11.75 7.58 14.33  
TRLX = 0, EBDF = 0  
B22c CLKOUT falling edge to CS asserted GPCM ACS = 11, 7.00 14.13 10.86 17.99  
TRLX = 0, EBDF = 1  
ns  
ns  
ns  
0.250  
0.375  
B23 CLKOUT rising edge to CS negated GPCM read  
access, GPCM write access ACS = 00, TRLX = 0 &  
CSNT = 0  
2.00  
8.00  
2.00  
8.00  
B24 A(0:31) and BADDR(28:30) to CS asserted GPCM ACS 3.00  
= 10, TRLX = 0.  
B24a A(0:31) and BADDR(28:30) to CS asserted GPCM ACS 8.00  
= 11 TRLX = 0  
5.58  
ns  
ns  
0.250  
0.500  
13.15  
B25 CLKOUT rising edge to OE, WE(0:3) asserted  
B26 CLKOUT rising edge to OE negated  
B27 A(0:31) and BADDR(28:30) to CS asserted GPCM ACS 23.00  
= 10, TRLX = 1  
9.00  
9.00  
9.00  
9.00  
ns  
ns  
ns  
2.00  
2.00  
35.88  
1.250  
1.500  
B27a A(0:31) and BADDR(28:30) to CS asserted GPCM ACS 28.00  
= 11, TRLX = 1  
B28 CLKOUT rising edge to WE(0:3) negated GPCM write  
access CSNT = 0  
43.45  
ns  
ns  
ns  
ns  
9.00  
9.00  
B28a CLKOUT falling edge to WE(0:3) negated GPCM write  
access TRLX = 0, CSNT = 1, EBDF = 0  
B28b CLKOUT falling edge to CS negated GPCM write  
access TRLX = 0, CSNT = 1 ACS = 10 or ACS = 11,  
EBDF = 0  
5.00 11.75 7.58 14.33  
11.75 14.33  
0.250  
0.250  
10  
MPC860 Hardware SpeciÞcations  
MOTOROLA  
Table 8. Bus Operation Timings (Continued)  
1
50 MHz  
33 MHz  
Min Max  
7.00 14.13 10.86 17.99  
Num  
Characteristic  
Unit  
FFACT.  
Min  
Max  
B28c CLKOUT falling edge to WE(0:3) negated GPCM write  
access TRLX = 0, CSNT = 1 write access TRLX = 0,  
CSNT = 1, EBDF = 1  
ns  
0.375  
B28d CLKOUT falling edge to CS negated GPCM write  
access TRLX = 0, CSNT = 1, ACS = 10, or ACS = 11,  
EBDF = 1  
14.13  
17.99  
ns  
0.375  
B29 WE(0:3) negated to D(0:31), DP(0:3) High-Z GPCM  
write access, CSNT = 0, EBDF = 0  
B29a WE(0:3) negated to D(0:31), DP(0:3) High-Z GPCM  
write access, TRLX = 0, CSNT = 1, EBDF = 0  
B29b CS negated to D(0:31), DP(0:3), High Z GPCM write  
access, ACS = 00, TRLX = 0 & CSNT = 0  
B29c CS negated to D(0:31), DP(0:3) High-Z GPCM write  
access, TRLX = 0, CSNT = 1, ACS = 10, or ACS = 11  
EBDF = 0  
3.00  
8.00  
3.00  
8.00  
5.58  
13.15  
5.58  
ns  
ns  
ns  
ns  
0.250  
0.500  
0.250  
0.500  
13.15  
B29d WE(0:3) negated to D(0:31), DP(0:3) High-Z GPCM  
write access, TRLX = 1, CSNT = 1, EBDF = 0  
B29e CS negated to D(0:31), DP(0:3) High-Z GPCM write  
access, TRLX = 1, CSNT = 1, ACS = 10, or ACS = 11  
EBDF = 0  
28.00  
28.00  
43.45  
43.45  
ns  
ns  
1.500  
1.500  
B29f WE(0:3) negated to D(0:31), DP(0:3) High Z GPCM  
write access, TRLX = 0, CSNT = 1, EBDF = 1  
B29g CS negated to D(0:31), DP(0:3) High-Z GPCM write  
access, TRLX = 0, CSNT = 1 ACS = 10 or ACS = 11,  
EBDF = 1  
5.00  
5.00  
8.86  
8.86  
ns  
ns  
0.375  
0.375  
B29h WE(0:3) negated to D(0:31), DP(0:3) High Z GPCM  
write access, TRLX = 1, CSNT = 1, EBDF = 1  
B29i CS negated to D(0:31), DP(0:3) High-Z GPCM write  
access, TRLX = 1, CSNT = 1, ACS = 10 or ACS = 11,  
EBDF = 1  
24.50  
24.50  
38.67  
38.67  
ns  
ns  
1.375  
1.375  
B30 CS, WE(0:3) negated to A(0:31), BADDR(28:30) Invalid 3.00  
5.58  
ns  
ns  
0.250  
0.500  
8
GPCM write access  
B30a WE(0:3) negated to A(0:31), BADDR(28:30) Invalid  
GPCM, write access, TRLX = 0, CSNT = 1, CS negated  
to A(0:31) invalid GPCM write access TRLX = 0, CSNT  
=1 ACS = 10, or ACS == 11, EBDF = 0  
8.00  
13.15  
B30b WE(0:3) negated to A(0:31) Invalid GPCM  
BADDR(28:30) invalid GPCM write access, TRLX = 1,  
CSNT = 1. CS negated to A(0:31) Invalid GPCM write  
access TRLX = 1, CSNT = 1, ACS = 10, or ACS == 11  
EBDF = 0  
28.00  
43.45  
ns  
1.500  
B30c WE(0:3) negated to A(0:31), BADDR(28:30) invalid  
GPCM write access, TRLX = 0, CSNT = 1. CS negated  
to A(0:31) invalid GPCM write access, TRLX = 0, CSNT  
= 1 ACS = 10, ACS == 11, EBDF = 1  
B30d WE(0:3) negated to A(0:31), BADDR(28:30) invalid  
GPCM write access TRLX = 1, CSNT =1, CS negated to  
A(0:31) invalid GPCM write access TRLX = 1, CSNT =  
1, ACS = 10 or 11, EBDF = 1  
4.50  
24.50  
1.50  
8.36  
38.67  
1.50  
ns  
ns  
ns  
0.375  
1.375  
B31 CLKOUT falling edge to CS valid - as requested by  
control bit CST4 in the corresponding word in the UPM  
6.00  
6.00  
MOTOROLA  
MPC860 Hardware SpeciÞcations  
11  
Table 8. Bus Operation Timings (Continued)  
1
50 MHz  
33 MHz  
Min Max  
5.00 11.75 7.58 14.33  
Num  
Characteristic  
Unit  
ns  
FFACT.  
Min  
Max  
B31a CLKOUT falling edge to CS valid - as requested by  
control bit CST1 in the corresponding word in the UPM  
0.250  
B31b CLKOUT rising edge to CS valid - as requested by  
control bit CST2 in the corresponding word in the UPM  
1.50  
8.00  
1.50  
8.00  
ns  
B31c CLKOUT rising edge to S valid- as requested by control 5.00 11.75 7.58 14.33  
bit CST3 in the corresponding word in the UPM  
ns  
0.250  
0.375  
B31d CLKOUT falling edge to CS valid, as requested by  
control bit CST1 in the corresponding word in the UPM  
EBDF = 1  
9.40 14.13 13.26 17.99  
ns  
B32 CLKOUT falling edge to BS valid- as requested by  
control bit BST4 in the corresponding word in the UPM  
B32a CLKOUT falling edge to BS valid - as requested by  
control bit BST1 in the corresponding word in the UPM,  
EBDF = 0  
1.50  
6.00  
1.50  
6.00  
ns  
ns  
5.00 11.75 7.58 14.33  
0.250  
B32b CLKOUT rising edge to BS valid - as requested by  
control bit BST2 in the corresponding word in the UPM  
B32c CLKOUT rising edge to BS valid - as requested by  
control bit BST3 in the corresponding word in the UPM  
B32d CLKOUT falling edge to BS valid- as requested by  
control bit BST1 in the corresponding word in the UPM,  
EBDF = 1  
1.50  
8.00  
1.50  
8.00  
ns  
ns  
ns  
5.00 11.75 7.58 14.33  
9.40 14.13 13.26 17.99  
0.250  
0.375  
B33 CLKOUT falling edge to GPL valid - as requested by  
control bit GxT4 in the corresponding word in the UPM  
B33a CLKOUT rising edge to GPL Valid - as requested by  
control bit GxT3 in the corresponding word in the UPM  
B34 A(0:31), BADDR(28:30), and D(0:31) to CS valid - as  
requested by control bit CST4 in the corresponding  
word in the UPM  
B34a A(0:31), BADDR(28:30), and D(0:31) to CS valid - as  
requested by control bit CST1 in the corresponding  
word in the UPM  
1.50  
6.00  
1.50  
6.00  
ns  
ns  
ns  
5.00 11.75 7.58 14.33  
0.250  
0.250  
3.00  
8.00  
5.58  
13.15  
ns  
0.500  
B34b A(0:31), BADDR(28:30), and D(0:31) to CS valid - as  
requested by CST2 in the corresponding word in UPM  
B35 A(0:31), BADDR(28:30) to CS valid - as requested by  
control bit BST4 in the corresponding word in the UPM  
B35a A(0:31), BADDR(28:30), and D(0:31) to BS valid - As  
Requested by BST1 in the corresponding word in the  
UPM  
13.00  
3.00  
8.00  
20.73  
5.58  
ns  
ns  
ns  
0.750  
0.250  
0.500  
13.15  
B35b A(0:31), BADDR(28:30), and D(0:31) to BS valid - as  
requested by control bit BST2 in the corresponding word  
in the UPM  
B36 A(0:31), BADDR(28:30), and D(0:31) to GPL valid as  
requested by control bit GxT4 in the corresponding word  
in the UPM  
13.00  
3.00  
20.73  
5.58  
ns  
ns  
0.750  
0.250  
9
B37 UPWAIT valid to CLKOUT falling edge  
6.00  
1.00  
7.00  
7.00  
6.00  
1.00  
7.00  
7.00  
ns  
ns  
ns  
ns  
9
B38 CLKOUT falling edge to UPWAIT valid  
10  
B39 AS valid to CLKOUT rising edge  
B40 A(0:31), TSIZ(0:1), RD/WR, BURST, valid to CLKOUT  
rising edge  
B41 TS valid to CLKOUT rising edge (setup time)  
B42 CLKOUT rising edge to TS valid (hold time)  
7.00  
2.00  
7.00  
2.00  
ns  
ns  
12  
MPC860 Hardware SpeciÞcations  
MOTOROLA  
Table 8. Bus Operation Timings (Continued)  
1
50 MHz  
33 MHz  
Min Max  
Num  
Characteristic  
Unit  
FFACT.  
Min  
Max  
B43 AS negation to memory controller signals negation  
TBD  
ns  
1
2
3
The values in the 33 MHz column are derived from the 50 MHz values.  
Phase and frequency jitter performance results are only valid if the input jitter is less than the prescribed value.  
If the rate of change of the frequency of EXTAL is slow (I.e. it does not jump between the minimum and maximum  
values in one cycle) or the frequency of the jitter is fast (I.e., it does not stay at an extreme value for a long time) then  
the maximum allowed jitter on EXTAL can be up to 2%.  
4
The timing for BR output is relevant when the MPC860 is selected to work with external bus arbiter. The timing for  
BG output is relevant when the MPC860 is selected to work with internal bus arbiter.  
5
The timing required for BR input is relevant when the MPC860 is selected to work with internal bus arbiter. The  
timing for BG input is relevant when the MPC860 is selected to work with external bus arbiter.  
6
The D(0:31) and DP(0:3) input timings B18 and B19 refer to the rising edge of the CLKOUT in which the TA input  
signal is asserted.  
7
The D(0:31) and DP(0:3) input timings B20 and B21 refer to the falling edge of the CLKOUT. This timing is valid only  
for read accesses controlled by chip-selects under control of the UPM in the Memory Controller, for data beats where  
DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)  
8
The timing B30 refers to CS when ACS = 00 and to WE(0:3) when CSNT = 0.  
9
The signal UPWAIT is considered asynchronous to the CLKOUT and synchronized internally. The timings speciÞed  
in B37 and B38 are speciÞed to enable the freeze of the UPM output signals as described in Figure 16.  
10  
The AS signal is considered asynchronous to the CLKOUT. The timing B39 is speciÞed in order to allow the  
behavior speciÞed in Figure 19.  
MOTOROLA  
MPC860 Hardware SpeciÞcations  
13  
Figure 1 is the control timing diagram.  
2.0 V  
2.0 V  
CLKOUT  
0.8 V  
0.8 V  
A
B
2.0 V  
0.8 V  
2.0 V  
0.8 V  
Outputs  
Outputs  
Inputs  
A
B
2.0 V  
0.8 V  
2.0 V  
0.8 V  
D
C
2.0 V  
0.8 V  
2.0 V  
0.8 V  
D
C
2.0 V  
0.8 V  
2.0 V  
0.8 V  
Inputs  
A
B
C
D
Maximum output delay specification  
Minimum output hold time  
Minimum input setup time specification  
Minimum input hold time specification  
Figure 1. Control Timing  
Figure 2 provides the timing for the external clock.  
CLKOUT  
B1  
B1  
B3  
B2  
B4  
B5  
Figure 2. External Clock Timing  
14  
MPC860 Hardware SpeciÞcations  
MOTOROLA  
Figure 3 provides the timing for the synchronous output signals.  
CLKOUT  
B8  
B7  
B9  
Output  
Signals  
B8a  
B8b  
B7a  
B7b  
B9  
Output  
Signals  
Output  
Signals  
Figure 3. Synchronous Output Signals Timing  
Figure 4 provides the timing for the synchronous active pull-up and open-drain output signals.  
CLKOUT  
B13  
B11  
B12  
B12a  
B15  
TS, BB  
TA, BI  
TEA  
B13a  
B11a  
B14  
Figure 4. Synchronous Active Pull-Up Resistor and Open-Drain Outputs Signals Timing  
MOTOROLA  
MPC860 Hardware SpeciÞcations  
15  
Figure 5 provides the timing for the synchronous input signals.  
CLKOUT  
B16  
B17  
B17a  
B17  
TA, BI  
B16a  
TEA, KR,  
RETRY, CR  
B16b  
BB, BG, BR  
Figure 5. Synchronous Input Signals Timing  
16  
MPC860 Hardware SpeciÞcations  
MOTOROLA  
Figure 6 provides normal case timing for input data.  
CLKOUT  
B16  
B17  
B19  
TA  
B18  
D[0:31],  
DP[0:3]  
Figure 6. Input Data Timing in Normal Case  
Figure 7 provides the timing for the input data controlled by the UPM in the memory controller.  
CLKOUT  
TA  
B20  
B21  
D[0:31],  
DP[0:3]  
Figure 7. Input Data Timing when Controlled by UPM in the Memory Controller and DLT3 = 1  
Figure 8 through Figure 11 provide the timing for the external bus read controlled by various GPCM factors.  
MOTOROLA  
MPC860 Hardware SpeciÞcations  
17  
CLKOUT  
TS  
B11  
B8  
B12  
A[0:31]  
CSx  
B22  
B23  
B25  
B26  
B19  
OE  
B28  
WE[0:3]  
B18  
D[0:31],  
DP[0:3]  
Figure 8. External Bus Read Timing (GPCM ControlledÑACS = 00)  
CLKOUT  
TS  
B11  
B8  
B12  
A[0:31]  
CSx  
B23  
B22a  
B24  
B25  
B26  
B19  
OE  
B18  
D[0:31],  
DP[0:3]  
Figure 9. External Bus Read Timing (GPCM ControlledÑTRLX = 0, ACS = 10)  
18  
MPC860 Hardware SpeciÞcations  
MOTOROLA  
CLKOUT  
TS  
B11  
B8  
B12  
B22b  
B22c  
A[0:31]  
CSx  
B23  
B24a  
B25  
B26  
B19  
OE  
B18  
D[0:31],  
DP[0:3]  
Figure 10. External Bus Read Timing (GPCM ControlledÑTRLX = 0, ACS = 11)  
CLKOUT  
TS  
B11  
B12  
B8  
A[0:31]  
CSx  
B23  
B22a  
B27  
B26  
B19  
OE  
B27a  
B22b B22c  
B18  
D[0:31],  
DP[0:3]  
Figure 11. External Bus Read Timing (GPCM ControlledÑTRLX = 1, ACS = 10, ACS = 11)  
MOTOROLA  
MPC860 Hardware SpeciÞcations  
19  
Figure 12 through Figure 14 provide the timing for the external bus write controlled by various GPCM  
factors.  
CLKOUT  
B11  
B8  
B12  
TS  
A[0:31]  
CSx  
B30  
B22  
B23  
B25  
B28  
WE[0:3]  
OE  
B26  
B29b  
B29  
B8  
B9  
D[0:31],  
DP[0:3]  
Figure 12. External Bus Write Timing (GPCM ControlledÑTRLX = 0, CSNT = 0)  
20  
MPC860 Hardware SpeciÞcations  
MOTOROLA  
CLKOUT  
TS  
B11  
B8  
B12  
B30a B30c  
B23  
A[0:31]  
CSx  
B22  
B28b B28d  
B25  
B29c B29g  
WE[0:3]  
OE  
B26  
B29a B29f  
B28a B28c  
B8  
B9  
D[0:31],  
DP[0:3]  
Figure 13. External Bus Write Timing (GPCM ControlledÑTRLX = 0, CSNT = 1)  
MOTOROLA  
MPC860 Hardware SpeciÞcations  
21  
CLKOUT  
TS  
B11  
B12  
B8  
B30b B30d  
A[0:31]  
CSx  
B22  
B28b B28d  
B23  
B25  
B29e B29i  
B29d B29h  
WE[0:3]  
OE  
B26  
B29b  
B8  
B28a B28c  
B9  
D[0:31],  
DP[0:3]  
Figure 14. External Bus Write Timing (GPCM ControlledÑTRLX = 1, CSNT = 1)  
22  
MPC860 Hardware SpeciÞcations  
MOTOROLA  
Figure 15 provides the timing for the external bus controlled by the UPM.  
CLKOUT  
B8  
A[0:31]  
B31a  
B31d  
B31c  
B31  
B31b  
CSx  
B34  
B34a  
B34b  
B32a B32d  
B32c  
B33a  
B32  
B32b  
BS_A[0:3],  
BS_B[0:3]  
B35 B36  
B35b  
B35a  
B33  
GPL_A[0:5],  
GPL_B[0:5]  
Figure 15. External Bus Timing (UPM Controlled Signals)  
MOTOROLA  
MPC860 Hardware SpeciÞcations  
23  
Figure 16 provides the timing for the asynchronous asserted UPWAIT signal controlled by the UPM.  
CLKOUT  
B37  
UPWAIT  
B38  
CSx  
BS_A[0:3],  
BS_B[0:3]  
GPL_A[0:5],  
GPL_B[0:5]  
Figure 16. Asynchronous UPWAIT Asserted Detection in UPM Handled Cycles Timing  
Figure 17 provides the timing for the asynchronous negated UPWAIT signal controlled by the UPM.  
CLKOUT  
B37  
UPWAIT  
B38  
CSx  
BS_A[0:3],  
BS_B[0:3]  
GPL_A[0:5],  
GPL_B[0:5]  
Figure 17. Asynchronous UPWAIT Negated Detection in UPM Handled Cycles Timing  
24  
MPC860 Hardware SpeciÞcations  
MOTOROLA  
Figure 18 provides the timing for the synchronous external master access controlled by the GPCM.  
CLKOUT  
B41  
B40  
B42  
TS  
A[0:31],  
TSIZ[0:1],  
R/W, BURST  
B22  
CSx  
Figure 18. Synchronous External Master Access Timing (GPCM Handled ACS = 00)  
Figure 19 provides the timing for the asynchronous external master memory access controlled by the  
GPCM.  
CLKOUT  
B39  
AS  
B40  
A[0:31],  
TSIZ[0:1],  
R/W  
B22  
CSx  
Figure 19. Asynchronous External Master Memory Access Timing (GPCM ControlledÑACS = 00)  
Figure 20 provides the timing for the asynchronous external master control signals negation.  
AS  
B43  
CSx, WE[0:3],  
OE, GPLx,  
BS[0:3]  
Figure 20. Asynchronous External MasterÑControl Signals Negation Timing  
MOTOROLA  
MPC860 Hardware SpeciÞcations  
25  
Table 9 provides interrupt timing for the MPC860.  
Table 9. Interrupt Timing  
33 MHz  
Min  
50 MHz  
Min  
1
Num  
Characteristic  
Unit  
Max  
Max  
I39  
IRQx valid to CLKOUT rising edge  
(set up time)  
6.00  
6.00  
ns  
I40  
I41  
I42  
I43  
IRQx hold time after CLKOUT  
IRQx pulse width low  
2.00  
3.00  
3.00  
2.00  
3.00  
3.00  
ns  
ns  
ns  
Ñ
IRQx pulse width high  
IRQx edge-to-edge time  
4xT  
4xT  
CLOCKOUT  
CLOCKOUT  
1
The timings I39 and I40 describe the testing conditions under which the IRQ lines are tested when being  
deÞned as level sensitive. The IRQ lines are synchronized internally and do not have to be asserted or  
negated with reference to the CLKOUT.  
The timings I41, I42, and I43 are speciÞed to allow the correct function of the IRQ lines detection circuitry,  
and has no direct relation with the total system interrupt latency that the MPC860 is able to support.  
Figure 21 provides the interrupt detection timing for the external level-sensitive lines.  
CLKOUT  
I39  
I40  
IRQx  
Figure 21. Interrupt Detection Timing for External Level Sensitive Lines  
Figure 22 provides the interrupt detection timing for the external edge-sensitive lines.  
CLKOUT  
I39  
I41  
I42  
IRQx  
I43  
I43  
Figure 22. Interrupt Detection Timing for External Edge Sensitive Lines  
26  
MPC860 Hardware SpeciÞcations  
MOTOROLA  
Table 10 shows the PCMCIA timing for the MPC860.  
Table 10. PCMCIA Timing  
33 MHz  
Min Max  
50 MHz  
Min Max  
Num  
Characteristic  
FFACTOR Unit  
1
P44  
P45  
P46  
P47  
P48  
P49  
A(0:31), REG valid to PCMCIA Strobe asserted.  
20.73  
28.30  
7.58  
8.58  
7.58  
7.58  
13.00  
18.00  
0.750  
1.000  
ns  
ns  
ns  
ns  
1
A(0:31), REG valid to ALE negation.  
CLKOUT to REG valid  
15.58 5.00  
6.00  
13.00 0.250  
0.250  
CLKOUT to REG Invalid.  
CLKOUT to CE1, CE2 asserted.  
CLKOUT to CE1, CE2 negated.  
15.58 5.00  
15.58 5.00  
11.00  
13.00 0.250  
13.00 0.250  
11.00  
ns  
ns  
CLKOUT to PCOE, IORD, PCWE, IOWR assert  
time.  
P50  
P51  
CLKOUT to PCOE, IORD, PCWE, IOWR negate  
time.  
2.00  
7.58  
11.00 2.00  
11.00  
ns  
P52  
P53  
P54  
P55  
CLKOUT to ALE assert time  
CLKOUT to ALE negate time  
15.58 5.00  
15.58  
13.00 0.250  
13.00 0.250  
0.250  
ns  
ns  
ns  
ns  
ns  
1
PCWE, IOWR negated to D(0:31) invalid.  
5.58  
8.00  
2.00  
3.00  
1
WAITA and WAITB valid to CLKOUT rising edge.  
8.00  
CLKOUT rising edge to WAITA and WAITB  
2.00  
P56  
1
invalid.  
1
PSST = 1. Otherwise add PSST times cycle time.  
PSHT = 0. Otherwise add PSHT times cycle time.  
These synchronous timings deÞne when the WAITx signals are detected in order to freeze (or relieve) the PCMCIA  
current cycle. The WAITx assertion will be effective only if it is detected 2 cycles before the PSL timer expiration. See  
PCMCIA Interface in the MPC860 PowerQUICC User s Manual.  
MOTOROLA  
MPC860 Hardware SpeciÞcations  
27  
Figure 23 provides the PCMCIA access cycle timing for the external bus read.  
CLKOUT  
TS  
P44  
A[0:31]  
P46  
P48  
P45  
P47  
P49  
P51  
P52  
REG  
CE1/CE2  
PCOE, IORD  
ALE  
P50  
P53  
P52  
B18  
B19  
D[0:31]  
Figure 23. PCMCIA Access Cycles Timing External Bus Read  
28  
MPC860 Hardware SpeciÞcations  
MOTOROLA  
Figure 24 provides the PCMCIA access cycle timing for the external bus write.  
CLKOUT  
TS  
P44  
A[0:31]  
P46  
P48  
P45  
P47  
P49  
P51  
P52  
B19  
REG  
CE1/CE2  
PCOE, IOWR  
ALE  
P50  
P53  
B18  
P54  
P52  
D[0:31]  
Figure 24. PCMCIA Access Cycles Timing External Bus Write  
Figure 25 provides the PCMCIA WAIT signals detection timing.  
CLKOUT  
P55  
P56  
WAITx  
Figure 25. PCMCIA WAIT Signals Detection Timing  
MOTOROLA  
MPC860 Hardware SpeciÞcations  
29  
Table 11 shows the PCMCIA port timing for the MPC860.  
Table 11. PCMCIA Port Timing  
33 MHz  
50 MHz  
Num  
P57  
P58  
P59  
Characteristic  
FFactor  
Unit  
ns  
ns  
ns  
ns  
Min  
Max  
19.00  
Min  
Max  
19.00  
CLKOUT to OPx Valid  
HRESET negated to OPx drive  
IP_Xx valid to CLKOUT rising edge  
CLKOUT rising edge to IP_Xx invalid  
1
25.73  
5.00  
1.00  
18.00  
5.00  
1.00  
0.75  
P60  
1
OP2 and OP3 only.  
Figure 26 provides the PCMCIA output port timing for the MPC860.  
CLKOUT  
P57  
Output  
Signals  
HRESET  
P58  
OP2, OP3  
Figure 26. PCMCIA Output Port Timing  
Figure 27 provides the PCMCIA output port timing for the MPC860.  
CLKOUT  
P59  
P60  
Input  
Signals  
Figure 27. PCMCIA Input Port Timing  
30  
MPC860 Hardware SpeciÞcations  
MOTOROLA  
Table 12 shows the debug port timing for the MPC860.  
Table 12. Debug Port Timing  
33 MHz  
Min  
50 MHz  
Min  
Num  
Characteristic  
Unit  
Max  
Max  
D61  
DSCK cycle time  
3xT  
3xT  
ns  
CLOCKOUT  
CLOCKOUT  
D62  
D63  
D64  
D65  
D66  
D67  
DSCK clock pulse width  
DSCK rise and fall times  
DSDI input data setup time  
DSDI data hold time  
1.25xT  
0.00  
8.00  
5.00  
0.00  
0.00  
1.25xT  
0.00  
ns  
ns  
ns  
ns  
CLOCKOUT  
CLOCKOUT  
3.00  
3.00  
8.00  
5.00  
DSCK low to DSDO data valid  
DSCK low to DSDO invalid  
15.00 0.00  
2.00 0.00  
15.00 ns  
2.00 ns  
Figure 28 provides the input timing for the debug port clock.  
DSCK  
D61  
D62  
D61  
D62  
D63  
D63  
Figure 28. Debug Port Clock Input Timing  
Figure 29 provides the timing for the debug port.  
DSCK  
D64  
D65  
DSDI  
D66  
D67  
DSDO  
Figure 29. Debug Port Timings  
MPC860 Hardware SpeciÞcations  
MOTOROLA  
31  
Table 13 shows the reset timing for the MPC860.  
Table 13. Reset Timing  
33 MHz  
50 MHz  
Num  
Characteristic  
FFACTOR Unit  
Min  
Max  
Min  
Max  
R69  
R70  
R71  
R72  
CLKOUT to HRESET high impedance  
CLKOUT to SRESET high impedance  
RSTCONF pulse width  
20.00  
20.00  
20.00  
20.00  
ns  
ns  
515.15  
504.55  
340.00  
17.000  
15.000  
ns  
ConÞguration data to HRESET rising edge set up  
time  
350.00  
350.00  
0.00  
ns  
ns  
ns  
R73  
R74  
R75  
ConÞguration data to RSTCONF rising edge set up 350.00  
time  
ConÞguration data hold time after RSTCONF  
negation  
0.00  
R76  
R77  
R78  
ConÞguration data hold time after HRESET negation 0.00  
HRESET and RSTCONF asserted to data out drive  
RSTCONF negated to data out high impedance.  
0.00  
ns  
ns  
ns  
ns  
25.00  
25.00  
25.00  
25.00  
25.00  
25.00  
CLKOUT of last rising edge before chip three-states  
HRESET to data out high impedance.  
R79  
R80  
R81  
DSDI, DSCK set up  
90.91  
0.00  
60.00  
0.00  
3.000  
8.000  
ns  
ns  
ns  
DSDI, DSCK hold time  
SRESET negated to CLKOUT rising edge for DSDI 242.42  
and DSCK sample  
160.00  
R82  
Figure 30 shows the reset timing for the data bus conÞguration.  
HRESET  
R71  
R76  
RSTCONF  
R73  
R74  
R75  
D[0:31] (IN)  
Figure 30. Reset TimingÑConfiguration from Data Bus  
MPC860 Hardware SpeciÞcations  
32  
MOTOROLA  
Figure 31 provides the reset timing for the data bus weak drive during conÞguration.  
CLKOUT  
R69  
HRESET  
R79  
RSTCONF  
R77  
R78  
D[0:31] (OUT)  
(Weak)  
Figure 31. Reset TimingÑData Bus Weak Drive during Configuration  
Figure 32 provides the reset timing for the debug port conÞguration.  
CLKOUT  
R70  
R82  
SRESET  
R80  
R80  
R81  
R81  
DSCK, DSDI  
Figure 32. Reset TimingÑDebug Port Configuration  
1.7 IEEE 1149.1 Electrical SpeciÞcations  
Table 14 provides the JTAG timings for the MPC860 shown in Figure 33 to Figure 36.  
Table 14. JTAG Timing  
33 MHz  
Min Max  
50 MHz  
Num  
J82  
J83  
J84  
J85  
J86  
J87  
J88  
Characteristic  
Unit  
Min  
Max  
TCK cycle time  
100.00  
40.00  
0.00  
100.00  
40.00  
ns  
ns  
TCK clock pulse width measured at 1.5 V  
TCK rise and fall times  
TMS, TDI data setup time  
TMS, TDI data hold time  
TCK low to TDO data valid  
TCK low to TDO data invalid  
10.00 0.00  
5.00  
10.00 ns  
5.00  
ns  
ns  
25.00  
25.00  
27.00  
27.00 ns  
ns  
0.00  
0.00  
MOTOROLA  
MPC860 Hardware SpeciÞcations  
33  
Table 14. JTAG Timing (Continued)  
33 MHz  
50 MHz  
Num  
J89  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
TCK low to TDO high impedance  
20.00  
20.00 ns  
ns  
J90  
J91  
J92  
J93  
J94  
J95  
J96  
TRST assert time  
100.00  
40.00  
100.00  
40.00  
TRST setup time to TCK low  
TCK falling edge to output valid  
TCK falling edge to output valid out of high impedance  
TCK falling edge to output high impedance  
Boundary scan input valid to TCK rising edge  
TCK rising edge to boundary scan input invalid  
ns  
50.00  
50.00  
50.00  
50.00 ns  
50.00 ns  
50.00 ns  
ns  
50.00  
50.00  
50.00  
50.00  
ns  
TCK  
J82  
J83  
J82  
J83  
J84  
J84  
Figure 33. JTAG Test Clock Input Timing  
TCK  
J85  
J86  
TMS, TDI  
TDO  
J87  
J88  
J89  
Figure 34. JTAG Test Access Port Timing Diagram  
TCK  
J91  
J90  
TRST  
Figure 35. JTAG TRST Timing Diagram  
MPC860 Hardware SpeciÞcations  
34  
MOTOROLA  
TCK  
J92  
J93  
J94  
Output  
Signals  
Output  
Signals  
J95  
J96  
Output  
Signals  
Figure 36. Boundary Scan (JTAG) Timing Diagram  
1.8 CPM Electrical Characteristics  
This section provides the AC and DC electrical speciÞcations for the communications processor module  
(CPM) of the MPC860.  
1.8.1 PIP/PIO AC Electrical SpeciÞcations  
Table 15 provides the PIP/PIO AC timings as shown in Figure 37 to Figure 41.  
Table 15. PIP/PIO Timing  
All Frequencies  
Num  
21  
Characteristic  
Unit  
ns  
Min  
Max  
Data-in setup time to STBI low  
Data-In hold time to STBI high  
0
Ñ
Ñ
Ñ
Ñ
Ñ
Ñ
2
Ñ
Ñ
Ñ
1
22  
23  
24  
25  
26  
27  
28  
29  
30  
2.5 Ð t3  
1.5  
1 clk Ð 5ns  
2
5
Ñ
2
15  
7.5  
Ñ
clk  
clk  
ns  
clk  
clk  
clk  
clk  
ns  
ns  
ns  
STBI pulse width  
STBO pulse width  
Data-out setup time to STBO low  
Data-out hold time from STBO high  
STBI low to STBO low (Rx interlock)  
STBI low to STBO high (Tx interlock)  
Data-in setup time to clock high  
Data-in hold time from clock high  
Clock low to data-out valid (CPU writes data, control, or direction)  
31  
25  
1
t3 = SpeciÞcation 23  
MOTOROLA  
MPC860 Hardware SpeciÞcations  
35  
DATA-IN  
STBI  
21  
22  
23  
27  
24  
STBO  
Figure 37. PIP RX (Interlock Mode) Timing Diagram  
DATA-OUT  
25  
26  
24  
STBO  
(Output)  
28  
23  
STBI  
(Input)  
Figure 38. PIP TX (Interlock Mode) Timing Diagram  
DATA-IN  
21  
22  
23  
24  
STBI  
(Input)  
STBO  
(Output)  
Figure 39. PIP RX (Pulse Mode) Timing Diagram  
36  
MPC860 Hardware SpeciÞcations  
MOTOROLA  
DATA-OUT  
25  
26  
24  
23  
STBO  
(Output)  
STBI  
(Input)  
Figure 40. PIP TX (Pulse Mode) Timing Diagram  
CLKO  
DATA-IN  
29  
30  
31  
DATA-OUT  
Figure 41. Parallel I/O Data-In/Data-Out Timing Diagram  
1.8.2 IDMA Controller AC Electrical SpeciÞcations  
Table 16 provides the IDMA controller timings as shown in Figure 42 to Figure 45.  
Table 16. IDMA Controller Timing  
All Frequencies  
Min Max  
Num  
40  
41  
42  
43  
44  
45  
46  
Characteristic  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DREQ setup time to clock high  
DREQ hold time from clock high  
SDACK assertion delay from clock high  
SDACK negation delay from clock low  
SDACK negation delay from TA low  
7
3
Ñ
Ñ
12  
12  
20  
15  
Ñ
Ñ
Ñ
Ñ
Ñ
7
SDACK negation delay from clock high  
TA assertion to falling edge of the clock setup time (applies to external TA)  
MOTOROLA  
MPC860 Hardware SpeciÞcations  
37  
CLKO  
(Output)  
41  
40  
DREQ  
(Input)  
Figure 42. IDMA External Requests Timing Diagram  
CLKO  
(Output)  
TS  
(Output)  
R/W  
(Output)  
42  
43  
DATA  
46  
TA  
(Output)  
SDACK  
Figure 43. SDACK Timing DiagramÑPeripheral Write, TA Sampled Low at the Falling Edge  
of the Clock  
38  
MPC860 Hardware SpeciÞcations  
MOTOROLA  
CLKO  
(Output)  
TS  
(Output)  
R/W  
(Output)  
42  
44  
DATA  
TA  
(Output)  
SDACK  
Figure 44. SDACK Timing DiagramÑPeripheral Write, TA Sampled High at the Falling Edge  
of the Clock  
CLKO  
(Output)  
TS  
(Output)  
R/W  
(Output)  
42  
45  
DATA  
TA  
(Output)  
SDACK  
Figure 45. SDACK Timing DiagramÑPeripheral Read  
MPC860 Hardware SpeciÞcations  
MOTOROLA  
39  
1.8.3 Baud Rate Generator AC Electrical SpeciÞcations  
Table 17 provides the baud rate generator timings as shown in Figure 46.  
Table 17. Baud Rate Generator Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
10  
50  
51  
52  
BRGO rise and fall time  
BRGO duty cycle  
BRGO cycle  
Ñ
ns  
40  
40  
60  
Ñ
%
ns  
50  
50  
BRGOX  
51  
51  
52  
Figure 46. Baud Rate Generator Timing Diagram  
1.8.4 Timer AC Electrical SpeciÞcations  
Table 18 provides the general-purpose timer timings as shown in Figure 47.  
Table 18. Timer Timing  
All Frequencies  
Min Max  
10  
Num  
Characteristic  
Unit  
61  
62  
63  
64  
65  
TIN/TGATE rise and fall time  
TIN/TGATE low time  
Ñ
ns  
clk  
clk  
clk  
ns  
1
2
3
3
Ñ
Ñ
Ñ
25  
TIN/TGATE high time  
TIN/TGATE cycle time  
CLKO low to TOUT valid  
40  
MPC860 Hardware SpeciÞcations  
MOTOROLA  
CLKO  
60  
61  
63  
62  
TIN/TGATE  
(Input)  
61  
64  
65  
TOUT  
(Output)  
Figure 47. CPM General-Purpose Timers Timing Diagram  
1.8.5 Serial Interface AC Electrical SpeciÞcations  
Table 19 provides the serial interface timings as shown in Figure 48 to Figure 52.  
Table 19. SI Timing  
All Frequencies  
Num  
70  
71  
71a  
72  
Characteristic  
Unit  
MHz  
ns  
ns  
ns  
ns  
Min  
Max  
1, 2  
2
L1RCLK, L1TCLK frequency (DSC = 0)  
L1RCLK, L1TCLK width low (DSC = 0)  
SYNCCLK/2.5  
P + 10  
P + 10  
3
L1RCLK, L1TCLK width high (DSC = 0)  
L1TXD, L1ST(1Ð4), L1RQ, L1CLKO rise/fall time  
L1RSYNC, L1TSYNC valid to L1CLK edge Edge  
(SYNC setup time)  
L1CLK edge to L1RSYNC, L1TSYNC, invalid  
(SYNC hold time)  
L1RSYNC, L1TSYNC rise/fall time  
15.00  
15.00  
73  
20.00  
35.00  
74  
ns  
75  
76  
77  
78  
78A  
79  
80  
80A  
81  
82  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
L1RXD valid to L1CLK edge (L1RXD setup time)  
17.00  
L1CLK edge to L1RXD invalid (L1RXD hold time) 13.00  
4
L1CLK edge to L1ST(1Ð4) valid  
L1SYNC valid to L1ST(1Ð4) valid  
L1CLK edge to L1ST(1Ð4) invalid  
L1CLK edge to L1TXD valid  
10.00  
10.00  
10.00  
10.00  
10.00  
0.00  
45.00  
45.00  
45.00  
55.00  
55.00  
42.00  
4
L1TSYNC valid to L1TXD valid  
L1CLK edge to L1TXD high impedance  
L1RCLK, L1TCLK frequency (DSC =1)  
16.00 or  
SYNCCLK/2  
83  
83a  
84  
85  
86  
87  
88  
L1RCLK, L1TCLK width low (DSC =1)  
L1RCLK, L1TCLK width high (DSC = 1)  
P + 10  
P + 10  
ns  
ns  
ns  
L1TCLK  
ns  
3
L1CLK edge to L1CLKO valid (DSC = 1)  
L1RQ valid before falling edge of L1TSYNC  
30.00  
0.00  
4
1.00  
42.00  
42.00  
2
L1GR setup time  
L1GR hold time  
L1CLK edge to L1SYNC valid (FSD = 00) CNT =  
0000, BYT = 0, DSC = 0)  
ns  
ns  
1
The ratio SyncCLK/L1RCLK must be greater than 2.5/1.  
MOTOROLA  
MPC860 Hardware SpeciÞcations  
41  
2
3
4
These specs are valid for IDL mode only.  
Where P = 1/CLKOUT. Thus for a 25-MHz CLKO1 rate, P = 40 ns.  
These strobes and TxD on the Þrst bit of the frame become valid after L1CLK edge or L1SYNC, whichever is  
later.  
L1RCLK  
(FE=0, CE=0)  
(Input)  
71  
70  
71a  
72  
L1RCLK  
(FE=1, CE=1)  
(Input)  
RFSD=1  
75  
74  
L1RSYNC  
(Input)  
73  
77  
L1RxD  
(Input)  
BIT0  
76  
78  
79  
L1ST(1–4)  
(Output)  
Figure 48. SI Receive Timing Diagram with Normal Clocking (DSC = 0)  
42  
MPC860 Hardware SpeciÞcations  
MOTOROLA  
72  
83A  
L1RCLK  
(FE = 1)  
(CE = 1)  
(Input)  
82  
L1RCLK  
(FE = 0)  
(CE = 0)  
(Input)  
75  
RFSD = 1  
L1RSYNC  
(INPUT)  
73  
74  
77  
76  
L1RXD  
(INPUT)  
BIT0  
78  
79  
L1ST (4-1)  
(OUTPUT)  
L1CLKO  
(OUTPUT)  
84  
Figure 49. SI Receive Timing with Double-Speed Clocking (DSC = 1)  
MOTOROLA  
MPC860 Hardware SpeciÞcations  
43  
L1TCLK  
(FE=0, CE=0)  
(Input)  
71  
70  
72  
L1TCLK  
(FE=1, CE=1)  
(Input)  
73  
TFSD=0  
75  
74  
L1TSYNC  
(Input)  
80a  
81  
L1TxD  
(Output)  
BIT0  
80  
79  
78  
L1ST(1–4)  
(Output)  
Figure 50. SI Transmit Timing Diagram (DSC = 0)  
44  
MPC860 Hardware SpeciÞcations  
MOTOROLA  
72  
83A  
L1TCLK  
K  
(FE = 0)  
(CE = 0)  
(Input)  
82  
L1TCLK  
K  
(FE = 1)  
(CE = 1)  
(Input)  
75  
L1TSYNC  
(INPUT)  
73  
74  
TFSD = 0  
81  
80A  
L1TXD  
BIT0  
(OUTPUT)  
80  
78A  
78  
79  
L1ST (1-4)  
(OUTPUT)  
L1CLKO  
(OUTPUT)  
84  
Figure 51. SI Transmit Timing with Double Speed Clocking (DSC = 1)  
MOTOROLA  
MPC860 Hardware SpeciÞcations  
45  
Figure 52. IDL Timing  
46  
MPC860 Hardware SpeciÞcations  
MOTOROLA  
1.8.6 SCC in NMSI Mode Electrical SpeciÞcations  
Table 20 provides the NMSI external clock timing.  
Table 20. NMSI External Clock Timing  
All Frequencies  
Min  
Num  
Characteristic  
Unit  
Max  
1
100  
RCLK1 and TCLK1 width high  
1/SYNCCLK  
ns  
ns  
101  
102  
103  
104  
105  
106  
107  
108  
RCLK1 and TCLK1 width low  
1/SYNCCLK +5  
RCLK1 and TCLK1 rise/fall time  
15.00 ns  
TXD1 active delay (from TCLK1 falling edge)  
RTS1 active/inactive delay (from TCLK1 falling edge)  
CTS1 setup time to TCLK1 rising edge  
RXD1 setup time to RCLK1 rising edge  
0.00  
0.00  
5.00  
5.00  
5.00  
5.00  
50.00 ns  
50.00 ns  
ns  
ns  
ns  
ns  
2
RXD1 hold time from RCLK1 rising edge  
CD1 setup Time to RCLK1 rising edge  
1
2
The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater than or equal to 2.25/1.  
Also applies to CD and CTS hold time when they are used as an external sync signal.  
Table 21 provides the NMSI internal clock timing.  
Table 21. NMSI Internal Clock Timing  
All Frequencies  
Min Max  
Num  
100  
102  
103  
104  
105  
106  
107  
Characteristic  
Unit  
1
RCLK1 and TCLK1 frequency  
0.00  
SYNCCLK/3 MHz  
ns  
RCLK1 and TCLK1 rise/fall time  
TXD1 active delay (from TCLK1 falling edge)  
RTS1 active/inactive delay (from TCLK1 falling edge)  
CTS1 setup time to TCLK1 rising edge  
RXD1 setup time to RCLK1 rising edge  
RXD1 hold time from RCLK1 rising edge  
CD1 setup time to RCLK1 rising edge  
0.00  
0.00  
30.00  
30.00  
ns  
ns  
ns  
ns  
ns  
ns  
40.00  
40.00  
0.00  
2
108  
40.00  
1
The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater or equal to 3/1.  
Also applies to CD and CTS hold time when they are used as an external sync signals.  
2
MOTOROLA  
MPC860 Hardware SpeciÞcations  
47  
Figure 53 through Figure 55 show the NMSI timings.  
RCLK1  
102  
102  
101  
106  
100  
RxD1  
(Input)  
107  
108  
CD1  
(Input)  
107  
CD1  
(SYNC Input)  
Figure 53. SCC NMSI Receive Timing Diagram  
TCLK1  
102  
102  
101  
100  
TxD1  
(Output)  
103  
105  
RTS1  
(Output)  
104  
104  
CTS1  
(Input)  
107  
CTS1  
(SYNC Input)  
Figure 54. SCC NMSI Transmit Timing Diagram  
MPC860 Hardware SpeciÞcations  
48  
MOTOROLA  
TCLK1  
102  
102  
101  
100  
TxD1  
(Output)  
103  
RTS1  
(Output)  
104  
107  
104  
105  
CTS1  
(Echo Input)  
Figure 55. HDLC Bus Timing Diagram  
1.8.7 Ethernet Electrical SpeciÞcations  
Table 22 provides the Ethernet timings as shown in Figure 56 to Figure 60.  
Table 22. Ethernet Timing  
All Frequencies  
Num  
120  
Characteristic  
Unit  
ns  
Min  
Max  
CLSN width high  
RCLK1 rise/fall time  
RCLK1 width low  
RCLK1 clock period  
RXD1 setup time  
RXD1 hold time  
40  
Ñ
40  
80  
20  
5
Ñ
15  
Ñ
120  
Ñ
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CLK  
ns  
ns  
1
Ñ
RENA active delay (from RCLK1 rising edge of the last data bit) 10  
Ñ
RENA width low  
100  
Ñ
TCLK1 rise/fall time  
TCLK1 width low  
TCLK1 clock period  
Ñ
40  
99  
10  
10  
10  
10  
10  
10  
1
15  
Ñ
1
101  
50  
50  
50  
50  
50  
50  
Ñ
TXD1 active delay (from TCLK1 rising edge)  
TXD1 inactive delay (from TCLK1 rising edge)  
TENA active delay (from TCLK1 rising edge)  
TENA inactive delay (from TCLK1 rising edge)  
RSTRT active delay (from TCLK1 falling edge)  
RSTRT inactive delay (from TCLK1 falling edge)  
REJECT width low  
2
CLKO1 low to SDACK asserted  
CLKO1 low to SDACK negated  
Ñ
Ñ
20  
20  
2
139  
1
The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater or equal to 2/1.  
2
SDACK is asserted whenever the SDMA writes the incoming frame DA into memory.  
MOTOROLA  
MPC860 Hardware SpeciÞcations  
49  
CLSN(CTS1)  
(Input)  
120  
Figure 56. Ethernet Collision Timing Diagram  
RCLK1  
121  
121  
124  
123  
Last Bit  
RxD1  
(Input)  
125  
126  
127  
RENA(CD1)  
(Input)  
Figure 57. Ethernet Receive Timing Diagram  
TCLK1  
128  
128  
129  
131  
121  
TxD1  
(Output)  
132  
133  
134  
TENA(RTS1)  
(Input)  
RENA(CD1)  
(Input)  
(NOTE 2)  
NOTES:  
1. Transmit clock invert (TCI) bit in GSMR is set.  
2. If RENA is deasserted before TENA, or RENA is not asserted at all during transmit, then the  
CSL bit is set in the buffer descriptor at the end of the frame transmission.  
Figure 58. Ethernet Transmit Timing Diagram  
50  
MPC860 Hardware SpeciÞcations  
MOTOROLA  
RCLK1  
RxD1  
(Input)  
0
1
1
BIT1  
125  
BIT2  
136  
Start Frame Delimiter  
RSTRT  
(Output)  
Figure 59. CAM Interface Receive Start Timing Diagram  
REJECT  
137  
Figure 60. CAM Interface REJECT Timing Diagram  
1.8.8 SMC Transparent AC Electrical SpeciÞcations  
Table 23 provides the SMC transparent timings as shown in Figure 61.  
Table 23. SMC Transparent Timing  
All Frequencies  
Min Max  
100  
Num  
150  
151  
151A  
152  
153  
154  
Characteristic  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
SMCLK clock period  
Ñ
Ñ
Ñ
SMCLK width low  
SMCLK width high  
50  
50  
Ñ
10  
20  
5
SMCLK rise/fall time  
15  
50  
Ñ
Ñ
SMTXD active delay (from SMCLK falling edge)  
SMRXD/SMSYNC setup time  
RXD1/SMSYNC hold time  
155  
1
SyncCLK must be at least twice as fast as SMCLK.  
MOTOROLA  
MPC860 Hardware SpeciÞcations  
51  
SMCLK  
152  
152  
151  
151A  
150  
SMTXD  
(Output)  
NOTE 1  
154  
153  
155  
SMSYNC  
154  
155  
SMRXD  
(Input)  
NOTE:  
1. This delay is equal to an integer number of character-length clocks.  
Figure 61. SMC Transparent Timing Diagram  
1.8.9 SPI Master AC Electrical SpeciÞcations  
Table 24 provides the SPI master timings as shown in Figure 62 and Figure 63.  
Table 24. SPI Master Timing  
All Frequencies  
Min Max  
1024  
Num  
160  
Characteristic  
Unit  
MASTER cycle time  
4
2
t
t
cyc  
161  
162  
163  
164  
165  
166  
167  
MASTER clock (SCK) high or low time  
MASTER data setup time (inputs)  
Master data hold time (inputs)  
Master data valid (after SCK edge)  
Master data hold time (outputs)  
Rise time output  
512  
Ñ
Ñ
cyc  
50  
0
ns  
ns  
ns  
ns  
ns  
ns  
Ñ
0
20  
Ñ
Ñ
Ñ
15  
15  
Fall time output  
52  
MPC860 Hardware SpeciÞcations  
MOTOROLA  
SPICLK  
(CI=0)  
(Output)  
161  
163  
167  
166  
166  
167  
161  
160  
SPICLK  
(CI=1)  
(Output)  
162  
SPIMISO  
(Input)  
msb  
167  
Data  
165  
lsb  
msb  
164  
166  
SPIMOSI  
(Output)  
msb  
Data  
lsb  
msb  
Figure 62. SPI Master (CP = 0) Timing Diagram  
SPICLK  
(CI=0)  
(Output)  
161  
167  
166  
166  
167  
161  
160  
SPICLK  
(CI=1)  
(Output)  
163  
162  
SPIMISO  
(Input)  
msb  
167  
Data  
165  
lsb  
msb  
164  
166  
SPIMOSI  
(Output)  
msb  
Data  
lsb  
msb  
Figure 63. SPI Master (CP = 1) Timing Diagram  
MOTOROLA  
MPC860 Hardware SpeciÞcations  
53  
1.8.10 SPI Slave AC Electrical SpeciÞcations  
Table 25 provides the SPI slave timings as shown in Figure 64 and Figure 65.  
Table 25. SPI Slave Timing  
All Frequencies  
Min Max  
Num  
170  
Characteristic  
Unit  
Slave cycle time  
Slave enable lead time  
Slave enable lag time  
2
Ñ
Ñ
Ñ
Ñ
Ñ
Ñ
Ñ
t
cyc  
ns  
ns  
171  
172  
173  
174  
175  
176  
177  
15  
15  
1
Slave clock (SPICLK) high or low time  
Slave sequential transfer delay (does not require deselect)  
Slave data setup time (inputs)  
t
t
cyc  
1
cyc  
20  
20  
Ñ
ns  
ns  
ns  
Slave data hold time (inputs)  
Slave access time  
50  
SPISEL  
(Input)  
172  
171  
174  
SPICLK  
(CI=0)  
(Input)  
173  
182  
181  
182  
173  
170  
SPICLK  
(CI=1)  
(Input)  
177  
181  
180  
178  
SPIMISO  
(Output)  
msb  
176  
Data  
lsb  
Undef  
msb  
175  
179  
181 182  
lsb  
SPIMOSI  
(Input)  
msb  
Data  
msb  
Figure 64. SPI Slave (CP = 0) Timing Diagram  
54  
MPC860 Hardware SpeciÞcations  
MOTOROLA  
SPISEL  
(Input)  
172  
174  
171  
170  
SPICLK  
(CI=0)  
(Input)  
173  
182  
181  
173  
181  
SPICLK  
(CI=1)  
(Input)  
177  
182  
180  
178  
SPIMISO  
(Output)  
msb  
msb  
msb  
Undef  
175  
Data  
lsb  
179  
176  
msb  
181 182  
Data  
SPIMOSI  
(Input)  
lsb  
Figure 65. SPI Slave (CP = 1) Timing Diagram  
1.8.11 I2C AC Electrical SpeciÞcations  
2
Table 26 provides the I C (SCL < 100 KHz) timings.  
2
Table 26. I C Timing (SCL < 100 KHZ)  
All Frequencies  
Min Max  
100  
Num  
200  
Characteristic  
SCL clock frequency (slave)  
SCL clock frequency (master)  
Bus free time between transmissions  
Low period of SCL  
Unit  
KHz  
0
1
200  
202  
203  
204  
205  
206  
207  
208  
209  
210  
1.5  
4.7  
4.7  
4.0  
4.7  
4.0  
0
100  
Ñ
Ñ
Ñ
Ñ
Ñ
Ñ
Ñ
1
KHz  
ms  
ms  
ms  
ms  
ms  
ms  
ns  
ms  
ns  
ms  
High period of SCL  
Start condition setup time  
Start condition hold time  
Data hold time  
Data setup time  
SDL/SCL rise time  
250  
Ñ
SDL/SCL fall time  
Stop condition setup time  
Ñ
300  
Ñ
211  
4.7  
1
SCL frequency is given by SCL = BRGCLK_frequency / ((BRG register + 3) * pre_scaler * 2).  
The ratio SyncClk/(BRGCLK/pre_scaler) must be greater or equal to 4/1.  
MOTOROLA  
MPC860 Hardware SpeciÞcations  
55  
2
Table 27 provides the I C (SCL > 100 KHz) timings.  
2
Table 27. I C Timing (SCL > 100 KHZ)  
All Frequencies  
Num  
200  
Characteristic  
Expression  
Unit  
Hz  
Hz  
s
s
s
s
s
s
s
s
s
Min  
Max  
SCL clock frequency (slave)  
SCL clock frequency (master)  
Bus free time between transmissions  
Low period of SCL  
fSCL  
fSCL  
0
BRGCLK/48  
1
200  
202  
203  
204  
205  
206  
207  
208  
209  
210  
BRGCLK/16512  
1/(2.2 * fSCL)  
1/(2.2 * fSCL)  
1/(2.2 * fSCL)  
1/(2.2 * fSCL)  
1/(2.2 * fSCL)  
0
BRGCLK/48  
Ñ
Ñ
Ñ
Ñ
Ñ
Ñ
High period of SCL  
Start condition setup time  
Start condition hold time  
Data hold time  
Data setup time  
SDL/SCL rise time  
1/(40 * fSCL)  
Ñ
Ñ
1/(10 * fSCL)  
1/(33 * fSCL)  
Ñ
SDL/SCL fall time  
Stop condition setup time  
Ñ
211  
1/2(2.2 * fSCL)  
s
1
SCL frequency is given by SCL = BrgClk_frequency / ((BRG register + 3) * pre_scaler * 2).  
The ratio SyncClk/(Brg_Clk/pre_scaler) must be greater or equal to 4/1.  
2
Figure 66 shows the I C bus timing.  
SDA  
202  
203  
204  
208  
205  
207  
SCL  
206  
209  
210  
211  
2
Figure 66. I C Bus Timing Diagram  
56  
MPC860 Hardware SpeciÞcations  
MOTOROLA  
1.9 Mechanical Data and Ordering Information  
Table 28 provides information on the MPC860 revision C.1 derivative devices.  
Table 28. MPC860 Revision C.1 Derivatives  
Multi-Channel  
HDLC Support  
1
Device  
Number of SCCs  
Ethernet Support  
ATM Support  
2
MPC860DC  
MPC860DE  
MPC860DH  
MPC860  
Two  
SCC1  
Yes  
N/A  
N/A  
Yes  
N/A  
N/A  
Yes  
Yes  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Yes  
Yes  
Four  
N/A  
Yes  
MPC860EN  
MPC860MH  
MPC860SR  
Yes  
Yes  
1
2
Serial communications controller (SCC)  
50-MHz version supports 64 time slots on a time-division multiplexed line using one SCC  
Table 29 provides information on the MPC860 revision D.3 derivative devices.  
Table 29. MPC860 Revision D.3 Derivatives  
Multi-Channel  
HDLC Support  
1
Device  
Number of SCCs  
Ethernet Support  
ATM Support  
MPC860DE  
MPC860DT  
MPC860DP  
MPC860EN  
MPC860SR  
MPC860T  
Two  
10 Mbps  
10/100 Mbps  
10/100 Mbps  
10 Mbps  
N/A  
Yes  
Yes  
N/A  
Yes  
Yes  
Yes  
N/A  
Yes  
Yes  
N/A  
Yes  
Yes  
Yes  
Four  
10 Mbps  
10/100 Mbps  
10/100 Mbps  
MPC860P  
1
Serial communications controller (SCC)  
MOTOROLA  
MPC860 Hardware SpeciÞcations  
57  
Table 30 identiÞes the packages and operating frequencies available for the MPC860 revision C.1.  
Table 30. MPC860 Revision C.1 Package/Frequency Availability  
Package Type  
Frequency (MHz)  
33  
Temperature (Tj)  
Order Number  
Ball grid array  
0¡C to 95¡C  
XPC860ZP33C1  
(ZP sufÞx)  
XPC860ENZP33C1  
XPC860MHZP33C1  
XPC860DCZP33C1  
XPC860DEZP33C1  
XPC860DHZP33C1  
XPC860SRZP33C1  
50  
66  
33  
50  
0¡C to 95¡C  
0¡C to 95¡C  
-40¡C to 95¡C  
XPC860ZP50C1  
XPC860ENZP50C1  
XPC860MHZP50C1  
XPC860DCZP50C1  
XPC860DEZP50C1  
XPC860DHZP50C1  
XPC860SRZP50C1  
XPC860ZP66C1  
XPC860ENZP66C1  
XPC860MHZP66C1  
XPC860DCZP66C1  
XPC860DEZP66C1  
XPC860DHZP66C1  
XPC860SRZP66C1  
Ball grid array  
(CZP sufÞx)  
XPC860CZP33C1  
XPC860ENCZP33C1  
XPC860MHCZP33C1  
XPC860DCCZP33C1  
XPC860DECZP33C1  
XPC860DHCZP33C1  
XPC860SRCZP33C1  
XPC860CZP50C1  
XPC860ENCZP50C1  
XPC860MHCZP50C1  
XPC860DCCZP50C1  
XPC860DECZP50C1  
XPC860DHCZP50C1  
XPC860SRCZP50C1  
58  
MPC860 Hardware SpeciÞcations  
MOTOROLA  
Table 31 identiÞes the packages and operating frequencies available for the MPC860 revision D.3.  
Table 31. MPC860 Revision D.3 Package/Frequency Availability  
Package Type  
Frequency (MHz)  
50  
Temperature (Tj)  
Order Number  
Ball grid array  
(ZP sufÞx)  
0¡C to 95¡C  
XPC860DEZP50D3  
XPC860DTZP50D3  
XPC860ENZP50D3  
XPC860SRZP50D3  
XPC860TZP50D3  
66  
80  
50  
66  
0¡C to 95¡C  
0¡C to 95¡C  
-40¡C to 95¡C  
-40¡C to 95¡C  
XPC860DEZP66D3  
XPC860DTZP66D3  
XPC860ENZP66D3  
XPC860SRZP66D3  
XPC860TZP66D3  
XPC860DEZP80D3  
XPC860DTZP80D3  
XPC860ENZP80D3  
XPC860SRZP80D3  
XPC860TZP80D3  
Ball grid array  
(CZP sufÞx)  
XPC860DECZP50D3  
XPC860DTCZP50D3  
XPC860ENCZP50D3  
XPC860SRCZP50D3  
XPC860TCZP50D3  
XPC860DECZP66D3  
XPC860DTCZP66D3  
XPC860ENCZP66D3  
XPC860SRCZP66D3  
XPC860TCZP66D3  
Table 32 identiÞes the packages and operating frequencies available for the MPC860P.  
Table 32. MPC860P Package/Frequency Availability  
Package Type  
Frequency (MHz)  
50  
Temperature (Tj)  
Order Number  
Ball grid array  
(ZP sufÞx)  
0¡C to 95¡C  
XPC860DPZP50D3  
XPC860PZP50D3  
66  
80  
50  
66  
0¡C to 95¡C  
0¡C to 95¡C  
-40¡C to 95¡C  
-40¡C to 95¡C  
XPC860DPZP66D3  
XPC860PZP66D3  
XPC860DPZP80D3  
XPC860PZP80D3  
Ball grid array  
(CZP sufÞx)  
XPC860DPCZP50D3  
XPC860PCZP50D3  
XPC860DPCZP66D3  
XPC860PCZP66D3  
MOTOROLA  
MPC860 Hardware SpeciÞcations  
59  
1.9.1 Pin Assignments  
Figure 67 shows the pinout of the PBGA package as viewed from the top surface.  
W
V
pd[10] pd[8] pd[3]  
d[0] d[4] d[1] d[2] d[3] d[5] VDDL d[6] d[7] d[29] dp2 clkout ipa3  
irq7  
d[10]  
dp1  
VSSsyn1  
dp3 dp0 N/C  
pd[14] pd[13] pd[9] pd[6] Spare3  
pa[0] pb[14] pd[15] pd[4] pd[5]  
d[13] d[27]  
d[23]  
d[14] d[18] d[20] d[24] d[28]  
irq0  
irq1  
U
VSSsyn  
d[8]  
d[11] d[16] d[19] d[21] d[26] d[30] ipa5 ipa4 ipa2 N/C  
T
VDDsyn  
pa[1] pc[5] pc[4] pd[11] pd[7] vddh d[12] d[17] d[9] d[15] d[22] d[25] d[31] ipa6 ipa0 ipa1 ipa7 xfc  
VDDH  
R
P
kapwr  
xtal  
pc[6] pa[2] pb[15] pd[12]  
pa[4] pb[17] pa[3] VDDH  
pb[19] pa[5] pb[18] pb[16]  
pa[7] pc[8] pa[6] pc[7]  
pb[22] pc[9] pa[8] pb[20]  
pc[10] pa[9] pb[23] pb[21]  
VDDH  
wait_bwait_aporeset  
VDDH  
rstconfsreset  
GND  
GND  
N
M
texp extclk extal  
hreset  
modck2baddr28baddr29VDDL  
L
modck1  
irq4  
op0  
op1  
as  
K
J
baddr30ipb6 alea  
GND  
pc[11]  
ipb5 ipb1 ipb2 aleb  
pb[24] pa[10] pb[25]  
VDDLSpare2 tdi tck  
trst tms tdo pa[11]  
H
G
Spare4  
ipb0 ipb7  
ipb4 ipb3  
irq3 burst  
irq2  
irq6  
ts  
br  
GND  
GND  
F
E
D
VDDH  
pb[26] pc[12] pa[12] VDDH  
pb[27] pc[13] pa[13] pb[29]  
VDDH  
VDDH  
cs3  
bi  
bg  
bb  
pb[28] pc[14] pa[14] pc[15] a[8]  
a[15] a[19] a[25] a[18]  
N/C N/C  
bsa0  
N/C  
gpla0  
cs6  
cs2 gpla5 bdip tea  
C
B
A
pb[30] pa[15] pb[31] a[3]  
a[0] a[1] a[4] a[6] a[10] a[13] a[17]  
a[2] a[5] a[7]  
18 17  
a[12] a[16] a[20] a[24] a[26] tsiz1  
a[9]  
gpla3 cs7  
cs0  
ta  
gpla4  
bsa1 we0 gpla1  
Spare1  
a[21]  
a[23] a[22] tsiz0  
gpla2 cs5 ce1a wr gplb4  
we3 cs4 ce2a cs1  
bsa3  
we2  
a[11] a[14] a[27] a[29] a[30] a[28] a[31] VDDL  
bsa2 we1  
19  
14  
13  
12  
11  
10  
9
5
4
3
2
1
16  
15  
8
7
6
This shading denotes VDDH  
This shading denotes GND  
Figure 67. Pinout of the PBGA Package as Viewed from the Top Surface  
1.9.2 Mechanical Dimensions of the PBGA  
For more information on the printed circuit board layout of the PBGA package, including thermal via design  
and suggested pad layout, please refer to Plastic Ball Grid Array Application Note (order number: AN1231/  
D) available from your local Motorola sales ofÞce.  
60  
MPC860 Hardware SpeciÞcations  
MOTOROLA  
- T -  
0.20 (0.008)  
4X  
0.20 (0.008) T  
0.25 (0.010) T  
A
- W -  
0.35 (0.014) T  
P
B
- L -  
N
TOP VIEW  
F
R
K
18X  
G
E
C
W
V
U
T
SIDE VIEW  
R
P
N
M
L
NOTES:  
1. Dimensioning and tolerancing per ANSIY14.5M,  
1982.  
2. Dimensions in millimeters.  
S
K
J
Millimeters  
Min Max  
Inches  
Min Max  
H
G
F
DIM  
E
D
C
B
A
A
B
C
D
E
F
25.00 BSC  
25.00 BSC  
0.984 BSC  
0.984 BSC  
17 18 19  
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16  
357X  
D
Ñ
2.05  
Ñ
0.081  
BOTTOM VIEW  
0.60  
0.50  
0.95  
0.90  
0.70  
1.35  
0.024  
0.020  
0.037  
0.035  
0.028  
0.053  
S
S
0.30 (0.012)  
0.10 (0.004)  
T
T
L
S
W
S
G
K
N
P
R
S
1.27 BSC  
0.50 BSC  
0.70  
22.40  
22.40  
0.90  
22.60  
22.60  
0.028  
0.882  
0.882  
0.035  
0.890  
0.890  
22.86 BSC  
22.86 BSC  
0.900 BSC  
0.900 BSC  
Figure 68. Mechanical Dimensions and Bottom Surface Nomenclature of the PBGA Package  
MOTOROLA  
MPC860 Hardware SpeciÞcations  
61  
1.10 Document Revision History  
Table 33 lists signiÞcant changes between revisions of this document.  
Table 33. Document Revision History  
Document Revision  
Substantive Changes  
Rev 1  
Added note to Table 4 about power supply ramp starting from 0.0 V.  
Corrected note 6 of Table 8 to refer to B18 and B19 instead of B20 and B21.  
Corrected characteristic of spec B29h in Table 8 to show ÔTRLX = 1Õ instead of ÔTRLX = 0.Õ  
Corrected characteristic of spec 65 in Table 18 to show ÔCLKO lowÕ instead of ÔCLKO high.Õ  
2
Changed section 1.8.8 to refer to SMC transparent speciÞcations instead of I C.  
Changed co-planarity speciÞcation in Figure 68 to 0.20 instead of 0.15.  
Corrected spec number 31 characteristic in Table 15.  
Corrected the characteristic for spec numbers 29 and 30 in Table 15.  
Made overbars for active-low signals consistent.  
Rev 2  
Rev 3  
Rev 4  
Added derivative and package/frequency availability information for revision C.1 and revision D.3  
including the MPC860P. See Section 1.9, ÒMechanical Data and Ordering Information.Ó  
62  
MPC860 Hardware SpeciÞcations  
MOTOROLA  
MOTOROLA  
MPC860 Hardware SpeciÞcations  
63  
Mfax is a trademark of Motorola, Inc.  
The PowerPC name and the PowerPC logotype are trademarks of International Business Machines Corporation used by Motorola under license from  
International Business Machines Corporation.  
Information in this document is provided solely to enable system and software implementers to use PowerPC microprocessors. There are no express or implied  
copyright licenses granted hereunder to design or fabricate PowerPC integrated circuits or integrated circuits based on the information in this document.  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee  
regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or  
circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. ÒTypicalÓ parameters can and do vary in  
different applications. All operating parameters, including ÒTypicalsÓ must be validated for each customer application by customerÕs technical experts. Motorola  
does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components  
in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure  
of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/AfÞrmative Action Employer.  
Motorola Literature Distribution Centers:  
USA/EUROPE: Motorola Literature Distribution; P.O. Box 5405; Denver, Colorado 80217; Tel.: 1-800-441-2447 or 1-303-675-2140;  
World Wide Web Address: http://ldc.nmd.com/  
JAPAN: Nippon Motorola Ltd SPD, Strategic Planning Office 4-32-1, Nishi-Gotanda Shinagawa-ku, Tokyo 141, Japan Tel.: 81-3-5487-8488  
ASIA/PACIFC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong; Tel.: 852-26629298  
Mfaxª: RMFAX0@email.sps.mot.com; TOUCHTONE 1-602-244-6609; US & Canada ONLY (800) 774-1848;  
World Wide Web Address: http://sps.motorola.com/mfax  
INTERNET: http://motorola.com/sps  
Technical Information: Motorola Inc. SPS Customer Support Center 1-800-521-6274; electronic mail address: crc@wmkmail.sps.mot.com.  
Document Comments: FAX (512) 891-2638, Attn: RISC Applications Engineering.  
World Wide Web Addresses: http://www.mot.com/SPS/PowerPC/  
http://www.mot.com/SPS/RISC/netcomm/  
MPC860EC/D  

相关型号:

XPC860DHZP50C1

32-BIT, 50MHz, RISC PROCESSOR, PBGA357, PLASTIC, BGA-357
MOTOROLA

XPC860DHZP66C1

32-BIT, 66MHz, RISC PROCESSOR, PBGA357, PLASTIC, BGA-357
MOTOROLA

XPC860DPCZP50D3

Family Hardware Specifications
MOTOROLA

XPC860DPCZP50D4

Family Hardware Specifications
MOTOROLA

XPC860DPCZP66D3

Family Hardware Specifications
MOTOROLA

XPC860DPCZP66D4

Family Hardware Specifications
MOTOROLA

XPC860DPZ50D3

COMMUNICATIONS CONTROLLER
ETC

XPC860DPZ66D3

COMMUNICATIONS CONTROLLER
ETC

XPC860DPZ80D3

COMMUNICATIONS CONTROLLER
ETC

XPC860DPZP50D3

Family Hardware Specifications
MOTOROLA

XPC860DPZP50D4

Family Hardware Specifications
MOTOROLA

XPC860DPZP50D4R2

32-BIT, 50MHz, RISC PROCESSOR, PBGA357, PLASTIC, BGA-357
MOTOROLA