MPM3606AGQV-Z [MPS]

Switching Regulator, 3 X 5 MM, 1.60 MM HEIGHT, MO-220, QFN-20;
MPM3606AGQV-Z
型号: MPM3606AGQV-Z
厂家: MONOLITHIC POWER SYSTEMS    MONOLITHIC POWER SYSTEMS
描述:

Switching Regulator, 3 X 5 MM, 1.60 MM HEIGHT, MO-220, QFN-20

开关 输出元件
文件: 总23页 (文件大小:1336K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MPM3606A  
21V/0.6A DC/DC Module  
Synchronous Step-Down Converter  
with Integrated Inductor  
DESCRIPTION  
FEATURES  
The MPM3606A is a synchronous rectified,  
step-down module converter with built-in power  
MOSFETs, inductor, and two capacitors. It  
offers a compact solution that requires only 5  
4.5V-to-21V Operating Input Range  
0.6A Continuous Load Current  
100mΩ/50mΩ Low RDS(ON) Internal Power  
MOSFETs  
external components to achieve  
a
0.6A  
Integrated Inductor  
continuous output current with excellent load  
and line regulation over a wide input-supply  
range. Also, it provides fast load transient  
response.  
Integrated VCC and Bootstrap Capacitors  
Power-Save Mode at Light Load  
Power Good Indicator  
Over-Current Protection and Hiccup  
Thermal Shutdown  
Output Adjustable from 0.8V  
Available in QFN20 (3x5x1.6mm) Package  
Total solution size 6.7mm x7.3mm  
Full protection features include over-current  
protection (OCP) and thermal shutdown (TSD).  
MPM3606A  
manufacturing  
eliminates  
risks while  
design  
and  
dramatically  
improving time-to-market.  
APPLICATIONS  
The MPM3606A is available in a space-saving  
QFN20 (3mmx5mmx1.6mm) package.  
Industrial Controls  
Medical and Imaging Equipment  
Telecom and Networking Applications  
LDO Replacement  
Space and Resource-limited Applications  
All MPS parts are lead-free and adhere to the RoHS directive. For MPS green  
status, please visit MPS website under Products, Quality Assurance page.  
“MPS” and “The Future of Analog IC Technology” are registered trademarks of  
Monolithic Power Systems, Inc.  
TYPICAL APPLICATION  
BST  
SW  
3.3V/0.6AVOUT  
12V  
VIN  
EN  
IN  
OUT  
MPM3606A  
C1  
10µF  
R3  
100k  
C2  
22µF  
R1  
75k  
EN  
FB  
VCC  
PG  
R2  
24k  
PG  
NC  
PGND AGND  
MPM3606A Rev. 1.0  
1/5/2015  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2015 MPS. All Rights Reserved.  
1
MPM3606A – SYNCHRONOUS STEP-DOWN MODULE WITH INTEGRATED INDUCTOR  
ORDERING INFORMATION  
Part Number*  
Package  
Top Marking  
MPM3606AGQV  
QFN-20 (3mmx5mmx1.6mm)  
See Below  
* For Tape & Reel, add suffix –Z (e.g. MPM3606AGQV–Z);  
TOP MARKING  
MP: MPS prefix:  
Y: year code;  
W: week code:  
3606A: first five digits of the part number;  
LLL: lot number;  
M: module;  
MPM3606A Rev. 1.0  
1/5/2015  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2015 MPS. All Rights Reserved.  
2
MPM3606A – SYNCHRONOUS STEP-DOWN MODULE WITH INTEGRATED INDUCTOR  
PACKAGE REFERENCE  
TOP VIEW  
PG  
IN  
EN  
NC  
PGND PGND  
18  
17  
16  
15  
13  
14  
1
2
3
4
12  
11  
10  
9
FB  
PGND  
BST  
NC  
VCC  
19  
20  
AGND  
NC NC  
SW  
OUT  
5
6
8
7
SW  
SW  
OUT  
OUT  
All “NC” pins  
must be left floating  
ABSOLUTE MAXIMUM RATINGS (1)  
VIN ................................................ -0.3V to 28V  
Thermal Resistance (6)  
QFN-20 (3mmx5mmx1.6mm). 46...... 10... °C/W  
θJA θJC  
V
SW ....................................................................  
-0.3V (-5V for <10ns) to 28V (30V for <10ns)  
BST ...................................................... VSW+6V  
Notes:  
1) Exceeding these ratings may damage the device.  
2) About the details of EN pin’s ABS MAX rating, please refer to  
page 14, Enable control section.  
V
All Other Pins............................... -0.3V to 6V (2)  
3) The maximum allowable power dissipation is a function of the  
maximum junction temperature TJ (MAX), the junction-to-  
ambient thermal resistance θJA, and the ambient temperature  
TA. The maximum allowable continuous power dissipation at  
any ambient temperature is calculated by PD (MAX) = (TJ  
(MAX)-TA)/θJA. Exceeding the maximum allowable power  
dissipation will cause excessive die temperature, and the  
regulator will go into thermal shutdown. Internal thermal  
shutdown circuitry protects the device from permanent  
damage.  
(3)  
Continuous Power Dissipation (TA = +25°C)  
............................................................2.7W  
Junction Temperature..............................150°C  
Lead Temperature ...................................260°C  
Storage Temperature.................-65°C to 150°C  
Recommended Operating Conditions (4)  
Supply Voltage VIN .......................... 4.5V to 21V  
4) The device is not guaranteed to function outside of its  
operating conditions.  
5) In practical design, the minimum VOUT is limited by minimum  
(5)  
Output Voltage VOUT...............0.8V to VIN*DMAX  
Operating Junction Temp. (TJ). -40°C to +125°C  
on time, 50ns on time is commonly recommended  
for  
calculating to give some margin. For output voltage setting  
above 5.5V, please refer to the application information on  
page 17.  
6) Measured on JESD51-7, 4-layer PCB.  
MPM3606A Rev. 1.0  
1/5/2015  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2015 MPS. All Rights Reserved.  
3
MPM3606A – SYNCHRONOUS STEP-DOWN MODULE WITH INTEGRATED INDUCTOR  
ELECTRICAL CHARACTERISTICS  
VIN=12V, TJ=-40°C to +125°C(7), typical value is tested at TJ=+25°C, unless otherwise noted.  
Parameter  
Symbol  
Condition  
Min  
Typ Max Units  
VEN = 0V, TJ =+25°C  
VEN = 0V, TJ =-40°C to +125°C  
VFB = 1V, TJ =+25°C  
6.5  
6.5  
0.3  
0.3  
100  
50  
8
μA  
μA  
Supply Current (Shutdown)  
Is  
9
0.39  
0.44  
mA  
mA  
mΩ  
mΩ  
µH  
mΩ  
μA  
Supply Current (Quiescent)  
Iq  
VFB = 1V, TJ =-40°C to +125°C  
HS Switch-On Resistance  
LS Switch-On Resistance  
Integrated Inductor Inductance(8)  
Inductor DC Resistance  
Switch Leakage  
HSRDS-ON VBST-SW=5V  
LSRDS-ON  
L
VCC =5V  
1
LDCR  
60  
SWLKG  
ILIMIT  
VEN = 0V, VSW =12V  
1
Current Limit  
Under 40% Duty Cycle  
VFB=0.75V, TJ =+25°C  
VFB=0.75V, TJ =-40°C to +125°C  
VFB=200mV  
1.7  
2.4  
A
1600 2000 2400 kHz  
1500 2000 2500 kHz  
Oscillator Frequency  
Fold-Back Frequency  
Maximum Duty Cycle  
Minimum On Time(8)  
Feedback Voltage  
Feedback Current  
fSW  
fFB  
0.3  
83  
fSW  
%
VFB=700mV, TJ =+25°C  
VFB=700mV, TJ =-40°C to +125°C  
78  
77  
88  
89  
DMAX  
83  
%
τON  
_
30  
ns  
MIN  
TJ =25°C  
786  
782  
798  
798  
10  
810  
814  
50  
mV  
mV  
nA  
VFB  
IFB  
TJ =-40°C to +125°C  
VFB=820mV  
TJ =+25°C  
1.2  
1.4  
1.4  
1.6  
1.65  
1.4  
V
V
EN Rising Threshold  
EN Falling Threshold  
EN Input Current  
VEN_RISING  
VEN_FALLING  
IEN  
TJ =-40°C to +125°C  
TJ =+25°C  
1.15  
1.05 1.25  
V
TJ =-40°C to +125°C  
VEN=2V, TJ =+25°C  
VEN=2V, TJ =-40°C to +125°C  
TJ =+25°C  
1
2
1.25 1.45  
V
2.3  
2.3  
0.9  
2.6  
2.8  
μA  
μA  
VFB  
VFB  
µs  
µs  
µs  
µs  
1.8  
0.86  
Power Good Rising Threshold  
Power Good Falling Threshold  
PGVTH-Hi  
PGVTH-LO  
0.95  
TJ =+25°C  
0.78 0.83 0.88  
TJ =+25°C  
15  
10  
40  
30  
35  
35  
80  
80  
55  
60  
Power Good Rising Delay  
Power Good Falling Delay  
PGTD_RSING  
TJ =-40°C to +125°C  
TJ =+25°C  
125  
135  
PGTD_FALLING  
TJ =-40°C to +125°C  
Power Good Sink Current  
Capability  
VPG  
Sink 1mA  
VPG=6V  
0.4  
1
V
Power Good Leakage Current  
IPG-LEAK  
μA  
MPM3606A Rev. 1.0  
1/5/2015  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2015 MPS. All Rights Reserved.  
4
MPM3606A – SYNCHRONOUS STEP-DOWN MODULE WITH INTEGRATED INDUCTOR  
ELECTRICAL CHARACTERISTICS (continued)  
VIN=12V, TJ=-40°C to +125°C, typical value is tested at TJ=+25°C, unless otherwise noted.  
Parameter  
Symbol  
Condition  
Min  
3.7  
Typ Max Units  
TJ =+25°C  
3.9  
3.9  
4.1  
V
V
VIN Under-Voltage Lockout  
Threshold—Rising  
INUVVth  
TJ =-40°C to +125°C  
3.65  
4.15  
VIN Under-Voltage Lockout  
Threshold—Hysteresis  
INUVHYS  
VCC  
600  
675  
750  
mV  
TJ =+25°C  
4.75  
4.7  
4.9  
4.9  
1.5  
1.6  
5.05  
5.1  
3
V
V
VCC Regulator  
TJ =-40°C to +125°C  
ICC=5mA  
VCC Load Regulation  
%
ms  
VOUT from 10% to 90%, TJ =+25°C 0.8  
2.4  
Soft-Start Time  
tSS  
VOUT from 10% to 90%, TJ =-40°C  
to +125°C  
0.6  
1.6  
2.6  
ms  
Thermal Shutdown (8)  
TSD  
150  
20  
°C  
°C  
Thermal Hysteresis (8)  
TSD_HYS  
Notes:  
7) Not tested in production. Guaranteed by over-temperature correlation.  
8) Guaranteed by characterization test.  
MPM3606A Rev. 1.0  
1/5/2015  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2015 MPS. All Rights Reserved.  
5
MPM3606A – SYNCHRONOUS STEP-DOWN MODULE WITH INTEGRATED INDUCTOR  
TYPICAL CHARACTERISTICS  
VIN = 12V, VOUT = 3.3V, TA = 25°C, unless otherwise noted.  
MPM3606A Rev. 1.0  
1/5/2015  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2015 MPS. All Rights Reserved.  
6
MPM3606A – SYNCHRONOUS STEP-DOWN MODULE WITH INTEGRATED INDUCTOR  
TYPICAL CHARACTERISTICS (continued)  
VIN = 12V, VOUT = 3.3V, TA = 25°C, unless otherwise noted.  
MPM3606A Rev. 1.0  
1/5/2015  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2015 MPS. All Rights Reserved.  
7
MPM3606A – SYNCHRONOUS STEP-DOWN MODULE WITH INTEGRATED INDUCTOR  
TYPICAL CHARACTERISTICS (continued)  
VIN = 12V, VOUT = 3.3V, TA = 25°C, unless otherwise noted.  
MPM3606A Rev. 1.0  
1/5/2015  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2015 MPS. All Rights Reserved.  
8
MPM3606A – SYNCHRONOUS STEP-DOWN MODULE WITH INTEGRATED INDUCTOR  
TYPICAL PERFORMANCE CHARACTERISTICS  
Performance waveforms are captured from the evaluation board discussed in the Design  
Example section.VIN = 12V, VOUT = 3.3V, TA = 25°C, unless otherwise noted.  
MPM3606A Rev. 1.0  
1/5/2015  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2015 MPS. All Rights Reserved.  
9
MPM3606A – SYNCHRONOUS STEP-DOWN MODULE WITH INTEGRATED INDUCTOR  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Performance waveforms are captured from the evaluation board discussed in the Design  
Example section.VIN = 12V, VOUT = 3.3V, TA = 25°C, unless otherwise noted.  
MPM3606A Rev. 1.0  
1/5/2015  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2015 MPS. All Rights Reserved.  
10  
MPM3606A – SYNCHRONOUS STEP-DOWN MODULE WITH INTEGRATED INDUCTOR  
PIN FUNCTIONS  
Package  
Pin #  
Name  
Description  
Feedback. Connect FB to the tap of an external resistor divider from the output to  
AGND to set the output voltage. To prevent current-limit runaway during a short-circuit  
fault, the frequency foldback comparator lowers the oscillator frequency when the FB  
voltage is below 400mV. Place the resistor divider as close to FB as possible. Avoid  
placing vias on the FB traces.  
1
FB  
Internal 4.9V LDO output. The module integrates a LDO output capacitor, so there is  
no need to add an external capacitor.  
2
3
VCC  
Analog Ground. Reference ground of logic circuit. AGND is connected internally to  
PGND, so there is no need to add any external connections to PGND.  
AGND  
Switch Output. Large copper plane is recommended on pins 4, 5 and 6 to improve  
thermal performance.  
4, 5, 6  
7, 8, 9  
SW  
OUT  
NC  
Power Output. Connect the load to OUT; an output capacitor is needed.  
10, 15,  
19, 20  
DO NOT CONNECT. NC must be left floating.  
Bootstrap. A bootstrap capacitor is integrated internally, so an external connection is  
not needed.  
11  
BST  
Power Ground. Reference ground of the power device. PCB layout requires extra care,  
please refer to PCB guideline recommendations. For best results, connect to PGND  
with copper and vias.  
12, 13, 14  
PGND  
Supply Voltage. IN supplies power to the internal MOSFET and regulator. The  
MPM3606A operates from a +4.5V to +21V input rail. It requires a low-ESR, and low-  
inductance capacitor to decouple the input rail. Place the input capacitor very close to  
IN and connect it with wide PCB traces and multiple vias.  
16  
IN  
Enable. Pull EN high to enable the module. Leave EN floating or connect it to GND to  
disable the module.  
17  
18  
EN  
PG  
Power Good Indicator. PG is an open-drain output. Connect PG to VCC (or another  
voltage source) through a pull-up resistor (e.g. 100k). Additional details on PG  
behavior can be found in the OPERATION section under “Power Good Indicator.”  
MPM3606A Rev. 1.0  
1/5/2015  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2015 MPS. All Rights Reserved.  
11  
MPM3606A – SYNCHRONOUS STEP-DOWN MODULE WITH INTEGRATED INDUCTOR  
FUNCTIONAL BLOCK DIAGRAM  
EN  
OUT  
VREF  
VSS  
PG  
718mV Rising  
662mV Falling  
PGND  
AGND  
Figure 1. Functional Block Diagram  
MPM3606A Rev. 1.0  
1/5/2015  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2015 MPS. All Rights Reserved.  
12  
MPM3606A – SYNCHRONOUS STEP-DOWN MODULE WITH INTEGRATED INDUCTOR  
OPERATION  
The  
MPM3606A  
is  
a
high-frequency,  
DCM Control Operation  
synchronous, rectified, step-down, switch-mode  
converter with built-in power MOSFETs,  
integrated inductor, and two capacitors. It offers  
a compact solution that achieves a 0.6A  
continuous output current with excellent load  
and line regulation over a 4.5V to 21V input-  
supply range.  
The VCOMP ramps up as the output current  
increases. When its minimum value exceeds  
VAAM, the device enters DCM. In this mode, the  
internal 2MHz clock initiates the PWM cycle,  
the HS-FET turns on and remains on until  
VILsense reaches the value set by VCOMP (after a  
period of dead time), and then the low-side  
MOSFET (LS-FET) turns on and remains on  
until the inductor-current value decreases to  
zero. The device repeats the same operation in  
every clock cycle to regulate the output voltage  
(see Figure 3).  
The MPM3606A has three working modes:  
advanced asynchronous modulation (AAM),  
similar to PFM mode, discontinuous conduction  
mode (DCM), and continuous conduction mode  
(CCM). The load current increases as the  
device transitions from AAM mode to DCM to  
CCM. In particular conditions, the device will  
not enter AAM mode during a light-load  
condition (See Power-Save Mode Range graph  
on page 8).  
HS-FET is on  
HS/LS-FETs are off  
VSW  
VOUT  
LS-FET is on  
IL  
IOUT  
AAM Control Operation  
In a light-load condition, MPM3606A operates  
in AAM mode (see Figure 2). The VAAM is an  
internally fixed voltage when input and output  
voltages are fixed. VCOMP is the error amplifier  
output, which represents the peak inductor  
current information. When VCOMP is lower than  
A clock cycle  
Zero current detect  
Figure 3. DCM Control Operation  
CCM Control Operation  
The device enters CCM from DCM once the  
inductor current no longer drops to zero in a  
clock cycle. In CCM, the internal 2MHz clock  
initiates the PWM cycle, the HS-FET turns on  
and remains on until VILsense reaches the value  
set by VCOMP (after a period of dead time), and  
then the LS-FET turns on and remains on until  
the next clock cycle starts. The device repeats  
the same operation in every clock cycle to  
regulate the output voltage.  
VAAM, the internal clock is blocked. This will  
make the MPM3606A skips pulses, achieving  
the light-load power save. Refer to AN032 for  
additional detail.  
The internal clock re-sets every time VCOMP  
exceeds VAAM. Simultaneously, the high-side  
MOSFET (HS-FET) turns on and remains on  
until VILsense reaches the value set by VCOMP.  
If VILsense does not reach the value set by VCOMP  
within 83% of one PWM period, the HS power  
MOSFET will be forced off.  
The light-load feature in this device is optimized  
for 12V input applications.  
Internal VCC Regulator  
A 4.9V internal regulator powers most of the  
internal circuitries. This regulator takes VIN and  
operates in the full VIN range. When VIN  
exceeds 4.9V, the output of the regulator is in  
full regulation. If VIN is less than 4.9V, the output  
decreases. The device integrates an internal  
decoupling capacitor, so adding an external  
VCC output capacitor is unnecessary.  
4
50  
R1  
R2  
Rt  
Figure 2. Simplified AAM Control Logic  
MPM3606A Rev. 1.0  
1/5/2015  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2015 MPS. All Rights Reserved.  
13  
MPM3606A – SYNCHRONOUS STEP-DOWN MODULE WITH INTEGRATED INDUCTOR  
Error Amplifier (EA)  
soft-start voltage (SS) that ramps up from 0V to  
4.9V. When SS is lower than VREF, the error  
amplifier uses SS as the reference. When SS is  
higher than VREF, the error amplifier uses VREF  
as the reference. The SS time is set internally  
to 1.6ms (VOUT from 10% to 90%).  
The error amplifier compares the FB voltage to  
the internal 0.798V reference (VREF) and  
outputs a current proportional to the difference  
between the two. This output current then  
charges  
or  
discharges  
the  
internal  
compensation network to form the COMP  
voltage; the COMP voltage controls the power  
MOSFET current. The optimized internal  
compensation network minimizes the external  
component count and simplifies the control loop  
design.  
Pre-Bias Start-Up  
The MPM3606A is designed for a monotonic  
start-up into a pre-biased output voltage. If the  
output is pre-biased to a certain voltage during  
start-up, the voltage on the soft-start capacitor  
is charged. When the soft-start capacitor’s  
voltage exceeds the sensed output voltage at  
FB, the device turns on the HS-FET and the  
LS-FET sequentially. Output voltage ramps up  
following the soft-start slew rate.  
Under-Voltage Lockout (UVLO)  
Under-voltage lockout (UVLO) protects the chip  
from operating at an insufficient input-supply  
voltage. The MPM3606A UVLO comparator  
monitors the output voltage of the internal  
regulator (VCC). The UVLO rising threshold is  
about 3.9V while its falling threshold is 3.225V.  
Power Good Indicator (PG)  
The MPM3606A has power good (PG) output to  
indicate whether the output voltage of the  
module is ready. PG is an open-drain output.  
Connect PG to VCC (or another voltage source)  
through a pull-up resistor (e.g. 100kΩ). When  
the input voltage is applied, PG is pulled down  
to GND before internal VSS>1V. After VSS>1V,  
when VFB is above 90% of VREF, PG is pulled  
high (after a 35µs delay time). During normal  
operation, PG is pulled low when the VFB drops  
below 83% of VREF (after a 80µs delay).  
Enable Control (EN)  
EN turns the regulator on and off. Drive EN high  
to turn on the regulator; drive EN low to turn off  
the regulator. An internal 870kresistor from  
EN to GND allows EN to be floated to shut  
down the chip.  
EN is clamped internally using a 6.5V series-  
Zener-diode (see Figure 4). Connecting EN to a  
voltage source directly without a pull-up resistor  
requires limiting the amplitude of the voltage  
source to ≤6V to prevent damage to the Zener  
diode.  
When UVLO or OTP occurs, PG is pulled low  
immediately; when OC (over-current) occurs,  
PG is pulled low when VFB drops below 83% of  
V
REF (after a 80µs delay).  
Connecting the EN input through a pull-up  
resistor to the voltage on VIN limits the EN input  
current to less than 100µA.  
Since MPM3606A  
doesn’t  
implement  
dedicated output over-voltage protection, the  
PG won’t response to an output over-voltage  
condition.  
For example, with 12V connected to VIN,  
RPULLUP ≥ (12V – 6.5V) ÷ 100µA = 55kΩ.  
Over-Current-Protection and Hiccup  
The MPM3606A has a cycle-by-cycle over-  
current limiting control. When the inductor  
current-peak value exceeds internal peak  
current-limit threshold, the HS-FET turns off  
and the LS-FET turns on, remaining on until the  
inductor current falls below the internal valley  
current-limit threshold. The valley current-limit  
circuit is employed to decrease the  
870k  
Ω
.
Figure 4. 6.5V Zener Diode Connection  
Internal Soft-Start (SS)  
Soft-start prevents the converter output voltage  
from overshooting during start-up. When the  
chip starts up, the internal circuitry generates a  
MPM3606A Rev. 1.0  
1/5/2015  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2015 MPS. All Rights Reserved.  
14  
MPM3606A – SYNCHRONOUS STEP-DOWN MODULE WITH INTEGRATED INDUCTOR  
operation frequency (after the peak current-limit  
COMP voltage and the internal supply rail are  
then pulled down. The floating driver is not  
subject to this shutdown command.  
threshold is triggered). Meanwhile, the output  
voltage drops until VFB is below the under-  
voltage (UV) threshold (50% below the  
reference, typically). Once UV is triggered, the  
MPM3606A enters hiccup mode to re-start the  
part periodically. This protection mode is useful  
when the output is dead-shorted to ground and  
greatly reduces the average short-circuit current  
to alleviate thermal issues and protect the  
converter. The MPM3606A exits hiccup mode  
once the over-current condition is removed.  
Additional RC Snubber Circuit  
An additional RC snubber circuit can be chosen  
to clamp the voltage spike and damp the ringing  
voltage for better EMI performance.  
The power dissipation of the RC snubber circuit  
is estimated by the formula below:  
2
P
= fS ×CS × V  
Loss  
IN  
Where fS is the switching frequency, Cs is the  
snubber capacitor, and VIN is the input voltage.  
Thermal Shutdown (TSD)  
To prevent thermal damage, MPM3606A stops  
switching when the die temperature exceeds  
150°C. As soon as the temperature drops  
below its lower threshold (130°C, typically), the  
power supply resumes operation.  
For improved efficiency, the value of CS should  
not be set too high. Generally, a 5.6Ω RS and a  
330pF CS are recommended to generate the  
RC snubber circuit (see Figure 6).  
Floating Driver and Bootstrap Charging  
An internal bootstrap capacitor powers the  
floating power MOSFET driver. This floating  
driver has its own UVLO protection. This  
UVLO’s rising threshold is 2.2V with a  
hysteresis of 150mV. The bootstrap capacitor  
voltage is regulated internally by VIN through  
RS  
5.6  
SW  
CS  
330pF  
D1, M1, C4, L1 and C2 (see Figure 5). If (VBST  
VSW) exceeds 5V, U1 regulates M1 to maintain  
a 5V voltage across C4.  
-
Figure 6. Additional RC Snubber Circuit  
Figure 5. Internal Bootstrap Charging Circuit  
Start-Up and Shutdown  
If both VIN and VEN exceed their respective  
thresholds, the chip starts up. The reference  
block starts first, generating stable reference  
voltage, and then the internal regulator is  
enabled. The regulator provides a stable supply  
for the remaining circuitries.  
Three events shut down the chip: VIN low, VEN  
low and thermal shutdown. During the  
shutdown procedure, the signaling path is  
blocked first to avoid any fault triggering. The  
MPM3606A Rev. 1.0  
1/5/2015  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2015 MPS. All Rights Reserved.  
15  
MPM3606A – SYNCHRONOUS STEP-DOWN MODULE WITH INTEGRATED INDUCTOR  
APPLICATION INFORMATION  
Setting the Output Voltage  
The external resistor divider sets the output  
voltage (see Typical Application on page 1).  
Choose R1 (see Table 1); R2 is then given by:  
R1  
R2 =  
V
OUT  
1  
0.798V  
Figure 7. Feedback Network  
See Table 1 and Figure 7 for the feedback  
network and a list of recommended feedback  
network parameters for common output  
voltages.  
Table 1. Recommended Parameters for Common Output Voltages  
Small Solution Size(CIN=10µF/0805/25V,  
COUT=22µF/0805/16V)  
Low VOUT Ripple(CIN=10µF/0805/25V,  
COUT=2X22µF/0805/16V)  
VIN VOUT  
VOUT Ripple  
R1 (kΩ) R2 (kΩ) Cf (pF)  
(mV)(9)  
VOUT Ripple  
R1 (kΩ) R2 (kΩ) Cf (pF)  
(mV) (9)  
(V)  
(V)  
5
3.3  
2.5  
5
115  
102  
102  
115  
102  
102  
115  
102  
102  
102  
115  
102  
75  
22  
32.4  
47.5  
22  
NS  
NS  
5.6  
NS  
NS  
5.6  
NS  
NS  
5.6  
5.6  
NS  
NS  
5.6  
5.6  
5.6  
NS  
NS  
5.6  
5.6  
5.6  
5.6  
17.6  
12.4  
10  
40.2  
62  
7.68  
19.6  
29.4  
7.68  
19.6  
29.4  
7.68  
19.6  
29.4  
49.9  
7.68  
12.7  
18.7  
49.9  
69.8  
6.49  
12.7  
18.7  
37.4  
53.6  
147  
NS  
NS  
5.6  
NS  
NS  
5.6  
NS  
NS  
5.6  
5.6  
NS  
NS  
5.6  
5.6  
5.6  
NS  
NS  
5.6  
5.6  
5.6  
5.6  
9.4  
7
21  
62  
5.2  
8.8  
6.6  
5
16.4  
11.4  
9.8  
40.2  
62  
19  
16  
3.3  
2.5  
5
32.4  
47.5  
22  
62  
15.6  
10.6  
9.6  
40.2  
62  
7.8  
6
3.3  
2.5  
1.8  
5
32.4  
47.5  
82  
62  
4.8  
4
8.6  
62  
22  
14.8  
10.2  
9.4  
40.2  
40.2  
40.2  
62  
7.4  
5.6  
4.6  
4.2  
3.6  
6.4  
5.2  
4.4  
4
3.3  
2.5  
1.8  
1.5(10)  
5
32.4  
34.8  
82  
14  
12  
102  
158  
100  
75  
8.4  
180  
19.1  
24  
7.2  
62  
13.8  
9.4  
34  
3.3  
2.5  
1.8  
1.5(10)  
1.2(10)  
40.2  
40.2  
47  
75  
34.8  
82  
9
102  
158  
158  
7.8  
180  
316  
6.6  
47  
3.4  
3
6.2  
75  
MPM3606A Rev. 1.0  
1/5/2015  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2015 MPS. All Rights Reserved.  
16  
MPM3606A – SYNCHRONOUS STEP-DOWN MODULE WITH INTEGRATED INDUCTOR  
Table 1: Recommended Parameters For Common Output Voltages (continued)  
Small Solution Size(CIN=10µF/0805/25V,  
COUT=22µF/0805/16V)  
Low VOUT Ripple(CIN=10µF/0805/25V,  
COUT=2X22µF/0805/16V)  
VIN VOUT  
R1  
(kΩ)  
VOUT Ripple  
(mV) (9)  
VOUT Ripple  
R1 (kΩ) R2 (kΩ) Cf (pF)  
(mV) (9)  
R2 (kΩ) Cf (pF)  
(V)  
(V)  
5
100  
75  
19.1  
24  
NS  
NS  
5.6  
5.6  
5.6  
5.6  
5.6  
NS  
NS  
5.6  
5.6  
5.6  
5.6  
5.6  
NS  
5.6  
5.6  
5.6  
5.6  
5.6  
13.2  
8.4  
8.2  
7.2  
6
34  
40.2  
40.2  
47  
6.49  
12.7  
18.7  
37.4  
53.6  
124  
NS  
NS  
5.6  
5.6  
5.6  
5.6  
5.6  
NS  
NS  
5.6  
5.6  
5.6  
5.6  
5.6  
NS  
5.6  
5.6  
5.6  
5.6  
5.6  
6.2  
4.8  
4
3.3  
2.5  
1.8  
1.5  
1.2(10) 102  
1(10)  
75  
34.8  
59  
10  
75  
3.6  
3.2  
2.8  
2.6  
5
102  
115  
205  
402  
19.1  
24  
47  
5.4  
4.8  
9.2  
7.6  
7
62  
102  
100  
75  
75  
75  
75  
75  
75  
75  
75  
75  
62  
62  
62  
82  
324  
5
34  
6.49  
12.7  
18.7  
37.4  
53.6  
93.1  
221  
3.3  
40.2  
40.2  
47  
3.8  
3.4  
3
2.5  
34.8  
59  
8
1.8  
6.4  
5.4  
5
1.5  
84.5  
147  
294  
24  
47  
2.8  
2.6  
2.2  
3.4  
3.2  
2.8  
2.4  
2.2  
2
1.2(10)  
1(10)  
3.3  
47  
4.6  
6
56  
40.2  
40.2  
47  
12.7  
18.7  
37.4  
53.6  
93.1  
187  
2.5  
34.8  
59  
5.8  
5.2  
5
1.8  
5
1.5  
69.8  
124  
243  
47  
1.2(10)  
1(10)  
4.6  
4.4  
47  
47  
Notes:  
9) The output voltage ripple is tested at 0.6A output current.  
10) In these specs, BST operation current will charge the output voltage higher than the setting value when completely no load due to large  
divider resistor value. 10µA load current is able to pull the output voltage to normal regulation level.  
Normally, it is recommended to set output  
voltage from 0.8V to 5.5V. However, it can be  
set higher than 5.5V. In this case, the output-  
voltage ripple is larger due to a larger inductor  
ripple current. An additional output capacitor is  
needed to reduce the output-ripple voltage.  
If output voltage is high, heat dissipation  
becomes more important. Refer to PC board  
layout guidelines on page 18 to achieve better  
thermal performance.  
Selecting the Input Capacitor  
The input current to the step-down converter is  
discontinuous, and therefore requires  
capacitor to supply the AC current while  
maintaining the DC input voltage. Use low ESR  
capacitors for improved performance. Use  
ceramic capacitors with X5R or X7R dielectrics  
for optimum results because of their low ESR  
and small temperature coefficients. For most  
applications, use a 10µF capacitor.  
a
.
MPM3606A Rev. 1.0  
1/5/2015  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2015 MPS. All Rights Reserved.  
17  
MPM3606A – SYNCHRONOUS STEP-DOWN MODULE WITH INTEGRATED INDUCTOR  
Since C1 absorbs the input-switching current, it  
For tantalum or electrolytic capacitors, the ESR  
dominates the impedance at the switching  
frequency. For simplification, the output ripple is  
approximated as:  
requires an adequate ripple-current rating. The  
RMS current in the input capacitor is estimated  
by:  
VOUT  
VOUT  
VOUT  
VOUT  
IC1 = ILOAD  
×
× 1−  
ΔVOUT  
=
× 1−  
×RESR  
V
V
fS ×L1  
V
IN  
IN  
IN  
The characteristics of the output capacitor  
affect the stability of the regulation system. The  
MPM3606A internal compensation is optimized  
for a wide range of capacitance and ESR  
values.  
The worst case condition occurs at VIN = 2VOUT  
where:  
,
ILOAD  
IC1  
=
2
PC Board Layout (11)  
For simplification, choose an input capacitor  
with an RMS current rating greater than half of  
the maximum load current.  
Efficient PCB layout is critical to achieve stable  
operation, particularly for input capacitor  
placement. For best results, refer to figure 8,  
and follow the guidelines below:  
The input capacitor can be electrolytic, tantalum  
or ceramic. When using electrolytic or tantalum  
capacitors, add a small, high-quality ceramic  
capacitor (e.g. 0.1μF) placed as close to the IC  
as possible. When using ceramic capacitors,  
make sure they have enough capacitance to  
provide sufficient charge to prevent excessive  
voltage ripple at input. The input-voltage ripple  
caused by capacitance can be estimated as:  
1. Use large ground plane to connect directly  
to PGND. Add vias near the PGND if the  
bottom layer is ground plane.  
2. The high-current paths (PGND, IN and  
OUT) should have short, direct and wide  
traces. Place the ceramic input capacitor  
close to IN and PGND. Keep the input  
capacitor and IN connection as short and  
wide as possible.  
ILOAD  
VOUT  
VOUT  
V  
=
×
× 1−  
IN  
fS ×C1  
V
IN  
V
IN  
Selecting the Output Capacitor  
3. Place the external feedback resistors next  
to FB.  
The output capacitor (C2) maintains the DC  
output voltage. Use ceramic, tantalum, or low  
ESR electrolytic capacitors. For best results,  
use low ESR capacitors to keep the output-  
voltage ripple low. The output-voltage ripple is  
estimated as:  
4. Keep the feedback network away from the  
switching node.  
Notes:  
11) The recommended layout is based on Typical Application  
Circuits section on page 20.  
   
VOUT  
VOUT  
1
VOUT  
=
× 1−  
× R  
   
+
ESR  
fS ×L1  
V
8× fS ×C2  
IN    
Where L1 is the inductor value, RESR is the  
equivalent series resistance (ESR) value of the  
output capacitor, and L1=1μH.  
For ceramic capacitors, the capacitance  
dominates the impedance at the switching  
frequency; the capacitance causes the majority  
of the output-voltage ripple. For simplification,  
the output-voltage ripple is estimated as:  
VOUT  
8× fS2 ×L1 ×C2  
VOUT  
ΔVOUT  
=
× 1−  
V
IN  
MPM3606A Rev. 1.0  
1/5/2015  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2015 MPS. All Rights Reserved.  
18  
MPM3606A – SYNCHRONOUS STEP-DOWN MODULE WITH INTEGRATED INDUCTOR  
Design Example  
VIN  
GND  
VOUT  
Table 2 shows a design example following the  
application guidelines for the specifications:  
Table 2. Design Example  
VIN  
VOUT  
IOUT  
12V  
3.3V  
0.6A  
C1  
The detailed application schematic is shown in  
Figure 10. The typical performance and circuit  
waveforms are shown in the Typical  
Characteristics section (For additional device  
applications, please refer to the related  
evaluation board datasheets).  
PGND  
FB  
VCC  
BST  
NC  
AGND  
SW  
OUT  
6.3mm  
7.3mm  
Top Layer  
GND  
VOUT  
Bottom Layer  
Figure 8. Recommended PC Board Layout  
MPM3606A Rev. 1.0  
1/5/2015  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2015 MPS. All Rights Reserved.  
19  
MPM3606A – SYNCHRONOUS STEP-DOWN MODULE WITH INTEGRATED INDUCTOR  
TYPICAL APPLICATION CIRCUITS(12)(13)  
11  
BST  
SW  
4, 5, 6  
12V  
C1  
5V/0.6A VOUT  
16  
7, 8, 9  
C2  
VIN  
EN  
IN  
OUT  
MPM3606A  
R3  
100k  
17  
10µF  
22µF  
R1  
100k  
EN  
1
FB  
2
VCC  
R2  
19.1k  
R4  
100k  
18  
10, 15, 19, 20  
PG  
PG  
NC  
AGND  
PGND  
Figure 9. Vo=5V, Io=0.6A  
11  
BST  
SW  
4, 5, 6  
12V  
C1  
3.3V/0.6A VOUT  
16  
7, 8, 9  
C2  
VIN  
EN  
IN  
OUT  
MPM3606A  
R3  
100k  
17  
10µF  
22µF  
R1  
75k  
EN  
1
FB  
2
VCC  
R2  
24k  
R4  
100k  
18  
10, 15, 19, 20  
PG  
PG  
NC  
AGND  
PGND  
Figure 10. Vo=3.3V, Io=0.6A  
11  
BST  
4, 5, 6  
SW  
12V  
2.5V/0.6A VOUT  
16  
7, 8, 9  
C2  
VIN  
IN  
OUT  
MPM3606A  
C1  
10  
R3  
100k  
17  
µF  
22µF  
R1  
C3  
75k  
5.6pF  
EN  
EN  
1
FB  
2
VCC  
R2  
34.8k  
R4  
100k  
18  
10, 15, 19, 20  
PG  
NC  
AGND  
PGND  
Figure 11. Vo=2.5V, Io=0.6A  
MPM3606A Rev. 1.0  
1/5/2015  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2015 MPS. All Rights Reserved.  
20  
MPM3606A – SYNCHRONOUS STEP-DOWN MODULE WITH INTEGRATED INDUCTOR  
TYPICAL APPLICATION CIRCUITS(continued)  
11  
BST  
4, 5, 6  
SW  
12V  
C1  
1.8V/0.6A VOUT  
16  
7, 8, 9  
VIN  
EN  
IN  
OUT  
MPM3606A  
C2  
22µF  
R3  
100k  
17  
10µF  
R1  
C3  
102k  
5.6pF  
EN  
1
FB  
2
VCC  
R2  
82k  
R4  
100k  
18  
10, 15, 19, 20  
PG  
NC  
AGND  
PGND  
Figure 12. Vo=1.8V, Io=0.6A  
11  
BST  
4, 5, 6  
SW  
12V  
C1  
1.5V/0.6A VOUT  
16  
7, 8, 9  
C2  
VIN  
EN  
IN  
OUT  
MPM3606A  
R3  
100k  
17  
10µF  
22µF  
R1  
C3  
158k  
5.6pF  
EN  
1
FB  
2
VCC  
R2  
180k  
R4  
100k  
18  
10, 15, 19, 20  
PG  
NC  
AGND  
PGND  
Figure 13. Vo=1.5V, Io=0.6A  
11  
BST  
4, 5, 6  
SW  
12V  
C1  
1.2V/0.6A VOUT  
16  
7, 8, 9  
C2  
VIN  
EN  
IN  
OUT  
MPM3606A  
R3  
100k  
17  
10µF  
22µF  
R1  
C3  
158k  
5.6pF  
EN  
1
FB  
2
VCC  
R2  
316k  
R4  
100k  
18  
10, 15, 19, 20  
PG  
NC  
AGND  
PGND  
Figure 14. Vo=1.2V, Io=0.6A  
MPM3606A Rev. 1.0  
1/5/2015  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2015 MPS. All Rights Reserved.  
21  
MPM3606A – SYNCHRONOUS STEP-DOWN MODULE WITH INTEGRATED INDUCTOR  
TYPICAL APPLICATION CIRCUITS (continued)  
11  
BST  
4, 5, 6  
SW  
12V  
C1  
1V/0.6AVOUT  
16  
7, 8, 9  
VIN  
EN  
IN  
OUT  
MPM3606A  
C2  
22µF  
R3  
100k  
17  
10µF  
R1  
C3  
158k  
5.6pF  
EN  
1
FB  
2
VCC  
R2  
634k  
R4  
100k  
18  
10, 15, 19, 20  
PG  
NC  
AGND  
PGND  
Figure 15: Vo=1V, Io=0.6A  
Notes:  
12) In 12VIN to 1VOUT application condition, the HS-FET’s on time is close to minimum on time, the SW may have a little jitter, even so the  
output voltage ripple is smaller than 15mV in PWM mode.  
13) In 12VIN to 1.5/1.2/1 VOUT application condition, BST operation current will charge the output voltage higher than the setting value when  
completely no load due to large divider resistor value. 10µA load current is able to pull the output voltage to normal regulation level.  
MPM3606A Rev. 1.0  
1/5/2015  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2015 MPS. All Rights Reserved.  
22  
MPM3606A – SYNCHRONOUS STEP-DOWN MODULE WITH INTEGRATED INDUCTOR  
PACKAGE INFORMATION  
QFN-20 (3mmx5mmx1.6mm)  
PIN 1 ID  
0.125X45º TYP  
PIN 1 ID  
MARKING  
NOTE 2  
PIN 1 ID  
INDEX AREA  
TOP VIEW  
BOTTOM VIEW  
SIDE VIEW  
NOTE:  
1) ALL DIMENSIONS ARE IN MILLIMETERS.  
2) SHADED AREA IS THE KEEP-OUT ZONE. ANY PCB  
METAL TRACE AND VIA ARE NOT ALLOWED TO  
CONNECT TO THIS AREA ELECTRICALLY OR  
MECHANICALLY.  
0.125X45º  
NOTE 2  
3) LEAD COPLANARITY SHALL BE 0.10  
MILLIMETERS MAX.  
4) JEDEC REFERENCE IS MO-220.  
5) DRAWING IS NOT TO SCALE.  
RECOMMENDED LAND PATTERN  
NOTICE: The information in this document is subject to change without notice. Users should warrant and guarantee that third  
party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not  
assume any legal responsibility for any said applications.  
MPM3606A Rev. 1.0  
1/5/2015  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2015 MPS. All Rights Reserved.  
23  

相关型号:

MPM3606GQV

21V Input, 0.6A Module Synchronous Step-Down Converter with Integrated Inductor
MPS

MPM3610

21V Input, 1.2A Module Synchronous Step-Down Converter with Integrated Inductor
MPS

MPM3610A

21V/1.2A DC/DC Module Synchronous Step-Down Converter with Integrated Inductor
MPS

MPM3610AGQV

21V/1.2A DC/DC Module Synchronous Step-Down Converter with Integrated Inductor
MPS

MPM3610GQV

21V Input, 1.2A Module Synchronous Step-Down Converter with Integrated Inductor
MPS

MPM3620

24V Input 2A Module Synchronous Step-Down Converter with Integrated Inductor
MPS

MPM3620A

24 V/2 A DC/DC Module Synchronous Step-Down Converter with Integrated Inductor
MPS

MPM3620AGQV

24 V/2 A DC/DC Module Synchronous Step-Down Converter with Integrated Inductor
MPS

MPM3620GQV

24V Input 2A Module Synchronous Step-Down Converter with Integrated Inductor
MPS

MPM3620GQV-Z

Switching Regulator, 5 X 3 MM, 1.60 MM HEIGHT, MO-220, QFN-20
MPS

MPM3630

18V/3A DC/DC Module Synchronous Step-Down Regulator with Integrated Inductor
MPS

MPM3630GQV

18V/3A DC/DC Module Synchronous Step-Down Regulator with Integrated Inductor
MPS