HDAS-16MM-C [MURATA]

ADC, Proprietary Method, 12-Bit, 1 Func, 16 Channel, Parallel, Word Access, Hybrid, CDIP62, ROHS COMPLIANT, CERAMIC, DIP-62;
HDAS-16MM-C
型号: HDAS-16MM-C
厂家: muRata    muRata
描述:

ADC, Proprietary Method, 12-Bit, 1 Func, 16 Channel, Parallel, Word Access, Hybrid, CDIP62, ROHS COMPLIANT, CERAMIC, DIP-62

文件: 总7页 (文件大小:224K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HDAS-16, HDAS-8  
12-Bit, 50kHz, Complete  
Data Acquisition Systems  
FEATURES  
Miniature 62-pin cermanic package  
12-Bit resolution, 50kHz throughput  
Full-scale input range from 50mV to 10V  
Three-state outputs  
16 S.E. or 8 differential input channels  
Auto-sequencing channel addressing  
MIL-STD-883 versions  
No missing codes  
GENERAL DESCRIPTION  
Internal HDAS circuitry includes:  
Using thin and thick-film hybrid technology, Murata Power Solutions offers  
complete low-cost data acquisition systems with superior performance and  
reliability.  
Analog input multiplexer (16 S.E. or 8 diff.)  
Resistor-programmable instrumentation amplifier  
Sample-and-hold circuit complete with MOS hold capacitor  
10 Volt buffered reference  
The HDAS-8 (with 8 differential input channels) and the HDAS-16 (with  
16 single-ended input channels) are complete, high-performance, 12-bit data  
acquisition systems in 62-pin packages. Each HDAS may be expanded up to  
32 single-ended or 16 differential channels by adding externalmultiplexers.  
12-bit A/D converter with three-state outputs and control logic  
Internal channel address sequencing is automatic after each conversion,  
or the user may supply external channel addresses.  
5
49 50  
48 47  
45  
46 39  
40 38 36 37  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
7
CH0 HI /CH0  
CH1 HI /CH1  
CH2 HI /CH2  
CH3 HI /CH3  
CH4 HI /CH4  
CH5 HI /CH5  
CH6 HI /CH6  
CH7 HI /CH7  
CH0 LO /CH8  
CH1 LO /CH9  
CH2 LO /CH10  
CH3 LO /CH11  
CH4 LO /CH12  
CH5 LO /CH13  
CH6 LO /CH14  
CH7 LO /CH15  
4
3
2
1
BIT 1  
BIT 2  
BIT 3  
BIT 4  
EN (1-4)  
BIT 5  
BIT 6  
BIT 7  
BIT 8  
EN (5-8)  
BIT 9  
BIT 10  
BIT 11  
BIT 12 (LSB)  
EN (9-12)  
EOC  
(MSB)  
THREE  
STATE  
I/A  
S/H  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
16 CHANNEL  
SINGLE ENDED  
OR  
8 CHANNEL  
DIFFERENTIAL  
ANALOG  
12-BIT  
A/D  
CONVERTER  
THREE  
STATE  
(HOLD)  
MULTIPLEXER  
THREE  
STATE  
(START)  
MUX  
ADDRESS  
REGISTER  
CONTROL  
LOGIC  
12 11 10  
MUX  
9
6
8
19  
16 15 1413 20 41  
44 42  
43 18 17  
MUX  
ADDRESS IN  
ADDRESS OUT  
Typical topology is shown.  
Figure 1. Functional Block Diagram  
www.murata-ps.com  
Technical enquiries email: sales@murata-ps.com, tel: +1 508 339 3000  
MDC_HDAS-16/8.B01 Page 1 of 7  
+25°C  
                                                                       
±±02  
±±03  
%
%
                                                                       
HDAS-16, HDAS-8  
ABSOLUTE MAXIMUM RATINGS  
PERFORMANCE (cont.)  
Unipolar Zero Error  
MIN.  
TYP.  
MAX.  
UNITS  
PARAMETERS  
MIN.  
TYP.  
MAX.  
UNITS  
+15V Supply (pin 43)  
–15V Supply (pin 44)  
+5V Supply (pin 18)  
AnalogInputs  
DigitalInputs  
ThermalResistances:  
Junction-Case  
Case-Ambient  
–±05  
+±05  
–±05  
–35  
+.8  
–.8  
+7  
+35  
+7  
Volts  
Volts  
Volts  
Volts  
Volts  
+25°C  
±±0.  
±±03  
%FSR  
%FSR  
–55 to +.25°C  
Bipolar Zero Error  
+25°C ꢁ  
±±0.  
±±03  
%FSR  
%FSR  
–±05  
–55 to +.25°C  
Bipolar Offset Error  
+25°C ꢁ  
.5  
.5  
3±  
3±±  
°C/Watt  
°C/Watt  
°C/Watt  
°C  
±±0.  
±±03  
%FSR  
%FSR  
Junction-Ambient  
Lead Temp. (10 seconds)  
–55 to +.25°C  
Gain Error  
–55 to +.25°C  
FUNCTIONAL SPECIFICATIONS  
(The following specifications apply over the operating temperature range and power  
supply range unless otherwise indicated0)  
DYNAMIC CHARACTERISTICS  
Acquisition Time, Gain = 1  
+25°C  
ANALOG INPUTS  
MIN.  
TYP.  
MAX.  
UNITS  
9
.±  
.5  
μs  
μs  
–55 to +.25°C  
ApertureDelayTime  
Aperture Uncertainty  
S/HDroopRate  
Feedthrough  
Signal Range, Unipolar  
Gain = .  
5±±  
.
±.  
ns  
±
+.±  
+5±  
Volts  
mV  
ns  
μV/μs  
%
Gain = 2±±  
Signal Range, Bipolar  
Gain = .  
±±0±.  
–.±  
–5±  
+.±  
+5±  
Volts  
mV  
A/DConversionTime  
+25°C  
Gain = 2±±  
6
8
μs  
μs  
Input Gain Equation ꢄ  
Gain Equation Error  
InstrumentationAmplifier  
InputImpedance  
Gain = . + (2±kΩ/RGAIN)  
–55 to +.25°C  
ThroughputRate  
+25°C  
.±  
±±0.  
%
Ohms  
pA  
5±  
33  
66  
kHz  
kHz  
8
.±  
.2  
.±  
–55 to +.25°C  
Input Bias Current:  
+25°C  
±25±  
DIGITAL INPUTS  
Logic Levels  
(Pins 8, .3–.6, .9–2., 26, 3.)  
–55 to +.25°C  
Doubles every .±°C  
Input Offset Current:  
+25°C  
±.  
nA  
Logic .  
Logic ±  
+20±  
±
+505  
+±08  
Volts  
Volts  
–55 to +.25°C  
Doubles every .±°C  
Multiplexer  
(Pin 5)  
Channel ON Resistance  
Channel OFF Input Leakage  
Channel OFF Output Leakage  
Channel ON Leakage  
Input Capacitance  
HDAS-.6, Channel ON  
HDAS-8, ChannelON  
+25°C, Channel OFF  
InputOffsetVoltage  
Gain = 1, +25°C  
±3±  
±.  
2
kΩ  
pA  
nA  
pA  
Logic .  
+40±  
±
+505  
+±08  
Volts  
Volts  
Logic ±  
Logic Loading  
(Pins 5, 8, .3–.6, .9–2.,  
26, 3.)  
±.±±  
.±±  
5±  
5
pF  
pF  
pF  
Logic .  
2±  
4±  
2±  
±.±  
±.±  
μA  
μA  
ns  
Logic ±  
Multiplexer Address Set-upTime  
ENABLEtoDataValidDelay  
STROBE ꢂꢀ  
3±  
ns  
±2  
mV  
ns  
–55 to +.25°C (max0)  
Gain = 200, +25°C  
–55 to +.25°C (max0)  
Common Mode Range  
CMRR, Gain = 1, at 60Hz  
(±3ppm/°C x Gain) ±2±ppm/°C  
±.±±  
(±3ppm/°C x Gain) ±2±ppm/°C  
OUTPUTS  
mV  
LogicLevels (OutputData)  
Logic .  
+204  
+205  
Volts  
Volts  
Volts  
±.±  
7±  
Volts  
dB  
Logic . (pin 7)  
Logic ±  
82  
+±04  
Input Voltage Noise, Gain = 1  
(Referred to input)  
.5±  
2±±  
–8±  
μVrms  
dB  
(Pins 9, .±, .., and .2)  
Logic .  
Channel Crosstalk  
+205  
Volts  
Volts  
Logic ±  
Logic Loading  
Logic .  
+±04  
PERFORMANCE  
Resolution  
.2  
Bits  
–4±±  
+4  
μA  
mA  
IntegralNonlinearity  
± to +7±°C  
Logic ±  
±.  
±.  
LSB  
LSB  
Internal Reference:  
Voltage, +25°C  
Drift  
–55 to +.25°C  
+9099  
+.±0±±  
+.±0±.  
±2±  
.
Volts  
ppm/°C  
mA  
Differential Nonlinearity  
± to +7±°C  
±.  
±.  
LSB  
LSB  
External Current  
Output Data Coding  
–55 to +.25°C  
Straight binary (unipolar) or offset binary (bipolar)  
No Missing Codes  
Over the operating temperature range  
www.murata-ps.com  
Technical enquiries email: sales@murata-ps.com, tel: +1 508 339 3000  
MDC_HDAS-16/8.B01 Page 2 of 7  
HDAS-16, HDAS-8  
FUNCTIONAL SPECIFICATIONS (Continued)  
INPUT/OUTPUT CONNECTIONS  
POWER REQUIREMENTS  
MIN.  
TYP.  
MAX.  
UNITS  
PIN NO.  
HDAS-16  
HDAS-8  
PowerSupplyRanges  
+.5VSupply  
1
CH3 IN  
CH2 IN  
CH1 IN  
CH0 IN  
MUX ENABLE  
RDELAY  
EOC  
CH3 HIGH IN  
+.405  
–.405  
+4075  
+.50±  
–.50±  
+50±  
+.505  
–.505  
+5025  
Volts  
Volts  
Volts  
2
CH2 HIGH IN  
3
CH1 HIGH IN  
CH0 HIGH IN  
–.5VSupply  
4
+5VSuppy  
5
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
PowerSupplyCurrents  
+.5VSupply  
6
+33  
–3±  
+.5  
.025  
mA  
mA  
7
–.5VSupply  
8
STROBE  
A8  
+5VSuppy  
mA  
9
MULTIPLEXER  
ADDRESS  
OUT  
PowerDissipation  
Watts  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
A4  
A2  
PHYSICAL/ENVIRONMENTAL  
A1  
Operating Temp. Range, Case  
MC Models  
RA8  
MULTIPLEXER  
ADDRESS  
IN  
±
+7±  
+.25  
+.5±  
°C  
°C  
°C  
RA4  
MM/883 Models  
–55  
–65  
RA2  
StorageTemperatureRange  
Weight  
PackageType  
RA1  
.04 ounces (3907 grams)  
62-pin cermanic DIP  
DIGITAL COMMON  
+5V SUPPLY  
LOAD  
Footnotes:  
CLEAR  
Analog inputs will withstand ±35V with power on0 If the power is off, the maximum  
safe input (no damage) is ±2±V0  
ENABLE (Bits 9–12)  
BIT 12 (LSB)  
BIT 11  
The gain equation error is guaranteed before external trimming and applies at  
gains less than 5±0 This error increases at gains over 5±0  
BIT 10  
BIT 9  
Adjustable to zero0  
ENABLE (Bits 5–8)  
BIT 8  
STROBE pulse width must be less than EOC period to achieve maximum  
throughput rate0  
BIT 7  
BIT 6  
BIT 5  
ENABLE (Bits 1–4)  
BIT 4  
TECHNICAL NOTES  
BIT 3  
BIT 2  
1. Input channels are protected to 20 Volts beyond the powersupplies.  
All digital output pins have one second short-circuit protection.  
2. To retain high system throughput rates while digitizing low-level signals,  
apply external high-gain amplifiers foreach channel. MPS’s AM-551 is  
suggested for such amplifier-per-channel applications.  
3. The HDAS devices have self-starting circuits for free-running sequential  
operation. If, however, in a power-upcondition the supply voltage slew rate  
is less than 3V per microsecond, the free running state might not be initial-  
ized. Apply a negative pulse to the STROBE, to eliminate this condition.  
4. For unipolar operation, connect BIPOLAR INPUT (pin 38) to S/H OUT (pin 39).  
For bipolar operation, connect BIPOLAR INPUT (pin 38) to +10V REFERENCE  
OUT (pin 40).  
5. RDELAY may be a standard value 5% carbon composition or film-type resistor.  
6. RGAIN must be very accurate with low temperature coefficients. If neces-  
sary, fabricate the gain resistor from a precision metal-film type in series  
with a low value trim resistor or potentiometer. The total resistor tempera-  
ture coefficient must be no greater than 10ppm/ꢀC.  
7. ANALOG SIGNAL COMMON, POWER COMMON and DIGITAL COMMON are  
connected internally. For optimal performance, tie all ground pins (17, 41,  
42, 45, 46) directly to a large analog ground plane beneath the package.  
8. For HDAS-16, tie pin 50 to a “signal source common” if possible. Otherwise  
tie pin 50 to pin 41 (ANA SIG COM).  
BIT 1 (MSB)  
GAIN ADJUST  
OFFSET ADJUST  
BIPOLAR INPUT  
SAMPLE/HOLD OUT  
+10V REFERENCE OUT  
ANALOG SIGNAL COMMON  
ANALOG POWER COMMON  
+15V SUPPLY  
–15V SUPPLY  
ANALOG SIGNAL COMMON  
ANALOG SIGNAL COMMON  
RGAIN LOW  
RGAIN HIGH  
AMP. IN HIGH ꢃ  
AMP. IN LOW ꢃ  
CH15 IN  
*
*
*
*
*
*
*
CH7 LOW IN  
CH6 LOW IN  
CH5 LOW IN  
CH4 LOW IN  
CH3 LOW IN  
CH2 LOW IN  
CH1 LOW IN  
CH0 LOW IN  
CH7 HIGH IN  
CH6 HIGH IN  
CH5 HIGH IN  
CH4 HIGH IN  
CH14 IN  
CH13 IN  
CH12 IN  
CH11 IN  
CH10 IN  
CH9 IN  
CH8 IN  
CH7 IN  
CH6 IN  
CH5 IN  
CH4 IN  
*Same as HDAS-16  
Caution: Pins 49 and 50 do not have overvoltage protection; therefore, protected multiplexers,  
such as MPS’s MX-1606 and MX-808 are recommended. See the General Operation description.  
www.murata-ps.com  
Technical enquiries email: sales@murata-ps.com, tel: +1 508 339 3000  
MDC_HDAS-16/8.B01 Page 3 of 7  
HDAS-16, HDAS-8  
Table 1. Description of Pin Functions  
Table2. CalibrationTable  
LOGIC  
FUNCTION  
STATE DESCRIPTION  
UNIPOLAR RANGE  
ADJUST  
INPUT VOLTAGE  
DIGITAL INPUTS  
0 to +5V  
ZERO  
GAIN  
+0.6mV  
+4.9982V  
STROBE  
1 to 0 Initiates acquisition and conversion  
of analog signal  
0 to +10V  
ZERO  
GAIN  
+1.2mV  
+9.9963V  
LOAD  
0
Random address mode initiated on  
falling edge of STROBE  
BIPOLAR RANGE  
1
0
Sequential address mode  
2.5V  
OFFSET  
GAIN  
–2.4994V  
+2.4982V  
CLEAR  
Allows next STROBE pulse to reset  
MULTIPLEXER ADDRESS to CH0  
overriding LOAD COMMAND  
5V  
OFFSET  
GAIN  
–4.9988V  
+4.9963V  
MUX ENABLE  
0
1
Disables internal multiplexer  
Enables internal multiplexer  
10V  
OFFSET  
GAIN  
–9.9976V  
+9.9927V  
MUX ADDRESS IN  
Selects channel for random  
address mode 8, 4, 2, 1  
natural binary coding  
Calibration Procedures  
1. Offset and gain adjustments are made by connecting two 20k trim potenti-  
ometers as shown in Figure 2.  
DIGITAL OUTPUTS  
EOC (STATUS)  
0
1
0
1
0
1
0
1
Conversion complete  
Conversion in process  
2. Connect a precision voltage source to pin 4 (CH0 IN). If the HDAS-8 is used,  
connect pin 58 (CH0 LOW IN) to analog ground. Ground pin 20 (CLEAR) and  
momentarily short pin8 (STROBE). Trigger the A/D by connecting pin 7 (EOC)  
to pin 8 (STROBE). Select proper value for RGAIN and RDELAY by referring to  
Table 3.  
3. Adjust the precision voltage source to the value shown in Table 2 for the  
unipolar zero adjustment (ZERO + 1/2LSB)or the bipolar offset adjustment  
(–FS + 1/2LSB). Adjust the offset trim potentiometer so that the output code  
flickers equally between 0000 0000 0000 and 0000 0000 0001.  
4. Change the output of the precision voltage source to the value shown in  
Table 2 for the unipolar or bipolar gain adjustment (+FS – 1 1/2LSB). Adjust  
the gain trim potentiometer so that the output flickers equally between  
1111 1111 1110 and 1111 1111 1111.  
ENABLE (1–4)  
Enables three-state outputs bits 1-4  
Disablesthree-stateoutputsbits1-4  
Enables three-state outputs bits 5-8  
Disablesthree-stateoutputsbits5-8  
Enables three-state outputs bits 9-12  
Disables three-state outputs bits 9-12  
ENABLE (5–8)  
ENABLE (9–12)  
MUX ADDRESS OUT  
Output of multiplexer address  
register 8, 4, 2, 1 natural binary  
coding  
ANALOG INPUTS  
CHANNEL INPUTS  
DESCRIPTION  
Limit voltage to 20V beyond  
power supplies  
BIPOLAR INPUT  
For unipolar operation, connect  
to pin 39 (S/H OUT). For bipolar  
operation, connect to in 40  
(+10V OUT)  
GAIN  
+15Vdc  
ADJUST  
36  
20k  
AMP. IN LOW  
AMP. IN HIGH  
These pins are direct inputs to the  
instrumentation amplifier for external  
channel expansion beyond 16SE or  
8D channels.  
37  
20k  
OFFSET  
ADJUST  
–15Vdc  
ANALOG OUTPUTS  
S/H OUT  
Figure 2. External Adjustment  
Sample/hold output  
+10V REFERENCE OUT  
ADJUSTMENT PINS  
ANALOG SIGNAL COMMON Low level analog signal return  
Buffered +10V reference output  
GENERAL OPERATION  
The HDAS devices accept either 16 single-ended or 8 differential input signals.  
For single-ended circuits, the AMP INLOW (pin 50) input to the instrumentation  
amplifier must terminate at ANALOG SIGNAL COMMON (pin 41). For differential  
circuits, both the HIGH and LOW signal inputs must terminate externally for  
each channel. Tie unused channels to the ANALOG SIGNAL COMMON (pin 41).  
To obtain additional channels, connect external multiplexers to the AMP IN  
HIGH (pin 49) and AMP IN LOW (pin 50). Using this scheme, the HDAS-16 can  
provide 32 single-ended expansion channels while the HDAS-8 can provide  
up to 16 differential expansion channels. MPS’s MX Series multiplexers are  
recommended.  
GAIN ADJUSTMENT  
OFFSET ADJUSTMENT  
RGAIN  
External gain adjustment.  
See calibration instructions.  
External offset adjustment.  
See calibration instructions.  
Optional gain selection point. Factory  
adjusted for G = 1 when left open.  
RDELAY  
Optional acquisition time adjustment  
when connected to +5V. Factory  
adjusted for 9μs. Must be connected  
to +5V either directly or through a  
resistor.  
www.murata-ps.com  
Technical enquiries email: sales@murata-ps.com, tel: +1 508 339 3000  
MDC_HDAS-16/8.B01 Page 4 of 7  
HDAS-16, HDAS-8  
The acquisition time is the amount of time the multiplexer, instrumenta-  
tion amplifier, and sample/hold require to settle within a specified range of  
accuracy after STROBE (pin 8)goes low. The acquisition time period can be  
observed by measuring how long EOC is low after the falling edge of STROBE  
(see Figure 4). For higher gains, increase the acquisition time. Do this by con-  
necting a resistor from RDELAY (pin 6) to +5V (pin 18). An external resistor,  
RGAIN, can be added to increase the gain value. The gain is equal to 1 without  
an RGAIN resistor. Table 3 refers to the appropriate RDELAY and RGAIN resis-  
tors required for various gains.  
driving the EOC output high.The HDAS devices can be configured for either  
bipolar or unipolar operation (see Table 2). The conversion is complete within a  
maximum of 10 microseconds. The EOC now returns low, the data is valid and  
sent to the three-state output buffers.The sample/hold amplifier is now ready  
to acquire new data.The next falling edge of the STROBE pulse repeats the  
process for the next conversion.  
Multiplexer Addressing  
The HDAS devices can be configured in either random orsequential address-  
ing modes. Refer to Table 5 and the subsequent descriptions. The number of  
channels sequentially addressed can be truncated using the MUX ADDRESS  
OUT(pins 9, 10, 11 and 12) and appropriate decoding circuitry forthe highest  
channel desired. The decoding circuit can drive the CLEAR (pin 20) function low  
to reset the addressing to channel 0.  
The HDAS devices enter the hold mode and are ready for conversion as  
soon as the one-shot (controling acquisition time) times out. An internal clock  
is gated ON, and a start-convert pulse is sent to the 12-bit A/D converter,  
Table3. InputRangeParameters(Typical)  
INPUT  
SYSTEM ACCURACY  
(% OF FSR)  
ꢃꢀꢄ  
RANGE  
GAIN  
RGAIN (7)  
RDELAY (7) ꢁ  
THROUGHPUT ꢂ  
10V  
5V  
2.5V  
1
2
4
10  
50  
100  
200  
OPEN  
20.0k  
6.667k  
2.222k  
408.2  
202.0  
100.5  
0 (SHORT)  
0 (SHORT)  
0 (SHORT)  
0 (SHORT)  
7k  
66.6kHz  
66.6kHz  
66.6kHz  
66.6kHz  
40.0kHz  
25.6kHz  
14.5kHz  
0.009  
0.009  
0.009  
0.009  
0.010  
0.011  
0.016  
1V  
200mV  
100mV  
50mV  
21k  
51k  
Notes  
RGAIN (Ω) =  
The analog input range to the A/D converter is 0 to +10V for unipolar signals  
and 10V for bipolar signals.  
20,000  
(GAIN – 1)  
Full scale can be accommodated for analog signal ranges of 50mV to 10V.  
For gains between 1 and 10, RDELAY (pin 6) must be shorted to +5V (pin  
18).  
RDELAY (Ω) = [Total Acquisition Delay (μs) x 1000] – 9000  
Throughput period equals acquisition and settling delay, plus A/D conversion  
period (10 microseconds maximum).  
Table 4. Output Coding  
Table 5. Mux Channel Addressing  
PIN  
UNIPOLAR  
0 to +10V  
STRAIGHT BINARY  
MSB LSB  
MUX ADDRESS  
INPUT  
0 to +5V  
5
13  
14  
15  
16  
MUX  
+FS – 1LSB  
+1/2FS  
+1LSB  
+9.9976  
+5.0000  
+0.0024  
0.0000  
+4.9988  
+2.5000  
+0.0012  
0.0000  
1111 1111 1111  
1000 0000 0000  
0000 0000 0001  
0000 0000 0000  
ENABLE RA8  
RA4  
RA2 RA1  
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
X
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
X
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
X
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
X
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
NONE  
0
1
ZERO  
2
3
4
5
HDAS-8  
(3-BIT  
BIPOLAR  
10V  
OFFSET BINARY*  
ADDRESS)  
INPUT  
5V  
MSB  
LSB  
6
7
8
9
+FS – 1LSB  
+1/2FS  
+1LSB  
ZERO  
–FS + 1LSB  
–FS  
+9.9951  
+5.0000  
+0.0049  
0.0000  
–9.9951  
–10.000  
+4.9976  
+2.5000  
+0.0024  
0.0000  
–4.9976  
–5.0000  
1111 1111 1111  
1100 0000 0000  
1000 0000 0001  
1000 0000 0000  
0000 0000 0001  
0000 0000 0000  
10  
11  
12  
13  
14  
15  
HDAS-16  
(4-BIT  
ADDRESS)  
* For 2’s complement coding, add an inverter to the MSB line.  
www.murata-ps.com  
Technical enquiries email: sales@murata-ps.com, tel: +1 508 339 3000  
MDC_HDAS-16/8.B01 Page 5 of 7  
HDAS-16, HDAS-8  
Random Addressing  
tents of the address counter to be incremented by one, followed by an  
A/D conversion in 9 microseconds.  
Set pin 19 (LOAD) to logic 0. The next falling edge of STROBE will load the MUX  
CHANNEL ADDRESS present on pin 13 to pin 16. Digital address inputs must be  
stable 20ns before andafter falling edge of the STROBE pulse.  
Input Voltage Protection  
As shown in Figure 3, the multiplexer has reversed biased diodes which  
protect the input channels from being damaged by overvoltage signals. The  
HDAS input channels areprotected up to 20V beyond the supplies and can be  
increasedby adding series resistors (Ri) to each channel. The input resistor  
must limit the current flowing through the protection diodes to 10mA.  
Free Running Sequential Addressing  
Set pin 19 (LOAD) and pin 20 (CLEAR) to logic 1 or leave open. Connect pin 7  
(EOC) to pin 8 (STROBE). The fallingedge of EOC will increment channel  
address. This means thatwhen the EOC is low, the digital output data is valid  
for theprevious channel (CHn – 1) rather than the channel indicated on  
MUX ADDRESS OUTPUT. The HDAS will continually scan all channels.  
The value of Ri for a specific voltage protection range (Vp) can be calculated  
by the following formula:  
Example: CH4 has been addressed and a conversion takes place. The EOC  
goes low. That channel’s (CH4’s) data becomes valid, but MUX ADDRESS  
OUTPUT is now CH5.  
Vp = (Rsignal + Ri + RON) (10mA)where RON = 2k  
NOTE: Increased input series resistance will increase multiplexer settling  
time significantly.  
Triggered Sequential Addressing  
Set pin 19 (LOAD) and pin 20 (CLEAR) to logic 1 or leaveopen. Apply a falling  
edge trigger pulse to pin 8 (STROBE).This negative transition causes the con-  
CHn  
INPUT  
Ri  
INST.  
AMP.  
R
SIGNAL  
~ SIGNAL  
Figure 3. Multiplexer Equivalent Circuit  
40nsec min.  
STROBE  
EXTERNAL  
STROBE PULSE  
40nsecmin.  
9μsec typ.  
6μsec typ.  
CH0  
DATA VALID  
CH12  
DATA VALID  
EOC  
ACQUISITION CONVERSION ACQUISITION CONVERSION  
CH0 CH0 CH1 CH1  
ACQUISITION CONVERSION  
CH12  
CH12  
LOAD  
t
2
t
t ,  
t
1 2  
50nsec  
1
CLEAR  
t 20nsec min.  
RA8  
RA4  
RA2  
RA1  
A8  
CH12  
SELECTED  
40nsec min.  
A4  
A2  
A1  
40nsec min.  
CH1 ADDRESSED  
CH0 ADDRESSED  
CLEAR  
CH2 ADDRESSED  
CH12 ADDRESSED  
CODE  
MODE  
SEQUENTIAL (EOC TIED TO STROBE)  
RANDOM  
MAY CHANGE  
OR DON'T CARE  
Figure 4. HDAS Timing Diagram  
www.murata-ps.com  
Technical enquiries email: sales@murata-ps.com, tel: +1 508 339 3000  
MDC_HDAS-16/8.B01 Page 6 of 7  
HDAS-16, HDAS-8  
Mechnical Dimensions  
INCHES (mm)  
0.150  
(3.810)  
2.325  
Dimension Tolerances (unless otherwise indicated):  
(59.055)  
2 place decimal (.XX) 0.010 ( 0.254)  
3 place decimal (.XXX) 0.005 ( 0.127)  
1
21  
Lead Material: Kovar alloy  
62  
Lead Finish:  
50 microinches (minimum) gold plating  
over 100 microinches (nominal) nickel plating  
1.100 1.415 MAX.  
(27.940)  
(35.94)  
52  
32  
0.100 TYP.  
(2.540)  
0.150  
(3.810)  
0.235 MAX.  
(5.969)  
2.00 0.008  
(50.800)  
0.200 MAX.  
(5.080)  
0.190 MAX.  
(4.826)  
0.020 0.002  
(0.508)  
0.040  
(1.016)  
0.150  
1.100 0.008  
(27.940)  
0.150  
(3.810)  
(3.810)  
SEATING  
PLANE  
0.025 0.010  
(0.635)  
Ordering Information  
Model No.  
Operating Temp. Range  
0 to +70°C  
HDAS-16MC  
HDAS-16MM  
HDAS-16/883  
ISO 9001  
R
E G I S T E R E D  
–55 to +125°C  
–55 to +125°C  
HDAS-8MC  
HDAS-8MM  
HDAS-8/883  
0 to +70°C  
–55 to +125°C  
–55 to +125°C  
Receptacle for PC board mounting can be ordered through AMP Inc.,  
Part #3-331272-4 (Component Lead Spring Socket), 62 required.  
Contact Murata Power Solutions for MIL-STD-883 product specifications.  
USA:  
Canada: Toronto, Tel: (866) 740 1232, email: toronto@murata-ps.com  
UK: Milton Keynes, Tel: +44 (0)1908 615232, email: mk@murata-ps.com  
Tucson (AZ), Tel: (800) 547 2537, email: sales@murata-ps.com  
France: Montigny Le Bretonneux, Tel: +33 (0)1 34 60 01 01, email: france@murata-ps.com  
Germany: München, Tel: +49 (0)89-544334-0, email: ped.munich@murata-ps.com  
Murata Power Solutions, Inc.  
Japan:  
Tokyo, Tel: 3-3779-1031, email: sales_tokyo@murata-ps.com  
Osaka, Tel: 6-6354-2025, email: sales_osaka@murata-ps.com  
Website: www.murata-ps.jp  
11 Cabot Boulevard, Mansfield, MA 02048-1151 U.S.A.  
Tel: (508) 339-3000 (800) 233-2765 Fax: (508) 339-6356  
www.murata-ps.com email: sales@murata-ps.com  
ISO 9001 REGISTERED  
China:  
Shanghai, Tel: +86 215 027 3678, email: shanghai@murata-ps.com  
Guangzhou, Tel: +86 208 221 8066, email: guangzhou@murata-ps.com  
3/12/08  
Murata Power Solutions, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other  
technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not  
imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change  
without notice.  
© 2008 Murata Power Solutions, Inc.  
www.murata-ps.com  
Technical enquiries email: sales@murata-ps.com, tel: +1 508 339 3000  
MDC_HDAS-16/8.B01 Page 7 of 7  

相关型号:

HDAS-524

12-Bit, 400kHz, Complete Data Acquisition System
MURATA

HDAS-524-C/883

A/D Converter, 12-Bit, 4 Channel, Hybrid, CDIP40
MURATA

HDAS-524/883

Multi-Channel Complete Data Acquisition
DATEL

HDAS-524883

Multi-Channel Complete Data Acquisition
DATEL

HDAS-524MC

ADC, Proprietary Method, 12-Bit, 1 Func, 4 Channel, Parallel, Word Access, Hybrid, CDIP40, CERAMIC, DDIP-40
MURATA

HDAS-524MC

Multi-Channel Complete Data Acquisition
DATEL

HDAS-524MM

ADC, Proprietary Method, 12-Bit, 1 Func, 4 Channel, Parallel, Word Access, Hybrid, CDIP40, CERAMIC, DDIP-40
MURATA

HDAS-524MM-C

暂无描述
MURATA

HDAS-528

12-Bit, 400kHz, Complete Data Acquisition System
MURATA

HDAS-528-C/883

Multi-Channel Complete Data Acquisition
DATEL

HDAS-528-C883

Multi-Channel Complete Data Acquisition
DATEL

HDAS-528MC

ADC, Proprietary Method, 12-Bit, 1 Func, 8 Channel, Parallel, Word Access, Hybrid, CDIP40, CERAMIC, DDIP-40
MURATA