UVQ-18/5.6-D24PL1-C [MURATA]

DC-DC Regulated Power Supply Module, 1 Output, 100.8W, Hybrid, ROHS COMPLIANT, QUARTER BRICK PACKAGE-9;
UVQ-18/5.6-D24PL1-C
型号: UVQ-18/5.6-D24PL1-C
厂家: muRata    muRata
描述:

DC-DC Regulated Power Supply Module, 1 Output, 100.8W, Hybrid, ROHS COMPLIANT, QUARTER BRICK PACKAGE-9

文件: 总25页 (文件大小:611K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
UVQ Series  
s
Low Profile, Isolated Quarter Brick  
2.5–40 Amp DC-DC Converters  
PRODUCT OVERVIEW  
For efficient, fully isolated DC power in the small-  
est space, Murata Power Solutions' UVQ series  
quarter bricks offer output voltages from 1.5  
to 48 Volts with currents up to 40 Amps. UVQs  
operate over a wide temperature range (up to  
+70°C at 200 lfm airflow) at full-rated power. The  
optional mounting baseplate extends this to all  
practical temperature ranges at full power.  
UVQs achieve these impressive specifications  
while delivering excellent electrical performance.  
Overall noise is 35mVp-p (3.3V models) with fast  
step response (down to 50μsec). These convert-  
ers offer high stability even with no load and  
tight output regulation. The unit is fully protected  
against input over and undervoltage, output over-  
current and short circuit. An on-board temperature  
sensor shuts down the converter if thermal limits  
are reached. Protection uses the “hiccup” (auto  
restart) method.  
A convenient remote On/Off control input oper-  
ates by external digital logic, relay or transistor  
input. To compensate for longer wiring and to  
retain output voltage accuracy at the load, UVQs  
include a Sense input to dynamically correct for  
ohmic losses. A trim input may be connected to a  
user’s adjustment potentiometer or trim resis-  
tors for output voltage calibration closer than the  
standard accuracy.  
UVQs include industry-standard safety certifica-  
tions and BASIC I/O insulation provides 2250 Volt  
input/output isolation. Radiation emission testing  
is performed to widely-accepted EMC standards.  
The UVQs may be considered as higher perfor-  
mance replacements for some Murata Power  
Solutions USQ models.  
Typical unit  
FEATURES  
  
Standard quarter-brick package/pinout  
  
Outputs from 1.5 to 48V up to 125W  
  
Low profile 0.42" height  
  
24 and 48Vdc nominal inputs  
  
Fully isolated, 2250Vdc (BASIC) insulation  
  
Designed for RoHS-6 compliance  
  
Output overvoltage/short-circuit protected  
  
On/Off control, trim and sense functions  
  
High efficiency to 92%  
  
Protected against temp. and voltage limits  
  
Designed to meet UL/IEC/EN60950-1 safety  
approvals  
+SENSE  
(7)  
+VOUT  
(8)  
+VIN  
(1)  
Baseplate  
(9)  
Optional  
SWITCH  
CONTROL  
–VOUT  
(4)  
–VIN  
(3)  
–SENSE  
(5)  
PWM  
OPTO  
REFERENCE &  
CONTROLLER  
ISOLATION  
ERROR AMP  
VOUT  
TRIM  
(6)  
INPUT UNDERVOLTAGE, INPUT  
OVERVOLTAGE, AND OUTPUT  
OVERVOLTAGE COMPARATORS  
* Can be ordered with positive (standard) or negative (optional) polarity.  
REMOTE  
ON/OFF  
CONTROL*  
(2)  
Typical configuration — some models use a different topology  
For full details go to  
www.murata-ps.com/rohs  
Figure 1. Simplified Schematic  
www.murata-ps.com/support  
MDC_UVQ Models.D01 Page 1 of 25  
UVQ Series  
Low Profile, Isolated Quarter Brick  
2.5–40 Amp DC-DC Converters  
PERFORMANCE SPECIFICATIONS SUMMARY AND ORDERING GUIDE  
Output  
Input  
VIN Nom. Range IIN, No Load IIN, Full Load  
Package  
(Case,  
R/N (mVp-p)  
Regulation (Max.)  
Efficiency)  
VOUT  
IOUT  
Power  
Root Models  
(Volts) (Amps) (Watts) Typ. Max.  
Line  
Load  
(Volts)  
24  
24  
48  
24  
48  
24  
48  
24  
48  
24  
48  
24  
48  
24  
48  
24  
48  
(Volts)  
18-36  
18-36  
36-75  
18-36  
36-75  
18-36  
36-75  
18-36  
36-75  
18-36  
36-75  
18-36  
36-75  
18-36  
36-75  
18-36  
36-75  
(mA)  
(Amps)  
2.84  
4.14  
2.37  
4.58  
2.7  
Min.  
86.5%  
86%  
Typ.  
88%  
Pinout)  
UVQ-1.5/40-D24P-C  
UVQ-2.5/35-D24P-C  
UVQ-2.5/40-D48N-C  
UVQ-3.3/30-D24P-C ➁  
UVQ-3.3/35-D48N-C ➁  
UVQ-5/20-D24P-C  
UVQ-5/20-D48N-C  
UVQ-12/8-D24P-C  
UVQ-12/10-D48N-C  
UVQ-15/7-D24P-C  
UVQ-15/7-D48N-C  
UVQ-18/5.6-D24P-C  
UVQ-18/6-D48N-C  
UVQ-24/4.5-D24P-C  
UVQ-24/4.5-D48N-C  
UVQ-48/2.5-D24P-C  
UVQ-48/2.5-D48N-C  
1.5  
40  
35  
40  
30  
35  
60  
87.5  
100  
99  
30  
60  
60  
0.075%  
0.05%  
0.05%  
0.1%  
0.05%  
0.05%  
0.05%  
0.25%  
0.25%  
0.05%  
0.05%  
0.1%  
80  
100  
100  
180  
130  
180  
80  
88%  
2.5  
60  
87%  
88%  
35  
65  
88.5%  
87%  
90%  
3.3  
5
115.5  
40  
0.05%  
0.05%  
0.05%  
0.1%  
89%  
30  
20  
50  
4.53  
2.31  
4.4  
91%  
92%  
20  
100  
25  
88.5%  
89%  
90%  
8
96  
95  
130  
160  
150  
150  
185  
185  
100  
130  
200  
375  
90  
91%  
12  
15  
18  
24  
48  
10  
120  
110  
85  
0.075%  
0.05%  
0.05%  
0.05%  
0.05%  
0.075%  
0.075%  
0.1%  
0.05%  
0.05%  
0.02%  
0.075%  
0.075%  
0.15%  
0.25%  
0.2%  
60  
2.78  
4.85  
2.39  
4.69  
2.5  
88.5%  
88.5%  
90%  
90%  
C59, P32  
103  
60  
90.3%  
91.5%  
89.5%  
90%  
7
105  
120  
125  
125  
60  
5.6  
6
100.8  
140  
80  
88%  
88.3%  
88%  
108  
120  
45  
5.03  
2.49  
4.4  
89.5%  
90.5%  
91%  
4.5  
2.5  
75  
45  
89%  
100  
250  
45  
89%  
0.175%  
0.2%  
30  
2.71  
91%  
92.3%  
Output capacitors are 1uF ceramic || 10 uF electrolytic. Input cap is 22 uF, low  
ESR, except UVQ-24/4.5 is 33uF and UVQ-48/2.5 uses no input cap. I/O caps are  
necessary for our test equipment and may not be needed for your application.  
These are partial model numbers. Please refer to the full model number struc-  
ture for complete ordering part numbers.  
Min. IOUT = 3 Amps for UVQ-3.3 Vout models.  
IOUT = 14 Amps max. with VIN = 18-19.5 Volts.  
All specifications are at nominal line voltage and full load, +25°C unless other-  
wise noted. See detailed specifications.  
Model UVQ-31128-C is a standard model UVQ-5/20-D48NB-C with modified rise time to reach 4.75V within 10 mSec. All other specifications are as per the  
standard product.  
UVQ Pin 9 Baseplate Connection  
The UVQ series may include an optional installed baseplate for extended  
thermal management. Various UVQ models (see list below) are also available  
with an additional pin 9 on special order which connects to the baseplate but is  
electrically isolated from the rest of the converter. Please refer to the mechani-  
cal drawings.  
Models available with Pin 9:  
UVQ-12/10-D48  
UVQ-1.5/40-D24  
Models which are NOT available with Pin 9:  
UVQ-5/20-D24 and –D48  
UVQ-3.3/30-D24  
Pin 9 offers a positive method of controlling the electrical potential of the  
baseplate, independent of the converter. Some baseplate models cannot  
include pin 9 and in such cases, the baseplate is grounded by the mounting  
bolts. Or consider adding an external lugged washer with a grounding terminal.  
UVQ-3.3/35-D48  
UVQ-2.5/35-D24  
UVQ-2.5/40-D48  
The baseplate may be ordered by adding a “B” to the model number tree  
and pin 9 will be pre-installed by adding a “9”. The two options are separate.  
Please refer to the Ordering Guide. Do not order pin 9 without the baseplate.  
Note that “pin 9” converters may be on limited forecast, requiring minimum  
order quantities and scheduled deliveries.  
Other models which are not listed will be reviewed for future pin 9 accomo-  
dation.  
www.murata-ps.com/support  
MDC_UVQ Models.D01 Page 2 of 25  
UVQ Series  
Low Profile, Isolated Quarter Brick  
2.5–40 Amp DC-DC Converters  
PART NUMBER STRUCTURE  
U VQ - 3.3 20 D48 N B 9 LX C  
/
-
-
RoHS-6 hazardous substance compliant  
(does not claim EU RoHS exemption 7b–lead in solder)  
Output Configuration  
U = Unipolar/Single  
Alternate Pin Length:  
(special quantity order)  
Blank = Standard pin length  
L1 = 0.110 (2.79mm)  
L2 = 0.145 (3.68mm)  
Quarter-Brick Package  
Nominal Output Voltage  
1.2 to 48 Volts  
Baseplate Pin 9, see Mechanical Drawings: (special order)  
Blank = No pin 9, standard  
9 = Pin 9 installed (see description on pg. 2), optional  
Maximum Rated Output  
Current in Amps  
Blank = No baseplate, standard  
B = Baseplate installed, optional special order  
Input Voltage Range:  
* Note:  
Some model number combinations may not be  
available. Contact Murata Power Solutions.  
D24 = 18-36 Volts (24V nominal)  
D48 = 36-75 Volts (48V nominal)  
Remote On/Off Control Logic:  
Add "P" for positive logic  
Add "N" for negative logic  
Positive "P" logic is standard for D24 models and  
optional special order for D48 models. Negative "N"  
logic is standard for D48 models and optional special  
order for D24 models.  
ORDERING GUIDE SUMMARY  
Model  
All Models  
VOUT Range  
1.2V to 48V  
IOUT Range  
2.5A to 40A  
VIN Range  
18-36V or 36-75V  
Efficiency  
Up to 92.%, model dependent  
INPUT CHARACTERISTICS  
Parameter  
Typ. @ 25°C, full load  
18-36 or 36-75 Volts  
Up to 5.6 Amps  
Notes  
Voltage Range  
24V or 48V nominal  
Model dependent  
Current, full power  
Isolation  
2kVdc to 2250V  
Model dependent  
Remote On/Off Control  
Switch or FET control  
Positive or negative logic  
OUTPUT CHARACTERISTICS  
Parameter  
Voltage  
Current  
Accuracy  
Ripple & Noise (to 20MHz)  
Line and Load Regulation  
Overcurrent Protection  
Overtemperature Protection  
Efficiency (minimum)  
Typ. @ 25°C, full load  
1.5 to 48 Volts 10%  
2.5 to 40 Amps fullscale  
Down to 1% of VNOM  
Down to 35mVp-p  
Down to 0.125%/ 0.25%  
150% of IOUT max.  
+125°C  
Notes  
Trimmable  
No minimum load  
Most models  
Model dependent  
Model dependent  
With hiccup auto-restart  
See Performance Specifications  
GENERAL SPECIFICATIONS  
Parameter  
Typ. @ 25°C, full load  
Down to 50ꢀsec  
Notes  
Dynamic Load Response  
Operating Temperature Range  
Safety  
Model dependent  
–40 to +110°C  
With baseplate, see derating curve  
and CSA C22.2-No.234  
UL/IEC/EN 60950-1  
MECHANICAL CHARACTERISTICS  
With baseplate  
Without baseplate  
1.45 x 2.30 x 0.5 inches (36.83 x 58.42 x 12.7 mm)  
1.45 x 2.30 x 0.42 inches (36.83 x 58.42 x 10.67 mm)  
See Performance Specifications, page 2  
www.murata-ps.com/support  
MDC_UVQ Models.D01 Page 3 of 25  
UVQ Series  
Low Profile, Isolated Quarter Brick  
2.5–40 Amp DC-DC Converters  
Performance/Functional Specifications 24V Models  
Typical @ TA = +25°C under nominal line voltage, nominal output voltage, natural air convection, external caps and full-load conditions, unless noted. (1)  
Input  
Input voltage range  
See ordering guide  
17  
Start-up threshold, (V) min.  
17  
17  
17  
17  
17  
16  
17  
17  
16  
17  
16  
Undervoltage  
shutdown, (V)14  
16  
16.25  
16.25  
Overvoltage shutdown (V)  
none  
39  
none  
Reflected (back) ripple  
current2  
10-50 mA pk-pk, model dependent  
Input Current  
Full load conditions  
Inrush transient, (A2sec)  
Output short circuit, (mA)  
No load, mA  
See ordering guide.  
0.5  
40  
80  
0.5  
0.05  
50  
0.5  
0.1  
10  
90  
1
1
0.05  
50  
0.05  
50  
320  
103  
50  
100  
180  
160  
140  
45  
30  
Low line (VIN = min.),  
(Amps)  
3.79  
5.49  
6.04  
5.57  
5.93  
6.52  
6.29  
6.67  
3.60  
Standby mode,  
(Off, UV, OT shutdown)  
1-4mA, model dependent  
See notes.  
Internal input filter type  
L-C  
Pi-type  
L-C  
Reverse polarity  
protection  
Remote On/Off Control5  
Positive logic, "P" suffix  
(specifications are max)  
OFF = Ground pin to +0.8V  
ON = Open or +5V to +VIN max.  
Negative logic, "N" suffix  
(specifications are max)  
OFF = Open or +5V to +VIN max  
ON = Ground pin to+0.8V max  
Current  
1-8 mA, model dependent  
www.murata-ps.com/support  
MDC_UVQ Models.D01 Page 4 of 25  
UVQ Series  
Low Profile, Isolated Quarter Brick  
2.5–40 Amp DC-DC Converters  
Performance/Functional Specifications 24V Models  
Typical @ TA = +25°C under nominal line voltage, nominal output voltage, natural air convection, external caps and full-load conditions, unless noted. (1)  
Output  
Voltage output range  
See ordering guide.  
1.25% of VNOM  
–20 to +10% of VNOM.  
Voltage output accuracy  
(50% load)  
1.5% of VNOM  
1% of VNOM  
Adjustment range  
10% of VNOM.  
Temperature coefficient  
Minimum loading  
0.02% of VOUT range per °C  
No minimum load  
3 amps  
No minimum load  
Remote sense  
compensation  
+10%.  
Ripple/noise  
See ordering guide.  
See ordering guide.  
See ordering guide.  
Line/Load regulation  
Efficiency  
Maximum capacitive  
loading, Low ESR  
<0.02Ω max.,  
10,000  
5000  
4700  
2200  
resistive load, (ꢀF)  
Current limit inception  
(98% of VOUT, after  
warmup), (Amps)  
45  
44  
36  
24  
10  
9.5  
7.2  
5.8  
5
3.4  
2.8  
Short circuit protection  
method  
Current limiting, hiccup autorestart. Remove overload for recovery.  
1.5 15 mA  
Short circuit current,  
(Amps)  
3.6  
3
3
3
3
Short circuit duration  
Output may be shorted continuously to ground (no damage).  
14.4 Volts  
Overvoltage protection, (via  
magnetic feedback)  
2.3 Volts  
3 Volts max 4 Volts max 6.8 Volts max  
18.5 Volts 22 Volts max 29 Volts max 59 Volts max  
max  
Isolation Characteristics  
Isolation Voltage  
Input to Output, (Volts min)  
Input to baseplate  
2000  
1500  
Baseplate to output,  
(Volts min)  
1500  
1000  
1500  
Isolation resistance  
100 Mꢁ  
1000  
Isolation capacitance, (pF)  
Isolation safety rating  
1500  
2000  
50  
Basic insulation  
www.murata-ps.com/support  
MDC_UVQ Models.D01 Page 5 of 25  
UVQ Series  
Low Profile, Isolated Quarter Brick  
2.5–40 Amp DC-DC Converters  
Performance/Functional Specifications 24V Models  
Typical @ TA = +25°C under nominal line voltage, nominal output voltage, natural air convection, external caps and full-load conditions, unless noted. (1)  
Dynamic characteristics  
100 μSec to 150 μSec to 150 μSec to 100 μSec to  
1% 1.5% 1.5% 1.5% of final to 1%  
of final value of final value of final value  
50 μSec  
40 μSec to 50 μSec to 100 μSec  
1.25% 1% to 1%  
100 μSec  
to 1%  
Dynamic load response  
(50-75-50% load step)  
value  
of final value of final value of final value of final value of final value  
Start-up time  
VIN to VOUT regulated, mSec  
Remote On/Off to VOUT  
regulated, mSec  
90msec  
90msec  
50msec  
50msec  
200msec  
40msec  
30msec  
30msec  
290msec  
100msec  
50msec  
50msec  
600  
200msec  
360  
30msec  
25msec  
242  
35msec  
200msec  
290 30  
100msec  
250 25  
Switching frequency, (KHz) 380 30  
500 to 650  
290 30  
240 25  
Environmental  
Calculated MTBF4  
TBD  
Operating temperature  
range: see Derating  
Curves.  
−40 to +85°C (with Derating, see Note 15.)  
−40 to +115  
Operating temperature,  
with baseplate, no  
derating required (°C)3  
−40 to +110  
−40 to +110  
Storage temperature (°C)  
−55 to +130  
−55 to +125  
Thermal protection/  
shutdown  
+110 to 125°C, model dependent  
To +85°C/85%, non-condensing  
Relative humidity  
Physical  
Outline dimensions  
Baseplate material  
Pin material  
See mechanical specs.  
Aluminum  
Copper alloy  
Pin diameter  
0.040/0.062 inches (1.016/1.575 mm)  
1.55 ounce  
(44 grams)  
Weight  
1 ounce (28 grams)  
Electromagnetic  
interference  
(conducted and  
radiated)  
Designed to meet FCC part 15, class B, EN55022  
(external filter required)  
Safety  
Designed to meet UL/cUL 60950-1, CSA C22.2 No.60950-1, IEC/EN 60950-1  
www.murata-ps.com/support  
MDC_UVQ Models.D01 Page 6 of 25  
UVQ Series  
Low Profile, Isolated Quarter Brick  
2.5–40 Amp DC-DC Converters  
Performance/Functional Specifications 48V Models  
Typical @ TA = +25°C under nominal line voltage, nominal output voltage, natural air convection, external caps and full-load conditions, unless noted. (1)  
Input  
Input voltage range  
See ordering guide  
Start-up threshold, min (V)  
35  
34.5  
34  
34.5  
35  
Undervoltage  
shutdown, (V)14  
33.5  
32  
33.5  
Overvoltage shutdown (V)  
none  
Reflected (back) ripple  
current  
10-50 mA pk-pk, model dependent  
Input Current  
Full load conditions  
Inrush transient, (A2sec)  
Output short circuit, (mA)  
No load, mA  
See ordering guide.  
0.05  
0.05  
50  
1
1
0.05  
30  
1
0.05  
250  
45  
0.05  
50  
10  
60  
50  
80  
100  
130  
80  
30  
30  
Low line (VIN = min.),  
(Amps)  
3.15  
3.56  
3.07  
3.72  
3.21  
3.35  
3.30  
3.60  
Standby mode,  
(Off, UV, OT shutdown)  
1-4mA, model dependent  
See notes.  
Internal input filter type  
L-C  
Pi-type  
L-C  
Reverse polarity  
protection  
Remote On/Off Control5  
Positive logic, "P" suffix  
(specifications are max)  
OFF = Ground pin to +0.8V  
ON = Open or +5V to +VIN max  
Negative logic, "N" suffix  
(specifications are max)  
OFF = Open or +5V to +VIN max  
ON = Ground pin to+0.8V max  
Current  
1-8 mA, model dependent  
www.murata-ps.com/support  
MDC_UVQ Models.D01 Page 7 of 25  
UVQ Series  
Low Profile, Isolated Quarter Brick  
2.5–40 Amp DC-DC Converters  
Performance/Functional Specifications 48V Models  
Typical @ TA = +25°C under nominal line voltage, nominal output voltage, natural air convection, external caps and full-load conditions, unless noted. (1)  
Output  
Voltage output range  
See ordering guide.  
1.25% of VNOM  
Voltage output accuracy  
(50% load)  
1.5% of VNOM  
1% of VNOM  
Adjustment range  
–20 to +10% of VNOM.  
0.02% of VOUT range per °C  
+10% of VNOM.  
Temperature coefficient  
No minimum  
load  
No minimum  
load  
Minimum loading  
3 Amps  
No minimum load  
Remote sense  
compensation  
+10%.  
Ripple/noise  
See ordering guide.  
See ordering guide.  
See ordering guide.  
Line/Load regulation  
Efficiency  
Maximum capacitive  
loading, Low ESR  
<0.02Ω max.,  
10,000  
48  
4700  
2200  
1000  
3.3  
resistive load, (ꢀF)  
Current limit inception  
(98% of VOUT, after  
warmup), (Amps)  
46  
26  
12.5  
8.5  
7
6.5  
3
Short circuit protection  
method  
Current limiting, hiccup autorestart. Remove overload for recovery.  
Short circuit current,  
(Amps)  
5
0.1  
1.5  
3
3
3.5  
Short circuit duration  
Output may be shorted continuously to ground (no damage).  
Overvoltage protection, (via  
magnetic feedback)  
3 Volts max  
4 Volts max  
6 Volts max 14.4 Volts max 18.5 Volts max 22 Volts max 29 Volts max 55 Volts max  
Isolation Characteristics  
Isolation Voltage  
Input to Output, (Volts min)  
Input to baseplate  
2250  
1500  
Baseplate to output,  
(Volts min)  
1500  
1500  
Isolation resistance  
100 Mꢁ  
Isolation capacitance, (pF)  
Isolation safety rating  
1500  
1000  
Basic insulation  
50  
50  
1500  
www.murata-ps.com/support  
MDC_UVQ Models.D01 Page 8 of 25  
UVQ Series  
Low Profile, Isolated Quarter Brick  
2.5–40 Amp DC-DC Converters  
Performance/Functional Specifications 48V Models  
Typical @ TA = +25°C under nominal line voltage, nominal output voltage, natural air convection, external caps and full-load conditions, unless noted. (1)  
Dynamic characteristics  
150 μSec to  
1.5%  
of final value of final value of final value  
150 μSec to  
1.5%  
90 μSec  
to 2%  
100 μSec  
to 1%  
of final value of final value  
75 μSec  
to 1%  
Dynamic load response  
(50-75-50% load step)  
50 μSec to 1%50 μSec to 1%50 μSec to 1%  
of final value of final value of final value  
Start-up time  
VIN to VOUT regulated, mSec  
Remote On/Off to VOUT  
regulated, mSec  
50msec  
50msec  
50msec  
40msec  
30msec  
30msec  
100msec  
50msec  
50msec  
600  
50msec  
600  
50msec  
30msec  
30msec  
30msec  
100msec  
290 30  
50msec  
Switching frequency, (KHz)  
450 50  
290 30  
245 20  
240 25  
540 40  
Environmental  
Calculated MTBF4  
TBD  
−40 to +85°C (with Derating, see Note 15.)  
Operating temperature  
range: see Derating  
Curves.  
Operating temperature,  
with baseplate, no  
−40 to +110  
−40 to +115 −40 to +110 −40 to +110 −40 to +120  
−55 to +125  
derating required (°C)3  
Storage temperature (°C)  
Thermal protection/  
shutdown  
+110 to 125°C, model dependent  
To +85°C/85%, non-condensing  
Relative humidity  
Physical  
Outline dimensions  
Baseplate material  
Pin material  
Pin diameter  
Weight  
See mechanical specs.  
Aluminum  
Copper alloy  
0.040/0.062 inches (1.016/1.575 mm)  
1 ounce (28 grams)  
Electromagnetic  
interference  
(conducted and  
radiated)  
Designed to meet FCC part 15, class B, EN55022  
(external filter required)  
Safety  
Designed to meet UL/cUL 60950-1, CSA C22.2 No.60950-1, IEC/EN 60950-1  
www.murata-ps.com/support  
MDC_UVQ Models.D01 Page 9 of 25  
UVQ Series  
Low Profile, Isolated Quarter Brick  
2.5–40 Amp DC-DC Converters  
TYPICAL PERFORMANCE DATA  
UVQ-1.5/40-D24N: Maximum Current Temperature Derating  
(No baseplate, VIN = 24V, transverse air flow)  
UVQ-1.5/40-D24N: Maximum Current Temperature Derating  
(With baseplate, VIN = 24V, transverse air flow)  
40  
39  
40  
39  
38  
37  
36  
35  
34  
33  
Natural convection  
38  
Natural convection  
100 lfm  
37  
200 lfm  
100 lfm  
36  
35  
34  
33  
200 lfm  
400 lfm  
400 lfm  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
Ambient Temperature (oC)  
Ambient Temperature (oC)  
UVQ-2.5/40-D48  
Power Dissipation vs. Load Current @ 25°C  
UVQ-2.5/40-D48N  
Efficiency vs. Line Voltage and Load Current @ 25°C  
16  
92  
88  
84  
80  
76  
72  
68  
64  
62  
14  
12  
10  
8
V
IN = 48V  
V
IN = 36V  
6
V
IN = 48V  
4
V
IN = 75V  
2
0
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
Load Current (Amps)  
Load Current (Amps)  
UVQ-3.3/30-D24N: Maximum Current Temperature Derating  
UVQ-3.3/30-D24N: Maximum Current Temperature Derating  
(No baseplate, VIN = 24V, transverse air flow at sea level)  
(With baseplate, VIN = 24V, transverse air flow at sea level)  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
Natural convection  
Natural convection  
100 lfm  
200 lfm  
300 lfm  
100 lfm  
200 lfm  
300 lfm  
400 lfm  
400 lfm  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
Ambient Temperature (oC)  
Ambient Temperature (oC)  
www.murata-ps.com/support  
MDC_UVQ Models.D01 Page 10 of 25  
UVQ Series  
Low Profile, Isolated Quarter Brick  
2.5–40 Amp DC-DC Converters  
TYPICAL PERFORMANCE DATA  
UVQ-3.3/35-D48 Maximum Current Temperature Derating  
(With baseplate, VIN = 48V, transverse air flow at sea level)  
UVQ-5/20-D24P  
Efficiency vs. Line Voltage and Load Current @ +25°C  
36  
34  
32  
30  
28  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
VIN = 18V  
VIN = 24V  
VIN = 30V  
VIN = 36V  
Natural Convection  
26  
100 lfm  
200 lfm  
24  
22  
300 lfm  
20  
400 lfm  
18  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
Ambient Temperature (oC)  
5
6.5  
8
9.5  
11  
12.5  
14  
15.5  
17  
18.5  
20  
Load Current (Amps)  
UVQ-5/20-D24  
Power Dissipation vs. Load Current @ +25°C  
10  
9
8
7
6
5
4
3
2
1
V
IN = 18V  
V
IN = 24V  
IN = 30V  
V
V
IN = 36V  
5
6.5  
8
9.5  
11  
12.5  
14  
15.5  
17  
18.5  
20  
Load Current (Amps)  
UVQ-5/20-D24P: Maximum Current Temperature Derating  
UVQ-5/20-D24PB: Maximum Current Temperature Derating  
(No baseplate, VIN = 24V, transverse air flow)  
(With baseplate, VIN = 24V, transverse air flow)  
20  
19.5  
19  
20  
19.5  
19  
18.5  
18  
18.5  
18  
Natural convection  
100 lfm  
17.5  
17  
200 lfm  
300 lfm  
400 lfm  
17.5  
17  
Natural convection  
100 lfm  
16.5  
16  
200 lfm  
300 lfm  
400 lfm  
15.5  
15  
16.5  
16  
14.5  
14  
15.5  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
Ambient Temperature (oC)  
Ambient Temperature (oC)  
www.murata-ps.com/support  
MDC_UVQ Models.D01 Page 11 of 25  
UVQ Series  
Low Profile, Isolated Quarter Brick  
2.5–40 Amp DC-DC Converters  
TYPICAL PERFORMANCE DATA  
UVQ-5/20-D48P: Maximum Current Temperature Derating  
(No baseplate, VIN = 48V, transverse air flow at sea level)  
UVQ-5/20-D48  
Efficiency vs. Line Voltage and Load Current @ 25°C  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
92  
88  
84  
80  
76  
72  
68  
64  
62  
100 lfm  
200 lfm  
300 lfm  
V
IN = 36V  
400 lfm  
V
IN = 48V  
Natural convection  
V
IN = 75V  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
Ambient Temperature (oC)  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
Load Current (Amps)  
UVQ-5/20-D48PB: Maximum Current Temperature Derating  
(With baseplate, VIN = 48V, transverse air flow at sea level)  
UVQ-12/8-D24P  
Efficiency vs. Line Voltage and Load Current @ +25°C  
21  
20  
19  
18  
17  
16  
15  
14  
13  
95  
90  
85  
80  
75  
VIN = 18V  
VIN = 24V  
VIN = 30V  
VIN = 36V  
100 lfm  
200 lfm  
300 lfm  
400 lfm  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
0.8  
1.6  
2.4  
3.2  
4
4.8  
5.6  
6.4  
7.2  
8
Load Current (Amps)  
Ambient Temperature (oC)  
UVQ-12/8-D24P: Maximum Current Temperature Derating  
(No baseplate, VIN = 24V, transverse air flow)  
UVQ-12/10-D48N  
Efficiency vs. Line Voltage and Load Current @ +25°C  
8.0  
7.8  
7.6  
7.4  
7.2  
7.0  
6.8  
92  
90  
88  
86  
84  
82  
80  
78  
VIN = 36V  
VIN = 48V  
VIN = 60V  
VIN = 75V  
100 lfm  
200 lfm  
300 lfm  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
Ambient Temperature (oC)  
1
2
3
4
5
6
7
8
9
10  
Load Current (Amps)  
www.murata-ps.com/support  
MDC_UVQ Models.D01 Page 12 of 25  
UVQ Series  
Low Profile, Isolated Quarter Brick  
2.5–40 Amp DC-DC Converters  
TYPICAL PERFORMANCE DATA  
UVQ-12/10-D48N: Maximum Current Temperature Derating  
(No baseplate, VIN = 48V, transverse air flow)  
UVQ-12/10-D48N  
Power Dissipation vs. Load Current @ +25°C  
10  
9
15  
13  
11  
9
VIN = 75V  
8
VIN = 60V  
VIN = 48V  
VIN = 36V  
7
7
Natural convection  
100 lfm  
5
200 lfm  
300 lfm  
6
3
400 lfm  
1
5
1
2
3
4
5
6
7
8
9
10  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
Load Current (Amps)  
Ambient Temperature (oC)  
UVQ-12/10-D48N: Maximum Current Temperature Derating  
(With baseplate, VIN = 48V, transverse air flow)  
UVQ-15/7-D24N  
Efficiency vs. Line Voltage and Load Current @ +25°C  
10.0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
94  
92  
90  
88  
86  
84  
82  
80  
VIN = 18V  
VIN = 24V  
VIN = 30V  
VIN = 36V  
Natural convection  
100 lfm  
200 lfm  
300 lfm  
400 lfm  
0.7  
1.4  
2.1  
2.8  
3.5  
4.2  
4.9  
5.6  
6.3  
7
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
Load Current (Amps)  
Ambient Temperature (oC)  
UVQ-15/7-D24N: Maximum Current Temperature Derating  
(No baseplate, VIN = 24V, transverse air flow)  
UVQ-15/7-D24N  
Power Dissipation vs. Load Current @ +25°C  
7.5  
13  
7
6.5  
6
11  
9
VIN = 36V  
VIN = 30V  
VIN = 24V  
VIN = 18V  
7
5.5  
5
Natural convection  
100 lfm  
5
200 lfm  
300 lfm  
400 lfm  
3
4.5  
4
1
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
0.7  
1.4  
2.1  
2.8  
3.5  
4.2  
4.9  
5.6  
6.3  
7
Load Current (Amps)  
Ambient Temperature (oC)  
www.murata-ps.com/support  
MDC_UVQ Models.D01 Page 13 of 25  
UVQ Series  
Low Profile, Isolated Quarter Brick  
2.5–40 Amp DC-DC Converters  
TYPICAL PERFORMANCE DATA  
UVQ-15/7-D24N: Maximum Current Temperature Derating  
(With baseplate, VIN = 24V, transverse air flow)  
UVQ-15/7-D48N  
Efficiency vs. Line Voltage and Load Current @ +25°C  
7.5  
7
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
6.5  
VIN = 36V  
VIN = 48V  
VIN = 60V  
VIN = 75V  
6
Natural convection  
100 lfm  
200 lfm  
300 lfm  
400 lfm  
5.5  
5
4.5  
4
0.7  
1.4  
2.1  
2.8  
3.5  
4.2  
4.9  
5.6  
6.3  
7
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
Load Current (Amps)  
Ambient Temperature (oC)  
UVQ-15/7-D48N: Maximum Current Temperature Derating  
(No baseplate, VIN = 48V, transverse air flow)  
UVQ-15/7-D48N  
Power Dissipation vs. Load Current @ +25°C  
11  
7.0  
6.8  
6.6  
6.4  
6.2  
6.0  
5.8  
5.6  
5.4  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
10  
9
8
7
6
5
4
3
2
1
VIN = 75V  
VIN = 60V  
VIN = 48V  
VIN = 36V  
Natural convection  
100 lfm  
200 lfm  
300 lfm  
400 lfm  
0.7  
1.4  
2.1  
2.8  
3.5  
4.2  
4.9  
5.6  
6.3  
7
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
Load Current (Amps)  
Ambient Temperature (oC)  
UVQ-15/7-D48N: Maximum Current Temperature Derating  
(With baseplate, VIN = 48V, transverse air flow)  
UVQ-18/5.6-D24  
Efficiency vs. Line Voltage and Load Current @ 25°C  
92  
7.0  
6.8  
6.6  
6.4  
6.2  
6.0  
5.8  
5.6  
5.4  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
90  
88  
86  
84  
82  
80  
78  
76  
Natural convection  
100 lfm  
VIN = 18V  
VIN = 24V  
200 lfm  
300 lfm  
VIN = 36V  
0.56  
1.12  
1.68  
2.24  
2.8  
3.36  
3.92  
4.48  
5.04  
5.6  
Load Current (Amps)  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
Ambient Temperature (oC)  
www.murata-ps.com/support  
MDC_UVQ Models.D01 Page 14 of 25  
UVQ Series  
Low Profile, Isolated Quarter Brick  
2.5–40 Amp DC-DC Converters  
TYPICAL PERFORMANCE DATA  
UVQ-18/5.6-D24: Maximum Current Temperature Derating  
(No baseplate, VIN = 24V, transverse air flow)  
UVQ-18/5.6-D24: Maximum Current Temperature Derating  
(With baseplate, VIN = 24V, transverse air flow)  
5.8  
5.6  
5.4  
5.8  
5.6  
5.4  
5.2  
5
200 lfm  
5.2  
5
300 lfm  
4.8  
100 lfm  
400 lfm  
Natural  
Convection  
4.6  
100 lfm  
4.8  
4.6  
4.4  
4.2  
4
4.4  
4.2  
200 lfm  
300 lfm  
4
3.8  
3.6  
3.4  
Natural  
Convection  
400 lfm  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
Ambient Temperature (oC)  
Ambient Temperature (oC)  
UVQ-18/6-D48  
Power Dissipation vs. Load Current @ 25°C  
UVQ-18/6-D48N  
Efficiency vs. Line Voltage and Load Current @ 25°C  
16  
14  
12  
10  
8
95  
90  
85  
80  
75  
70  
65  
60  
V
IN = 75V  
V
IN = 48V  
V
IN = 36V  
V
IN = 36V  
6
V
IN = 48V  
4
V
IN = 75V  
2
0
0.6  
1.2  
1.8  
2.4  
3
3.6  
4.2  
4.8  
5.4  
6
0.6  
1.2  
1.8  
2.4  
3
3.6  
4.2  
4.8  
5.4  
6
Load Current (Amps)  
Load Current (Amps)  
UVQ-18/6-D48: Maximum Current Temperature Derating  
UVQ-18/6-D48: Maximum Current Temperature Derating  
(No baseplate, VIN = 48V, transverse air flow)  
(With baseplate, VIN = 48V, transverse air flow)  
6.5  
6
6.5  
6
5.5  
5
5.5  
5
100 lfm  
100 lfm  
200 lfm  
300 lfm  
500 lfm  
4.5  
4
4.5  
4
200 lfm  
300 lfm  
500 lfm  
3.5  
3.5  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
Ambient Temperature (oC)  
Ambient Temperature (oC)  
www.murata-ps.com/support  
MDC_UVQ Models.D01 Page 15 of 25  
UVQ Series  
Low Profile, Isolated Quarter Brick  
2.5–40 Amp DC-DC Converters  
TYPICAL PERFORMANCE DATA  
UVQ-24/4.5-D24N  
Efficiency vs. Line Voltage and Load Current @ +25°C  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
VIN = 18V  
VIN = 24V  
VIN = 30V  
VIN = 36V  
1.00  
1.35  
1.70  
2.05  
2.40  
2.75  
3.10  
3.45  
3.80  
4.15  
4.50  
Load Current (Amps)  
UVQ-24/4.5-D24P: Maximum Current Temperature Derating  
UVQ-24/4.5-D24P: Maximum Current Temperature Derating  
(No baseplate, Vin= 24V, air flow is from Pin 1 to Pin 3)  
(With baseplate, Vin= 24V, air flow is from Pin 1 to Pin 3)  
4.50  
4.50  
4.25  
4.00  
3.75  
3.50  
3.25  
3.00  
2.75  
2.50  
4.25  
4.00  
3.75  
3.50  
3.25  
3.00  
2.75  
2.50  
400 LFM  
300 LFM  
200 LFM  
100 LFM  
LOW LFM  
400 LFM  
300 LFM  
200 LFM  
100 LFM  
LOW LFM  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
Ambient Temperature (oC)  
Ambient Temperature (oC)  
UVQ-24/4.5-D48N: Maximum Current Temperature Derating  
(No baseplate, VIN = 48V, transverse air flow)  
UVQ-24/4.5-D48N  
Efficiency vs. Line Voltage and Load Current @ +25°C  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
68  
66  
64  
4.5  
4.3  
4.0  
3.8  
3.5  
3.3  
3.0  
400 lfm  
300 lfm  
200 lfm  
100 lfm  
VIN = 36V  
VIN = 48V  
VIN = 60V  
VIN = 75V  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
1.00 1.35 1.70 2.05 2.40 2.75 3.10 3.45 3.80 4.15 4.50  
Ambient Temperature (oC)  
Load Current (Amps)  
www.murata-ps.com/support  
MDC_UVQ Models.D01 Page 16 of 25  
UVQ Series  
Low Profile, Isolated Quarter Brick  
2.5–40 Amp DC-DC Converters  
TYPICAL PERFORMANCE DATA  
UVQ-48/2.5-D48N: Maximum Current Temperature Derating  
(With baseplate, VIN = 48V, transverse air flow)  
UVQ-48/2.5-D48N  
Efficiency vs. Line Voltage and Load Current @ 25°C  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
93  
92  
91  
90  
Natural convection  
100 lfm  
V
IN = 36V  
89  
88  
87  
86  
85  
200 lfm  
V
IN = 48V  
VIN = 60V  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
VIN = 75V  
Ambient Temperature (oC)  
0.25  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
2.25  
2.5  
Load Current (Amps)  
www.murata-ps.com/support  
MDC_UVQ Models.D01 Page 17 of 25  
UVQ Series  
Low Profile, Isolated Quarter Brick  
2.5–40 Amp DC-DC Converters  
MECHANICAL SPECIFICATIONS  
Case C59  
Case C59 with Baseplate  
2.30 (58.4)  
1.860 (47.2)  
A
A
0.42  
(10.7)  
1.030  
1.45  
(26.2) (36.8)  
PINS 1-3, 5-7: 0.040 0.002 (1.016 0.05)  
PINS 4 & 8: 0.062 0.002 (1.575 0.05)  
0.188  
(4.78)  
2.00 (50.8)  
A
BASEPLATE  
#M3-THREAD X 0.15 DEEP  
TYPICAL (4) PLACES  
3
2
1
4
5
6
7
8
0.600  
(15.24)  
4 EQ. SP.  
@ 0.150  
(3.81)  
1.45  
(36.8)  
0.50  
(12.7)  
PINS 1-3, 5-7: 0.040 0.002 (1.016 0.05)  
PINS 4 & 8: 0.062 0.002 (1.575 0.05)  
0.188  
(4.8)  
BOTTOM VIEW  
Alternate pin lengths are available. Contact Murata Power Solutions.  
2.30 (58.4)  
2.00 (50.8)  
A
A
Optional baseplate pin  
is special order.  
Contact Murata Power Solutions..  
0.15 (3.81)  
3
9
4
5
0.600 (15.24)  
4 EQ. SP.  
@ 0.150 (3.81)  
Optional pin 9 connects  
to baseplate. Electrically  
isolated from converter.  
6
2
1
7
8
BOTTOM VIEW  
Dimensions are in inches (mm) shown for ref. only.  
DOSA-Compliant  
I/O Connections  
Function P32  
+Vin  
Third Angle Projection  
Important: If sense inputs are not  
Pin  
1
connected to a remote load, connect  
them to their respective VOUT pins at  
the converter.  
2
On/Off Control  
–Vin  
3
4
–Vout  
Tolerances (unless otherwise specified):  
.XX 0.02 (0.5)  
.XXX 0.010 (0.25)  
Angles 2ꢂ  
5
–Sense  
6
Trim  
7
+Sense  
8
+Vout  
Components are shown for reference only.  
www.murata-ps.com/support  
MDC_UVQ Models.D01 Page 18 of 25  
UVQ Series  
Low Profile, Isolated Quarter Brick  
2.5–40 Amp DC-DC Converters  
ABSOLUTE MAXIMUM RATINGS  
TECHNICAL NOTES  
Removal of Soldered UVQs from Printed Circuit Boards  
Should removal of the UVQ from its soldered connection be needed, thoroughly  
de-solder the pins using solder wicks or de-soldering tools. At no time should  
any prying or leverage be used to remove boards that have not been properly  
de-soldered first.  
Input Voltage  
Continuous  
Transient (100 mS)  
24V models  
0 to +36V  
+50V  
48V models  
0 to +75V  
+100V  
On/Off Control  
–0.3 V min to +13.5V max.  
See Fuse section  
Input Reverse Polarity Protection  
Output Overvoltage  
Input Source Impedance  
VOUT +20% max.  
UVQ converters must be driven from a low ac-impedance input source. The  
DC-DC’s performance and stability can be compromised by the use of highly  
inductive source impedances. The input circuit shown in Figure 2 is a practical  
solution that can be used to minimize the effects of inductance in the input  
traces. For optimum performance, components should be mounted close to  
the DC-DC converter.  
Output Current (Note 7)  
Current-limited. Devices can withstand  
sustained short circuit without damage.  
Storage Temperature  
Lead Temperature  
–55 to +125°C  
See soldering guidelines  
Absolute maximums are stress ratings. Exposure of devices to greater than  
any of these conditions may adversely affect long-term reliability. Proper  
operation under conditions other than those listed in the Performance/Func-  
tional Specifications Table is not implied nor recommended.  
I/O Filtering, Input Ripple Current, and Output Noise  
All models in the UVQ Series are tested/specified for input ripple current (also  
called input reflected ripple current) and output noise using the circuits and  
layout shown in Figures 2 and 3.  
(1) All models are tested and specified with 200 LFM airflow, external 1||10μF ceramic/  
tantalum output capacitors. External input capacitance varies according to model type.  
All capacitors are low ESR types. These capacitors are necessary to accommodate  
our test equipment and may not be required to achieve specified performance in your  
applications. All models are stable and regulate within spec under no-load conditions.  
General conditions for Specifications are +25°C, VIN =nominal, VOUT = nominal, full load.  
(2) Input Ripple Current is tested and specified over a 5-20MHz bandwidth. Input filter-  
ing is CIN = 33μF tantalum, CBUS = 220μF electrolytic, LBUS = 12μH.  
(3) Note that Maximum Power Derating curves indicate an average current at nominal  
input voltage. At higher temperatures and/or lower airflow, the DC-DC converter will  
tolerate brief full current outputs if the total RMS current over time does not exceed  
the Derating curve.  
TO  
CURRENT  
PROBE  
OSCILLOSCOPE  
1
3
+VIN  
–VIN  
LBUS  
+
V
IN  
C
BUS  
CIN  
(4) Mean Time Before Failure is calculated using the Telcordia (Belcore) SR-332 Method 1,  
Case 3, ground fixed conditions, TPCBOARD = +25°C, full output load, natural air  
convection.  
C
IN = 33μF, ESR < 700mΩ @ 100kHz  
BUS = 220μF, ESR < 100mΩ @ 100kHz  
C
LBUS = 12μH  
(5) The On/Off Control may be driven with external logic or by applying appropriate  
external voltages which are referenced to Input Common. The On/Off Control Input  
should use either an open collector/open drain transistor or logic gate which does  
not exceed +13.5V.  
Figure 2. Measuring Input Ripple Current  
(6) Short circuit shutdown begins when the output voltage degrades approximately 2%  
from the selected setting.  
(7) The outputs are not intended to sink appreciable reverse current.  
(8) Output noise may be further reduced by adding an external filter. See I/O Filtering  
and Noise Reduction.  
(9) All models are fully operational and meet published specifications, including “cold  
start” at –40°C.  
External input capacitors (CIN in Figure 2) serve primarily as energy-storage  
elements. They should be selected for bulk capacitance (at appropriate fre-  
quencies), low ESR, and high rms-ripple-current ratings. The switching nature  
of DC-DC converters requires that dc voltage sources have low ac impedance  
as highly inductive source impedance can affect system stability. In Figure 2,  
CBUS and LBUS simulate a typical dc voltage bus. Your specific system configura-  
tion may necessitate additional considerations.  
(10) Regulation specifications describe the deviation as the line input voltage or output  
load current is varied from a nominal midpoint value to either extreme.  
(11) Overvoltage shutdown on 48V input models is not supplied in order to comply with  
telecom reliability requirements. These requirements attempt continued operation  
despite significant input overvoltage.  
(12) Do not exceed maximum power specifications when adjusting the output trim.  
(13) Note that the converter may operate up to +110°C with the baseplate installed.  
However, thermal self-protection occurs near +110°C, and there is a temperature  
gradient between the hotspot and the baseplate. Therefore, +100°C is recom-  
mended to avoid thermal shutdown.  
(14) The converter is guaranteed to turn off at the UV shutdown voltage.  
(15) At full power, the package temperature of all on-board components must not exceed  
+128°C.  
www.murata-ps.com/support  
MDC_UVQ Models.D01 Page 19 of 25  
UVQ Series  
Low Profile, Isolated Quarter Brick  
2.5–40 Amp DC-DC Converters  
In critical applications, output ripple/noise (also referred to as periodic and  
random deviations or PARD) can be reduced below specified limits using filter-  
ing techniques, the simplest of which is the installation of additional external  
output capacitors. Output capacitors function as true filter elements and  
should be selected for bulk capacitance, low ESR, and appropriate frequency  
response.  
On/Off Control  
The primary-side, Remote On/Off Control function (pin 2) can be specified to  
operate with either positive or negative logic. Positive-logic devices ("P" suffix)  
are enabled when pin 2 is left open or is pulled high. Positive-logic devices are  
disabled when pin 2 is pulled low. Negative-logic devices are off when pin 2 is  
high/open and on when pin 2 is pulled low. See Figure 4.  
All external capacitors should have appropriate voltage ratings and be  
located as close to the converter as possible. Temperature variations for all  
relevant parameters should be taken into consideration. OS-CONTM organic  
semiconductor capacitors (www.sanyo.com) can be especially effective for  
further reduction of ripple/noise. The most effective combination of external I/O  
capacitors will be a function of line voltage and source impedance, as well as  
particular load and layout conditions.  
Dynamic control of the remote on/off function is best accomplished with a  
mechanical relay or an open-collector/open-drain drive circuit (optically iso-  
lated if appropriate). The drive circuit should be able to sink appropriate current  
(see Performance Specifications) when activated and withstand appropriate  
voltage when deactivated.  
EQUIVALENT CIRCUIT FOR  
POSITIVE AND NEGATIVE  
LOGIC MODELS  
+Vcc  
+VIN  
1
2
7
+SENSE  
8
+VOUT  
ON/OFF  
CONTROL  
CONTROL  
RLOAD  
SCOPE  
C1  
C2  
REF  
4
5
–VOUT  
3
–VIN  
COMMON  
–SENSE  
Figure 4. Driving the Remote On/Off Control Pin  
C1 = 1μF  
C2 = 10μF  
LOAD 2-3 INCHES (51-76mm) FROM MODULE  
Current Limiting (Power limit with current mode control)  
Figure 3. Measuring Output Ripple/Noise (PARD)  
As power demand increases on the output and enters the specified “limit  
inception range” (current in voltage mode and power in current mode) limiting  
circuitry activates in the DC-DC converter to limit/restrict the maximum current  
or total power available. In voltage mode, current limit can have a “constant or  
foldback” characteristic. In current mode, once the current reaches a certain  
range the output voltage will start to decrease while the output current con-  
tinues to increase, thereby maintaining constant power, until a maximum peak  
current is reached and the converter enters a “hic-up” (on off cycling) mode of  
operation until the load is reduced below the threshold level, whereupon it will  
return to a normal mode of operation. Current limit inception is defined as the  
point where the output voltage has decreased by a pre-specified percentage  
(usually a 2% decrease from nominal).  
Start-Up Threshold and Undervoltage Shutdown  
Under normal start-up conditions, the UVQ Series will not begin to regulate  
properly until the ramping input voltage exceeds the Start-Up Threshold.  
Once operating, devices will turn off when the applied voltage drops below  
the Undervoltage Shutdown point. Devices will remain off as long as the  
undervoltage condition continues. Units will automatically re-start when the  
applied voltage is brought back above the Start-Up Threshold. The hysteresis  
built into this function avoids an indeterminate on/off condition at a single input  
voltage. See Performance/Functional Specifications table for actual limits.  
Short Circuit Condition (Current mode control)  
Start-Up Time  
The short circuit condition is an extension of the “Current Limiting” condition.  
When the monitored peak current signal reaches a certain range, the PWM  
controller’s outputs are shut off thereby turning the converter “off.” This is  
followed by an extended time out period. This period can vary depending on  
other conditions such as the input voltage level. Following this time out period,  
the PWM controller will attempt to re-start the converter by initiating a “normal  
start cycle” which includes softstart. If the “fault condition” persists, another  
“hic-up” cycle is initiated. This “cycle” can and will continue indefinitely until  
such time as the “fault condition” is removed, at which time the converter  
will resume “normal operation.” Operating in the “hic-up” mode during a fault  
condition is advantageous in that average input and output power levels are  
held low preventing excessive internal increases in temperature.  
The VIN to VOUT Start-Up Time is the interval between the point at which a  
ramping input voltage crosses the Start-Up Threshold voltage and the point at  
which the fully loaded output voltage enters and remains within its specified  
1% accuracy band. Actual measured times will vary with input source imped-  
ance, external input capacitance, and the slew rate and final value of the input  
voltage as it appears to the converter. The On/Off to VOUT start-up time assumes  
that the converter is turned off via the Remote On/Off Control with the nominal  
input voltage already applied.  
www.murata-ps.com/support  
MDC_UVQ Models.D01 Page 20 of 25  
UVQ Series  
Low Profile, Isolated Quarter Brick  
2.5–40 Amp DC-DC Converters  
Thermal Shutdown  
UVQ converters are equipped with thermal-shutdown circuitry. If the inter-  
nal temperature of the DC-DC converter rises above the designed operating  
temperature (See Performance Specifications), a precision temperature sensor  
will power down the unit. When the internal temperature decreases below the  
threshold of the temperature sensor, the unit will self start.  
8
1
2
+VOUT  
+VIN  
7
+SENSE  
6
ON/OFF  
CONTROL  
TRIM  
–SENSE  
–VOUT  
LOAD  
RTRIM DOWN  
Output Overvoltage Protection  
5
4
The output voltage is monitored for an overvoltage condition via magnetic cou-  
pling to the primary side. If the output voltage rises to a fault condition, which  
could be damaging to the load circuitry (see Performance Specifications), the  
sensing circuitry will power down the PWM controller causing the output volt-  
age to decrease. Following a time-out period the PWM will restart, causing the  
output voltage to ramp to its appropriate value. If the fault condition persists,  
and the output voltages again climb to excessive levels, the overvoltage  
circuitry will initiate another shutdown cycle. This on/off cycling is referred to  
as "hiccup" mode.  
3
–VIN  
Figure 6.Trim Connections To Decrease Output Voltages Using Fixed Resistors  
On UVQs, a single resistor connected from the Trim pin (pin 6) to the +Sense  
(pin 7) will increase the output voltage. A resistor connected from the Trim Pin  
(pin 6) to the –Sense (pin 5) will decrease the output voltage.  
Input Reverse-Polarity Protection  
If the input-voltage polarity is accidentally reversed, an internal diode will  
become forward biased and likely draw excessive current from the power  
source. If the source is not current limited or the circuit appropriately fused, it  
could cause permanent damage to the converter.  
Trim adjustments greater than the specified +10%/–20% can have an  
adverse affect on the converter’s performance and are not recommended.  
Excessive voltage differences between VOUT and Sense, in conjunction with trim  
adjustment of the output voltage, can cause the overvoltage protection circuitry  
to activate (see Performance Specifications for overvoltage limits).  
Input Fusing  
Certain applications and/or safety agencies may require the installation of  
fuses at the inputs of power conversion components. Fuses should also be  
used if the possibility of a sustained, non-current-limited, input-voltage polarity  
reversal exists. For Murata Power Solutions' UVQ Series DC-DC Converters,  
fast-blow fuses are recommended with values no greater than twice the  
maximum input current.  
Temperature/power derating is based on maximum output current and  
voltage at the converter's output pins. Use of the trim and sense functions can  
cause output voltages to increase, thereby increasing output power beyond  
the UVQ's specified rating, or cause output voltages to climb into the output  
overvoltage region. Therefore:  
Trimming Output Voltage  
(VOUT at pins) x (IOUT) rated output power  
UVQ converters have a trim capability (pin 6) that enables users to adjust the  
output voltage from +10% to –20% (refer to the trim equations). Adjustments  
to the output voltage can be accomplished with a single fixed resistor as shown  
in Figures 5 and 6. A single fixed resistor can increase or decrease the output  
voltage depending on its connection. Resistors should be located close to  
the converter and have TCR's less than 100ppm/°C to minimize sensitivity to  
changes in temperature. If the trim function is not used, leave the trim pin open.  
The Trim pin (pin 6) is a relatively high impedance node that can be suscep-  
tible to noise pickup when connected to long conductors in noisy environments.  
Soldering Guidelines  
Murata Power Solutions recommends the specifications below when installing these  
converters. These specifications vary depending on the solder type. Exceeding these  
specifications may cause damage to the product. Your production environment may dif-  
fer; therefore please thoroughly review these guidelines with your process engineers.  
8
Wave Solder Operations for through-hole mounted products (THMT)  
For Sn/Ag/Cu based solders:  
1
+VOUT  
+VIN  
7
+SENSE  
Maximum Preheat Temperature  
Maximum Pot Temperature  
Maximum Solder Dwell Time  
For Sn/Pb based solders:  
Maximum Preheat Temperature  
Maximum Pot Temperature  
Maximum Solder Dwell Time  
115° C.  
270° C.  
2
3
6
5
4
ON/OFF  
CONTROL  
TRIM  
–SENSE  
–VOUT  
LOAD  
7 seconds  
RTRIM UP  
105° C.  
–VIN  
250° C.  
6 seconds  
Figure 5.Trim Connections To Increase Output Voltages Using Fixed Resistors  
www.murata-ps.com/support  
MDC_UVQ Models.D01 Page 21 of 25  
UVQ Series  
Low Profile, Isolated Quarter Brick  
2.5–40 Amp DC-DC Converters  
Trim Equations  
F E A T U R E S A N D O P T I O N S  
Trim Up  
Trim Down  
Remote Sense  
UVQ-1.5/40-D24  
Note: The Sense and VOUT lines are internally connected through low-value  
resistors. Nevertheless, if the sense function is not used for remote regulation  
the user must connect the +Sense to +VOUT and -Sense to –VOUT at the DC-DC  
converter pins.  
6.23(VO – 1.226)  
VO – 1.5  
7.64  
–10.2  
–10.2  
10.2  
10.2  
10.2  
10.2  
RTUP (k) =  
RTUP (k) =  
RTUP (k) =  
RTDOWN (k) =  
1.5 – VO  
UVQ-2.5/40-D48, UVQ-2.5/35-D24  
UVQ series converters employ a sense feature to provide point of use regu-  
lation, thereby overcoming moderate IR drops in pcb conductors or cabling.  
The remote sense lines carry very little current and therefore require minimal  
cross-sectional-area conductors. The sense lines, which are capacitively  
coupled to their respective output lines, are used by the feedback control-loop  
to regulate the output. As such, they are not low impedance points and must  
be treated with care in layouts and cabling. Sense lines on a pcb should be run  
adjacent to dc signals, preferably ground. In cables and discrete wiring applica-  
tions, twisted pair or other techniques should be implemented.  
10(VO 1.226)  
12.26  
10.2  
RTDOWN (k) =  
VO 2.5  
2.5 VO  
UVQ-3.3/35-D48  
13.3(VO 1.226)  
VO 3.3  
16.31  
10.2  
RTDOWN (k) =  
3.3 VO  
UVQ-5/25-D24, UVQ-5/20-D48  
UVQ series converters will compensate for drops between the output voltage  
at the DC-DC and the sense voltage at the DC-DC provided that:  
25.01  
20.4(VO 1.226)  
10.2  
RTDOWN (k) =  
RTUP (k) =  
5 VO  
VO 5  
[VOUT(+) –VOUT(–)] – [Sense(+) –Sense (–)] 10% VOUT  
UVQ-12/8-D24, -12/10-D48  
Contact and PCB resistance  
losses due to IR drops  
49.6(VO 1.226)  
VO 12  
60.45  
10.2  
RTUP (k) =  
RTDOWN (k) =  
12 VO  
8
1
+VOUT  
+VIN  
IOUT  
UVQ-15/7-D24, -D48  
7
+SENSE  
Sense Current  
76.56  
62.9(VO 1.226)  
2
3
ON/OFF  
CONTROL  
10.2  
10.2  
10.2  
RTDOWN (k) =  
RTUP (k) =  
6
5
TRIM  
–SENSE  
–VOUT  
LOAD  
15 VO  
VO 15  
Sense Return  
UVQ-18/5.6-D24, -18/6-D48  
IOUT Return  
4
–VIN  
92.9  
75.5(VO 1.226)  
VO 18  
10.2  
RTDOWN (k) =  
RTUP (k) =  
Contact and PCB resistance  
losses due to IR drops  
18 VO  
UVQ-24/4.5-D24, -D48  
Figure 8. Remote Sense Circuit Configuration  
124.2  
101(VO – 1.226)  
–10.2  
–10.2  
–10.2  
RTDOWN (k) =  
RTUP (k) =  
24 – VO  
VO – 24  
Output overvoltage protection is monitored at the output voltage pin, not  
the Sense pin. Therefore, excessive voltage differences between VOUT and  
Sense in conjunction with trim adjustment of the output voltage can cause the  
overvoltage protection circuitry to activate (see Performance Specifications for  
overvoltage limits). Power derating is based on maximum output current and  
voltage at the converter's output pins. Use of trim and sense functions can  
cause output voltages to increase, thereby increasing output power beyond the  
conveter's specified rating, or cause output voltages to climb into the output  
overvoltage region. Therefore, the designer must ensure:  
UVQ-48/2.5-D24, -D48  
250  
210.75(VO – 1.226)  
VO – 48  
–10.2  
RTDOWN (k) =  
RTUP (k) =  
48 – VO  
Note: Higher output 24V and 48V converters require larger, low-tempco,  
precision trim resistors. An alternative is a low-TC multi-turn potentiometer  
(20kΩ typical) connected between +VOUT and –VOUT with the wiper to the Trim  
pin.  
(VOUT at pins) × (IOUT) rated output power  
www.murata-ps.com/support  
MDC_UVQ Models.D01 Page 22 of 25  
UVQ Series  
Low Profile, Isolated Quarter Brick  
2.5–40 Amp DC-DC Converters  
Thermal Performance  
UVQ Series Aluminum Heatsink  
The HS-QB25-UVQ heatsink has a thermal resistance of 12 °C/Watt of internal  
heat dissipation with “natural convection” airflow (no fans or other mechanical  
airflow) at sea level altitude. This thermal resistance assumes that the heatsink  
is firmly attached using the supplied thermal pad and that there is no nearby  
wall or enclosure surface to inhibit the airflow. The thermal pad adds a negli-  
gible series resistance of approximately 0.5°C/Watt so that the total assembled  
resistance is 12.5°C/Watt.  
The UVQ series converter baseplate can be attached either to an enclosure wall  
or a heatsink to remove heat from internal power dissipation. The discus-  
sion below concerns only the heatsink alternative. The UVQs are available  
with a low-profile extruded aluminum heatsink kit, models HS-QB25-UVQ,  
HS-QB50-UVQ, and HS-QB100-UVQ. This kit includes the heatsink, thermal  
mounting pad, screws and mounting hardware. See the assembly diagram  
below. Do not overtighten the screws in the tapped holes in the converter (3.5  
n-m or 1.9 in-oz. max.). This kit adds excellent thermal performance without  
sacrificing too much component height. See the Mechanical Outline Drawings  
for assembled dimensions. If the thermal pad is firmly attached, no thermal  
compound (“thermal grease”) is required.  
Be aware that we need to handle only the internal heat dissipation, not the  
full power output of the converter. This internal heat dissipation is related to the  
efficiency as follows:  
Power Dissipation [Pd] = Power In – Power Out [1]  
Power Out / Power In = Efficiency [in %] / 100 [2]  
0!. (%!$ 3#2%7  
-ꢀ 8 ꢁ--  
ꢂ 0,#3  
Power Dissipation [Pd] = Power In x (1 –Efficiency%/100) [3]  
Power Dissipation [Pd] = Power Out x (1 / (Efficiency%/100) - 1) [4]  
Efficiency of course varies with input voltage and the total output power.  
Please refer to the Performance Curves.  
,/#+ 7!3(%2  
-ꢀ  
ꢂ 0,#3  
Since many applications do include fans, here is an approximate equation to  
calculate the net thermal resistance:  
R[at airflow] = R[natural convection] / (1 + (Airflow in LFM) x  
[Airflow Constant]) [5]  
&,!4 7!3(%2  
./ꢃ ꢂ  
ꢂ 0,#3  
Where,  
R[at airflow] is the net thermal resistance (in °C/W) with the amount of  
airflow available and,  
R[natural convection] is the still air total path thermal resistance or in this  
case 12.5°C/Watt and,  
(%!43).+  
“Airflow in LFMis the net air movement flow rate immediately at the converter.  
This equation simplifies an otherwise complex aerodynamic model but is a  
useful starting point. The “Airflow Constant” is dependent on the fan and enclo-  
sure geometry. For example, if 200 LFM of airflow reduces the effective natural  
convection thermal resistance by one half, the airflow constant would be  
0.005. There is no practical way to publish a “one size fits all” airflow constant  
because of variations in airflow direction, heatsink orientation, adjacent walls,  
enclosure geometry, etc. Each application must be determined empirically and  
the equation is primarily a way to help understand the cooling arithmetic.  
(%!4 42!.3&%2 0!$  
ꢄ0EEL OFF WHITE PLASTIC  
BACKING MATERIAL BEFORE  
ATTACHING TO HEATSINKꢅ  
This equation basically says that small amounts of forced airflow are quite  
effective removing the heat. But very high airflows give diminishing returns.  
Conversely, no forced airflow causes considerable heat buildup. At zero airflow,  
cooling occurs only because of natural convection over the heatsink. Natural  
convection is often well below 50 LFM, not much of a breeze.  
Figure 7. Model UVQ Heatsink Assembly Diagram  
While these equations are useful as a conceptual aid, most users find it  
very difficult to measure actual airflow rates at the converter. Even if you know  
the velocity specifications of the fan, this does not usually relate directly to  
the enclosure geometry. Be sure to use a considerable safety margin doing  
thermal analysis. If in doubt, measure the actual heat sink temperature with  
a calibrated thermocouple, RTD or thermistor. Safe operation should keep the  
heat sink below 100°C.  
When assembling these kits onto the converter, include ALL kit hardware to  
assure adequate mechanical capture and proper clearances. Thread relief is  
0.090" (2.3mm).  
www.murata-ps.com/support  
MDC_UVQ Models.D01 Page 23 of 25  
UVQ Series  
Low Profile, Isolated Quarter Brick  
2.5–40 Amp DC-DC Converters  
Calculating Maximum Power Dissipation  
Heat Sink Example  
To determine the maximum amount of internal power dissipation, find the  
ambient temperature inside the enclosure and the airflow (in Linear Feet per  
Minute – LFM) at the converter. Determine the expected heat dissipation using  
the Efficiency curves and the converter Input Voltage. You should also compen-  
sate for lower atmospheric pressure if your application altitude is considerably  
above sea level.  
Assume an efficiency of 92% and power output of 100 Watts. Using equation  
[4], Pd is about 8.7 Watts at an input voltage of 48 Volts. Using +30°C ambient  
temperature inside the enclosure, we wish to limit the heat sink temperature to  
+90°C maximum baseplate temperature to stay well away from thermal shut-  
down. The +90°C. figure also allows some margin in case the ambient climbs  
above +30°C or the input voltage varies, giving us less than 92% efficiency.  
The heat sink and airflow combination must have the following characteristics:  
The general proceedure is to compute the expected temperature rise of the  
heatsink. If the heatsink exceeds +100°C. either increase the airflow and/or  
reduce the power output. Start with this equation:  
8.7 W = (90-30) / R[airflow] or,  
R[airflow] = 60/8.7 = 6.9°C/W  
Internal Heat Dissipation [Pd in Watts] = (Ts – Ta)/R[at airflow] [6]  
where “Ta” is the enclosure ambient air temperature and,  
where “Ts” is the heatsink temperature and,  
Since the ambient thermal resistance of the heatsink and pad is 12.5°C/W,  
we need additional forced cooling to get us down to 6.9°C/W. Using a hypo-  
thetical airflow constant of 0.005, we can rearrange equation [5] as follows:  
(Required Airflow, LFM) x (Airflow Constant) = R[Nat.Convection] /  
R[at airflow] –1  
where “R[at airflow]” is a specific heat transfer thermal resistance (in  
degrees Celsius per Watt) for a particular heat sink at a set airflow rate. We  
have already estimated R[at airflow] in the equations above.  
or, (Required Airflow, LFM) x (Airflow Constant) = 12.5/6.9 –1 = 0.81 and,  
rearranging again,  
Note particularly that Ta is the air temperature inside the enclosure at the  
heatsink, not the outside air temperature. Most enclosures have higher internal  
temperatures, especially if the converter is “downwind” from other heat-pro-  
ducing circuits. Note also that this “Pd” term is only the internal heat dissipated  
inside the converter and not the total power output of the converter.  
(Required Airflow, LFM) = 0.81/0.005 = 162 LFM  
162 LFM is the minumum airflow to keep the heatsink below +90°C.  
Increase the airflow to several hundred LFM to reduce the heatsink tempera-  
ture further and improve life and reliability.  
We can rearrange this equation to give an estimated temperature rise of the  
heatsink as follows:  
2.28  
(57.91)  
Ts = (Pd x R[at airflow]) + Ta [7]  
1.860  
(47.24)  
Heatsink Kit *  
Model Number  
Still Air (Natural convection)  
thermal resistance  
Heatsink height  
(see drawing)  
HS-QB25-UVQ  
HS-QB50-UVQ  
HS-QB100-UVQ  
12°C/Watt  
10.6°C/Watt  
8°C/Watt  
0.25" (6.35mm)  
0.50" (12.7mm)  
1.00" (25.4mm)  
1.03  
(26.16)  
1.45  
(36.83)  
* Kit includes heatsink, thermal pad and mounting hardware. These are  
non-RoHS models. For RoHS-6 versions, add “-C” to the model number  
(e.g., HS-QB25-UVQ-C).  
0.140 DIA. (3.56) (4 PLACES)  
*
MATERIAL: BLACK ANODIZED ALUMINUM  
0.10  
(2.54)  
* UVQ SERIES HEATSINKS ARE AVAILABLE IN 3 HEIGHTS:  
0.25 (6.35), 0.50 (12.70) AND 1.00 (25.4)  
Dimensions in inches (mm)  
www.murata-ps.com/support  
MDC_UVQ Models.D01 Page 24 of 25  
UVQ Series  
Low Profile, Isolated Quarter Brick  
2.5–40 Amp DC-DC Converters  
Vertical Wind Tunnel  
Murata Power Solutions employs a computer controlled  
custom-designed closed loop vertical wind tunnel, infrared  
video camera system, and test instrumentation for accurate  
airflow and heat dissipation analysis of power products.  
The system includes a precision low flow-rate anemometer,  
variable speed fan, power supply input and load controls,  
temperature gauges, and adjustable heating element.  
IR Transparent  
optical window  
Variable  
speed fan  
Unit under  
test (UUT)  
The IR camera monitors the thermal performance of the  
Unit Under Test (UUT) under static steady-state conditions. A  
special optical port is used which is transparent to infrared  
wavelengths.  
IR Video  
Camera  
Both through-hole and surface mount converters are  
soldered down to a 10" x 10" host carrier board for realistic  
heat absorption and spreading. Both longitudinal and trans-  
verse airflow studies are possible by rotation of this carrier  
board since there are often significant differences in the heat  
dissipation in the two airflow directions. The combination of  
adjustable airflow, adjustable ambient heat, and adjustable  
Input/Output currents and voltages mean that a very wide  
range of measurement conditions can be studied.  
Heating  
element  
Precision  
low-rate  
anemometer  
3” below UUT  
The collimator reduces the amount of turbulence adjacent  
to the UUT by minimizing airflow turbulence. Such turbu-  
lence influences the effective heat transfer characteristics  
and gives false readings. Excess turbulence removes more  
heat from some surfaces and less heat from others, possibly  
causing uneven overheating.  
Ambient  
temperature  
sensor  
Airflow  
collimator  
Both sides of the UUT are studied since there are different  
thermal gradients on each side. The adjustable heating element  
and fan, built-in temperature gauges, and no-contact IR camera mean  
that power supplies are tested in real-world conditions.  
Figure 9. Vertical Wind Tunnel  
This product is subject to the following operating requirements  
and the Life and Safety Critical Application Sales Policy:  
Refer to: http://www.murata-ps.com/requirements/  
Murata Power Solutions, Inc.  
11 Cabot Boulevard, Mansfield, MA 02048-1151 U.S.A.  
ISO 9001 and 14001 REGISTERED  
Murata Power Solutions, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other  
technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply  
the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without  
notice.  
© 2013 Murata Power Solutions, Inc.  
www.murata-ps.com/support  
MDC_UVQ Models.D01 Page 25 of 25  

相关型号:

UVQ-18/6-D48N-C

Low Profi le, Isolated Quarter Brick 2.5 40 Amp DC/DC Converters
MURATA

UVQ-18/6-D48N9-C

DC-DC Regulated Power Supply Module, 1 Output, 100.8W, Hybrid, ROHS COMPLIANT, QUARTER BRICK PACKAGE-9
MURATA

UVQ-18/6-D48N9L1-C

DC-DC Regulated Power Supply Module, 1 Output, 100.8W, Hybrid, ROHS COMPLIANT, QUARTER BRICK PACKAGE-9
MURATA

UVQ-18/6-D48N9L2-C

DC-DC Regulated Power Supply Module, 1 Output, 100.8W, Hybrid, ROHS COMPLIANT, QUARTER BRICK PACKAGE-9
MURATA

UVQ-18/6-D48NB-C

民用设备,工业设备
MURATA

UVQ-18/6-D48P-C

民用设备,工业设备
MURATA

UVQ-18/6-D48PB-C

民用设备,工业设备
MURATA

UVQ-18/6-D48PBL2-C

DC-DC Regulated Power Supply Module, ROHS COMPLIANT PACKAGE-8
MURATA

UVQ-18/6-D48PL1-C

DC-DC Regulated Power Supply Module, ROHS COMPLIANT PACKAGE-8
MURATA

UVQ-2.5/35-D24NB-C

DC-DC Regulated Power Supply Module, ROHS COMPLIANT PACKAGE-8
MURATA

UVQ-2.5/35-D24NBL2-C

DC-DC Regulated Power Supply Module, ROHS COMPLIANT PACKAGE-8
MURATA

UVQ-2.5/35-D24NL2-C

DC-DC Regulated Power Supply Module, ROHS COMPLIANT PACKAGE-8
MURATA