NFM21H [MURATA]

On-Board Type EMI Suppression Filters (EMIFILr) for Automotive;
NFM21H
型号: NFM21H
厂家: muRata    muRata
描述:

On-Board Type EMI Suppression Filters (EMIFILr) for Automotive

文件: 总93页 (文件大小:6701K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
C50E.pdf  
Aug.28,2008  
On-Board Type (DC)  
EMI Suppression Filters  
(EMIFILr) for Automotive  
Cat.No.C50E-7  
C50E.pdf  
Aug.28,2008  
C50E.pdf  
Aug.28,2008  
1
2
3
4
CONTENTS  
EMIFILr and "EMIFIL" in this catalog are  
the trademarks of Murata Manufacturing Co., Ltd.  
Product Guide/Effective Frequency Range  
2
3
1
Chip Ferrite Beads Part Numbering  
BLM15A/18A/21A/31A  
4
BLM18P/21P/31P/41P  
25  
33  
BLM15B/18B/21B  
12  
For GHz Range Noise Suppression BLM18H/18E  
Specifications and Test Methods  
Chip EMIFILr  
38  
2
Part Numbering  
42  
43  
44  
47  
48  
Chip EMIFILr Capacitor Type NFM21H Series  
Specifications and Test Methods  
Chip EMIFILr LC Combined Type for Large Current NFE61H Series  
Specifications and Test Methods  
3
4
Chip Common Mode Choke Coils  
Part Numbering  
50  
51  
54  
Chip Common Mode Choke Coil DLW31S/ 43S Series  
Specifications and Test Methods  
Block Type EMIFILr  
Block Type EMIFILr SMD Type BNX024H/ 025H Series  
Block Type EMIFILr Lead Type BNX012H Series  
Specifications and Test Methods  
57  
58  
60  
64  
67  
76  
78  
82  
87  
!Caution/Notice  
Soldering and Mounting  
Package  
Design Kits  
Outlines of Major Noise Regulation Standards  
Principles of Noise Suppression by DC EMIFILr  
C50E.pdf  
Aug.28,2008  
Product Guide/Effective Frequency Range  
Product Guide  
Dimensions  
Effective Frequency Range  
Type  
Series  
(mm)  
EIA Code  
10kHz 100kHz 1MHz 10MHz100MHz 1GHz 10GHz  
Inductor  
Type  
Standard  
1.0  
BLM15A  
BLM18A  
BLM21A  
BLM31A  
BLM15B  
BLM18B  
BLM21B  
BLM18P  
BLM21P  
BLM31P  
BLM41P  
BLM18HG  
BLM18HD  
BLM18EG  
NFM21H  
NFE61H  
DLW31S  
DLW43S  
0402  
0.5  
1.6  
2.0  
3.2  
1.0  
1.6  
2.0  
1.6  
2.0  
3.2  
4.5  
0603  
0805  
1206  
0402  
0603  
0805  
0603  
0805  
1206  
1806  
0603  
0603  
0603  
0805  
2706  
1206  
1812  
0.8  
1.25  
1.6  
0.5  
0.8  
For High  
Speed Signals  
1.25  
0.8  
For High  
Current  
1.25  
1.6  
1.6  
0.8  
0.8  
0.8  
For GHz  
Range  
1.6  
1.6  
1.6  
2.0  
Noise  
Suppression  
Capacitor  
Type  
Standard  
Type  
1.25  
1.6  
T Filter for  
6.8  
High Current  
Chip Common Mode  
Choke Coils  
3.2  
4.5  
1.6  
3.2  
BNX024H/025H  
BNX012H  
Block Type EMIFILr  
2
C50E.pdf  
Aug.28,2008  
1
On-Board Type (DC) EMI Suppression Filters (EMIFILr) for Automotive  
Chip Ferrite Beads Part Numbering  
Chip Ferrite Beads for Automotive  
(Part Number)  
H
1 D  
BL  
M
18 AG 102  
S
q
w
e
r
t
y
u
i o  
qProduct ID  
tImpedance  
Expressed by three figures. The unit is in ohm (). The first and  
second figures are significant digits, and the third figure  
expresses the number of zeros which follow the two figures.  
Product ID  
BL  
Chip Ferrite Beads  
wType  
yElectrode  
Code  
Type  
Expressed by a letter.  
M
Monolithic Type  
Ex.)  
Code  
S/T  
W
Electrode  
Sn Plating  
Ag/Pd  
eDimensions (LgW)  
Code  
15  
Dimensions (LgW)  
1.0g0.5mm  
EIA  
0402  
0603  
0805  
1206  
1806  
uCategory  
18  
1.6g0.8mm  
21  
2.0g1.25mm  
3.2g1.6mm  
Code  
Category  
31  
H
for Automotive  
41  
4.5g1.6mm  
iNumber of Circuits  
rCharacteristics/Applications  
Code  
Number of Circuits  
*1  
Code  
AG  
AJ  
Characteristics/Applications  
Series  
1
1 Circuit  
for General Use  
BLM15/18/21/31  
BLM18  
BA  
BB  
BD  
PG  
HG  
for High-speed Signal Lines  
BLM15/18/21  
BLM18/21/31/41  
for Power Supplies  
for GHz Band General Use  
for GHz Band General Use  
(Low DC Resistance Type)  
EG  
HD  
BLM18  
for GHz Band High-speed Signal Lines  
*1 Frequency characteristics vary with each code.  
oPackaging  
Code  
Packaging  
Series  
K
L
B
J
Embossed Taping (ø330mm Reel)  
Embossed Taping (ø180mm Reel)  
Bulk  
*1  
BLM21 /31/41  
All Series  
Paper Taping (ø330mm Reel)  
Paper Taping (ø180mm Reel)  
*2  
BLM15/18/21  
D
*1 BLM21BD222SH1/BLM21BD272SH1 only.  
*2 Except BLM21BD222SH1/BLM21BD272SH1  
3
C50E.pdf  
Aug.28,2008  
1
On-Board Type (DC) EMI Suppression Filters (EMIFILr) for Automotive  
Chip Ferrite Beads BLM15/18/21/31/41 Series  
BLM15A Series  
0.25±0.1  
Features  
The chip ferrite beads BLM series is designed to  
function nearly as a resistor at noise frequencies,  
which greatly reduces the possibility of resonance and  
leaves signal wave forms undistorted.  
BLM series is effective in circuits without stable  
ground lines because BLM series does not need a  
connection to ground.  
1.0±0.05  
0.5±0.05  
The nickel barrier structure of the external  
electrodes provides excellent solder heat resistance.  
BLM_A series generates an impedance from the  
relatively low frequencies. Therefore BLM_A series is  
effective in noise suppression in a wide frequency  
range (30MHz to several hundred MHz).  
(in mm)  
Impedance  
Operating  
Rated Current  
(mA)  
DC Resistance (max.)  
Part Number  
(at 100MHz/20°C)  
Temperature Range  
(ohm)  
(ohm)  
(°C)  
BLM15AG100SH1  
BLM15AG700SH1  
BLM15AG121SH1  
BLM15AG221SH1  
BLM15AG601SH1  
BLM15AG102SH1  
10 (Typ.)  
70 (Typ.)  
1000  
500  
500  
300  
300  
200  
0.05  
0.15  
0.25  
0.35  
0.6  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
120 ±25%  
220 ±25%  
600 ±25%  
1000 ±25%  
1.0  
Equivalent Circuit  
Impedance - Frequency (Typical)  
1200  
1000  
BLM15AG102SH1  
BLM15AG601SH1  
BLM15AG221SH1  
800  
BLM15AG121SH1  
600  
BLM15AG700SH1  
400  
200  
0
BLM15AG100SH1  
(Resistance element becomes dominant  
at high frequencies.)  
1
10  
100  
Frequency (MHz)  
1000 2000  
Continued on the following page.  
4
C50E.pdf  
Aug.28,2008  
Continued from the preceding page.  
Impedance - Frequency Characteristics  
1
BLM15AG100SH1  
BLM15AG700SH1  
20  
120  
100  
80  
60  
40  
20  
0
Z
15  
Z
R
R
10  
X
5
X
0
1
10  
100  
1000  
1
10  
100  
1000  
Frequency (MHz)  
Frequency (MHz)  
BLM15AG121SH1  
BLM15AG221SH1  
200  
150  
100  
50  
400  
300  
200  
100  
0
Z
Z
R
R
X
X
0
1
10  
100  
1000  
1
10  
100  
1000  
Frequency (MHz)  
Frequency (MHz)  
BLM15AG601SH1  
BLM15AG102SH1  
1200  
800  
600  
400  
200  
0
Z
Z
900  
600  
R
R
X
300  
0
X
1
10  
100  
Frequency (MHz)  
1000  
1
10  
100  
1000  
Frequency (MHz)  
5
C50E.pdf  
Aug.28,2008  
1
BLM18A Series  
0.4±0.2  
Features  
The chip ferrite beads BLM series is designed to  
function nearly as a resistor at noise frequencies,  
which greatly reduces the possibility of resonance and  
leaves signal wave forms undistorted.  
1.6±0.15  
BLM series is effective in circuits without stable  
ground lines because BLM series does not need a  
connection to ground.  
0.8±0.15  
The nickel barrier structure of the external  
electrodes provides excellent solder heat resistance.  
BLM_A series generates an impedance from the  
relatively low frequencies. Therefore BLM_A series is  
effective in noise suppression in a wide frequency  
range (30MHz to several hundred MHz).  
(in mm)  
Impedance  
Operating  
Rated Current  
(mA)  
DC Resistance (max.)  
Part Number  
(at 100MHz/20°C)  
Temperature Range  
(ohm)  
(ohm)  
(°C)  
BLM18AG121SH1  
BLM18AG151SH1  
BLM18AG221SH1  
BLM18AG331SH1  
BLM18AG471SH1  
BLM18AG601SH1  
BLM18AG102SH1  
120 ±25%  
150 ±25%  
220 ±25%  
330 ±25%  
470 ±25%  
600 ±25%  
1000 ±25%  
500  
500  
500  
500  
500  
500  
400  
0.18  
0.25  
0.25  
0.30  
0.35  
0.38  
0.50  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
Equivalent Circuit  
Impedance - Frequency (Typical)  
BLM18A Series  
1200  
BLM18AG102SH1  
BLM18AG601SH1  
900  
BLM18AG471SH1  
BLM18AG331SH1  
BLM18AG221SH1  
600  
BLM18AG151SH1  
BLM18AG121SH1  
300  
(Resistance element becomes dominant  
at high frequencies.)  
0
1
10  
100  
Frequency (MHz)  
1000  
Impedance - Frequency Characteristics  
BLM18AG121SH1  
BLM18AG151SH1  
200  
400  
150  
300  
200  
Z
R
100  
Z
R
X
50  
100  
0
X
0
1
10  
100  
Frequency (MHz)  
1000  
1
10  
100  
Frequency (MHz)  
1000  
Continued on the following page.  
6
C50E.pdf  
Aug.28,2008  
Continued from the preceding page.  
Impedance - Frequency Characteristics  
1
BLM18AG221SH1  
BLM18AG331SH1  
600  
400  
450  
300  
300  
Z
Z
R
R
200  
X
150  
0
100  
X
0
1
10  
100  
1000  
1
10  
100  
Frequency (MHz)  
1000  
Frequency (MHz)  
BLM18AG471SH1  
BLM18AG601SH1  
800  
800  
Z
600  
400  
600  
400  
R
Z
R
X
200  
0
200  
0
X
1
10  
100  
1000  
1
10  
100  
Frequency (MHz)  
1000  
Frequency (MHz)  
BLM18AG102SH1  
1200  
Z
900  
600  
R
300  
0
X
1
10  
100  
Frequency (MHz)  
1000  
7
C50E.pdf  
Aug.28,2008  
1
BLM18A Series Conductive Glue Applicable Type  
0.4±0.2  
Features  
The chip ferrite beads BLM series is designed to  
function nearly as a resistor at noise frequencies,  
which greatly reduces the possibility of resonance and  
leaves signal wave forms undistorted.  
1.6±0.15  
BLM series is effective in circuits without stable  
ground lines because BLM series does not need a  
connection to ground.  
0.8±0.15  
BLM_A series generates an impedance from the  
relatively low frequencies. Therefore BLM_A series is  
effective in noise suppression in a wide frequency  
range (30MHz to several hundred MHz).  
BLM18A_WH series is designed for conductive glue  
mounting method, not for normal soldering method.  
Please contact us for applicable mounting method  
for BLM18A_WH series.  
(in mm)  
Impedance  
Operating  
Rated Current  
DC Resistance (max.)  
Part Number  
(at 100MHz/20°C)  
Temperature Range  
(mA)  
(ohm)  
(ohm)  
(°C)  
BLM18AG471WH1  
BLM18AG102WH1  
470 ±25%  
200  
200  
0.20  
0.70  
-55 to +150  
-55 to +150  
1000 ±25%  
Equivalent Circuit  
Impedance - Frequency (Typical)  
BLM18A Series  
1500  
1200  
BLM18AG102WH1  
900  
BLM18AG471WH1  
600  
(Resistance element becomes dominant  
at high frequencies.)  
300  
0
1
10  
100  
1000  
Frequency (MHz)  
Impedance - Frequency Characteristics  
BLM18AG471WH1  
BLM18AG102WH1  
1500  
1200  
900  
600  
300  
0
600  
R
400  
Z
Z
200  
R
X
X
0
1
10  
100  
1
10  
100  
1000  
1000  
Frequency (MHz)  
Frequency (MHz)  
8
C50E.pdf  
Aug.28,2008  
1
BLM21A Series  
0.5±0.2  
Features  
The chip ferrite beads BLM series is designed to  
function nearly as a resistor at noise frequencies,  
which greatly reduces the possibility of resonance and  
leaves signal wave forms undistorted.  
2.0±0.2  
1.25±0.2  
BLM series is effective in circuits without stable  
ground lines because BLM series does not need a  
connection to ground.  
EIA CODE : 0805  
The nickel barrier structure of the external  
electrodes provides excellent solder heat resistance.  
BLM_A series generates an impedance from the  
relatively low frequencies. Therefore BLM_A series is  
effective in noise suppression in a wide frequency  
range (30MHz to several hundred MHz).  
(in mm)  
Impedance  
Operating  
Temperature Range  
(°C)  
Rated Current  
(mA)  
DC Resistance (max.)  
(ohm)  
Part Number  
(at 100MHz/20°C)  
(ohm)  
BLM21AG121SH1  
BLM21AG151SH1  
BLM21AG221SH1  
BLM21AG331SH1  
BLM21AG471SH1  
BLM21AG601SH1  
BLM21AG102SH1  
120 ±25%  
150 ±25%  
220 ±25%  
330 ±25%  
470 ±25%  
600 ±25%  
1000 ±25%  
200  
200  
200  
200  
200  
200  
200  
0.15  
0.15  
0.20  
0.25  
0.25  
0.30  
0.45  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
Equivalent Circuit  
Impedance - Frequency (Typical)  
BLM21A Series  
1200  
BLM21AG102SH1  
BLM21AG601SH1  
900  
600  
BLM21AG471SH1  
BLM21AG331SH1  
BLM21AG221SH1  
BLM21AG151SH1  
BLM21AG121SH1  
(Resistance element becomes dominant  
at high frequencies.)  
300  
0
1
10  
100  
Frequency (MHz)  
1000  
Impedance - Frequency Characteristics  
BLM21AG121SH1  
BLM21AG151SH1  
200  
200  
Z
150  
100  
150  
R
Z
R
100  
X
X
50  
0
50  
0
1
10  
100  
Frequency (MHz)  
1000  
1
10  
100  
Frequency (MHz)  
1000  
Continued on the following page.  
9
C50E.pdf  
Aug.28,2008  
Continued from the preceding page.  
Impedance - Frequency Characteristics  
1
BLM21AG221SH1  
BLM21AG331SH1  
400  
400  
Z
300  
300  
200  
R
Z
200  
R
X
100  
100  
0
X
0
1
10  
100  
Frequency (MHz)  
1000  
1000  
1000  
1
10  
100  
Frequency (MHz)  
1000  
BLM21AG471SH1  
BLM21AG601SH1  
800  
800  
600  
400  
600  
400  
Z
Z
R
R
X
200  
0
200  
0
X
1
10  
100  
Frequency (MHz)  
1
10  
100  
Frequency (MHz)  
1000  
BLM21AG102SH1  
1200  
900  
600  
Z
R
X
300  
0
1
10  
100  
Frequency (MHz)  
10  
C50E.pdf  
Aug.28,2008  
1
BLM31A Series  
0.7±0.3  
Features  
The chip ferrite beads BLM series is designed to  
function nearly as a resistor at noise frequencies,  
which greatly reduces the possibility of resonance and  
leaves signal wave forms undistorted.  
3.2±0.2  
1.6±0.2  
BLM series is effective in circuits without stable  
ground lines because BLM series does not need a  
connection to ground.  
in mm  
The nickel barrier structure of the external  
electrodes provides excellent solder heat resistance.  
BLM_A series generates an impedance from the  
relatively low frequencies. Therefore BLM_A series is  
effective in noise suppression in a wide frequency  
range (30MHz to several hundred MHz).  
Impedance  
Operating  
Rated Current  
(mA)  
DC Resistance (max.)  
(ohm)  
Part Number  
(at 100MHz/20°C)  
Temperature Range  
(ohm)  
(°C)  
BLM31AJ601SH1  
600 ±25%  
200  
0.90  
-55 to +125  
Equivalent Circuit  
Impedance - Frequency Characteristics  
800  
600  
Z
R
400  
(Resistance element becomes dominant  
at high frequencies.)  
X
200  
0
1
10  
100  
Frequency (MHz)  
1000  
11  
C50E.pdf  
Aug.28,2008  
1
BLM15B Series  
0.25±0.1  
Features  
The chip ferrite beads BLM series is designed to  
function nearly as a resistor at noise frequencies,  
which greatly reduces the possibility of resonance and  
leaves signal wave forms undistorted.  
BLM series is effective in circuits without stable  
ground lines because BLM series does not need a  
connection to ground.  
1.0±0.05  
0.5±0.05  
The nickel barrier structure of the external  
electrodes provides excellent solder heat resistance.  
BLM_B series can minimize attenuation of the signal  
waveform due to its sharp impedance characteristics.  
Various impedances are available to match signal  
frequency.  
(in mm)  
Impedance  
Operating  
Rated Current  
(mA)  
DC Resistance (max.)  
(ohm)  
Part Number  
(at 100MHz/20°C)  
Temperature Range  
(ohm)  
(°C)  
BLM15BB050SH1  
BLM15BB100SH1  
BLM15BB220SH1  
BLM15BB470SH1  
BLM15BB750SH1  
BLM15BB121SH1  
BLM15BB221SH1  
BLM15BD471SH1  
BLM15BD601SH1  
BLM15BD102SH1  
BLM15BD182SH1  
5 ±25%  
10 ±25%  
500  
300  
300  
300  
300  
300  
200  
200  
200  
200  
200  
0.08  
0.10  
0.20  
0.35  
0.40  
0.55  
0.80  
0.60  
0.65  
0.90  
1.40  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
22 ±25%  
47 ±25%  
75 ±25%  
120 ±25%  
220 ±25%  
470 ±25%  
600 ±25%  
1000 ±25%  
1800 ±25%  
Equivalent Circuit  
(Resistance element becomes dominant  
at high frequencies.)  
12  
C50E.pdf  
Aug.28,2008  
Impedance - Frequency (Typical)  
1
BLM15BB Series  
BLM15BD Series  
2500  
800  
700  
BLM15BB221SH1  
2000  
1500  
1000  
500  
0
600  
BLM15BD182SH1  
BLM15BD102SH1  
500  
400  
300  
200  
100  
0
BLM15BB121SH1  
BLM15BB750SH1  
BLM15BB470SH1  
BLM15BB220SH1  
BLM15BB100SH1  
BLM15BB050SH1  
BLM15BD601SH1  
BLM15BD471SH1  
1
10  
100  
1000 2000  
1
10  
100  
Frequency (MHz)  
1000 2000  
1000 2000  
1000 2000  
1000 2000  
Frequency (MHz)  
Impedance - Frequency Characteristics  
BLM15BB050SH1  
BLM15BB100SH1  
30  
60  
50  
40  
30  
20  
10  
25  
20  
15  
Z
Z
X
10  
X
5
R
R
0
0
1
1
1
1
10  
100  
10  
100  
Frequency (MHz)  
1000 2000  
1000 2000  
1000 2000  
Frequency (MHz)  
BLM15BB220SH1  
BLM15BB470SH1  
300  
120  
100  
80  
60  
40  
20  
0
250  
200  
150  
100  
50  
Z
Z
X
R
X
R
0
10  
100  
Frequency (MHz)  
1
10  
100  
Frequency (MHz)  
BLM15BB750SH1  
BLM15BB121SH1  
400  
300  
200  
100  
0
600  
450  
300  
150  
0
Z
Z
X
X
R
R
10  
100  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
Continued on the following page.  
13  
C50E.pdf  
Aug.28,2008  
Continued from the preceding page.  
Impedance - Frequency Characteristics  
1
BLM15BB221SH1  
BLM15BD471SH1  
1000  
800  
Z
750  
500  
600  
Z
R
400  
X
X
200  
250  
0
R
0
1
10  
100  
1000 2000  
1000 2000  
1000 2000  
1
10  
100  
1000 2000  
Frequency (MHz)  
Frequency (MHz)  
BLM15BD601SH1  
BLM15BD102SH1  
1200  
1600  
Z
Z
900  
600  
1200  
800  
R
R
X
X
300  
0
400  
0
1
10  
100  
1
10  
100  
1000 2000  
Frequency (MHz)  
Frequency (MHz)  
BLM15BD182SH1  
2500  
Z
2000  
1500  
1000  
500  
0
R
X
1
10  
100  
Frequency (MHz)  
14  
C50E.pdf  
Aug.28,2008  
1
BLM18B Series  
0.4±0.2  
Features  
The chip ferrite beads BLM series is designed to  
function nearly as a resistor at noise frequencies,  
which greatly reduces the possibility of resonance and  
leaves signal wave forms undistorted.  
1.6±0.15  
BLM series is effective in circuits without stable  
ground lines because BLM series does not need a  
connection to ground.  
0.8±0.15  
The nickel barrier structure of the external  
electrodes provides excellent solder heat resistance.  
BLM_B series can minimize attenuation of the signal  
waveform due to its sharp impedance characteristics.  
Various impedances are available to match signal  
frequency.  
(in mm)  
Impedance  
Operating  
Rated Current  
(mA)  
DC Resistance (max.)  
Part Number  
(at 100MHz/20°C)  
Temperature Range  
(ohm)  
(ohm)  
(°C)  
BLM18BA050SH1  
BLM18BB050SH1  
BLM18BA100SH1  
BLM18BB100SH1  
BLM18BA220SH1  
BLM18BB220SH1  
BLM18BA470SH1  
BLM18BB470SH1  
BLM18BD470SH1  
BLM18BB600SH1  
BLM18BA750SH1  
BLM18BB750SH1  
BLM18BA121SH1  
BLM18BB121SH1  
BLM18BD121SH1  
BLM18BB141SH1  
BLM18BB151SH1  
BLM18BD151SH1  
BLM18BB221SH1  
BLM18BD221SH1  
BLM18BB331SH1  
BLM18BD331SH1  
BLM18BD421SH1  
BLM18BB471SH1  
BLM18BD471SH1  
BLM18BD601SH1  
BLM18BD102SH1  
BLM18BD152SH1  
BLM18BD182SH1  
BLM18BD222SH1  
BLM18BD252SH1  
5 ±25%  
5 ±25%  
500  
700  
500  
700  
500  
600  
300  
550  
500  
550  
300  
500  
200  
500  
200  
450  
450  
200  
450  
200  
400  
200  
200  
300  
200  
200  
100  
50  
0.20  
0.05  
0.25  
0.10  
0.35  
0.20  
0.55  
0.25  
0.30  
0.25  
0.70  
0.30  
0.90  
0.30  
0.40  
0.35  
0.37  
0.40  
0.45  
0.45  
0.58  
0.50  
0.55  
0.85  
0.55  
0.65  
0.85  
1.20  
1.50  
1.50  
1.50  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
10 ±25%  
10 ±25%  
22 ±25%  
22 ±25%  
47 ±25%  
47 ±25%  
47 ±25%  
60 ±25%  
75 ±25%  
75 ±25%  
120 ±25%  
120 ±25%  
120 ±25%  
140 ±25%  
150 ±25%  
150 ±25%  
220 ±25%  
220 ±25%  
330 ±25%  
330 ±25%  
420 ±25%  
470 ±25%  
470 ±25%  
600 ±25%  
1000 ±25%  
1500 ±25%  
1800 ±25%  
2200 ±25%  
2500 ±25%  
50  
50  
50  
15  
C50E.pdf  
Aug.28,2008  
Equivalent Circuit  
1
(Resistance element becomes dominant  
at high frequencies.)  
Impedance - Frequency (Typical)  
BLM18BA Series  
BLM18BA Series  
600  
10000  
450  
7500  
5000  
300  
BLM18BA220SH1  
BLM18BA121SH1  
BLM18BA100SH1  
BLM18BA750SH1  
BLM18BA470SH1  
150  
2500  
0
BLM18BA050SH1  
0
1000 2000  
1
10  
100  
1000 2000  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
BLM18BB Series  
BLM18BB Series  
2000  
250  
200  
BLM18BB471SH1  
1500  
1000  
BLM18BB331SH1  
BLM18BB221SH1  
BLM18BB151SH1  
150  
100  
50  
BLM18BB470SH1  
BLM18BB141SH1  
BLM18BB121SH1  
BLM18BB750SH1  
BLM18BB220SH1  
BLM18BB100SH1  
BLM18BB050SH1  
500  
0
BLM18BB600SH1  
0
1
10  
100  
1000 2000  
1
10  
100  
1000 2000  
Frequency (MHz)  
Frequency (MHz)  
BLM18BD Series  
2800  
BLM18BD252SH1  
BLM18BD222SH1  
BLM18BD182SH1  
2100  
1400  
BLM18BD152SH1  
BLM18BD102SH1  
BLM18BD601SH1  
BLM18BD221SH1  
BLM18BD151SH1  
BLM18BD121SH1  
BLM18BD471SH1  
BLM18BD421SH1  
BLM18BD331SH1  
700  
0
BLM18BD470SH1  
1
10  
100  
1000 2000  
Frequency (MHz)  
16  
C50E.pdf  
Aug.28,2008  
Impedance - Frequency Characteristics  
1
BLM18BA050SH1  
BLM18BB050SH1  
30  
20  
100  
Z
75  
50  
R
Z
X
R
10  
25  
0
X
0
1000 2000  
1
10  
100  
1000 2000  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
BLM18BA100SH1  
BLM18BB100SH1  
50  
200  
Z
40  
30  
20  
10  
150  
100  
R
Z
R
X
X
50  
0
0
1000 2000  
1
10  
100  
1
10  
100  
1000 2000  
Frequency (MHz)  
Frequency (MHz)  
BLM18BA220SH1  
BLM18BB220SH1  
100  
600  
75  
50  
450  
300  
Z
Z
R
X
R
25  
0
150  
0
X
1000 2000  
1
10  
100  
1
10  
100  
1000 2000  
Frequency (MHz)  
Frequency (MHz)  
BLM18BA470SH1  
BLM18BB470SH1  
1600  
250  
200  
1200  
800  
Z
150  
100  
50  
R
X
Z
400  
0
R
X
0
1000 2000  
1
10  
100  
1
10  
100  
1000 2000  
Frequency (MHz)  
Frequency (MHz)  
Continued on the following page.  
17  
C50E.pdf  
Aug.28,2008  
Continued from the preceding page.  
Impedance - Frequency Characteristics  
1
BLM18BD470SH1  
BLM18BB600SH1  
300  
240  
180  
120  
60  
200  
150  
Z
Z
R
100  
R
50  
0
X
X
0
1
10  
100  
Frequency (MHz)  
1000 2000  
1
10  
100  
1000 2000  
Frequency (MHz)  
BLM18BA750SH1  
BLM18BB750SH1  
400  
6000  
300  
200  
4500  
3000  
Z
R
X
100  
0
1500  
0
Z
R
X
1
10  
100  
1000 2000  
1000 2000  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
BLM18BA121SH1  
BLM18BB121SH1  
10000  
500  
400  
300  
200  
100  
0
7500  
5000  
Z
X
2500  
0
R
Z
R
X
1000 2000  
1
10  
100  
1
10  
100  
1000 2000  
Frequency (MHz)  
Frequency (MHz)  
BLM18BD121SH1  
BLM18BB141SH1  
400  
600  
Z
300  
200  
450  
300  
R
X
Z
R
100  
0
150  
0
X
1
10  
100  
1000 2000  
1
10  
100  
1000 2000  
Frequency (MHz)  
Frequency (MHz)  
Continued on the following page.  
18  
C50E.pdf  
Aug.28,2008  
Continued from the preceding page.  
Impedance - Frequency Characteristics  
1
BLM18BB151SH1  
BLM18BD151SH1  
400  
300  
200  
600  
Z
Z
450  
R
R
X
300  
X
150  
0
100  
0
1
10  
100  
1000 2000  
1
10  
100  
1000 2000  
Frequency (MHz)  
Frequency (MHz)  
BLM18BB221SH1  
BLM18BD221SH1  
1000  
800  
500  
400  
300  
200  
100  
0
Z
Z
R
X
R
600  
400  
200  
X
0
1
10  
100  
1000 2000  
1
10  
100  
1000 2000  
1000 2000  
1000 2000  
Frequency (MHz)  
Frequency (MHz)  
BLM18BB331SH1  
BLM18BD331SH1  
1500  
1200  
900  
600  
300  
0
900  
600  
300  
0
Z
R
Z
R
X
X
1
10  
100  
1000 2000  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
BLM18BD421SH1  
BLM18BB471SH1  
2000  
1600  
1200  
800  
400  
0
1000  
Z
750  
500  
Z
R
R
X
X
250  
0
1
10  
100  
1
10  
100  
Frequency (MHz)  
1000 2000  
Frequency (MHz)  
Continued on the following page.  
19  
C50E.pdf  
Aug.28,2008  
Continued from the preceding page.  
Impedance - Frequency Characteristics  
1
BLM18BD471SH1  
BLM18BD601SH1  
1200  
1200  
Z
900  
600  
900  
Z
R
X
R
600  
X
300  
0
300  
0
1
10  
100  
1000 2000  
1000 2000  
1000 2000  
1
10  
100  
1000 2000  
Frequency (MHz)  
Frequency (MHz)  
BLM18BD102SH1  
BLM18BD152SH1  
2500  
2000  
1600  
1200  
800  
400  
0
2000  
1500  
1000  
500  
Z
Z
R
R
X
X
0
1
10  
100  
Frequency (MHz)  
1
10  
100  
1000 2000  
Frequency (MHz)  
BLM18BD182SH1  
BLM18BD222SH1  
2500  
2500  
2000  
1500  
1000  
500  
0
Z
2000  
1500  
1000  
500  
0
R
Z
R
X
X
1
10  
100  
Frequency (MHz)  
1
10  
100  
Frequency (MHz)  
1000 2000  
BLM18BD252SH1  
3000  
2500  
2000  
1500  
1000  
500  
Z
R
X
0
1
10  
100  
1000 2000  
Frequency (MHz)  
20  
C50E.pdf  
Aug.28,2008  
1
BLM21B Series  
0.5±0.2 *2  
Features  
The chip ferrite beads BLM series is designed to  
function nearly as a resistor at noise frequencies,  
which greatly reduces the possibility of resonance and  
leaves signal wave forms undistorted.  
2.0±0.2  
1.25±0.2  
BLM series is effective in circuits without stable  
ground lines because BLM series does not need a  
connection to ground.  
*1 BLM21BD222SH1 / 21BD272SH1  
:1.25±0.2  
*2 BLM21BD272SH1: 0.3±0.2  
EIA CODE : 0805  
The nickel barrier structure of the external  
electrodes provides excellent solder heat resistance.  
BLM_B series can minimize attenuation of the signal  
waveform due to its sharp impedance characteristics.  
Various impedances are available to match signal  
frequency.  
(in mm)  
Impedance  
Operating  
Temperature Range  
(°C)  
Rated Current  
(mA)  
DC Resistance (max.)  
(ohm)  
Part Number  
(at 100MHz/20°C)  
(ohm)  
BLM21BB050SH1  
BLM21BB600SH1  
BLM21BB750SH1  
BLM21BB121SH1  
BLM21BD121SH1  
BLM21BB151SH1  
BLM21BD151SH1  
BLM21BB201SH1  
BLM21BB221SH1  
BLM21BD221SH1  
BLM21BB331SH1  
BLM21BD331SH1  
BLM21BD421SH1  
BLM21BB471SH1  
BLM21BD471SH1  
BLM21BD601SH1  
BLM21BD751SH1  
BLM21BD102SH1  
BLM21BD152SH1  
BLM21BD182SH1  
BLM21BD222TH1  
BLM21BD222SH1  
BLM21BD272SH1  
5 ±25%  
60 ±25%  
500  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
0.07  
0.20  
0.25  
0.25  
0.25  
0.25  
0.25  
0.35  
0.35  
0.25  
0.40  
0.30  
0.30  
0.45  
0.35  
0.35  
0.40  
0.40  
0.45  
0.50  
0.60  
0.60  
0.80  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
75 ±25%  
120 ±25%  
120 ±25%  
150 ±25%  
150 ±25%  
200 ±25%  
220 ±25%  
220 ±25%  
330 ±25%  
330 ±25%  
420 ±25%  
470 ±25%  
470 ±25%  
600 ±25%  
750 ±25%  
1000 ±25%  
1500 ±25%  
1800 ±25%  
2200 ±25%  
2250 (Typ.)  
2700 ±25%  
Equivalent Circuit  
(Resistance element becomes dominant  
at high frequencies.)  
21  
C50E.pdf  
Aug.28,2008  
Impedance - Frequency (Typical)  
1
BLM21BB Series  
BLM21BD Series  
2000  
3200  
BLM21BD272SH1  
BLM21BD222SH1  
BLM21BD222TH1  
1600  
2400  
1600  
BLM21BD182SH1  
BLM21BD152SH1  
BLM21BD102SH1  
BLM21BD751SH1  
BLM21BD601SH1  
BLM21BB471SH1  
BLM21BB331SH1  
1200  
BLM21BB201SH1  
BLM21BB750SH1  
BLM21BB221SH1  
BLM21BD471SH1  
BLM21BB151SH1  
800  
BLM21BD421SH1  
BLM21BD331SH1  
BLM21BD221SH1  
BLM21BB121SH1  
BLM21BB600SH1  
800  
0
BLM21BD151SH1  
BLM21BD121SH1  
BLM21BB050SH1  
400  
0
1
10  
100  
Frequency (MHz)  
1000 2000  
1
10  
100  
Frequency (MHz)  
1000 2000  
Impedance - Frequency Characteristics  
BLM21BB050SH1  
BLM21BB600SH1  
400  
30  
Z
300  
200  
Z
20  
10  
0
R
X
X
R
100  
0
1
10  
100  
1000 2000  
1000 2000  
1000 2000  
1
10  
100  
1000 2000  
Frequency (MHz)  
Frequency (MHz)  
BLM21BB750SH1  
BLM21BB121SH1  
500  
500  
400  
300  
200  
100  
0
400  
300  
200  
100  
Z
Z
R
R
X
X
0
1
10  
100  
1
10  
100  
1000 2000  
Frequency (MHz)  
Frequency (MHz)  
BLM21BD121SH1  
BLM21BB151SH1  
300  
240  
180  
120  
60  
800  
600  
400  
Z
Z
R
R
X
X
200  
0
0
1
10  
100  
1
10  
100  
1000 2000  
Frequency (MHz)  
Frequency (MHz)  
Continued on the following page.  
22  
C50E.pdf  
Aug.28,2008  
Continued from the preceding page.  
Impedance - Frequency Characteristics  
1
BLM21BD151SH1  
BLM21BB201SH1  
300  
800  
600  
400  
200  
0
Z
Z
240  
180  
120  
60  
R
R
X
X
0
1
10  
100  
1000 2000  
1
10  
100  
1000 2000  
Frequency (MHz)  
Frequency (MHz)  
BLM21BB221SH1  
BLM21BD221SH1  
500  
1000  
800  
600  
400  
200  
0
400  
300  
200  
100  
0
Z
Z
R
X
R
X
1
10  
100  
1000 2000  
1
10  
100  
1000 2000  
Frequency (MHz)  
Frequency (MHz)  
BLM21BB331SH1  
BLM21BD331SH1  
800  
1200  
Z
600  
400  
900  
600  
Z
R
R
X
X
200  
0
300  
0
1
10  
100  
1000 2000  
1
10  
100  
1000 2000  
Frequency (MHz)  
Frequency (MHz)  
BLM21BD421SH1  
BLM21BB471SH1  
2000  
1000  
800  
600  
400  
200  
0
Z
1500  
1000  
Z
R
X
R
X
500  
0
1
10  
100  
1000 2000  
1
10  
100  
1000 2000  
Frequency (MHz)  
Frequency (MHz)  
Continued on the following page.  
23  
C50E.pdf  
Aug.28,2008  
Continued from the preceding page.  
Impedance - Frequency Characteristics  
1
BLM21BD471SH1  
BLM21BD601SH1  
1200  
1200  
Z
900  
900  
600  
Z
R
R
X
600  
X
300  
300  
0
0
1
10  
100  
1000 2000  
1
10  
100  
Frequency (MHz)  
1000 2000  
Frequency (MHz)  
BLM21BD751SH1  
BLM21BD102SH1  
1500  
1200  
900  
600  
300  
0
1800  
1500  
1200  
900  
600  
300  
0
Z
Z
R
X
R
X
1
10  
100  
Frequency (MHz)  
1000 2000  
1
10  
100  
1000 2000  
Frequency (MHz)  
BLM21BD152SH1  
BLM21BD182SH1  
2500  
2000  
1500  
1000  
500  
2500  
2000  
1500  
1000  
500  
Z
Z
R
R
X
X
0
0
1
10  
100  
1000 2000  
1
10  
100  
1000 2000  
Frequency (MHz)  
Frequency (MHz)  
BLM21BD222TH1  
BLM21BD222SH1  
3000  
2400  
1800  
1200  
600  
2400  
Z
1800  
1200  
Z
R
R
X
X
600  
0
0
1
10  
100  
1000 2000  
1
10  
100  
Frequency (MHz)  
1000 2000  
Frequency (MHz)  
Continued on the following page.  
24  
C50E.pdf  
Aug.28,2008  
Continued from the preceding page.  
Impedance - Frequency Characteristics  
1
BLM21BD272SH1  
3500  
3000  
2500  
Z
2000  
R
1500  
X
1000  
500  
0
1
10  
100  
1000 2000  
Frequency (MHz)  
BLM18P Series  
0.4±0.2  
Features  
The chip ferrite beads BLM series is designed to  
function nearly as a resistor at noise frequencies,  
which greatly reduces the possibility of resonance and  
leaves signal wave forms undistorted.  
1.6±0.15  
BLM series is effective in circuits without stable  
ground lines because BLM series does not need a  
connection to ground.  
0.8±0.15  
The nickel barrier structure of the external  
electrodes provides excellent solder heat resistance.  
BLM_P series can be used in high current circuits due  
to its low DC resistance.  
(in mm)  
Impedance  
Operating  
Rated Current  
(mA)  
DC Resistance (max.)  
Part Number  
(at 100MHz/20°C)  
Temperature Range  
(ohm)  
(ohm)  
(°C)  
BLM18PG300SH1  
BLM18PG330SH1  
BLM18PG600SH1  
BLM18PG121SH1  
BLM18PG181SH1  
BLM18PG221SH1  
BLM18PG331SH1  
BLM18PG471SH1  
30 (Typ.)  
33 ±25%  
1000  
3000  
500  
0.05  
0.025  
0.10  
0.05  
0.09  
0.10  
0.15  
0.20  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
60 (Typ.)  
120 ±25%  
180 ±25%  
220 ±25%  
330 ±25%  
470 ±25%  
2000  
1500  
1400  
1200  
1000  
For the items of rated current higher than 1200mA, derating is required.  
Please refer to p.32, "Derating of Rated Current".  
Equivalent Circuit  
Impedance - Frequency (Typical)  
BLM18P Series  
600  
BLM18PG471SH1  
BLM18PG331SH1  
BLM18PG221SH1  
450  
BLM18PG181SH1  
BLM18PG121SH1  
BLM18PG600SH1  
300  
BLM18PG330SH1  
BLM18PG300SH1  
150  
(Resistance element becomes dominant  
at high frequencies.)  
0
1
10  
100  
1000  
Frequency (MHz)  
25  
C50E.pdf  
Aug.28,2008  
Impedance - Frequency Characteristics  
1
BLM18PG300SH1  
BLM18PG330SH1  
50  
60  
45  
30  
15  
0
40  
Z
Z
30  
R
R
20  
X
X
10  
0
1
10  
100  
1000  
1
10  
100  
1000  
Frequency (MHz)  
Frequency (MHz)  
BLM18PG600SH1  
BLM18PG121SH1  
100  
80  
60  
40  
20  
0
200  
150  
100  
50  
Z
Z
R
R
X
X
0
1
10  
100  
1000  
1
10  
100  
1000  
Frequency (MHz)  
Frequency (MHz)  
BLM18PG181SH1  
BLM18PG221SH1  
280  
210  
140  
70  
400  
300  
200  
100  
0
Z
Z
R
R
X
X
0
1
10  
100  
1000  
1
10  
100  
1000  
Frequency (MHz)  
Frequency (MHz)  
BLM18PG331SH1  
BLM18PG471SH1  
600  
450  
300  
150  
0
800  
600  
400  
200  
0
Z
Z
R
R
X
X
1
10  
100  
Frequency (MHz)  
1000  
1
10  
100  
Frequency (MHz)  
1000  
26  
C50E.pdf  
Aug.28,2008  
1
BLM21P Series  
0.5±0.2  
Features  
The chip ferrite beads BLM series is designed to  
function nearly as a resistor at noise frequencies,  
which greatly reduces the possibility of resonance and  
leaves signal wave forms undistorted.  
BLM series is effective in circuits without stable  
ground lines because BLM series does not need a  
connection to ground.  
2.0±0.2  
1.25±0.2  
EIA CODE : 0805  
The nickel barrier structure of the external  
electrodes provides excellent solder heat resistance.  
BLM_P series can be used in high current circuits due  
to its low DC resistance.  
(in mm)  
Impedance  
Operating  
Temperature Range  
(°C)  
Rated Current  
(mA)  
DC Resistance (max.)  
(ohm)  
Part Number  
(at 100MHz/20°C)  
(ohm)  
BLM21PG220SH1  
BLM21PG300SH1  
BLM21PG600SH1  
BLM21PG221SH1  
BLM21PG331SH1  
22 ±25%  
30 (Typ.)  
60 ±25%  
220 ±25%  
330 ±25%  
6000  
3000  
3000  
2000  
1500  
0.01  
0.015  
0.025  
0.050  
0.09  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
For the items of rated current higher than 1500mA, derating is required.  
Please refer to p.32, "Derating of Rated Current".  
Equivalent Circuit  
Impedance - Frequency (Typical)  
600  
450  
300  
BLM21PG331SH1  
BLM21PG221SH1  
BLM21PG600SH1  
BLM21PG300SH1  
BLM21PG220SH1  
(Resistance element becomes dominant  
at high frequencies.)  
150  
0
1
10  
100  
Frequency (MHz)  
1000  
Impedance - Frequency Characteristics  
BLM21PG220SH1  
BLM21PG300SH1  
40  
60  
30  
45  
30  
Z
Z
R
20  
R
X
10  
X
15  
0
0
1
10  
100  
Frequency (MHz)  
1000  
1
10  
100  
Frequency (MHz)  
1000  
Continued on the following page.  
27  
C50E.pdf  
Aug.28,2008  
Continued from the preceding page.  
Impedance - Frequency Characteristics  
1
BLM21PG600SH1  
BLM21PG221SH1  
400  
120  
300  
200  
90  
Z
Z
60  
R
R
100  
0
30  
X
X
0
1
10  
100  
Frequency (MHz)  
1000  
1
10  
100  
Frequency (MHz)  
1000  
BLM21PG331SH1  
600  
450  
300  
Z
R
X
150  
0
1
10  
100  
Frequency (MHz)  
1000  
28  
C50E.pdf  
Aug.28,2008  
1
BLM31P Series  
0.7±0.3  
Features  
The chip ferrite beads BLM series is designed to  
function nearly as a resistor at noise frequencies,  
which greatly reduces the possibility of resonance and  
leaves signal wave forms undistorted.  
BLM series is effective in circuits without stable  
ground lines because BLM series does not need a  
connection to ground.  
3.2±0.2  
1.6±0.2  
in mm  
The nickel barrier structure of the external  
electrodes provides excellent solder heat resistance.  
BLM_P series can be used in high current circuits due  
to its low DC resistance.  
Impedance  
Operating  
Rated Current  
(mA)  
DC Resistance (max.)  
(ohm)  
Part Number  
(at 100MHz/20°C)  
Temperature Range  
(ohm)  
(°C)  
BLM31PG330SH1  
BLM31PG500SH1  
BLM31PG121SH1  
BLM31PG391SH1  
BLM31PG601SH1  
33 ±25%  
50 (Typ.)  
120 ±25%  
390 ±25%  
600 ±25%  
6000  
3000  
3000  
2000  
1500  
0.01  
0.025  
0.025  
0.05  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
0.09  
For the items of rated current higher than 1500mA, derating is required.  
Please refer to p.32, "Derating of Rated Current".  
Equivalent Circuit  
Impedance - Frequency (Typical)  
700  
600  
BLM31PG601SH1  
500  
BLM31PG391SH1  
400  
BLM31PG121SH1  
300  
BLM31PG500SH1  
(Resistance element becomes dominant  
at high frequencies.)  
200  
BLM31PG330SH1  
100  
0
1
10  
100  
Frequency (MHz)  
1000  
Impedance - Frequency Characteristics  
BLM31PG330SH1  
BLM31PG500SH1  
80  
60  
Z
60  
40  
45  
Z
R
X
R
30  
X
20  
0
15  
0
1
10  
100  
Frequency (MHz)  
1000  
1
10  
100  
Frequency (MHz)  
1000  
Continued on the following page.  
29  
C50E.pdf  
Aug.28,2008  
Continued from the preceding page.  
Impedance - Frequency Characteristics  
1
BLM31PG121SH1  
BLM31PG391SH1  
200  
600  
150  
450  
300  
Z
Z
R
R
100  
50  
150  
0
X
X
0
1
10  
100  
Frequency (MHz)  
1000  
1
10  
100  
Frequency (MHz)  
1000  
BLM31PG601SH1  
800  
600  
400  
Z
R
X
200  
0
1
10  
100  
Frequency (MHz)  
1000  
BLM41P Series  
0.7±0.3  
Features  
The chip ferrite beads BLM series is designed to  
function nearly as a resistor at noise frequencies,  
which greatly reduces the possibility of resonance and  
leaves signal wave forms undistorted.  
4.5±0.2  
1.6±0.2  
BLM series is effective in circuits without stable  
ground lines because BLM series does not need a  
connection to ground.  
The nickel barrier structure of the external  
electrodes provides excellent solder heat resistance.  
BLM_P series can be used in high current circuits due  
to its low DC resistance.  
(in mm)  
Impedance  
Operating  
Rated Current  
(mA)  
DC Resistance (max.)  
(ohm)  
Part Number  
(at 100MHz/20°C)  
Temperature Range  
(ohm)  
(°C)  
BLM41PG600SH1  
BLM41PG750SH1  
BLM41PG181SH1  
BLM41PG471SH1  
BLM41PG102SH1  
60 (Typ.)  
75 (Typ.)  
6000  
3000  
3000  
2000  
1500  
0.01  
0.025  
0.025  
0.05  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
180 ±25%  
470 ±25%  
1000 ±25%  
0.09  
For the items of rated current higher than 1500mA, derating is required.  
Please refer to p.32, "Derating of Rated Current".  
30  
C50E.pdf  
Aug.28,2008  
Equivalent Circuit  
1
(Resistance element becomes dominant  
at high frequencies.)  
Impedance - Frequency (Typical)  
1200  
250  
BLM41PG181SH1  
200  
900  
600  
BLM41PG102SH1  
150  
BLM41PG471SH1  
100  
BLM41PG750SH1  
300  
0
50  
BLM41PG600SH1  
0
1
10  
100  
Frequency (MHz)  
1000  
1
10  
100  
Frequency (MHz)  
1000  
Impedance - Frequency Characteristics  
BLM41PG600SH1  
BLM41PG750SH1  
100  
100  
Z
75  
50  
75  
Z
R
X
R
50  
X
25  
0
25  
0
1
10  
100  
1000  
1
10  
100  
Frequency (MHz)  
1000  
Frequency (MHz)  
BLM41PG181SH1  
BLM41PG471SH1  
400  
600  
300  
200  
450  
300  
Z
R
Z
R
X
100  
0
150  
0
X
1
10  
100  
Frequency (MHz)  
1000  
1
10  
100  
Frequency (MHz)  
1000  
Continued on the following page.  
31  
C50E.pdf  
Aug.28,2008  
Continued from the preceding page.  
Impedance - Frequency Characteristics  
1
BLM41PG102SH1  
1200  
900  
Z
R
600  
X
300  
0
1
10  
100  
Frequency (MHz)  
1000  
Notice (Rating)  
In operating temperatures exceeding +85D, derating of  
current is necessary for chip Ferrite Beads for which rated  
current is 1200mA or over. Please apply the derating curve  
shown in chart according to the operating temperature.  
Derating  
6A  
6
5
4A  
4
3A  
3
2.5A  
2A  
2
1.5A  
1.4A  
1.2A  
1
0
1A  
85  
125  
Operating Temperature [D]  
32  
C50E.pdf  
Aug.28,2008  
1
BLM18H Series  
0.4±0.2  
BLM18H series has a modified internal electrode  
structure, that minimizes stray capacitance and  
increases the effective frequency range.  
Features  
1.6±0.15  
1. BLM18H series realizes high impedance at 1GHz and  
is suitable for noise suppression from 500MHz to  
GHz range. The impedance value of HG/HD-type is  
about three times as large as that of A/B-type at  
1GHz though the impedance characteristic of  
HG/HD-type is similar to A/B-type at 100MHz or less.  
2. HG-type is effective in noise suppression in wide  
frequency range (several MHz to several GHz).  
HD-type for high-speed signal line provides a  
sharper roll-off after the cut off frequency.  
0.8±0.15  
(in mm)  
3. The magnetic shielded structure minimizes cross talk.  
Impedance  
(at 100MHz/20°C)  
(ohm)  
Impedance  
Operating  
Rated Current  
(mA)  
DC Resistance (max.)  
(ohm)  
Part Number  
(at 1GHz/20°C)  
Temperature Range  
(ohm)  
(°C)  
BLM18HG471SH1  
BLM18HG601SH1  
BLM18HG102SH1  
BLM18HD471SH1  
BLM18HD601SH1  
BLM18HD102SH1  
470 ±25%  
600 ±25%  
1000 ±25%  
470 ±25%  
600 ±25%  
1000 ±25%  
600 (Typ.)  
700 (Typ.)  
1000 (Typ.)  
1000 (Typ.)  
1200 (Typ.)  
1700 (Typ.)  
200  
200  
100  
100  
100  
50  
0.85  
1.00  
1.60  
1.20  
1.50  
1.80  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
Equivalent Circuit  
(Resistance element becomes dominant  
at high frequencies.)  
Impedance - Frequency (Typical)  
2000  
4000  
1500  
3000  
2000  
BLM18HG102SH1  
BLM18HG601SH1  
BLM18HD102SH1  
1000  
BLM18HG471SH1  
BLM18HD601SH1  
BLM18HD471SH1  
500  
0
1000  
0
1
1000 2000  
10  
100  
Frequency (MHz)  
1
10  
100  
1000  
2000  
Frequency (MHz)  
33  
C50E.pdf  
Aug.28,2008  
Impedance - Frequency Characteristics  
1
BLM18HG471SH1  
BLM18HG601SH1  
1000  
800  
750  
500  
600  
Z
Z
R
X
R
400  
X
250  
0
200  
0
1000 2000  
1
10  
100  
1000 2000  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
BLM18HG102SH1  
BLM18HD471SH1  
2000  
2000  
1500  
1000  
1500  
1000  
Z
Z
R
R
500  
0
500  
0
X
X
1000 2000  
1
10  
100  
Frequency (MHz)  
1000 2000  
1
10  
100  
Frequency (MHz)  
BLM18HD601SH1  
BLM18HD102SH1  
4000  
2000  
3000  
2000  
1500  
1000  
Z
Z
X
1000  
0
500  
0
X
R
R
1000 2000  
1
10  
100  
Frequency (MHz)  
1000 2000  
1
10  
100  
Frequency (MHz)  
34  
C50E.pdf  
Aug.28,2008  
1
BLM18E Series  
1.6±0.15  
0.8±0.15  
BLM18E series has a modified internal electrode  
structure, that minimizes stray capacitance and  
increases the effective frequency range.  
0.4±0.2  
Features  
1. Low DC Resistance and a large Rated Current are  
suitable for noise suppression of the driver  
circuit.  
T
BLM18EGpppTH1  
BLM18EGpppSH1  
0.5±0.15  
0.8±0.15  
(in mm)  
2. Excellent direct current characteristics.  
3. Thin type (t=0.5mm) is suitable for small and  
low profile equipment such as ETC, RKE.  
Impedance  
(at 100MHz/20°C)  
(ohm)  
Impedance  
Operating  
Rated Current  
(mA)  
DC Resistance (max.)  
(ohm)  
Part Number  
(at 1GHz/20°C)  
Temperature Range  
(ohm)  
(°C)  
BLM18EG101TH1  
BLM18EG121SH1  
BLM18EG181SH1  
BLM18EG221TH1  
BLM18EG331TH1  
BLM18EG391TH1  
BLM18EG471SH1  
BLM18EG601SH1  
100 ±25%  
120 ±25%  
180 ±25%  
220 ±25%  
330 ±25%  
390 ±25%  
470 ±25%  
600 ±25%  
140 (Typ.)  
145 (Typ.)  
260 (Typ.)  
300 (Typ.)  
450 (Typ.)  
520 (Typ.)  
550 (Typ.)  
700 (Typ.)  
2000  
2000  
2000  
1000  
500  
0.045  
0.04  
0.05  
0.15  
0.21  
0.30  
0.21  
0.35  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
500  
500  
500  
For the items of rated current higher than 2000mA, derating is required.  
Please refer to p.37, "Derating of Rated Current".  
Equivalent Circuit  
(Resistance element becomes dominant  
at high frequencies.)  
Impedance - Frequency (Typical)  
1000  
1000  
800  
600  
400  
200  
BLM18EG601SH1  
BLM18EG471SH1  
800  
BLM18EG391TH1  
BLM18EG331TH1  
600  
BLM18EG221TH1  
BLM18EG181SH1  
BLM18EG121SH1  
400  
BLM18EG101TH1  
200  
0
0
1
1
10  
100  
1000 2000  
10  
100  
Frequency (MHz)  
1000 2000  
Frequency (MHz)  
Continued on the following page.  
35  
C50E.pdf  
Aug.28,2008  
Continued from the preceding page.  
Impedance - Frequency Characteristics  
BLM18EG101TH1  
1
BLM18EG121SH1  
160  
200  
160  
120  
80  
Z
120  
Z
R
80  
R
40  
X
X
40  
0
1
10  
100  
1000 2000  
0
1
10  
100  
1000 2000  
Frequency (MHz)  
Frequency (MHz)  
BLM18EG181SH1  
BLM18EG221TH1  
400  
300  
200  
100  
0
400  
300  
200  
100  
0
Z
Z
R
R
X
X
1
10  
100  
1000 2000  
1
10  
100  
Frequency (MHz)  
1000 2000  
Frequency (MHz)  
BLM18EG331TH1  
BLM18EG391TH1  
600  
700  
560  
420  
280  
140  
0
450  
300  
150  
0
Z
Z
R
R
X
X
1
10  
100  
1000 2000  
1
10  
100  
Frequency (MHz)  
1000  
2000  
Frequency (MHz)  
BLM18EG471SH1  
BLM18EG601SH1  
800  
600  
400  
200  
0
1000  
750  
500  
250  
0
Z
Z
R
R
X
X
1
10  
100  
1000 2000  
1
10  
100  
Frequency (MHz)  
1000 2000  
Frequency (MHz)  
Continued on the following page.  
36  
C50E.pdf  
Aug.28,2008  
Continued from the preceding page.  
Notice (Rating)  
1
In operating temperatures exceeding +85D, derating of  
current is necessary for chip Ferrite Beads for which rated  
current is 1200mA or over. Please apply the derating curve  
shown in chart according to the operating temperature.  
Derating  
6A  
6
5
4A  
4
3A  
3
2.5A  
2A  
2
1.5A  
1.4A  
1.2A  
1
0
1A  
85  
125  
Operating Temperature [D]  
37  
C50E.pdf  
Aug.28,2008  
Specifications and Test Methods  
1
c Test and Measurement Conditions  
<Unless otherwise specified>  
<In case of doubt>  
Temperature: Ordinary Temp. 15 to 35°C  
Humidity: Ordinary Humidity 25 to 85% (RH)  
Temperature: 20±2°C  
Humidity: 60 to 70% (RH)  
Atmospheric Pressure: 86 to 106kPa  
c Specifications  
1. Electrical Performance  
No.  
Item  
Specifications  
Test Methods  
Measuring Frequency  
BLM15/18/21/31/41 series  
BLM18HG/HD type  
100±1MHz  
100±1MHz, 1GHz±1MHz  
Within the specified tolerance.  
1
2
Impedance  
Impedance Frequency Characteristics (Typical):  
See the appendix.  
Measuring Equipment: Agilent 4291A or the equivalent  
Test Fixture  
BLM15/18/21/31/41 series Agilent 16192A or the equivalent  
DC Resistance  
Meet specifications.  
Measuring Equipment: Digital multi-meter  
2. Mechanical Performance  
No.  
Item  
Specifications  
Test Methods  
Appearance and  
Dimensions  
1
Meet dimensions.  
Visual Inspection and measured with micrometer.  
Flux: Ethanol solution of rosin, 25wt%  
Pre-heating: 150±10°C, 60 to 90s  
Solder: qSn/Pb=60/40  
wSn-3.0Ag-0.5Cu solder  
The electrodes should be at least 95% covered with  
new solder coating.  
Solder Temperature: q230±5°C  
w240±5°C  
1
2
Solderability  
Immersion Time: q4±1s  
w3±1s (BLM15/18 series)  
w4±1s (BLM21/31/41 series)  
Immersion and emersion rates: 25mm/s  
Flux: Ethanol solution of rosin, 25wt%  
Pre-heating: 150±10°C, 60 to 90s  
Solder: Sn/Pb=60/40 or Sn-3.0Ag-0.5Cu solder  
Solder Temperature: 270±5°C  
Immersion Time: 10±0.5s  
Resistance to Soldering  
Heat  
3
1
Immersion and emersion rates: 25mm/s  
Then measured after exposure to room conditions for 48±4 hrs.  
It should be soldered on the substrate.  
Applying Force (F): 4.9N (BLM15 series)  
6.8N (BLM18 series)  
9.8N (BLM21/31/41 series)  
(Side view)  
Applying Time: 5±1s  
F
1
4
Bonding Strength!  
F
R0.5  
Meet Table 1, two pages ahead.  
Substrate  
It should be mounting with conductive glue on the substrate.  
Applying Force (F): 8N  
Applying Time: 5±1s  
Applying Direction as shown below.  
2
5
Bonding Strength@  
1 Except BLM18AGpppWH1  
2 BLM18AGpppWH1 only.  
Continued on the following page.  
38  
C50E.pdf  
Aug.28,2008  
Specifications and Test Methods  
1
Continued from the preceding page.  
No.  
Item  
Specifications  
Test Methods  
It should be soldered on the glass-epoxy substrate.  
Substrate: 100 Z 40 Z 1.6mm  
(BLM15 series: 100 Z 40 Z 0.8mm)  
(BLM18H series: 100 Z 40 Z 1.0mm)  
Deflection (n): 1.0mm  
1
6
Bending Strength  
(BLM15 series: 2.0mm)  
Pressure jig  
(BLM18H series: 2.0mm)  
Speed of Applying Force: 0.5mm/s  
Keeping Time: 30s  
R340  
F
Deflection  
45  
45  
Product  
(in mm)  
Meet Table 1, next page.  
It should be soldered on the substrate.  
Oscillation Frequency: 10 to 2000 to 10Hz for 20 min.  
Total Amplitude: 1.5mm or Acceleration amplitude 49m/s2  
whichever is smaller.  
Testing Time: A period of 2 hours in each of 3 mutually  
perpendicular directions. (Total 6 hrs.)  
1
7
8
Vibration!  
It should be mounted with conductive glue on the substrate.  
Oscillation Frequency: 10 to 2000 to 10Hz for 20 min.  
Total Amplitude: 1.5mm or Acceleration amplitude 49m/s2  
whichever is smaller.  
2
Vibration@  
Testing Time: A period of 2 hours in each of 3 mutually  
perpendicular directions. (Total 6 hrs.)  
1 Except BLM18AGpppWH1  
2 BLM18AGpppWH1 only.  
3. Environmental Performance (It should be soldered on the substrate.)  
No.  
Item  
Specifications  
Test Methods  
Temperature: 70±2°C  
Humidity: 90 to 95% (RH)  
1
Humidity  
Heat Life  
Time: 1000 hrs. (±480hrs.)  
Then measured after exposure to room conditions for  
48±4 hrs.  
Temperature: 150±3°C (BLM18AGpppWH1 only)  
1
125±3°C (BLM15/18/21/31 series)  
85±3°C (BLM18PG330/121/181/221/331 type  
BLM21PG/31PG/41PG series)  
2
3
4
Applying Current: Rated Current  
Time: 1000 hrs. (±480hrs.)  
Then measured after exposure to room conditions for  
48±4 hrs.  
Meet Table 1, next page.  
Temperature: -55±2°C  
Time: 1000 hrs. (±480hrs.)  
Then measured after exposure to room conditions for  
48±4 hrs.  
Cold Resistance  
1 Cycle  
1 step: -55±03°C/30±3 min.  
2 step: Room Temperature/within 5 min.  
3 step: +125±30°C/30±3 min.  
4 step: Room Temperature/within 5 min.  
Total of 1000 cycles  
Temperature Cycle  
Then measured after exposure to room conditions for  
48±4 hrs.  
1 Except BLM18AGpppWH1  
Continued on the following page.  
39  
C50E.pdf  
Aug.28,2008  
Specifications and Test Methods  
1
Continued from the preceding page.  
4. Other Performance  
No.  
Item  
Specifications  
Test Methods  
The products are adhered on the substrate with the conductive  
glue and tested under the condition in Table, and then  
measured after exposure in room condition for 1 or 2 hours.  
Please refer to the figure about the equivalent circuit.  
Capacitance for Charging and  
150pF  
Discharging  
330Ω  
Resistance for Discharging R1  
1
Resistance for  
Charge R2  
1
ESD Test!  
50 to 100MΩ  
+20 times/-20 times  
Applying Method  
R2  
R1  
Discharge Chip  
Product  
SW1  
SW2  
C
Discharge Return  
Circuit Connection  
Meet Table 1, below.  
The products are adhered on the substrate with the conductive  
glue and tested under the condition of Table, and then  
measured after exposure in room condition for 1 or 2 hours.  
Machine  
Model  
(MM)  
Human  
Body Model  
(HBM)  
Capacitance for Charging  
and Discharging  
1
200pF  
0Ω  
100pF  
1500Ω  
1MΩ  
2
ESD Test@  
Resistance for  
Discharging R1  
Resistance for  
Charge R2  
1MΩ  
Applying Method  
Applying Voltage  
±10 times  
300V  
±5 times  
2kV  
1 BLM18AGpppWH1 only.  
Table 1.  
Appearance  
Impedance Change (at 100MHz)  
DC Resistance  
No damage  
within ±30%  
Meet Table 2, next page.  
Continued on the following page.  
40  
C50E.pdf  
Aug.28,2008  
Specifications and Test Methods  
1
Continued from the preceding page.  
Table 2.  
DC Resistance  
(ohm max.)  
Values After Testing  
DC Resistance  
(ohm max.)  
Values After Testing  
DC Resistance  
(ohm max.)  
Values After Testing  
DC Resistance  
(ohm max.)  
Values After Testing  
Part Number  
Part Number  
Part Number  
Part Number  
BLM18HG601SH1  
BLM18HG102SH1  
BLM18HD471SH1  
BLM18HD601SH1  
BLM18HD102SH1  
BLM18EG101TH1  
BLM18EG121SH1  
BLM18EG181SH1  
BLM18EG221TH1  
BLM18EG331TH1  
BLM18EG391TH1  
BLM18EG471SH1  
BLM18EG601SH1  
1.10  
1.70  
1.30  
1.60  
1.90  
0.07  
0.06  
0.08  
0.21  
0.30  
0.40  
0.30  
0.45  
BLM21BD421SH1  
BLM21BB471SH1  
BLM21BD471SH1  
BLM21BD601SH1  
BLM21BD751SH1  
BLM21BD102SH1  
BLM21BD152SH1  
BLM21BD182SH1  
BLM21BD222SH1  
BLM21BD222TH1  
BLM21BD272SH1  
BLM21PG220SH1  
BLM21PG300SH1  
BLM21PG600SH1  
BLM21PG221SH1  
BLM21PG331SH1  
0.40  
0.55  
0.45  
0.45  
0.50  
0.50  
0.55  
0.60  
0.70  
0.70  
0.90  
0.02  
0.03  
0.05  
0.10  
0.18  
BLM15AG100SH1  
BLM15AG700SH1  
BLM15AG121SH1  
BLM15AG221SH1  
BLM15AG601SH1  
BLM15AG102SH1  
BLM15BB050SH1  
BLM15BB100SH1  
BLM15BB220SH1  
BLM15BB470SH1  
BLM15BB750SH1  
BLM15BB121SH1  
BLM15BB221SH1  
BLM15BD471SH1  
BLM15BD601SH1  
BLM15BD102SH1  
BLM15BD182SH1  
0.10  
0.20  
0.35  
0.45  
0.70  
1.10  
0.15  
0.15  
0.30  
0.45  
0.50  
0.65  
0.90  
0.70  
0.75  
1.00  
1.50  
BLM18BA470SH1  
BLM18BB470SH1  
BLM18BD470SH1  
BLM18BB600SH1  
BLM18BA750SH1  
BLM18BB750SH1  
BLM18BA121SH1  
BLM18BB121SH1  
BLM18BD121SH1  
BLM18BB141SH1  
BLM18BB151SH1  
BLM18BD151SH1  
BLM18BB221SH1  
BLM18BD221SH1  
BLM18BB331SH1  
BLM18BD331SH1  
BLM18BD421SH1  
BLM18BB471SH1  
BLM18BD471SH1  
BLM18BD601SH1  
BLM18BD102SH1  
BLM18BD152SH1  
BLM18BD182SH1  
BLM18BD222SH1  
BLM18BD252SH1  
BLM18PG300SH1  
BLM18PG330SH1  
BLM18PG600SH1  
BLM18PG121SH1  
BLM18PG181SH1  
BLM18PG221SH1  
BLM18PG331SH1  
BLM18PG471SH1  
BLM18HG471SH1  
0.65  
0.35  
0.40  
0.35  
0.80  
0.40  
1.00  
0.40  
0.50  
0.45  
0.47  
0.50  
0.55  
0.55  
0.68  
0.60  
0.65  
0.95  
0.65  
0.75  
0.95  
1.30  
1.60  
1.60  
1.60  
0.10  
0.05  
0.20  
0.10  
0.18  
0.14  
0.195  
0.26  
0.95  
BLM21AG121SH1  
BLM21AG151SH1  
BLM21AG221SH1  
BLM21AG331SH1  
BLM21AG471SH1  
BLM21AG601SH1  
BLM21AG102SH1  
BLM21BB050SH1  
BLM21BB600SH1  
BLM21BB750SH1  
BLM21BB121SH1  
BLM21BD121SH1  
BLM21BB151SH1  
BLM21BD151SH1  
BLM21BB201SH1  
BLM21BB221SH1  
BLM21BD221SH1  
BLM21BB331SH1  
BLM21BD331SH1  
0.25  
0.25  
0.30  
0.35  
0.35  
0.40  
0.55  
0.14  
0.25  
0.35  
0.35  
0.35  
0.35  
0.35  
0.45  
0.45  
0.35  
0.50  
0.40  
BLM31AJ601SH1  
BLM31PG330SH1  
BLM31PG500SH1  
BLM31PG121SH1  
BLM31PG391SH1  
BLM31PG601SH1  
0.10  
0.02  
0.05  
0.05  
0.10  
0.18  
BLM18AG121SH1  
BLM18AG151SH1  
BLM18AG221SH1  
BLM18AG331SH1  
BLM18AG471SH1  
BLM18AG601SH1  
BLM18AG102SH1  
BLM18AG471WH1  
BLM18AG102WH1  
BLM18BA050SH1  
BLM18BB050SH1  
BLM18BA100SH1  
BLM18BB100SH1  
BLM18BA220SH1  
BLM18BB220SH1  
0.28  
0.35  
0.35  
0.40  
0.45  
0.48  
0.60  
0.26  
0.80  
0.30  
0.10  
0.35  
0.15  
0.45  
0.30  
BLM41PG600SH1  
BLM41PG750SH1  
BLM41PG181SH1  
BLM41PG471SH1  
BLM41PG102SH1  
0.02  
0.05  
0.05  
0.10  
0.18  
41  
C50E.pdf  
Aug.28,2008  
On-Board Type (DC) EMI Suppression Filters (EMIFILr) for Automotive  
Chip EMIFILr Part Numbering  
2
Chip EMIFILr Capacitor Type for Automotive  
(Part Number)  
1H  
3 D  
NF  
M
21 HC 102  
R
q
w
e
r
t
y
u i o  
qProduct ID  
yCharacteristics  
Product ID  
Code  
C
Capacitance Change (Temperature Characteristics)  
NF  
Chip EMI Filters Capacitor Type  
±20% , ±22%  
+20/-30% , +22/-33%  
+30/-80% , +22/-82%  
±15%  
D
wStructure  
F
Code  
M
Structure  
R
Capacitor Type  
U
-750 ±120ppm/°C  
Other  
E
Block, LC Combined Type  
Z
eDimensions (LgW)  
uRated Voltage  
Code  
21  
Dimensions (LgW)  
2.0g1.25mm  
EIA  
0805  
2606  
Code  
1A  
Rated Voltage  
10V  
61  
6.8g1.6mm  
1H  
50V  
2A  
100V  
rFeatures  
iElectrode/Others  
Code  
HC  
Features  
For Automotive  
Code  
Electrode  
Sn Plating  
Others  
HT  
T Circuit for Heavy-duty  
3
9
tCapacitance  
Expressed by three figures. The unit is in pico-farad (pF). The first  
and second figures are significant digits, and the third figure  
expresses the number of zeros which follow the two figures.  
oPackaging  
Code  
Packaging  
Series  
NFE  
L
K
B
D
Embossed Taping (ø180mm Reel)  
Embossed Taping (ø330mm Reel)  
Bulk  
All series  
Paper Taping (ø180mm Reel)  
NFM  
42  
C50E.pdf  
Aug.28,2008  
On-Board Type (DC) EMI Suppression Filters (EMIFILr) for Automotive  
Chip EMIFILr Capacitor Type NFM21H Series  
0.3±0.2  
The chip "EMIFIL" NFM21H series is a chip type three  
terminal EMI suppression filter. It can reduce  
residual inductance to an extremely low level making  
it excellent for noise suppression at high  
frequencies.  
2
0.6±0.2  
2.0±0.2  
1.25±0.1  
(2)  
Features  
(1)  
(3)  
1. Wide operating temperature range (-55 to +125  
degrees C)  
(2)  
2. Three terminal structure enables high performance  
in high frequency range.  
(in mm)  
3. Uses original electrode structure which realizes  
excellent solderability.  
4. An electrostatic capacitance range of 22 to  
470,000pF enables suppression of noise at specific  
frequencies.  
Applications  
Severe EMI suppression and high impedance circuits  
such as digital circuits.  
Insulation Resistance  
(min.)  
Capacitance  
(pF)  
Rated Voltage  
Rated Current  
(mA)  
Operating Temperature Range  
Part Number  
(Vdc)  
(°C)  
(M ohm)  
NFM21HC220U1H3  
NFM21HC470U1H3  
NFM21HC101U1H3  
NFM21HC221R1H3  
NFM21HC471R1H3  
NFM21HC102R1H3  
NFM21HC222R1H3  
NFM21HC223R1H3  
NFM21HC104R1A3  
NFM21HC224R1A3  
NFM21HC474R1A3  
22 +20% ,-20%  
47 +20% ,-20%  
50  
50  
50  
50  
50  
50  
50  
50  
10  
10  
10  
700  
700  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
100 +20% ,-20%  
220 +20% ,-20%  
470 +20% ,-20%  
1000 +20% ,-20%  
2200 +20% ,-20%  
22000 +20% ,-20%  
100000 +20% ,-20%  
220000 +20% ,-20%  
470000 +20% ,-20%  
700  
700  
1000  
1000  
1000  
2000  
2000  
2000  
2000  
Equivalent Circuit  
Insertion Loss Characteristics  
(50- 50)  
0
10  
20  
30  
40  
(1) Input  
Output (3)  
50  
NFM21HC220U1H3  
NFM21HC470U1H3  
60  
No polarity.  
NFM21HC101U1H3  
NFM21HC221R1H3  
70  
GND  
(2)  
NFM21HC471R1H3  
NFM21HC102R1H3  
NFM21HC222R1H3  
NFM21HC223R1H3  
80  
90  
NFM21HC104R1A3  
NFM21HC224R1A3  
NFM21HC474R1A3  
100  
1
10  
100  
1000  
2000  
Frequency (MHz)  
43  
C50E.pdf  
Aug.28,2008  
Specifications and Test Methods  
c Test and Measurement Conditions  
<Unless otherwise specified>  
<In case of doubt>  
Temperature: Ordinary Temp. 15 to 35°C  
Humidity: Ordinary Humidity 25 to 85% (RH)  
Temperature: 20±2°C  
Humidity: 60 to 70% (RH)  
Atmospheric Pressure: 86 to 106kPa  
2
c Specifications  
1. Electrical Performance  
No.  
Item  
Specifications  
Test Methods  
Frequency  
22 to 100pF  
1.0±0.1MHz  
1.0±0.1kHz  
1
Capacitance (Cap.)  
Within the specified tolerance.  
220 to 470000pF  
Voltage: 1±0.2Vrms  
Insulation Resistance  
(I.R.)  
Voltage: Rated Voltage  
Charging Time: 2 minutes max.  
2
3
1000Mmin.  
Test Voltage  
22 to 22000pF  
150Vdc  
30Vdc  
100000 to 470000pF  
Withstanding Voltage  
Products should not be damaged.  
Testing Time: 1 to 5s  
Charge/Discharge Current: 50mA max.  
Measured with 100mA max.  
Rdc1: between signal terminals  
Rdc2: between ground terminals  
Rdc2  
22 to 2200pF: 0.3max.  
22000 to 470000pF: 0.03max.  
4
DC Resistance (Rdc1, 2)  
Rdc1  
Rdc1  
Rdc2  
2. Mechanical Performance  
No.  
Item  
Specifications  
Test Methods  
Appearance and  
Dimensions  
1
Meet dimensions.  
Visual Inspection and measured with micrometer.  
Flux: Ethanol solution of rosin, 25wt%  
Pre-heating: 150±10°C, 60 to 90s  
Solder: qSn/Pb=60/40  
wSn-3.0Ag-0.5Cu solder  
2
Solderability  
Electrodes should be at least 90% covered with new solder coating. Solder Temperature: q230± 5°C  
w240± 3°C  
Immersion Time: q2±0.5s  
w3±1s  
Immersion and emersion rates: 25mm/s  
Flux: Ethanol solution of rosin, 25wt%  
Pre-heating: 150±10°C, 60 to 90s  
Solder: Sn/Pb = 60/40 or Sn-30Ag-0.5Cu solder  
Meet Table 1.  
Solder Temperature: 270 ± 5°C  
Immersion Time: 10±1s  
Table 1  
Appearance  
Cap. Change  
(% C)  
No damage  
Immersion and emersion rates: 25mm/s  
Initial values: About 220 to 470000pF, measured after heat  
treatment (150±010°C, 1 hour) and exposure in the room  
condition for 48±4 hrs.  
Then measured after exposure in room conditions for the  
following hours.  
Resistance to  
Soldering Heat  
3
Within ± 7.5%  
I.R.  
1000Mmin.  
22 to 2200pF  
0.5max.  
Rdc 1, 2  
22000 to 470000pF  
0.05max.  
22 to 100pF: 24±2 hrs.  
220 to 470000pF: 48±4 hrs.  
It should be soldered on the glass-epoxy substrate.  
Applying Force: 17.6N  
Applying Time: 60s  
1.0  
4
Bonding Strength  
The electrodes should show no failure after testing.  
0.8  
(in mm)  
0.6  
0.6  
Continued on the following page.  
44  
C50E.pdf  
Aug.28,2008  
Specifications and Test Methods  
Continued from the preceding page.  
No.  
Item  
Specifications  
Test Methods  
It should be soldered on the glass-epoxy substrate (t=1mm).  
Deflection: 2.0mm  
Keeping Time: 30s  
Meet Table 2.  
Table 2  
Appearance  
Cap. Change  
(% C)  
No damage  
Within ± 12.5%  
Pressure jig  
5
Bending Strength  
2
R230  
F
Deflection  
22 to 2200pF  
22000 to 470000pF  
0.5max.  
0.05max.  
Rdc1, 2  
45  
45  
Product (in mm)  
Meet Table 3.  
Table 3  
It should be soldered on the glass-epoxy substrate.  
Oscillation Frequency: 10 to 55 to 10Hz for 1 min.  
Total Amplitude: 1.5mm  
Testing Time: A period of 2 hrs. in each of 3 mutually  
perpendicular directions. (Total 6 hrs.)  
About 220 to 470000pF: heat treatment (150±010°C, 1 hr.)  
Appearance  
Capacitance  
No damage  
Within the specified tolerance.  
6
Vibration  
22 to 2200pF  
0.5max.  
Rdc1, 2  
22000 to 470000pF  
0.05max.  
3. Environment Performance (It should be soldered on the glass-epoxy substrate.)  
No.  
Item  
Specifications  
Test Methods  
Temperature: 70±2°C  
Humidity: 90 to 95% (RH)  
Time: 1000 hrs. (±480 hrs.)  
Then measured after exposure to room conditions for the  
following hours.  
1
Humidity  
22 to 100pF: 24±2 hrs.  
220 to 470000pF: 48±4 hrs.  
Temperature: 85±2°C  
Humidity: 80 to 85% (RH)  
Test Voltage: Rated Voltage  
Time: 1000 hrs. (±480 hrs.)  
Then measured after exposure to room conditions for the  
following hours.  
2
3
Biased Humidity  
22 to 100pF: 24±2 hrs.  
220 to 470000pF: 48±4 hrs.  
Temperature: 150±2°C  
Time: 1000 hrs. (±480 hrs.)  
Then measured after exposure to room conditions for the  
following hours.  
22 to 100pF: 24±2 hrs.  
Meet Table 4.  
Table 4  
High Temperature  
Exposure  
Appearance  
Cap. Change  
(% C)  
No damage  
Within ± 12.5%  
220 to 470000pF: 48±4 hrs.  
I.R.  
1000Mmin.  
22 to 2200pF  
22000 to 470000pF  
0.5max.  
0.05max.  
Temperature: 125±2°C  
Rdc1, 2  
Test Voltage: Rated voltageA200%  
Charge/Discharge Current: 50mA max.  
Time: 1000hrs. (±480 hrs.)  
Initial values: About 220 to 470000pF, measured after voltage  
treatment (Maximum Operating Temperature ±2°C, Rated  
VoltageA200%, 1 hour) and exposure in room condition  
for 48±4 hrs.  
4
Heat Life  
Then measured after exposure to room conditions for the  
following hours.  
22 to100pF: 24±2 hrs.  
220 to 470000pF: 48±4 hrs.  
Temperature: -55 ± 2°C  
Time: 1000 hrs. (±480 hrs.)  
Then measured after exposure to room conditions for the  
following hours.  
5
Cold Resistance  
22 to 100pF: 24±2 hrs.  
220 to 470000pF: 48±4 hrs.  
Continued on the following page.  
45  
C50E.pdf  
Aug.28,2008  
Specifications and Test Methods  
Continued from the preceding page.  
No.  
Item  
Specifications  
Test Methods  
1 Cycle  
1 step: -55±03 °C/30±3 minutes  
2 step: Room Temperature/within 5 minutes  
3 step: +125±30 °C/30 ±3 minutes  
4 step: Room Temperature/within 5 minutes  
Total of 1000 cycles  
Initial values: About 220 to 470000pF, measured after heat  
treatment (150±010°C, 1 hr.) and exposure in room condition  
for 48±4 hrs.  
Then measured after exposure to room conditions for the  
following hours.  
Meet Table 5.  
Table 5  
2
Appearance  
Cap. Change  
(% C)  
No damage  
6
Temperature Cycle  
Within ± 7.5%  
I.R.  
1000Mmin.  
22 to 2200pF  
22000 to 470000pF  
0.5max.  
0.05max.  
Rdc1, 2  
22 to 100pF: 24±2 hrs.  
220 to 470000pF: 48±4 hrs.  
46  
C50E.pdf  
Aug.28,2008  
On-Board Type (DC) EMI Suppression Filters (EMIFILr) for Automotive  
Chip EMIFILr LC Combined Type for Large Current NFE61H Series  
The T-type chip EMI Filter NFE61H series consists of  
2
a feedthrough capacitor and ferrite beads.  
0.7±0.2  
2.6±0.3  
0.7±0.2  
(1)  
(2)  
(3)  
Features  
1. Its large rated current of 2A and low voltage drop  
due to small DC resistance are suitable for DC  
power line use.  
+0.3  
6.8  
1.6±0.3  
-0.5  
2. The feedthrough capacitor realizes excellent high  
frequency characteristics.  
3. The structure incorporates built-in ferrite beads  
which minimize resonance with surrounding circuits.  
4. 33 to 3,300pF lineups can be used in signal lines.  
(in mm)  
Insulation Resistance  
(min.)  
Capacitance  
(pF)  
Rated Voltage  
Rated Current  
(A)  
Operating Temperature Range  
Part Number  
(Vdc)  
(°C)  
(M ohm)  
NFE61HT330U2A9  
NFE61HT680R2A9  
NFE61HT101Z2A9  
NFE61HT181C2A9  
NFE61HT361C2A9  
NFE61HT681D2A9  
NFE61HT102F2A9  
NFE61HT332Z2A9  
33 +30% ,-30%  
68 +30% ,-30%  
100 +30% ,-30%  
180 +30% ,-30%  
360 +20% ,-20%  
680 +30% ,-30%  
1000 +80% ,-20%  
3300 +80% ,-20%  
100  
100  
100  
100  
100  
100  
100  
100  
2
2
2
2
2
2
2
2
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
Equivalent Circuit  
Insertion Loss Characteristics  
(50- 50)  
NFE61HT330U2A9  
0
NFE61HT680R2A9  
NFE61HT101Z2A9  
10  
20  
NFE61HT181C2A9  
Input  
(1)  
Output  
(3)  
NFE61HT361C2A9  
30  
NFE61HT681D2A9  
NFE61HT102F2A9  
40  
NFE61HT332Z2A9  
GND  
(2)  
50  
60  
No polarity.  
0.1  
1
10  
100  
1000  
Frequency (MHz)  
47  
C50E.pdf  
Aug.28,2008  
Specifications and Test Methods  
Test and Measurement Conditions  
<Unless otherwise specified>  
<In case of doubt>  
Temperature: Ordinary Temp. 15 to 35°C  
Humidity: Ordinary Humidity 25 to 85% (RH)  
Temperature: 20±2°C  
Humidity: 60 to 70% (RH)  
Atmospheric Pressure: 86 to 106kPa  
2
Specifications  
1. Electrical Performance  
No.  
Item  
Specifications  
Test Methods  
Table 1  
Capacitance  
33, 68, 100 (pF)  
180, 360, 680, 1000, 3300 (pF) 1±0.2Vrms  
Voltage  
1 to 5Vrms  
Frequency  
1MHz±10%  
1kHz±10%  
1
Capacitance (Cap.)  
Within the specified tolerance.  
Insulation Resistance  
(I.R. )  
Voltage: 100Vdc  
Charging Time: 60±5s  
2
3
1000Mmin.  
Test Voltage: 250Vdc  
Testing Time: 1 to 5s  
Withstanding Voltage  
Products should not be damaged.  
Charge/Discharge Current: 10mA max.  
Attenuating transient voltage of exponential function should be  
applied to products in the following conditions.  
Meet Table 2.  
Table 2  
Relay  
10Ω  
Appearance  
No damage  
1
Filter  
2 3  
100Ω  
33, 68, 100, 180,  
360, 680 (pF)  
E
B
Resistance to  
Surge Voltage  
0.47µF  
within ±15%  
4
Cap. Change  
1000, 3300 (pF)  
within ±30%  
E
B
400V  
I.R.  
Withstanding  
Voltage  
1000Mmin.  
Peak Voltage: 400V  
Force Period: 1s  
No damage  
The number of Surges: 105  
2. Mechanical Performance  
No.  
Item  
Specifications  
Test Methods  
Appearance and  
Dimensions  
1
Meet dimensions.  
Visual Inspection and measured with micrometer.  
Flux: Ethanol solution of rosin, 25wt%  
Pre-heat: 150±10°C, 60 to 90s  
Solder: qSn/Pb = 60/40  
wSn-3.0Ag-0.5Cu solder  
Solder Temperature: q230±5°C  
w240±3°C  
The electrodes should be at least 75% covered with  
new solder coating.  
2
Solderability  
Immersion Time: q4±1s  
w3±1s  
Immersion and emersion rates: 25mm/s  
Flux: Ethanol solution of rosin, 25wt%  
Pre-heat: 150±10°C, 60 to 90s  
Solder: Sn/Pb = 60/40 or Sn-3.0Ag-0.5Cu solder  
Solder Temperature: 270±5°C  
(for NFE61HT332Z2A9p: 250±5°C)  
Immersion Time: 10±1s  
Resistance to  
Soldering Heat  
3
Meet Table 2, above.  
Immersion and emersion rates: 25mm/s  
Then measured after exposure in room condition for 4 to  
48 hrs.  
It should be soldered on the Paper-phenol substrate. (t=1.6mm)  
Meet Table 3.  
Table 3  
Pressure jig  
R340  
F
Appearance  
No damage  
33, 68, 100, 180,  
360, 680 (pF)  
Deflection  
4
Bending Strength  
45  
45  
Product (in mm)  
within ±15%  
within ±30%  
Cap. Change  
Deflection: 3.0mm  
Keeping Time: 30s  
1000, 3300 (pF)  
It should be soldered on the substrate.  
Oscillation Frequency: 10 to 2000 to 10Hz for 20 min.  
Total Amplitude: 1.5mm or Acceleration amplitude 49m/s2  
whichever is smaller.  
5
Vibration  
Meet Table 2, above.  
Testing Time: A period of 2 hours in each of 3 mutually  
perpendicular directions (Total 6 hrs.)  
48  
C50E.pdf  
Aug.28,2008  
Specifications and Test Methods  
3. Environment Performance (It should be soldered on the substrate.)  
No.  
Item  
Specifications  
Test Methods  
Temperature: 85±2°C  
Humidity: 85% (RH)  
1
Humidity  
Heat Life  
Time: 1000 hrs. (±480 hrs.)  
Then measured after exposure in room condition for 4 to  
48 hrs.  
2
Meet Table 4.  
Table 4  
Temperature: 125±2°C  
Test Voltage:  
Appearance  
No damage  
33, 68, 100, 180,  
360, 680 (pF)  
33 to 680 (pF): Rated VoltageA200%  
1000 to 3300 (pF): Rated VoltageA150%  
Time: 1000 hrs. (±480 hrs.)  
Then measured after exposure in room condition for 4 to  
48 hrs.  
within ±15%  
Cap. Change  
2
3
1000, 3300 (pF)  
within ±30%  
I.R.  
Withstanding  
Voltage  
100Mmin.  
No damage  
Temperature: -55±2°C  
Time: 500hrs. (±240 hrs.)  
Then measured after exposure in room condition for 4 to  
48 hrs.  
Cold Resistance  
1 Cycle  
1 step: -55±03°C/30±3 minutes  
2 step: Room Temperature/within 5 minutes  
3 step: +125±30°C/30±3 minutes  
4 step: Room Temperature/within 5 minutes  
Total of 500 cycles  
4
Temperature Cycle  
Meet Table 2, previous page.  
Then measured after exposure in room condition for 4 to  
48 hrs.  
49  
C50E.pdf  
Aug.28,2008  
On-Board Type (DC) EMI Suppression Filters (EMIFILr) for Automotive  
Chip Common Mode Choke Coils Part Numbering  
Chip Common Mode Choke Coils for Automotive  
(Part Number)  
Q
2
L
DL  
W
31  
S
H
222  
S
q
w
e
r
t
y
u
i o !  
qProduct ID  
uCircuit  
Code  
Product ID  
Circuit  
3
DL  
Chip Common Mode Choke Coils  
S
X
Expressed by a letter.  
wStructure  
iFeatures  
Code  
Structure  
W
Winding Type  
Code  
Q
Features  
eDimensions (LgW)  
K
Expressed by a letter.  
Code  
31  
Dimensions (LgW)  
3.2g1.6mm  
EIA  
P
1206  
1812  
oNumber of Signal Lines  
43  
4.5g3.2mm  
Code  
Number of Signal Lines  
rType  
2
Two Lines  
Code  
Type  
!Packaging  
S
Magnetically Shielded One Circuit Type  
Code  
Packaging  
Series  
tCategory  
K
L
Embossed Taping (ø330mm Reel)  
Embossed Taping (ø180mm Reel)  
Bulk  
DLW43S  
Code  
Category  
All Series  
H
For Automotive  
B
yImpedance (DLW31S)  
Typical impedance at 100MHz is expressed by three figures. The  
unit is in ohm (). The first and second figures are significant  
digits, and the third figure expresses the number of zeros which  
follow the two figures.  
yInductance (DLW43S)  
Expressed by three-figures. The unit is micro-henry (µH). The first  
and second figures are significant digits, and the third figure  
expresses the number of zeros which follow the two figures.  
50  
C50E.pdf  
Aug.28,2008  
On-Board Type (DC) EMI Suppression Filters (EMIFILr) for Automotive  
Chip Common Mode Choke Coil DLW31S/43S Series  
DLW31S Series  
DLW31S series is a high performance wound type  
chip common mode choke coil.  
1.6±0.2  
Features  
3.2±0.2  
1. DLW31S is the small size (3.2x1.6x1.9mm).  
3
(1)  
(2)  
2. Suitable for noise suppression at car area networks  
like CAN (Controller Area Network) bus.  
3. DLW31S has high common mode impedance so it is  
suitable for noise suppression through wide  
(4)  
(3)  
frequency range.  
(in mm)  
(0.6)  
(0.6)  
4. Wide operating temperature range (-40 to +125  
degrees C)  
Applications  
Noise suppression at car area networks like CAN bus or  
car navigation system.  
Common Mode Impedance  
(at 100MHz/20 degree C)  
(ohm)  
Insulation Resistance  
(min.)  
Rated Current Rated Voltage  
Withstand Voltage DC Resistance  
Part Number  
(mA)  
(Vdc)  
(Vdc)  
(ohm)  
(M ohm)  
DLW31SH222SQ2  
2200 ±25%  
80  
32  
10  
80  
1.6 ±20%  
Operating Temperature Range: -40°C to 125°C  
Equivalent Circuit  
Impedance - Frequency Characteristics  
10000  
Common mode  
DLW31SH222SQ2  
1000  
100  
(1)  
(2)  
10  
DLW31SH222SQ2  
1
(3)  
(4)  
Differential mode  
No polarity.  
0.1  
1
10  
100  
Frequency (MHz)  
1000  
51  
C50E.pdf  
Aug.28,2008  
DLW43S_XK Series  
Features  
1. Small size: L4.5xW3.2xT2.6mm (EIA code: 1812)  
Tolerance: +/-0.2mm  
(0.8)  
4.5±0.2  
2. It realized common mode inductance of 100microH  
(at 1MHz) though it is small size.  
3. Common mode inductance items of 100microH and  
51microH, and they can be used for each  
applications.  
3.2±0.2  
(1)  
(4)  
(2)  
(3)  
(0.6): 100µH  
(0.7): 51µH  
Applications  
(in mm)  
For Automotive.  
3
Common mode noise suppression of automotive LAN for  
Flex Ray, CANBUS.  
Insulation Resistance  
(min.)  
Common Mode Inductance Rated Current Rated Voltage  
Withstand Voltage DC Resistance  
Part Number  
(µH)  
(mA)  
(Vdc)  
(Vdc)  
(ohm)  
(M ohm)  
DLW43SH510XK2  
DLW43SH101XK2  
51 -30% /+50% (at 1MHz)  
100 -30% /+50% (at 1MHz)  
230  
200  
50  
50  
10  
10  
125  
125  
1.0 max.  
2.0 max.  
Operating Temperature Range: -40°C to 125°C  
Equivalent Circuit  
Impedance - Frequency Characteristics  
100000  
DLW43SH101XK2  
10000  
(1)  
(2)  
Common mode  
DLW43SH510XK2  
1000  
100  
DLW43SH101XK2  
Differential mode  
(3)  
(4)  
10  
1
DLW43SH510XK2  
No polarity.  
1
10  
100  
Frequency (MHz)  
DLW43S_XP Series  
Features  
1. Small size: L4.5xW3.2xT2.7mm (EIA code: 1812)  
Tolerance: +/-0.2mm  
(0.8)  
4.5±0.2  
2. It realized common mode inductance of 100microH  
(at 0.1MHz) though it is small size.  
3.2±0.2  
(1)  
(4)  
(2)  
3. Suitable for noise suppression from low  
frequency range (0.1MHz).  
(3)  
Applications  
For Automotive.  
(0.6)  
(in mm)  
Common mode noise suppression of automotive LAN for  
Flex Ray etc.  
Insulation Resistance  
(min.)  
Common Mode Inductance Rated Current Rated Voltage  
Withstand Voltage DC Resistance  
Part Number  
(µH)  
(mA)  
(Vdc)  
(Vdc)  
(ohm)  
(M ohm)  
DLW43SH101XP2  
100 -30% /+80% (at 0.1MHz)  
170  
50  
10  
125  
2.0 max.  
Operating Temperature Range: -40°C to 125°C  
52  
C50E.pdf  
Aug.28,2008  
Equivalent Circuit  
Impedance - Frequency Characteristics  
10000  
Common mode  
DLW43SH101XP2  
1000  
100  
10  
(1)  
(2)  
DLW43SH101XP2  
Differential mode  
(3)  
(4)  
1
No polarity.  
0.1  
0.1  
1
10  
100  
Frequency (MHz)  
3
53  
C50E.pdf  
Aug.28,2008  
Specifications and Test Methods  
Test and Measurement Conditions  
<Unless otherwise specified>  
<In case of doubt>  
Temperature: Ordinary Temp. 15 to 35°C  
Humidity: Ordinary Humidity 25 to 85% (RH)  
Temperature: 20±2°C  
Humidity: 60 to 70% (RH)  
Atmospheric Pressure: 86 to 106kPa  
Specifications  
1. Electrical Performance  
No.  
Item  
Specifications  
Test Methods  
Common Mode  
Impedance (Zc) *1  
Measuring Equipment: Agilent 4291A or the equivalent  
Measuring Frequency: 100±1MHz  
1
3
Within the specified tolerance.  
Common Mode  
Inductance (Lc) *2  
Measuring Equipment: Agilent 4294A or the equivalent  
Measuring Frequency: 1MHz or 0.1MHz (DLW43SH101XP2)  
2
3
Insulation  
Resistance (I.R.)  
Measuring Voltage: Rated Voltage  
Charging Time: 1 minute max.  
10Mmin.  
Test Voltage: 2.5 times for Rated Voltage  
Tsting Time: 1 to 5 s  
Charge/Discharge Current: 1mA max.  
Products should not be damaged.  
4
5
Withstanding Voltage  
DC Resistance  
Measuring Current: 10mA max.  
(In case of doubt in the above mentioned standard conditions,  
measure by 4 terminal methods.)  
Meet the initial value specification.  
*1 DLW31S only.  
*2 DLW43S only.  
2. Mechanical Performance  
No.  
Item  
Specifications  
Test Methods  
Appearance  
and Dimensions  
1
Meet dimensions.  
Visual Inspection and measured with micrometer.  
Flux: Ethanol solution of rosin, 25wt% includes activator  
equivalent to 0.06 to 0.10wt% chlorine  
Pre-heating: 150±5°C, 60±5s  
Solder: qSn/Pb=60/40  
wSn-3.0Ag-0.5Cu solder  
Solder Temperature: q230±5°C  
w245±3°C  
Immersion Time: q3±0.5s  
w4±1s  
The electrodes should be at least 90% covered with  
new solder coating.  
2
Solderability  
Immersion and emersion rates: 25mm/s  
Stainless tweezers  
Please hold product as shown.  
Flux: Ethanol solution of rosin, 25wt% includes activator  
equipment to 0.06 to 0.10wt% chlorine  
Pre-heating: 150±5°C, 60±5s  
Solder: Sn/Pb=60/40 or Sn-3.0Ag-0.5Cu solder  
Solder Temperature: 260±5°C  
Immersion Time: 10±0.5s  
Resistance to  
Soldering Heat  
3
Meet Table 1, next page.  
Immersion and emersion rates: 25mm/s  
Then measured after exposure in room condition for 4 to  
48 hrs.  
It should be soldered on the substrate.  
Applying Force (F): 10N (DLW31S Series)  
17.7N (DLW43S Series)  
Applying Time: 5±1s (DLW31S Series)  
60s (DLW43S Series)  
No evidence of coming off substrate.  
Products should not be mechanically damaged.  
4
Bonding Strength  
Pressure  
Product  
Substrate  
Test board fixture  
Continued on the following page.  
54  
C50E.pdf  
Aug.28,2008  
Specifications and Test Methods  
Continued from the preceding page.  
No.  
Item  
Specifications  
Test Methods  
It should be soldered on the Glass-epoxy substrate.  
(t=1.0mm DLW31S Series)  
(t=1.6mm DLW43S Series)  
Deflection (n): 2.0mm  
Keeping time: 5s (DLW31S Series)  
60s (DLW43S Series)  
5
Bending Strength  
Speed of Applying Force: 0.5mm/s  
Pressure jig  
R230  
F
Deflection  
Meet Table 1, below.  
45  
45  
Product (in mm)  
It should be soldered on the substrate.  
3
Oscillation Frequency: 10 to 2000 to 10Hz for 20 min.  
Total Amplitude 1.5mm or acceleration amplitude 49m/s2  
whichever is smaller. (DLW31S Series)  
6
Vibration  
Total Amplitude 3.0mm or acceleration amplitude 245m/s2  
whichever is smaller. (DLW43S Series)  
Testing Time: A period of 4 hrs. in each of 3 mutually  
perpendicular directions. (Total 12 hrs.)  
3. Environmental Performance (It should be soldered on the substrate.)  
No.  
Item  
Specifications  
Test Methods  
Temperature: 85±2°C  
Humidity: 85% (RH)  
1
Time: 1000hrs. (±480 hrs.)  
Then measured after exposure in room condition for 4 to  
48 hrs.  
Humidity  
Heat Life  
Temperature: 125±2°C  
Applying Current: Rated Current  
Time: 1000hrs. (±480 hrs.)  
Then measured after exposure in room condition for 4 to  
48 hrs.  
2
3
Temperature: -40± 2°C  
Time: 1000hrs. (±480 hrs.)  
Then measured after exposure in room condition for 4 to  
48 hrs.  
Cold Resistance  
Meet Table 1, below.  
1 Cycle  
Step 1: -40±03°C/30±3 minutes  
Step 2: Room Temperature/within 5 minutes (DLW31S Series)  
Room Temperature/within 10 to 15 minutes (DLW43S Series)  
Step 3: +125±30°C/30±3 minutes  
4
Temperature Cycle  
Step 4: Room Temperature/within 5 minutes (DLW31S Series)  
Room Temperature/within 10 to 15 minutes (DLW43S Series)  
Total of 1000 cycles (DLW31S Series)  
Total of 300 cycles (DLW43S Series)  
Then measured after exposure in room condition for 4 to  
48 hrs.  
Table 1  
Appearance  
No damage  
Common Mode  
Impedance Change  
within ±20% (DLW31S Series)  
Common Mode  
Inductance  
Meet the initial value specification.  
(DLW43S Series)  
Insulation Resistance  
10Mmin.  
Meet the initial value specification.  
(DLW43S Series)  
DC Resistance  
Withstanding Voltage  
No damage  
Continued on the following page.  
55  
C50E.pdf  
Aug.28,2008  
Specifications and Test Methods  
Continued from the preceding page.  
4. Test Terminal (When measuring and supplying the voltage, the following terminal is applied.)  
No.  
Item  
Terminal to be Tested  
Common Mode Impedance (Measurement Terminal)  
Common Mode Inductance (Measurement Terminal)  
Terminal  
1
Terminal  
Terminal  
Terminal  
2
3
Withstanding Voltage (Measurement Terminal)  
Terminal  
Terminal  
3
DC Resistance (Measurement Terminal)  
Terminal  
Terminal  
Terminal  
Terminal  
4
5
Insulation Resistance (Measurement Terminal)  
Heat Life (Supply Terminal)  
Terminal  
Terminal  
Measuring Method for Common Mode Impedance  
Measured common mode impedance may include  
measurement error due to stray capacitance, residual  
inductance of test fixture.  
To correct this error, the common mode impedance should  
be calculated as follows;  
(1) Measure admittance of the fixture (opened), Go Bo.  
(2) Measure impedance of the fixture (shorted), Rs Xs.  
(3) Measure admittance of the specimen, Gm Bm.  
(4) Calculate corrected impedance |Z| using the formula  
below.  
|Z| = (Rx2+Xx2)1/2  
Where  
Gm - Go  
Rx =  
Xx =  
- Rs  
- Xs  
(Gm-Go)2 + (Bm-Bo)2  
-(Bm - Bo)  
(Gm-Go)2 + (Bm-Bo)2  
56  
C50E.pdf  
Aug.28,2008  
On-Board Type (DC) EMI Suppression Filters (EMIFILr) for Automotive  
Block Type EMIFILr BNX024H/025H/012H Series  
Block Type EMIFILr SMD Type  
12.1±0.2  
(1)  
(3)  
(2)  
(4)  
BNX024H/025H (Block Type EMIFIL for automotive) is  
EMI suppression filter suppporting large cuurent,  
wide frequency.  
*
Part Number Appearance  
BNX024H01 BNX024  
BNX025H01 BNX025  
BNX02p*  
And it also support SMD mounting.  
(1)  
(3)  
(4)  
(2)  
This product is effective for noise suppression  
(4)  
7.0±0.2 1.55±0.2  
for DC switching line of automotive device and  
FA/OA device, because it covers wide temperature  
(3)  
(4)  
(2)  
range from -55C degrees to 125 C degrees.  
(1)  
: Electrode  
(in mm)  
2.5±0.2 1.55±0.2  
1.0±0.3  
Features  
(4)  
1. Supporting large current (15A)  
2. Supporting wide frequency range  
From 50kHz to 1GHz:35dB min.(BNX025)  
3. Suitable for miniaturization with SMD shape.  
4
Applications  
Automotive devices/Displays (PDP/LCD-TV)/  
Digital AV equipments/Amusement equipments/  
PC peripheral equipments/Industry equipments/  
Measurement equipments/Power supplies  
Rated  
Voltage  
(Vdc)  
Withstand  
Voltage  
(Vdc)  
Rated  
Insulation  
Part Number  
Current Resistance (min.)  
Insertion Loss  
(A)  
(M ohm)  
BNX024H01  
BNX025H01  
50  
25  
125  
15  
100  
100kHz to 1GHz:35dB min. (20 to 25 degrees C line impedance=50 ohm)  
50kHz to 1GHz:35dB min. (20 to 25 degrees C line impedance=50 ohm)  
62.5  
15  
50  
Operating Temperature Range: -55°C to 125°C  
Equivalent Circuit  
Insertion Loss Characteristics  
BNX024H01  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
L1  
L2  
L3  
C2  
CB (2)  
CG (4)  
(1)  
B
C1  
(3) PSG  
(1)-(4): Terminal Number  
PSG: Power Supply Ground  
CG: Circuit Ground  
CB: Circuit+B  
0.01  
0.1  
1
10  
100  
1000  
Frequency (MHz)  
Continued on the following page.  
57  
C50E.pdf  
Aug.28,2008  
Continued from the preceding page.  
Insertion Loss Characteristics  
BNX025H01  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0.01  
0.1  
1
10  
100  
1000  
Frequency (MHz)  
Derating of Rated Current  
In operating temperatures exceeding +85°C, derating of  
current is necessary for BNX024H/025H series. Please  
apply the derating curve shown in chart according to the  
operating temperature.  
Derating  
15  
4
1
0
-40  
85  
125  
Operating Temperature (°C)  
Block Type EMIFILr Lead Type  
(1)  
(3)  
(4)  
BNX012H series is noise suppression filter and ESD  
surge protection filter for Automotive.  
(2)  
Suitable for the power supply circuits which is large  
current and wide frequency range.  
12.0±0.2  
BNX012H  
2D  
Features  
1. Large rated current(15A) and Low DC Resistance  
0.8  
±0.1  
ø0.8  
ø0.8  
(4)  
ø0.8  
(0.8m ohm-Typ.)  
0.6  
±0.1  
2. High insertion loss characteristic over a wide  
frequency range of 1MHz to 1GHz.  
3. Low profile (height: 8.0mm except lead terminal)  
(4)  
7.5±0.2  
2.5±0.2  
2.5±0.2  
(in mm)  
Applications  
Noise suppression and ESD surge protection for power  
lines such as ECU, DC-DC Converters , and Inverter  
circuits.  
Rated  
Voltage  
(Vdc)  
Withstand  
Voltage  
(Vdc)  
Rated  
Insulation  
Part Number  
Current Resistance (min.)  
Insertion Loss  
1MHz to 1GHz:40dB min. (20 to 25 degrees C line impedance=50 ohm)  
(A)  
(M ohm)  
BNX012H01  
50  
125  
15  
500  
Operating Temperature Range: -55°C to 125°C  
58  
C50E.pdf  
Aug.28,2008  
Equivalent Circuit  
Insertion Loss Characteristics  
(50- 50)  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
L1  
L3  
C2  
CB (2)  
CG (4)  
(1)  
B
C1  
L2  
(3) PSG  
(1)-(4): Terminal Number  
PSG: Power Supply Ground  
CG: Circuit Ground  
CB: Circuit+B  
0.1  
1
10  
100  
1000  
Frequency (MHz)  
Derating of Rated Current  
" Rating  
Derating  
In operating temperatures exceeding +85°C, derating of  
current is necessary for BNX012H series. Please apply the  
derating curve shown in chart according to the operating  
temperature.  
15  
4
10  
3
0
-55  
85  
105  
125  
Operating Temperature (°C)  
" Connecting ± Power Line  
In case of using ± power line, please connect to each  
terminal as shown.  
Power Supply  
(BNX Input)  
BNX  
Circuit  
(BNX Output)  
Power Supply W Bias  
Load Circuit W Bias  
Load Circuit Ground  
CB  
CG  
B
PSG  
Power Supply Ground  
Power Supply Y Bias  
B
CB  
CG  
Load Circuit Y Bias  
PSG  
Power Supply Ground  
Load Circuit Ground  
59  
C50E.pdf  
Aug.28,2008  
BNX024H/025H series Specifications and Test Methods
c Test and Measurement Conditions  
<Unless otherwise specified>  
<In case of doubt>  
Temperature: Ordinary Temp. 15 to 35°C  
Humidity: Ordinary Humidity 25 to 85% (RH)  
Temperature: 20°C±2°C  
Humidity: 60 to 70% (RH)  
Atmospheric pressure: 86 to 106kPa  
c Specifications  
1. Electrical Performance  
No.  
Item  
Specifications  
Test Methods  
Measured at DC rated voltage between terminal (1)(2) and  
(3)(4).  
Time: 60s max.  
Charging Current: 50mA max.  
Measuring Equipment: R8340A or the equivalent  
BNX024H01: 100Mmin.  
BNX025H01: 50Mmin.  
1
Insulation Resistance  
Withstanding voltage shall be applied between terminal (1)(2)  
and (3)(4).  
Test Voltage: BNX024H01 125V (DC)  
BNX025H01 62.5V (DC)  
2
Dielectric Strength  
Filter should not fail.  
Time: 5±1s  
Charging current: 50mA max.  
4
Measured by the way of 4 terminal method between (1) and (2)  
and between (3) and (4).  
3
4
DC Resistance  
Capacitance  
0.43±0.20mΩ  
Measured by the follwing condition between Terminal (1)(2)  
and (3)(4).  
Frequency: 1±0.1kHz  
BNX024H01: 4.7µF±15%  
BNX025H01: 10µF±15%  
Voltage: 1V (rms) max.  
Measuring Equipment: HP4278A or the equivalent  
50Ω  
10dB  
50Ω  
10dB  
Balun  
1
2
Attenuator  
Attenuator  
Specimen  
50Ω  
3
4
E
BNX024H01: 35dB min. (100kHz to 1GHz)  
BNX025H01: 35dB min. (50kHz to 1GHz)  
50Ω  
5
Insertion Loss  
SG  
*Method of measurement based on MIL-STD-220  
Insertion Loss = -20 log E1/E0 (dB)  
E0: Level without FILTER (short)  
E1: Level with FILTER  
After soldering the part on the test substrate, measure the  
voltage with passing the rated current as shown in the  
schematic below.  
A
(i)  
Specimen  
V
(ii)  
6
Voltage Drop  
45mV max.  
Where the terminals of the part shall be connected as follows:  
Referring to the terminal No. shown in item 5, connect terminal  
No. (2) and (4) by soldering copper wire with diameter more  
than 1mm / length less than 6mm.  
Then connect terminal No. (1) as (i) and terminal No. (3) as (ii)  
the measurement circuit as mentioned above.  
The probe for measuring the voltage shall be touched on the  
solder fillet of (1)(3).  
Continued on the following page.  
60  
C50E.pdf  
Aug.28,2008  
BNX024H/025H series Specifications and Test Methods  
Continued from the preceding page.  
2. Mechanical Performance  
No.  
Item  
Specifications  
Test Methods  
Appearance and  
Dimensions  
Visual Inspection and measured with micrometer caliper and  
slid caliper.  
1
2
3
Meet dimensions.  
Marking  
Marking can be read easily.  
It is inspected Visually.  
Comfirm the solder mounting condition after mounting based  
on standard solder mounting method.  
Reflow Solderability  
Appropriate solder fillet is formed.  
Soldering Iron: 100W max.  
Tip Temperature: 450±5°C  
Soldering Time: 5s, 2 times  
Do not touch the products directly with the tip of the soldering  
iron.  
Resistance to  
Soldering Heat  
4
Meet Table 1.  
Table 1  
It shall be soldered on the glass-epoxy substrate.  
(100mm x 40mm x 1.6mm)  
Pressure jig  
Appearance  
No damaged  
BNX024H01: 100Mmin.  
BNX025H01: 50Mmin.  
No failure  
Insulation Resistance  
F
R230  
Dielectric Strength  
Capacitance Change  
Deflection  
5
Bending Strength  
Within ±7.5%  
45  
45  
Product  
(in mm)  
4
Deflection: 2mm  
Keeping Time: 30s  
Speed: 0.5mm/s  
It shall be dropped on concrete or steel board.  
Method: free fall  
Height: 1m  
6
7
Drop  
The Number of Time: 10 times  
It shall be soldered on the glass-epoxy substrate.  
Oscillation Frequency: 10 to 2000 to 10Hz for 20 minutes  
Total amplitude 3.0mm or Acceleration amplitude 196m/s2  
whichever is smaller.  
Time: A period of 3 hours in each of 3 mutually perpendicular  
directions. (Total 9 hours)  
Meet Table 2.  
Table 2  
Vibration  
Appearance  
No damaged  
BNX024H01: 100Mmin.  
BNX025H01: 50Mmin.  
No failure  
Insulation Resistance  
Dielectric Strength  
It shall be soldered on the glass-epoxy substrate.  
Acceleration: 14700m/s2  
Capacitance Change  
Within ±15%  
Normal duration: 0.5ms  
Waveform: Half-sine wave  
8
Shock  
Direction: 6 direction  
Testing Time: 3 times for each direction  
3. Environmental Performance (It should be soldered on the substrate.)  
No.  
Item  
Specifications  
Test Methods  
Meet Table 3.  
Table 3  
Temperature: 85±2°C  
Humidity: 80 to 85% (RH)  
Appearance  
No damaged  
Voltage: Rated Voltage  
1
Biased Humidity  
48  
BNX024H01: 5Mmin.  
BNX025H01: 2.5Mmin.  
Within ±12.5%  
Time: 1000± hrs.  
0
Insulation Resistance  
Capacitance Change  
Then measure values after exposure in room condition for  
48±4 hours.  
Meet Table 4.  
Table 4  
Temperature: 125±2°C  
Voltage: Rated Voltage x 2  
Appearance  
No damaged  
BNX024H01: 10Mmin.  
BNX025H01: 5Mmin.  
Within ±12.5%  
48  
2
Heat Life  
Time: 1000± hrs.  
0
Insulation Resistance  
Capacitance Change  
Then measure values after exposure in room condition for  
48±4 hours.  
1 Cycle:  
1 step: -55± °C/30± min.  
0
3
3
0
2 step: Room Temperature/within 0.5 min.  
3
0
3
0
3 step: +125± °C/30± min.  
3
Heat Shock  
Meet Table 4.  
4 step: Room Temperature/within 0.5 min.  
Total Cycles: 1000 cycles  
Then measure values after exposure in room condition for  
48±4 hours.  
61  
C50E.pdf  
Aug.28,2008  
BNX012H series Specifications and Test Methods
c Test and Measurement Conditions  
<Unless otherwise specified>  
<In case of doubt>  
Temperature: Ordinary Temp. 15 to 35°C  
Humidity: Ordinary Humidity 25 to 85% (RH)  
Temperature: 20°C±2°C  
Humidity: 60 to 70% (RH)  
Atmospheric pressure: 86 to 106kPa  
c Specifications  
1. Electrical Performance  
No.  
Item  
Specifications  
Test Methods  
Measured at DC rated voltage between terminal (1)(2) and  
(3)(4).  
1
Insulation Resistance  
500Mmin.  
Voltage: 50Vdc  
Charging time: 2 minutes  
Suitable resistor: 1MΩ  
Test voltage should be applied between terminal (1)(2) and  
(3)(4).  
2
3
Dielectric Strength  
Capacitance  
Filter should not fail.  
Test Voltage: 125Vdc  
Testing Time: 1 to 5s  
Charge/Discharge Current: 50mA max.  
4
Measured at the following conditions between terminal (1)(2)  
and (3)(4).  
Frequency: 1.0±0.1kHz  
Voltage: 1Vrms max.  
1.0µF±15%  
Measured by the following circuit.  
Measuring Equipment: R3767 C (manufactured by  
ADVANTEST) or the equivalent.  
Sample: build product into Balun.  
NETWORK ANALYZER  
Port 1 (50)  
Port 2 (50)  
4
Insertion Loss  
40dB min. (1MHz to 1GHz)  
Balun (*) Product  
(1) (2)  
1 2  
3 4  
(3)  
(3)  
(*): It uses the Balun or 1 to 1 transformer.  
Rated Current: 15 A  
Substrate: 100x100x1.6mm (paper-phenol)  
Soldering: Insert the terminals into the holes on P.C. board  
completely.  
Voltage Drop Value: V1+V2  
V1  
Product  
(4)  
(2)  
(3)  
(1)  
(1) to (4): Terminal  
A
5
Voltage Drop  
35mV max.  
Substrate  
V2  
Probe of each voltmeter should contact the center of soldering  
parts as shown in the following figure.  
Paper-phenol  
Substrate  
Probe  
Copper foil pattern  
Solder  
Product’s Terminal  
Continued on the following page.  
62  
C50E.pdf  
Aug.28,2008  
BNX012H series Specifications and Test Methods  
Continued from the preceding page.  
2. Mechanical Performance  
No.  
Item  
Specifications  
Test Methods  
Appearance and  
Dimensions  
1
2
Meet dimensions.  
Visual Inspection and measured with micrometer.  
It is inspected Visually.  
Marking  
Marking can be read easily.  
Flux: Ethanol solution of rosin, 25(wt)%  
Pre-Heating: 150±10°C, 60 to 90s  
Solder: Sn-3.0Ag-0.5Cu  
Solder Temperature: 235± °C  
0
5
Immersion Time: 5±0.5s  
The lead is covered with a new solder coating at least  
95% of the total surface of the immersed part.  
BNX012H  
61  
3
Solderability  
1.6±0.8mm  
Molten Solder  
Meet Table 1.  
Table 1  
Flux: Ethanol solution of rosin, 25(wt)%  
Pre-Heating: 150±10°C, 60 to 90s  
Solder: Sn-3.0Ag-0.5Cu  
4
Appearance  
No damage  
500Mmin.  
No failure  
Resistance to  
Soldering Heat  
4
Solder Temperature: 270±10°C  
Insulation Resistance  
Dielectric Strength  
Capacitance Change  
2
0
Immersion Time: 10± s  
Then measure values after exposure in room condition for 24  
to 48 hrs.  
Within ±7.5%  
It should be soldered on the substrate.  
Oscillation Frequency: 10 to 2000 to 10Hz for 20min.  
Testing Time: A period of 3 hours in each of 3 mutually  
perpendicular directions. (Total 9 hrs.)  
Total amplitude 1.5mm or Acceleration amplitude 196m/s2  
whichever is smaller.  
Meet Table 2.  
Table 2  
Appearance  
Insulation Resistance  
Dielectric Strength  
Capacitance  
No damage  
500Mmin.  
No failure  
5
Vibration  
1.0µF±15%  
Then measure values after exposure in room condition for 4 to  
24 hrs.  
3. Environmental Performance (It should be soldered on the substrate.)  
No.  
Item  
Specifications  
Test Methods  
Temperature: 85±2°C  
Humidity: 80 to 85%(RH)  
48  
1
Humidity  
Meet Table 1.  
Time: 1000± hrs.  
0
Remove the drops and then measure values after exposure in  
room condition for 24 to 48 hrs.  
Temperature: 85±2°C  
Humidity: 80 to 85%(RH)  
Test Voltage: 50Vdc  
2
Biased Humidity  
48  
Time: 1000± hrs.  
0
Remove the drops and then measure values after exposure in  
room condition for 24 to 48 hrs.  
Meet Table 3.  
Table 3  
Temperature: 125±2°C  
Appearance  
Insulation Resistance  
Capacitance Change  
No damage  
50Mmin.  
Within ±12.5%  
Test Voltage: 100Vdc  
48  
3
4
Heat Life  
Time: 1000± hrs.  
0
Then measure values after exposure in room condition for 24  
to 48 hrs.  
Temperature: -55±2°C  
48  
Time: 1000± hrs.  
0
Cold Resistance  
Then measure values after exposure in room condition for 24  
to 48 hrs.  
1 Cycle:  
0
1 step: -55± °C/30 minutes  
3
2 step: Room Temperature/within 1 minute  
3
3 step: +125± °C/30 minutes  
4 step: Room Temperature/within 1 minute  
Total of 1000 cycles  
0
5
Temperature Cycle  
Meet Table 1.  
Then measure values after exposure in room condition for 24  
to 48 hrs.  
63  
C50E.pdf  
Aug.28,2008  
Chip EMIFILr!Caution/Notice  
!Caution (Rating)  
1. Do not use products beyond the rated current and rated  
voltage as this may create excessive heat and  
deteriorate the insulation resistance.  
2. Be sure to provide an appropriate fail-safe  
function on your product to prevent a second damage  
that may be caused by the abnormal function or  
the failure our product.  
!Caution (Soldering and Mounting)  
1. Self-heating  
Please provide special attention when mounting chip  
"EMIFIL" (BLM_P) series in close proximity to other  
products that radiate heat.  
The heat generated by other products may deteriorate  
the insulation resistance and cause excessive heat in this  
component.  
4
2. Mounting Direction  
Mount Chip Common Mode Choke Coils (DLW31S/43S)  
in right direction. Wrong direction, which is 90 degrees  
rotated from right direction, causes not only open or short  
circuit but also flames or other serious trouble.  
Z
Z
right direction  
wrong direction  
Notice (Storage and Operating Condition)  
< Operating Environment >  
2. Storage Conditions  
Do not use products in a chemical atmosphere such as  
chlorine gas, acid or sulfide gas.  
(1) Storage temperature: -10 to 40 degrees C  
Relative humidity: 30 to 70%  
< Storage and Handling Requirements >  
1. Storage Period  
Avoid sudden changes in temperature and humidity.  
(2) Do not store products in a chemical atmosphere  
such as chlorine gas, acid or sulfide gas.  
BLM series should be used within 6 months, the  
other series should be used within 12 months.  
Products to be used after this period should be  
checked for solderability or bondability with  
glue.  
Notice (Soldering and Mounting)  
1. Washing  
4. Other  
Failure and degradation of a product are caused  
by the washing method. When you wash in conditions  
that are not in mounting information, please contact  
Murata engineering.  
Noise suppression levels resulting from Murata's  
EMI suppression filters "EMIFIL" may vary,  
depending on the circuits and ICs used, type of  
noise, mounting pattern, mounting location, and  
other operating conditions. Be sure to check and  
confirm in advance the noise suppression effect  
of each filter, in actual circuits, etc. before  
applying the filter in a commercial-purpose  
equipment design.  
2. Soldering  
Reliability decreases with improper soldering  
methods. Please solder by the standard soldering  
conditions shown in mounting information.  
3. Mounting on-boad with Conductive Glue  
BLM18AG_WH is designed for conductive glue  
mounting method. Please refer to Mounting  
infomation.  
64  
C50E.pdf  
Aug.28,2008  
Chip EMIFILr!Caution/Notice  
Notice (Handling)  
1. Resin coating (DLW31S)  
So, please pay your careful attention in selecting  
Do not make any resin coating DLW31S series.  
The impedance value may change due to high  
cure-stress of resin to be used for coating/ molding  
products.  
resin in case of coating/ molding the products with  
the resin. Prior to use the coating resin,  
please make sure no reliability issue is observed  
by evaluating products mounted on your board.  
3. Resin coating (Except DLW31S/43S)  
It may affect the product's performance when using  
resin for coating/ molding products, except  
DLW31S/43S.  
An open circuit issue may occur by mechanical  
stress caused by the resin, amount/ cured shape of  
resin, or operating condition etc. Some resin  
contains some impurities or chloride possible to  
generate chlorine by hydrolysis under some operating  
condition may cause corrosion of wire of coil,  
leading to open circuit.  
So please pay careful attention in selecting resin.  
Prior to use, please evaluate reliability with the  
product mounted in your application set.  
4. Caution for use (DLW31S/43S)  
So, please pay your careful attention in selecting  
resin in case of coating/ molding the products with  
the resin.  
Sharp material, such as a pair of tweezers,  
should not touch the winding portion to prevent  
breaking the wire.  
2. Resin coating (DLW43S)  
4
The inductance value may change due to high  
cure-stress of resin to be used for  
Mechanical shock should not be applied to the  
products mounted on the board to prevent breaking  
the core.  
coating/ molding products.  
An open circuit issue may occur by mechanical  
stress caused by the resin, amount/ cured shape of  
resin, or operating condition etc. Some resin  
contains some impurities or chloride possible to  
generate chlorine by hydrolysis under some operating  
condition may cause corrosion of wire of coil,  
leading to open circuit.  
65  
C50E.pdf  
Aug.28,2008  
Lead Type EMIFILr!Caution/Notice  
Notice (Rating)  
Do not use products beyond the rated current and rated  
voltage as this may create excessive heat and  
deteriorate the insulation resistance.  
Notice (Soldering and Mounting)  
Mounting holes should be designed as specified in these  
specifications. Other designs than shown in these  
specifications may cause cracks in ceramics which may  
lead to smoking or firing.  
Notice (Storage and Operating Condition)  
<Operating Environment>  
2. Storage Conditions  
1. Do not use products in a chemical atmosphere such  
as chlorine gas, acid or sulfide gas.  
2. Do not use products near water, oil or organic  
solvents. Avoid environment where dust or dirt may  
adhere to product.  
(1) Storage temperature: -10 to 40 degrees C  
Relative humidity: 30 to 70%  
4
Avoid sudden changes in temperature and  
humidity.  
(2) Do not store products in a chemical atmosphere  
such as chlorine gas, acid or sulfide gas.  
<Storage and Handling Requirements>  
1. Storage Period  
Used the products within 12 months after delivery.  
Solderability should be checked if this period is  
exceeded.  
Notice (Soldering and Mounting)  
1. Washing  
3. Other  
Failure and degradation of a product are caused  
by the washing method. When you wash in conditions  
that are not in mounting information, please  
contact Murata engineering.  
Noise suppression levels resulting from Murata's  
EMI suppression filters "EMIFIL" may vary,  
depending on the circuits and ICs used, type of  
noise, mounting pattern, mounting location, and  
other operating conditions. Be sure to check and  
confirm in advance the noise suppression effect  
of each filter, in actual circuits, etc. before  
applying the filter in a commercial-purpose  
equipment design.  
2. Soldering  
Reliability decreases with improper soldering  
methods. Please solder by the standard soldering  
conditions shown in mounting information.  
66  
C50E.pdf  
Aug.28,2008  
Chip EMIFILr (Soldering and Mounting)  
1. Standard Land Pattern Dimensions  
Land Pattern  
+ Solder Resist  
Land Pattern  
(in mm)  
Solder Resist  
oReflow and Flow  
BLM15  
BLM18  
BLM21  
BLM31  
BLM41  
BLM Series (Except BLMppP series)  
BLMppP  
a
b
a
b
Type  
Soldering  
Reflow  
Flow  
a
b
c
1
BLM15  
0.4  
1.2-1.4 0.5  
Land pad thickness  
Rated  
and dimension d  
2
Type  
Current  
(A)  
Soldering  
a
b
c
2.2-2.6  
0.7  
BLM18  
0.7  
1.2  
2.0  
(Except 18PG)  
Reflow  
1.8-2.0  
18µm 35µm 70µm  
0.5-1.5  
0.7 0.7 0.7  
Flow  
BLM21  
(Except 21PG)  
Flow/  
Reflow  
3.0-4.0 1.0  
4.2-5.2 1.2  
2.2-2.6  
4
BLM18PG  
2
3
0.7  
0.7 1.2 0.7 0.7  
2.4 1.2 0.7  
1.0 1.0 1.0  
1.2 1.0 1.0  
Reflow  
1.8-2.0  
BLM31  
(Except 31PG)  
Flow/  
Reflow  
1.5  
2
1
BLM15 is specially adapted for reflow soldering.  
BLM21PG  
1.2 3.0-4.0 1.0  
3
2.4 1.2 1.0  
6.4 3.3 1.65  
1.2 1.2 1.2  
2.4 1.2 1.2  
6.4 3.3 1.65  
1.2 1.2 1.2  
2.4 1.2 1.2  
6.4 3.3 1.65  
Flow/  
6
Reflow  
1.5/2  
3
2
BLM31PG  
BLM41PG  
2.0 4.2-5.2  
1.2  
BLM18A_WH series  
is designed for  
conductive glue  
mounting method,  
not for normal  
soldering method.  
Please contact us  
for applicable  
6
1-2  
3
3.0 5.5-6.5  
6
• Do not apply narrower pattern than listed above to BLMppP.  
Narrow pattern can cause excessive heat or open circuit.  
mounting method for  
BLM18A_WH series.  
o Reflow Soldering  
NFM21H  
Chip mounting side  
Small diameter thru hole ø0.4  
a
b
c
The chip EMI filter suppresses noise by conducting the high-  
frequency noise to ground. Therefore, to get enough noise  
reduction, feed through holes which are connected to ground-  
plane should be arranged according to the figure to reinforce  
the ground pattern.  
Size (mm)  
Part Number  
a
b
c
d
e
f
g
NFM21H  
0.6 1.4 2.6 0.6 0.8 1.9 2.3  
• NFM21 is specially adapted for reflow soldering.  
o Reflow Soldering  
o Flow Soldering (Except NFE61HT332)  
NFE61H  
Chip mounting side  
Chip mounting side  
Small diameter thru hole ø0.4  
Small diameter thru hole ø0.4  
1.5  
3.8  
4.8  
9.0  
2.0  
4.8  
8.8  
Continued on the following page.  
67  
C50E.pdf  
Aug.28,2008  
Chip EMIFILr (Soldering and Mounting)  
Continued from the preceding page.  
Land Pattern  
+ Solder Resist  
Land Pattern  
Solder Resist  
(in mm)  
DLW31S  
oReflow Soldering  
1 : If the pattern is made with wider than 1.6mm (DLW31S) it  
may result in components turning around, because  
melting speed is different. In the worst case, short circuit  
between lines may occur.  
2 : If the pattern is made with less than 0.4mm, in the worst  
case, short circuit between lines may occur due to spread  
of soldering paste or mount placing accuracy.  
3 : If the pattern is made with wider than 1.6mm (DLW31S),  
the bending strength will be reduced.  
3
a
b
Series  
a
b
c
d
Do not use gilded pattern; excess soldering heat may dissolve  
metal of a copper wire.  
DLW31S  
1.6  
3.7  
0.4  
1.6  
DLW43S  
oReflow Soldering  
4
1 : If the pattern is made with wider than 3.4mm, it may result  
in components turning around, because melting speed is  
different. In the worst case, short circuit between lines  
may be occur.  
2 : If the pattern is made with less than 1.6mm, in the worst  
case, short circuit between lines may occur due to the  
spread of soldering paste or mount placing accuracy.  
3 : If the pattern is made with wider, the strength of bending  
will be reduced.  
3
a
5.9  
Series  
a
Do not use gilded pattern; excess soldering heat may dissolve  
metal of a copper wire.  
DLW43SH510XK2  
DLW43SH101XK2  
DLW43SH101XP2  
3.0  
3.2  
2. Solder Paste Printing and Adhesive Application  
copper foil patterns.  
When reflow soldering the chip EMI suppression filter, the  
printing must be conducted in accordance with the  
following cream solder printing conditions.  
When flow soldering the EMI suppression filter, apply the  
adhesive in accordance with the following conditions.  
If too much adhesive is applied, then it may overflow into  
the land or termination areas and yield poor solderability.  
In contrast, if insufficient adhesive is applied, or if the  
adhesive is not sufficiently hardened, then the chip may  
become detached during flow soldering process.  
If too much solder is applied, the chip will be prone to  
damage by mechanical and thermal stress from the PCB  
and may crack. In contrast, if too little solder is applied,  
there is the potential that the termination strength will be  
insufficient, creating the potential for detachment.  
Standard land dimensions should be used for resist and  
(in mm)  
Series  
Solder Paste Printing  
Adhesive Application  
BLM15  
oEnsure that solder is applied smoothly to a  
minimum height of 0.2mm to 0.3mm at the end  
surface of the part.  
Coating amount is illustrated in the  
following diagram.  
BLM18  
BLM21  
BLM31  
BLM41  
a:2070µm  
b:3035µm  
oCoat the solder paste a thickness: 100-200µm  
c:50105µm  
Chip Solid Inductor  
a
c
b
Bonding agent  
Land  
PCB  
Continued on the following page.  
68  
C50E.pdf  
Aug.28,2008  
Chip EMIFILr (Soldering and Mounting)  
Continued from the preceding page.  
(in mm)  
Series  
Solder Paste Printing  
Adhesive Application  
NFM21H  
oUse Sn/Pb=60/40 or Sn-3.0Ag-0.5Cu solder for  
pattern printing. Use of Sn-Zn based solder will  
deteriorate performance of products. If using  
Sn-Zn based solder, please contact Murata in  
advance.  
oCoat the solder paste a thickness: 100-150µm  
0.6  
1.4  
2.6  
Apply 1.0mg of bonding agent at each chip.  
NFE61H  
oUse Sn/Pb=60/40 or Sn-3.0Ag-0.5Cu solder for  
pattern printing.  
oCoat the solder paste a thickness: 150-200µm  
4
1.5  
4.8  
1.5  
4.8  
8.8  
Bonding agent  
9.0  
Bonding agent  
*Except NFE61HT332  
DLW31S  
oUse Sn/Pb=60/40 or Sn-3.0Ag-0.5Cu solder for  
pattern printing.  
oCoat the solder paste a thickness: 100-150µm  
*Solderability is subject to reflow condition and thermal  
conductivity. Please make sure that your product has  
been evaluated in view of your specifications with our  
product being mounted to your product.  
Series  
a
b
a
b
c
d
DLW31S  
1.6 3.7 0.4 1.6  
DLW43S  
oUse Sn/Pb=60/40 or Sn-3.0Ag-0.5Cu solder for  
pattern printing.  
oCoat the solder paste a thickness: 150µm  
*Solderability is subject to reflow condition and thermal  
conductivity. Please make sure that your product has  
been evaluated in view of your specifications with our  
product being mounted to your product.  
Series  
a
b
c
d
a
b
3.0 (510)  
3.2 (101)  
DLW43S  
5.9 1.6 3.4  
Continued on the following page.  
69  
C50E.pdf  
Aug.28,2008  
Chip EMIFILr (Soldering and Mounting)  
Continued from the preceding page.  
3. Standard Soldering Conditions  
(1) Soldering Methods  
Flux:  
Use flow and reflow soldering methods only.  
Use standard soldering conditions when soldering chip  
EMI suppression filters.  
o Use Rosin-based flux.  
In case of DLW31/43 series, use Rosin-based flux with  
converting chlorine content of 0.06 to 0.1wt%.  
In case of using RA type solder, products should be  
cleaned completely with no residual flux.  
o Do not use strong acidic flux (with chlorine content  
exceeding 0.20wt%)  
In cases where several different parts are soldered, each  
having different soldering conditions, use those  
conditions requiring the least heat and minimum time.  
Solder: H60A H63A solder (JIS Z 3238)  
In case of lead-free solder, use Sn-3.0Ag-0.5Cu  
solder. Use of Sn-Zn based solder will deteriorate  
performance of products. If using NFM series with  
Sn-Zn based solder, please contact Murata in  
advance.  
o Do not use water-soluble flux.  
(2) Soldering Profile  
4
oFlow Soldering profile  
oReflow Soldering profile  
(Eutectic solder, Sn-3.0Ag-0.5Cu solder)  
qSoldering profile for Lead-free solder (Sn-3.0Ag-0.5Cu)  
T4  
T2  
T3  
T1  
T3  
T2  
180  
150  
t2  
Limit Profile  
Heating  
T1  
Limit Profile  
t1  
Standard Profile  
Pre-heating  
Standard Profile  
t2  
90s±30s  
time (s)  
Pre-heating  
t1  
time (s)  
Standard Profile  
Limit Profile  
Heating  
Standard Profile  
Limit Profile  
Pre-heating  
Peak  
temperature  
(T4)  
Peak  
temperature  
(T2)  
Series  
Series  
Heating  
Heating  
Heating  
Cycle  
Cycle  
Cycle  
Cycle  
of flow  
of flow  
of reflow  
of reflow  
Temp. (T1) Time. (t1) Temp. (T2) Time. (t2)  
Temp. (T3) Time. (t2)  
Temp. (T1) Time. (t1)  
Temp. (T3) Time. (t2)  
BLM, NFE  
NFM,  
BLM  
(Except BLM15)  
230°C 60s 260°C  
min. max. /10s  
2
2
60s  
min.  
5s  
max.  
265  
±3°C  
150°C  
250°C 4 to 6s times  
times  
max.  
DLW31S  
220°C 30 to 245 2 times  
min. 60s ±3°C max.  
2 times  
max.  
max.  
NFE61H*  
240°C 30s  
260°C  
DLW43S  
min. max.  
*Except NFE61HT332  
wSoldering profile for Eutectic solder  
(Limit profile: refer to q)  
T3  
T2  
T1  
t2  
Standard Profile  
t1  
time (s)  
Standard Profile  
Pre-heating  
Series  
Peak  
temperature  
(T3)  
Heating  
Cycle  
of reflow  
Temp. (T1) Time. (t1) Temp. (T2) Time. (t2)  
60s  
min.  
183°C  
min.  
60s  
max.  
2 times  
max.  
BLM, NFE  
NFM, DLW  
150°C  
230°C  
Continued on the following page.  
70  
C50E.pdf  
Aug.28,2008  
Chip EMIFILr (Soldering and Mounting)  
Continued from the preceding page.  
(3) Reworking with Soldering Iron  
The following conditions must be strictly followed when  
using a soldering iron.  
Pre-heating: 150°C 60s min.  
Soldering iron power output: 30W max.  
Temperature of soldering iron tip / Soldering time:  
BLM/NFM21H/DLW31S/DLW43S  
Do not allow the tip of the soldering iron to directly  
contact the chip.  
350°C max./3s max. (2 Times max.)  
For additional methods of reworking with a soldering iron,  
please contact Murata engineering.  
4. Mounting on-board with Conductive Glue of BLM18AG_WH1  
Please adhere rigidly to the condition below which shows  
the method of mounting with conductive glue.  
Please coat print pads with conductive glue using  
metal mask and metal squeegee, and then mount our  
products on the substrates with a mount machine or  
human hand.  
Conductive Glue  
Print Pads  
4
Board  
Please put the substrates into a oven (140 to 150°C)  
for 30 minutes in order to cure the adhesive.  
Please check whether the chips and the substrates are  
connected with the conductive glue or not and there is  
no electrical short of the conductive glue.  
1. Board  
Ceramic Board or Alumina Board  
2. Thickness of Glue  
30 to 50µm  
3. Recommended Conductive  
Glue  
PC3000  
(Manufactured by Heraeus)  
5. Cleaning  
Following conditions should be observed when cleaning  
chip EMI filter.  
Do not clean BLM18AGpppWH1/DLW31S/43S series.  
Before cleaning, please contact Murata engineering.  
(a) Alcohol cleaning agent  
(1) Cleaning Temperature: 60°C max. (40°C max. for  
alcohol type cleaner)  
Isopropyl alcohol (IPA)  
(2) Ultrasonic  
(b) Aqueous cleaning agent  
Output: 20W/liter max.  
Pine Alpha ST-100S  
Duration: 5 minutes max.  
(4) Ensure that flux residue is completely removed.  
Component should be thoroughly dried after aqueous  
agent has been removed with deionized water.  
For additional cleaning methods, please contact Murata  
engineering.  
Frequency: 28 to 40kHz  
(3) Cleaning agent  
The following list of cleaning agents have been tested on  
the individual components. Evaluation of final assembly  
should be completed prior to production.  
71  
C50E.pdf  
Aug.28,2008  
Block Type EMIFILr SMD Type (Soldering and Mounting)  
1. Standard Land Pattern Dimensions  
Land Pattern  
+ Solder Resist  
Land Pattern  
Through Hole  
(in mm)  
BNX024H  
BNX025H  
(1) A double-sided print board (or multilayer board) as shown in  
the left figure is designed, and please apply a soldering Cu  
electrode with a product electrode to a "Land Pattern", apply  
resist to a "Land Pattern + Solder Resist" at Cu electrode.  
(2) Please drop CG on a ground electrode on the back layer  
(the same also in a multilayer case) by the through hole. And  
a surface grand electrode layer may also take a large area  
as much as possible.  
12.5  
CG  
10.2  
9.9  
9.6  
B
CB  
CG  
7.1  
6.2  
5.3  
PSG  
(3) It is recommended to use a double-sided printed circuit  
board with BNX mounting on one side and the ground  
pattern on the other in order to maximize filtering  
2.8  
2.3  
CG  
0
performance, multiple feed through holes are required to  
maximize the BNX's connection to ground.  
(4) The ground pattern should be designed to be as large as  
possible to achieve maximum filtering performance.  
4
2. Solder Paste Printing and Adhesive Application  
(in mm)  
Series  
Solder Paste Printing  
Adhesive Application  
oUse Sn-3.0Ag-0.5Cu pattern printing solder.  
oCoat with solder paste to the following thickness:  
150-200µm  
BNX024H  
BNX025H  
12.5  
CG  
10.2  
9.6  
CB  
CG  
B
7.1  
5.3  
PSG  
2.8  
2.3  
CG  
0
3. Standard Soldering Conditions  
(1) Soldering Methods  
BNX024H/025H is only for reflow soldering.  
Solder: Use Sn-3.0Ag-0.5Cu solder.  
Flux:  
o Use Rosin-based flux.  
o Do not use strong acidic flux (with chlorine content  
exceeding 0.20wt%)  
o Do not use water-soluble flux.  
For additional mounting methods, please contact Murata.  
Continued on the following page.  
72  
C50E.pdf  
Aug.28,2008  
Block Type EMIFILr SMD Type (Soldering and Mounting)  
Continued from the preceding page.  
(2) Soldering profile  
oReflow Soldering profile  
qSoldering profile for Lead-free solder (Sn-3.0Ag-0.5Cu)  
T4  
T3  
T2  
T1  
180  
150  
Limit Profile  
t1  
t2  
Pre-heating  
Standard Profile  
90s±30s  
time (s)  
Standard Profile  
Limit Profile  
Peak  
Peak  
temperature  
(T2)  
Series  
Heating  
Temp. (T1) Time. (t1)  
Heating  
Temp. (T3) Time. (t2)  
Cycle  
of reflow  
Cycle  
temperature  
(T4)  
of reflow  
2 times  
max.  
2 times  
max.  
BNX024H/025H  
220°C min. 30 to 60s  
250±3°C  
230°C min. 60s max. 260°C/10s  
4
(3) Reworking with Solder Iron  
The following conditions must be strictly followed when  
using a soldering iron.  
Do not allow the tip of the soldering iron to directly  
contact the chip.  
Pre-heating: 150°C 60s min.  
For additional methods of reworking with a soldering iron,  
please contact Murata engineering.  
Soldering iron power output: 100W max.  
Temperature of soldering iron tip / Soldering time:  
BNX024H/025H: 450°C max./5s max.  
4. Cleaning  
Do not clean BNX024H/025H.  
Before cleaning, please contact Murata engineering.  
73  
C50E.pdf  
Aug.28,2008  
Block Type EMIFILr Lead Type (Soldering and Mounting)  
1. Mounting Hole  
Mounting holes should be designed as specified below.  
Part Number  
BNX012H  
Bulk Type (in mm)  
TERMINAL LAYOUT (Bottom figure)  
Component Side  
ø1.2  
(PSG)  
(B)  
CB  
CG  
CG  
(CG)  
(CG)  
(CG)  
(CB)  
2.5±0.1  
5.0±0.1  
7.5±0.1  
PSG : Power supply ground  
CG : Load circuit ground  
CB : Load circuit + Bias  
PSG  
B
2. Using The Block Type EMIFILr Effectively  
(1) How to use effectively  
P. C. BOARD PATTERNS  
4
This product effectively prevents undesired radiation and  
external noise from going out / entering the circuit by  
grounding the high frequency components which cause  
Use a bilateral P.C. board. Insert the BNX into the P.C.board until  
the root of the terminal is secured, then solder.  
noise problems. Therefore, grounding conditions may affect  
the performance of the filter and attention should be paid to  
the following for effective use.  
(1) COMPONENT SIDE VIEW (2) BOTTOM VIEW  
PSG  
B
B
PSG  
(a) Design maximized grounding area in the P.C. board,  
and grounding pattern for all the grounding terminals  
of the product to be connected. (Please follow the  
specified recommendations.)  
Shield plate  
PSG  
B
B
PSG  
CG  
CB  
CG CG  
CB  
CG  
CG  
CG  
(b) Minimize the distance between ground of the P.C.  
board and the ground plate of the product.  
(Recommended to use through-hole connection  
between grounding area both of component side and  
bottom side.)  
Copper foil pattern  
(c) Insert the terminals into the holes on P.C. board  
completely.  
(d) Don't connect PSG terminal with CG terminal directly.  
(See the item 1. TERMINAL LAYOUT)  
(2) Self-heating  
Recommended Land Pattern  
Though this product has a large rated current, localized self-  
heating may be caused depending on soldering conditions.  
To avoid this, attention should be paid to the following:  
(a) Use P.C. board with our recommendation on hole  
diameter / land pattern dimensions, mentioned in the  
right hand drawing, especially for 4 terminals which  
pass current.  
3.2  
3.2  
Through holes  
ø1.2  
B
PSG  
CG  
CG  
(b) Solder the terminals to the P.C. board with solder-  
cover area at least 90%. Otherwise, excess self-  
heating at connection between terminals and P.C.  
board may lead to smoke and / or fire of the product  
even when operating at rated current.  
CG  
CB  
3.2  
(c) After installing this product in your product, please  
make sure of the self-heating with the rated current.  
(in mm)  
2.5  
5.0  
Copper foil pattern  
7.5  
Continued on the following page.  
74  
C50E.pdf  
Aug.28,2008  
Block Type EMIFILr Lead Type (Soldering and Mounting)  
Continued from the preceding page.  
3. Soldering  
(1) Solder: H60A, H63A solder (JIS Z 3238)  
In case of lead-free solder, use Sn-3.0Ag-0.5Cu solder.  
(2) Use Rosin-based flux. Do not use strong acidic flux with  
halide content exceeding 0.2wt% (chlorine conversion  
value).  
(3) Products and the leads should not be subjected to any  
mechanical stress during the soldering process, or while  
subjected to the equivalent high temperatures.  
(4) Standard flow soldering profile  
Gradual cooling  
Soldering  
(in air)  
Pre-heating  
300  
250  
200  
150  
100  
50  
Soldering temperature  
150°C  
4
60s min.  
Soldering time  
Solder  
Soldering temperature Soldering time  
Sn/Pb=60/40, Sn/Pb=63/37  
Sn-3.0Ag-0.5Cu solder  
240 to 260˚C  
250 to 260˚C  
5s max.  
4 to 6s  
4. Cleaning Conditions  
Following conditions should be observed when cleaning  
BNX012H series.  
(b) Aqueous agent  
PINE ALPHA ST-100S  
(1) Cleaning temperature should be limited to 60°C max.  
(40°C max for alcohol type cleaner.)  
(2) Ultrasonic cleaning should comply with the following  
conditions, avoiding the resonance phenomenon at the  
mounted products and P.C.B.  
(4) There should be no residual flux or residual cleaner left  
after cleaning.  
In the case of using aqueous agent, products should be  
dried completely after rinsing with de-ionized water in  
order to remove the cleaner.  
Power: 20 W / l max. Frequency: 28 to 40kHz  
Time: 5 min. max.  
(5) The surface of products may become dirty after cleaning,  
but there is no deterioration on mechanical, electrical  
characteristics and reliability.  
(3) Cleaner  
(a) Alcohol type cleaner  
(6) Other cleaning: Please contact us.  
Isopropyl alcohol (IPA)  
75  
C50E.pdf  
Aug.28,2008  
Package  
Minimum Quantity and Dimensions of 8mm Width Paper / Embossed Tape  
<Embossed>  
2.0±0.05  
4.0±0.1 4.0±0.1 ø1.5+0.1  
1
c
<paper>  
-
0
d
(in mm)  
c
Direction of feed  
There are holes in the cavities of the BLM21BD222SH1/  
c: Depth of Cavity  
(Embossed Tape)  
c: Total Thickness of Tape  
b
(Paper Tape)  
+0.3  
BD272SH1 and BLM31 only. ø1.0  
-0  
1 BLM15: 2.0±0.1  
Minimum Qty. (pcs.)  
ø330mm reel  
Paper Tape Embossed Tape Paper Tape Embossed Tape  
Cavity Size (in mm)  
Part Number  
ø180mm reel  
Bulk  
a
b
c
d
1.15 0.65  
1.85 1.05  
2.25 1.45  
2.25 1.45  
0.8 max.  
1.1 max.  
1.1 max.  
1.3  
-
-
10000  
-
50000  
-
1000  
1000  
1000  
1000  
1000  
500  
BLM15  
BLM18  
BLM21  
4
4000  
-
10000  
-
-
4000  
-
10000  
-
0.2  
0.2  
-
-
3000  
3000  
-
-
-
-
-
10000  
BLM21BD222SH1/272SH1  
3.5  
2.3 1.55  
3.6 2.0  
1.9  
1.3  
-
4000  
-
10000  
BLM31  
NFM21  
DLW31S  
1.1 max.  
2.1  
-
-
0.3  
2000  
500  
• Please contact us for BLM15/18 in bulk case.  
Minimum Quantity and Dimensions of 12mm Width Embossed Tape  
c: Depth of Cavity  
1
c
2.0±0.05  
ø1.5 +0.1  
4.0±0.1 4.0±0.1  
-
0
Cavity Size  
b
Minimum Qty. (pcs.)  
0.3  
Part Number  
a
c
ø180mm reel ø330mm reel  
Bulk  
1000  
500  
4.8  
7.2  
4.9  
4.9  
1.9 1.75  
1.9 1.75  
2500  
2500  
500  
8000  
8000  
2500  
2500  
BLM41  
NFE61  
3.6  
3.6  
2.7  
2.9  
100  
DLW43S_XK  
DLW43S_XP  
500  
100  
Direction of feed  
1 DLW43S: 8.0±0.1  
b
There are holes in the cavities  
of the BLM41 only. ø1.5 +0.3  
-
0
(in mm)  
76  
C50E.pdf  
Aug.28,2008  
Package  
Minimum Quantity and Dimensions of 24mm Width Embossed Tape  
4.0x10pitch=40.0±0.2  
c: 3.6±0.1  
+0.1  
2.0±0.1  
4.0±0.1  
ø1.5  
-
0
12.0±0.1  
+0.5  
ø1.5  
-
0
0.3±0.1  
b: 9.4±0.1  
Cavity Size  
b
Minimum Qty. (pcs.)  
Part Number  
BNX024H/025H  
4
a
c
ø180mm reel ø330mm reel  
Bulk  
12.4 9.4  
3.6  
400  
1500  
100  
(in mm)  
77  
C50E.pdf  
Aug.28,2008  
Design Kits  
oEKEMAT15B (Chip Ferrite Beads 0402 Size for Automotive)  
Quantity  
(pcs.)  
Impedance typ. (at 100MHz, 20°C)  
Rated Current  
(mA)  
DC Resistance  
No.  
Part Number  
()  
() max.  
BLM15AG100SH1  
BLM15AG700SH1  
BLM15AG121SH1  
BLM15AG221SH1  
BLM15AG601SH1  
BLM15AG102SH1  
BLM15BB050SH1  
BLM15BB100SH1  
BLM15BB220SH1  
BLM15BB470SH1  
BLM15BB750SH1  
BLM15BB121SH1  
BLM15BB221SH1  
BLM15BD471SH1  
BLM15BD601SH1  
BLM15BD102SH1  
BLM15BD182SH1  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10 (Typ.)  
70 (Typ.)  
1000  
500  
500  
300  
300  
200  
500  
300  
300  
300  
300  
300  
200  
200  
200  
200  
200  
0.05  
0.15  
0.25  
0.35  
0.6  
1
2
3
120 ±25%  
220 ±25%  
600 ±25%  
1000 ±25%  
5 ±25%  
4
4
5
6
1.0  
7
0.08  
0.1  
8
10 ±25%  
9
22 ±25%  
0.2  
10  
11  
12  
13  
14  
15  
16  
17  
47 ±25%  
0.35  
0.4  
75 ±25%  
120 ±25%  
220 ±25%  
470 ±25%  
600 ±25%  
1000 ±25%  
1800 ±25%  
0.55  
0.8  
0.6  
0.65  
0.9  
1.4  
oEKEMAT18C (Chip Ferrite Beads 0603 Size for Automotive)  
Impedance typ.  
(at 100MHz, 20°C)  
()  
Impedance typ.  
(at 1GHz, 20°C)  
()  
Quantity  
(pcs.)  
Rated Current  
DC Resistance  
No.  
Part Number  
(mA)  
() max.  
BLM18AG121SH1  
BLM18AG151SH1  
BLM18AG221SH1  
BLM18AG331SH1  
BLM18AG471SH1  
BLM18AG601SH1  
BLM18AG102SH1  
BLM18BA050SH1  
BLM18BA100SH1  
BLM18BA220SH1  
BLM18BA470SH1  
BLM18BA750SH1  
BLM18BA121SH1  
BLM18BB050SH1  
BLM18BB100SH1  
BLM18BB220SH1  
BLM18BB470SH1  
BLM18BB600SH1  
BLM18BB750SH1  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
120 ±25%  
150 ±25%  
220 ±25%  
330 ±25%  
470 ±25%  
600 ±25%  
1000 ±25%  
5 ±25%  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
500  
500  
500  
500  
500  
500  
400  
500  
500  
500  
300  
300  
200  
700  
700  
600  
550  
550  
500  
0.18  
1
2
0.25  
0.25  
3
0.30  
4
0.35  
5
0.38  
6
0.50  
7
0.2  
8
10 ±25%  
22 ±25%  
47 ±25%  
75 ±25%  
120 ±25%  
5 ±25%  
0.25  
9
0.35  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
0.55  
0.7  
0.9  
0.05  
10 ±25%  
22 ±25%  
47 ±25%  
60 ±25%  
75 ±25%  
0.10  
0.20  
0.25  
0.25  
0.30  
Continued on the following page.  
78  
C50E.pdf  
Aug.28,2008  
Design Kits  
Continued from the preceding page.  
Impedance typ.  
Quantity  
(pcs.)  
Impedance typ.  
(at 1GHz, 20°C)  
()  
Rated Current  
(mA)  
DC Resistance  
No.  
Part Number  
(at 100MHz, 20°C)  
()  
() max.  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
BLM18BB121SH1  
BLM18BB141SH1  
BLM18BB151SH1  
BLM18BB221SH1  
BLM18BB331SH1  
BLM18BB471SH1  
BLM18BD470SH1  
BLM18BD121SH1  
BLM18BD151SH1  
BLM18BD221SH1  
BLM18BD331SH1  
BLM18BD421SH1  
BLM18BD471SH1  
BLM18BD601SH1  
BLM18BD102SH1  
BLM18BD152SH1  
BLM18BD182SH1  
BLM18BD222SH1  
BLM18BD252SH1  
BLM18HG471SH1  
BLM18HG601SH1  
BLM18HG102SH1  
BLM18HD471SH1  
BLM18HD601SH1  
BLM18HD102SH1  
BLM18EG101TH1  
BLM18EG121SH1  
BLM18EG181SH1  
BLM18EG221TH1  
BLM18EG331TH1  
BLM18EG391TH1  
BLM18EG471SH1  
BLM18EG601SH1  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
120 ±25%  
140 ±25%  
150 ±25%  
220 ±25%  
330 ±25%  
470 ±25%  
47 ±25%  
-
500  
450  
450  
450  
400  
300  
500  
200  
200  
200  
200  
200  
200  
200  
100  
50  
0.30  
0.35  
0.37  
0.45  
0.58  
0.85  
0.30  
0.4  
-
-
-
-
-
-
120 ±25%  
150 ±25%  
220 ±25%  
330 ±25%  
420 ±25%  
470 ±25%  
600 ±25%  
1000 ±25%  
1500 ±25%  
1800 ±25%  
2200 ±25%  
2500 ±25%  
470 ±25%  
600 ±25%  
1000 ±25%  
470 ±25%  
600 ±25%  
1000 ±25%  
100 ±25%  
120 ±25%  
180 ±25%  
220 ±25%  
330 ±25%  
390 ±25%  
470 ±25%  
600 ±25%  
-
-
0.4  
-
0.45  
0.5  
-
-
0.55  
0.55  
0.65  
0.85  
1.2  
-
-
-
4
-
-
50  
1.5  
-
50  
1.5  
-
50  
1.5  
600 (Typ.)  
700 (Typ.)  
1000 (Typ.)  
1000 (Typ.)  
1200 (Typ.)  
1700 (Typ.)  
140 (Typ.)  
145 (Typ.)  
260 (Typ.)  
300 (Typ.)  
450 (Typ.)  
520 (Typ.)  
550 (Typ.)  
700 (Typ.)  
200  
200  
100  
100  
100  
50  
0.85  
1.0  
1.6  
1.2  
1.5  
1.8  
2000  
2000  
2000  
1000  
500  
500  
500  
500  
0.04  
0.04  
0.05  
0.15  
0.21  
0.30  
0.21  
0.35  
oEKEMAT21A (Chip Ferrite Beads 0805 / 1206 Size for Automotive)  
Impedance typ. (at 100MHz, 20°C)  
()  
Quantity  
(pcs.)  
Rated Current  
DC Resistance  
No.  
Part Number  
(mA)  
() max.  
1
2
BLM21AG121SH1  
BLM21AG151SH1  
BLM21AG221SH1  
BLM21AG331SH1  
BLM21AG471SH1  
BLM21AG601SH1  
BLM21AG102SH1  
BLM31AJ601SH1  
BLM21BB050SH1  
BLM21BB600SH1  
BLM21BB750SH1  
BLM21BB121SH1  
BLM21BB151SH1  
BLM21BB201SH1  
BLM21BB221SH1  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
120 ±25%  
150 ±25%  
220 ±25%  
330 ±25%  
470 ±25%  
600 ±25%  
1000 ±25%  
600 ±25%  
5 ±25%  
200  
200  
200  
200  
200  
200  
200  
200  
500  
200  
200  
200  
200  
200  
200  
0.15  
0.15  
3
0.2  
4
0.25  
5
0.25  
6
0.3  
7
0.45  
8
0.9  
9
0.07  
10  
11  
12  
13  
14  
15  
60 ±25%  
0.2  
75 ±25%  
0.25  
120 ±25%  
150 ±25%  
200 ±25%  
220 ±25%  
0.25  
0.25  
0.35  
0.35  
Continued on the following page.  
79  
C50E.pdf  
Aug.28,2008  
Design Kits  
Continued from the preceding page.  
Quantity  
(pcs.)  
Impedance typ. (at 100MHz, 20°C)  
()  
Rated Current  
(mA)  
DC Resistance  
No.  
Part Number  
() max.  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
BLM21BB331SH1  
BLM21BB471SH1  
BLM21BD121SH1  
BLM21BD151SH1  
BLM21BD221SH1  
BLM21BD331SH1  
BLM21BD421SH1  
BLM21BD471SH1  
BLM21BD601SH1  
BLM21BD751SH1  
BLM21BD102SH1  
BLM21BD152SH1  
BLM21BD182SH1  
BLM21BD222TH1  
BLM21BD222SH1  
BLM21BD272SH1  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
330 ±25%  
470 ±25%  
120 ±25%  
150 ±25%  
220 ±25%  
330 ±25%  
420 ±25%  
470 ±25%  
600 ±25%  
750 ±25%  
1000 ±25%  
1500 ±25%  
1800 ±25%  
2200 ±25%  
2250 (Typ.)  
2700 ±25%  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
0.4  
0.45  
0.25  
0.25  
0.25  
0.3  
0.3  
0.35  
0.35  
0.4  
0.4  
0.45  
0.5  
0.6  
0.6  
4
0.8  
oEKEMATPWA (Chip EMIFILr for Automotive / for Power Supplies)  
Quantity  
(pcs.)  
Impedance typ. (at 100MHz, 20°C)  
()  
Rated Current  
(mA)  
DC Resistance  
No.  
Part Number  
() max.  
BLM18PG300SH1  
BLM18PG330SH1  
BLM18PG600SH1  
BLM18PG121SH1  
BLM18PG181SH1  
BLM18PG221SH1  
BLM18PG331SH1  
BLM18PG471SH1  
BLM21PG220SH1  
BLM21PG300SH1  
BLM21PG600SH1  
BLM21PG221SH1  
BLM21PG331SH1  
BLM31PG330SH1  
BLM31PG500SH1  
BLM31PG121SH1  
BLM31PG391SH1  
BLM31PG601SH1  
BLM41PG600SH1  
BLM41PG750SH1  
BLM41PG181SH1  
BLM41PG471SH1  
BLM41PG102SH1  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
30 (Typ.)  
33 ±25%  
60 (Typ.)  
120 ±25%  
180 ±25%  
220 ±25%  
330 ±25%  
470 ±25%  
22 ±25%  
30 (Typ.)  
60 ±25%  
220 ±25%  
330 ±25%  
33 ±25%  
50 (Typ.)  
120 ±25%  
390 ±25%  
600 ±25%  
60 (Typ.)  
75 (Typ.)  
180 ±25%  
470 ±25%  
1000 ±25%  
1000  
3000  
500  
0.05  
0.025  
0.10  
0.05  
0.09  
0.1  
1
2
3
4
2000  
1500  
1400  
1200  
1000  
6000  
3000  
3000  
2000  
1500  
6000  
3000  
3000  
2000  
1500  
6000  
3000  
3000  
2000  
1500  
5
6
0.15  
0.2  
7
8
0.01  
0.015  
0.025  
0.050  
0.09  
0.01  
0.025  
0.025  
0.05  
0.09  
0.01  
0.025  
0.025  
0.05  
0.09  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
Quantity  
(pcs.)  
Capacitance  
(pF)  
Rated Voltage  
Rated Current  
Insulation Resistance  
No.  
Part Number  
(Vdc)  
(mA)  
(M) min.  
24  
25  
26  
27  
28  
29  
NFM21HC220U1H3  
NFM21HC470U1H3  
NFM21HC101U1H3  
NFM21HC221R1H3  
NFM21HC471R1H3  
NFM21HC102R1H3  
10  
10  
10  
10  
10  
10  
22 ±20%  
47 ±20%  
50  
50  
50  
50  
50  
50  
700  
700  
1000  
1000  
1000  
1000  
1000  
1000  
100 ±20%  
220 ±20%  
470 ±20%  
1000 ±20%  
700  
700  
1000  
1000  
Continued on the following page.  
80  
C50E.pdf  
Aug.28,2008  
Design Kits  
Continued from the preceding page.  
Quantity  
(pcs.)  
Capacitance  
(pF)  
Rated Voltage  
(Vdc)  
Rated Current  
(mA)  
Insulation Resistance  
No.  
Part Number  
(M) min.  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
NFM21HC222R1H3  
NFM21HC223R1H3  
NFM21HC104R1A3  
NFM21HC224R1A3  
NFM21HC474R1A3  
NFE61HT330U2A9  
NFE61HT680R2A9  
NFE61HT101Z2A9  
NFE61HT181C2A9  
NFE61HT361C2A9  
NFE61HT681D2A9  
NFE61HT102F2A9  
NFE61HT332Z2A9  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
2200 ±20%  
22000 ±20%  
100000 ±20%  
220000 ±20%  
470000 ±20%  
33 ±30%  
50  
50  
1000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
10  
10  
10  
100  
100  
100  
100  
100  
100  
100  
100  
68 ±30%  
100 ±30%  
180 ±30%  
360 ±20%  
680 ±30%  
1000 +80% , -20%  
3300 +80% , -20%  
4
81  
C50E.pdf  
Aug.28,2008  
Outlines of Major Noise Regulation Standards  
1. EMI Regulations  
Countries  
Information Regulation  
Japan  
USA  
Europe  
Equipment  
CISPR61000-6-3  
(Residential, Commercial  
and Light Industry)  
IEC61000-6-4  
EN50081-1  
(Residential, Commercial  
and Light Industry)  
EN50081-2  
Generic Standard  
(Industrial)  
(Industrial)  
ITE : Information Technology  
Equipment  
VCCI  
1
FCC Part 15  
Subpart B  
CISPR 22  
EN55022  
Printer, Personal computer  
Word processor, Display  
ISM equipment, Microwave  
CISPR 11  
CISPR 12  
1
FCC Part 18  
EN55011  
Igniter  
FCC Part 15  
Subpart B  
Automotive  
Directive  
JASO  
(Automobile, Motorboat)  
FCC Part 15  
Subpart B  
TV, Radio, Audio, VTR  
CISPR 13  
1
EN55013  
Household electrical  
equipment  
CISPR 14  
CISPR 15  
ITU-T  
1
1
EN55014  
EN55015  
Portable tool  
FCC Part 18  
Fluorescent Lamp, Luminary  
Transceiver  
Radio Act  
ARIB  
FCC Part 15  
Subpart C  
ETS300 Series  
(Voluntary Regulation)  
FCC Part 22  
(Reference) Power Supply  
Higher Harmonic  
Industrial Voluntary  
Regulation  
IEC61000-3  
EN61000-3  
Basic Standard  
IEC61000-4  
JIS C 61000-4  
EN61000-4 Series  
IEC61000-6-1  
JIS C 61000-6-1  
EN50082-1  
(Residential, Commercial  
and Light Industry)  
EN50082-2  
(Residential, Commercial (Residential, Commercial  
Generic Standard  
and Light Industry)  
IEC61000-6-2  
(Industrial)  
and Light Industry)  
JIS C 61000-6-2  
(Industrial)  
(Industrial)  
Industrial Process Measurement  
and Control Equipment  
Industrial Voluntary  
Action  
Radio, TV  
CISPR 20  
CISPR 24  
EN55020  
EN55024  
ITE : Information Technology  
Equipment  
1 Electrical Appliance and Material Safety Law  
There are EMI regulations in each country to meet EMI  
noise levels emitted from digital equipment.  
In the countries which regulate EMI, equipment which does  
not satisfy regulations is not allowed to be sold.  
Continued on the following page.  
82  
C50E.pdf  
Aug.28,2008  
Outlines of Major Noise Regulation Standards  
Continued from the preceding page.  
2. Measurement Point and Noise Detection  
Regulation  
Measuring Item  
Polarization and Measuring Point  
Frequency (Hz)  
30M to 1GHz  
Detection  
Measuring Devices  
Radiated Interference  
Horizontal Pol. Vertical Pol.  
Quasi-Peak Detection  
Antenna  
CISPR 22/  
EN55022  
Main Interference Voltage AC Main Ports  
150k to 30MHz  
30M to 1GHz  
Quasi-Peak Detection Mean Detection Artificial Main Network  
Quasi-Peak Detection Dipole Antenna  
Radiated Interference  
Horizontal Pol. Vertical Pol.  
VCCI  
Main Interference Voltage AC Main Ports  
150k to 30MHz  
30M to 40GHz  
150k to 30MHz  
Quasi-Peak Detection Mean Detection Artificial Main Network  
Quasi-Peak Detection Mean Detection Antenna  
Radiated Interference  
Horizontal Pol. Vertical Pol.  
FCC Part 15  
Main Interference Voltage AC Main Ports  
Quasi-Peak Detection  
Artificial Main Network  
PeakUQuasi-PeakUAverage  
(Qp)  
V
V
Peak Detection  
Quasi-Peak Detection  
Peak Detection  
Average Detection  
Quasi-Peak Detection  
Average Detection  
t
t
Short Repetition Period  
Long Repetition Period  
3. Limits of CISPR 22/EN55022  
(1) CISPR 22 recommends measurement at 10m distance.  
However, other distance is acceptable if the limitation is  
converted according to the following calculation.  
Limitation shown left is converted to limitation for 3m  
distance.  
Main Terminal Interference Voltage (Power Supply)  
90  
79  
Class A Quasi-peak value  
Class A Mean value  
73  
70  
50  
30  
66  
56  
60  
50  
Conversion  
56  
46  
Class B Quasi-peak value  
Class B Mean value  
Limitation for  
10m Distance  
R10 (dB µ V/m)  
r10 (µ V/m)  
Limitation for  
3m Distance  
R3 (dB µ V/m)  
r3 (µ V/m)  
10k  
100k 150k 500k 1M  
5M 10M 30M 100M  
R10=20 log r10  
R3=20 log r3  
Frequency (Hz)  
R3=R10+20 (1-log3)  
Radiated Interference  
10  
3
r3 =  
r10  
90  
70  
57  
47  
Class A  
Class B  
50  
40  
50  
30  
10M  
30M  
100M 230M  
Frequency (Hz)  
1G  
On the border frequency, lower limit should be applied.  
Class A Equipment: The equipment which is used in light  
industrial commercial areas.  
Class B Equipment: The equipment which is used in  
residential areas.  
Continued on the following page.  
83  
C50E.pdf  
Aug.28,2008  
Outlines of Major Noise Regulation Standards  
Continued from the preceding page.  
(2) Scope of CISPR 22 Regulation  
CISPR Regulations  
This regulation applies to information technology  
equipment (ITE) which are defined as:  
(a) Equipment that receives data from external signal  
sources;  
CISPR 10 Organization, Regulations and Procedures of CISPR  
CISPR 11 Industrial, Scientific and Medical (ISM) Radio-Frequency  
Equipment  
CISPR 12 Vehicles, Motor Boats and Spark-Ignited Engine driven  
CISPR 13 Sound and Television Receivers  
(b) Equipment that processes received data;  
(c) Equipment that outputs data; and  
(d) Equipment that has less than 600V rated voltage in  
power supply.  
CISPR 14 Household Electrical Appliances, Portable Tools and Similar  
Electrical Apparatus  
CISPR 15 Fluorescent Lamps and Iuminaries  
CISPR 16 Radio Interference Measuring Apparatus and Measurement  
Methods  
CISPR 17 Passive Radio Interference Filters and Suppression  
Components  
CISPR 18 Power Transmission Cables and High Voltage equipment  
CISPR 19 Microwave Ovens for Frequencies above 1GHz  
CISPR 20 Immunity of Sound and TV Broadcast Receivers  
and Associated Equipment  
CISPR 21 Interference to Mobile Radio Communications in the Presence  
of Impulsive Noise  
CISPR 22 Information Technology Equipment  
CISPR 23 Industrial Scientific and Medical (ISM) Equipment  
CISPR 24 Immunity Regulation of Information Technology Equipment  
CISPR 25 Receiver used onboard vehicles, boats, and on devices  
4. Limits of VCCI Voluntary Regulation  
(1) VCCI recommends measurement at 10m distance;  
3m or 30m distance measurements are also allowed.  
Main Terminal Interference Voltage (Power Supply)  
90  
(2) Scope of VCCI Voluntary Regulation  
This regulation applies to information technology  
equipment (same as CISPR Pub.22), but the application  
is excluded on the following equipment:  
· Equipment for which other regulations already exist  
(e.g., household electrical appliances, radio and TV  
receivers)  
79  
Class A Quasi-peak value  
Class A Mean value  
73  
70  
50  
30  
66  
56  
60  
50  
56  
46  
Class B Quasi-peak value  
Class B Mean value  
· In station equipment principal purpose of which is  
electrical communication  
10k  
100k 150k 500k 1M  
5M 10M 30M 100M  
· Industrial plant control system for which information  
processing is a secondary system function  
· Industrial, commercial and medical testing and  
measuring systems for which data processing is a  
secondary system function  
Frequency (Hz)  
Radiated Interference  
90  
· Information equipment for which CISPR is conducting  
further deliberation  
70  
VCCI is the acronym of Voluntary Control Council for  
Interference by Data Processing Equipment and  
Electronic Office Machines.  
Class A Quasi-peak value  
Class B Quasi-peak value  
57  
47  
50  
40  
50  
30  
VCCI is organized by the following organizations:  
· Japan Electronics and Information Technology  
Industries Association (JEITA)  
10M  
30M  
100M 230M  
Frequency (Hz)  
1G  
· Japan Business Machine and Information System  
Industries Association (JBMIA)  
· Communication and Information Network Association  
of Japan (CIAJ)  
On the border frequency, lower limit should be applied.  
Class B ITE: Equipment that is designed to be used at home.  
Class A ITE: Equipment that does not meet interference  
limits of class B equipment, but satisfies  
interference limits of class A equipment.  
Continued on the following page.  
84  
C50E.pdf  
Aug.28,2008  
Outlines of Major Noise Regulation Standards  
Continued from the preceding page.  
5. Limits of FCC Part 15 Subpart B  
(1) Class A recommended to be measured with 10m distance.  
Class B recommended to be measured with 3m distance.  
(2) The FCC Part 15 regulation controls radiated interference  
by establishing quasi-peak and mean value limits for fre-  
quencies ranging from 30MHz to 40GHz (or maximum  
frequency's fifth harmonic, whichever is lower).  
For AC main ports, the FCC Part 15 regulation controls  
main terminal interference voltage by establishing quasi-  
peak value limits for frequencies ranging from 450kHz to  
30MHz.  
Main Terminal Interference Voltage (Power Supply)  
90  
79  
Class A Quasi-peak value  
Class A Mean value  
73  
70  
50  
30  
66  
56  
60  
50  
56  
46  
Class B Quasi-peak value  
Class B Mean value  
Measurement Frequency Range for Radiated Interference  
10k  
100k 150k 500k 1M  
5M 10M 30M 100M  
Frequency (Hz)  
Maximum Frequency  
Upper End of Measurement  
the Equipment Internally  
Frequency Range  
Generates, Uses or Operates  
(MHz)  
Radiated Interference  
or Synchronizes (MHz)  
Less than 1.705  
1.705 to 108  
108 to 500  
30  
90  
Noise level is regulated up to lower  
frequency of the 5th harmonics of  
maximum signal frequency and 40GHz.  
1000  
2000  
5000  
70  
50  
30  
500 to 1000  
60  
Class A  
Maximum Frequency's Fifth  
Harmonic or 40GHz,  
Whichever is Lower  
56.9  
54  
49.5  
40  
54  
43.5  
Over 1000  
46  
Class B  
960M  
1G  
10M  
30M  
88M100M 216M  
Frequency (Hz)  
On the border frequency, lower limit should be applied.  
Class A Equipment: The digital equipment that is sold for  
commercial, industrial and office use.  
Class B Equipment: The digital equipment that is sold to be  
used in residential areas.  
(3)There is no regulation on power interference.  
FCC Regulations  
Part 1 Procedures  
Part 2 Frequency Division and Radio Wave Treaty Issues and  
General Rules  
Part 15 Radio Wave Equipment  
• Intentionally electromagnetic radiation equipment  
• Non-intentionally electromagnetic radiation equipment  
• Incidentally electromagnetic radiation equipment  
Part 18 Industrial, Scientific and Medical Equipment  
Part 22 Public Mobile Wireless Operations  
Part 68 Connecting Terminal Equipment to Telephone Circuit Network  
Part 76 Cable Television  
Continued on the following page.  
85  
C50E.pdf  
Aug.28,2008  
Outlines of Major Noise Regulation Standards  
Continued from the preceding page.  
6. Immunity Regulations in the European Union  
All electric/electronic equipment cannot be sold in Europe  
All products which are sold in EU must satisfy EC directive which  
contains immunity regulation.  
without CE marking. To use CE marking, they must  
satisfy related EC directives such as EMC directives.  
For Information Technology Equipment, in EMC directive,  
emission regulations are integrated, and immunity  
regulations are applied. Although these immunity  
regulations are prepared by CENELEC, almost all  
contents are same as standards issued by IEC or CISPR.  
Principal EC Directive  
89/336/EEC  
92/31/EEC  
EMC Directive  
Low-Voltage Electrical  
Products Directive  
73/23/EEC  
Machines Directive  
89/392/EEC  
7. Immunity Regulations in Japan  
Equipment  
Association  
JEITA (Japan Electronics and Information Technology)  
TV, Radio, Audio  
ITE  
Office Machine  
JBMIA (Japan Business Machine and Information System Industries Association)  
CIAJ (Communication and Information Network Association of Japan)  
ARIB (Association of Radio Industries and Business)  
Mi  
Machine To Builders  
JMTBA (Japan Machine Tool Builders' Association)  
JEMIMA (Japan Electric Measuring Instruments Manufacturers' Association)  
JARA (Japan Robot Association)  
Industrial Measuring Control Equipment  
Industrial Robot  
Classification  
Information Regulation  
JIS  
The table on the right shows the preparation situation of  
JIS for EMC. At this moment, the immunity standards by  
JIS do not have a legal force like the Electrical Application  
and Material Safety Law/VCCI.  
ISO60050-161  
(IEV terms 161)  
Terms  
JIS C 0161  
IEC61000-4- 2  
IEC61000-4- 3  
IEC61000-4- 4  
IEC61000-4- 5  
IEC61000-4- 6  
IEC61000-4- 7  
IEC61000-4- 8  
IEC61000-4-11  
IEC61000-4-14  
IEC61000-4-17  
JIS C 61000-4-2  
JIS C 61000-4-3  
JIS C 61000-4-4  
JIS C 61000-4-5  
JIS C 61000-4-6  
JIS C 61000-4-7  
JIS C 61000-4-8  
JIS C 61000-4-11  
JIS C 61000-4-14  
JIS C 61000-4-17  
Basic Standards  
IEC61000-6-1  
IEC61000-6-2  
JIS C 61000-6-1  
JIS C 61000-6-2  
Generic Standards  
86  
C50E.pdf  
Aug.28,2008  
Principles of Noise Suppression by DC EMIFILr  
1. Function of DC EMI Suppression Filters  
DC EMI suppression filters absorb and eliminate high  
frequency noise which may produce electromagnetic  
interference in PC board circuits.  
These filters are used in secondary circuits, and are small  
in size and light in weight, which further enhances their  
excellent noise suppression functions.  
Chip and adhesive type filters can be mounted on PC  
boards automatically.  
These filters are effective in the suppression of radiation  
noise in computers, peripheral equipment, and digital  
circuit application equipment (including various types of  
microcomputer application equipment), and function to  
suppress noise in audio/visual equipment, which uses  
digital memory chips and DSP.  
These filters are also effective for improving the noise  
immunity of equipment used in noisy environments (such  
as electronic equipment for automobiles).  
2. Noise Filter Suppression Principles  
Generally, noise problems occur when the noise source  
and electronic equipment sensitive to the influence of  
noise are located in close proximity to one another.  
In such situations, as shown in Figure at right, noise is  
conducted through a conductor, which produces an  
inductive field around the noise source.  
EMI Propagation Mode and Model of Noise Filter Suppression  
r
q
Equipment or Device  
Affected by EMI  
EMI Source  
e
To overcome such noise problems, it is preferable to  
reduce the amount of noise generated by the noise  
source or improve the noise resistance of adjacent  
equipment.  
w
qConduction mode eConduction mode Radiation mode  
wRadiation mode  
rRadiation mode  
Conduction mode  
In order to satisfy equipment performance specifications  
and eliminate noise effectively at the same time, however,  
it is customary to reduce the amount of noise generated  
by the noise source, if it can't be eliminated altogether.  
r
EMI Filter  
EMI Filter  
q
e
Equipment or Device  
Affected by EMI  
EMI Filter  
EMI Filter  
EMI Source  
Shield  
w
Shield  
3. Configuration of EMI Suppression Filters (DC)  
DC EMI suppression filters are used to suppress noise  
produced by conductors. Noise radiation can be  
suppressed, if it is eliminated with a filter in advance.  
Generally, such noise suppression is achieved with DC  
EMI suppression filters, according to the capacitive and  
inductive frequency characteristics of the respective  
conductors in the circuit.  
Filters of this kind can be roughly divided into those:  
(1) employing a capacitor,  
(2) employing an inductor,  
(3) employing a capacitor and inductor combination.  
Continued on the following page.  
87  
C50E.pdf  
Aug.28,2008  
Principles of Noise Suppression by DC EMIFILr  
Continued from the preceding page.  
4. Capacitive Noise Suppression  
When a capacitor is connected (bypass capacitor) to  
Capacitive Noise Suppression  
ground from a noisy signal line or power line, the circuit  
impedance decreases as the frequency increases. Since  
noise is a high frequency phenomenon, it flows to ground  
if a capacitor has been connected to ground, thereby  
making it possible to eliminate noise. (See Fig.)  
1
2πfc  
Noise+Signal/DC Power  
Noise  
Signal/DC Power  
=
Z
f
: Frequency  
c : Capacitance Value  
EMI suppression filters employing a capacitor in this way  
are used to eliminate this type of noise.  
5. High frequency Capacitor Characteristics Used  
for EMI Suppression Filters  
Equivalent circuit of general-purpose capacitor and  
three terminal capacitor in the high frequency area  
and comparison of insertion loss  
Even general-purpose capacitors can be used for noise  
suppression. However, since noise has an extremely high  
frequency range, general-purpose capacitors may not  
function as effective bypass capacitors, due to the large  
residual inductance built into the capacitor.  
(a) Equivalent circuit of capacitors which concerns the ESL effect.  
All the capacitors used in Murata's EMI suppression  
filters employ a three terminal structure or thru-type  
structure, which functions effectively even at high  
frequencies, thereby minimizing the influence of residual  
inductance. Consequently, an effective filter circuit can be  
formed even at frequencies exceeding 1GHz.  
(Refer to Fig.)  
(b) Improvement of Insertion Loss Characteristics  
(50 ohm - 50 ohm)  
0
Two terminal capacitor  
10  
C=22,000pF  
20  
30  
40  
50  
60  
70  
80  
Three terminal capacitor  
C=22,000pF  
1
10  
100  
1000  
10000  
Frequency (MHz)  
6. Inductive Noise Suppression  
When an inductor is inserted in series in a noise  
producing circuit (See Fig.), its impedance increases with  
frequency. In this configuration it is possible to attenuate  
and eliminate noise components (high frequency  
components). The Murata EMI suppression filter  
functions in this way.  
Inductive Noise Suppression  
Noise  
Noise+Signal/DC Power  
Signal/DC Power  
=
Z
2πfL  
f : Frequency  
L : Inductance Value  
Continued on the following page.  
88  
C50E.pdf  
Aug.28,2008  
Principles of Noise Suppression by DC EMIFILr  
Continued from the preceding page.  
7. Characteristics of Inductors Used  
in EMI Suppression Filters  
Equivalent Circuit  
General-purpose inductors also function to suppress  
R(f)  
noise when configured in series with a noise producing  
circuit. However, when general-purpose inductors are  
used, resonance may result in peripheral circuits, signal  
wave forms may become distorted, and satisfactory  
impedance may not be obtained at noise frequencies  
(due to insufficient high frequency impedance  
characteristics).  
(Resistance element becomes dominant at high frequency.)  
Example of impedance frequency characteristics of  
inductor type EMIFILr  
The inductors used for Murata's EMI suppression filters  
are designed to function nearly as a resistor at noise  
frequencies, which greatly reduces the possibility of  
resonance and leaves signal wave forms undistorted.  
And since sufficient impedance is obtained for  
frequencies ranging to hundreds of MHz, these  
specifically designed inductors operate effectively to  
suppress high-frequency noise. (See Fig.)  
BLM18AG102  
1200  
Z
900  
R
600  
300  
X
0
1
10  
100  
Frequency (MHz)  
1000  
8. Capacitive-Inductive EMI Suppression Filters  
If capacitive and inductive suppression characteristics are  
combined, it is possible to configure a much higher  
performance filter. In signal circuit applications where this  
combination is applied, noise suppression effects which  
have little influence on the signal wave form become  
possible.  
This type of filter is also effective in the suppression of  
high-speed signal circuit noise. When used in DC power  
circuits, capacitive-inductive filters prevent resonance  
from occurring in peripheral circuits, thus making it  
possible to achieve significant noise suppression under  
normal service conditions.  
9. Other EMI Suppression Filters  
In addition to the capacitive-inductive filter, Murata also  
has a common mode choke coil, effective for common  
mode noise suppression.  
Murata also has a range of built-in filter connectors which  
greatly reduce filter mounting space requirements.  
Continued on the following page.  
89  
C50E.pdf  
Aug.28,2008  
Principles of Noise Suppression by DC EMIFILr  
Continued from the preceding page.  
10. Expressing EMI Suppression Filter Effects  
EMI Suppression Filter effects are expressed in terms of  
Measuring Circuit of Insertion Loss  
the insertion loss measured in the circuit, normally  
specified in MIL-STD 220A. As shown in the 50Ω  
impedance circuit in the Figure at right, insertion loss is  
represented by the logarithmic ratio of the circuit output  
voltage with and without a filter in the circuit, which is  
multiplied by 20 and expressed in dB.  
Measuring Circuit of Insertion Loss  
50Ω  
(a)  
B(V)  
50Ω  
50Ω  
A(V)  
A(V)  
Therefore, an insertion loss of 20dB indicates an output  
voltage ratio (B/C) of 1/10, and an insertion loss of 40dB  
indicates an output voltage ratio (B/C) of 1/100.  
50Ω  
(b)  
EMI  
Suppression  
Filter  
C(V)  
B
Insertion Loss = 20 log (dB)  
C
90  
C50E.pdf  
Aug.28,2008  

相关型号:

NFM21HC102R1H3

Ferrite Chip, 1 Function(s), 50V, 0.3A, TAPE AND REEL
MURATA

NFM21HC102R1H3#

汽车[动力总成 / 安全设备],汽车[信息娱乐 / 舒适设备],植入式以外的医疗器械设备 [GHTF A/B/C]
MURATA

NFM21HC102R1H3D

Feed Through Capacitor, 1 Function(s), 50V, 1A, EIA STD PACKAGE SIZE 0805, 3 PIN
MURATA

NFM21HC104R1A3

Ferrite Chip, 1 Function(s), 10V, 2A, TAPE AND REEL
MURATA

NFM21HC104R1A3#

汽车[动力总成 / 安全设备],汽车[信息娱乐 / 舒适设备],植入式以外的医疗器械设备 [GHTF A/B/C]
MURATA

NFM21HC104R1A3B

Feed Through Capacitor, 1 Function(s), 10V, 2A, EIA STD PACKAGE SIZE 0805, 3 PIN
MURATA

NFM21HC104R1A3D

Feed Through Capacitor, 1 Function(s), 10V, 2A, EIA STD PACKAGE SIZE 0805, 3 PIN
MURATA

NFM21HC105R1C3

This product specification is applied to Chip EMIFIL
MURATA

NFM21HC105R1C3#

汽车[动力总成 / 安全设备],汽车[信息娱乐 / 舒适设备],植入式以外的医疗器械设备 [GHTF A/B/C]
MURATA

NFM21HC105R1C3D

Feed Through Capacitor, 1 Function(s), 16V, 4A, EIA STD PACKAGE SIZE 0805, 3 PIN
MURATA

NFM21HC221R1H3

Ferrite Chip, 1 Function(s), 50V, 0.3A, TAPE AND REEL
MURATA

NFM21HC221R1H3#

汽车[动力总成 / 安全设备],汽车[信息娱乐 / 舒适设备],植入式以外的医疗器械设备 [GHTF A/B/C]
MURATA