MX28F160C3BXAI-12 [Macronix]

Flash Memory;
MX28F160C3BXAI-12
型号: MX28F160C3BXAI-12
厂家: MACRONIX INTERNATIONAL    MACRONIX INTERNATIONAL
描述:

Flash Memory

文件: 总43页 (文件大小:460K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADVANCED INFORMATION  
MX28F160C3T/B  
8M-BIT[512Kx16]CMOSSINGLEVOLTAGE  
3VONLYFLASHMEMORY  
FEATURES  
• Bit Organization: 1,048,576 x 16  
• Singlepowersupplyoperation  
- 3.0V only operation for read, erase and program  
operation  
• Automatic Suspend Enhance  
- Word/byte write suspend to read  
- Sector erase suspend to word/byte write  
- Sector erase suspend to read register report  
• Automaticsectorerase,fullchiperase,wordwriteand  
sector lock/unlock configuration  
• Status Reply  
- VCC=VPP=2.7~3.6V  
-VCC=12fastproductionprogramming  
- 1.65V~2.5V or 2.7V~3.6V I/O Option (VCCQ)  
-Operatingtemperature:-40°C~85°C  
• Fast access time : 70/90/120ns  
• Lowpowerconsumption  
- Detection of program and erase operation comple-  
tion.  
- Command User Interface (CUI)  
- Status Register (SR)  
-9mAmaximumactivereadcurrent, f=5MHz(CMOS  
input)  
• Data Protection Performance  
-Includebootsectorsandparameterandmainsectors  
to be block/unblock  
- 21mA program erase current maximum  
(VPP=1.65~3.6V)  
- 7uA typical standby current under power saving  
mode  
• 100,000minimumerase/programcycles  
• Common Flash Interface (CFI)  
• 128-bitProtectionRegister  
• Sectorarchitecture  
- Sector Erase (Sector structure : 4Kword x 2 (boot  
sectors), 4Kword x 6 (parameter sectors), 32Kword x  
31(parametersectors)  
- 64-bit Unique Device Identifier  
-64-bitUser-Programmable  
• Latch-up protected to 100mA from -1V to VCC+1V  
• Package type:  
- Top/Bottom Boot  
• Auto Erase (chip & sector) and Auto Program  
- Automatically program and verify data at specified  
address  
- 48-pin TSOP (12mm x 20mm)  
- 48-ball CSP (8mm x 6mm)  
fast as 70ns, allowing operation of high-speed micropro-  
cessors without wait states.  
GENERAL DESCRIPTION  
The MX28F160C3T/B is a 16-mega bit Flash memory  
organized as 1M words of 16 bits. The 1M word of data  
is arranged in eight 4Kword boot and parameter sectors,  
and 31 32Kword main sector which are individually eras-  
able. MXIC's Flash memories offer the most cost-effec-  
tive and reliable read/write non-volatile random access  
memory. The MX28F160C3T/B is packaged in 48-pin  
TSOP and 48-ball CSP. It is designed to be repro-  
grammed and erased in system or in standard EPROM  
programmers.  
MXIC's Flash memories augment EPROM functionality  
with in-circuit electrical erasure and programming. The  
MX28F160C3T/B uses a command register to manage  
this functionality. The command register allows for 100%  
TTL level control inputs and fixed power supply levels  
during erase and programming, while maintaining maxi-  
mum EPROM compatibility.  
MXIC Flash technology reliably stores memory contents  
even after 100,000 erase and program cycles. The MXIC  
cell is designed to optimize the erase and programming  
The standard MX28F160C3T/B offers access time as  
P/N:PM0867  
REV. 0.5, JUN. 24, 2002  
1
MX28F160C3T/B  
mechanisms. In addition, the combination of advanced  
tunnel oxide processing and low internal electric fields  
for erase and program operations produces reliable cy-  
cling. The MX28F160C3T/B uses a 2.7V~3.6VVCC sup-  
ply to perform the High Reliability Erase and auto Pro-  
gram/Erase algorithms.  
tially reduces active current when the device is in static  
mode (addresses not switching). In this mode, the typi-  
cal ICCS current is 7uA (CMOS) at 3.0V VCC.  
As CE and RP are atVCC, ICC CMOS standby mode is  
enabled.When RP is at GND, the reset mode is enabled  
which minimize power consumption and provide data  
write protection.  
The highest degree of latch-up protection is achieved  
with MXIC's proprietary non-epi process. Latch-up pro-  
tection is proved for stresses up to 100 milliamps on  
address and data pin from -1V to VCC + 1V.  
A reset time (tPHQV) is required from RP switching high  
until outputs are valid. Similarly, the device has a wake  
time (tPHEL) from RP-high until writes to the CUI are  
recognized.With RP at GND, the WSM is reset and the  
status register is cleared.  
The dedicated VPP pin gives complete data protection  
when VPP< VPPLK.  
A Command User Interface (CUI) serves as the inter-  
face between the system processor and internal opera-  
tion of the device. A valid command sequence written to  
the CUI initiates device automation. An internal Write  
State Machine (WSM) automatically executes the algo-  
rithms and timings necessary for erase, full chip erase,  
word/byte write and sector lock/unlock configuration op-  
erations.  
A sector erase operation erases one of the device's 32K-  
word sectors typically within 1.0s, 4K-word sectors typi-  
cally within 0.5s independent of other sectors. Each sec-  
tor can be independently erased minimum 100,000 times.  
Sector erase suspend mode allows system software to  
suspend sector erase to read or write data from any other  
sector.  
Writing memory data is performed in word increments of  
the device's 32K-word sectors typically within 0.8s and  
4K-word sectors typically within 0.1s.Word program sus-  
pend mode enables the system to read data or execute  
code from any other memory array location.  
MX28F160C3T/B features with individual sectors lock-  
ing by using a combination of bits thirty-nine sector lock-  
bits and WP, to lock and unlock sectors.  
The status register indicates when the WSM's sector  
erase, full chip erase, word program or lock configura-  
tion operation is done.  
The access time is 70/90/120ns (tELQV) over the oper-  
ating temperature range (-40°C to +80°C) andVCC sup-  
ply voltage range of 2.7V~3.6V.  
MX28F160C3T/B's power saving mode feature substan-  
REV. 0.5, JUN. 24, 2002  
P/N:PM0867  
2
MX28F160C3T/B  
BLOCK DIAGRAM  
DQ0~DQ7  
Output  
Buffer  
Input  
Buffer  
I/O  
VCC  
Logic  
Identifier  
Register  
CS  
WE  
Command  
User  
Interface  
OE  
RP  
WP  
Status  
Register  
Data  
Comparator  
Write  
State  
Machine  
Y
VPP  
Program/Erase  
Voltage Switch  
Input  
Buffer  
Y-Gating  
A0~A19  
Decoder  
VCC  
GND  
32K-Word  
Main Sector  
x31  
Address  
Latch  
X
Decoder  
Address  
Counter  
.......  
REV. 0.5, JUN. 24, 2002  
P/N:PM0867  
3
MX28F160C3T/B  
PIN CONFIGURATIONS  
48 TSOP (Standard Type) (12mm x 20mm)  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
A16  
VCCQ  
GND  
Q15  
Q7  
2
3
4
5
6
Q14  
Q6  
7
A8  
8
Q13  
Q5  
NC  
NC  
WE  
RP  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Q12  
Q4  
MX28F160C3T/B  
VCC  
Q11  
Q3  
VPP  
WP  
A19  
A18  
A17  
A7  
Q10  
Q2  
Q9  
Q1  
A6  
Q8  
A5  
Q0  
A4  
OE  
A3  
GND  
CE  
A2  
A1  
A0  
48 Ball CSP (8mm x 6mm) Top View, Ball Down for MX28F160C3T/BXA  
(Ball Pitch=0.75mm, Ball Width=0.3mm)  
A1  
A2  
A3  
A8  
A4  
A5  
A6  
A7  
A7  
A8  
A4  
A13  
A11  
VPP  
WP  
A19  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
A5  
B8  
A2  
A14  
A10  
WE  
RP  
A18  
A17  
C1  
C2  
C3  
A9  
C4  
C5  
C6  
A6  
C7  
A3  
C8  
A1  
A15  
A12  
NC  
NC  
6.0 mm  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
CE  
D8  
A0  
A16  
DQ14  
DQ5  
DQ11  
DQ2  
DQ8  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
VCCQ  
DQ15  
DQ6  
DQ12  
DQ3  
DQ9  
DQ0  
GND  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
GND  
DQ7  
DQ13  
DQ4  
VCC  
DQ10  
DQ1  
OE  
8.0 mm  
REV. 0.5, JUN. 24, 2002  
P/N:PM0867  
4
MX28F160C3T/B  
Table 1. Pin Description  
Symbol  
Type  
Description and Function  
A0-A19  
input  
Address inputs for memory address. Data pin float to high-impedance when the chip is  
deselected or outputs are disable. Addresses are internally latched during a write or  
erase cycle.  
DQ0-DQ15 input/output Data inputs/outputs: Inputs array data on the second CE and WE cycle during a pro-  
gram command. Data is internally latched. Outputs array and configuration data. The  
data pin float to tri-state when the chip is de-selected.  
CE  
input  
Activates the device's control logic, input buffers, and sense amplifiers. CE high de-  
selects the memory device and reduce power consumption to standby level. CE is  
active low.  
RP  
input  
Reset Deep Power Down:when RP=VIL, the device is in reset/deep power down mode,  
which drives the outputs to High Z, resets the WSM and minimizes current level.  
When RP=VIH, the device is normal operation.When RP transition the device defaults  
to the read array mode.  
WE  
input  
Write Enable: to control write to CUI and array sector. WR=VIL becomes active. The  
data and address is latched WE on the rising edge of the second WE pulse.  
VPP  
input/supply Program/Erase Power Supply:(1.65V~3.6V or 11.4V~12.6V)  
Lower VPP<VPPLK, to protect any contents against Program and Erase Command.  
Set VPP=VCC for in-system Read, Program and Erase Operation.  
Raise VPP to 12V±5% for faster program and erase in a production environment.  
OE  
input  
input  
Output enable: gates the device's outputs during a real cycle.  
Write protect:whenWP isVIL, the boot sectors cannot be written or erased.WhenWP  
is VIH, locked boot sectors cannot be written or erase. WP is not affected parameter  
and main sectors.  
WP  
VCC  
supply  
input  
Device power supply: (2.7V~3.6V).  
VCCQ  
GND  
I/O Power Supply: supplies for input/output buffers. (Refer to section 6.2.6)  
Ground voltage: all the GND pin shall not be connected.  
supply  
REV. 0.5, JUN. 24, 2002  
P/N:PM0867  
5
MX28F160C3T/B  
SECTOR STRUCTURE (TOP)  
Sector  
Sector Size  
4KWord  
Address Range (h)  
FF000 ~ FFFFF  
FE000 ~ FEFFF  
FD000 ~ FDFFF  
FC000 ~ FCFFF  
FB000 ~ FBFFF  
FA000 ~ FAFFF  
F9000 ~ F9FFF  
F8000 ~ F8FFF  
F0000 ~ F7FFF  
E8000 ~ EFFFF  
E0000 ~ E7FFF  
D8000 ~ DFFFF  
D0000 ~ D7FFF  
C8000 ~ CFFFF  
C0000 ~ C7FFF  
B8000 ~ BFFFF  
B0000 ~ B7FFF  
A8000 ~ AFFFF  
A0000 ~ A7FFF  
98000 ~ 9FFFF  
90000 ~ 97FFF  
88000 ~ 8FFFF  
80000 ~ 87FFF  
78000 ~ 7FFFF  
70000 ~ 77FFF  
68000 ~ 6FFFF  
60000 ~ 67FFF  
58000 ~ 5FFFF  
50000 ~ 57FFF  
48000 ~ 4FFFF  
40000 ~ 47FFF  
38000 ~ 3FFFF  
30000 ~ 37FFF  
28000 ~ 2FFFF  
20000 ~ 27FFF  
18000 ~ 1FFFF  
10000 ~ 17FFF  
08000 ~ 0FFFF  
00000 ~ 07FFF  
Boot Sector 0  
Boot Sector 1  
4KWord  
Parameter Sector 0  
Parameter Sector 1  
Parameter Sector 2  
Parameter Sector 3  
Parameter Sector 4  
Parameter Sector 5  
Main Sector 0  
Main Sector 1  
Main Sector 2  
Main Sector 3  
Main Sector 4  
Main Sector 5  
Main Sector 6  
Main Sector 7  
Main Sector 8  
Main Sector 9  
Main Sector 10  
Main Sector 11  
Main Sector 12  
Main Sector 13  
Main Sector 14  
Main Sector 15  
Main Sector 16  
Main Sector 17  
Main Sector 18  
Main Sector 19  
Main Sector 20  
Main Sector 21  
Main Sector 22  
Main Sector 23  
Main Sector 24  
Main Sector 25  
Main Sector 26  
Main Sector 27  
Main Sector 28  
Main Sector 29  
Main Sector 30  
4KWord  
4KWord  
4KWord  
4KWord  
4KWord  
4KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
REV. 0.5, JUN. 24, 2002  
P/N:PM0867  
6
MX28F160C3T/B  
SECTOR STRUCTURE (BOTTOM)  
Sector  
Sector Size  
Address Range (h)  
00000 ~ 00FFF  
01000 ~ 01FFF  
02000 ~ 02FFF  
03000 ~ 03FFF  
04000 ~ 04FFF  
05000 ~ 05FFF  
06000 ~ 06FFF  
07000 ~ 07FFF  
08000 ~ 0FFFF  
10000 ~ 17FFF  
18000 ~ 1FFFF  
20000 ~ 27FFFF  
28000 ~ 2FFFF  
30000 ~ 37FFF  
38000 ~ 3FFFF  
40000 ~ 47FFF  
48000 ~ 4FFFF  
50000 ~ 57FFFF  
58000 ~ 5FFFF  
60000 ~ 67FFF  
68000 ~ 6FFFF  
70000 ~ 77FFF  
78000 ~ 7FFFF  
80000 ~ 87FFF  
88000 ~ 8FFFF  
90000 ~ 97FFF  
98000 ~ 9FFFF  
A0000 ~ A7FFF  
A8000 ~ AFFFF  
B0000 ~ B7FFF  
B8000 ~ BFFFF  
C0000 ~ C7FFF  
C8000 ~ CFFFF  
D0000 ~ D7FFF  
D8000 ~ DFFFF  
E0000 ~ E7FFF  
E8000 ~ EFFFF  
F0000 ~ F7FFF  
F8000 ~ FFFFF  
Boot Sector 0  
4KWord  
4KWord  
Boot Sector 1  
Parameter Sector 0  
Parameter Sector 1  
Parameter Sector 2  
Parameter Sector 3  
Parameter Sector 4  
Parameter Sector 5  
Main Sector 0  
Main Sector 1  
Main Sector 2  
Main Sector 3  
Main Sector 4  
Main Sector 5  
Main Sector 6  
Main Sector 7  
Main Sector 8  
Main Sector 9  
Main Sector 10  
Main Sector 11  
Main Sector 12  
Main Sector 13  
Main Sector 14  
Main Sector 15  
Main Sector 16  
Main Sector 17  
Main Sector 18  
Main Sector 19  
Main Sector 20  
Main Sector 21  
Main Sector 22  
Main Sector 23  
Main Sector 24  
Main Sector 25  
Main Sector 26  
Main Sector 27  
Main Sector 28  
Main Sector 29  
Main Sector 30  
4KWord  
4KWord  
4KWord  
4KWord  
4KWord  
4KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
32KWord  
REV. 0.5, JUN. 24, 2002  
P/N:PM0867  
7
MX28F160C3T/B  
2 PRINCIPLES OF OPERATION  
3 BUS OPERATION  
The product includes an on-chip WSM to manage sec-  
tor erase, word/byte write and lock-bit configuration func-  
tions.  
The local CPU reads and writes flash memory in-sys-  
tem. All bus cycles to or from the flash memory conform  
to standard microprocessor bus cycles.  
After initial device power-up or return from reset mode  
(see section on Bus Operations), the device defaults to  
read array mode. Manipulation of external memory con-  
trol pins allow array read, standby and output disable  
operations.  
3.1 Read  
Information can be read from any sector, configuration  
codes or status register independent of the VPP volt-  
age. RP can be at VIH.  
Status register and identifier codes can be accessed  
through the CUI independent of the VPP voltage. All  
functions associated with altering memory contents-sec-  
tor erase, word/byte write, sector lock/unlock, status and  
identifier codes - are accessed via the CUI and verified  
through the status register.  
The first task is to write the appropriate read mode com-  
mand (Read Array, Read Configuration, Read Query or  
Read Status Register) to the CUI. Upon initial device  
power-up or after exit from reset mode, the device auto-  
matically resets to read array mode. In order to read  
data, control pins set for CE, OE, WE, RP andWP must  
be driven to active. CE and OE must be active to obtain  
data at the outputs. CE is the device selection control.  
OE is the data output (DQ0-DQ15) control and active  
drives the selected memory data onto the I/O bus, WE  
must be VIH, RP must be VIH, WP must be at VIL or  
VIH.  
Commands are written using standard microprocessor  
write timings. The CUI contents serve as input to the  
WSM, which controls the sector erase, word/byte write  
and sector lock/unlock.The internal algorithms are regu-  
lated by the WSM, including pulse repetition, internal  
verification and margining of data. Addresses and data  
are internally latched during write cycles. Address is  
latched at falling edge of CE and data latched at rising  
edge of WE. Writing the appropriate command outputs  
array data, accesses the identifier codes or outputs sta-  
tus register data.  
3.2 Output Disable  
With OE at a logic-high level (VIH), the device outputs  
are disabled. Output pins (DQ0-DQ15) are placed in a  
high-impedance state.  
Interface software that initiates and polls progress of  
sector erase, full chip erase, word/byte write and sector  
lock/unlock can be stored in any sector. This code is  
copied to and executed from system RAM during flash  
memory updates. After successful completion, reads are  
again possible via the Read Array command. Sector  
erase suspend allows system software to suspend a  
sector erase to read/write data from/to sectors other than  
that which is suspend.Word/byte write suspend allows  
system software to suspend a word/byte write to read  
data from any other flash memory array location.  
3.3 Standby  
CE at a logic-high level (VIH) places the device in  
standby mode which substantially reduces device power  
consumption. DQ0~DQ15 outputs are placed in a high-  
impedance state independent of OE. If deselected dur-  
ing sector erase, word/byte write or sector lock/unlock,  
the device continues functioning, and consuming active  
power until the operation completes.  
With the mechanism of sector lock, memory contents  
cannot be altered due to noise or unwanted operation.  
When RP=VIH and VCC<VLKO (lockout voltage), any  
data write alteration can be failure. During read opera-  
tion, if write VPP voltage is below VPPLK, then hard-  
ware level data protection is achieved. With CUI's two-  
step command sequence sector erase, word/byte write  
or sector lock/unlock, software level data protection is  
achieved also.  
3.4 Reset  
As RP=VIL, it initiates the reset mode. The device en-  
ters reset/deep power down mode. However, the data  
stored in the memory has to be sustained at least 100ns  
in the read mode before the device becomes deselected  
REV. 0.5, JUN. 24, 2002  
P/N:PM0867  
8
MX28F160C3T/B  
and output high impedance state.  
mands require the command and address within the de-  
vice or sector within the device (Sector Lock) to be  
locked. The Clear Sector Lock-Bits command requires  
the command and address within the device.  
In read modes, RP-low deselects the memory, places  
output drivers in a high-impedance state and turns off all  
internal circuits. RP must be held low for a minimum of  
100ns. Time tPHQV is required after return from reset  
mode until initial memory access outputs are valid. Af-  
ter this wake-up interval tPHEL or tPHWL, normal op-  
eration is restored.The CUI is reset to read array mode  
and status register is set to 80H. Sector lock bit is set at  
lock status.  
The CUI does not occupy an addressable memory loca-  
tion.It is written whenWE and CE are active (whichever  
goes high first). The address and data needed to ex-  
ecute a command are latched on the rising edge of WE  
or CE. Standard microprocessor write timings are used.  
During sector erase, word/byte write or sector lock/un-  
lock modes, RP-low will abort the operation. Memory  
contents being altered are no longer valid; the data may  
be partially erased or written.  
In addition, CUI will go into either array read mode or  
erase/write interrupted mode.When power is up and the  
device reset subsequently, it is necessary to read sta-  
tus register in order to assure the status of the device.  
Recognizing status register (SR.7~0) will assure if the  
device goes back to normal reset and enters array read  
mode.  
3.5 Read Configuration Codes  
The read configuration codes operation outputs the manu-  
facturer code, device code, sector lock configuration  
codes, and the protection register Using the manufac-  
turer and device codes, the system CPU can automati-  
cally match the device with its proper algorithms. The  
sector lock codes identify locked and unlocked sectors.  
3.6 Write  
Writing commands to the CUI enable reading of device  
data and identifier codes. They also control inspection  
and clearing of the status register.WhenVCC=2.7V-3.6V  
and VPP=VPPH1/2, the CUI additionally controls sec-  
tor erase, full chip erase, word/byte write and sector lock/  
unlock.  
The Sector Erase command requires appropriate com-  
mand data and an address within the sector to be erased.  
The Full Chip Erase command requires appropriate com-  
mand data and an address within the device.TheWord/  
ByteWrite command requires the command and address  
of the location to be written. Set Sector lock/unlock com-  
REV. 0.5, JUN. 24, 2002  
P/N:PM0867  
9
MX28F160C3T/B  
4 COMMAND DEFINITIONS  
When the VPP voltage < VPPLK, read operations from  
the status register, identifier codes, or sectors are en-  
abled. Placing VPP on VPPH1/2 enables successful  
sector erase, full chip erase, word/byte write and sector  
lock/unlock.  
Device operations are selected by writing specific com-  
mands into the CUI.Table 3 defines these commands.  
Table 2. Bus Operation 1,2  
Mode  
Notes  
RP  
VIH  
VIH  
VIH  
VIL  
VIH  
CE  
VIL  
VIL  
VIH  
X
OE  
VIL  
VIH  
X
WE  
VIH  
VIH  
X
DQ0~DQ15  
DOUT  
High Z  
High Z  
High Z  
DIN  
Read  
1,2  
Output Disable  
Standby  
Reset  
2
2
2
X
X
Write  
2,3,4,5  
VIL  
VIH  
VIL  
Notes:  
1. Refer to DC Characteristics for VPPLK, VPP1, VPP2, VPP3 voltage.  
2. X can be VIL or VIH for pin and addresses.  
3. RP at GND±0.2 to ensure the lowest power consumption.  
4. Refer to Table 3 for valid DIN during a write operation.  
5. To program or erase the lockable sectors holds WP at VIH.  
REV. 0.5, JUN. 24, 2002  
P/N:PM0867  
10  
MX28F160C3T/B  
Table 3. Command Definition (1)  
Command  
Bus  
Notes  
First Bus Cycle  
Operation Address  
Second Bus Cycle  
Cycles  
Data Operation Address Data  
Required  
(1)  
(2)  
X
X
X
X
X
X
X
X
(3)  
FFH  
(1)  
(2)  
(3)  
Read Array  
1
> 2  
2
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Read Configuration  
Read Query  
3,4  
2,7  
3
90H  
Read  
Read  
Read  
IA  
QA  
X
ID  
98H  
QD  
Read Status Register  
Clear Status Register  
Sector Erase/Confirm  
Word/Byte Write  
2
70H  
SRD  
1
3
50H  
2
20H  
Write  
Write  
BA  
D0H  
WD  
2
5
40H/10H  
B0H  
WA  
Program/Erase Suspend  
1
Program/Erase Resume  
1
Write  
X
D0H  
Sector Lock  
2
2
2
2
Write  
Write  
Write  
Write  
X
X
X
X
60H  
60H  
60H  
C0H  
Write  
Write  
Write  
Write  
BA  
BA  
BA  
PA  
01H  
D0H  
2FH  
PPH  
Sector Unlock  
6
Lock-Down Sector  
Protection Program  
Notes:  
1. Bus operation are defined inTable 2 and referred to ACTiming Waveform.  
2. X=Any address within device  
IA=ID-Code Address (refer to Table 4)  
BA=Sector within the sector being erased  
WA=Address of memory location to be written  
QA=Query Address, QD=Query Data  
3. Data is latched from the rising edge of WE or CE (whichever goes high first)  
SRD=Data read from status register, see Table 6 for description of the status register bits.  
WD=Data to be written at location WA. ID=Data read from identifier codes  
4. Following the Read configuration codes command, read operation access manufacturer, device codes, sector  
lock/unlock codes, see chapter 4.2.  
5. Either 40H or 10H are recognized by the WSM as word/byte write setup.  
6. The sector unlock operation simultaneously clear all sector lock.  
7. Read Query Command is read for CFI query information.  
REV. 0.5, JUN. 24, 2002  
P/N:PM0867  
11  
MX28F160C3T/B  
4.1 Read Array Command  
4.3 Read Status Register Command  
Upon initial device power-up and after exit from reset  
mode, the device defaults to read array mode.This op-  
eration is also initiated by writing the Read Array com-  
mand. The device remains enabled for reads until an-  
other command is written. Once the internal WSM has  
started a sector erase, word/byte write or sector lock  
configuration the device will not recognize the Read Ar-  
ray command until the WSM completes its operation  
unless the WSM is suspended via a Sector Erase Sus-  
pend or Word Write Suspend command. If RP=VIL de-  
vice is in read Read Array command mode, this read  
operation no longer requiresVPP.The Read Array com-  
mand functions independently of the VPP voltage and  
RP can be VIH.  
CUI writes read status command (70H).The status reg-  
ister may be read to determine when a sector erase,  
word/byte write or lock-bit configuration is complete and  
whether the operation completed successfully. (refer to  
table 6) It may be read at any time by writing the Read  
Status Register command. After writing this command,  
all subsequent read operations output data from the sta-  
tus register until another valid command is written.The  
status register contents are latched on the falling edge  
of CE or OE, whichever occurs. CE or OE must toggle  
toVIH before further reads to update the status register  
latch.The Read Status Register command functions in-  
dependently of the VPP voltage. RP can be VIH.  
4.4 Clear Status Register Command  
4.2 Read Configuration Codes Command  
Status register bits SR.5, SR.4, SR.3 or SR.1 are set to  
"1"s by the WSM and can only be reset by the Clear  
Status Register command (50H). These bits indicate  
various failure conditions (seeTable 6).By allowing sys-  
tem software to reset these bits, several operations (such  
as cumulatively erasing multiple sectors or writing sev-  
eral words/bytes in sequence) may be performed. The  
status register may be polled to determine if an error  
occurred during the sequence.  
The configuration code operation is initiated by writing  
the Read Configuration Codes command (90H). To re-  
turn to read array mode, write the Read Array Command  
(FFH). Following the command write, read cycles from  
addresses shown in Table 4 retrieve the manufacturer,  
device, sector lock configuration codes (see Table 4 for  
configuration code values).To terminate the operation,  
write another valid command. Like the Read Array com-  
mand, the Read Configuration Codes command func-  
tions independently of the VPP voltage and RP can be  
VIH. Following the Read Configuration Codes command,  
the information is shown:  
To clear the status register, the Clear Status Register  
command (50H) is written on CUI. It functions indepen-  
dently of the applied VPP Voltage. RP can be VIH.This  
command is not functional during sector erase or word  
write suspend modes.  
Table 4: ID Code  
Code  
Address  
(A19-A0)  
00000H  
00001H  
Data  
(DQ15-DQ0)  
00C2H  
88C2/88C3H  
LocK  
Manufacturer Code  
Device Code  
Sector Lock Configuration XX002H  
- Sector is unlocked  
DQ0=0  
DQ0=1  
DQ1=1  
PR-LK  
- Sector is locked  
- Sector is locked-down  
Protection Register Lock 80  
Protection Register  
81-88  
PR  
REV. 0.5, JUN. 24, 2002  
P/N:PM0867  
12  
MX28F160C3T/B  
When word/byte write is complete, status register bit  
SR.4 should be checked. If word/byte write error is de-  
tected, the status register should be cleared.The inter-  
nal WSM verify only detects errors for "1"s that do not  
successfully write to "0"s.The CUI remains in read sta-  
tus register mode until it receives another command.  
4.5 Sector Erase Command  
Erase is executed one sector at a time and initiated by a  
two-cycle command. A sector erase setup is first writ-  
ten (20H), followed by a sector erase confirm (D0H).This  
command sequence requires appropriate sequencing and  
an address within the sector to be erased. Sector pre-  
conditioning, erase, and verify are handled internally by  
the WSM. After the two-cycle sector erase sequence is  
written, the device automatically outputs status register  
data when read (see Figure 8).The CPU can detect sec-  
tor erase completion by analyzing the output data of the  
status register bit SR.7.  
Reliable word/byte writes can only occur when  
VCC=2.7V~3.6V andVPP=VPPH1/2.In the absence of  
this high voltage, memory contents are protected against  
word/byte writes. If word/byte write is attempted while  
VPP<VPPLK, status register bits SR.3 and SR.4 will be  
set to "1". Successful word/byte write requires for boot  
sector that WP is VIH the corresponding sector lock-bit  
be cleared. In parameter and main sectors case, it must  
be cleared the corresponding sector lock-bit. If word/  
byte write is attempted when the excepting above sec-  
tor being clocked conditions, SR.1 and SR.4 will be set  
to "1".Word write is not functional.  
When the sector erase is complete, status register bit  
SR.5 should be checked. If a sector erase error is de-  
tected, the status register should be cleared before sys-  
tem software attempts corrective actions. The CUI re-  
mains in read status register mode until a new com-  
mand is issued.  
4.7 Sector Erase Suspend Command  
This two-step command sequence of set-up followed by  
execution ensures that sector contents are not acciden-  
tally erased. An invalid sector Erase command sequence  
will result in both status register bits SR.4 and SR.5  
being set to "1". Also, reliable sector erasure can only  
occur when 2.7V~3.6V and VPP=VPPH1/2. In the ab-  
sence of this high voltage, sector contents are protected  
against erasure. If sector erase is attempted while  
VPP<VPPLK SR.3 and SR.5 will be set to "1". To suc-  
cessfully erase the boot sector, the corresponding sec-  
tor lock-bit must be clear first. In parameter and sectors  
case, it must be cleared the corresponding sector lock-  
bit. If sector erase is attempted when the excepting  
above sector being locked conditions, SR.1 and SR.5  
will be set to "1". Sector erase is not functional.  
The Sector Erase Suspend command (50H) allows sec-  
tor-erase interruption to read or word/byte write data in  
another sector of memory. Once the sector erase pro-  
cess starts, writing the Sector Erase Suspend command  
requests that the WSM suspend the sector erase se-  
quence at a predetermined point in the algorithm. The  
device outputs status register data when read after the  
Sector Erase Suspend command is written.Polling sta-  
tus register bits SR.7 and SR.6 can determine when the  
sector erase operation has been suspended (both will  
be set to "1"). Specification tWHR12 defines the sector  
erase suspend latency.  
When Sector Erase Suspend command write to the CUI,  
if sector erase was finished, the device places read ar-  
ray mode.Therefore, after Sector Erase Suspend com-  
mand write to the CUI, Read Status Register command  
(70H) has to write to CUI, then status register bit SR.6  
should be checked for placing the device in suspend  
mode.  
4.6 Word/Byte Write Command  
Word/Byte write is executed by a two-cycle command  
sequence.Word/Byte write setup (standard 40H or alter-  
nate 10H) is written, followed by a second write that speci-  
fies the address and data. The WSM then takes over,  
controlling the word/byte write and write verify algorithms  
internally.After the word/byte write sequence is written,  
the device automatically outputs status register data when  
read (see Figure 6).The CPU can detect the completion  
of the word/byte write event by analyzing the status reg-  
ister bit SR.7.  
At this point, a Read Array command can be written to  
read data from sectors other than that which is sus-  
pended. A Word/Byte Write commands sequence can  
also be issued during erase suspend to program data in  
other sectors.Using theWord/Byte Write Suspend com-  
mand (see Section 4.9), a word/byte write operation can  
also be suspended. During a word/byte write operation  
REV. 0.5, JUN. 24, 2002  
P/N:PM0867  
13  
MX28F160C3T/B  
with sector erase suspended, status register bit SR.7  
will return to "0". However, SR.6 will remain "1" to indi-  
cate sector erase suspend status.  
pended.The only other valid commands while word/byte  
write is suspended are Read Status Register andWord/  
ByteWrite Resume.AfterWord/ByteWrite Resume com-  
mand is written to the flash memory, the WSM will con-  
tinue the Word/Byte write process. Status register bits  
SR.2 and SR.7 will automatically clear. After the Word/  
ByteWrite Resume command is written, the device au-  
tomatically outputs status register data when read (see  
Figure 4).VPP must remain at VPPH1/2 while in word/  
byte write suspend mode.RP must also remain atVIL or  
VHH (the same RP level used for word write).  
The only other valid commands while sector erase is  
suspended are Read Status Register and sector erase  
Resume. After a Sector Erase Resume command is writ-  
ten to the flash memory, the WSM will continue the sec-  
tor erase process. Status register bits SR.6 and SR.7  
will automatically clear. After the Erase Resume com-  
mand is written, the device automatically outputs status  
register data when read (see Figure 4). VPP must re-  
main at VPPH1/2 while sector erase is suspended. RP  
must also remain at VIL or VHH (the same RP level  
used for sector erase). WP must also remain at VIL or  
VIH (the same WP level used for sector erase). Sector  
cannot resume until word/byte write operations initiated  
during sector erase suspend has completed.  
If the time between writing the Word/Byte Write Resume  
command and writing theWord/ByteWrite Suspend com-  
mand is short and both commands are written repeat-  
edly, a longer time is required than standard word/byte  
write until the completion of the operation.  
If the time between writing the Sector Erase Resume  
command and writing the Sector Erase Suspend com-  
mand is shorter than 15ms and both commands are writ-  
ten repeatedly, a longer time is required than standard  
sector erase until the completion of the operation.  
4.8 Word/Byte Write Suspend Command  
The Word/Byte Write Suspend command allows word/  
byte write interruption to read data in other flash memory  
locations.Once the word/byte write process starts, writ-  
ing the Word/Byte Write Suspend command requests  
that theWSM suspend the Word/Byte write sequence at  
a predetermined point in the algorithm.The device con-  
tinues to output status register data when read after the  
Word/Byte Write Suspend command is written. Polling  
status register bits SR.7 and SR.2 can determine when  
the word/byte write operation has been suspended (both  
will be set to "1"). Specification tWHR11 defines the word/  
byte write suspend latency.  
When Word/Byte Write Suspend command write to the  
CUI, if word/byte write was finished, the device places  
read array mode.Therefore, afterWord/Byte Write Sus-  
pend command write to the CUI, Read Status Register  
command (70H) has to write to CUI, then status register  
bit SR.2 should be checked for placing the device in  
suspend mode.  
At this point, a Read Array command can be written to  
read data from locations other than that which is sus-  
REV. 0.5, JUN. 24, 2002  
P/N:PM0867  
14  
MX28F160C3T/B  
4.9 Sector Lock/Unlock /Lockdown Command  
4.9.1 Sector Locked State  
4.9.4 Read Sector Lock Status  
The lock status of every sector can be read through  
Read Configuration mode.To enter this mode first com-  
mand write 90H to the device.The next sector reads at  
address +00002 will output the lock status of this sec-  
tor. The lock status can be read from the lowest two  
output pins DQ0 and DQ1. DQ0, DQ0 indicates the sec-  
tor lock/unlock status and set by the lock command and  
cleared by the unlock command. When entering lock-  
down, the lock status is automatically set. DQ1 indi-  
cates lock-down status and is set by the lock-down com-  
mand. It cannot be further cleared by software, only by  
device reset or power-down.  
The default status of all sectors when power-up or reset  
is locked. Any attempt on program or erase operations  
will result in an error on bit SR.1 of a locked sector.The  
status of a locked sector can be changed to unlocked or  
lock-down using software commands. An unlocked sec-  
tor can be locked by locked by writing the sector lock  
command sequence, 60H followed by 01H.  
4.9.2 Sector Unlocked State  
An unlocked sector can be programmed or erased. All  
unlocked sector return to the locked state when the de-  
vice is either reset or powered down. The status of an  
unlocked sector can be changed to locked or locked-  
down using software commands. A locked sector can  
be unlocked by writing unlock command sequence, 60H  
followed by D0H.  
Sector Lock ConfigurationTable  
Lock Status  
Data  
Sector is unlocked  
Sector is locked  
Sector is locked-down  
DQ0=0  
DQ0=1  
DQ1=1  
4.9.3 Sector Locked-Down State  
Sectors which are locked-down are protected from pro-  
gram and erase operation; however, the protection sta-  
tus of three sectors cannot be changed using software  
commands alone. Any sector locked or unlocked can be  
locked-down by writing the lock-down command se-  
quence, 60H followed by 2FH.When the device is reset  
or powered down, the locked-down sectors will revert to  
the locked state.  
The status of WP will determine the function of sector  
lock-down and is summarized is followed:  
WP  
Sector Lock-down Description  
WP=0  
- sectors are protected from program, erase,  
and lock status changes  
WP=1  
- the sector lock-down function is disabled  
- an individual lock-down sector can be un-  
locked and relocked via software command.  
Once WP goes low, sectors that previously  
locked-down returns to lock-down state  
regardless of any changes whenWP was  
high.  
In addition, sector lock-down is cleared only when the  
device is reset or powered down.  
REV. 0.5, JUN. 24, 2002  
P/N:PM0867  
15  
MX28F160C3T/B  
sector is being placed in erase suspend, the locking sta-  
tus bits will be changed immediately, but when the erase  
is resumed, the erase operation will complete.  
4.9.5 Sector Locking while Erase Suspend  
The sector lock status can be performed during an erase  
suspend by using standard locking command sequences  
to unlock, lock, or lock-down a sector.  
Locking operation cannot be performed during a program  
suspend.  
In order to change sector locking during an erase opera-  
tion, the write erase suspend command (B0H) is placed  
first; then check the status register until it is shown that  
the actual erase operation has been suspended. Subse-  
quent writing the desired lock command sequence to a  
sector and the lock status will be changed. When com-  
pleting any desired lock, read or program operation, re-  
sume the erase operation with the Erase Resume Com-  
mand (D0H).  
4.9.6 Status Register Error Checking  
The operation of locking system for this device can be  
used the term "state (X,Y,Z)" to specify locking status,  
where X=value of WP,Y=bit DQ1 of the sector lock sta-  
tus register, and Z=bit DQ0 of the sector lock status  
register. DQ0 indicates if a sector is locked (1) or un-  
locked (0). DQ1 indicates if a sector has been locked-  
down(1) or not (0).  
If a sector is locked or locked-down during the same  
Table 5. Sector Locking State Transitions  
Current State  
Erase/Prog.  
Operation if  
Lock Command Input Result (Next State)  
(X,Y, Z)=  
(X,Y, Z)=  
WP DQ1 DQ0  
Name  
Unlocked  
Enable ?  
Yes  
No  
Lock  
(001)  
Unlock  
Unchanged  
Unchanged  
Unchanged  
Unchanged  
(100)  
Lock-Down  
(011)  
0
0
0
1
1
1
1
0
0
1
0
0
1
1
0
1
1
0
1
0
1
Locked  
Unchanged  
Unchanged  
(101)  
(011)  
Locked-Down  
Unlocked  
No  
Unchanged  
(111)  
Yes  
No  
Locked  
Unchanged  
(111)  
(111)  
Lock-Down Disabled  
Lock-Down Disabled  
Yes  
No  
Unchanged  
(110)  
(111)  
Unchanged  
Unchanged  
REV. 0.5, JUN. 24, 2002  
P/N:PM0867  
16  
MX28F160C3T/B  
Table 6. Status Register Definition  
WSMS  
7
BESS  
6
ES  
5
PS  
4
VPPS  
3
PSS  
2
BLS  
1
R
0
NOTES:  
Check WSM bit first to determine word program or sec-  
tor Erase completion, before checking Program or Erase  
Status bits.  
SR.7 = WRITE STATE MACHINE STATUS (WSMS)  
1 = Ready  
0 = Busy  
When Erase Suspend is issued, WSM halts execution  
and sets both WSMs and ESS bits to "1". ESS bit re-  
mains set to "1" until an Erase Resume command is  
issued.  
SR.6 = SECTOR ERASE SUSPEND STATUS (BSS)  
1 = Sector ERASE Suspended  
0 = Sector Erase in Progress/Completed  
SR.5 = ERASE STATUS (ES)  
1 = Error in Programming  
0 = Successful Sector Erase or Clear Sector Lock-  
Bits  
When this bit (SR.5) is set to "1", it means WSM is  
unable to verify successful sector erasure.  
When this bit is set to "1",WSM has attempted but failed  
to program a word/byte.  
SR.4 = PROGRAM STATUS (PS)  
1 = Error in Programming  
0 = Successful Programming  
SR.3 bit is not guaranteed to report accurate feedback  
between VPPLK and VPP min.  
SR.3 = VPP STATUS (VPPS)  
1 = VPP Low Detect, Operation Abort  
0 = VPP OK  
When program suspend is issued, WSM halts the ex-  
ecution and sets both WSMs and SR.2 bit to "1". SR.2  
remains set to "1" until a Program Resume command is  
issued.  
SR.2 = PROGRAM SUSPEND STATUS (WWSS)  
1 = Program Suspended  
0 = Program in Progress/Completed  
If a program or erase operation is attempted to one of  
the locked sectors, this bit is set by the WSM. The op-  
eration specified is aborted and the device is returned to  
read status mode.  
SR.1 = SECTOR LOCK STATUS  
1 =Program/Erase attempted an a locked sector;  
operation aborted  
0 = No operation to locked sectors  
SR. 0 is reserved for future use and should be masked  
out when polling the status register.  
SR.0 = RESERVED FOR FUTURE ENHANCEMENTS  
(R)  
REV. 0.5, JUN. 24, 2002  
P/N:PM0867  
17  
MX28F160C3T/B  
read cycles from addresses shown in Table 7 will re-  
trieve the specified information. To return to read array  
mode, write the Read Array Command (FFH).  
5. 128-Bit Protection Register  
The 128-bits of protection register are divided into two  
64-bit segments. One of the segments is programmed  
at MXIC side with unique 64-bit number; where changes  
are forbidden. The other segment is left empty for cus-  
tomer to program. Once the customer segment is pro-  
grammed, it can be locked to prevent further reprogram-  
ming.  
Two-cycle Protection Program Command is used to pro-  
gram protection register bits.The 64-bit register is pro-  
grammed 16-bits at a time. First write C0H protection  
program setup.The next write to the device will latch in  
address and data and program the specified location.  
The allowable address are also show inTable 7.Refer to  
Figure 6 for the Protection Register Programming Flow-  
chart.  
5.1 Protection Register Read & Programming  
Any attempt to address Protection Program command  
onto undefined protection register address space will  
result in a Status Register error (SR.4 set to "1"). In  
addition, attempting to program or to previously locked  
protection register segment will result in a status regis-  
ter error (SR.4=1, SR.1=1).  
The protection register is read in the configuration read  
mode, which follows the stated Command Bus Defini-  
tions.  
The device is switched to this read mode by writing the  
Read Configuration command (90H). Once this mode,  
Table 7. Word-Wide Protection Register Addressing  
Word  
User  
A7  
1
A6  
0
A5  
0
A4  
0
A3  
0
A2  
0
A1  
0
A0  
0
Lock  
Both  
0
1
2
3
4
5
6
7
Factory  
Factory  
Factory  
Factory  
Customer  
Customer  
Customer  
Customer  
1
0
0
0
0
0
0
1
1
0
0
0
0
0
1
0
1
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
0
0
0
0
1
0
1
1
0
0
0
0
1
1
0
1
0
0
0
0
1
1
1
1
0
0
0
1
0
0
0
Table 8. Protection Register Memory Map  
5.2 Protection Register Locking  
The user-programmable segment of the protection reg-  
ister is lockable by programming Bit 1 of the PR-Lock  
location to 0. Bit 0 of this location is programmed to 0 at  
MXIC to protect the unique device number. This bit is  
set using the unique device number.This bit is set using  
the protection program command to program "FFFD" to  
PR-LOCK location. After these bits have been pro-  
grammed, no further changes can be made to the value  
stored in the protection register.Protection program com-  
mand to a locked section will result in a status register  
error (Program Error bit SR.4 and Lock Error bit SR.1  
will be set to 1). Protection register lockout state is not  
reversible.  
Protection Register Purpose  
Bit Address  
88H~85H  
84H~87H  
4 word user program Register  
4 word factory program  
Register  
80H(Bit0 & Bit1)  
Protection Register Lock  
REV. 0.5, JUN. 24, 2002  
P/N:PM0867  
18  
MX28F160C3T/B  
WARNING:Stressing the device beyond the "Absolute  
Maximum Ratings" may cause permanent damage.  
These are stress ratings only. Operation beyond the  
"Operating Conditions" is not recommended and ex-  
tended exposure beyond the "Operation Conditions" may  
affect device reliability.  
6 ELECTRICAL SPECIFICATIONS  
6.1 ABSOLUTE MAXIMUM RATINGS  
OperatingTemperature  
During Read, Sector Erase, Word/Byte  
Write . . . . . . . . . . . . . . . . . . . . . . . . . -40oC to +85oC  
Storage Temperature . . . . . . . . . . . . . .-65oC to +125oC  
Voltage on Any Pin (except VCC and  
VPP with respect to GND) ..... ......-0.5V to +5V(1)  
VCC Supply Voltage . . . . . . . . . . . . .-0.2V to +4.6V(2)  
VPP Supply Voltage (for sector erase and  
VPP with respect to GND) . . . . . . . .-0.5V to +13.5V(1,2,4)  
VCC andVCCQ SupplyVoltage  
with respect to GND. . . . . . . . . . . . . . . . .-0.2V to +5.0V(1)  
Output Short Circuit Voltage . . . . . . . . . . . . .100mA(3)  
1. Minimum DC voltage is -0.5V on input pins. During  
transitions, this level may undershoot to -2.0V for pe-  
riods <20ns. Maximum DC voltage on input/output pins  
toVCC+0.5V which during transition; may overshoot  
to VCC+2.0V for periods <20ns.  
2. Maximum DC voltage on VPP may overshoot to  
+14.0V for periods <20ns.  
3. Output shorted for no more than one second.No more  
than one output shorted at a time.  
4. VPP voltage is normally 1.65V~3.6V. Connection to  
supply of 11.4~12.6V can only be done for 1000  
cycles on the main sectors and 25000 cycles on the  
parameter sectors during program/erase. VPP may  
be connected to 12V for a total of 80 hours maximum.  
6.2 Operating Conditions (Temperature andVCC Operating Conditions)  
Symbol  
TA  
Parameter  
Min.  
-40  
Max.  
+85  
3.6  
Unit  
oC  
V
Notes  
OperatingTemperature  
VCC SupplyVoltage  
I/O Supply Voltage  
I/O Supply Voltage  
I/O Supply Voltage  
SupplyVoltage  
VCC1  
2.7  
1
1
1
1
1
1
2
VCCQ1  
VCCQ2  
VCCQ3  
VPP1  
2.7  
3.6  
V
1.65  
1.8  
2.5  
V
2.5  
V
1.65  
11.4  
3.6  
V
VPP2  
SupplyVoltage  
12.6  
V
Cycling  
Sector Erase Cycling  
NOTE:  
1.VCC and VCCQ must share the same supply when they are in the VCC1 range.  
2.Applying VPP=11.4~12.6V during a program/erase can only be done for a maximum of 1000 cycles on the main  
sectors and 2500 cycles on the parameter sectors.VPP may be connected to 12V for a total of 80 hours maximum.  
6.2.1 Capacitance (1) (TA=+25oC, f=1MHz)  
Symbol  
CIN  
Parameter  
Typ.  
6
Max.  
8
Unit  
pF  
Test Condition  
VIN=0.0V  
Input Capacitance  
Output Capacitance  
COUT  
10  
12  
pF  
VOUT=0.0V  
NOTE:  
1.Sampled, not 100% tested.  
REV. 0.5, JUN. 24, 2002  
P/N:PM0867  
19  
MX28F160C3T/B  
6.2.2 AC Input/Output Test Conditions  
VCCQ  
VCCQ/2 Output  
TEST POINTS  
Input VCCQ/2  
0.0  
Note:AC test inputs are driven at VCCQ/2 for a Logic "1" and 0.0V for a Logic "0".  
Figure 1.Transient Input/Output ReferenceWaveform  
Figure 2. SWITCHINGTEST CIRCUITS  
TEST SPECIFICATIONS  
Test Condition  
Output Load  
70 90 120 Unit  
1 TTL gate  
DEVICE UNDER  
TEST  
2.7K ohm  
3.3V  
Output Load Capacitance, CL 30 100 100 pF  
(including jig capacitance)  
Input Rise and Fall Times  
Input Pulse Levels  
5
ns  
V
0.0-3.0  
1.5  
CL  
6.2K ohm  
DIODES=IN3064  
OR EQUIVALENT  
Input timing measurement  
reference levels  
V
Output timing measurement  
reference levels  
1.5  
V
REV. 0.5, JUN. 24, 2002  
P/N:PM0867  
20  
MX28F160C3T/B  
6.2.3 AC Characteristic -- Read Only Operation (1)  
-70  
-90  
Min.  
-110  
Min.  
Sym.  
Parameter  
Notes  
Min.  
Max.  
Max.  
Max. Unit  
tAVAV  
tAVQV  
tELQV  
tGLQV  
tPHQV  
tELQX  
tGLQX  
tEHQZ  
tGHQZ  
tOH  
Read CycleTime  
70  
90  
110  
ns  
Address to Output Delay  
CE to Output Delay  
OE to Output Delay  
RP to Output Delay  
CE to Output in Low Z  
OE to Output in Low Z  
CE to Output in High Z  
OE to Output in High Z  
Output Hold from Address,  
CE, or OE Change,  
Whichever Occurs First  
70  
70  
90  
90  
110  
110  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
2
20  
30  
150  
150  
150  
3
3
3
3
3
0
0
0
0
0
0
20  
20  
20  
20  
20  
20  
0
0
0
Notes:  
1. See ACWaveform:Read Operations.  
2. OE may be delayed up to tELQV-tGLQV after the falling edge of CE without impact on tELQV.  
3. Sampled, but not 100% tested.  
4. See test Configuration.  
REV. 0.5, JUN. 24, 2002  
P/N:PM0867  
21  
MX28F160C3T/B  
Figure 3. READ-ONLY OPERATION AC WAVEFORM  
Device and  
Address Selection  
Data  
Valid  
Standby  
VIH  
Addresses(A)  
Address Stable  
VIL  
tAVAV  
VIH  
CE (E)  
VIL  
tEHQZ  
tGHQZ  
VIH  
OE (G)  
VIL  
VIH  
WE (W)  
tGLQV  
VIL  
tOH  
tGLQX  
tELQV  
tELQX  
VOH  
DATA  
(D/Q)  
High Z  
High Z  
Valid Output  
VOL  
tAVQV  
VIH  
tPHQV  
RP (P)  
VIL  
REV. 0.5, JUN. 24, 2002  
P/N:PM0867  
22  
MX28F160C3T/B  
6.2.5 AC Characteristic -- Write Operation  
-70  
Min.  
150  
0
-90  
Min.  
150  
0
-110  
Min.  
150  
0
Sym.  
tPHWL/tPHEL RP High Recovery toWE(CE) Going Low  
tELWL/tWLEL CE(WE) Setup toWE(CE) Going Low  
Parameter  
Note  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tELEH/tWLWH WE(CE) Pulse Width  
4
2
2
45  
40  
50  
0
50  
50  
50  
0
70  
60  
70  
0
tDVWH/tDVEH Data Setup to WE(CE) Going High  
tAVWH/tAVEH Address Setup to WE(CE) Going High  
tWHEH/tEHWH CE(WE) HoldTime fromWE(CE) High  
tWHDX/tEHDX Data HoldTime fromWE(CE) High  
tWHAX/tEHAX Address Hold Time fromWE(CE) High  
tWHWL/tEHEL WE(CE) Pulse Width High  
2
2
4
3
3
3
3
3
0
0
0
0
0
0
25  
200  
0
30  
200  
0
30  
200  
0
tVPWH/tVPEH VPP Setup to WE(CE) Going High  
tQVVL  
VPP Hold from Valid SRD  
tBHWH/tBHEH WP Setup to WE(CE)Going High  
0
0
0
tQVBL  
tWHGL  
WP Hold fromValid SRD  
WE High to OE Going Low  
0
0
0
30  
30  
30  
Notes:  
1. Write timing characteristics during erase suspend are the same as during write-only operations.  
2. Refer to Table 5 for valid AIN or DIN.  
3. Sampled, not 100% tested.  
4. Write pulse width (tWP) is defined from CE or WE going low (whichever goes low last) to CE or WE going high  
(whichever goes high first). Hence, tWP=tWLWH=tELEH=tELWH. Similarly, Write pulse width high (tWPH) is  
defined from CE or WE going high (whichever goes high first) to CE or WE going low (whichever goes low first).  
Hence, tWPH=tWHWL=tEHEL=tEHWL.  
5. SeeTest Configuration.  
REV. 0.5, JUN. 24, 2002  
P/N:PM0867  
23  
MX28F160C3T/B  
Figure 4. WRITE AND ERASE OPERATION AC WAVEFORM  
A
B
C
D
E
F
VIH  
VIL  
Address (A)  
AIN  
AIN  
tAVWH  
(tAVEH)  
tWHAX  
(tEHAX)  
(Note 1)  
VIH  
VIL  
CE(WE)[E(W)]  
tELWL  
(tWLEL)  
tWHEH  
(tEHWH)  
VIH  
VIL  
OE(G)  
Disable  
tWHWL  
(tEHEL)  
tWHGL  
(Note 1)  
VIH  
VIL  
WE,(CE)[W(E)]  
Enable  
tELEH  
(tWLWH)  
tDVWH  
(tEVEH)  
tWHDX  
(tEHDX)  
VIH  
VIL  
High Z  
Valid  
SRD  
DATA[D/Q]  
RP[P]  
DIN  
DIN  
DIN  
tPHWL  
(tPHEL)  
VOH  
VOL  
tQVBL  
tQVVL  
tBHWH  
(tBHEH)  
VIH  
VIL  
WP  
tVPWH  
(tVPEH)  
VPPH2  
VPPH1  
VPP[V]  
VPPLK  
VIL  
Notes:  
1. CE must be toggled low when reading Status Register Data. WE must be inactive (high) when reading Status  
Register Data.  
A.VCC Power-Up and Standby.  
B.Write Program or Erase Setup Command.  
C.WriteValid Address and Data (for Program) or Erase Confirm Command.  
D.Automated Program or Erase Delay.  
E.Read Status Register Data (SRD): reflects completed program/erase operation.  
F.Write Read Array Command.  
REV. 0.5, JUN. 24, 2002  
P/N:PM0867  
24  
MX28F160C3T/B  
6.2.5 Erase and Program Timing (1)  
Vpp  
Note  
2,3  
1.65V-3.6V  
11.4V-12.6V  
Symbol  
Parameter  
Typ(1)  
Max  
Typ(1)  
Max  
Unit  
tBWPB  
4-KW Parameter Sector  
Word ProgramTime(Word)  
32-KW Main Sector  
Word ProgramTime  
Word ProgramTime  
0.10  
0.30  
0.03  
0.24  
8
0.12  
s
tBWMB  
2,3  
2,3  
2,3  
2,3  
3
0.8  
12  
0.5  
1
2.4  
200  
4
1
185  
4.0  
5
s
us  
s
tWHQV1/  
tEHQV1  
tWHQV2/  
tEHQV2  
tWHQV3/  
tEHQV3  
tWHRH1/  
tEHRH1  
tWHRH2/  
tEHRH2  
4-KW Parameter Sector  
Erase Time (Byte)  
0.4  
0.6  
15  
32-KW Main Sector  
Erase Time (Byte)  
5
s
Program Suspend Latency  
15  
15  
20  
20  
20  
20  
us  
us  
Erase Suspend Latency  
3
15  
Notes:  
1. Typical values measured at TA=+25°C and nominal voltage.  
2. Excludes external system-level overhead.  
3. Sampled, but not 100% tested.  
REV. 0.5, JUN. 24, 2002  
P/N:PM0867  
25  
MX28F160C3T/B  
Figure 5. RESET WAVEFORM  
VIH  
VIL  
RP (P)  
tPHQV  
tPHWL  
tPHEL  
tPLPH  
tPLRH  
(A) Reset during Read Mode  
tPHQV  
Abort  
Complete  
tPHWL  
tPHEL  
VIH  
RP (P)  
VIL  
tPLPH  
(B) Reset during Program or Sector Erase, tPLPH < tPLRH  
Abort  
Deep  
Power-  
Down  
tPHQV  
tPHWL  
tPHEL  
Complete  
tPLRH  
VIH  
VIL  
RP (P)  
tPLPH  
(C) Reset Program or Sector Erase, tPLPH > tPLRH  
AC Characteristic -- Under Reset Operation  
Sym.  
Parameter  
VCC=2.7V~3.6V  
Unit  
Notes  
Min.  
Max.  
tPLPH  
RP Low to Reset during Read  
100  
ns  
2,4  
(If RP is tied to VCC, this specification is applicable)  
tPLRH1 RP Low to Reset during Sector Erase  
tPLRH2 RP Low to Reset during Program  
22  
12  
us  
us  
3,4  
3,4  
Notes:  
1. See Section 3.4 for a full description of these conditions.  
2. If tPLPH is < 100ns the device may still reset but this is not guaranteed.  
3. If RP is asserted while a sector erase or word program operation is not executing, the reset will complete within  
100ns.  
4. Sampled, but not 100% tested.  
REV. 0.5, JUN. 24, 2002  
P/N:PM0867  
26  
MX28F160C3T/B  
6.2.6 DC Characteristics  
Sym. Parameter  
VCC  
VCCQ  
Note  
1,2  
2.7V-3.6V  
2.7V-3.6V  
2.7V-2.85V  
1.65V-2.5V  
2.7V-3.0V  
1.8V-2.5V Unit Test Conditions  
Typ. Max. Typ. Max.  
Typ.  
Max.  
ILI  
Input Load Current  
± 1  
± 10  
15  
± 1  
± 10  
50  
± 1 uA VCC=VCC Max.  
VCCQ=VCCQ Max.  
VIN=VCCQ or GND  
± 10 uA VCC=VCC Max.  
VCCQ=VCCQ Max.  
VIN=VCCQ or GND  
250 uA VCC=VCC Max.  
CE=RP=VCCQ  
ILO  
Output Leakage  
Current  
1,2  
1
0.2  
7
0.2  
20  
0.2  
ICCS VCC Standby Current  
150  
or during Program/  
Erase Suspend  
WP=VCCQ or GND  
20 uA VCC=VCC Max  
VCCQ=VCCQ Max  
VIN=VCCQ or GND  
RP=GND±0.2V  
ICCD VCC Power-Down  
Current  
1,2  
7
9
15  
18  
7
8
20  
15  
7
9
ICCR VCC Read Current  
1,2,3  
15 mA VCC=VCC Max  
VCCQ=VCCQ Max  
OE=VIH, CE=VIL  
f=5MHz, IOUT=0mA  
Inputs=VIL or VIH  
IPPD VPP Deep Power-  
Down Current  
1
0.2  
5
0.2  
5
0.2  
5
uA RP=GND±0.2V  
VPP < VCC  
IPPR VPP Read Current  
1,4  
1,4  
2
±15  
200  
0.1  
2
±15  
200  
55  
2
±15 uA VPP < VCC  
200 uA  
50  
50  
18  
50  
18  
0.05  
55 mA VPP=VPP1,  
ICCW+ VCC+VPP Program  
IPPW Current  
Program in Progress  
8
22  
0.1  
22  
10  
21  
16  
21  
30  
45  
45  
45  
10  
21  
16  
21  
30 mA VPP=VPP2(12V)  
Program in Progress  
45 mA VPP=VPP1  
Erase in Progress  
1,4  
1,4  
0.05  
8
ICCE+ VCC+VPP Erase  
IPPE Current  
45 mA VPP=VPP2(12V)  
Erase in Progress  
0.05  
0.1  
45 mA VPP=VPP1  
Program or Erase  
IPPES VCC+VPP Program  
+
or Erase Suspend  
Suspend in Progress  
200 mA VPP=VPP2(12V)  
Program or Erase  
IPPWS Current  
50  
200  
50  
200  
50  
Suspend in Progress  
REV. 0.5, JUN. 24, 2002  
P/N:PM0867  
27  
MX28F160C3T/B  
VCC  
VCCQ  
Note  
2.7V-3.6V  
2.7V-3.6V  
2.7V-2.85V  
1.65V-2.5V  
2.7V-3.0V  
1.8V-2.5V  
SYM. Parameter  
Unit Test Conditions  
Typ. Max. Typ. Max.  
Typ.  
Max.  
0.4  
VIL  
Input LowVoltage  
-0.4 VCC* -0.4  
0.22V  
0.4  
-0.4  
V
VIH  
VOL  
Input HighVoltage  
Output LowVoltage  
2.0 VCCQ VCCQ VCCQ VCCQ VCCQ V  
+0.3V -0.4V +0.3V -0.4V +0.3V  
-0.1  
0.1  
-0.1  
0.1  
-0.1  
0.1  
1.0  
V
V
V
VCC=VCC Min  
VCC=VCCQ Min  
IOL=100uA  
VOH  
Output HighVoltage  
VCCQ  
-0.1V  
VCCQ  
-0.1V  
VCCQ  
-0.1V  
VCC=VCC Min  
VCC=VCCQ Min  
IOH=-100uA  
VPPLK VPP Lock-Out Voltage  
6
1.0  
3.6  
1.0  
CompleteWrite  
Protection  
VPP1 VPP during Program/  
VPP2 Erase Operations  
VLKO VCC Prog/Erase  
LockVoltage  
6
1.65  
1.5  
V
V
V
6,7  
11.4 12.6  
1.5  
1.5  
1.2  
VLKO2 VCCQ Prog/Erase  
LockVoltage  
1.2  
1.2  
V
Notes:  
1. All currents are in RMS unless otherwise noted.Typical values at nominal VCC, TA=+25°C.  
2. The test conditions VCC Max, VCCQ Max, VCC Min, and VCCQ Min refer to the maximum or minimum VCC or  
VCCQ voltage listed at the top of each column.VCC Max=3.3V for 0.25um 32-Mbit devices.  
3. Power Savings (Mode) reduces ICCR to approximately standby levels in static operation (CMOS inputs).  
4. Sampled, but not 100% tested.  
5. ICCES and ICCWS are specified with device de-selected. If device is read while in erase suspend, current draw is  
sum of ICCES and ICCR. If the device is read while in program suspend, current draw is the sum of ICCWS and  
ICCR.  
REV. 0.5, JUN. 24, 2002  
P/N:PM0867  
28  
MX28F160C3T/B  
Figure 6. Automated Word Programming Flowchart  
Bus  
Command Comments  
Start  
Operation  
Write  
Program  
Setup  
Data=40H  
Write 40H  
Write  
Read  
Program  
Data=Data to Program  
Addr=Location to Program  
Status Register DataToggle  
CE or OE to Update Status  
Register Data  
Program Address/Data  
Read Status Register  
Standby  
Check SR.7  
1=WSM Ready  
0=WSM Busy  
No  
SR.7=1 ?  
Repeat for subsequent programming operations.  
SR full status check can be done after each program  
or after a sequence of program operations.  
Write FFH after the last program operation to reset  
device to read array mode.  
Yes  
Full Status  
Check if Desired  
Program Ccomplete  
Bus  
Command  
Comments  
FULL STATUS CHECK PROCEDURE  
Operation  
Standby  
Check SR.3  
Read Status Register  
Data(See Above)  
1=VPP Low Detect  
Check SR.4  
Standby  
Standby  
1=VPP Program Detect  
Check SR.11  
1
VPP Range Error  
Programming Error  
SR.3=  
1=Attempted Program to  
Locked Sector-Program  
Aborted  
0
1
1
SR.4=  
0
SR.3 MUST be cleared, if set during a program at-  
tempt, before further attempts are allowed by theWrite  
State Machine.  
SR.4, SR.3, and SR.1 are only cleared by the Clear  
Status Register Command, in cases where multiple  
programmed before full status is checked.  
If an error is detected, clear the status register before  
attempting retry or other error recovery.  
Attempted Program to  
Locked Block- Aborted  
SR.1=  
0
Program Successful  
REV. 0.5, JUN. 24, 2002  
P/N:PM0867  
29  
MX28F160C3T/B  
Figure 7. Program Suspend/Resume Flowchart  
Start  
Bus  
Command Comments  
Operation  
Write  
Program  
Suspend  
Data=B0H  
Addr=X  
Write B0H  
Write 70H  
Write  
Read  
Read Status Data=70H  
Addr=X  
Status Register DataToggle  
Read  
Status Register  
CE or OE to Update Status  
Register Data  
Addr=X  
0
Standby  
Stanby  
Check SR.7  
SR.7=  
1=WSM Ready  
0=WSM Busy  
1
Check SR.2  
0
1=Program Suspended  
0=Program Completed  
SR.2=  
Program Completed  
1
Write  
Read  
Read Array Data=FFH  
Addr=X  
Write FFH  
Read array data from  
sector other than the one  
being programmed.  
Data=D0H  
Read Array Data  
Done Reading  
Write  
Program  
Resume  
Addr=X  
No  
Yes  
Write D0H  
Write FFH  
Program Write Resumed  
Read Array Data  
REV. 0.5, JUN. 24, 2002  
P/N:PM0867  
30  
MX28F160C3T/B  
Figure 8. Automated Sector Erase Flowchart  
Bus  
Command Comments  
Start  
Operation  
Write  
Erase Setup Data=20H  
Addr=Within Sector to Be  
Write 20H  
Erased  
Write  
Erase  
Data=D0H  
Write D0H and  
Block Address  
Confirm  
Addr=Within Sector to Be  
Erased  
Read  
Status Register  
Suspend  
Erase Loop  
Read  
Status Register DataToggle  
CE or OE to Update Status  
Register Data  
No  
Yes  
0
Standby  
Check SR.7  
SR.7=  
Suspend Erase  
1=WSM Ready  
0=WSM Busy  
1
Repeat for subsequent block erasures.  
Full status check can be done after each sector erase  
or after a sequence of sector erasures.  
Write FFH after the last write operation to reset device  
to read array mode.  
Full Status Check if Desired  
Sector Erase Complete  
Bus  
Command  
Comments  
FULL STATUS CHECK PROCEDURE  
Operation  
Standby  
Read Status Register  
Data(See Above)  
Check SR.3  
1=VPP Low Detect  
Check SR.4, 5  
Both 1=Command  
Sequence Error  
Check SR.5  
Standby  
1
VPP Range Error  
SR.3=  
Standby  
Standby  
0
1=Sector Erase Error  
Check SR.1  
1
SR.4,5=  
Command Sequence Error  
1=Attempted Erase of  
Locked Sector- Erase  
Aborted  
0
SR.1 and SR.3 MUST be cleared, if set during an erase  
attempt, before further attempts are allowed by the  
Write State Machine.  
1
SR.5=  
Sector Erase Error  
0
SR.1,3,4,5 are only cleared by the Clear Status Reg-  
ister Command, in cases where multiple bytes are  
erased before full status is checked.  
Attempted Erase of Locked  
Sector - Aborted  
1
SR.1=  
If an error is detected, clear the status register before  
attempting retry or other error recovery.  
0
Sector Erase Successful  
REV. 0.5, JUN. 24, 2002  
P/N:PM0867  
31  
MX28F160C3T/B  
Figure 9. Erase Suspend/Resume Flowchart  
Bus  
Command Comments  
Start  
Operation  
Write  
Erase  
Data=B0H  
Addr=X  
Write B0H  
Write 70H  
Suspend  
Write  
Read  
Read Status Data=70H  
Addr=X  
Status Register DataToggle  
Read  
Status Register  
CE or OE to Update Status  
Register Data  
Addr=X  
0
Standby  
Stanby  
Check SR.7  
SR.7=  
1=WSM Ready  
0=WSM Busy  
1
Check SR.6  
0
1=Erase Suspended  
0=Erase Completed  
SR.6=  
Erase Completed  
Write  
Read  
Read Array Data=FFH  
1
Addr=X  
Write FFH  
Read array data from  
sector other than the one  
being erased.  
Data=D0H  
Read Array Data  
Done Reading  
Write  
Erase  
Resume  
Addr=X  
No  
Yes  
Write D0H  
Write FFH  
Erase Write Resumed  
Read Array Data  
REV. 0.5, JUN. 24, 2002  
P/N:PM0867  
32  
MX28F160C3T/B  
Figure 10. Locking Operations Flowchart  
Bus  
Command  
Comments  
Operation  
Write  
Start  
Config. Setup Data=60H  
Addr=X  
Write  
Lock, unlock Data=01H (Sector Lock)  
Write 60H  
(Configuration Setup)  
or Lockdown  
D0H(Sector Unlock)  
2FH(Sector Lockdown)  
Addr=Within sector to lock  
Write  
01H, D0H, or 2FH  
Write  
Read Status Data=70H  
(Optional) Register  
Read  
(Optional)  
Stanby  
Addr=X  
Status Register Register  
Addr=X  
Check Status Register  
80H=no error  
Write 70H  
(Read Status Register)  
Lock Command  
Read Status Register  
Sequence Error  
(Optional)  
30H=Lock Command  
Sequence Error  
Data=90H  
1,1  
SR.4, SR.5=  
Write  
Read  
(Optional) Configuration Addr=X  
0,0  
Read  
Sector Lock Sector Lock Status Data  
Write 90H  
(Read Configuration)  
(Optional)  
Status  
Addr=Second addr of  
sector  
Stanby  
Confirm Locking Change  
on DQ1, DQ0 (See Sector  
Locking State Table for  
valid combinations.)  
Read Sector Lock Status  
No  
Locking Change  
Confirmed ?  
Yes  
Locking Change  
Complete  
REV. 0.5, JUN. 24, 2002  
P/N:PM0867  
33  
MX28F160C3T/B  
Figure 11. Protection Register Programming Flowchart  
Bus  
Command Comments  
Start  
Operation  
Write  
Protection  
Program  
Setup  
Data=C0H  
Write C0H  
(Protection Reg. Program Setup)  
Write  
Read  
Protection  
Program  
Data=Data to Program  
Addr=Location to Program  
Status Register DataToggle  
CE or OE to Update Status  
Register Data  
Write Protect. Register  
Address/Data  
Read Status Register  
Standby  
Check SR.7  
1=WSM Ready  
No  
SR.7=1 ?  
Yes  
0=WSM Busy  
Protection Program operations can only be addressed  
within the protection register address space. Addresses  
outside the defined space will return an error.  
Repeat for subsequent programming operations.  
SR Full Status Check can be done after each program  
or after a sequence of program operations.  
Write FFH after the last operation to reset device to  
read array mode.  
Full Status  
Check if Desired  
Program Ccomplete  
FULL STATUS CHECK PROCEDURE  
Read Status Register  
Data(See Above)  
Bus  
Command  
Comments  
Operation  
Standby  
SR.1, SR.3, SR.4  
0
0
1
0
1 VPP Low  
1 Prot. Reg.  
Prog. Error  
1 Register  
Locked:  
1,1  
VPP Range Error  
SR.3, SR.4=  
Standby  
Stanby  
1
0
Protection Register  
programming Error  
0,1  
SR.1, SR.4=  
Aborted  
SR.3 MUST be cleared, if set during a program at-  
tempt, before further attempts are allowed by theWrite  
State Machine.  
Attempted Program to  
Locked Register Aborted  
1,1  
SR.1,3,4 are only cleared by the Clear Status Regis-  
ter Command, in cases of multiple protection register  
program operations before full status is checked.  
If an error is detected, clear the status register before  
attempting retry or other error recovery.  
SR.1, SR.4=  
Program Successful  
REV. 0.5, JUN. 24, 2002  
P/N:PM0867  
34  
MX28F160C3T/B  
7 VPP Program and Erase Voltage  
MX28F160C3T/B product provide in-system writes in ad-  
dition a VPP pin for 12V production programming and  
complete write protection.  
7.1 VPP Fast manufacturing Programming  
WhenVPP is between 1.65V and 3.6V, all program and  
erase current is drawn through the VCC pin. If VPP is  
driven by a logic signal, VIH=1.65V. That is, VPP must  
remain above 1.65V to perform in-system flash update/  
modifications. When VPP is connected to a 12V power  
supply, the device draws program and erase current di-  
rectly from the VPP pin.  
7.2 Protection Under VPP<VPPLK  
VPP can off additional hardware write protection. The  
VPP programming voltage can be kept low for the abso-  
lute hardware protection of all sector in the flash device.  
As VPP is below VPPLK, any program or erase opera-  
tion will result in a error, prompting the corresponding  
status register bit (SR.3) to be set.  
REV. 0.5, JUN. 24, 2002  
P/N:PM0867  
35  
MX28F160C3T/B  
The single cycle Query command is valid only when the  
device is in the Read mode, including Erase Suspend,  
Program Suspend, Standby mode, and Read ID mode;  
however, it is ignored otherwise.  
8. QUERY COMMAND AND COMMON FLASH  
INTERFACE (CFI) MODE  
MX28F160C3T/B is capable of operating in the CFI mode.  
This mode all the host system to determine the manu-  
facturer of the device such as operating parameters and  
configuration.Two commands are required in CFI mode.  
Query command of CFI mode is placed first, then the  
Reset command exits CFI mode. These are described  
in Table X.  
The Reset command exits from the CFI mode to the  
Read mode, or Erase Suspend mode, Program Suspend  
or read ID mode. The command is valid only when the  
device is in the CFI mode.  
Table 9-1. CFI mode: Identification Data Values  
(All values in these tables are in hexadecimal)  
Description  
Addressh  
Datah  
0051  
0052  
0059  
0002  
0000  
0040  
0000  
0000  
0000  
0000  
0000  
Query-unique ASCII string "QRY"  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
Primary vendor command set and control interface ID code  
Address for primary algorithm extended query table  
Alternate vendor command set and control interface ID code (none)  
Address for secondary algorithm extended query table (none)  
Table 9-2. CFI Mode: System Interface Data Values  
Description  
Addressh  
Datah  
0027  
0036  
00B4  
00C6  
0005  
0000  
000A  
0004  
0004  
0000  
0003  
0000  
VCC supply, minimum (2.7V)  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
VCC supply, maximum (3.6V)  
VPP supply, minimum (none)  
VPP supply, maximum (none)  
Typical timeout for single word/byte write (2N us)  
Typical timeout for maximum size buffer write (2N us)  
Typical timeout for individual block erase (2N ms)  
Typical timeout for full chip erase (2N ms)  
Maximum timeout for single word/byte write times (2N X Typ)  
Maximum timeout for maximum size buffer write times (2N X Typ)  
Maximum timeout for individual block erase times (2N X Typ)  
Maximum timeout for full chip erase times (not supported)  
REV. 0.5, JUN. 24, 2002  
P/N:PM0867  
36  
MX28F160C3T/B  
Table 9-3. CFI Mode: Device Geometry Data Values  
Description  
Addressh  
Datah  
0001  
0002  
0000  
0000  
0000  
0001  
0004  
0000  
0000  
0002  
Device size (2N bytes)  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
Flash device interface code (02=asynchronous x8/x16)  
Maximum number of bytes in multi-byte write (not supported)  
Number of erase block regions  
Erase block region 1 information  
[2E,2D] = # of blocks in region -1  
[30, 2F] = size in multiples of 256-bytes  
Table 9-4. CFI Mode: Primary Vendor-Specific Extended Query Data Values  
Description  
Addressh  
Datah  
0050  
0052  
0049  
0031  
0030  
06  
Query-unique ASCII string "PRI"  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
Major version number, ASCII  
Minor version number, ASCII  
OptionalFeature&CommandSupport  
bit 0 Chip Erase Supported (1=yes, 0=no)  
bit 1 Suspend Erase Supported (1=yes, 0=no)  
bit 2 Suspend Program Supported (1=yes, 0=no)  
bit 3 Lock/Unlock Supported (1=yes, 0=no)  
bit 4 Queued Erase Supported (1=yes, 0=no)  
bits 5-31 revered for future use; undefined bits are "0"  
Sector Lock Status  
00  
00  
00  
3F  
40  
03  
00  
Define which bits in the sector status Register section of the Query are  
implemented.  
bit 0 sector Lock Status Register Lock/Unlock bit (bit 0) active; (1=yes, 0=no)  
bit 1 sector Lock Status Register Lock/Unlock bit (bit 1) active; (1=yes, 0=no)  
Bits 2-15 reserved for future use. Undefined bits are 0.  
VCC Logic Supply Optimum Program/Erase Voltage (highest performance)  
bits 7-4 BCD value in volts  
41  
42  
27  
bits 3-0 BCD value in 100mV  
VPP(Programming)SupplyOptimumProgram/EraseVoltage  
bits 7-4 HEX value in volts  
C0  
bits 3-0 BCD value in 100mV  
REV. 0.5, JUN. 24, 2002  
P/N:PM0867  
37  
MX28F160C3T/B  
ORDER INFORMATION  
PART NO.  
ACCESS TIME  
OPERATING  
STANDBY  
PACKAGE  
(ns)  
70  
Current MAX.(mA)  
Current MAX.(uA)  
MX28F160C3TTC-70  
MX28F160C3BTC-70  
MX28F160C3TTC-90  
MX28F160C3BTC-90  
MX28F160C3TTC-12  
MX28F160C3BTC-12  
MX28F160C3TTI-70  
MX28F160C3BTI-70  
MX28F160C3TTI-90  
MX28F160C3BTI-90  
MX28F160C3TTI-12  
MX28F160C3BTI-12  
MX28F160C3TXAC-70  
MX28F160C3BXAC-70  
MX28F160C3TXAC-90  
MX28F160C3BXAC-90  
MX28F160C3TXAC-12  
MX28F160C3BXAC-12  
MX28F160C3TXAI-70  
MX28F160C3BXAI-70  
MX28F160C3TXAI-90  
MX28F160C3BXAI-90  
MX28F160C3TXAI-12  
MX28F160C3BXAI-12  
MX28F160C3TTC-70G  
MX28F160C3BTC-70G  
MX28F160C3TTC-90G  
MX28F160C3BTC-90G  
MX28F160C3TTC-12G  
MX28F160C3BTC-12G  
MX28F160C3TTI-70G  
MX28F160C3BTI-70G  
MX28F160C3TTI-90G  
MX28F160C3BTI-90G  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
48 Pin TSOP  
48 Pin TSOP  
48 Pin TSOP  
48 Pin TSOP  
48 Pin TSOP  
48 Pin TSOP  
48 Pin TSOP  
48 Pin TSOP  
48 Pin TSOP  
48 Pin TSOP  
48 Pin TSOP  
48 Pin TSOP  
48 Ball CSP  
48 Ball CSP  
48 Ball CSP  
48 Ball CSP  
48 Ball CSP  
48 Ball CSP  
48 Ball CSP  
48 Ball CSP  
48 Ball CSP  
48 Ball CSP  
48 Ball CSP  
48 Ball CSP  
48 Pin TSOP  
48 Pin TSOP  
48 Pin TSOP  
48 Pin TSOP  
48 Pin TSOP  
48 Pin TSOP  
48 Pin TSOP  
48 Pin TSOP  
48 Pin TSOP  
48 Pin TSOP  
70  
90  
90  
120  
120  
70  
70  
90  
90  
120  
120  
70  
70  
90  
90  
120  
120  
70  
70  
90  
90  
120  
120  
70  
70  
90  
90  
120  
120  
70  
70  
90  
90  
REV. 0.5, JUN. 24, 2002  
P/N:PM0867  
38  
MX28F160C3T/B  
PART NO.  
ACCESS TIME  
OPERATING  
STANDBY  
PACKAGE  
(ns)  
120  
120  
Current MAX.(mA)  
Current MAX.(uA)  
MX28F160C3TTI-12G  
MX28F160C3BTI-12G  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
48 Pin TSOP  
48 Pin TSOP  
48 Ball CSP  
48 Ball CSP  
48 Ball CSP  
48 Ball CSP  
48 Ball CSP  
48 Ball CSP  
48 Ball CSP  
48 Ball CSP  
48 Ball CSP  
48 Ball CSP  
48 Ball CSP  
48 Ball CSP  
MX28F160C3TXAC-70G  
MX28F160C3BXAC-70G  
MX28F160C3TXAC-90G  
MX28F160C3BXAC-90G  
MX28F160C3TXAC-12G  
MX28F160C3BXAC-12G  
MX28F160C3TXAI-70G  
MX28F160C3BXAI-70G  
MX28F160C3TXAI-90G  
MX28F160C3BXAI-90G  
MX28F160C3TXAI-12G  
MX28F160C3BXAI-12G  
70  
70  
90  
90  
120  
120  
70  
70  
90  
90  
120  
120  
REV. 0.5, JUN. 24, 2002  
P/N:PM0867  
39  
MX28F160C3T/B  
PACKAGE INFORMATION  
48-PIN TSOP  
REV. 0.5, JUN. 24, 2002  
P/N:PM0867  
40  
MX28F160C3T/B  
48-Ball CSP  
REV. 0.5, JUN. 24, 2002  
P/N:PM0867  
41  
MX28F160C3T/B  
REVISION HISTORY  
Revision No. Description  
Page  
P10  
P25  
P25  
P4  
Date  
JAN/16/2002  
JAN/24/2002  
0.1  
0.2  
Revise Table 2. Bus Operation; delete columns of address & VPP  
Revise Program suspend latency from 5/10 to 15/20  
Revise erase suspend latency from 5/20 t0 15/20  
Revise CSP from 6x8 to 8x6  
0.3  
0.4  
FEB/01/2002  
FEB/07/2002  
Add Order Information  
P38  
Add Package Information  
P39,40  
P17  
P22  
0.5  
1. To modify the status registet definition table  
2. To modify the testing load circuit & capacitance loading value  
3. To added Pb free part no.  
JUN/24/2002  
P38,39  
REV. 0.5, JUN. 24, 2002  
P/N:PM0867  
42  
MX28F160C3T/B  
MACRONIX INTERNATIONAL CO., LTD.  
HEADQUARTERS:  
TEL:+886-3-578-6688  
FAX:+886-3-563-2888  
EUROPE OFFICE:  
TEL:+32-2-456-8020  
FAX:+32-2-456-8021  
JAPAN OFFICE:  
TEL:+81-44-246-9100  
FAX:+81-44-246-9105  
SINGAPORE OFFICE:  
TEL:+65-348-8385  
FAX:+65-348-8096  
TAIPEI OFFICE:  
TEL:+886-2-2509-3300  
FAX:+886-2-2509-2200  
MACRONIX AMERICA, INC.  
TEL:+1-408-453-8088  
FAX:+1-408-453-8488  
CHICAGO OFFICE:  
TEL:+1-847-963-1900  
FAX:+1-847-963-1909  
http : //www.macronix.com  
MACRONIX INTERNATIONAL CO., LTD. reserves the right to change product and specifications without notice.  

相关型号:

Macronix

MX28F160C3BXAI-70

16M-BIT [1M x16] CMOS SINGLE VOLTAGE 3V ONLY FLASH MEMORY
Macronix

MX28F160C3BXAI-70G

16M-BIT [1M x16] CMOS SINGLE VOLTAGE 3V ONLY FLASH MEMORY
Macronix

MX28F160C3BXAI-90

16M-BIT [1M x16] CMOS SINGLE VOLTAGE 3V ONLY FLASH MEMORY
Macronix

MX28F160C3BXAI-90G

16M-BIT [1M x16] CMOS SINGLE VOLTAGE 3V ONLY FLASH MEMORY
Macronix

MX28F160C3T

16M-BIT [1M x16] CMOS SINGLE VOLTAGE 3V ONLY FLASH MEMORY
Macronix

MX28F160C3TTC-11

16M-BIT [1M x16] CMOS SINGLE VOLTAGE 3V ONLY FLASH MEMORY
Macronix

MX28F160C3TTC-11G

16M-BIT [1M x16] CMOS SINGLE VOLTAGE 3V ONLY FLASH MEMORY
Macronix

MX28F160C3TTC-70

16M-BIT [1M x16] CMOS SINGLE VOLTAGE 3V ONLY FLASH MEMORY
Macronix

MX28F160C3TTC-70G

16M-BIT [1M x16] CMOS SINGLE VOLTAGE 3V ONLY FLASH MEMORY
Macronix

MX28F160C3TTC-90

16M-BIT [1M x16] CMOS SINGLE VOLTAGE 3V ONLY FLASH MEMORY
Macronix

MX28F160C3TTC-90G

16M-BIT [1M x16] CMOS SINGLE VOLTAGE 3V ONLY FLASH MEMORY
Macronix