USQ-12/8.3-D48PDH [MURATA]

DC-DC Regulated Power Supply Module, 1 Output, Hybrid, 1.450 X 2.280 INCH, 0.400 INCH HEIGHT, QUARTER BRICK PACKAGE-8;
USQ-12/8.3-D48PDH
型号: USQ-12/8.3-D48PDH
厂家: muRata    muRata
描述:

DC-DC Regulated Power Supply Module, 1 Output, Hybrid, 1.450 X 2.280 INCH, 0.400 INCH HEIGHT, QUARTER BRICK PACKAGE-8

文件: 总23页 (文件大小:403K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
®
INNOVATION and EXCELLENCE  
Single Output  
USQ 20A Models  
High-Density, Quarter-Brick  
20 Amp, DC/DC Converters  
For low-voltage, high-current power . . . in the smallest space . . . over the widest  
temperature range . . . call on DATELs USQ Series 20 Amp "quarter bricks." Occupy-  
ing the industry-standard package (1.45" x 2.28" x 0.40") and pinout, USQ’s house  
their fully-synchronous, forward design topology in a "two-board" assembly crowned  
with a heat-sink-compatible aluminum baseplate. This combination of outstanding  
thermal and electrical efficiencies endows USQ’s with industry-leading, thermal-  
derating performance. The 1.8VOUT model, for example, delivers its full 20 Amps up to  
+55°C with a mere 200 lfm air flow.  
Features  
!
Standard, 1.45" x 2.28" x 0.40"  
quarter-brick package and pinout  
Outstanding thermal-derating  
Output current: to 20 Amps  
!
!
!
Outputs Voltages:  
1.2/1.5/1.8/2.5/3.3/5/12/15/18/24V  
USQ’s achieve all the performance metrics required for contemporary, on-board  
power processing: high isolation (1500Vdc), superior efficiency (to 91%), tight regula-  
tion (to 0.05% max. line and load), low noise (to 50mVp-p), quick step response  
(200µsec), and an array of protection features. I/O protection includes input under-  
voltage lockout and reverse-polarity protection, as well as output overvoltage pro-  
tection, current limiting, short-circuit protection, and thermal shutdown. The USQ  
functionality suite includes remote on/off control (positive or negative polarity), output  
trim (+10/–20%), and output sense functions.  
All USQ DC/DC’s are designed to meet the BASIC insulation requirements of  
UL1950 and EN60950, and all 48 Volt models will carry the CE mark. Safety certifica-  
tions, as well as EMC compliance testing and qualification testing (including HALT)  
have been successfully completed. Contact DATEL for copies of the latest reports.  
!
!
Input voltage ranges:  
36-75V (48V nom.)  
18-36V (24V nom.)  
Synchronous rectification yields high  
efficiency (to 91%) and stable no-load  
operation  
!
!
!
!
On/Off control, trim and sense functions  
Fully isolated, 1500Vdc guaranteed  
Fully I/O protected;Thermal shutdown  
UL1950/EN60950 (BASIC insulation)  
approvals  
!
Qual tested; HALT tested; EMI compliant  
+SENSE  
(7)  
+VOUT  
(8)  
+VIN  
(3)  
SWITCH  
CONTROL  
–VOUT  
(4)  
–VIN  
(1)  
–SENSE  
(5)  
PWM  
CONTROLLER  
OPTO  
ISOLATION  
REFERENCE &  
ERROR AMP  
V
OUT  
TRIM  
(6)  
INPUT UNDERVOLTAGE, INPUT  
OVERVOLTAGE, AND OUTPUT  
OVERVOLTAGE COMPARATORS  
* Can be ordered with positive (standard) or negative (optional) polarity.  
REMOTE  
ON/OFF  
CONTROL*  
(2)  
Figure 1. Simplified Schematic  
DATEL, Inc., Mansfield, MA 02048 (USA)  
·
Tel: (508)339-3000, (800)233-2765 Fax: (508)339-6356  
·
Email: sales@datel.com  
·
Internet: www.datel.com  
2 0 A , S I N G L E O U T P U T D C / D C C O N V E R T E R S  
USQ Series  
Performance Specifications and Ordering Guide  
Output  
Input  
Package  
(Case,  
Pinout)  
R/N (mVp-p)  
Regulation (Max.)  
VIN Nom.  
(Volts)➄  
Range  
(Volts)➄  
IIN ➅  
V
(Volts)  
OUT  
I
OUT  
Model  
(Amps)  
Typ.  
Max.  
Line  
Load ➃  
(Amps)  
Efficiency  
USQ-1.2/20-D48  
USQ-1.5/20-D48  
USQ-1.8/20-D48  
USQ-2.5/20-D48  
USQ-3.3/20-D48  
USQ-5/20-D24  
1.2  
1.5  
1.8  
2.5  
3.3  
5
20  
20  
25  
40  
50  
65  
0.05ꢀ  
0.05ꢀ  
0.05ꢀ  
0.05ꢀ  
0.05ꢀ  
0.05ꢀ  
0.05ꢀ  
0.05ꢀ  
0.05ꢀ  
0.05ꢀ  
0.05ꢀ  
0.05ꢀ  
0.05ꢀ  
0.05ꢀ  
0.05ꢀ  
0.05ꢀ  
0.01ꢀ  
0.05ꢀ  
0.05ꢀ  
0.05ꢀ  
0.05ꢀ  
0.05ꢀ  
0.05ꢀ  
0.05ꢀ  
0.05ꢀ  
0.05ꢀ  
0.05ꢀ  
0.05ꢀ  
0.05ꢀ  
0.05ꢀ  
0.05ꢀ  
0.05ꢀ  
0.05ꢀ  
0.01ꢀ  
48  
48  
48  
48  
48  
24  
48  
24  
24  
48  
24  
48  
24  
48  
24  
48  
48  
36-75  
36-75  
36-75  
36-75  
36-75  
18-36  
36-75  
18-36  
18-36  
36-75  
18-36  
36-75  
18-36  
36-75  
18-36  
36-75  
36-75  
0.63/0.87  
0.75/1.03  
0.88/1.23  
1.18/1.62  
1.54/2.1  
80ꢀ  
85ꢀ  
85ꢀ  
87ꢀ  
89ꢀ  
90ꢀ  
90ꢀ  
87.5ꢀ  
90ꢀ  
90ꢀ  
91ꢀ  
91ꢀ  
91ꢀ  
91ꢀ  
92ꢀ  
92ꢀ  
94.5ꢀ  
C33, P32  
C33, P32  
C33, P32  
C33, P32  
C33, P32  
C33, P32  
C33, P32  
C33, P32  
C33, P32  
C33, P32  
C33, P32  
C33, P32  
C33, P32  
C33, P32  
C33, P32  
C33, P32  
C33, P32  
20  
50  
80  
20  
60  
75  
20  
70  
85  
20  
90  
125  
125  
125  
150  
140  
155  
175  
175  
175  
130  
130  
200  
5.07/6.21  
2.33/3.13  
4.95/6.60  
4.61/6.08  
2.30/2.41  
4.65/6.14  
2.30/2.42  
5.05/6.17  
2.30/2.42  
5.05/6.17  
2.27/3.18  
2.27/3.03  
USQ-5/20-D48  
5
20  
90  
USQ-6.5/16-D24 ➆  
USQ-12/8.3-D24  
USQ-12/8.3-D48  
USQ-15/6.7-D24  
USQ-15/6.7-D48  
USQ-18/5.6-D24  
USQ-18/5.6-D48  
USQ-24/4.2-D24  
USQ-24/4.2-D48  
USQ-48/2.1-D48 ➆  
6.5  
12  
12  
15  
15  
18  
18  
24  
24  
48  
16  
90  
8.3  
8.3  
6.7  
6.7  
5.6  
5.6  
4.2  
4.2  
2.1  
135  
120  
140  
145  
145  
145  
115  
115  
115  
Typical at TA = +25°C under nominal line voltage and full-load conditions, unless otherwise  
noted. All models are tested and specified with external output capacitors (1µF ceramic in  
parallel with 10µF tantalum).  
Contact DATEL for fixed output voltages (such as 2, 6.5, –5.2V) or higher output currents  
(such as 12V @ 12.5A) other than those listed.  
P A R T N U M B E R S T R U C T U R E  
-
D
U
SQ 3.3 20 D48  
N
/
-
Ripple/Noise (R/N) is tested/specified over a 20MHz bandwidth. Output noise may be further  
reduced with the installation of additional external output filtering. See I/O Filtering, Input  
Ripple Current, and Output Noise for details.  
Output Configuration:  
U = Unipolar/Single  
Negative Trim:  
Contact DATEL  
The load-regulation specs apply over the 0-100ꢀ range. All models in the USQ Series have  
no minimum-load requirements and will regulate within spec under no-load conditions (with  
perhaps a slight increase in ripple/noise). Additionally, 1.2V, 1.5V, 1.8V, 2.5V and 5V models  
are unconditionally stable, including start-up and short-circuit-shutdown situations, with  
capacitive loads up to 25,000µF. The 12V,15V,18V and 24V models are unconditionally stable  
with capacitive loads up to 470µF at full load.  
Remote On/Off Control Polarity:  
Add "P" for positive polarity  
(pin 2 open = converter on)  
Add "N" for negative polarity  
(pin 2 open = converter off)  
Quarter-Brick Package  
Nominal Output Voltage:  
1.2/1.5/1.8/2.5/3.3/5/12/15/18/24 Volts  
Maximum Rated Output  
Current in Amps  
Contact DATEL for VIN ranges other than those listed.  
For each model, the two listed dc currents are for the following conditions: full load/nominal  
input voltage and full load/low line voltage. The latter is usually the worst-case condition  
for input current.  
Input Voltage Range:  
D48 = 36-75 Volts (48V nominal)  
D24 = 18-36 Volts (24V nominal)  
Note: Not all part number  
combinations are available.  
Contact DATEL.  
Contact DATEL for availability and further information on these models.  
M E C H A N I C A L S P E C I F I C A T I O N S  
2.28  
(57.91)  
A
2.28 (57.91)  
BAR CODE AND  
SERIAL NUMBER  
APPLIED TO  
1.860  
(47.24)  
THIS SURFACE.  
MODEL NUMBER ON  
OPPOSITE SURFACE.  
0.40 MAX.  
(10.16)  
Optional  
Heat Sink  
PINS 1-3, 5-7:  
0.040 0.001 (1.016 0.025)  
PINS 4, 8:  
1.03  
(26.16)  
1.45  
(36.83)  
0.15 MIN (3.81)  
STANDOFF  
0.015 (0.38)  
0.062 0.001 (1.575 0.025)  
OPEN-FRAME, CAST  
ALUMINUM CASE  
2.00 (50.80)  
A
A
I/O Connections  
Pin Function P32  
1.860 (47.24)  
0.140 DIA. (3.56) (4 PLACES)  
1
2
3
4
5
6
7
8
–Input  
Remote On/Off*  
+Input  
*
Case C33  
1
2
3
4
5
6
(4) 0.170 DIA.  
#M3 THD. THRU  
WITH 0.090  
–Output  
MATERIAL: BLACK ANODIZED ALUMINUM  
0.10  
(2.54)  
–Sense  
7
8
THREAD RELIEF  
* USQ SERIES HEATSINKS ARE AVAILABLE IN 3 HEIGHTS:  
0.25 (6.35), 0.50 (12.70) AND 1.00 (25.4)  
Output Trim  
+Sense  
Heat Sink Ordering Information  
Heat Sink Height  
+Output  
DATEL Part Number  
HS-QB25  
HS-QB50  
BOTTOM VIEW  
0.300  
(7.62)  
0.600 (15.24)  
4 EQ. SP. @  
0.150 (3.81)  
0.25 inches (6.35mm)  
0.50 inches (12.70mm)  
* The Remote On/Off  
can be provided with  
either positive (standard)  
or negative (optional)  
polarity.  
DIMENSIONS ARE IN INCHES (MM)  
1.00 inches (25.40mm)  
HS-QB100  
DATEL conforms to industry-standard quarter-brick pinout (see Figure 20).  
All heat sinks include 4 mounting screws and a thermal pad.  
If using heatsinks other than DATEL's HS-QB series, the screw length should accomo-  
date the 0.090 thread relief.  
A "baseplate only" model with a maximum height of 0.375" (9.53mm) is  
available with the addition of an "H" suffix. Contact DATEL.  
2
2 0 A , S I N G L E O U T P U T D C / D C C O N V E R T E R S  
USQ Models  
Performance/Functional Specifications  
Typical @ TA = +25°C under nominal line voltage and full-load conditions, unless noted.  
Output (Continued)  
Magnetic feedback  
(1)  
Overvoltage Protection: (4)  
1.5VOUT  
1.8VOUT  
2.5VOUT  
3.3VOUT  
5VOUT  
2.2 Volts  
2.7 Volts  
3.8 Volts  
4.9 Volts  
6.4 Volts  
15 Volts  
20 Volts  
22.5 Volts  
30 Volts  
Input  
Input Voltage Range:  
D24 Models  
D48 Models  
18-36 Volts (24V nominal)  
36-75 Volts (48V nominal)  
Overvoltage Shutdown  
None (3)  
12VOUT  
15VOUT  
18VOUT  
24VOUT  
Start-Up Threshold: (4)  
D24 Models  
15.5-18 Volts (16.5V typical)  
28.5-32 Volts (30V typical)  
D48 Models  
Undervoltage Shutdown: (4)  
D24 Models  
Dynamic Characteristics  
Dynamic Load Response (11)  
See Dynamic Load Response  
14.5-16.5 Volts (15.5V typical)  
26.5-29.5 Volts (28.3V typical)  
D48 Models  
under Technical Notes  
Start-Up Time: (4) (12)  
VIN to VOUT  
Input Current:  
Normal Operating Conditions  
Inrush Transient  
See Ordering Guide  
0.05A2 sec maximum  
5msec typical, 8msec maximum  
5msec typical, 8msec maximum  
(11)  
On/Off to VOUT  
Standby Mode:  
Switching Frequency  
Off, UV, Thermal Shutdown  
3mA  
Environmental  
Input Reflected Ripple Current (5)  
5mAp-p  
(13)  
Calculated MTBF:  
>2.5 million hours  
Internal Input Filter Type:  
D24 Models  
(4) (14)  
Operating Temperature (Ambient):  
Without Derating  
Pi (0.01µF - 1.5µH - 3.3µF)  
Pi (0.01µF - 4.7µH - 3.3µF)  
Model and air flow dependent  
To +110°C (baseplate)  
D48 Models  
With Derating  
Reverse-Polarity Protection (3)  
1 minute duration, 5A maximum  
(4) (14)  
Baseplate Temperature:  
(6)  
Remote On/Off Control (Pin 2):  
Maximum Allowable  
Thermal Shutdown  
+110°C  
Positive Logic ("P" Suffix Models)  
On = open, open collector or  
+115-122°C, +118°C typical.  
2.5-5V applied. IIN = 150µA max.  
Off = pulled low to 0-0.8V IIN = 800µA max.  
On = pulled low to 0-0.8V IIN = 800µA max.  
Off = open, open collector or  
Physical  
1.45" x 2.28" x 0.40" (36.8 x 57.9 x 10.2mm)  
Negative Logic ("N" Suffix Models)  
Dimensions  
Case Material  
Baseplate Material  
Shielding  
Cast aluminum  
Aluminum  
2.5-5V applied. IIN = 150µA max.  
Output  
Neither the aluminum case nor baseplate  
are connected to a package pin  
Minimum Loading  
No load  
Maximum Capacitive Loading (7)  
25,000µF  
Pin Material  
Weight:  
Brass, solder coated  
VOUT Accuracy (Full Load):  
Initial  
1.52 ounces (43 grams)  
1ꢀ maximum  
0.02ꢀ per °C  
3ꢀ  
Primary-to-Secondary Insulation Level Basic  
Temperature Coefficient  
Extreme (8)  
(1)  
All models are tested and specified with external output capacitors (1µF ceramic in parallel  
with 10µF tantalum), unless otherwise noted. These converters have no minimum-load require  
ments and will effectively regulate under no-load conditions.  
VOUT Trim Range (9)  
+10ꢀ, –20ꢀ  
(4)  
Remote Sense Compensation  
+10ꢀ  
(2)  
(3)  
(4)  
(5)  
Contact DATEL for input voltage ranges (18-36V, 24V nominal) other than those listed.  
See Absolute Maximum Ratings for allowable input voltages.  
Ripple/Noise (20MHz BW)  
Line/Load Regulation  
Efficiency  
See Ordering Guide  
See Ordering Guide  
See Ordering Guide  
See Technical Notes/Performance Curves for additional explanations and details.  
Input Ripple Current is tested/specified over a 5-20MHz bandwidth with an external 33µF input  
capacitor and a simulated source impedance of 220µF and 12µH. See I/O Filtering, Input  
Ripple Current and Output Noise for details. The 24V input models can benefit by increasing the  
33µF external input capacitance to 100µF, if the application has a high source impedance.  
The On/Off Control is designed to be driven with open-collector (or equivalent) logic or the  
application of appropriate voltages (referenced to –Input (pin 1)). See Remote On/Off Control  
for more details.  
Isolation Voltage:  
Input-to-Output  
Input-to-Case  
1500Vdc minimum  
1500Vdc minimum  
1500Vdc minimum  
(6)  
(7)  
Output-to-Case  
USQ Series DC/DC converters are unconditionally stable, including start-up and short-circuit-  
shutdown situations, with capacitive loads up to 25,000µF (470µF for 12V, 15V, 18V and 24V  
models at full load).  
Isolation Resistance  
Isolation Capacitance  
100M  
650pF  
(8)  
(9)  
Extreme Accuracy refers to the accuracy of either trimmed or untrimmed output voltages over  
all normal operating ranges and combinations of input voltage, output load and temperature.  
See Output Trimming for detailed trim equations.  
Current Limit Inception (90ꢀ VOUT) (10)  
1.2VOUT  
22-30 Amps (26A typical)  
22-29 Amps (26A typical)  
9.2-10.5 Amps (9.9A typical)  
7.6-8.9 Amps (8.25A typical)  
6-7.75 Amps (6.5A typical)  
4.8-6 Amps (5.5A typical)  
(10)  
The Current-Limit Inception point is the output current level at which the USQ’s power-limiting  
circuitry drops the output voltage 10ꢀ from its initial value. See Output Current Limiting and  
Short-Circuit Protection for more details.  
1.5, 1.8, 2.5, 3.3, 5VOUT  
12VOUT  
15VOUT  
(11)  
See Dynamic Load Response under Technical Notes for detailed results including switching  
frequencies. DATEL has performed extensive evaluations of Dynamic Load Response. In addi  
tion to the 10µF || 1µF external capacitors, specifications are also given for 220µF || 1µF  
external output capacitors for quick comparison purposes.  
18VOUT  
24VOUT  
Short Circuit: (4)  
Current  
(12)  
(13)  
(14)  
For the Start-Up Time specifications, output settling is defined by the output voltage having  
reached 1ꢀ of its final value.  
Hiccup  
Duration  
Continuous  
MTBF’s are calculated using Telcordia (Bellcore) Method 1 Case 3, ground fixed conditions,  
+40°C case temperature, and full-load conditions. Contact DATEL for demonstrated life-test data.  
All models are fully operational and meet published specifications, including "cold start," at –40°C.  
3
2 0 A , S I N G L E O U T P U T D C / D C C O N V E R T E R S  
USQ Series  
impedance as highly inductive source impedance can affect system stability.  
In Figure 2, CBUS and LBUS simulate a typical dc voltage bus.Your specific  
system configuration may necessitate additional considerations.  
Absolute Maximum Ratings  
Input Voltage:  
Continuous:  
24V models  
39 Volts  
50 Volts  
48V models  
81 Volts  
100 Volts  
Transient (100msec)  
In critical applications, output ripple/noise (also referred to as periodic and  
random deviations or PARD) can be reduced below specified limits using  
filtering techniques, the simplest of which is the installation of additional  
external output capacitors. Output capacitors function as true filter elements  
and should be selected for bulk capacitance, low ESR, and appropriate  
frequency response. In Figure 3, the two copper strips simulate real-world  
pcb impedances between the power supply and its load. Scope measurements  
should be made using BNC connectors or the probe ground should be less  
than ½ inch and soldered directly to the fixture.  
Input Reverse-Polarity Protection  
Input Current must be <5A. 1 minute  
duration. Fusing recommended.  
Output Current  
Current limited. Devices can withstand  
an indefinite output short circuit.  
On/Off Control (Pin 2) Max. Voltages  
Referenced to –Input (pin 1)  
–0.3 to +7 Volts  
–40 to +125°C  
+300°C  
Storage Temperature  
Lead Temperature (Soldering, 10 sec.)  
These are stress ratings. Exposure of devices to any of these conditions may adversely  
affect long-term reliability. Proper operation under conditions other than those listed in the  
Performance/Functional Specifications Table is not implied, nor recommended.  
All external capacitors should have appropriate voltage ratings and be  
located as close to the converter as possible. Temperature variations for all  
relevant parameters should be taken into consideration. OS-CONTM organic  
semiconductor capacitors (www.sanyo.com) can be especially effective for  
further reduction of ripple/noise.  
T E C H N I C A L N O T E S  
The most effective combination of external I/O capacitors will be a function  
of line voltage and source impedance, as well as particular load and layout  
conditions. Our Applications Engineers can recommend potential solutions  
and discuss the possibility of our modifying a given device’s internal filtering  
to meet your specific requirements. Contact our Applications Engineering  
Group for additional details.  
Removal of Soldered USQ's from PCB's  
Should removal of the USQ from its soldered connection be needed, it is very  
important to thoroughly de-solder the pins using solder wicks or de-soldering  
tools. At no time should any prying or leverage be used to remove boards that  
have not been properly de-soldered first.  
Input Source Impedance  
USQ converters must be driven from a low ac-impedance input source.  
The DC/DC’s performance and stability can be compromised by the use of  
highly inductive source impedances. The input circuit shown in Figure 2 is a  
practical solution that can be used to minimize the effects of inductance in  
the input traces. For optimum performance, components should be mounted  
close to the DC/DC converter. The 24V models can benefit by increasing  
the 33µF external input capacitors to 100µF, if the application has a high  
source impedance.  
7
COPPER STRIP  
+SENSE  
8
+OUTPUT  
RLOAD  
SCOPE  
C1  
C2  
4
5
–OUTPUT  
–SENSE  
COPPER STRIP  
I/O Filtering, Input Ripple Current, and Output Noise  
C1 = 1µF CERAMIC  
C2 = 10µF TANTALUM  
All models in the USQ Series are tested/specified for input ripple current (also  
called input reflected ripple current) and output noise using the circuits and  
layout shown in Figures 2 and 3.  
LOAD 2-3 INCHES (51-76mm) FROM MODULE  
Figure 3. Measuring Output Ripple/Noise (PARD)  
TO  
CURRENT  
PROBE  
OSCILLOSCOPE  
Input Overvoltage Shutdown  
3
1
+INPUT  
–INPUT  
Standard USQ DC/DC converters do not feature overvoltage shutdown.  
They are equipped with this function, however. Many of our customers need  
their devices to withstand brief input surges to 100V without shutting down.  
Consequently, we disabled the function. Please contact us if you would like it  
enabled, at any voltage, for your application.  
LBUS  
+
VIN  
CBUS  
CIN  
C
IN = 33µF, ESR < 700m@ 100kHz  
BUS = 220µF, ESR < 100m@ 100kHz  
Start-Up Threshold and Undervoltage Shutdown  
C
L
BUS = 12µH  
Under normal start-up conditions, the USQ Series will not begin to regulate  
properly until the ramping input voltage exceeds the Start-Up Threshold.  
Once operating, devices will turn off when the applied voltage drops below  
the Undervoltage Shutdown point. Devices will remain off as long as the  
undervoltage condition continues. Units will automatically re-start when the  
applied voltage is brought back above the Start-Up Threshold. The hyster-  
esis built into this function avoids an indeterminate on/off condition at a single  
input voltage. See Performance/Functional Specifications table for actual limits.  
Figure 2. Measuring Input Ripple Current  
External input capacitors (CIN in Figure 2) serve primarily as energy-storage  
elements. They should be selected for bulk capacitance (at appropriate  
frequencies), low ESR, and high rms-ripple-current ratings. The switching  
nature of DC/DC converters requires that dc voltage sources have low ac  
4
2 0 A , S I N G L E O U T P U T D C / D C C O N V E R T E R S  
USQ Models  
of 5 to 15 milliseconds, the PWM will restart, causing the output voltages to begin  
ramping to their appropriate values. If the short-circuit condition persists,  
another shutdown cycle will be initiated. This on/off cycling is referred to  
as “hiccup” mode. The hiccup cycling reduces the average output current,  
thereby preventing internal temperatures from rising to excessive levels. The  
USQ is capable of enduring an indefinite short circuit output condition.  
Start-Up Time  
The VIN to VOUT Start-Up Time is the interval between the point at which  
a ramping input voltage crosses the Start-Up Threshold voltage and the  
point at which the fully loaded output voltage enters and remains within it  
specified 1ꢀ accuracy band. Actual measured times will vary with input  
source impedance, external input capacitance, and the slew rate and final  
value of the input voltage as it appears to the converter.The On/Off to VOUT  
Start-Up Time assumes the converter is turned off via the Remote On/Off  
Control with the nominal input voltage already applied. The specification  
defines the interval between the point at which the converter is turned on  
(released) and the point at which the fully loaded output voltage enters and  
remains within its specified 1ꢀ accuracy band.  
Thermal Shutdown  
USQ converters are equipped with thermal-shutdown circuitry. If the internal  
temperature of the DC/DC converter rises above the designed operating tem-  
perature (See Performance Specifications), a precision temperature sensor  
will power down the unit. When the internal temperature decreases below  
the threshold of the temperature sensor, the unit will self start.  
Output Overvoltage Protection  
On/Off Control  
The output voltage is monitored for an overvoltage condition via magnetic  
coupling to the primary side. If the output voltage rises to a fault condition,  
which could be damaging to the load circuitry (see Performance Specifica-  
tions), the sensing circuitry will power down the PWM controller causing  
the output voltage to decrease. Following a time-out period the PWM will  
restart, causing the output voltage to ramp to its appropriate value. If the  
fault condition persists, and the output voltages again climb to excessive  
levels, the overvoltage circuitry will initiate another shutdown cycle. This  
on/off cycling is referred to as "hiccup" mode.  
The primary-side, Remote On/Off Control function (pin 2) can be specified to  
operate with either positive or negative polarity. Positive-polarity devices ("P"  
suffix) are enabled when pin 2 is left open or is pulled high (+2.5-5V applied  
with respect to –Input, pin 1, IIN < 150µA typical). Positive-polarity devices are  
disabled when pin 2 is pulled low (0-0.8V with respect to –Input, IIN < 800µA.  
Negative-polarity devices are off when pin 2 is high/open and on when pin 2  
is pulled low. See Figure 4.  
EQUIVALENT CIRCUIT FOR  
POSITIVE AND NEGATIVE  
LOGIC MODELS  
+5V  
+INPUT  
3
Input Reverse-Polarity Protection  
200k  
2
If the input-voltage polarity is accidentally reversed, an internal diode will  
become forward biased and likely draw excessive current from the power  
source. If the source is not current limited (<5A) nor the circuit appropriately  
fused, it could cause permanent damage to the converter.  
ON/OFF  
CONTROL  
CONTROL  
200k  
REF  
1
Input Fusing  
–INPUT  
Certain applications and/or safety agencies may require the installation of  
fuses at the inputs of power conversion components. Fuses should also be  
used if the possibility of a sustained, non-current-limited, input-voltage polar-  
ity reversal exists. For DATEL USQ Series DC/DC Converters, slow-blow  
fuses are recommended with values no greater than the following:  
Figure 4. Driving the Remote On/Off Control Pin  
Dynamic control of the remote on/off function is best accomplished with  
a mechanical relay or an open-collector/open-drain drive circuit (optically  
isolated if appropriate). The drive circuit should be able to sink appropriate  
current (see Performance Specifications) when activated and withstand  
appropriate voltage when deactivated.  
VOUT Range  
1.2VOUT Models  
1.5VOUT Models  
1.8VOUT Models  
2.5VOUT Models  
3.3VOUT Models  
5 to 24VOUT Models  
Fuse Value -D48  
1.5 Amps  
2.5 Amps  
3 Amps  
Fuse Value -D24  
Current Limiting  
3.5 Amps  
4 Amps  
When power demands from the output falls within the current limit inception  
range for the rated output current, the DC/DC converter will go into a current  
limiting mode. In this condition the output voltage will decrease propor-  
tionately with increases in output current, thereby maintaining a somewhat  
constant power dissipation. This is commonly referred to as power limiting.  
Current limit inception is defined as the point where the full-power output  
voltage falls below the specified tolerance. If the load current being drawn  
from the converter is significant enough, the unit will go into a short circuit  
condition. See “Short Circuit Condition.”  
6 Amps  
10 Amps  
See Performance Specifications for Input Current and Inrush Transient limits.  
Trimming Output Voltage  
USQ converters have a trim capability (pin 6) that enables users to adjust  
the output voltage from +10ꢀ to –20ꢀ (refer to the trim equations and trim  
graphs that follow). Adjustments to the output voltage can be accomplished  
with a single fixed resistor as shown in Figures 5 and 6. A single fixed resis-  
tor can increase or decrease the output voltage depending on its connection.  
Resistors should be located close to the converter and have TCR's less than  
100ppm/°C to minimize sensitivity to changes in temperature. If the trim  
function is not used, leave the trim pin open.  
Short Circuit Condition  
When a converter is in current limit mode the output voltages will drop as  
the output current demand increases. If the output voltage drops too low, the  
magnetically coupled voltage used to develop primary side voltages will also  
drop, thereby shutting down the PWM controller. Following a time-out period  
5
2 0 A , S I N G L E O U T P U T D C / D C C O N V E R T E R S  
USQ Series  
Standard USQ's have a "positive trim" where a single resistor connected from  
the Trim pin (pin 6) to the +Sense (pin 7) will increase the output voltage.  
A resistor connected from the Trim Pin (pin 6) to the –Sense (pin 5) will  
decrease the output voltage. DATEL also offers a "negative trim" function (D  
suffix added to the part number). Contact DATEL for information on negative  
trim devices.  
Trim Equations  
USQ-1.2/20-D48  
1.308(VO – 0.793)  
VO – 1.2  
1.037  
–1.413  
–1.413  
–10.2  
–10.2  
–10.2  
RTUP (k) =  
RTDOWN (k) =  
1.2 – VO  
USQ-1.5/20-D48  
Trim adjustments greater than the specified +10ꢀ/–20ꢀ can have an  
adverse affect on the converter’s performance and are not recommended.  
Excessive voltage differences between VOUT and Sense, in conjunction with  
trim adjustment of the output voltage, can cause the overvoltage protection  
circuitry to activate (see Performance Specifications for overvoltage limits).  
6.23(VO – 1.226)  
VO – 1.5  
7.64  
–10.2  
RTUP (k) =  
RTDOWN (k) =  
1.5 – VO  
USQ-1.8/20-D48  
9.12  
7.44(VO – 1.226)  
VO – 1.8  
Temperature/power derating is based on maximum output current and volt-  
age at the converter's output pins. Use of the trim and sense functions can  
cause output voltages to increase, thereby increasing output power beyond  
the USQ's specified rating, or cause output voltages to climb into the output  
overvoltage region. Therefore:  
–10.2  
RTDOWN (k) =  
RTUP (k) =  
RTUP (k) =  
1.8 – VO  
USQ-2.5/20-D48  
10(VO – 1.226)  
VO – 2.5  
12.26  
–10.2  
RTDOWN (k) =  
2.5 – VO  
(VOUT at pins) x (IOUT) rated output power  
USQ-3.3/20-D48  
The Trim pin (pin 6) is a relatively high impedance node that can be suscep-  
tible to noise pickup when connected to long conductors in noisy environ-  
ments. In such cases, a 0.22µF capacitor can be added to reduce this long  
lead effect.  
16.31  
13.3(VO – 1.226)  
VO – 3.3  
–10.2  
–10.2  
–10.2  
–10.2  
–10.2  
–10.2  
–10.2  
RTDOWN (k) =  
RTUP (k) =  
RTUP (k) =  
RTUP (k) =  
RTUP (k) =  
RTUP (k) =  
RTUP (k) =  
3.3 – VO  
USQ-5/20-D24, -D48  
25.01  
20.4(VO – 1.226)  
–10.2  
RTDOWN (k) =  
5 – VO  
VO – 5  
8
1
+OUTPUT  
–INPUT  
USQ-12/8.3-D24, -D48  
7
+SENSE  
60.45  
49.6(VO – 1.226)  
VO – 12  
–10.2  
RTDOWN (k) =  
2
3
6
5
4
ON/OFF  
CONTROL  
12 – VO  
TRIM  
–SENSE  
LOAD  
RTRIM UP  
USQ-15/6.7-D24, -D48  
76.56  
62.9(VO – 1.226)  
+INPUT  
–10.2  
RTDOWN (k) =  
–OUTPUT  
15 – VO  
VO – 15  
USQ-18/5.6-D24, -D48  
Figure 5.Trim Connections To Increase Output Voltages Using Fixed Resistors  
92.9  
75.5(VO – 1.226)  
VO – 18  
–10.2  
RTDOWN (k) =  
18 – VO  
8
USQ-24/4.2-D24, -D48  
1
+OUTPUT  
–INPUT  
124.2  
101(VO – 1.226)  
7
–10.2  
+SENSE  
RTDOWN (k) =  
24 – VO  
VO – 24  
2
3
6
5
4
ON/OFF  
CONTROL  
TRIM  
–SENSE  
LOAD  
Note: Resistor values are in k. Adjustment accuracy is subject to resistor  
tolerances and factory-adjusted output accuracy. VO = desired output voltage.  
RTRIM DOWN  
+INPUT  
–OUTPUT  
Figure 6.Trim Connections To Decrease Output Voltages Using Fixed Resistors  
6
2 0 A , S I N G L E O U T P U T D C / D C C O N V E R T E R S  
USQ Models  
Trim-Up Resistance vs. Percentage Increase in Output Voltage  
1 x 106  
1 x 105  
1 x 104  
1 x103  
1 x 107  
1 x 106  
1 x 105  
1 x104  
1 x103  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
10  
10  
VOUT INCREASE (%)  
VOUT INCREASE (%)  
Figure 8. USQ-1.5 Trim-Up Resistance vs. % Increase VOUT  
Figure 7. USQ-1.2 Trim-Up Resistance vs. % Increase VOUT  
1 x 107  
1 x 106  
1 x 105  
1 x104  
1 x 107  
1 x 106  
1 x 105  
1 x104  
1 x 107  
1 x 106  
1 x 105  
1 x104  
1 x 108  
1 x 107  
1 x 106  
1 x105  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
VOUT INCREASE (%)  
VOUT INCREASE (%)  
Figure 10. USQ-2.5 Trim-Up Resistance vs. % Increase VOUT  
Figure 9. USQ-1.8 Trim-Up Resistance vs. % Increase VOUT  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
VOUT INCREASE (%)  
VOUT INCREASE (%)  
Figure 11. USQ-3.3 Trim-Up Resistance vs. % Increase VOUT  
Figure 12. USQ-5 Trim-Up Resistance vs. % Increase VOUT  
7
2 0 A , S I N G L E O U T P U T D C / D C C O N V E R T E R S  
USQ Series  
Trim-Up Resistance vs. Percentage Increase in Output Voltage  
1 x 108  
1 x 108  
1 x 107  
1 x 106  
1 x 107  
1 x 106  
1 x105  
1 x105  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
VOUT INCREASE (%)  
VOUT INCREASE (%)  
Figure 14. USQ-15 Trim-Up Resistance vs. % Increase VOUT  
Figure 13. USQ-12 Trim-Up Resistance vs. % Increase VOUT  
1 x 108  
1 x 107  
1 x 106  
1 x105  
1 x 108  
1 x 107  
1 x 106  
1 x105  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
VOUT INCREASE (%)  
VOUT INCREASE (%)  
Figure 15. USQ-18 Trim-Up Resistance vs. % Increase VOUT  
Figure 16. USQ-24 Trim-Up Resistance vs. % Increase VOUT  
Trim-Down Resistance vs. Percentage Decrease in Output Voltage  
1 x 106  
1 x 105  
1 x 104  
1 x103  
1 x 107  
1 x 106  
1 x 105  
1 x104  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
VOUT DECREASE (%)  
VOUT DECREASE (%)  
Figure 17. USQ-1.2 Trim-Down Resistance vs. % Decrease VOUT  
Figure 18. USQ-1.5 to USQ-18 Trim-Down Resistance vs. % Decrease VOUT  
8
2 0 A , S I N G L E O U T P U T D C / D C C O N V E R T E R S  
USQ Models  
Negative-Trim Units ("D" Suffix)  
Floating Outputs  
Standard USQ's have a "positive-trim" function, consistent with the industry  
standard footprints and functionality. DATEL also offers "negative-trim" USQ's  
designated with a "D" suffix to the part number. The negative-trim devices  
trim up with a single resistor tied from the Output Trim (pin 6) to the –Sense  
(pin 5) to increase the output voltage. A resistor connected from the Output  
Trim (pin 6) to the +Sense (pin 7) will decrease the ouput voltage.  
Since these are isolated DC/DC converters, their outputs are "floating" with  
respect to their input. Designers will normally use the –Output (pin 4) as the  
ground/return of the load circuit.You can, however, use the +Output (pin 8) as  
ground/return to effectively reverse the output polarity.  
Remote Sense  
Note: The Sense and VOUT lines are not internally connected to each other.  
Therefore, if the sense function is not used for remote regulation, the user  
must connect the +Sense to +VOUT and –Sense to –VOUT at the DC/DC  
converter pins.  
The "negative-trim" formula values for USQ 1.2/1.5/1.8 Volt devices with a  
48 Volt input and negative logic reads:  
A – Bx V  
RTRIM =  
USQ series converters employ a sense feature to provide point-of-use regu-  
lation, thereby overcoming moderate IR drops in pcb conductors or cabling.  
The remote sense lines carry very little current and therefore require a mini-  
mal cross-sectional area conductor. The sense lines, which are capacitively  
coupled to their respective output lines, are used by the feedback control-loop  
to regulate the output. As such, they are not low impedance points and must  
be treated with care in layouts and cabling. Sense lines on a pcb should be  
run adjacent to dc signals, preferably ground. In cables and discrete wiring  
applications, twisted pair or other techniques should be implemented.  
V  
Model  
Trim Up  
Trim Down  
A
0.57  
B
1
A
0.2711 1.4676  
B
USQ-1.8/20-D48ND  
USQ-1.5/20-D48ND 0.283  
USQ-1.2/20-D48ND 0.5928  
0.121  
3.01  
0.065  
0.5686  
0.352  
3.96  
where V is the absolute value of the output voltage change desired.  
USQ DC/DC converters will compensate for drops between the output  
voltage at the DC/DC and the sense voltage at the DC/DC:  
[VOUT(+) –VOUT(–)] – [Sense(+) –Sense (–)] 10ꢀ VOUT  
Contact and PCB resistance  
losses due to IR drops  
8
1
+OUTPUT  
–INPUT  
IOUT  
7
+SENSE  
Sense Current  
2
3
ON/OFF  
CONTROL  
6
5
TRIM  
–SENSE  
LOAD  
Sense Return  
IOUT Return  
4
+INPUT  
–OUTPUT  
Contact and PCB resistance  
losses due to IR drops  
Figure 19. Remote Sense Circuit Configuration  
Output overvoltage protection is monitored at the output voltage pin, not  
the Sense pin. Therefore, excessive voltage differences between VOUT and  
Sense, in conjunction with trim adjustment of the output voltage, can cause  
the overvoltage protection circuitry to activate (see Performance Specifica-  
tions for overvoltage limits). Power derating is based on maximum output  
current and voltage at the converter’s output pins. Use of trim and sense  
functions can cause output voltages to increase, thereby increasing output  
power beyond the USQ’s specified rating, or cause output voltages to climb  
into the output overvoltage region. Therefore:  
(VOUT at pins) × (IOUT) rated output power  
9
2 0 A , S I N G L E O U T P U T D C / D C C O N V E R T E R S  
USQ Series  
Dynamic Load Response and Switching Frequency  
To avoid the added cost of constantly changing test fixtures, we have veri-  
fied, during our device characterization/verification testing, that 100ꢀ testing  
under the former conditions (the 100µF || 1µF load), which we guarantee,  
correlates extremely well with the latter conditions, for which we and most of  
our competitors simply list typicals.  
DATEL has performed extensive evaluations, under assorted capacitive-load  
conditions, of the dynamic-load capabilities (i.e., the transient or step  
response) of USQ Series DC/DC Converters. In particular, we have evalu-  
ated devices using the output capacitive-load conditions we use for our  
routine production testing (10µF tantalums in parallel with 1µF ceramics), as  
well as the load conditions many of our competitors use (220µF tantalums  
in parallel with 1µF ceramics) when specifying the dynamic performance of  
their devices.  
If you have any questions about our test methods or would like us to perform  
additional testing under your specific load conditions, please contact our  
Applications Engineering Group.  
Load Conditions ➀  
Performance Specifications  
1.2VOUT  
1.5VOUT  
1.8VOUT  
2.5VOUT  
3.3VOUT  
5VOUT  
12 to 24VOUT  
Load Step = 50 to 75ꢀ of IOUT Max.:  
Peak Deviation, typ.  
115mV  
200µs  
110mV  
200µs  
125mV  
225µs  
100mV  
200µs  
170mV  
100µs  
125mV  
100µs  
100mV  
100µs  
Settling Time to 1ꢀ of Final Value, max. ➁  
COUT = 10µF || 1µF  
10µF || 1µF  
Load Step = 75 to 50ꢀ of IOUT Max.:  
Peak Deviation, typ.  
115mV  
140µs  
110mV  
200µs  
125mV  
225µs  
100mV  
200µs  
100mV  
100µs  
125mV  
100µs  
100mV  
100µs  
Settling Time to 1ꢀ of Final Value, max. ➁  
Load Step = 50 to 75ꢀ of IOUT Max.:  
Peak Deviation, typ.  
120mV  
115µs  
TBD  
TBD  
105mV  
170µs  
90mV  
65µs  
105mV  
65µs  
TBD  
TBD  
85mV  
40µs  
Settling Time to 1ꢀ of Final Value, typ. ➁  
COUT = 220µF || 1µF  
Load Step = 75 to 50ꢀ of IOUT Max.:  
Peak Deviation, typ.  
120mV  
150µs  
TBD  
TBD  
90mV  
150µs  
90mV  
70µs  
105mV  
65µs  
TBD  
TBD  
50mV  
25µs  
Settling Time to 1ꢀ of Final Value, typ. ➁  
Switching Frequency (min./typ./max. kHz)  
120/150/180 120/150/180 170/185/200 230/255/280 132/147/162 220/240/260 190/210/230  
The listed pair of parallel output capacitors consists of a tantalum in parallel with a multi-layer ceramic.  
IO/t = 1A/1µs, VIN = 48V, TC = 25°C.  
10  
2 0 A , S I N G L E O U T P U T D C / D C C O N V E R T E R S  
USQ Models  
Typical Performance Curves for 1.2VOUT Models  
USQ-1.2/20-D48: Output Current vs. Ambient Temperature  
(Transverse air flow, pin 1 to pin 3; VIN = 48V, no heat sink.)  
USQ-1.2/20-D48 Efficiency vs. Line Voltage and Load Current  
90  
85  
80  
75  
70  
65  
60  
22  
20  
18  
16  
14  
12  
10  
8
TBD  
TBD  
200 lfm  
Natural Convection  
6
4
2
0
2
4
6
8
10  
12  
14  
16  
18  
20  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
Load Current (Amps)  
Ambient Temperature (°C)  
Start-Up from VIN  
(VIN = 48V, IOUT = 20A, COUT = 10µF tantalum || 1µF ceramic.)  
TBD  
TBD  
20V/div  
1V/div  
2msec/div  
Start-Up from Remote On/Off Control  
(VIN = 48V, IOUT = 20A, COUT = 10µF tantalum || 1µF ceramic.)  
TBD  
2V/div  
TBD  
1V/div  
2msec/div  
11  
2 0 A , S I N G L E O U T P U T D C / D C C O N V E R T E R S  
USQ Series  
Typical Performance Curves for 1.5VOUT Models  
USQ-1.5/20-D48: Output Current vs. Ambient Temperature  
(Transverse air flow, pin 1 to pin 3; VIN = 48V, no heat sink.)  
USQ-1.5/20-D48 Efficiency vs. Line Voltage and Load Current  
22  
20  
18  
16  
14  
12  
10  
8
85  
80  
75  
200 lfm  
Natural Convection  
400 lfm  
600 lfm  
V
IN = 36V  
70  
65  
60  
V
IN = 48V  
6
4
V
IN = 75V  
2
0
–40  
2
4
6
8
10  
12  
14  
16  
18  
20  
–10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Load Current (Amps)  
Ambient Temperature (°C)  
USQ-1.5/20-D48: Output Current vs. Ambient Temperature  
(Longitudinal air flow, pin 1 to pin 4; VIN = 48V, no heat sink.)  
Start-Up from VIN  
(VIN = 48V, IOUT = 20A, COUT = 10µF tantalum || 1µF ceramic.)  
22  
20  
18  
16  
14  
12  
10  
8
600 lfm  
+Input (pin 3)  
200 lfm  
20V/div  
Natural Convection  
400 lfm  
6
1V/div  
4
1.5VOUT (pin 8)  
2msec/div  
2
0
–40  
–10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Ambient Temperature (°C)  
Start-Up from Remote On/Off Control  
(VIN = 48V, IOUT = 20A, COUT = 10µF tantalum || 1µF ceramic.)  
Remote On/Off Control (pin 2)  
2V/div  
1V/div  
1.5VOUT (pin 8)  
2msec/div  
12  
2 0 A , S I N G L E O U T P U T D C / D C C O N V E R T E R S  
USQ Models  
Typical Performance Curves for 1.8VOUT Models  
USQ-1.8/20-D48: Output Current vs. Ambient Temperature  
(Transverse air flow, pin 1 to pin 3; VIN = 48V, no heat sink.)  
USQ-1.8/20-D48 Efficiency vs. Line Voltage and Load Current  
22  
20  
18  
16  
14  
12  
10  
8
90  
85  
80  
75  
70  
65  
60  
200 lfm  
400 lfm  
Natural Convection  
600 lfm  
V
IN = 36V  
V
IN = 48V  
6
4
V
IN = 75V  
2
0
–40  
2
4
6
8
10  
12  
14  
16  
18  
20  
–10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Load Current (Amps)  
Ambient Temperature (°C)  
USQ-1.8/20-D48: Output Current vs. Ambient Temperature  
(Longitudinal air flow, pin 1 to pin 4; VIN = 48V, no heat sink.)  
Start-Up from VIN  
(VIN = 48V, IOUT = 20A, COUT = 10µF tantalum || 1µF ceramic.)  
22  
20  
18  
16  
14  
12  
10  
8
600 lfm  
200 lfm  
+Input (pin 3)  
20V/div  
400 lfm  
Natural Convection  
6
1V/div  
4
1.8VOUT (pin 8)  
2msec/div  
2
0
–40  
–10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Ambient Temperature (°C)  
Start-Up from Remote On/Off Control  
(VIN = 48V, IOUT = 20A, COUT = 10µF tantalum || 1µF ceramic.)  
Remote On/Off Control (pin 2)  
2V/div  
1V/div  
1.8VOUT (pin 8)  
2msec/div  
13  
2 0 A , S I N G L E O U T P U T D C / D C C O N V E R T E R S  
USQ Series  
Typical Performance Curves for 2.5VOUT Models  
USQ-2.5/20-D48: Output Current vs. Ambient Temperature  
(Transverse air flow, pin 1 to pin 3; VIN = 48V, no heat sink.)  
USQ-2.5/20-D48 Efficiency vs. Line Voltage and Load Current  
22  
20  
18  
16  
14  
12  
10  
8
95  
90  
85  
80  
75  
70  
400 lfm  
200 lfm  
V
IN = 36V  
65  
60  
55  
50  
45  
40  
Natural Convection  
V
IN = 48V  
6
V
IN = 75V  
4
2
0
2
4
6
8
10  
12  
14  
16  
18  
20  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
Load Current (Amps)  
Ambient Temperature (°C)  
Start-Up from VIN  
(VIN = 48V, IOUT = 20A, COUT = 10µF tantalum || 1µF ceramic.)  
+Input (pin 3)  
20V/div  
1V/div  
2.5VOUT (pin 8)  
2msec/div  
Start-Up from Remote On/Off Control  
(VIN = 48V, IOUT = 20A, COUT = 10µF tantalum || 1µF ceramic.)  
Remote On/Off Control(pin 2)  
2V/div  
1V/div  
2.5VOUT (pin 8)  
2msec/div  
14  
2 0 A , S I N G L E O U T P U T D C / D C C O N V E R T E R S  
USQ Models  
Typical Performance Curves for 3.3VOUT Models  
USQ-3.3/20-D48: Output Current vs. Ambient Temperature  
(Transverse air flow, pin 1 to pin 3; VIN = 48V, no heat sink.)  
USQ-3.3/20-D48 Efficiency vs. Line Voltage and Load Current  
22  
20  
18  
16  
14  
12  
10  
8
95  
90  
85  
80  
75  
70  
65  
60  
55  
200 lfm  
400 lfm  
600 lfm  
V
IN = 36V  
V
IN = 48V  
Low LFM  
V
IN = 75V  
6
4
2
0
–40  
2.2  
4.4  
6.7  
8.9  
11.1  
13.3  
15.6  
17.8  
20  
–10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Load Current (Amps)  
Ambient Temperature (°C)  
USQ-3.3/20-D48: Output Current vs. Ambient Temperature  
(Longitudinal air flow, pin 1 to pin 4; VIN = 48V, no heat sink.)  
Start-Up from VIN  
(VIN = 48V, IOUT = 20A, COUT = 10µF tantalum || 1µF ceramic.)  
22  
20  
18  
16  
14  
12  
10  
8
600 lfm  
+Input (pin 3)  
200 lfm  
400 lfm  
20V/div  
Natural Convection  
6
3.3VOUT (pin 8)  
1V/div  
4
2
0
–40  
–10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
2msec/div  
Ambient Temperature (°C)  
USQ-3.3/20-D48: Output Current vs. Ambient Temperature  
(Longitudinal air flow, pin 1 to pin 3; VIN = 48V, 1/4" heat sink.)  
Start-Up from Remote On/Off Control  
(VIN = 48V, IOUT = 20A, COUT = 10µF tantalum || 1µF ceramic.)  
22  
20  
18  
16  
14  
12  
10  
8
200 lfm  
Remote On/Off Control (pin 2)  
2V/div  
400 lfm  
3.3VOUT (pin 8)  
6
1V/div  
4
2
0
–40  
–10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
2msec/div  
Ambient Temperature (°C)  
15  
2 0 A , S I N G L E O U T P U T D C / D C C O N V E R T E R S  
USQ Series  
Typical Performance Curves for 5VOUT Models  
USQ-5/20-D48: Output Current vs. Ambient Temperature  
(Transverse air flow, pin 1 to pin 3; VIN = 48V, no heat sink.)  
USQ-5/20-D48 Efficiency vs. Line Voltage and Load Current  
22  
20  
18  
16  
14  
12  
10  
8
95  
90  
85  
80  
75  
70  
65  
60  
200 lfm  
400 lfm  
600 lfm  
V
IN = 36V  
V
IN = 48V  
Low LFM  
6
V
IN = 75V  
4
2
0
–40  
2
4
6
8
10  
12  
14  
16  
18  
20  
–10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Load Current (Amps)  
Ambient Temperature (°C)  
USQ-5/20-D48: Output Current vs. Ambient Temperature  
(Transverse air flow, pin 1 to pin 3; VIN = 48V, 1/4" heat sink.)  
Start-Up from VIN  
(VIN = 48V, IOUT = 20A, COUT = 10µF tantalum || 1µF ceramic.)  
22  
20  
18  
16  
14  
12  
10  
8
200 lfm  
+Input (pin 3)  
20V/div  
400 lfm  
600 lfm  
6
5VOUT (pin 8)  
1V/div  
4
2
0
–40  
–10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
2msec/div  
Ambient Temperature (°C)  
USQ-5/20-D48: Output Current vs. Ambient Temperature  
Start-Up from Remote On/Off Control  
(Longitudinal air flow, pin 1 to pin 4; VIN = 48V, no heat sink.)  
(VIN = 48V, IOUT = 20A, COUT = 10µF tantalum || 1µF ceramic.)  
22  
20  
18  
16  
14  
12  
10  
8
600 lfm  
Remote On/Off Control (pin 2)  
400 lfm  
200 lfm  
5V/div  
Natural Convection  
5VOUT (pin 8)  
6
1V/div  
4
2
0
–40  
–10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
2msec/div  
Ambient Temperature (°C)  
16  
2 0 A , S I N G L E O U T P U T D C / D C C O N V E R T E R S  
USQ Models  
Typical Performance Curves for 5VOUT Models  
USQ-5/20-D48: Output Current vs. Ambient Temperature  
(Longitudinal air flow, pin 1 to pin 4; VIN = 48V, 1/4" heat sink.)  
22  
20  
18  
16  
14  
12  
10  
8
600 lfm  
400 lfm  
200 lfm  
6
4
2
0
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
Ambient Temperature (°C)  
USQ-5/20-D48: Output Current vs. Ambient Temperature  
(Transverse air flow, pin 1 to pin 3; VIN = 48V, 1/4" heat sink.)  
22  
20  
18  
16  
14  
12  
10  
8
600 lfm  
400 lfm  
200 lfm  
6
4
2
0
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
Ambient Temperature (°C)  
17  
2 0 A , S I N G L E O U T P U T D C / D C C O N V E R T E R S  
USQ Series  
Typical Performance Curves for 12VOUT Models  
USQ-12/8.3-D48: Output Current vs. Ambient Temperature  
(Transverse air flow, pin 1 to pin 3; VIN = 48V, no heat sink.)  
USQ-12/8.3-D48 Efficiency vs. Line Voltage and Load Current  
9
8
7
6
5
4
3
2
1
0
95  
90  
85  
80  
75  
70  
65  
60  
55  
600 lfm  
400 lfm  
200 lfm  
V
IN = 36V  
Natural Convection  
V
IN = 48V  
V
IN = 75V  
0.83  
1.66  
2.49  
3.32  
4.15  
4.98  
5.81  
6.64  
7.47  
8.3  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
Load Current (Amps)  
Ambient Temperature (°C)  
USQ-12/8.3-D48: Output Current vs. Ambient Temperature  
(Longitudinal air flow, pin 1 to pin 3; VIN = 48V, no heat sink.)  
Start-Up from VIN  
(VIN = 48V, IOUT = 8.3A, COUT = 10µF tantalum || 1µF ceramic.)  
10  
8
6
4
2
0
+Input (pin 3)  
200 lfm  
400 lfm  
20V/div  
600 lfm  
Natural Convection  
12VOUT (pin 8)  
5V/div  
–40  
–10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
2msec/div  
Ambient Temperature (°C)  
USQ-12/8.3-D24: Output Current vs. Ambient Temperature  
(Transverse air flow, pin 1 to pin 3; VIN = 24V, no heat sink.)  
Start-Up from Remote On/Off Control  
(VIN = 48V, IOUT = 8.3A, COUT = 10µF tantalum || 1µF ceramic.)  
9
8
7
6
5
4
3
2
1
0
Remote On/Off Control (pin 2)  
2V/div  
600 lfm  
400 lfm  
200 lfm  
Natural Convection  
12VOUT (pin 8)  
5V/div  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
2msec/div  
Ambient Temperature (°C)  
18  
2 0 A , S I N G L E O U T P U T D C / D C C O N V E R T E R S  
USQ Models  
Typical Performance Curves for 12VOUT Models  
USQ-12/8.3-D24: Output Current vs. Ambient Temperature  
(Transverse air flow, pin 1 to pin 3; VIN = 24V, 1/2" heat sink.)  
9
8
7
6
5
4
3
2
1
0
400 lfm  
200 lfm  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
Ambient Temperature (°C)  
19  
2 0 A , S I N G L E O U T P U T D C / D C C O N V E R T E R S  
USQ Series  
Typical Performance Curves for 15VOUT Models  
USQ-15/6.7-D48: Output Current vs. Ambient Temperature  
(Transverse air flow, pin 1 to pin 3; VIN = 48V, no heat sink.)  
USQ-15/6.7-D48 Efficiency vs. Line Voltage and Load Current  
7
6
5
4
3
2
1
0
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
400 lfm  
200 lfm  
V
IN = 36V  
Natural Convection  
V
IN = 48V  
V
IN = 75V  
0.67  
1.34  
2.01  
2.68  
3.35  
4.02  
4.69  
5.36  
6.03  
6.7  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
Load Current (Amps)  
Ambient Temperature (°C)  
USQ-15/6.7-D48: Output Current vs. Ambient Temperature  
(Longitudinal air flow, pin 1 to pin 3; VIN = 48V, no heat sink.)  
Start-Up from Remote On/Off Control  
(VIN = 48V, IOUT = 6.7A, COUT = 10µF tantalum || 1µF ceramic.)  
8
Remote On/Off Control (pin 2)  
6
4
2
0
2V/div  
200 lfm  
400 lfm  
600 lfm  
Natural Convection  
15VOUT (pin 8)  
5V/div  
–40  
–10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
2msec/div  
Ambient Temperature (°C)  
Start-Up from VIN  
(VIN = 48V, IOUT = 6.7A, COUT = 10µF tantalum || 1µF ceramic.)  
+Input (pin 3)  
20V/div  
15VOUT (pin 8)  
5V/div  
2msec/div  
20  
2 0 A , S I N G L E O U T P U T D C / D C C O N V E R T E R S  
USQ Models  
Typical Performance Curves for 18VOUT Models  
USQ-18/5.6-D48: Output Current vs. Ambient Temperature  
(Transverse air flow, pin 1 to pin 3; VIN = 48V, no heat sink.)  
USQ-18/5.6-D48 Efficiency vs. Line Voltage and Load Current  
8
6
4
2
0
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
TBD  
TBD  
TBD  
TBD  
–40  
–10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0.67  
1.34  
2.01  
2.68  
3.35  
4.02  
4.69  
5.36  
6.03  
6.7  
Load Current (Amps)  
Ambient Temperature (°C)  
USQ-18/5.6-D48: Output Current vs. Ambient Temperature  
(Longitudinal air flow, pin 1 to pin 3; VIN = 48V, no heat sink.)  
Start-Up from VIN  
(VIN = 48V, IOUT = 5.6A, COUT = 10µF tantalum || 1µF ceramic.)  
8
6
4
2
TBD  
TBD  
20V/div  
TBD  
TBD  
5V/div  
0
–40  
–10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
2msec/div  
Ambient Temperature (°C)  
Start-Up from Remote On/Off Control  
(VIN = 48V, IOUT = 5.6A, COUT = 10µF tantalum || 1µF ceramic.)  
TBD  
2V/div  
TBD  
5V/div  
2msec/div  
21  
2 0 A , S I N G L E O U T P U T D C / D C C O N V E R T E R S  
USQ Series  
Typical Performance Curves for 24VOUT Models  
USQ-24/4.2-D48: Output Current vs. Ambient Temperature  
(Transverse air flow, pin 1 to pin 3; VIN = 48V, no heat sink.)  
USQ-24/4.2-D48 Efficiency vs. Line Voltage and Load Current  
4.5  
4
95  
90  
85  
80  
75  
70  
65  
60  
55  
3.5  
3
600 lfm  
400 lfm  
200 lfm  
2.5  
2
V
IN = 36V  
Natural Convection  
V
IN = 48V  
1.5  
1
V
IN = 75V  
0.5  
0
0.42  
0.84  
1.26  
1.68  
2.1  
2.52  
2.94  
3.36  
3.78  
4.2  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
Load Current (Amps)  
Ambient Temperature (°C)  
USQ-24/4.2-D48: Output Current vs. Ambient Temperature  
(Longitudinal air flow, pin 1 to pin 3; VIN = 48V, no heat sink.)  
Start-Up from VIN  
(VIN = 48V, IOUT = 4.2A, COUT = 10µF tantalum || 1µF ceramic.)  
6
4.5  
32  
1.5  
0
TBD  
+Input (pin 3)  
20V/div  
TBD  
24VOUT (pin 8)  
10V/div  
–40  
–10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
2msec/div  
Ambient Temperature (°C)  
Start-Up from Remote On/Off Control  
(VIN = 48V, IOUT = 4.2A, COUT = 10µF tantalum || 1µF ceramic.)  
Remote On/Off Control (pin 2)  
2V/div  
24VOUT (pin 8)  
10V/div  
2msec/div  
22  
2 0 A , S I N G L E O U T P U T D C / D C C O N V E R T E R S  
USQ Models  
–Input  
–Output  
+Input  
+Output  
+Sense  
Output Trim  
X
–Sense  
Output Trim  
Remote  
On/Off  
Remote On/Off  
+Input  
LOCATE  
THERMOCOUPLE  
HERE  
+Sense  
+Output  
–Sense  
–Output  
–Input  
BOTTOM VIEW  
TOP VIEW  
Figure 21.Thermocouple Placement for Temperature Derating Calculations  
Figure 20. Industry Standard Quarter-Brick Pinout  
The typical derating curves on the previous pages were developed by moni-  
toring the temperature of the case with a thermocouple placed on top of  
the USQ case as shown in Figure 21. Users desiring to model their own  
application's temperature derating for a particular environment (enclosed  
area, orientation, airflow, possible heatsinking) should make sure the case  
temperature does not exceed 110°C for any condition.  
Figure 20 readily allows users to confirm that DATEL quarter-brick DC/DC  
converters are compatible to the industry-standard pinout, independent of  
pin-numbering conventions.  
®
®
INNOVATION and EXCELLENCE  
DS-0493D  
12/03  
ISO 9001 REGISTERED  
DATEL (UK) LTD. Tadley, England Tel: (01256)-880444  
DATEL S.A.R.L. Montigny Le Bretonneux, France Tel: 01-34-60-01-01  
DATEL GmbH München, Germany Tel: 89-544334-0  
DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1151  
Tel: (508) 339-3000 (800) 233-2765 Fax: (508) 339-6356  
Internet: www.datel.com  
Email: sales@datel.com  
DATEL KK Tokyo, Japan Tel: 3-3779-1031, Osaka Tel: 6-6354-2025  
DATEL makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein  
do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without notice. The DATEL logo is a registered DATEL, Inc. trademark.  
23  

相关型号:

USQ-12/8.3-D48PH

DC-DC Regulated Power Supply Module, 1 Output, Hybrid, 1.450 X 2.280 INCH, 0.400 INCH HEIGHT, QUARTER BRICK PACKAGE-8
MURATA

USQ-15/6.7-D24

High-Density, Quarter-Brick 20 Amp, DC/DC Converters
MURATA

USQ-15/6.7-D24N

DC-DC Regulated Power Supply Module, 1 Output, Hybrid, 1.450 X 2.280 INCH, 0.400 INCH HEIGHT, QUARTER BRICK PACKAGE-8
MURATA

USQ-15/6.7-D24ND

DC-DC Regulated Power Supply Module, 1 Output, Hybrid, 1.450 X 2.280 INCH, 0.400 INCH HEIGHT, QUARTER BRICK PACKAGE-8
MURATA

USQ-15/6.7-D24PD

DC-DC Regulated Power Supply Module, 1 Output, Hybrid, 1.450 X 2.280 INCH, 0.400 INCH HEIGHT, QUARTER BRICK PACKAGE-8
MURATA

USQ-15/6.7-D24PDH

DC-DC Regulated Power Supply Module, 1 Output, Hybrid, 1.450 X 2.280 INCH, 0.400 INCH HEIGHT, QUARTER BRICK PACKAGE-8
MURATA

USQ-15/6.7-D48

High-Density, Quarter-Brick 20 Amp, DC/DC Converters
MURATA

USQ-15/6.7-D48N

DC-DC Regulated Power Supply Module, 1 Output, Hybrid, 1.450 X 2.280 INCH, 0.400 INCH HEIGHT, QUARTER BRICK PACKAGE-8
MURATA

USQ-15/6.7-D48ND

DC-DC Regulated Power Supply Module, 1 Output, Hybrid, 1.450 X 2.280 INCH, 0.400 INCH HEIGHT, QUARTER BRICK PACKAGE-8
MURATA

USQ-15/6.7-D48NH

DC-DC Regulated Power Supply Module, 1 Output, Hybrid, 1.450 X 2.280 INCH, 0.400 INCH HEIGHT, QUARTER BRICK PACKAGE-8
MURATA

USQ-15/6.7-D48P

DC-DC Regulated Power Supply Module, 1 Output, Hybrid, 1.450 X 2.280 INCH, 0.400 INCH HEIGHT, QUARTER BRICK PACKAGE-8
MURATA

USQ-15/6.7-D48PH

DC-DC Regulated Power Supply Module, 1 Output, Hybrid, 1.450 X 2.280 INCH, 0.400 INCH HEIGHT, QUARTER BRICK PACKAGE-8
MURATA