MP28266 [MPS]

21V, 3A, 500kHz, Synchronous Step-Down Converter;
MP28266
型号: MP28266
厂家: MONOLITHIC POWER SYSTEMS    MONOLITHIC POWER SYSTEMS
描述:

21V, 3A, 500kHz, Synchronous Step-Down Converter

文件: 总14页 (文件大小:284K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MP28266  
21V, 3A, 500kHz, Synchronous  
Step-Down Converter  
The Future of Analog IC Technology  
DESCRIPTION  
FEATURES  
The MP28266 is a synchronous, rectified, step-  
down, switch-mode converter with built in  
internal power MOSFETs. It offers a very  
compact solution to achieve a 3A continuous  
output current over a wide input supply range,  
with excellent load and line regulation. The  
MP28266 has synchronous mode operation for  
higher efficiency over the output-current–load  
range.  
Wide 6V-to-21V Operating Input Range  
0.6V Internal Reference with 2% Accuracy  
3A Output Current  
Low-Rds(ON) Internal Power MOSFETs  
Fixed 500kHz Switching Frequency  
Frequency SYNC from a 300kHz-to-2MHz  
External Clock  
External Soft-Start  
AAM Power-Save Mode  
OCP and Thermal Shutdown  
Available in a 3mm×4mm QFN14 Package.  
Current-mode operation provides  
a
fast  
transient response and eases loop stabilization.  
Full protection features include over-current  
protection and thermal shutdown.  
APPLICATIONS  
DSL Modems  
Cable Modems  
Set Top Boxes  
The MP28266 requires a minimal number of  
readily-available standard external components,  
and is available in a space-saving 3mm×4mm  
14-pin QFN package.  
All MPS parts are lead-free and adhere to the RoHS directive. For MPS green  
status, please visit MPS website under Quality Assurance. “MPS” and “The  
Future of Analog IC Technology” are Registered Trademarks of Monolithic  
Power Systems, Inc.  
TYPICAL APPLICATION  
6V-21V  
1
6
VIN  
IN  
BST  
SW  
C1B  
0.1  
C3  
0.1 F  
C1A  
22 F  
L1  
2.8 H  
1.2V/3A  
2,3,4,5  
11  
VCC  
VOUT  
C2A  
22 F  
C4  
0.1 F  
R4  
90.9k  
R1  
10k  
MP28266  
7
9
8
AAM  
AAM  
FB  
SS  
C5  
1 F  
R8  
24k  
R3  
10k  
10  
R2  
10k  
SYNC  
C7  
47nF  
SYNC  
MP28266 Rev. 1.0  
3/16/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
1
MP28266 – 21V, 3A, 500kHz, SYNCHRONOUS, STEP-DOWN CONVERTER  
ORDERING INFORMATION  
Part Number*  
Package  
Top Marking  
Free Air Temperature (TA)  
MP28266DL  
QFN14 (3x4mm)  
MP28266DL  
-40°C to +85°C  
* For Tape & Reel, add suffix –Z (eg. MP28266DL–Z);  
For RoHS, compliant packaging, add suffix –LF (eg. MP28266DL–LF–Z).  
PACKAGE REFERENCE  
TOP VIEW  
PIN 1 ID  
IN  
SW  
1
2
3
4
5
6
7
14 AGND  
13 GND  
12 GND  
11 VCC  
SW  
Exposed  
Pad  
SW  
SW  
SS  
10  
9
BST  
SYNC  
AAM  
FB  
8
QFN14 (3x4mm)  
ABSOLUTE MAXIMUM RATINGS (1)  
VIN ..................................................-0.3V to 24V  
Thermal Resistance (4)  
QFN14 (3x4mm) .....................48 ...... 11...°C/W  
θJA  
θJC  
V
V
SW..................................................-0.3V to 24V  
BST ...................................................... VSW + 6V  
Notes:  
1) Exceeding these ratings may damage the device.  
2) The maximum allowable power dissipation is a function of the  
maximum junction temperature TJ (MAX), the junction-to-  
ambient thermal resistance θJA, and the ambient temperature  
TA. The maximum allowable continuous power dissipation at  
any ambient temperature is calculated by PD (MAX) = (TJ  
(MAX)-TA)/θJA. Exceeding the maximum allowable power  
dissipation will cause excessive die temperature, and the  
regulator will go into thermal shutdown. Internal thermal  
shutdown circuitry protects the device from permanent  
damage.  
All Other Pins....................................-0.3V to 6V  
Junction Temperature...............................150°C  
Lead Temperature ....................................260°C  
Junction Temperature...............................150°C  
Continuous Power Dissipation (TA = +25°C) (2)  
............................................................. 2.6W  
Recommended Operating Conditions (3)  
Supply Voltage VIN ..............................6V to 21V  
Output Voltage VOUT.........................0.6V to 18V  
Maximum Junction Temp. (TJ)............... +125°C  
3) The device is not guaranteed to function outside of its  
operating conditions.  
4) Measured on JESD51-7, 4-layer PCB.  
MP28266 Rev. 1.0  
3/16/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
2
MP28266 – 21V, 3A, 500kHz, SYNCHRONOUS, STEP-DOWN CONVERTER  
ELECTRICAL CHARACTERISTICS  
VIN = 12V, TA = 25°C, unless otherwise noted.  
Parameters  
Symbol  
Condition  
Min  
Typ  
Max  
Units  
VIN = 12V, VFB = 1V,  
0.55  
0.7  
0.85  
VAAM=5V  
Supply Current (Quiescent)  
Iq  
mA  
VIN = 12V, VFB = 1V,  
0.45  
0.6  
0.75  
VAAM=0.5V  
HS Switch On Resistance  
LS Switch On Resistance  
HSRDS-ON  
LSRDS-ON  
120  
20  
m  
mΩ  
V
SW = 0V or 12V,  
Switch Leakage  
SWLKG  
0.1  
1
μA  
VFB =0.7V, VAAM=0.5V  
Current Limit(5)  
ILIMIT  
fSW  
D=40%  
4.2  
5.5  
500  
80  
A
kHz  
ns  
Oscillator Frequency  
Minimum On Time(5)  
Maximum Duty Cycle  
Sync Frequency Range  
VFB=550mV  
425  
595  
tON-MIN  
DMAX  
fSYNC  
VFB = 550mV  
85  
90  
%
0.3  
591  
588  
2
MHz  
TA = 25oC  
-40oC<TA<85oC(6)  
603  
603  
10  
615  
618  
50  
Feedback Voltage  
VFB  
mV  
Feedback Current  
AAM-High Threshold  
AAM-Low Threshold  
IFB  
VFB = 650mV  
nA  
V
VAAM HIGH  
VAAM LOW  
2.9  
2.2  
V
VAAM=0V  
VAAM=5V  
0
μA  
μA  
V
AAM Input Current  
IAAM  
3.3  
SYNC Input HIGH Level  
SYNC Input LOW Level  
SYNC Input Current  
Soft-Start current  
VHI  
VLO  
ISYNC  
ISS  
1.8  
0.4  
V
VSYNC=6V  
VSS=0  
6
μA  
μA  
10  
VIN Under-Voltage Lockout  
Threshold—Rising  
INUVVth_rising  
5.2  
4.1  
5.5  
4.4  
5.8  
4.7  
V
V
VIN Under-Voltage Lockout  
Threshold—Falling  
INUVVth_falling  
VCC  
VCC Regulator  
5
5
V
%
°C  
VCC Load Regulation  
Thermal Shutdown(5)  
Icc=5mA  
TSD  
150  
Notes:  
5) Guaranteed by design.  
6) Not tested in production and guaranteed by over-temperature correlation.  
MP28266 Rev. 1.0  
3/16/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
3
MP28266 – 21V, 3A, 500kHz, SYNCHRONOUS, STEP-DOWN CONVERTER  
TYPICAL PERFORMANCE CHARACTERISTICS  
Performance curves are tested on the evaluation board of the Design Example section.  
VIN = 12V, VOUT = 1.2V, VAAM=0.5V, L = 2.8µH, TA = +25°C, unless otherwise noted.  
Efficiency vs.  
Supply Current vs.  
Input Voltage  
V =1V  
FB  
Output Current  
I
=0.1A-3A  
OUT  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
800.00  
700.00  
600.00  
500.00  
400.00  
300.00  
200.00  
V
=6V  
IN  
V
=12V  
IN  
V
=6V  
IN  
V
=12V  
IN  
V
=21V  
IN  
V
=21V  
IN  
0.0 0.5 1.0 1.5 2.0 2.5 3.0  
0.0 0.5 1.0 1.5 2.0 2.5 3.0  
0
5
10  
15  
20  
25  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
INPUT VOLTAGE (V)  
Case Temperature Rise vs.  
Load Regulation  
Line Regulatioin  
V
=6V-21V  
IN  
I
OUT  
=0A-3A  
I
OUT  
1.00  
12  
0.30  
0.80  
0.60  
0.20  
0.10  
10  
8
I
=0A  
OUT  
0.40  
V
=6V  
IN  
I
=1.5A  
V
=12V  
0.20  
OUT  
IN  
0.00  
6
4
2
0
0.00  
-0.20  
-0.40  
-0.60  
-0.80  
-1.00  
I
OUT  
=3A  
V
=21V  
IN  
-0.10  
-0.20  
-0.30  
0
0.5  
1
1.5  
2
2.5  
3
0
0.5  
1
1.5  
2
2.5  
3
5
7
9
11 13 15 17 19 21 23  
INPUT VOLTAGE (V)  
LOAD CURRENT (A)  
OUTPUT CURRENT (A)  
Current Limit vs.  
Duty Cycle  
7
6.5  
6
5.5  
5
4.5  
4
3.5  
3
0 10 20 30 40 50 60 70 80 90 100  
DUTY CYCLE (%)  
MP28266 Rev. 1.0  
3/16/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
4
MP28266 – 21V, 3A, 500kHz, SYNCHRONOUS, STEP-DOWN CONVERTER  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Performance curves are tested on the evaluation board of the Design Example section.  
VIN = 12V, VOUT = 1.2V, VAAM=0.5V, L = 2.8µH, TA = +25°C, unless otherwise noted.  
Short Entry  
Short Recovery  
Startup through  
Input Voltage  
I
= 0A  
I
= 0A  
OUT  
OUT  
I
= 0A  
OUT  
V
V
V
OUT  
OUT  
OUT  
500mV/div.  
500mV/div.  
500mV/div.  
V
IN  
10V/div.  
V
V
SW  
SW  
10V/div.  
10V/div.  
V
SW  
5V/div.  
I
I
L
L
5A/div.  
5A/div.  
I
INDUCTOR  
500mA/div.  
Startup through  
Input Voltage  
Shutdown through  
Input Voltage  
Shutdown through  
Input Voltage  
I
= 3A  
I
= 0A  
I
= 3A  
OUT  
OUT  
OUT  
V
V
V
OUT  
OUT  
OUT  
500mV/div.  
500mV/div.  
500mV/div.  
V
V
V
IN  
IN  
IN  
10V/div.  
10V/div.  
10V/div.  
V
V
V
SW  
SW  
SW  
5V/div.  
5V/div.  
5V/div.  
I
I
I
INDUCTOR  
INDUCTOR  
INDUCTOR  
2A/div.  
2A/div.  
2A/div.  
Input/Output Ripple  
Load Transient Reponse  
I
= 3A  
I
= 1.5A-3A  
OUT  
OUT  
V
/AC  
OUT  
10mV/div.  
V
/AC  
OUT  
50mV/div.  
V
/AC  
IN  
100mV/div.  
V
SW  
10V/div.  
I
L
1A/div.  
I
L
2A/div.  
MP28266 Rev. 1.0  
3/16/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
5
MP28266 – 21V, 3A, 500kHz, SYNCHRONOUS, STEP-DOWN CONVERTER  
PIN FUNCTIONS  
QFN14  
Name  
Pin #  
Description  
Supply Voltage. The MP28266 operates from a 6V-to-21V input rail. C1 decouples  
the input rail. Connect using wide PCB traces and multiple vias.  
1
IN  
SW  
2,3,4,5  
Switch Output. Connect using wide PCB traces and multiple vias.  
Bootstrap. A capacitor connected between SW and BST pins is required to form a  
floating supply across the high-side switch driver.  
6
7
BST  
SYNC  
This pin serves as frequency synchronous clock input.  
Feedback. Connect to the tap of an external resistor divider from the output to GND  
to set the output voltage. To prevent current-limit runaway during a short circuit fault  
condition, the frequency fold-back comparator lowers the oscillator frequency when  
the FB voltage is below 100mV.  
8
9
FB  
Advanced Asynchronous Modulation. Connect to a voltage supply through 2 resistor  
dividers to force the MP28266 into non-synchronous mode under light loads. Drive  
AAM pin high (VCC) to force the MP28266 into CCM.  
AAM  
Soft Start. Connect an external capacitor to program the soft start time for the switch  
mode regulator.  
10  
11  
SS  
VCC  
Bias Supply. Decouple with 0.1μF-to-0.22μF capacitor. And the capacitance should  
be no more than 0.22μF.  
System Ground. This reference ground of the regulated output voltage. Requires  
special considerations during PCB layout.  
12,13  
14  
GND  
Signal Ground. AGND is not internally connected to System Ground; connect AGND  
to system Ground in PCB layout.  
AGND  
No Internal Connection. Connect the exposed pad to GND plane for optimal thermal  
performance.  
Exposed Pad  
MP28266 Rev. 1.0  
3/16/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
6
MP28266 – 21V, 3A, 500kHz, SYNCHRONOUS, STEP-DOWN CONVERTER  
BLOCK DIAGRAM  
IN  
+
-
RSEN  
VCC  
VCC  
Current Sense  
Amplifer  
Regulator  
Bootstrap  
Regulator  
BST  
Oscillator  
HS  
Driver  
+
SW  
-
Comparetor  
On Time Control  
Logic Control  
Current Limit  
Comparator  
VCC  
1pF  
Reference  
400k  
50pF  
LS  
Driver  
+
+
-
FB  
Error Amplifier  
GND  
SYNC  
SS  
AAM  
Figure 1: Functional Block Diagram  
MP28266 Rev. 1.0  
3/16/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
7
MP28266 – 21V, 3A, 500kHz, SYNCHRONOUS, STEP-DOWN CONVERTER  
OPERATION  
The MP28266’s UVLO comparator monitors the  
output voltage of the internal regulator, VCC. The  
UVLO rising threshold is about 5.5V while its  
falling threshold is a consistent 4.4V.  
The MP28266 is a high-frequency, synchronous,  
rectified, step-down, switch-mode converter with  
built-in power MOSFETs. It offers a very compact  
solution to achieve more than 3A continuous  
output current over a wide input supply range,  
with excellent load and line regulation.  
External Soft-Start  
Adjust the soft start time through the capacitor  
connected from SS to ground. When the soft-  
start period starts, an internal 10µA current  
source charges the external capacitor. During  
soft-start, the voltage on the soft-start capacitor  
connects to the non-inverting input of the error  
amplifier. The soft-start period lasts until the  
voltage on the soft-start capacitor exceeds the  
reference voltage of 0.6V. At this point the  
reference voltage takes over at the non-inverting  
error amplifier input. The soft-start time can be  
calculated as follows:  
The MP28266 operates in a fixed-frequency,  
peak-current–control mode to regulate the output  
voltage. An internal clock initiates the PWM cycle  
to turn on the integrated high-side power  
MOSFET. This MOSFET remains on until its  
current reaches the value set by the COMP  
voltage. When the power switch is OFF, it  
remains off until the next clock cycle starts. If  
within 90% of one PWM period the power  
MOSFET current does not reach the COMP-set  
current value, the power MOSFET will be forced  
to turn off.  
0.6V CSS (nF)  
tSS (ms)   
Error Amplifier  
10A  
The error amplifier compares the FB pin voltage  
against the internal 0.6V reference (REF) and  
outputs a current proportional to their difference.  
This output current charges or discharges the  
internal compensation network for the COMP  
voltage, which controls the power MOSFET  
current. The optimized internal compensation  
network minimizes the external component  
counts and simplifies the control loop design.  
If the output of the MP28266 is pre-biased to a  
certain voltage during startup, the IC will disable  
both the high-side and low-side switches until the  
voltage on the internal soft-start capacitor  
exceeds the sensed output voltage at the FB pin.  
Over-Current Protection  
The MP28266 has a hiccup over-current limit for  
when the inductor current peak value exceeds  
the set current limit threshold. When the output  
voltage drops below 70% of the reference while  
the inductor current exceeds the current limit, the  
MP28266 enters hiccup mode. This is especially  
useful to ensure system safety under fault  
conditions. The latch-off function is disabled  
during the soft-start duration.  
Internal Regulator  
The 5V internal regulator powers most of the  
internal circuits. This regulator takes the VIN input  
and operates in the full VIN range. When VIN  
exceeds 5.0V, the output of the regulator is in full  
regulation. When VIN is lower than 5.0V, the  
output decreases and requires a 0.1μF ceramic  
decoupling capacitor.  
Thermal Shutdown  
Thermal shutdown prevents the chip from  
operating at exceedingly high temperatures.  
When the silicon die temperature exceeds  
150°C, it shuts down the whole chip. When the  
temperature is below its lower threshold—  
typically 140°C—the chip is enabled again.  
Frequency Synchronizing  
The MP28266 can be synchronized through the  
SYNC pin to an external clock with a range from  
300kHz up to 2MHz. The internal clock rising  
edge is synchronized to the external clock rising  
edge.  
Floating Driver and Bootstrap Charging  
Under-Voltage Lockout (UVLO)  
Under-voltage lockout (UVLO) protects the chip  
against operating at an insufficient supply  
voltage.  
An external bootstrap capacitor powers the  
floating power MOSFET driver. This floating  
driver has its own UVLO protection with a rising  
MP28266 Rev. 1.0  
3/16/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
8
MP28266 – 21V, 3A, 500kHz, SYNCHRONOUS, STEP-DOWN CONVERTER  
threshold of 2.2V and a hysteresis of 150mV. VIN  
internally regulates the bootstrap capacitor  
voltage through D1, M1, C4, L1 and C2 (Figure  
2). If (VIN-VSW) exceeds 5V, U1 regulates M1 to  
maintain a 5V BST voltage across C4.  
D1  
V
IN  
M1  
BST  
U1  
5V  
C4  
V
OUT  
SW  
L1  
C2  
Figure 2: Internal Bootstrap Charging Circuit  
MP28266 Rev. 1.0  
3/16/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
9
MP28266 – 21V, 3A, 500kHz, SYNCHRONOUS, STEP-DOWN CONVERTER  
Where ΔIL is the inductor ripple current.  
APPLICATION INFORMATION  
Choose inductor current to be approximately  
30% of the maximum load current. The maximum  
inductor peak current is:  
COMPONENT SELECTION  
Setting the Output Voltage  
The external resistor divider sets the output  
voltage (see the Typical Application on page 1).  
The feedback resistor R1—with the internal  
compensation capacitor—also sets the feedback  
loop bandwidth (see the Typical Application on  
page 1). Choose R1 equal to 10k. R2 is then:  
IL  
IL(MAX) ILOAD  
2
Under light-load conditions (below 100mA), use a  
larger inductance for improved efficiency.  
Selecting the Input Capacitor  
R1  
The input current to the step-down converter is  
discontinuous, therefore requires a capacitor to  
supply the AC current to the step-down converter  
and maintain the DC input voltage. Use low ESR  
capacitors; in particular ceramic capacitors with  
X5R or X7R dielectrics not only because of their  
low ESR values, but also their small temperature  
coefficients. A 22µF capacitor will suffice for most  
applications.  
R2  
V
OUT  
1  
0.6V  
The T-type network is highly recommended when  
V
OUT is low.  
R1  
RT  
8
FB  
VOUT  
R2  
The input capacitor (C1) requires an adequate  
ripple current rating because it absorbs the input  
switching current. Estimate the RMS current in  
the input capacitor with:  
Figure 3: T-Type Network  
Table 1 lists the recommended T-type resistors  
value for common output voltages.  
VOUT  
VIN  
VOUT  
VIN  
IC1 ILOAD  
1  
Table 1: Resistor Selection for Common  
Output Voltages  
The worst-case condition occurs at VIN = 2VOUT  
where:  
,
VOUT (V)  
1.05  
1.2  
R1 (k)  
7.5(1%)  
10(1%)  
10(1%)  
10(1%)  
10(1%)  
10(1%)  
R2 (k)  
Rt (k)  
24.9(1%)  
24.9(1%)  
24.9(1%)  
24.9(1%)  
24.9(1%)  
24.9(1%)  
10(1%)  
ILOAD  
IC1  
10(1%)  
2
1.8  
4.99(1%)  
3.16(1%)  
2.20(1%)  
1.36(1%)  
For simplification, choose an input capacitor with  
an RMS current rating greater than half the  
maximum load current.  
2.5  
3.3  
5
The input capacitor can be electrolytic, tantalum  
or ceramic. When using electrolytic or tantalum  
capacitors, place a small, high-quality ceramic  
capacitor with a value of 0.1μF as close to the IC  
as possible. When using ceramic capacitors,  
select those with enough capacitance to prevent  
excessive input voltage ripple. Estimate the input  
voltage ripple caused by the capacitance with:  
Selecting the Inductor  
For most applications, use a 1µH-to-10µH  
inductor with a DC current rating of at least 25%  
percent higher than the maximum load current.  
For highest efficiency, select an inductor with a  
DC resistance less than 15m. For most  
designs, derive the inductance value from the  
following equation:  
ILOAD  
VOUT  
VOUT  
V   
1  
IN  
fS C1  
V
IN  
V
IN  
VOUT (V VOUT  
)
IN  
L1   
V  IL fOSC  
IN  
MP28266 Rev. 1.0  
3/16/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
10  
MP28266 – 21V, 3A, 500kHz, SYNCHRONOUS, STEP-DOWN CONVERTER  
VCC(5V)  
Selecting the Output Capacitor  
The output capacitor (C2) maintains the DC  
output voltage. Use ceramic, tantalum, or low-  
ESR electrolytic capacitors. Use low ESR  
capacitors in particular to keep the output voltage  
ripple low, as estimated by:  
R4  
R3  
AAM  
   
VOUT  
VOUT  
1
VOUT  
1  
R  
   
ESR  
Figure 4: AAM Network  
fS L1  
V
8fS C2  
IN    
Normally, the convertor has three operating  
modes: AAM, DCM, CCM. The boundary  
between DCM and CCM occurs when the  
inductor ripple minimum is zero. The input  
voltage, output voltage and inductance are all  
fixed, so to calculate the compensation voltage at  
the boundary between DCM and CCM  
(VCritical_COMP), use the following equation:  
Where L1 is the inductor value and RESR is the  
equivalent series resistance (ESR) value of the  
output capacitor.  
For ceramic capacitors, the capacitance  
dominates the impedance at the switching  
frequency and is the primary source of the output  
voltage ripple. For simplification, estimate the  
output voltage ripple with:  
V V V  
O   
O
  
IN  
Ipeak _ Critical  
VOUT  
VOUT  
V L f OSC  
IN  
ΔVOUT  
1  
8fS2 L1 C2  
V
IN  
Ipeak  
VCritical_ COMP  
Vslope V  
is  
For tantalum or electrolytic capacitors, the ESR  
dominates the impedance at the switching  
frequency. For simplification, estimate the output  
ripple as:  
GCS  
Where GCS=3.2A/V, Vis=0.21V, and Vslope=D. D is  
the duty cycle.  
If VAAM exceeds VCritical_COMP, the convertor moves  
from AAM to CCM directly and eliminates DCM.  
This setting improves light-load efficiency.  
However, the output ripple increases during light-  
load. The inductor peak current at the transition  
point is:  
VOUT  
VOUT  
ΔVOUT  
1  
RESR  
fS L1  
V
IN  
The characteristics of the output capacitor also  
affect the stability of the regulation system. The  
MP28266 can be optimized for a wide range of  
capacitance and ESR values.  
Ipeak VAAM V Vslope G  
is  
CS  
Setting the AAM Voltage  
If VAAM is lower than VCritical_COMP, the convertor  
has three operating modes in the full load range.  
As the gap between VAAM and VCritical_COMP  
narrows, so does the DCM range. To improve  
efficiency while retaining a reasonable ripple, set  
VAAM close to VCritical_COMP. The inductor peak  
current at this transition point is:  
The AAM voltage sets the transition point from  
AAM to CCM. Select a value that balances  
efficiency, stability, ripple, and transient  
response: A low AAM voltage improves stability  
and ripple, but degrades AAM Mode efficiency  
and transient response; Conversely, a high AAM  
voltage improves AAM efficiency and transient  
response, but degrades stability and ripple.  
V
V G V V  
is O   
AAM  
CS  
IN  
Ipeak  
V VO LfOSC GCS  
IN  
Set the AAM voltage using a resistor divider as  
shown in Figure 4.  
MP28266 Rev. 1.0  
3/16/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
11  
MP28266 – 21V, 3A, 500kHz, SYNCHRONOUS, STEP-DOWN CONVERTER  
Refer to Figure 5 to select an optimal voltage and  
then use the following equation to determine the  
value of R4. Assume R3 to be 10k:  
The external BST diode connects from the VCC  
pin to the BST pin, as shown in Figure 6.  
External BST Diode  
IN4148  
BST  
VCC  
VCC  
AAM  
CBST  
R4 R3  
1  
MP28266  
SW  
+
COUT  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
L
V
=5V  
V
=2.5V  
OUT  
OUT  
V
=3.3V  
OUT  
Figure 6: Optional External Bootstrap Diode  
for Enhanced Efficiency  
The recommended external BST diode is  
IN4148, and the BST capacitor is 0.1µF to 1μF.  
V
=1.2V  
OUT  
V
=1.8V  
OUT  
PC Board Layout  
Place the high current paths (GND, IN and SW)  
very close to the device with short, direct, and  
wide traces. Place the input capacitor as close as  
possible to the IN and GND pins. Place the  
external feedback resistors next to the FB pin.  
Keep the switching node SW short and away  
from the feedback network.  
0 1 2 3 4 5 6  
7 8 9 10 1112  
Figure 5: AAM Selection for Common Output  
Voltages (VIN=6V-to-21V)  
External Bootstrap Diode  
An external bootstrap diode can enhance the  
efficiency of the regulator given the applicable  
conditions:  
VOUT is 5V or 3.3V; and  
VOUT  
Duty cycle is high: D=  
>65%  
VIN  
MP28266 Rev. 1.0  
3/16/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
12  
MP28266 – 21V, 3A, 500kHz, SYNCHRONOUS, STEP-DOWN CONVERTER  
TYPICAL APPLICATION CIRCUIT  
U1  
R5  
20  
1
6
IN  
BST  
SW  
VIN  
C1B  
0.1  
C1A  
22  
L1  
2.8  
C3  
0.1  
SW  
F
F
F
H
MP28266  
1.2V/3A  
2,3,4,5  
11  
VCC  
VOUT  
GND  
VCC  
C2A  
22  
C2B  
22  
C2C  
0.1  
C6  
C4  
R6  
F
F
F
R4  
90.9k  
15pF  
0
0.1  
F
GND  
AAM  
FB  
7
9
8
AAM  
FB  
SS  
C5  
1
R8  
24k  
R1  
10k  
R7  
10  
R3  
10k  
F
R9  
100k  
10  
SYNC  
R2  
10k  
C7  
47nF  
SYNC  
SS  
Figure 7: Typical Application Circuit  
MP28266 Rev. 1.0  
3/16/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
13  
MP28266 – 21V, 3A, 500kHz, SYNCHRONOUS, STEP-DOWN CONVERTER  
PACKAGE INFORMATION  
QFN14 (3×4mm)  
1.60  
1.80  
2.90  
3.10  
0.30  
0.50  
PIN 1 ID  
SEE DETAIL A  
PIN 1 ID  
MARKING  
1
14  
0.18  
0.30  
3.20  
3.40  
3.90  
4.10  
PIN 1 ID  
INDEX AREA  
0.50  
BSC  
7
8
TOP VIEW  
BOTTOM VIEW  
PIN 1 ID OPTION A  
0.30x45º TYP.  
PIN 1 ID OPTION B  
R0.20 TYP.  
0.80  
1.00  
0.20 REF  
0.00  
0.05  
SIDE VIEW  
DETAIL A  
2.90  
1.70  
NOTE:  
0.70  
1) ALL DIMENSIONS ARE IN MILLIMETERS.  
2) EXPOSED PADDLE SIZE DOES NOT INCLUDE MOLD FLASH.  
3) LEAD COPLANARITY SHALL BE 0.10 MILLIMETER MAX.  
4) JEDEC REFERENCE IS MO-229, VARIATION VGED-3.  
5) DRAWING IS NOT TO SCALE.  
0.25  
3.30  
0.50  
RECOMMENDED LAND PATTERN  
NOTICE: The information in this document is subject to change without notice. Please contact MPS for current specifications.  
Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS  
products into any application. MPS will not assume any legal responsibility for any said applications.  
MP28266 Rev. 1.0  
3/16/2012  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2012 MPS. All Rights Reserved.  
14  

相关型号:

MP28266DL

21V, 3A, 500kHz, Synchronous Step-Down Converter
MPS

MP28266DL-LF-Z

Switching Regulator, Current-mode, 500kHz Switching Freq-Max, PDSO14, 3 X 4 MM, ROHS COMPLIANT, MO-229VGED-3, QFN-14
MPS

MP28266DL-Z

Switching Regulator, Current-mode, 500kHz Switching Freq-Max, PDSO14, 3 X 4 MM, MO-229VGED-3, QFN-14
MPS

MP28275EL

Switching Regulator, Current-mode, 1300kHz Switching Freq-Max, PDSO14, QFN-14
MPS

MP28275EL-LF

Switching Regulator, Current-mode, 1300kHz Switching Freq-Max, PDSO14, QFN-14
MPS

MP28275EL-LF-Z

Switching Regulator, Current-mode, 1300kHz Switching Freq-Max, PDSO14, QFN-14
MPS

MP28300

Ultra-Low 500nA Iq, Wide Input 2V-5.5V, 300mA Step-Down Regulator Plus300nA Iq, 2V-5.5V Input, 100mA LDO in 2x2 QFN
MPS

MP28300GG

Ultra-Low 500nA Iq, Wide Input 2V-5.5V, 300mA Step-Down Regulator Plus300nA Iq, 2V-5.5V Input, 100mA LDO in 2x2 QFN
MPS

MP28300GG-Z

Switching Regulator,
MPS

MP28301GG

Switching Regulator,
MPS

MP28301GG-Z

Switching Regulator,
MPS

MP28303EN

Switching Regulator, Current-mode, 6A, 380kHz Switching Freq-Max, PDSO8, SOIC-8
MPS