ADS-935MC-C [MURATA]

A/D Converter, 16-Bit, 1 Func, Hybrid, CDIP40;
ADS-935MC-C
型号: ADS-935MC-C
厂家: muRata    muRata
描述:

A/D Converter, 16-Bit, 1 Func, Hybrid, CDIP40

CD 转换器
文件: 总8页 (文件大小:440K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
®
ADS-935  
16-Bit, 5MHz Sampling A/D Converters  
PRODUCT OVERVIEW  
INPUT/OUTPUT CONNECTIONS  
PIN FUNCTION  
PIN FUNCTION  
The ADS-935 is a 16-bit, 5MHz sampling A/D converter.  
This device accurately samples full-scale input signals  
up to Nyquist frequencies with no missing codes.  
The dynamic performance of the ADS-935 has been  
optimized to achieve a signal-to-noise ratio (SNR) of  
83dB and a total harmonic distortion (THD) of –86dB.  
1
±
3
4
5
6
8
9
+3.±ꢀ REF. OUT 40 +1±ꢀ/+15ꢀ  
UNIPOLAR  
39 –1±ꢀ/–15ꢀ  
ANALOG INPUT  
38 +5ꢀ ANALOG SUPPLY  
ANALOG GROUND 3ꢁ –5ꢀ SUPPLY  
OFFSET ADJUST 36 ANALOG GROUND  
GAIN ADJUST  
35 COMP. BITS  
Packaged in a 40-pin TDIP, the functionally complete  
ADS-935 contains a fast-settling sample-hold amplifier,  
a subranging (two-pass) A/D converter, an internal  
reference, timing/control logic, and error-correction  
circuitry. Digital input and output levels are TTL. The  
ADS-935 only requires the rising edge of the start  
convert pulse to operate.  
DIGITAL GROUND 34 OUTPUT ENABLE  
FIFO/DIR  
33 OꢀERFLOW  
FEATURES  
FIFO READ  
3± EOC  
16-bit resolution  
10 FSTAT1  
11 FSTAT±  
31 +5ꢀ DIGITAL SUPPLY  
30 DIGITAL GROUND  
5MHz sampling rate  
1± START CONꢀERT ±9 BIT 1 (MSB)  
Functionally complete  
13 BIT 16 (LSB)  
14 BIT 15  
15 BIT 14  
16 BIT 13  
1ꢁ BIT 1±  
18 BIT 11  
19 BIT 10  
±0 BIT 9  
±8 BIT 1 (MSB)  
±ꢁ BIT ±  
±6 BIT 3  
±5 BIT 4  
±4 BIT 5  
±3 BIT 6  
±± BIT ꢁ  
±1 BIT 8  
Requiring ±5ꢀ supplies and either ±1±v or ±15ꢀ  
supplies, the ADS-935 dissipates 3.3 Watts. The device  
is offered with a bipolar (±±.ꢁ5ꢀ) or a unipolar (0 to  
–5.5ꢀ) analog input range. Models are available for use  
in either commercial (0 to +ꢁ0°C) or HI-REL (–55 to  
+1±5°C) operating temperature ranges. A proprietary,  
auto-calibrating, error-correcting circuit enables the  
device to achieve specified performance over the full  
military temperature range. Typical applications include  
medical imaging, radar, sonar, communications and  
instrumentation.  
No missing codes over full HI-REL temperature  
range  
Edge-triggered  
±5, ±1±ꢀ or ±15ꢀ supplies, 3.0 Watts  
Small, 40-pin, ceramic TDIP  
83dB SNR, –86dB THD  
Ideal for both time and frequency-domain  
applications  
BLOCK DIAGRAM  
POWER AND GROUNDING  
+5V ANALOG SUPPLY  
+5V DIGITAL SUPPLY  
–5V SUPPLY  
38  
31  
37  
ANALOG GROUND  
DIGITAL GROUND  
4, 36  
7, 30  
–12/–15V ANALOG SUPPLY 39  
+12/+15V ANALOG SUPPLY 40  
UNIPOLAR  
2
Figure 1. ADS-935 Functional Block Diagram  
DATEL  
11 Cabot Boulevard, Mansfield, MA 02048-1151 USA  
Tel: (508) 339-3000  
www.datel.com  
e-mail: help@datel.com  
01 Apr 2011 MDA_ADS-935.B02 Page 1 of 8  
®
®
ADS-935  
16-Bit, 5MHz Sampling A/D Converters  
ABSOLUTE MAXIMUM RATINGS  
PHYSICAL/ENꢀIRONMENTAL  
PARAMETERS  
+5ꢀ Supply (Pins 31, 38)  
–5ꢀ Supply (Pin 3ꢁ)  
+1±ꢀ/+15ꢀ Supply (pin 40)  
–1±ꢀ/–15ꢀ Supply (pin 39)  
Digital Inputs (Pin 8, 9, 1±, 34, 35)  
Analog Input (Pin 3)  
LIMITS  
0 to +6  
0 to –6  
UNITS  
ꢀolts  
ꢀolts  
ꢀolts  
ꢀolts  
ꢀolts  
ꢀolts  
°C  
PARAMETERS  
MIN.  
TYP.  
MAX.  
UNITS  
Operating Temp. Range, Case  
ADS-935MC  
ADS-935MM  
0
–55  
+70  
+125  
°C  
°C  
0 to +16ꢀ  
0 to -16ꢀ  
–0.3 to +ꢀdd +0.3  
Thermal Impedance  
θjc  
θca  
Storage Temperature Range  
4
18  
°C/Watt  
°C/Watt  
±5  
+300  
Lead Temperature (10 seconds)  
–65  
+150  
°C  
Package Type  
40-pin, metal-sealed, ceramic TDIP  
0.56 ounces (16 grams)  
Weight  
FUNCTIONAL SPECIFICATIONS  
(TA = +±5°C, ±CC = ±1±/15ꢀ ±DD = ±5, 5MHz sampling rate, and a minimum 3 minute warmup unless otherwise specified.)  
+±5°C  
TYP.  
0 TO +ꢁ0°C  
TYP.  
–55 TO +1±5°C  
ANALOG INPUT  
MIN.  
MAX.  
MIN.  
MAX.  
MIN.  
TYP.  
MAX.  
UNITS  
Input ꢀoltage Range  
Unipolar  
Bipolar  
Input Resistance (pin 3)  
Input Resistance (pin ±)  
Input Capacitance  
0 to –5.5  
±±.ꢁ5  
400  
480  
10  
15  
0 to –5.5  
±±.ꢁ5  
400  
480  
10  
15  
0 to –5.5  
±±.ꢁ5  
400  
480  
10  
15  
ꢀolts  
ꢀolts  
Ω
Ω
pF  
DIGITAL INPUTS  
Logic Levels  
Logic "1"  
Logic "0"  
Logic Loading "1"  
Logic Loading "0" ➁  
Start Convert Positive Pulse Width ➂  
+±.0  
±0  
50  
+0.8  
+±0  
–±0  
+±.0  
±0  
50  
+0.8  
+±0  
–±0  
+±.0  
±0  
50  
+0.8  
+±0  
–±0  
ꢀolts  
ꢀolts  
μA  
μA  
ns  
STATIC PERFORMANCE  
Resolution  
–0.95  
16  
–0.95  
16  
–0.95  
16  
Bits  
LSB  
LSB  
%FSR  
%FSR  
%FSR  
%FSR  
Bits  
Integral Nonlinearity (fin = 10kHz)  
Differential Nonlinearity (fin = 10kHz)  
Full Scale Absolute Accuracy  
Bipolar Zero Error (Tech Note ±)  
Bipolar Offset Error (Tech Note ±)  
Gain Error (Tech Note ±)  
±1.0  
±0.5  
±0.15  
±0.1  
±0.1  
±0.15  
±1.5  
±0.5  
±0.3  
±0.±  
±0.±  
±0.3  
±±.0  
±0.5  
±0.5  
±0.4  
±0.4  
±0.5  
+1.0  
±0.3  
±0.±  
±0.±  
±0.3  
+1.0  
±0.5  
±0.4  
±0.4  
±0.5  
+1.5  
±0.8  
±0.6  
±0.6  
±0.8  
16  
16  
16  
No Missing Codes (fin = 10kHz)  
DYNAMIC PERFORMANCE  
Peak Harmonics (–0.5dB)  
dc to 500kHz  
500kHz to ±.45MHz  
Total Harmonic Distortion (–0.5dB)  
dc to 500kHz  
–8ꢁ  
–8±  
–8±  
–80  
–8ꢁ  
–8±  
–8±  
–80  
–8±  
–ꢁ8  
–ꢁ8  
–ꢁ8  
dB  
dB  
–86  
–81  
–81  
–80  
–86  
–81  
–81  
–80  
–81  
–ꢁꢁ  
–ꢁ6  
–ꢁ6  
dB  
dB  
500kHz to 1MHz  
Signal–to–Noise Ratio  
(w/o distortion, –0.5dB)  
dc to 500kHz  
500kHz to ±.45MHz  
Signal-to-Noise Ratio ➃  
(& distortion, –0.5dB)  
dc to 500kHz  
500kHz to ±.45MHz  
Two-tone Intermodulation  
Distortion (fin = ±00kHz,  
fs = 5MHz, –0.5dB)  
84  
8±  
86  
85  
84  
8±  
86  
85  
ꢁꢁ  
ꢁꢁ  
80  
80  
dB  
dB  
80  
ꢁ9  
8±  
81  
80  
ꢁ9  
8±  
81  
ꢁ6  
ꢁ6  
ꢁ8  
ꢁ5  
dB  
dB  
–86  
80  
–85  
–86  
80  
–85  
–86  
80  
–8±  
dB  
μꢀrms  
Noise  
Input Bandwidth (–3dB)  
Small Signal (–±0dB input)  
Large Signal (–0.5dB input)  
Feedthrough Rejection (fin = 1MHz)  
Slew Rate  
Aperture Delay Time  
Aperture Uncertainty  
S/H Acquisition Time  
(to ±0.001%FSR, 5.5ꢀ step)  
Overvoltage Recovery Time ➄  
A/D Conversion Rate  
±5  
15  
90  
±400  
4
±
±5  
±5  
90  
±400  
4
±
±5  
15  
90  
±400  
4
±
MHz  
MHz  
dB  
ꢀ/μs  
ns  
ps rms  
5
80  
±00  
5
80  
±00  
5
90  
±00  
ns  
ns  
MHz  
DATEL  
11 Cabot Boulevard, Mansfield, MA 02048-1151 USA  
Tel: (508) 339-3000  
www.datel.com  
e-mail: help@datel.com  
01 Apr 2011 MDA_ADS-935.B02 Page ± of 8  
®
®
ADS-935  
16-Bit, 5MHz Sampling A/D Converters  
+±5°C  
TYP.  
0 to +ꢁ0°C  
TYP.  
–55 to +1±5°C  
ANALOG OUTPUT  
MIN.  
MAX.  
MIN.  
MAX.  
MIN.  
TYP.  
MAX.  
UNITS  
Internal Reference  
ꢀoltage  
Drift  
+3.±  
±30  
5
+3.±  
±30  
5
+3.±  
±30  
5
ꢀolts  
ppm/°C  
mA  
External Current  
DIGITAL OUTPUTS  
Logic Levels  
Logic "1"  
Logic "0"  
Logic Loading "1"  
Logic Loading "0"  
Output Coding ➅  
+±.4  
+0.4  
–4  
+±.4  
+0.4  
–4  
+±.4  
+0.4  
–4  
ꢀolts  
ꢀolts  
mA  
+4  
+4  
+4  
mA  
(Offset) Binary / Complementary (Offset) Binary / Two's Complement / Complementary Two's Complement  
POWER REQUIREMENTS  
Power Supply Ranges ➆  
+5ꢀ Supply  
–5ꢀ Supply  
+1±ꢀ Supply ➇  
–1±ꢀ Supply ➇  
+15ꢀ Supply ➇  
–15ꢀ Supply ➇  
Power Supply Currents  
+5ꢀ Supply  
+4.ꢁ5  
–4.ꢁ5  
+11.5  
–11.5  
+14.5  
–14.5  
+5.0  
–5.0  
+1±.0  
–1±.0  
+15.0  
–15.0  
+5.±5  
–5.±5  
+1±.5  
–1±.5  
+15.5  
–15.5  
+4.ꢁ5  
–4.ꢁ5  
+11.5  
–11.5  
+14.5  
–14.5  
+5.0  
–5.0  
+1±.0  
–1±.0  
+15.0  
–15.0  
+5.±5  
–5.±5  
+1±.5  
–1±.5  
+15.5  
–15.5  
+4.9  
–4.9  
+11.5  
–11.5  
+14.5  
–14.5  
+5.0  
–5.0  
+1±.0  
–1±.0  
+15.0  
–15.0  
+5.±5  
–5.±5  
+1±.5  
–1±.5  
+15.5  
–15.5  
ꢀolts  
ꢀolts  
ꢀolts  
ꢀolts  
ꢀolts  
ꢀolts  
+±40  
–150  
–50  
+65  
3.3  
+±40  
–150  
–50  
+65  
3.3  
+±40  
–150  
–50  
+65  
3.3  
mA  
mA  
mA  
–5ꢀ Supply  
–1±/15ꢀ Supply ➇  
+1±/15ꢀ Supply ➇  
Power Dissipation  
Power Supply Rejection  
mA  
Watts  
%FSR/%ꢀ  
±0.0ꢁ  
±0.0ꢁ  
±0.0ꢁ  
Footnotes:  
All power supplies must be on before applying a start convert pulse. All supplies and  
the clock (START CONVERT) must be present during warmup periods. The device  
must be continuously converting during this time.  
This is the time required before the A/D output data is valid once the analog input is  
back within the specified range.  
The minimum supply voltages of +4.9V and –4.9V for VDD are required for –55°C  
operation only. The minimum limits are +4.75V and –4.75V when operating at  
+125°C.  
When COMP. BITS (pin 35) is low, logic loading "0" will be –350μA.  
A 5MHz clock with a 50nsec positive pulse width is used for all production testing.  
See Timing Diagram for more details.  
The minimum supply voltages of +4.9V and –4.9V for VDD are required for –55°C  
operation only. The minimum limits are +4.75V and –4.75V when operating at  
+125°C.  
Effective bits is equal to:  
Full Scale Amplitude  
(SNR + Distortion) – 1.76 +  
20 log  
6.02  
Actual Input Amplitude  
12V only or 15V only required.  
TECHNICAL NOTES  
1. Obtaining fully specified performance from the ADS-935 requires care-  
ful attention to pc-card layout and power supply decoupling. The device's  
analog and digital ground systems are connected to each other internally.  
For optimal performance, tie all ground pins ((4, ꢁ, 30 and 36) directly to a  
large analog ground plane beneath the package.  
binary. Using the MSB output (pin ±9) instead of the MSB output (pin ±8)  
changes the respective output codings to complementary two's comple-  
ment and two's complement.  
Pin 35 is TTL compatible and can be directly driven with digital logic in  
applications requiring dynamic control over its function. There is an internal  
pull-up resistor on pin 35 allowing it to be either connected to +5ꢀ or left  
open when a logic "1" is required.  
For the best performance it is recommended to use a single power source  
for both the +5ꢀ analog and +5ꢀ digital supplies. Bypass all power supplies  
and the +3.±ꢀ reference output to ground with 4.ꢁꢂF tantalum capacitors  
in parallel with 0.1ꢂF ceramic capacitors. Locate the bypass capacitors as  
close to the unit as possible.  
4. To enable the three-state outputs, connect OUTPUT ENABLE (pin 34) to a  
logic "0" (low). To disable, connect pin 34 to a logic "1" (high).  
5. Applying a start convert pulse while a conversion is in progress (EOC =  
logic "1") will initiate a new and probably inaccurate conversion cycle. Data  
from both the interrupted and subsequent conversions will be invalid.  
±. The ADS-935 achieves its specified accuracies without the need for exter-  
nal calibration. If required, the device's small initial offset and gain errors  
can be reduced to zero using the adjustment circuitry shown in Figure ±.  
When using this circuitry, or any similar offset and gain calibration hard-  
ware, make adjustments following warmup. To avoid interaction, always  
adjust offset before gain. Tie pins 5 and 6 to ANALOG GROUND (pin 4) if not  
using offset and gain adjust circuits.  
6. Do not enable/disable or complement the output bits or read from the FIFO  
during the conversion process (from the rising edge of EOC to the falling  
edge of EOC).  
ꢁ. The OꢀERFLOW bit (pin 33) switches from 0 to 1 when the input voltage  
exceeds that which produces an output of all 1’s or when the input equals  
or exceeds the voltage that produces all 0’s. When COMP BITS is activated,  
the above conditions are reversed.  
3. Pin 35 (COMP. BITS) is used to select the digital output coding format of the  
ADS-935 (see Tables ±a and ±b). When this pin has a TTL logic "0" applied,  
it complements all of the ADS-935's digital outputs.  
When pin 35 has a logic "1" applied, the output coding is complementary  
offset binary. Applying a logic "0" to pin 35 changes the coding to offset  
DATEL  
11 Cabot Boulevard, Mansfield, MA 02048-1151 USA  
Tel: (508) 339-3000  
www.datel.com  
e-mail: help@datel.com  
01 Apr 2011 MDA_ADS-935.B02 Page 3 of 8  
®
®
ADS-935  
16-Bit, 5MHz Sampling A/D Converters  
Once the FIFO is full (indicated by FSTAT1 and FSTAT± both equal to "1"), it  
can be read by dropping the FIFO READ line (pin 9) to a logic "0" and then  
applying a series of 15 rising edges to the read line. Since the first data word  
is already present at the FIFO output, the first read command (the first rising  
edge applied to FIFO READ) will bring data from the second conversion to the  
output. Each subsequent read command/rising edge brings the next word  
to the output lines. After the 15th rising edge brings the 16th data word to  
the FIFO output, the subsequent falling edge on READ will update the status  
outputs (after a ±0ns maximum delay) to FSTAT1 = 0, FSTAT± = 1 indicating  
that the FIFO is empty.  
INTERNAL FIFO OPERATION  
The ADS-935 contains an internal, user-initiated, 18-bit, 16-word FIFO  
memory. Each word in the FIFO contains the 16 data bits as well as the MSB  
and OꢀERFLOW bits. Pins 8 (FIFO/DIR) and 9 (FIFO READ) control the FIFO's  
operation. The FIFO's status can be monitored by reading pins 10 (FSTAT1)  
and 11 (FSTAT±).  
When pin 8 (FIFO/DIR) has a logic "1" applied, the FIFO is inserted into the  
digital data path. When pin 8 has a logic "0" applied, the FIFO is transpar-  
ent and the output data goes directly to the output three-state register (whose  
operation is controlled by pin 34 (ENABLE)).Read and write commands to the  
FIFO are ignored when the ADS-935 is operated in the "direct" mode.It takes a  
maximum of ±0ns to switch the FIFO in or out of the ADS-935's digital data path.  
If a read command is issued after the FIFO empties, the last word (the 16th  
conversion) will remain present at the outputs.  
FIFO Reset Feature  
FIFO WRITE and READ Modes  
At any time, the FIFO can be reset to an empty state by putting the ADS-935  
into its "direct" mode (logic "0" applied to pin 8, FIFO/DIR) and also applying  
a logic "0" to the FIFO READ line (pin 9). The empty status of the FIFO will be  
indicated by FSTAT1 going to a "0" and FSTAT± going to a "1". The status  
outputs change 40ns after applying the control signals.  
Once the FIFO has been enabled (pin 8 high), digital data is automatically  
written to it, regardless of the status of FIFO READ (pin 9). Assuming the FIFO  
is initially empty, it will accept data (18-bit words) from the next 16 consecu-  
tive A/D conversions. As a precaution, pin 9 (which controls the FIFO's READ  
function) should not be low when data is first written to an empty FIFO.  
When the FIFO is initially empty, digital data from the first conversion (the  
"oldest" data) appears at the output of the FIFO immediately after the first  
conversion has been completed and remains there until the FIFO is read.  
FIFO Status, FSTAT1 and FSTAT2  
Monitor the status of the data in the FIFO by reading the two status pins,  
FSTAT1 (pin 10) and FSTAT± (pin 11).  
If the output three-state register has been enabled (logic "0" applied to pin  
34), data from the first conversion will appear at the output of the ADS-935.  
Attempting to write a 1ꢁth word to a full FIFO will result in that data, and any  
subsequent conversion data, being lost.  
CONTENTS  
Empty (0 words)  
<half full (≤8 words)  
half-full or more (≥8 words)  
Full (16 words)  
FSTAT1  
FSTAT±  
0
0
1
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
0
1
1
1
0
0
Table 1. FIFO Delays  
DATEL  
11 Cabot Boulevard, Mansfield, MA 02048-1151 USA  
Tel: (508) 339-3000  
www.datel.com  
e-mail: help@datel.com  
01 Apr 2011 MDA_ADS-935.B02 Page 4 of 8  
®
®
ADS-935  
16-Bit, 5MHz Sampling A/D Converters  
Zero/Offset Adjust Procedure  
CALIBRATION PROCEDURE  
1. Apply a train of pulses to the START CONꢀERT input (pin 1±) so that the  
converter is continuously converting.  
Connect the converter per Figure ±. Any offset/gain calibration procedures  
should not be implemented until the device is fully warmed up. To avoid  
interaction, adjust offset before gain. The ranges of adjustment for the  
circuits in Figure ± are guaranteed to compensate for the ADS-935’s initial  
accuracy errors and may not be able to compensate for additional system  
errors.  
±. For zero/offset adjust, apply –4±ꢂꢀ to the ANALOG INPUT (pin 3).  
3. Adjust the offset potentiometer until the code flickers between 1000 0000  
0000 0000 and 0111 1111 1111 1111 with pin 35 tied high (comple-  
mentary offset binary) or between 0111 1111 1111 1111 and 1000 0000  
0000 0000 with pin 35 tied low (offset binary).  
A/D converters are calibrated by positioning their digital outputs exactly  
on the transition point between two adjacent digital output codes. This is  
accomplished by connecting LED's to the digital outputs and performing  
adjustments until certain LED's "flicker" equally between on and off. Other  
approaches employ digital comparators or microcontrollers to detect when  
the outputs change from one code to the next.  
4. Two's complement coding requires using BIT 1 (MSB) (pin ±9). With pin 35  
tied low, adjust the trimpot until the output code flickers between all 0’s  
and all 1’s.  
Gain Adjust Procedure  
For the ADS-935, offset adjusting is normally accomplished when the ana-  
log input is 0 minus ½ LSB (–4±ꢂꢀ). See Table ±b for the proper bipolar  
output coding.  
1. For gain adjust, apply +±.ꢁ498ꢁ4ꢀ to the ANALOG INPUT (pin 3).  
±. Adjust the gain potentiometer until all output bits are 0’s and the LSB flick-  
ers between a 1 and 0 with pin 35 tied high (complementary offset binary)  
or until all output bits are 1’s and the LSB flickers between a 1 and 0 with  
pin 35 tied low (offset binary).  
Gain adjusting is accomplished when the analog input is at nominal full  
scale minus 1½ LSB's (+±.ꢁ498ꢁ4ꢀ).  
Note: Connect pin 5 to ANALOG GROUND (pin 4) for operation without  
zero/offset adjustment. Connect pin 6 to pin 4 for operation without gain  
adjustment.  
3. Two's complement coding requires using BIT 1 (MSB) (pin ±9). With pin  
35 tied low, adjust the gain trimpot until the output code flickers equally  
between 0111 1111 1111 1111 and 0111 1111 1111 1110.  
OUTPUT FORMAT  
Complementary (Offset) Binary  
PIN 35 LOGIC LEVEL  
4. To confirm proper operation of the device, vary the applied input voltage to  
obtain the output coding listed in Table ±b.  
1
0
1
0
(Offset) Binary  
Complementary Two’s Complement (Using MSB, pin ±9)  
Two’s Complement (Using MSB, pin ±9)  
Table 2a. Setting Output Coding Selection (Pin 35)  
Figure 2. Bipolar Connection Diagram  
DATEL  
11 Cabot Boulevard, Mansfield, MA 02048-1151 USA  
Tel: (508) 339-3000  
www.datel.com  
e-mail: help@datel.com  
01 Apr 2011 MDA_ADS-935.B02 Page 5 of 8  
®
®
ADS-935  
16-Bit, 5MHz Sampling A/D Converters  
COMP. BINARY  
BINARY  
COMP. TWO'S COMP.  
TWO'S COMP.  
UNIPOLAR  
SCALE  
0 –1 LSB  
INPUT RANGE  
0 to –5.5ꢀ  
–0.000084  
–0.0001±6  
–0.68ꢁ500  
–1.3ꢁ5000  
–±.ꢁ49958  
–±.ꢁ50000  
–4.1±5000  
–4.81±500  
–5.499916  
–5.499958  
–5.500000  
INPUT RANGE  
±±.ꢁ5ꢀ  
BIPOLAR  
SCALE  
+FS –1 LSB  
+FS –1 1/± LSB  
+3/4 FS  
+1/± FS  
0
–1/± LSB  
–1/± FS  
–3/4 FS  
MSB  
1111 1111 1111 1111 0000 0000 0000 0000 0111 1111 1111 1111 1000 0000 0000 0000  
LSB "1" to "0" LSB "0" to "1" LSB "1" to "0" LSB "0" to "1"  
1110 0000 0000 0000 0001 1111 1111 1111 0110 0000 0000 0000 1001 1111 1111 1111  
1100 0000 0000 0000 0011 1111 1111 1111 0100 0000 0000 0000 1011 1111 1111 1111  
1000 0000 0000 0000 0111 1111 1111 1111 0000 0000 0000 0000 1111 1111 1111 1111  
0111 1111 1111 1111 1000 0000 0000 0000 1111 1111 1111 1111 0000 0000 0000 0000  
0100 0000 0000 0000 1011 1111 1111 1111 1100 0000 0000 0000 0011 1111 1111 1111  
0010 0000 0000 0000 1101 1111 1111 1111 1010 0000 0000 0000 0101 1111 1111 1111  
0000 0000 0000 0001 1111 1111 1111 1110 1000 0000 0000 0001 0111 1111 1111 1110  
LSB MSB  
LSB MSB  
LSB MSB  
LSB  
+±.ꢁ49916  
+±.ꢁ498ꢁ4  
+±.06±500  
+1.3ꢁ5000  
0.000000  
–0.000084  
–1.3ꢁ5000  
–±.06±500  
–±.ꢁ49916  
–±.ꢁ49958  
–±.ꢁ50000  
0 –1 1/± LSB  
0 – 1/8 FS  
0 – 1/4 FS  
–1/± FS – 1/±LSB  
–1/± LSB  
–3/4 FS  
–ꢁ/8 FS  
–FS +1 LSB  
–FS + 1/± LSB  
–FS  
–FS +1 LSB  
–FS + 1/± LSB  
–FS  
LSB "0" to "1"  
0000 0000 0000 0000 1111 1111 1111 1111 1000 0000 0000 0000 0111 1111 1111 1111  
OFFSET BINARY COMP. OFF. BIN. TWO'S COMP. COMP. TWO'S COMP.  
LSB "1" to "0"  
LSB "0" to "1"  
LSB "1" to "0"  
Table 2b. Output Coding  
THERMAL REQUIREMENTS  
not overheat. The ground and power planes beneath the package, as well as  
all pcb signal runs to and from the device, should be as heavy as possible to  
help conduct heat away from the package. Electrically insulating, thermally-  
conductive "pads" may be installed underneath the package. Devices should  
be soldered to boards rather than "socketed", and of course, minimal air flow  
over the surface can greatly help reduce the package temperature.  
All DATEL sampling A/D converters are fully characterized and specified over  
operating temperature (case) ranges of 0 to +ꢁ0°C and –55 to +1±5°C. All  
room-temperature (TA = +±5°C) production testing is performed without the  
use of heat sinks or forced-air cooling. Thermal impedance figures for each  
device are listed in their respective specification tables.  
These devices do not normally require heat sinks, however, standard precau-  
tionary design and layout procedures should be used to ensure devices do  
N
N+1  
N+2  
N+3  
START  
CONVERT  
Acquisition Time  
75ns typ.  
20ns typ.  
H
o
l
d  
INTERNAL S/H  
125ns typ.  
20ns typ.  
50ns typ.  
EOC  
110ns typ.  
C
o
n
v
e
r
si
o
n
T
i
m
e  
150ns typ.  
20ns typ.  
OUTPUT  
DATA  
Data N-4 Valid  
50ns typ.  
Data N-3 Valid  
Data N-2 Valid  
Data N-1 Valid  
Invalid  
Data  
Invalid  
Data  
NOTES:  
1. Scale is approximately 20ns per didsion.fs = 5MHz  
2. This device has three pipeline delays. Four start convert pulses (clock cycles) must be applied for valid data from the  
first conversion to appear at the output of the A/D.  
Figure 3. ADS-935 Timing Diagram  
DATEL  
11 Cabot Boulevard, Mansfield, MA 02048-1151 USA  
Tel: (508) 339-3000  
www.datel.com  
e-mail: help@datel.com  
01 Apr 2011 MDA_ADS-935.B02 Page 6 of 8  
®
®
ADS-935  
16-Bit, 5MHz Sampling A/D Converters  
Preliminary Evaluation Board - Modified ADS-B933 to include 12V or 15V Supplies to U6  
DATEL  
11 Cabot Boulevard, Mansfield, MA 02048-1151 USA  
Tel: (508) 339-3000  
www.datel.com  
e-mail: help@datel.com  
01 Apr 2011 MDA_ADS-935.B02 Page ꢁ of 8  
®
®
ADS-935  
16-Bit, 5MHz Sampling A/D Converters  
MECHANICAL DIMENSIONS - INCHES (mm)  
ORDERING INFORMATION  
MODEL  
NUMBER  
OPERATING  
TEMP. RANGE  
ACCESSORIES  
ADS-935MC  
ADS-935MM  
0 to +ꢁ0°C  
ADS-B935  
HS-40  
Evaluation Board (without ADS-935)  
Heat Sink for all ADS-935 models  
–55 to +1±5°C  
Receptacles for PC board mounting can be ordered through AMP, Inc., Part # 3-331±ꢁ±-8 (Component  
Lead Socket), 40 required. For MIL-STD-883 product, or surface mount packaging, contact DATEL.  
DATEL  
. makes no representation that the use of its products in the circuits described herein, or the use of other  
technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not  
imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change  
without notice.  
11 Cabot Boulevard, Mansfield, MA 02048-1151 USA  
ITAR and ISO 9001/14001 REGISTERED  
www.datel.com • e-mail: help@datel.com  
01 Apr 2011 MDA_ADS-935.B02 Page 8 of 8  

相关型号:

ADS-935MM

Sampling A/D Converters
DATEL

ADS-935MM-C

A/D Converter, 16-Bit, 1 Func, Hybrid, CDIP40
MURATA

ADS-937-C/883

Sampling A/D Converters
DATEL

ADS-937-C883

Sampling A/D Converters
DATEL

ADS-937/883

Sampling A/D Converters
DATEL

ADS-937883

Sampling A/D Converters
DATEL

ADS-937MC

Sampling A/D Converters
DATEL

ADS-937MC-C

Sampling A/D Converters
DATEL

ADS-937ME

Sampling A/D Converters
DATEL

ADS-939MM-C

Sampling A/D Converters
DATEL

ADS-941

14-Bit, 1MHz Sampling A/D Converters
CANDD

ADS-941MC

14-Bit, 1MHz Sampling A/D Converters
CANDD