TWR-5/3-12/300-D12-C [MURATA]

Isolated, High Reliability; 孤立的,高可靠性
TWR-5/3-12/300-D12-C
型号: TWR-5/3-12/300-D12-C
厂家: muRata    muRata
描述:

Isolated, High Reliability
孤立的,高可靠性

文件: 总9页 (文件大小:231K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Triple Output/TWR Models  
Isolated, High Reliability 1" x 2" DC/DC Converters  
Typical units  
Packaged in 1" x 2" encapsulated modules, the TWR 22W series DC/DC converters offer three  
outputs arranged as a unipolar low voltage supply and a higher voltage  
FEATURES  
bipolar output pair. The unipolar section supplies either +3.3V at 4A maximum or +5V at 3A  
maximum. The bipolar outputs are either 12Vdc at 300mA maximum or 15Vdc at 250mA  
and are ideal for op amps, linear or analog circuits. A single TWR converter can power applica-  
tions with combined analog and digital circuits such as a CPU-controlled voice switch, embed-  
ded telephone modem or analytical instruments.  
12V/ 15V and 3.3V/5V outputs  
10-18V, 18-36V or 36-75V inputs  
Up to 22.5 Watts total output power with  
overtemperature shutdown  
The input section is fully isolated from the outputs up to 1500Vdc minimum using Basic insula-  
tion. Three wide input ranges are available including 10-18V (12Vdc nominal), 18-36V (24Vdc  
nomimal) or 36-75V (48Vdc nominal). Peak-to-peak output ripple/noise is typically 80-100mV  
at full load. Efficiencies range up to 87%.  
To 87% efficiency; 80-100mV Ripple and  
Noise  
1" x 2" x 0.5" encapsulated package  
1500Vdc isolation for both outputs  
The TWR 22W series outputs will limit their current if driven to overload and may be short  
circuited indefinitely without damage. The inputs will shut down if input voltage is either over or  
under limits or has reversed input voltage. These converters will operate at higher temperatures  
with adequate airflow.  
Designed to meet UL 60950-1, CSA-C22.2  
No. 60950-1, EN60950-1 safety approvals  
Extensive self-protection with short circuit  
shutdown  
The unipolar output features line and load regulation of 1%. Excellent dynamic response  
assures transient load change settling within 100 microseconds. Other convenience features  
include a remote On/Off control to turn the outputs on via digital logic, CPU bit, control transis-  
tor or a relay.  
Output overvoltage and overcurrent  
protection  
Input under and overvoltage shutdown  
Ideal for mixed analog/digital systems  
Fabrication uses DATEL’s advanced surface mount automated pick-and-place assembly and  
computer-controlled parameter testing. All TWR 22W series are designed to meet safety  
requirements in UL, EN60950-1 and CSA-C22.2 No.60950-1.  
ꢂꢃꢄꢀꢂꢃꢅ6  
/54054  
ꢂ).054  
nꢃꢄꢀnꢃꢅ6  
/54054  
).054  
#/--/.  
ꢂꢆꢇꢆꢀꢂꢅ6  
/54054  
'!4%  
$2)6%  
/.ꢀ/&&  
#/.42/,  
0/3ꢀ.%'  
3(54$/7.  
07-  
#/.42/,,%2  
/54054  
#/--/.  
Figure 1. Simplified block diagram  
2%&%2%.#%   
%22/2 !-0,)&)%2  
/04/)3/,!4/2  
&%%$"!#+  
For full details go to  
www.murata-ps.com/rohs  
Typical topography is shown.  
www.murata-ps.com  
Technical enquiries email: sales@murata-ps.com, tel: +1 508 339 3000  
MDC_TWR22.B02 Page 1 of 9  
Triple Output/TWR Models  
Isolated, High Reliability 1" x 2" DC/DC Converters  
Performance Specifications and Ordering Guide ꢁ  
Output  
Input  
Input Current  
R/N (mvp-p)  
Regulation (Max.)  
Efficiency  
Packag  
(Case/  
Pinout)  
VOUT  
Volts  
IOUT  
Amps  
VIN Nom.  
(Volts)  
Range  
(Volts)  
No Load Full Load  
Model  
Typ.  
40  
Max.  
60  
Line  
Load  
0.45  
2.ꢀ5  
(mA)  
(Amps)  
Min.  
Typ.  
8ꢀ5  
3.3  
12  
3.3  
12  
3.3  
12  
3.3  
1ꢀ  
3.3  
1ꢀ  
3.3  
1ꢀ  
12  
12  
12  
1ꢀ  
4
0.3  
4
0.3  
4
0.3  
4
0.2ꢀ  
4
0.2ꢀ  
4
0.2ꢀ  
3
0.3  
3
0.3  
3
0.3  
3
0.2ꢀ  
3
0.2ꢀ  
3
0.2ꢀ  
0.0ꢀ5  
0.3ꢀ5  
TWR-3.3/4-12/300-D12-C  
12  
9-18  
170  
2.00  
825  
C39/P61  
C39/P61  
C39/P61  
C39/P61  
C39/P61  
C39/P61  
C39/P61  
C39/P61  
C39/P61  
C39/P61  
C39/P61  
70  
1ꢀ0  
TWR-3.3/4-12/300-D24-C  
TWR-3.3/4-12/300-D48N-C  
TWR-3.3/4-1ꢀ/2ꢀ0-D12-C  
TWR-3.3/4-1ꢀ/2ꢀ0-D24-C  
TWR-3.3/4-1ꢀ/2ꢀ0-D48N-C  
TWR-ꢀ/3-12/300-D12-C  
TWR-ꢀ/3-12/300-D24-C  
TWR-ꢀ/3-12/300-D48N-C  
TWR-ꢀ/3-1ꢀ/2ꢀ0-D12-C  
TWR-ꢀ/3-1ꢀ/2ꢀ0-D24-C  
TWR-ꢀ/3-1ꢀ/2ꢀ0-D48N-C  
Please contact Murata Power Solutions for further information.  
80  
100  
80  
100  
80  
100  
80  
100  
80  
100  
1ꢀ0  
100  
1ꢀ0  
100  
1ꢀ0  
100  
1ꢀ0  
100  
1ꢀ0  
7ꢀ  
15  
ꢀ5  
15  
ꢀ5  
24  
48  
12  
24  
48  
12  
24  
48  
18-36  
36-7ꢀ  
9-18  
2ꢀ  
2ꢀ  
1.00  
0.ꢀ0  
2.20  
1.08  
0.ꢀ3  
2.26  
1.09  
0.ꢀ4  
835  
8ꢀ5  
81.ꢀ5  
835  
8ꢀ5  
815  
835  
8ꢀ5  
865  
875  
845  
865  
875  
835  
865  
15  
15  
ꢀ5  
ꢀ5  
15  
15  
120  
90  
ꢀ5  
ꢀ5  
15  
15  
18-36  
36-7ꢀ  
9-18  
ꢀ5  
ꢀ5  
15  
15  
2ꢀ  
100  
40  
ꢀ5  
ꢀ5  
0.0ꢀ5  
0.ꢀ5  
0.45  
0.45  
0.0ꢀ5  
0.45  
0.25  
45  
0.25  
45  
0.35  
45  
170  
80  
4ꢀ  
6ꢀ  
40  
7ꢀ  
18-36  
36-7ꢀ  
1ꢀ  
1ꢀ  
4ꢀ  
6ꢀ  
6ꢀ  
4ꢀ  
100  
60  
4ꢀ  
87.ꢀ5 C39/P61  
T WR - / 3 - 12 / 300 D48 N - C  
Output Configuration  
Wide Range Input  
RoHS-6 Hazardous Substance Compliance  
On/Off Control Polarity  
Input Voltage Range  
See page 9 for complete Part Number Structure and Ordering Information  
Nominal Primary Output Voltage  
Maximum Primary Output Current  
Maximum Auxiliary Output Current  
Nominal Auxiliary Output Voltage  
MECHANICAL SPECIFICATIONS  
2.00  
(50.8)  
PLASTIC CASE  
0.49  
(12.5)  
Dimensions are in inches (mm shown for ref. only).  
I/O Connections  
Function P61  
Pin  
1
STANDOFF  
0.020 (0.5)  
Third Angle Projection  
+Input  
0.040 0.002 DIA.  
(1.016 0.051)  
2
–Input  
0.20 MIN  
(5.1)  
3
On/Off Control  
+12V/15V Output  
–12V/15V Output  
Common  
1.800  
(45.72)  
0.10  
(2.5)  
4
5
0.200  
(5.08)  
6
Tolerances (unless otherwise specified):  
.XX 0.02 (0.5)  
.XXX 0.010 (0.25)  
Angles 2ꢀ  
4
5
7
+3.3/5V Output  
1
2
1.00  
0.800  
Alternate pin length and/or other output  
voltages are available under special  
quantity order.  
6
7
0.600  
(15.24)  
(25.4)  
(20.32)  
0.300  
(7.62)  
Components are shown for reference only.  
3
BOTTOM VIEW  
0.10  
(2.5)  
www.murata-ps.com  
Technical enquiries email: sales@murata-ps.com, tel: +1 508 339 3000  
MDC_TWR22.B02 Page 2 of 9  
Triple Output/TWR Models  
Isolated, High Reliability 1" x 2" DC/DC Converters  
Performance/Functional Specifications  
Typical @ TA = +25°C under nominal line voltage, nominal output voltage, natural air convection,  
external caps and full-load conditions unless noted.  
Short Circuit Duration (no damage)  
Continuous, output shorted to ground  
Input  
Overvoltage Protection:  
3.3V or 5V Output  
Input Voltage Range  
See Ordering Guide  
3.8Vdc minimum, 4.2Vdc maximum  
30Vdc maximum  
Method: magnetic feedback  
Start-Up Threshold: ꢃ  
12V Models  
24V Models  
12V or 15V Outputs  
9V minimum, 9.5V typical  
16.5V minimum, 17V typical  
34V minimum, 35V typical  
48V Models  
Dynamic Characteristics  
Dynamic Load Response (50-100% loadstep)  
3.3V or 5V Output  
12V or 15V Outputs  
Undervoltage Shutdown: ꢃ  
12V Models  
24V Models  
8V minimum, 8.5V typical  
16V minimum, 16.5V typical  
32.5V minimum, 34.5V typical  
150μsec to 1.5% of final value  
150μsec to 10% of final value  
48V Models  
Start-Up Time  
VIN to VOUT regulated  
Overvoltage Shutdown:  
12V Models  
24V Models  
TBD msec for VOUT = nominal  
330kHz 20kHz  
20V typical, 21V maximum  
38V typical, 40V maximum  
78.5V typical, 81V maximum  
Switching Frequency  
48V Models  
Environmental  
Reflected (Back) Ripple Current ꢂ  
12mA typical, 20mAp-p maximum  
Calculated MTBF  
TBD  
Input Current:  
Operating Temperature: (Ambient) ꢇ  
No Derating (Natural convection)  
With Derating  
Full Load Conditions  
No Load VIN = nominal  
12V and 24V Models  
48V Models  
See Ordering Guide  
–40 to +65°C  
See Derating Curves  
25mA typical, 50mA maximum  
170mA typical, 200mA maximum  
Operating Case Temperature  
Storage Temperature  
Thermal Protection/Shutdown  
Density Altitude  
–40 to +100°C maximum  
–40 to +120°C  
Low-Line Voltage (VIN = VMIN, full load) TBD  
+110°C minimum to 120°C maximum  
0 to 10,000 feet  
Remote On/Off Control ꢅ  
Positive Logic (no model suffix)  
Off = ground pin to +1.2V maximum  
On = open pin to +VIN maximum  
2mA maximum  
Relative Humidity  
10% to 90%, non-condensing  
Current  
Negative Logic (N model suffix)  
On = ground pin to +1.2V maximum  
Off = open pin to +VIN maximum  
18mA maximum  
Physical  
Dimensions  
See Mechanical Specifications  
Black Diallyl Phthalate plastic  
Current  
Case and Header Material  
Pin Dimensions/Material  
Output  
0.04" (1.016mm) dia. Gold-plated copper  
VOUT Range  
See Ordering Guide  
alloy with nickel underplate.  
Weight  
VOUT Accuracy:  
3.3V or 5V Output  
12V or 15V Outputs  
1% of VNOM  
10% of VNOM (See Technical Notes)  
TBD  
TBD  
Electromagnetic Interference  
Safety  
Temperature Coefficient  
0.02% of VOUT range/°C  
UL/cUL 60950-1 CSA-C22.2 No.234  
IEC/EN 60950-1  
Minimum Loading:  
3.3V or 5V Output  
12V or 15V Outputs  
See Technical Notes  
No minimum load  
20% minimum of nominal output current,  
balanced load  
All models are tested/specified with two external 0.047μF output capacitors. These capacitors  
are necessary to accommodate our test equipment and may not be required to achieve speci-  
fied performance in your applications. All models are stable and regulate within spec under  
no-load conditions.  
Ripple/Noise (20MHz BW) ꢁꢂꢄ  
Line/Load Regulation ꢊ  
Efficiency  
See Ordering Guide  
See Ordering Guide & Technical Notes  
See Ordering Guide  
Input Reflected Ripple Current is tested/specified over a 20MHz bandwidth. Input filtering is  
CIN = 33μF, 100V tantalum; CBUS = 220μF, 100V electrolytic; LBUS = 12μH. See Technical Notes.  
Maximum Capacitive Loading:  
3.3V or 5V Output  
For consistent operation, the instantaneous input voltage for full output load must not go below  
the low shutdown voltage AT ALL TIMES. Beware of excessive voltage drop from long input  
wiring. For reliable startup, be sure to apply input power promptly and fully as a step function.  
TBD  
TBD  
12V or 15V Outputs  
Mean Time Before Failure is calculated using the Telcordia (Belcore) SR-332 Method 1, Case  
3, ground fixed conditions, TCASE = +25°C, full load, natural air convection.  
Isolation:  
Input to Output Voltage  
Resistance  
Capacitance  
Isolation Safety Rating  
1500Vdc minimum  
100M7  
The On/Off Control may be driven with external logic or the application of appropriate voltages  
(referenced to Common). The On/Off Control input should use either an open collector/open drain  
transistor or logic gate which does not exceed +VIN.The On/Off Control may be supplied with with  
negative logic (LO = on, HI = off) using the "N" model suffix.  
470pF  
Functional insulation  
Current Limit Inception: (98% of VOUT)  
3.3V Output  
5V Output  
Maximum Power Derating curves indicate an average current at nominal input voltage. At higher  
temperatures and/or lower airflow, the DC/DC converter will tolerate brief full current outputs if  
the total RMS current over time does not exceed the derating curve.  
5 Amps minimum, 6.2 Amps maximum  
4 Amps minimum, 5.2 Amps maximum  
0.36 Amps minimum, 1 Amp maximum  
0.5 Amps minimum, 1.2 Amps maximum  
12V Outputs  
15V Outputs  
All models are fully operational and meet published specifications, including cold start at –40°C.  
Output noise may be further reduced by adding an external filter. See I/O Filtering and Noise  
Reduction.  
Short-Circuit Detection:  
3.3V or 5V Output  
Magnetic feedback  
Magnetic feedback plus voltage clamp  
The outputs share a common isolated return. The two output sections are not isolated from  
each other.  
12V or 15V Outputs  
Short-Circuit Potection Method  
Current limiting with hiccup autorestore.  
Remove overload for recovery.  
Regulation specifications describe the deviation as the line input voltage or output load current  
is varied from a nominal midpoint value to either extreme.  
The outputs will not accept appreciable reverse current without possible damage.  
Short-Circuit Current:  
3.3V or 5V Output  
2 Amps maximum  
1 Amp maximum  
12V or 15V Outputs  
www.murata-ps.com  
Technical enquiries email: sales@murata-ps.com, tel: +1 508 339 3000  
MDC_TWR22.B02 Page 3 of 9  
Triple Output/TWR Models  
Isolated, High Reliability 1" x 2" DC/DC Converters  
Input Undervoltage Shutdown and Start-Up Threshold  
Absolute Maximum Ratings  
Under normal start-up conditions, devices will not begin to regulate  
until the ramping-up input voltage exceeds the Start-Up Threshold Voltage.  
Once operating, devices will not turn off until the instantaneous input  
voltage drops below the Undervoltage Shutdown limit. Subsequent restart  
will not occur until the input is brought back up to the Start-Up Threshold.  
This built-in hysteresis avoids any unstable on/off situations occurring at a  
single input voltage. However, you should be aware that poorly regulated  
input sources and/or higher input impedance sources (including long power  
leads) which have outputs near these voltages may cause cycling of the  
converter outputs.  
Input Voltage:  
Continuous or transient  
12V Models  
24V Models  
48V Models  
–0.3V minimum or +18V maximum  
–0.3V minimum or +36V maximum  
–0.3V minimum or +75V maximum  
On/Off Control (Pin 1)  
–0.3V minimum or +VIN maximum  
See Fuse section  
Input Reverse-Polarity Protection  
Output Overvoltage Protection  
Output Current  
VOUT +20% maximum  
Current limited. Devices can  
withstand sustained output short  
circuits without damage.  
Storage Temperature  
–40 to +120°C  
Ripple Current and Output Noise  
Lead Temperature (soldering 10 sec. max.) +300°C  
These are stress ratings. Exposure of devices to any of these conditions may adversely  
All TWR converters are tested and specified for input reflected ripple cur-  
rent (also called Back Ripple Current) and output noise using specified filter  
components and test circuit layout as shown in the figures below. Input  
capacitors must be selected for low ESR, high AC current-carrying capabil-  
ity at the converter’s switching frequency and adequate bulk capacitance.  
The switching nature of DC/DC converters requires this low AC impedance  
to absorb the current pulses reflected back from the converter’s input.  
affect long-term reliability. Proper operation under conditions other than those listed in the  
Performance/Functional Specifications Table is not implied.  
T E C H N I C A L N O T E S  
Load Dependency and Regulation  
4/  
The high voltage bipolar output section derives its regulation as a slave  
to the low voltage unipolar output. Be aware that large load changes on  
the unipolar section will change the voltage somewhat on the bipolar  
section. To retain proper regulation, the bipolar voltage section must have  
a minimum load of at least 10% of rated full output. With this minimal  
load (or greater), the high voltage bipolar section will meet all its regula-  
tion specifications. If there is no load, the output voltage may exceed the  
regulation somewhat.  
#522%.4  
02/"%  
/3#),,/3#/0%  
ꢂ).054  
n).054  
,"53  
6
).  
#"53  
#
).  
n
#
"53  ꢄꢄꢉ§& %32  ꢃꢉꢉM7   ꢃꢉꢉK(Z  
"53  ꢃꢄ§(  
).  ꢆꢆ§&  
Input Fusing  
,
#
Certain applications and/or safety agencies require fuses at the inputs  
of power conversion components. Fuses should also be used if there is the  
possibility of sustained, non-current limited reverse input polarity. DATEL  
recommends slow-blow type fuses approximately twice the maximum  
input current at nominal input voltage but no greater than 5 Amps. Install  
these fuses in the high side (ungrounded input) power lead to the converter.  
Figure 2. Measuring Input Ripple Current  
Output Overcurrent Detection  
Overloading the power converter’s output for extended periods (but not a  
short circuit) at high ambient temperatures may overheat the output com-  
ponents and possibly lead to component failure. Brief moderate overcurrent  
operation (such as charging up reasonably-sized external bypass capacitors  
when first starting) will not cause problems. The TWR series include current  
limiting to avoid heat damage. However, you should remove a sustained  
overcurrent condition promptly as soon as it is detected. Combinations of  
low airflow and/or high ambient temperature for extended periods may  
cause overheating even though current limiting is in place.  
Input Voltage  
12 Volts  
Fuse Value  
4 Amps  
24 Volts  
2 Amps  
48 Volts  
1 Amp  
Input Source Impedance  
The external source supplying input power must have low AC imped-  
ance. Failure to insure adequate low AC impedance may cause stability  
problems, increased output noise, oscillation, poor settling and aborted  
start-up. The converter’s built-in front end filtering will be sufficient in most  
applications. However, if additional AC impedance reduction is needed,  
consider adding an external capacitor across the input terminals mounted  
close to the converter. The capacitor should have low internal Equivalent  
Series Resistance (ESR) and low inductance. Often, two or more capaci-  
tors are used in parallel. A ceramic capacitor gives very low AC impedance  
while a parallel electrolytic capacitor offers improved energy storage.  
Current Return Paths  
Make sure to use adequately sized conductors between the output  
load and the Common connection. Avoid simply connecting high current  
returns only through the ground plane unless there is adequate copper  
thickness. Also, route the input and output circuits directly to the Common  
pins. Failure to observe proper wiring may cause instability, poor regulation,  
increased noise, aborted start-up or other undefined operation.  
www.murata-ps.com  
Technical enquiries email: sales@murata-ps.com, tel: +1 508 339 3000  
MDC_TWR22.B02 Page 4 of 9  
Triple Output/TWR Models  
Isolated, High Reliability 1" x 2" DC/DC Converters  
Safety Considerations  
Isolation Considerations  
The TWR’s must be installed with consideration for any local safety,  
certification or regulatory requirements. These vary widely but generally  
are concerned with properly sized conductors, adequate clearance between  
higher voltage circuits, life testing, thermal stress analysis of components  
and flammability of components. Contact DATEL if you need further advice  
on these topics.  
These converters use both transformer and optical coupling to isolate  
the inputs from the outputs. Ideal “floating” isolation implies ZERO CUR-  
RENT flowing between the two Common return sections of the input and  
output up to the working isolation voltage limit. Real-world isolation on this  
converter includes both an AC current path (through some small coupling  
capacitance) and some DC leakage current between the two ground  
systems. To avoid difficulties in your application, be sure that there are not  
wideband, high amplitude AC difference voltages between the two ground  
systems. In addition, ground difference voltages applied by your external  
circuits which exceed the isolation voltage, even momentarily, may damage  
the converter’s isolation barrier. This can either destroy the converter or  
instantly render it non-isolated.  
Remote On/Off Control  
The TWR models include an input pin which can turn on or shut off the  
converter by remote signal. For positive logic models (no model number  
suffix), if this pin is left open, the converter will always be enabled as long  
as proper input power is present. On/Off signal currents are referred to the  
Input Common pin on the converter. There is a short time delay of several  
milliseconds (see the specifications) for turn on, assuming there is no  
significant external output capacitance.  
Current Limiting and Short Circuit Condition  
As the output load increases above its maximum rated value, the  
converter will enter current limiting mode. The output voltage will decrease  
and the converter will essentially deliver constant power. This is commonly  
called power limiting.  
The On/Off Control may also be supplied with negative logic (LO = on, HI  
= off) using the “N” model number suffix. Here again, leaving the pin open  
on either model will enable the converter. Positive logic models must have  
this control pin pulled down for shutoff. Negative logic models must pull up  
this control pin for shutoff.  
If the current continues to increase, the converter will enter short circuit  
operation and the PWM controller will shut down. Following a time-out  
period, the converter will automatically attempt to restart. If the short  
circuit is detected again, the converter will shut down and the cycle will  
repeat. This operation is called hiccup autorecovery. Please be aware  
that excessive external output capacitance may interfere with the hiccup  
autorestart.  
Dynamic control of this On/Off input is best done with either a mechani-  
cal relay (ground the pin to turn it off), solid state relay (SSR), an open  
collector or open drain transistor, CPU bit or a logic gate. The pull down  
current is 18mA max. Observe the voltage limits listed in the specifications  
for proper operation. Suggested circuits are shown below.  
Output Filtering and Noise Reduction  
ꢂ).054  
All switching DC/DC converters produce wideband output noise which  
radiates both through the wiring (conducted emission) and is broadcast  
into the air (radiated emission). This output noise may be attenuated by  
adding a small amount of capacitance in parallel with the output terminals.  
Please refer to the maximum output capacitance in the Specifications.  
#-/3  
,/')#  
/.ꢀ/&&  
#/.42/,  
#/.42/,,%2  
()  /.  
,/  /&&  
The amount of capacitance to add depends on the placement of the cap  
(near the converter versus near the load), the distance from the converter  
to the load (and resulting series inductance), the topology and locations  
of load elements if there are multiple parallel loads and the nature of the  
loads. For switching loads such as CPU’s and logic, this last item recom-  
mends that small bypass capacitors be placed directly at the load. Very  
high clock speeds suggest smaller caps unless the instantaneous current  
changes are high. If the load is a precision high-gain linear section, addi-  
tional filtering and shielding may be needed.  
3)'.!,  
'2/5.$  
#/--/.  
Figure 3. On/Off Control With An External CMOS Gate  
ꢂ).054  
Many applications will need no additional capacitance. However, if more  
capacitance is indicated, observe these factors:  
ꢃꢉK7 ꢌ49 ꢇꢍ  
/04)/.!, 05,,50  
2%3)34/2  
1. Understand the noise-reduction objective. Are you improving the switch-  
ing threshold of digital logic to reduce errors? (This may need only a  
small amount of extra capacitance). Or do you need very low noise for a  
precision linear “front end”?  
/.ꢀ/&&  
#/.42/,  
#/.42/,,%2  
3-!,,  
3)'.!,  
42!.3)34/2  
3)'.!,  
'2/5.$  
2. Use just enough capacitance to achieve your objective. Additional  
capacitance trades off increasing instability (actually adding noise rather  
than reducing it), poor settling response, possible ringing or outright  
oscillation by the converter. Excessive capacitance may also disable  
the hiccup autorestart. Do not exceed the maximum output capacitance  
specification.  
()  /&&  
,/  /.  
#/--/.  
Figure 4. On/Off Control With An External Transistor  
www.murata-ps.com  
Technical enquiries email: sales@murata-ps.com, tel: +1 508 339 3000  
MDC_TWR22.B02 Page 5 of 9  
Triple Output/TWR Models  
Isolated, High Reliability 1" x 2" DC/DC Converters  
3. Any series inductance considerably complicates the added capacitance  
therefore try to reduce the inductance seen at the converter’s output. You  
may need to add BOTH a cap at the converter end and at the load (effec-  
tively creating a Pi filter) for the express purpose of reducing the phase  
angle which is seen by the converter’s output loop controller. This tends  
to hide (decouple) the inductance from the controller. Make sure your  
power conductors are adequate for the current and reduce the distance  
to the load as much as possible. Very low noise applications may require  
more than one series inductor plus parallel caps.  
It is probably more important in your system that all heat is periodically  
removed rather than having very high airflow. Consider having the total  
enclosure completely recycled at least several times a minute. Failure to  
remove the heat causes heat buildup inside your system and even a small  
fan (relative to the heat load) is quite effective. A very rough guide for typi-  
cal enclosures is one cubic foot per minute of exhausted airflow per 100  
Watts of internal heat dissipation.  
Efficiency Curves  
4. Oscillation or instabilility can occur at several frequencies. For this  
reason, you may need both a large electrolytic or tantalum cap (car-  
rying most of the capacitance) and a small wideband parallel ceramic  
cap (with low internal series inductance). Always remember that inside  
real world capacitors are distributed trace inductance (ESL) and series  
resistance (ESR). Make sure the input AC impedance is very low before  
trying to improve the output.  
These curves indicate the ratio of output power divided by input power  
at various input voltages and output currents times 100%. All curves are  
measured at +25°C ambient temperature and adequate airflow.  
Typical Performance Curves for TWR Series  
5. It is challenging to offer a complete set of simple equations in reason-  
able closed form for the added output capacitance. Part of the difficulty is  
accurately modeling your load environment. Therefore your best success  
may be a combination of previous experience and empirical approxima-  
tion.  
472 ꢂꢂ7 3ERIES /UTPUT 0OWER VSꢃ !MBIENT 4EMPERATURE   ꢄꢂꢅ—#  
ꢄꢄ  
ꢄꢉ  
ꢃꢎ  
ꢃꢏ  
ꢃꢐ  
ꢃꢄ  
ꢃꢉ  
Maximum Current and Temperature Derating Curves  
The curves shown below indicate the maximum average output current  
available versus the ambient temperature and airflow. All curves are done  
approximately at sea level and you should leave an additional margin for  
higher altitude operation and possible fan failure. (Remember that fans are  
less efficient at higher altitudes). These curves are an average – current  
may be greater than these values for brief periods as long as the average  
value is not exceeded.  
The “natural convection” area of the curve is that portion where self-  
heating causes a small induced convective airflow around the converter  
without further mechanical forced airflow from a fan. Natural convection  
assumes that the converter is mounted with some spacing to adjacent com-  
ponents and there are no nearby high temperature parts. Note that such  
self-heating will produce an airflow of typically 25 Linear Feet per Minute  
(LFM) without a fan. Heat is removed both through the mounting pins and  
the surface of the converter.  
nꢐꢉ  
ꢐꢉ  
ꢐꢅ  
ꢅꢉ  
ꢅꢅ  
ꢏꢉ  
ꢏꢅ  
ꢑꢉ  
ꢑꢅ  
ꢎꢉ  
ꢎꢅ  
ꢒꢉ  
ꢒꢅ  
ꢃꢉꢉ  
!MBIENT 4EMPERATURE o#ꢁ  
Many systems include fans however it is not always easy to measure  
the airflow adjacent to the DC/DC converter. Simply using the cubic feet  
per minute (CFM) rating of the fan is not always helpful since it must be  
matched to the volume of the enclosure, the outside ambient temperature,  
board spacing, the intake area and total internal power dissipation.  
Most PWM controllers, including those on the TWR’s, will tolerate opera-  
tion up to about +100 degrees Celsius. If in doubt, attach a thermal sensor  
to the package near the output components and measure the surface  
temperature after allowing a proper warm-up period. Remember that the  
temperature inside the output transistors at full power will be higher than  
the surface temperature therefore do not exceed operation past approxi-  
mately +100 deg. C on the surface. As a rough indication, any circuit which  
you cannot touch briefly with your finger warrants further investigation.  
www.murata-ps.com  
Technical enquiries email: sales@murata-ps.com, tel: +1 508 339 3000  
MDC_TWR22.B02 Page 6 of 9  
Triple Output/TWR Models  
Isolated, High Reliability 1" x 2" DC/DC Converters  
Typical Performance Curves for TWR Series  
472ꢆꢇꢃꢇꢈꢉꢆꢊꢂꢈꢇꢋꢋꢆ$ꢊꢂ  
472ꢆꢇꢃꢇꢈꢉꢆꢊꢅꢈꢂꢅꢋꢆ$ꢊꢂ  
%FFICIENCY VSꢃ ,INE 6OLTAGE AND ,OAD #URRENT   ꢂꢅ—#  
%FFICIENCY VSꢃ ,INE 6OLTAGE AND ,OAD #URRENT   ꢂꢅ—#  
ꢀꢀ  
ꢀꢁ  
ꢀꢂ  
ꢀꢃ  
ꢀꢄ  
ꢅꢀ  
ꢊꢄ  
ꢀꢇ  
ꢀꢄ  
ꢅꢇ  
ꢅꢄ  
ꢁꢇ  
6
).  ꢒ6  
6
).  ꢃꢉ6  
6
).  ꢃꢄ6  
6
).  ꢃꢄ6  
6
).  ꢃꢎ6  
6
).  ꢃꢎ6  
ꢄꢆꢇ  
ꢈꢆꢄ  
ꢈꢆꢇ  
ꢃꢆꢄ  
ꢃꢆꢇ  
ꢉꢆꢄ  
ꢉꢆꢇ  
ꢂꢆꢄ  
ꢄꢆꢇ  
ꢈꢆꢄ  
ꢈꢆꢇ  
ꢃꢆꢄ  
ꢃꢆꢇ  
ꢉꢆꢄ  
ꢉꢆꢇ  
ꢂꢆꢄ  
,OAD #URRENT ꢀ!MPSꢁ  
,OAD #URRENT ꢀ!MPSꢁ  
472ꢆꢇꢃꢇꢈꢉꢆꢊꢂꢈꢇꢋꢋꢆ$ꢂꢉ  
%FFICIENCY VSꢃ ,INE 6OLTAGE AND ,OAD #URRENT   ꢂꢅ—#  
472ꢆꢇꢃꢇꢈꢉꢆꢊꢅꢈꢂꢅꢋꢆ$ꢂꢉ  
%FFICIENCY VSꢃ ,INE 6OLTAGE AND ,OAD #URRENT   ꢂꢅ—#  
ꢀꢀ  
ꢀꢁ  
ꢀꢂ  
ꢀꢃ  
ꢀꢄ  
ꢅꢀ  
ꢅꢁ  
ꢀꢀ  
ꢀꢅ  
ꢀꢁ  
ꢀꢇ  
ꢀꢂ  
ꢀꢉ  
ꢀꢃ  
ꢀꢈ  
ꢀꢄ  
6
).  ꢃꢎ6  
6
).  ꢃꢎ6  
6
).  ꢄꢐ6  
6).  ꢄꢐ6  
6
).  ꢆꢏ6  
6
).  ꢆꢏ6  
ꢄꢆꢇ  
ꢈꢆꢄ  
ꢈꢆꢇ  
ꢃꢆꢄ  
ꢃꢆꢇ  
ꢉꢆꢄ  
ꢉꢆꢇ  
ꢂꢆꢄ  
ꢄꢆꢇ  
ꢈꢆꢄ  
ꢈꢆꢇ  
ꢃꢆꢄ  
ꢃꢆꢇ  
ꢉꢆꢄ  
ꢉꢆꢇ  
ꢂꢆꢄ  
,OAD #URRENT ꢀ!MPSꢁ  
472ꢆꢇꢃꢇꢈꢉꢆꢊꢂꢈꢇꢋꢋꢆ$ꢉꢌ  
%FFICIENCY VSꢃ ,INE 6OLTAGE AND ,OAD #URRENT   ꢂꢅ—#  
,OAD #URRENT ꢀ!MPSꢁ  
472ꢆꢇꢃꢇꢈꢉꢆꢊꢅꢈꢂꢅꢋꢆ$ꢉꢌ  
%FFICIENCY VSꢃ ,INE 6OLTAGE AND ,OAD #URRENT   ꢂꢅ—#  
ꢊꢄ  
ꢀꢇ  
ꢀꢄ  
ꢅꢇ  
ꢅꢄ  
ꢁꢇ  
ꢊꢄ  
ꢀꢇ  
ꢀꢄ  
ꢅꢇ  
ꢅꢄ  
ꢁꢇ  
6
).  ꢆꢏ6  
).  ꢐꢎ6  
).  ꢏꢉ6  
6
).  ꢆꢏ6  
).  ꢐꢎ6  
6).  ꢏꢉ6  
6
6
6
6
).  ꢑꢅ6  
6
).  ꢑꢅ6  
ꢄꢆꢇ  
ꢈꢆꢄ  
ꢈꢆꢇ  
ꢃꢆꢄ  
ꢃꢆꢇ  
ꢉꢆꢄ  
ꢉꢆꢇ  
ꢂꢆꢄ  
ꢄꢆꢇ  
ꢈꢆꢄ  
ꢆꢈꢇ  
ꢃꢆꢄ  
ꢃꢆꢇ  
ꢉꢆꢄ  
ꢉꢆꢇ  
ꢂꢆꢄ  
,OAD #URRENT ꢀ!MPSꢁ  
,OAD #URRENT ꢀ!MPSꢁ  
www.murata-ps.com  
Technical enquiries email: sales@murata-ps.com, tel: +1 508 339 3000  
MDC_TWR22.B02 Page 7 of 9  
Triple Output/TWR Models  
Isolated, High Reliability 1" x 2" DC/DC Converters  
Typical Performance Curves for TWR Series  
472ꢆꢅꢈꢇꢆꢊꢅꢈꢂꢅꢋꢆ$ꢊꢂ  
%FFICIENCY VSꢃ ,INE 6OLTAGE AND ,OAD #URRENT   ꢂꢅ—#  
472ꢆꢅꢈꢇꢆꢊꢂꢈꢇꢋꢋꢆ$ꢊꢂ  
%FFICIENCY VSꢃ ,INE 6OLTAGE AND ,OAD #URRENT   ꢂꢅ—#  
ꢀꢁ  
ꢀꢇ  
ꢀꢂ  
ꢀꢉ  
ꢀꢃ  
ꢀꢈ  
ꢀꢄ  
ꢅꢊ  
ꢅꢀ  
ꢅꢅ  
ꢅꢁ  
ꢀꢇ  
ꢀꢂ  
ꢀꢉ  
ꢀꢃ  
ꢀꢈ  
ꢀꢄ  
ꢅꢊ  
ꢅꢀ  
ꢅꢅ  
ꢅꢁ  
ꢅꢇ  
6
).  ꢒ6  
6
).  ꢒ6  
6
).  ꢃꢄ6  
6
).  ꢃꢄ6  
6).  ꢃꢎ6  
6).  ꢃꢎ6  
ꢄꢆꢇ  
ꢈꢆꢄ  
ꢈꢆꢇ  
ꢃꢆꢄ  
ꢃꢆꢇ  
ꢃꢆꢇ  
ꢃꢆꢇ  
ꢉꢆꢄ  
ꢉꢆꢄ  
ꢉꢆꢄ  
ꢄꢆꢇ  
ꢈꢆꢄ  
ꢈꢆꢇ  
ꢃꢆꢄ  
ꢃꢆꢇ  
ꢉꢆꢄ  
,OAD #URRENT ꢀ!MPSꢁ  
,OAD #URRENT ꢀ!MPSꢁ  
472ꢆꢅꢈꢇꢆꢊꢂꢈꢇꢋꢋꢆ$ꢂꢉ  
%FFICIENCY VSꢃ ,INE 6OLTAGE AND ,OAD #URRENT   ꢂꢅ—#  
472ꢆꢅꢈꢇꢆꢊꢅꢈꢂꢅꢋꢆ$ꢂꢉ  
%FFICIENCY VSꢃ ,INE 6OLTAGE AND ,OAD #URRENT   ꢂꢅ—#  
ꢀꢅ  
ꢀꢇ  
ꢀꢉ  
ꢀꢈ  
ꢅꢊ  
ꢅꢅ  
ꢅꢇ  
ꢀꢅ  
ꢀꢁ  
ꢀꢇ  
ꢀꢂ  
ꢀꢉ  
ꢀꢃ  
ꢀꢈ  
ꢀꢄ  
ꢅꢊ  
ꢅꢀ  
ꢅꢅ  
ꢅꢁ  
6
).  ꢃꢎ6  
6
).  ꢃꢎ6  
6).  ꢄꢐ6  
6).  ꢄꢐ6  
6).  ꢆꢏ6  
6).  ꢆꢏ6  
ꢄꢆꢇ  
ꢈꢆꢄ  
ꢈꢆꢇ  
ꢃꢆꢄ  
ꢃꢆꢇ  
ꢉꢆꢄ  
ꢄꢆꢇ  
ꢈꢆꢄ  
ꢈꢆꢇ  
ꢃꢆꢄ  
,OAD #URRENT ꢀ!MPSꢁ  
,OAD #URRENT ꢀ!MPSꢁ  
472ꢆꢅꢈꢇꢆꢊꢂꢈꢇꢋꢋꢆ$ꢉꢌ  
%FFICIENCY VSꢃ ,INE 6OLTAGE AND ,OAD #URRENT   ꢂꢅ—#  
472ꢆꢅꢈꢇꢆꢊꢅꢈꢂꢅꢋꢆ$ꢉꢌ  
%FFICIENCY VSꢃ ,INE 6OLTAGE AND ,OAD #URRENT   ꢂꢅ—#  
ꢊꢄ  
ꢀꢇ  
ꢀꢄ  
ꢅꢇ  
ꢅꢄ  
ꢁꢇ  
ꢀꢊ  
ꢀꢅ  
ꢀꢇ  
ꢀꢉ  
ꢀꢈ  
ꢅꢊ  
ꢅꢅ  
ꢅꢇ  
6
).  ꢆꢏ6  
).  ꢐꢎ6  
).  ꢏꢉ6  
6).  ꢆꢏ6  
6
6).  ꢐꢎ6  
6
6
).  ꢑꢅ6  
6).  ꢑꢅ6  
ꢄꢆꢇ  
ꢈꢆꢄ  
ꢈꢆꢇ  
ꢃꢆꢄ  
ꢃꢆꢇ  
ꢉꢆꢄ  
ꢄꢆꢇ  
ꢈꢆꢄ  
ꢈꢆꢇ  
ꢃꢆꢄ  
,OAD #URRENT ꢀ!MPSꢁ  
,OAD #URRENT ꢀ!MPSꢁ  
www.murata-ps.com  
Technical enquiries email: sales@murata-ps.com, tel: +1 508 339 3000  
MDC_TWR22.B02 Page 8 of 9  
Triple Output/TWR Models  
Isolated, High Reliability 1" x 2" DC/DC Converters  
P A R T N U M B E R S T R U C T U R E  
T WR - / 3 - 12 / 300 - D48 N - C  
Output Configuration:  
T = Triple  
RoHS-6 Hazardous  
Substance Compliance  
On/Off Control Polarity  
Blank = Positive Logic  
N = Negative Logic  
Note: Some model number  
combinations may not be  
available. Contact Murata  
Power Solutions.  
Wide Range Input  
Nominal Primary Output  
Voltage (+3.3 or +5 Volts)  
Input Voltage Range:  
D12 = 10-18 Volts (12V nominal)  
D24 = 18-36 Volts (24V nominal)  
D48 = 36-75 Volts (48V nominal)  
Maximum Primary Output  
Current in Amps  
Maximum Auxiliary Output  
Currents in mA from each output  
Nominal Auxiliary Output  
Voltages ( 12 or 15 Volts)  
USA:  
Mansfield (MA), Tel: (508) 339-3000, email: sales@murata-ps.com  
Canada: Toronto, Tel: (866) 740-1232, email: toronto@murata-ps.com  
UK: Milton Keynes, Tel: +44 (0)1908 615232, email: mk@murata-ps.com  
Murata Power Solutions, Inc.  
11 Cabot Boulevard, Mansfield, MA 02048-1151 U.S.A.  
Tel: (508) 339-3000 (800) 233-2765 Fax: (508) 339-6356  
www.murata-ps.com email: sales@murata-ps.com ISO 9001 REGISTERED  
06/12/08  
Murata Power Solutions, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other  
technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply  
the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without  
France: Montigny Le Bretonneux, Tel: +33 (0)1 34 60 01 01, email: france@murata-ps.com  
Germany: München, Tel: +49 (0)89-544334-0, email: munich@murata-ps.com  
Japan: Tokyo, Tel: 3-3779-1031, email: sales_tokyo@murata-ps.com  
Osaka, Tel: 6-6354-2025, email: sales_osaka@murata-ps.com  
Website: www.murata-ps.jp  
China:  
Shanghai, Tel: +86 215 027 3678, email: shanghai@murata-ps.com  
Guangzhou, Tel: +86 208 221 8066, email: guangzhou@murata-ps.com  
notice.  
© 2008 Murata Power Solutions, Inc.  
www.murata-ps.com  
Technical enquiries email: sales@murata-ps.com, tel: +1 508 339 3000  
MDC_TWR22.B02 Page 9 of 9  

相关型号:

TWR-5/3-12/300-D24-C

Isolated, High Reliability
MURATA

TWR-5/3-12/300-D48N-C

Isolated, High Reliability
MURATA

TWR-5/3-15/250-D12-C

Isolated, High Reliability
MURATA

TWR-5/3-15/250-D24-C

Isolated, High Reliability
MURATA

TWR-5/3-15/250-D48N-C

Isolated, High Reliability
MURATA

TWR-5/3000-12/500-D12A

DC-to-DC Voltage Converter
ETC

TWR-5/3000-12/500-D12A-C

DC-DC Regulated Power Supply Module,
MURATA

TWR-5/3000-12/500-D48A

DC-to-DC Voltage Converter
ETC

TWR-5/3000-12/500-D48A-C

民用设备,工业设备
MURATA

TWR-5/3000-15/500-D12A

DC-to-DC Voltage Converter
ETC

TWR-5/3000-15/500-D12A-C

民用设备,工业设备
MURATA

TWR-5/3000-15/500-D48A

DC-to-DC Voltage Converter
ETC