MX29LA321MHXCI-70R [Macronix]

32M-BIT SINGLE VOLTAGE 3V ONLY UNIFORM SECTOR FLASH MEMORY; 32M - BIT单电压3V ONLY制服行业的FLASH MEMORY
MX29LA321MHXCI-70R
型号: MX29LA321MHXCI-70R
厂家: MACRONIX INTERNATIONAL    MACRONIX INTERNATIONAL
描述:

32M-BIT SINGLE VOLTAGE 3V ONLY UNIFORM SECTOR FLASH MEMORY
32M - BIT单电压3V ONLY制服行业的FLASH MEMORY

文件: 总66页 (文件大小:510K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MX29LA321M H/L  
32M-BIT SINGLE VOLTAGE 3V ONLY  
UNIFORM SECTOR FLASH MEMORY  
FEATURES  
GENERAL FEATURES  
- Data# polling & Toggle bits provide detection of pro-  
gram and erase operation completion  
• Single Power Supply Operation  
- 2.7 to 3.6 volt for read, erase, and program opera-  
tions  
• Configuration  
- 4,194,304 x 8 / 2,097,152 x 16 switchable  
• Sector structure  
HARDWARE FEATURES  
• Ready/Busy (RY/BY#) Output  
- Provides a hardware method of detecting program  
and erase operation completion  
• Hardware Reset (RESET#) Input  
- Provides a hardware method to reset the internal  
state machine to read mode  
- 64KB(32KW) x 64  
• Latch-up protected to 250mA from -1V to VCC + 1V  
• Low VCC write inhibit is equal to or less than 1.5V  
• Compatible with JEDEC standard  
- Pin-out and software compatible to single power sup-  
ply Flash  
• WP#/ACC input  
- Write protect (WP#) function allows protection of all  
sectors, regardless of sector protection settings  
- ACC (high voltage) accelerates programming time  
for higher throughput during system  
PERFORMANCE  
• High Performance  
- Fast access time: 70R/90ns  
- Page read time:25ns  
SECURITY  
• Sector Protection/Chip Unprotect  
- Provides sector group protect function to prevent pro-  
gram or erase operation in the protected sector group  
- Provides chip unprotect function to allow code  
changes  
- Sector erase time: 0.5s (typ.)  
- 4 word/8 byte page read buffer  
- 16 word/ 32 byte write buffer:reduces programming  
time for multiple-word/byte updates  
• Low Power Consumption  
• Sector Permanent Lock  
- Active read current: 18mA(typ.)  
- Active write current: 20mA(typ.)  
- Standby current: 20uA(typ.)  
• Minimum 100,000 erase/program cycle  
• 20-year data retention  
- Through a unique permanent locking scheme, the  
device allows the user to permanently lock any ran-  
domly selected sector(s) within the memory array  
(Please contact Macronix for specifics relating to  
this feature - this datasheet does not include any  
other information relating to this feature)  
• Secured Silicon Sector  
SOFTWARE FEATURES  
• Supports Common Flash Interface (CFI)  
- Flash device parameters stored on the device and  
provide the host system to access.  
• Program Suspend/Program Resume  
- Suspend program operation to read other sectors  
• Erase Suspend/ Erase Resume  
- Suspends sector erase operation to read data/pro-  
gram other sectors  
- Provides a 128-word OTP area for permanent, se-  
cure identification  
- Can be programmed and locked at factory or by cus-  
tomer  
PACKAGE  
• 56-pinTSOP  
• 64-ball CSP  
• Status Reply  
All Pb-free devices are RoHS Compliant  
64-ball CSP. It is designed to be reprogrammed and  
erased in system or in standard EPROM programmers.  
GENERAL DESCRIPTION  
The MX29LA321M H/L is a 32-mega bit Flash memory  
organized as 4M bytes of 8 bits or 2M words of 16 bits.  
MXIC's Flash memories offer the most cost-effective and  
reliable read/write non-volatile random access memory.  
The MX29LA321M H/L is packaged in 56-pinTSOP and  
The standard MX29LA321M H/L offers access time as  
fast as 70ns, allowing operation of high-speed micropro-  
cessors without wait states. To eliminate bus conten-  
tion, the MX29LA321M H/L has separate chip enable  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
1
MX29LA321M H/L  
(CE#) and output enable (OE#) controls.  
fication of electrical erase are controlled internally within  
the device.  
MXIC's Flash memories augment EPROM functionality  
with in-circuit electrical erasure and programming. The  
MX29LA321M H/L uses a command register to manage  
this functionality.  
AUTOMATIC SECTOR ERASE  
The MX29LA321M H/L is sector(s) erasable using MXIC's  
Auto Sector Erase algorithm. Sector erase modes allow  
sectors of the array to be erased in one erase cycle. The  
Automatic Sector Erase algorithm automatically programs  
the specified sector(s) prior to electrical erase. The tim-  
ing and verification of electrical erase are controlled inter-  
nally within the device.  
MXIC Flash technology reliably stores memory contents  
even after 100,000 erase and program cycles. The MXIC  
cell is designed to optimize the erase and program  
mechanisms. In addition, the combination of advanced  
tunnel oxide processing and low internal electric fields  
for erase and programming operations produces reliable  
cycling. The MX29LA321M H/L uses a 2.7V to 3.6V  
VCC supply to perform the High Reliability Erase and  
auto Program/Erase algorithms.  
AUTOMATIC ERASE ALGORITHM  
The highest degree of latch-up protection is achieved  
with MXIC's proprietary non-epi process. Latch-up pro-  
tection is proved for stresses up to 100 milliamperes on  
address and data pins from -1V to VCC + 1V.  
MXIC's Automatic Erase algorithm requires the user to  
write commands to the command register using stan-  
dard microprocessor write timings. The device will auto-  
matically pre-program and verify the entire array. Then  
the device automatically times the erase pulse width,  
provides the erase verification, and counts the number  
of sequences. A status bit toggling between consecu-  
tive read cycles provides feedback to the user as to the  
status of the programming operation.  
AUTOMATIC PROGRAMMING  
The MX29LA321M H/L is byte/word/page programmable  
using the Automatic Programming algorithm. The Auto-  
matic Programming algorithm does not require the exter-  
nal system to have a time-out sequence nor verification  
of the data programmed.  
Register contents serve as inputs to an internal state-  
machine which controls the erase and programming cir-  
cuitry. During write cycles, the command register inter-  
nally latches address and data needed for the program-  
ming and erase operations. During a system write cycle,  
addresses are latched on the falling edge, and data are  
latched on the rising edge of WE# .  
AUTOMATIC PROGRAMMING ALGORITHM  
MXIC's Automatic Programming algorithm requires the  
user to only write program set-up commands (including 2  
unlock write cycle and A0H) and a program command  
(program data and address). The device automatically  
times the programming pulse width, provides the program  
verification, and counts the number of sequences. A sta-  
tus bit similar to DATA# polling and a status bit toggling  
between consecutive read cycles, provide feedback to  
the user as to the status of the programming operation.  
MXIC's Flash technology combines years of EPROM  
experience to produce the highest levels of quality, reli-  
ability, and cost effectiveness. The MX29LA321M H/L  
electrically erases all bits simultaneously using Fowler-  
Nordheim tunneling. The bytes are programmed by us-  
ing the EPROM programming mechanism of hot elec-  
tron injection.  
During a program cycle, the state-machine will control  
the program sequences and command register will not  
respond to any command set. During a Sector Erase  
cycle, the command register will only respond to Erase  
Suspend command. After Erase Suspend is completed,  
the device stays in read mode. After the state machine  
has completed its task, it will allow the command regis-  
ter to respond to its full command set.  
AUTOMATIC CHIP ERASE  
The entire chip is bulk erased using 50 ms erase pulses  
according to MXIC's Automatic Chip Erase algorithm. The  
Automatic Erase algorithm automatically programs the  
entire array prior to electrical erase. The timing and veri-  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
2
MX29LA321M H/L  
PIN CONFIGURATION  
56TSOP  
NC  
CE1  
A21  
A20  
A19  
A18  
A17  
A16  
VDD  
A15  
A14  
A13  
A12  
CE0  
WP#/ACC  
RESET#  
A11  
A10  
A9  
1
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
NC  
2
WE#  
OE#  
RY/BY#  
Q15  
Q7  
3
4
5
6
7
Q14  
Q6  
8
9
VSS  
S13  
Q5  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
Q12  
Q4  
VCC  
GND  
Q11  
Q3  
Q10  
Q2  
A8  
VDD  
Q9  
VSS  
A7  
Q1  
A6  
Q8  
A5  
Q0  
A4  
A0  
A3  
BYTE#  
NC  
A2  
A1  
CE2  
64 CSP  
1
2
3
4
5
6
7
8
WP#/  
ACC  
A1  
A6  
A8  
A13  
VCC  
A18  
NC  
A
A2  
A3  
GND  
A7  
A9  
CE0  
A12  
A14  
A15  
NC  
NC  
A19  
A20  
CE1  
A21  
B
C
A10  
RES-  
ET#  
D
E
A4  
Q8  
A5  
Q1  
Q0  
A11  
Q9  
NC  
Q4  
NC  
NC  
NC  
A16  
Q15  
NC  
A17  
RY/  
BY#  
Q3  
Q10  
Q11  
Q12  
OE#  
BYTE#  
NC  
F
A0  
Q2  
VCC  
GND  
Q5  
Q6  
Q14  
Q7  
WE#  
NC  
G
H
CE2  
NC  
VDD  
Q13  
GND  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
3
MX29LA321M H/L  
LOGIC SYMBOL  
PIN DESCRIPTION  
SYMBOL PIN NAME  
22  
A0  
Byte-Select Address  
16 or 8  
A0-A21  
Q0-Q15  
(A-1)  
A1~A21  
Q0~Q15  
CE#  
Address Input  
Data Inputs/Outputs  
Chip Enable Input  
WE#  
Write Enable Input  
CE#  
OE#  
Output Enable Input  
Hardware Reset Pin, Active Low  
OE#  
RESET#  
WE#  
WP#/ACC HardwareWrite Protect/Programming  
Acceleration input  
RESET#  
WP#/ACC  
BYTE#  
VI/O  
RY/BY#  
RY/BY#  
BYTE#  
VCC  
Read/Busy Output  
Selects 8 bit or 16 bit mode  
+3.0V single power supply  
Output Buffer Power (This input should  
be tied directly to VCC 2.7V~3.6V)  
Device Ground  
VI/O  
GND  
NC  
Pin Not Connected Internally  
Chip Enable Truth Table  
CE2  
VIL  
VIL  
VIL  
VIL  
VIH  
VIH  
VIH  
VIH  
CE1  
VIL  
VIL  
VIH  
VIH  
VIL  
VIL  
VIH  
VIH  
CE0  
VIL  
VIH  
VIL  
VIH  
VIL  
VIH  
VIL  
VIH  
DEVICE  
Enabled  
Disabled  
Disabled  
Disabled  
Enabled  
Enabled  
Enabled  
Disabled  
Note:For Single-chip applications, CE2 and CE1 can be  
strapped to GND.  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
4
MX29LA321M H/L  
BLOCK DIAGRAM  
CE#  
OE#  
WRITE  
CONTROL  
INPUT  
PROGRAM/ERASE  
STATE  
MACHINE  
(WSM)  
WE#  
HIGH VOLTAGE  
WP#  
LOGIC  
BYTE#  
RESET#  
STATE  
FLASH  
ARRAY  
ADDRESS  
LATCH  
REGISTER  
ARRAY  
A0-A21  
AND  
SOURCE  
HV  
BUFFER  
Y-PASS GATE  
COMMAND  
DATA  
DECODER  
PGM  
SENSE  
DATA  
HV  
AMPLIFIER  
COMMAND  
DATA LATCH  
PROGRAM  
DATA LATCH  
Q0-Q15  
I/O BUFFER  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
5
MX29LA321M H/L  
MX29LA321M H/L SECTOR ADDRESS TABLE  
Sector  
Sector Address  
A21-A16  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
Sector Size  
(Kbytes/Kwords)  
64/32  
(x8)  
(x16)  
Address Range  
000000-0FFFF  
010000-1FFFF  
020000-2FFFF  
030000-3FFFF  
040000-4FFFF  
050000-5FFFF  
060000-6FFFF  
070000-7FFFF  
080000-8FFFF  
090000-9FFFF  
0A0000-AFFFF  
0B0000-BFFFF  
0C0000-CFFFF  
0D0000-DFFFF  
0E0000-EFFFF  
0F0000-FFFFF  
100000-0FFFF  
110000-1FFFF  
120000-2FFFF  
130000-3FFFF  
140000-4FFFF  
150000-5FFFF  
160000-6FFFF  
170000-7FFFF  
180000-8FFFF  
190000-9FFFF  
1A0000-AFFFF  
1B0000-BFFFF  
1C0000-CFFFF  
1D0000-DFFFF  
1E0000-EFFFF  
1F0000-FFFFF  
Address Range  
000000-07FFF  
008000-0FFFF  
010000-17FFF  
018000-1FFFF  
020000-27FFF  
028000-2FFFF  
030000-37FFF  
038000-3FFFF  
040000-47FFF  
048000-4FFFF  
050000-57FFF  
058000-5FFFF  
060000-67FFF  
068000-6FFFF  
070000-77FFF  
078000-7FFFF  
080000-87FFF  
088000-8FFFF  
090000-97FFF  
098000-9FFFF  
0A0000-A7FFF  
0A8000-AFFFF  
0B0000-B7FFF  
0B8000-BFFFF  
0C0000-C7FFF  
0C8000-CFFFF  
0D0000-D7FFF  
0D8000-DFFFF  
0E0000-E7FFF  
0E8000-EFFFF  
0F0000-F7FFF  
0F8000-FFFFF  
SA0  
SA1  
64/32  
SA2  
64/32  
SA3  
64/32  
SA4  
64/32  
SA5  
64/32  
SA6  
64/32  
SA7  
64/32  
SA8  
64/32  
SA9  
64/32  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
6
MX29LA321M H/L  
Sector  
Sector Address  
A21-A16  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
110000  
110001  
110010  
110011  
110100  
110101  
110110  
110111  
111000  
111001  
111010  
111011  
111100  
111101  
111110  
111111  
Sector Size  
(Kbytes/Kwords)  
64/32  
(x8)  
(x16)  
Address Range  
200000-0FFFF  
210000-1FFFF  
220000-2FFFF  
230000-3FFFF  
240000-4FFFF  
250000-5FFFF  
260000-6FFFF  
270000-7FFFF  
280000-8FFFF  
290000-9FFFF  
2A0000-AFFFF  
2B0000-BFFFF  
2C0000-CFFFF  
2D0000-DFFFF  
2E0000-EFFFF  
2F0000-FFFFF  
300000-0FFFF  
310000-1FFFF  
320000-2FFFF  
330000-3FFFF  
340000-4FFFF  
350000-5FFFF  
360000-6FFFF  
370000-7FFFF  
380000-8FFFF  
390000-9FFFF  
3A0000-AFFFF  
3B0000-BFFFF  
3C0000-CFFFF  
3D0000-DFFFF  
3E0000-EFFFF  
3F0000-FFFFF  
Address Range  
100000-07FFF  
108000-0FFFF  
110000-17FFF  
118000-1FFFF  
120000-27FFF  
128000-2FFFF  
130000-37FFF  
138000-3FFFF  
140000-47FFF  
148000-4FFFF  
150000-57FFF  
158000-5FFFF  
160000-67FFF  
168000-6FFFF  
170000-77FFF  
178000-7FFFF  
180000-87FFF  
188000-8FFFF  
190000-97FFF  
198000-9FFFF  
1A0000-A7FFF  
1A8000-AFFFF  
1B0000-B7FFF  
1B8000-BFFFF  
1C0000-C7FFF  
1C8000-CFFFF  
1D0000-D7FFF  
1D8000-DFFFF  
1E0000-E7FFF  
1E8000-EFFFF  
1F0000-F7FFF  
1F8000-FFFFF  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
7
MX29LA321M H/L  
MX29LA321M H/L Sector Group Protection Address Table  
Sector Group  
SA0  
A21-A13  
000000  
000001  
000010  
000011  
0001xx  
0010xx  
0011xx  
0100xx  
0101xx  
0110xx  
0111xx  
1000xx  
1001xx  
1010xx  
1011xx  
1100xx  
1101xx  
1110xx  
111100  
111101  
111110  
111111  
SA1  
SA2  
SA3  
SA4-SA7  
SA8-SA11  
SA12-SA15  
SA16-SA19  
SA20-SA23  
SA24-SA27  
SA28-SA31  
SA32-SA35  
SA36-SA39  
SA40-SA43  
SA44-SA47  
SA48-SA51  
SA52-SA55  
SA56-SA59  
SA60  
SA61  
SA62  
SA63  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
8
MX29LA321M H/L  
Table 1. BUS OPERATION (1)  
Q8~Q15  
Operation  
CE# OE# WE# RE-  
WP# ACC  
Address  
Q0~Q7 Word  
Mode  
Byte  
Mode  
SET#  
Read  
L
L
L
L
H
H
X
H
L
H
X
X
X
AIN  
AIN  
AIN  
X
DOUT  
DOUT  
Q8-Q15=  
High Z  
Write (Program/Erase)  
Accelerated Program  
Standby  
H
H
(Note 3)  
(Note 4) (Note 4 Q8-Q15=  
High Z  
L
(Note 3) VHH  
(Note 4) (Note 4) Q8-Q15=  
High Z  
VCC±  
X
VCC±  
0.3V  
H
X
H
High-Z High-Z  
High-Z  
0.3V  
Output Disable  
Reset  
L
X
L
H
X
H
H
X
L
X
X
H
X
X
X
X
X
High-Z High-Z  
High-Z High-Z  
High-Z  
High-Z  
X
L
Sector Group Protect  
(Note 2)  
VID  
Sector Addresses, (Note 4)  
A7=L,A4=L, A3=L,  
A2=H,A1=L  
X
Chip unprotect  
(Note 2)  
L
H
L
VID  
H
X
Sector Addresses, (Note 4)  
A7=H, A4=L, A3=L,  
A2=H, A1=L  
X
X
Legend:  
L=Logic LOW=VIL, H=Logic High=VIH, VID=12.0±0.5V, VHH=12.0±0.5V, X=Don't Care, AIN=Address IN, DIN=Data IN,  
DOUT=Data OUT  
Notes:  
1. Address are A21:A1 in word mode; A21:A0 in byte mode. Sector addresses are A21:A14 in both modes.  
2. The sector group protect and chip unprotect functions may also be implemented via programming equipment.See  
the "Sector Group Protection and Chip Unprotect" section.  
3. If WP#=VIL, all the sectors remain protected.If WP#=VIH, all sectors protection depends on whether they were last  
protected or unprotect using the method described in "Sector/ Sector Block Protection and Unprotect".  
4. DIN or DOUT as required by command sequence, Data# polling or sector protect algorithm (seeTable 3 and Figure 15).  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
9
MX29LA321M H/L  
Table 2. AUTOSELECT CODES (High Voltage Method)  
A21 A15  
CE# OE# WE# to to A10 to A7 to  
A16 A11  
A9  
A6 A4  
Q8 to Q15  
Byte  
Description  
to A2 A1 Word  
Q7 to Q0  
A8  
A5 A3  
Mode  
00  
Mode  
Manufacturer ID  
Cycle 1  
L
L
H
X
X
VID  
X
L
X
L
L
L
L
L
H
L
X
X
X
X
C2h  
7Eh  
22  
Cycle 2  
L
L
H
X
X
VID  
X
X
L
X
H
H
H
H
22  
1Dh  
Cycle 3  
H
22  
00h  
Sector Group  
Protection  
01h (protected),  
L
L
L
L
H
H
SA  
X
X
VID  
VID  
L
L
X
X
L
L
H
H
L
X
X
X
Verification  
00h (unprotected)  
98h  
Secured Silicon  
Sector Indicator  
Bit (Q7), WP#  
protects highest  
address sector  
Secured Silicon  
Sector Indicator  
Bit (Q7), WP#  
protects lowest  
address sector  
(factory locked),  
X
X
X
H
X
18h  
(not factory locked)  
88h  
(factory locked),  
L
L
H
X
X
VID  
L
X
L
H
H
X
X
08h  
(not factory locked)  
Legend: L = Logic Low = VIL, H = Logic High = VIH, SA = Sector Address, X = Don't care.  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
10  
MX29LA321M H/L  
dress bits required to uniquely select a sector.The "Writ-  
ing specific address and data commands or sequences  
into the command register initiates device operations.  
Table 3 defines the valid register command sequences.  
Writing incorrect address and data values or writing them  
in the improper sequence resets the device to reading  
array data.Section has details on erasing a sector or the  
entire chip, or suspending/resuming the erase operation.  
REQUIREMENTS FOR READING ARRAY  
DATA  
To read array data from the outputs, the system must  
drive the CE# and OE# pins to VIL. CE# is the power  
control and selects the device. OE# is the output control  
and gates array data to the output pins.WE# should re-  
main at VIH.  
After the system writes the Automatic Select command  
sequence, the device enters the Automatic Select mode.  
The system can then read Automatic Select codes from  
the internal register (which is separate from the memory  
array) on Q7-Q0. Standard read cycle timings apply in  
this mode. Refer to the Automatic Select Mode and Au-  
tomatic Select Command Sequence section for more  
information.  
The internal state machine is set for reading array data  
upon device power-up, or after a hardware reset. This  
ensures that no spurious alteration of the memory con-  
tent occurs during the power transition. No command is  
necessary in this mode to obtain array data. Standard  
microprocessor read cycles that assert valid address on  
the device address inputs produce valid data on the de-  
vice data outputs. The device remains enabled for read  
access until the command register contents are altered.  
ICC2 in the DC Characteristics table represents the ac-  
tive current specification for the write mode. The "AC  
Characteristics" section contains timing specification  
table and timing diagrams for write operations.  
PAGE MODE READ  
The MX29LA321M H/L offers "fast page mode read" func-  
tion. This mode provides faster read access speed for  
random locations within a page. The page size of the  
device is 4 words/8 bytes. The appropriate page is se-  
lected by the higher address bits A1~A2(Word Mode)/  
A0~A2(Byte Mode) This is an asynchronous operation;  
the microprocessor supplies the specific word location.  
WRITE BUFFER  
Write Buffer Programming allows the system to write a  
maximum of 16 words/32 bytes in one programming op-  
eration.This results in faster effective programming time  
than the standard programming algorithms. See "Write  
Buffer" for more information.  
The system performance could be enhanced by initiating  
1 normal read and 3 fast page read (for word mode A1-  
A2) or 7 fast page read (for byte mode A0~A2). When  
CE# is deasserted and reasserted for a subsequent ac-  
cess, the access time is tACC or tCE. Fast page mode  
accesses are obtained by keeping the "read-page ad-  
dresses" constant and changing the "intra-read page"  
addresses.  
ACCELERATED PROGRAM OPERATION  
The device offers accelerated program operations through  
the ACC function. This is one of two functions provided  
by the ACC pin. This function is primarily intended to  
allow faster manufacturing throughput at the factory.  
WRITING COMMANDS/COMMAND SE-  
QUENCES  
If the system asserts VHH on this pin, the device auto-  
matically enters the aforementioned Unlock Bypass  
mode, temporarily unprotects any protected sectors, and  
uses the higher voltage on the pin to reduce the time  
required for program operations. The system would use  
a two-cycle program command sequence as required by  
the Unlock Bypass mode. RemovingVHH from the ACC  
pin must not be at VHH for operations other than accel-  
erated programming, or device damage may result.  
To program data to the device or erase sectors of memory,  
the system must driveWE# and CE# toVIL, and OE# to  
VIH.  
An erase operation can erase one sector, multiple sec-  
tors, or the entire device. The Sector Address Table on  
page 6 and 7 indicates the address space that each  
sector occupies. A "sector address" consists of the ad-  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
11  
MX29LA321M H/L  
greater.  
STANDBY MODE  
The RESET# pin may be tied to system reset circuitry.  
A system reset would that also reset the Flash memory,  
enabling the system to read the boot-up firmware from  
the Flash memory.  
When using both pins of CE# and RESET#, the device  
enter CMOS Standby with both pins held atVCC ±0.3V.  
If CE# and RESET# are held at VIH, but not within the  
range ofVCC ±0.3V, the device will still be in the standby  
mode, but the standby current will be larger.During Auto  
Algorithm operation,VCC active current (ICC2) is required  
even CE# = "H" until the operation is completed. The  
device can be read with standard access time (tCE) from  
either of these standby modes, before it is ready to read  
data.  
If RESET# is asserted during a program or erase  
operation, the RY/BY# pin remains a "0" (busy) until the  
internal reset operation is complete, which requires a time  
of tREADY (during Embedded Algorithms).The system  
can thus monitor RY/BY# to determine whether the reset  
operation is complete. If RESET# is asserted when a  
program or erase operation is completed within a time of  
tREADY (not during Embedded Algorithms).The system  
can read data tRH after the RESET# pin returns to VIH.  
AUTOMATIC SLEEP MODE  
The automatic sleep mode minimizes Flash device en-  
ergy consumption.The device automatically enables this  
mode when address remain stable for tACC+30ns. The  
automatic sleep mode is independent of the CE#, WE#,  
and OE# control signals. Standard address access tim-  
ings provide new data when addresses are changed.While  
in sleep mode, output data is latched and always avail-  
able to the system. ICC4 in the DC Characteristics table  
represents the automatic sleep mode current specifica-  
tion.  
Refer to the AC Characteristics tables for RESET#  
parameters and to Figure 3 for the timing diagram.  
SECTOR GROUP PROTECT OPERATION  
The MX29LA321M H/L features hardware sector group  
protection. This feature will disable both program and  
erase operations for these sector group protected. In  
this device, a sector group consists of four adjacent sec-  
tors which are protected or unprotected at the same time  
(See "MX29LA321M H/L Sector Group Protection Address  
Table" on page 8). To activate this mode, the program-  
ming equipment must forceVID on address pin A10 and  
control pin OE#, (suggestVID = 12V) A7 =VIL and CE#  
= VIL. (see Table 2) Programming of the protection cir-  
cuitry begins on the falling edge of theWE# pulse and is  
terminated on the rising edge. Please refer to sector  
group protect algorithm and waveform.  
OUTPUT DISABLE  
With the OE# input at a logic high level (VIH), output  
from the devices are disabled.This will cause the output  
pins to be in a high impedance state.  
RESET# OPERATION  
MX29LA321M H/L also provides another method.Which  
requires VID on the RESET# only. This method can be  
implemented either in-system or via programming equip-  
ment. This method uses standard microprocessor bus  
cycle timing.  
The RESET# pin provides a hardware method of resetting  
the device to reading array data.When the RESET# pin  
is driven low for at least a period of tRP, the device  
immediately terminates any operation in progress,  
tristates all output pins, and ignores all read/write  
commands for the duration of the RESET# pulse. The  
device also resets the internal state machine to reading  
array data.The operation that was interrupted should be  
reinitiated once the device is ready to accept another  
command sequence, to ensure data integrity  
To verify programming of the protection circuitry, the pro-  
gramming equipment must forceVID on address pin A10  
(with CE# and OE# atVIL and WE# atVIH). When A2=1,  
it will produce a logical "1" code at device output Q0 for a  
protected sector. Otherwise the device will produce 00H  
for the unprotected sector. In this mode, the addresses,  
except for A2, are don't care. Address locations with A2  
=VIL are reserved to read manufacturer and device codes.  
(Read Silicon ID)  
Current is reduced for the duration of the RESET# pulse.  
When RESET# is held at VSS±0.3V, the device draws  
CMOS standby current (ICC4).If RESET# is held atVIL  
but not within VSS±0.3V, the standby current will be  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
12  
MX29LA321M H/L  
It is also possible to determine if the group is protected  
in the system by writing a Read Silicon ID command.  
Performing a read operation with A2=VIH, it will produce  
a logical "1" at Q0 for the protected sector.  
last protected or unprotect using the method described in  
"Sector/Sector Group Protection and Chip Unprotect".  
Note that the WP# pin must not be left floating or uncon-  
nected; inconsistent behavior of the device may result.  
CHIP UNPROTECT OPERATION  
SILICON ID READ OPERATION  
The MX29LA321M H/L also features the chip unprotect  
mode, so that all sectors are unprotected after chip  
unprotect is completed to incorporate any changes in  
the code. It is recommended to protect all sectors before  
activating chip unprotect mode.  
Flash memories are intended for use in applications where  
the local CPU alters memory contents. As such, manu-  
facturer and device codes must be accessible while the  
device resides in the target system. PROM program-  
mers typically access signature codes by raising A10 to  
a high voltage. However, multiplexing high voltage onto  
address lines is not generally desired system design prac-  
tice.  
To activate this mode, the programming equipment must  
force VID on control pin OE# and address pin A10. The  
CE# pins must be set at VIL. Pins A7 must be set to  
VIH.(seeTable 2) Refer to chip unprotect algorithm and  
waveform for the chip unprotect algorithm. The unprotect  
mechanism begins on the falling edge of the WE# pulse  
and is terminated on the rising edge.  
MX29LA321M H/L provides hardware method to access  
the silicon ID read operation.Which method requiresVID  
on A10 pin, VIL on CE#, OE#, A7, and A2 pins. Which  
applyVIL on A1 pin, the device will output MXIC's manu-  
facture code of which applyVIH on A1 pin, the device will  
output MX29LA321M H/L device code.  
MX29LA321M H/L also provides another method.Which  
requires VID on the RESET# only. This method can be  
implemented either in-system or via programming equip-  
ment. This method uses standard microprocessor bus  
cycle timing.  
VERIFY SECTOR GROUP PROTECT STATUS  
OPERATION  
It is also possible to determine if the chip is unprotect in  
the system by writing the Read Silicon ID command.  
Performing a read operation with A2=VIH, it will produce  
00H at data outputs (Q0-Q7) for an unprotect sector.It is  
noted that all sectors are unprotected after the chip  
unprotect algorithm is completed.  
MX29LA321M H/L provides hardware method for sector  
group protect status verify. Which method requires VID  
on A10 pin, VIH on WE# and A2 pins, VIL on CE#, OE#,  
A7, and A1 pins, and sector address on A17 to A22 pins.  
Which the identified sector is protected, the device will  
output 01H.Which the identified sector is not protect, the  
device will output 00H.  
WRITE PROTECT (WP#)  
The write protect function provides a hardware method  
to protect all sectors without using VID.  
DATA PROTECTION  
The MX29LA321M H/L is designed to offer protection  
against accidental erasure or programming caused by  
spurious system level signals that may exist during power  
transition. During power up the device automatically re-  
sets the state machine in the Read mode. In addition,  
with its control register architecture, alteration of the  
memory contents only occurs after successful comple-  
tion of specific command sequences. The device also  
incorporates several features to prevent inadvertent write  
cycles resulting fromVCC power-up and power-down tran-  
sition or system noise.  
If the system asserts VIL on the WP# pin, the device  
disables program and erase functions in all sectors inde-  
pendently of whether those sectors were protected or  
unprotect using the method described in Sector/Sector  
Group Protection and Chip Unprotect".  
If the system asserts VIH on the WP# pin, the device  
reverts to whether the sectors were last set to be pro-  
tected or unprotect. That is, sector protection or  
unprotection for the sectors depends on whether they were  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
13  
MX29LA321M H/L  
SECURED SILICON SECTOR  
FACTORY LOCKED:Secured Silicon Sector  
Programmed and Protected At the Factory  
The MX29LA321M H/L features a OTP memory region  
where the system may access through a command se-  
quence to create a permanent part identification as so  
called Electronic Serial Number (ESN) in the device.  
Once this region is programmed, any further modifica-  
tion on the region is impossible.The secured silicon sec-  
tor is a 128 words in length, and uses a Secured Silicon  
Sector Indicator Bit (Q7) to indicate whether or not the  
Secured Silicon Sector is locked when shipped from the  
factory. This bit is permanently set at the factory and  
cannot be changed, which prevent duplication of a fac-  
tory locked part. This ensures the security of the ESN  
once the product is shipped to the field.  
In device with an ESN, the Secured Silicon Sector is  
protected when the device is shipped from the factory.  
The Secured Silicon Sector cannot be modified in any  
way.A factory locked device has an 8-word random ESN  
at address 000000h-000007h.  
CUSTOMER LOCKABLE:Secured Silicon  
Sector NOT Programmed or Protected At the  
Factory  
As an alternative to the factory-locked version, the device  
may be ordered such that the customer may program  
and protect the 128-word Secured Silicon Sector.  
Programming and protecting the Secured Silicon Sector  
must be used with caution since, once protected, there  
is no procedure available for unprotected the Secured  
Silicon Sector area and none of the bits in the Secured  
Silicon Sector memory space can be modified in any  
way.  
The MX29LA321M H/L offers the device with Secured  
Silicon Sector either factory locked or customer lock-  
able.The factory-locked version is always protected when  
shipped from the factory , and has the Secured Silicon  
Sector Indicator Bit permanently set to a "1". The cus-  
tomer-lockable version is shipped with the Secured Sili-  
con Sector unprotected, allowing customers to utilize that  
sector in any form they prefer. The customer-lockable  
version has the secured sector Indicator Bit permanently  
set to a "0". Therefore, the Secured Silicon Sector Indi-  
cator Bit prevents customer, lockable device from being  
used to replace devices that are factory locked.  
The Secured Silicon Sector area can be protected using  
one of the following procedures:  
Write the three-cycle Enter Secured Silicon Sector Region  
command sequence, and then follow the in-system  
sector protect algorithm as shown in Figure 15, except  
that RESET# may be at eitherVIH orVID.This allows in-  
system protection of the Secured Silicon Sector without  
raising any device pin to a high voltage. Note that method  
is only applicable to the Secured Silicon Sector.  
The system access the Secured Silicon Sector through  
a command sequence (refer to "Enter Secured Silicon/  
Exit Secured Silicon Sector command Sequence). After  
the system has written the Enter Secured Silicon Sector  
command sequence, it may read the Secured Silicon  
Sector by using the address normally occupied by the  
first sector SA1. Once entry the Secured Silicon Sector  
the operation of boot sectors is disabled but the operation  
of main sectors is as normally. This mode of operation  
continues until the system issues the Exit Secured Sili-  
con Sector command sequence, or until power is removed  
from the device. On power-up, or following a hardware  
reset, the device reverts to sending command to sector  
SA1.  
Write the three-cycle Enter Secured Silicon Sector Region  
command sequence, and then alternate method of sector  
protection described in the :Sector Group Protection and  
Unprotect" section.  
Once the Secured Silicon Sector is programmed, locked  
and verified, the system must write the Exit Secured  
Silicon Sector Region command sequence to return to  
reading and writing the remainder of the array.  
Secured Silicon ESN factory  
Customer  
lockable  
Sector address  
range  
locked  
LOW VCC WRITE INHIBIT  
000000h-000007h  
ESN  
Determined by  
Customer  
When VCC is less than VLKO the device does not ac-  
cept any write cycles. This protects data during VCC  
power-up and power-down.The command register and all  
000008h-00007Fh Unavailable  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
14  
MX29LA321M H/L  
internal program/erase circuits are disabled, and the de-  
vice resets. Subsequent writes are ignored until VCC is  
greater thanVLKO. The system must provide the proper  
signals to the control pins to prevent unintentional write  
whenVCC is greater thanVLKO.  
WRITE PULSE "GLITCH" PROTECTION  
Noise pulses of less than 5ns (typical) on CE# or WE#  
will not initiate a write cycle.  
LOGICAL INHIBIT  
Writing is inhibited by holding any one of OE# = VIL,  
CE# = VIH or WE# = VIH. To initiate a write cycle CE#  
and WE# must be a logical zero while OE# is a logical  
one.  
POWER-UP SEQUENCE  
The MX29LA321M H/L powers up in the Read only mode.  
In addition, the memory contents may only be altered  
after successful completion of the predefined command  
sequences.  
POWER-UP WRITE INHIBIT  
If WE#=CE#=VIL and OE#=VIH during power up, the  
device does not accept commands on the rising edge of  
WE#. The internal state machine is automatically reset  
to the read mode on power-up.  
POWER SUPPLY DE COUPLING  
In order to reduce power switching effect, each device  
should have a 0.1uF ceramic capacitor connected be-  
tween itsVCC and GND.  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
15  
MX29LA321M H/L  
Erase Resume (30H) commands are valid only while the  
Sector Erase operation is in progress. Either of the two  
reset command sequences will reset the device (when  
applicable).  
SOFTWARE COMMAND DEFINITIONS  
Device operations are selected by writing specific ad-  
dress and data sequences into the command register.  
Writing incorrect address and data values or writing them  
in the improper sequence will reset the device to the  
read mode. Table 3 defines the valid register command  
sequences. Note that the Erase Suspend (B0H) and  
All addresses are latched on the falling edge of WE# or  
CE#, whichever happens later. All data are latched on  
rising edge of WE# or CE#, whichever happens first.  
TABLE 3. MX29LA321M H/L COMMAND DEFINITIONS  
First Bus  
Cycle  
Second Bus Third Bus Fourth Bus  
Cycle Cycle Cycle  
Fifth Bus Sixth Bus  
Cycle Cycle  
Command  
Bus  
Cycles Addr Data Addr Data Addr Data Addr  
Data  
Addr Data Addr Data  
Read (Note 5)  
1
1
RA  
RD  
Reset (Note 6)  
XXX F0  
Automatic Select (Note 7)  
Manufacturer ID  
Word  
Byte  
4
4
4
4
4
4
4
4
3
3
4
4
4
4
6
6
1
1
3
3
6
6
6
6
1
1
1
1
555 AA  
AAA AA  
555 AA  
AAA AA  
555 AA  
AAA AA  
555 AA  
AAA AA  
555 AA  
AAA AA  
555 AA  
AAA AA  
555 AA  
AAA AA  
555 AA  
AAA AA  
2AA 55  
555 55  
2AA 55  
555 55  
2AA 55  
555 55  
2AA 55  
555 55  
2AA 55  
555 55  
2AA 55  
555 55  
2AA 55  
555 55  
2AA 55  
555 55  
555 90 X00  
AAA 90 X00  
555 90 X01  
AAA 90 X02  
555 90 X03  
AAA 90 X06  
C2H  
C2H  
ID1  
Device ID  
(Note 8)  
Word  
Byte  
X0E ID2 X0F ID3  
X1C ID2 X1E ID3  
ID1  
Secured Sector Fact- Word  
see  
ory Protect (Note 9)  
Sector Group Protect  
Verify (Note 10)  
Enter Secured Silicon  
Sector  
Byte  
Word  
Byte  
Word  
Byte  
Word  
Byte  
Word  
Byte  
Note 9  
555 90 (SA)X02 XX00/  
AAA 90 (SA)X04 XX01  
555 88  
AAA 88  
Exit Secured Silicon  
Sector  
555 90 XXX  
AAA 90 XXX  
555 A0 PA  
AAA A0 PA  
SA 25 SA  
SA 25 SA  
00  
00  
Program  
PD  
PD  
WC  
BC  
Write to Buffer (Note 11) Word  
PA PD WBL PD  
PA PD WBL PD  
Byte  
Program Buffer to Flash Word  
Byte  
SA  
SA  
29  
29  
Write to Buffer Abort  
Reset (Note 12)  
Chip Erase  
Word  
Byte  
Word  
Byte  
Word  
Byte  
555 AA  
AAA AA  
555 AA  
AAA AA  
555 AA  
AAA AA  
XXX B0  
XXX 30  
2AA 55  
555 55  
2AA 55  
555 55  
2AA 55  
555 55  
555 F0  
AAA F0  
555 80 555  
AAA 80 AAA  
555 80 555  
AAA 80 AAA  
AA  
AA  
AA  
AA  
2AA 55  
555 55  
2AA 55  
555 55  
555 10  
AAA 10  
SA 30  
SA 30  
Sector Erase  
Program/Erase Suspend (Note 13)  
Program/Erase Resume (Note 14)  
CFI Query (Note 15)  
Word  
Byte  
55  
AA  
98  
98  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
16  
MX29LA321M H/L  
Legend:  
X=Don't care  
PD=Data to be programmed at location PA. Data is  
latched on the rising edge of WE# or CE# pulse.  
SA=Address of the sector to be erase or verified (in  
autoselect mode).  
Address bits A21-A13 uniquely select any sector.  
WBL=Write Buffer Location. Address must be within the  
same write buffer page as PA.  
RA=Address of the memory location to be read.  
RD=Data read from location RA during read operation.  
PA=Address of the memory location to be programmed.  
Addresses are latched on the falling edge of the WE# or  
CE# pulse, whichever happen later.  
DDI=Data of device identifier  
C2H for manufacture code  
WC=Word Count. Number of write buffer locations to load  
minus 1.  
BC=Byte Count. Number of write buffer locations to load  
minus 1.  
Notes:  
1. See Table 1 for descriptions of bus operations.  
2. All values are in hexadecimal.  
3. Except when reading array or automatic select data, all bus cycles are write operation.  
4. Address bits are don't care for unlock and command cycles, except when PA or SA is required.  
5. No unlock or command cycles required when device is in read mode.  
6. The Reset command is required to return to the read mode when the device is in the automatic select mode or if  
Q5 goes high.  
7. The fourth cycle of the automatic select command sequence is a read cycle.  
8. The device ID must be read in three cycles.The data is 01h for top boot and 00h for bottom boot.  
9. If WP# protects the highest address sectors, the data is 98h for factory locked and 18h for not factory locked. If  
WP# protects the lowest address sectors, the data is 88h for factory locked and 08h for not factor locked.  
10. The data is 00h for an unprotected sector/sector block and 01h for a protected sector/sector block.  
11. The total number of cycles in the command sequence is determined by the number of words written to the write  
buffer.The maximum number of cycles in the command sequence is 21(Word Mode) / 37(Byte Mode).  
12. Command sequence resets device for next command after aborted write-to-buffer operation.  
13. The system may read and program functions in non-erasing sectors, or enter the automatic select mode, when in  
the erase Suspend mode.The Erase Suspend command is valid only during a sector erase operation.  
14. The Erase Resume command is valid only during the Erase Suspend mode.  
15. Command is valid when device is ready to read array data or when device is in automatic select mode.  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
17  
MX29LA321M H/L  
array data (also applies during Erase Suspend).  
READING ARRAY DATA  
The device is automatically set to reading array data  
after device power-up. No commands are required to re-  
trieve data. The device is also ready to read array data  
after completing an Automatic Program or Automatic  
Erase algorithm.  
SILICON ID READ COMMAND SEQUENCE  
The SILICON ID READ command sequence allows the  
host system to access the manufacturer and devices  
codes, and determine whether or not a sector is pro-  
tected.Table 2 shows the address and data requirements.  
This method is an alternative to that shown in Table 1,  
which is intended for PROM programmers and requires  
VID on address bit A10.  
After the device accepts an Erase Suspend command,  
the device enters the Erase Suspend mode. The sys-  
tem can read array data using the standard read tim-  
ings, except that if it reads at an address within erase-  
suspended sectors, the device outputs status data. Af-  
ter completing a programming operation in the Erase  
Suspend mode, the system may once again read array  
data with the same exception. See Erase Suspend/Erase  
Resume Commands for more information on this mode.  
The system must issue the reset command to re-en-  
able the device for reading array data if Q5 goes high, or  
while in the automatic select mode. See the "Reset Com-  
mand" section, next.  
The SILICON ID READ command sequence is initiated  
by writing two unlock cycles, followed by the SILICON  
ID READ command. The device then enters the SILI-  
CON ID READ mode, and the system may read at any  
address any number of times, without initiating another  
command sequence. A read cycle at address XX00h  
retrieves the manufacturer code. A read cycle at address  
XX01h returns the device code. A read cycle containing  
a sector address (SA) and the address 02h returns 01h if  
that sector is protected, or 00h if it is unprotected. Refer  
to Sector Address Table on page 6 and 7 for valid sector  
addresses.  
RESET COMMAND  
Writing the reset command to the device resets the de-  
vice to reading array data. Address bits are don't care for  
this command.  
The system must write the reset command to exit the  
automatic select mode and return to reading array data.  
The reset command may be written between the se-  
quence cycles in an erase command sequence before  
erasing begins. This resets the device to reading array  
data.Once erasure begins, however, the device ignores  
reset commands until the operation is complete.  
BYTE/WORD PROGRAM COMMAND SE-  
QUENCE  
The command sequence requires four bus cycles, and  
is initiated by writing two unlock write cycles, followed  
by the program set-up command.The program address  
and data are written next, which in turn initiate the Em-  
bedded Program algorithm. The system is not required  
to provide further controls or timings. The device auto-  
matically generates the program pulses and verifies the  
programmed cell margin.Table 3 shows the address and  
data requirements for the byte program command se-  
quence.  
The reset command may be written between the se-  
quence cycles in a program command sequence before  
programming begins. This resets the device to reading  
array data (also applies to programming in Erase Sus-  
pend mode). Once programming begins, however, the  
device ignores reset commands until the operation is  
complete.  
The reset command may be written between the se-  
quence cycles in an SILICON ID READ command se-  
quence. Once in the SILICON ID READ mode, the reset  
command must be written to return to reading array data  
(also applies to SILICON ID READ during Erase Sus-  
pend).  
When the Embedded Program algorithm is complete, the  
device then returns to reading array data and addresses  
are no longer latched. The system can determine the  
status of the program operation by using Q7, Q6, or RY/  
BY#. See "Write Operation Status" for information on  
these status bits.  
If Q5 goes high during a program or erase operation,  
writing the reset command returns the device to reading  
Any commands written to the device during the Embed-  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
18  
MX29LA321M H/L  
ded Program Algorithm are ignored.Note that a hardware  
reset immediately terminates the programming operation.  
The Byte/Word Program command sequence should be  
reinitiated once the device has reset to reading array data,  
to ensure data integrity.  
Note that if a Write Buffer address location is loaded  
multiple times, the address/data pair counter will be  
decremented for every data load operation.The host sys-  
tem must therefore account for loading a write-buffer lo-  
cation more than once.The counter decrements for each  
data load operation, not for each unique write-buffer-ad-  
dress location. Note also that if an address location is  
loaded more than once into the buffer, the final data loaded  
for that address will be programmed.  
Programming is allowed in any sequence and across  
sector boundaries. A bit cannot be programmed from a  
"0" back to a "1". Attempting to do so may halt the op-  
eration and set Q5 to "1", or cause the Data# Polling  
algorithm to indicate the operation was successful. How-  
ever, a succeeding read will show that the data is still  
"0". Only erase operations can convert a "0" to a "1".  
Once the specified number of write buffer locations have  
been loaded, the system must then write the Program  
Buffer to Flash command at the sector address. Any  
other address and data combination aborts the Write  
Buffer Programming operation. The device then begins  
programming. Data polling should be used while monitor-  
ing the last address location loaded into the write buffer.  
Q7, Q6, Q5, and Q1 should be monitored to determine  
the device status during Write Buffer Programming.  
Write Buffer Programming  
Write Buffer Programming allows the system write to a  
maximum of 16 words/32 bytes in one programming op-  
eration.This results in faster effective programming time  
than the standard programming algorithms. The Write  
Buffer Programming command sequence is initiated by  
first writing two unlock cycles.This is followed by a third  
write cycle containing the Write Buffer Load command  
written at the Sector Address in which programming will  
occur. The fourth cycle writes the sector address and  
the number of word locations, minus one, to be pro-  
grammed. For example, if the system will program 6  
unique address locations, then 05h should be written to  
the device. This tells the device how many write buffer  
addresses will be loaded with data and therefore when to  
expect the Program Buffer to Flash command.The num-  
ber of locations to program cannot exceed the size of  
the write buffer or the operation will abort.  
The write-buffer programming operation can be suspended  
using the standard program suspend/resume commands.  
Upon successful completion of the Write Buffer Program-  
ming operation, the device is ready to execute the next  
command.  
TheWrite Buffer Programming Sequence can be aborted  
in the following ways:  
Load a value that is greater than the page buffer size  
during the Number of Locations to Program step.  
Write to an address in a sector different than the one  
specified during the Write-Buffer-Load command.  
Write an Address/Data pair to a different write-buffer-  
page than the one selected by the Starting Address  
during the write buffer data loading stage of the op-  
eration.  
The fifth cycle writes the first address location and data  
to be programmed.The write-buffer-page is selected by  
address bits AMAX-4. All subsequent address/data pairs  
must fall within the selected-write-buffer-page.The sys-  
tem then writes the remaining address/data pairs into  
the write buffer. Write buffer locations may be loaded in  
any order.  
Write data other than the Confirm Command after the  
specified number of data load cycles.  
The abort condition is indicated by Q1 = 1, Q7 = DATA#  
(for the last address location loaded), Q6 = toggle, and  
Q5=0.AWrite-to-Buffer-Abort Reset command sequence  
must be written to reset the device for the next opera-  
tion. Note that the full 3-cycle Write-to-Buffer-Abort Re-  
set command sequence is required when using Write-  
Buffer-Programming features in Unlock Bypass mode.  
The write-buffer-page address must be the same for all  
address/data pairs loaded into the write buffer. (This  
means Write Buffer Programming cannot be performed  
across multiple write-buffer pages.This also means that  
Write Buffer Programming cannot be performed across  
multiple sectors. If the system attempts to load program-  
ming data outside of the selected write-buffer page, the  
operation will abort.  
Program Suspend/Program Resume Command  
Sequence  
The Program Suspend command allows the system to  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
19  
MX29LA321M H/L  
interrupt a programming operation or aWrite to Buffer pro-  
gramming operation so that data can be read from any  
non-suspended sector.When the Program Suspend com-  
mand is written during a programming process, the de-  
vice halts the program operation within 15us maximum  
(5 us typical) and updates the status bits. Addresses are  
not required when writing the Program Suspend com-  
mand.  
AUTOMATIC CHIP/SECTOR ERASE COM-  
MAND  
The device does not require the system to preprogram  
prior to erase.The Automatic Erase algorithm automati-  
cally pre-program and verifies the entire memory for an  
all zero data pattern prior to electrical erase.The system  
is not required to provide any controls or timings during  
these operations. Table 3 shows the address and data  
requirements for the chip erase command sequence.  
After the programming operation has been suspended,  
the system can read array data from any non-suspended  
sector. The Program Suspend command may also be  
issued during a programming operation while an erase is  
suspended. In this case, data may be read from any  
addresses not in Erase Suspend or Program Suspend. If  
a read is needed from the Secured Silicon Sector area  
(One-time Program area), then user must use the proper  
command sequences to enter and exit this region.  
Any commands written to the chip during the Automatic  
Erase algorithm are ignored. Note that a hardware reset  
during the chip erase operation immediately terminates  
the operation.The Chip Erase command sequence should  
be reinitiated once the device has returned to reading  
array data, to ensure data integrity.  
The system may also write the autoselect command  
sequence when the device is in the Program Suspend  
mode. The system can read as many autoselect codes  
as required.When the device exits the autoselect mode,  
the device reverts to the Program Suspend mode, and  
is ready for another valid operation. See Autoselect Com-  
mand Sequence for more information.  
The system can determine the status of the erase op-  
eration by using Q7, Q6, Q2, or RY/BY#.See "Write Op-  
eration Status" for information on these status bits.When  
the Automatic Erase algorithm is complete, the device  
returns to reading array data and addresses are no longer  
latched.  
Figure 10 illustrates the algorithm for the erase opera-  
tion. See the Erase/Program Operations tables in "AC  
Characteristics" for parameters, and to Figure 9 for tim-  
ing diagrams.  
After the Program Resume command is written, the de-  
vice reverts to programming.The system can determine  
the status of the program operation using the Q7 or Q6  
status bits, just as in the standard program operation.  
See Write Operation Status for more information.  
SETUP AUTOMATIC CHIP/SECTOR ERASE  
Chip erase is a six-bus cycle operation. There are two  
"unlock" write cycles. These are followed by writing the  
"set-up" command 80H. Two more "unlock" write cycles  
are then followed by the chip erase command 10H, or  
the sector erase command 30H.  
The MX29LA321M H/L contains a Silicon-ID-Read op-  
eration to supplement traditional PROM programming  
methodology. The operation is initiated by writing the read  
silicon ID command sequence into the command regis-  
ter. Following the command write, a read cycle with  
A2=VIL,A1=VIL retrieves the manufacturer code.A read  
cycle with A2=VIL, A1=VIH returns the device code.  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
20  
MX29LA321M H/L  
device requires a maximum 20us to suspend the sector  
erase operation.However,When the Erase Suspend com-  
mand is written during the sector erase time-out, the  
device immediately terminates the time-out period and  
suspends the erase operation. After this command has  
been executed, the command register will initiate erase  
suspend mode. The state machine will return to read  
mode automatically after suspend is ready. At this time,  
state machine only allows the command register to re-  
spond to the Erase Resume, program data to, or read  
data from any sector not selected for erasure.  
SECTOR ERASE COMMANDS  
The Automatic Sector Erase does not require the device  
to be entirely pre-programmed prior to executing the Au-  
tomatic Set-up Sector Erase command and Automatic  
Sector Erase command. Upon executing the Automatic  
Sector Erase command, the device will automatically  
program and verify the sector(s) memory for an all-zero  
data pattern. The system is not required to provide any  
control or timing during these operations.  
When the sector(s) is automatically verified to contain  
an all-zero pattern, a self-timed sector erase and verify  
begin. The erase and verify operations are complete  
when the data on Q7 is "1" and the data on Q6 stops  
toggling for two consecutive read cycles, at which time  
the device returns to the Read mode. The system is not  
required to provide any control or timing during these  
operations.  
The system can determine the status of the program  
operation using the Q7 or Q6 status bits, just as in the  
standard program operation. After an erase-suspend pro-  
gram operation is complete, the system can once again  
read array data within non-suspended blocks.  
ERASE RESUME  
When using the Automatic Sector Erase algorithm, note  
that the erase automatically terminates when adequate  
erase margin has been achieved for the memory array  
(no erase verification command is required). Sector erase  
is a six-bus cycle operation. There are two "unlock" write  
cycles. These are followed by writing the set-up com-  
mand 80H. Two more "unlock" write cycles are then fol-  
lowed by the sector erase command 30H. The sector  
address is latched on the falling edge of WE# or CE#,  
whichever happens later , while the command (data) is  
latched on the rising edge of WE# or CE#, whichever  
happens first. Sector addresses selected are loaded  
into internal register on the sixth falling edge of WE# or  
CE#, whichever happens later. Each successive sector  
load cycle started by the falling edge of WE# or CE#,  
whichever happens later must begin within 50us from  
the rising edge of the precedingWE# or CE#, whichever  
happens first. Otherwise, the loading period ends and  
internal auto sector erase cycle starts. (Monitor Q3 to  
determine if the sector erase timer window is still open,  
see section Q3, Sector EraseTimer.) Any command other  
than Sector Erase(30H) or Erase Suspend(B0H) during  
the time-out period resets the device to read mode.  
This command will cause the command register to clear  
the suspend state and return back to Sector Erase mode  
but only if an Erase Suspend command was previously  
issued. Erase Resume will not have any effect in all  
other conditions. Another Erase Suspend command can  
be written after the chip has resumed erasing.  
ERASE SUSPEND  
This command only has meaning while the state ma-  
chine is executing Automatic Sector Erase operation,  
and therefore will only be responded during Automatic  
Sector Erase operation. When the Erase Suspend com-  
mand is issued during the sector erase operation, the  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
21  
MX29LA321M H/L  
The single cycle Query command is valid only when the  
device is in the Read mode, including Erase Suspend,  
Standby mode, and Read ID mode;however, it is ignored  
otherwise.  
QUERY COMMAND AND COMMON FLASH  
INTERFACE (CFI) MODE  
MX29LA321M H/L is capable of operating in the CFI mode.  
This mode all the host system to determine the manu-  
facturer of the device such as operating parameters and  
configuration.Two commands are required in CFI mode.  
Query command of CFI mode is placed first, then the  
Reset command exits CFI mode.These are described in  
Table 4.  
The Reset command exits from the CFI mode to the  
Read mode, or Erase Suspend mode, or read ID mode.  
The command is valid only when the device is in the CFI  
mode.  
Table 4-1. CFI mode: Identification Data Values  
(All values in these tables are in hexadecimal)  
Description  
Addressh Addressh  
Datah  
(x16)  
10  
(x8)  
20  
22  
24  
26  
28  
2A  
2C  
2E  
30  
32  
34  
Query-unique ASCII string "QRY"  
0051  
0052  
0059  
0002  
0000  
0040  
0000  
0000  
0000  
0000  
0000  
11  
12  
Primary vendor command set and control interface ID code  
Address for primary algorithm extended query table  
13  
14  
15  
16  
Alternate vendor command set and control interface ID code (none)  
Address for secondary algorithm extended query table (none)  
17  
18  
19  
1A  
Table 4-2. CFI Mode: System Interface Data Values  
Description  
Addressh Addressh  
Datah  
(x16)  
1B  
1C  
1D  
1E  
1F  
20  
(x8)  
36  
VCC supply, minimum (2.7V)  
0027  
0036  
0000  
0000  
0007  
0007  
000A  
0000  
0001  
0005  
0004  
0000  
VCC supply, maximum (3.6V)  
38  
VPP supply, minimum (none)  
3A  
3C  
3E  
40  
VPP supply, maximum (none)  
Typical timeout for single word/byte write (2N us)  
Typical timeout for maximum size buffer write (2N us)  
Typical timeout for individual block erase (2N ms)  
Typical timeout for full chip erase (2N ms)  
Maximum timeout for single word/byte write times (2N X Typ)  
Maximum timeout for maximum size buffer write times (2N X Typ)  
Maximum timeout for individual block erase times (2N X Typ)  
Maximum timeout for full chip erase times (not supported)  
21  
42  
22  
44  
23  
46  
24  
48  
25  
4A  
4C  
26  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
22  
MX29LA321M H/L  
Table 4-3. CFI Mode: Device Geometry Data Values  
Description  
Addressh Addressh  
Datah  
(x16)  
27  
(x8)  
4E  
50  
52  
54  
56  
58  
5A  
5C  
5E  
60  
62  
64  
66  
68  
6A  
6C  
6E  
70  
72  
74  
76  
78  
Device size (2n bytes)  
0016  
0002  
0000  
0005  
0000  
0001  
003F  
0000  
0000  
0001  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
Flash device interface code  
28  
29  
Maximum number of bytes in multi-byte write = 2n  
2A  
2B  
2C  
2D  
2E  
2F  
30  
Number of erase block regions  
Erase block region 1 information  
[2E,2D] = # of blocks in region -1  
[30, 2F] = size in multiples of 256-bytes  
31  
Erase Block Region 2 Information (refer to CFI publication 100)  
Erase Block Region 3 Information (refer to CFI publication 100)  
Erase Block Region 4 Information (refer to CFI publication 100)  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
23  
MX29LA321M H/L  
Table 4-4. CFI Mode: Primary Vendor-Specific Extended Query Data Values  
Description  
Addressh Addressh  
Datah  
(x16)  
40  
(x8)  
80  
82  
84  
86  
88  
8A  
8C  
8E  
90  
92  
94  
96  
98  
9A  
Query-unique ASCII string "PRI"  
0050  
0052  
0049  
0031  
0033  
0000  
0002  
0001  
0000  
0004  
0000  
0000  
0001  
00B5  
41  
42  
Major version number, ASCII  
43  
Minor version number, ASCII  
44  
Address sensitive unlock (0=required, 1= not required)  
Erase suspend (2= to read and write)  
Sector protect (N= # of sectors/group)  
Temporarysectorunprotect(1=supported)  
Sector protect/unprotect scheme  
45  
46  
47  
48  
49  
SimultaneousR/Woperation(0=notsupported)  
Burst mode type (0=not supported)  
Page mode type (1=4 word page)  
4A  
4B  
4C  
4D  
ACC (Acceleration) Supply Minimum  
00h=NotSupported,D7-D4:Volt,D3-D0:100mV  
ACC (Acceleration) Supply Maximum  
00h=NotSupported,D7-D4:Volt,D3-D0:100mV  
Top/Bottom Boot Sector Flag  
4E  
4F  
9C  
9E  
00C5  
0004/  
0005  
02h=Bottom Boot Device, 03h=Top Boot Device  
04h=uniform sectors bottom WP# protect,  
05h=uniform sectors top WP# protect  
ProgramSuspend  
50  
A0  
0001  
00h=NotSupported,01h=Supported  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
24  
MX29LA321M H/L  
WRITE OPERATION STATUS  
The device provides several bits to determine the status  
of a write operation: Q2, Q3, Q5, Q6, Q7, and RY/BY#.  
Table 5 and the following subsections describe the func-  
tions of these bits. Q7, RY/BY#, and Q6 each offer a  
method for determining whether a program or erase op-  
eration is complete or in progress. These three bits are  
discussed first.  
Table 5. Write Operation Status  
Status  
Q7  
Q6  
Q5  
Q3  
Q2  
No  
Q1  
RY/BY#  
Byte/Word Program in Auto Program Algorithm  
Q7# Toggle  
0
N/A  
0
0
Toggle  
Auto Erase Algorithm  
Erase Suspend Read  
0
1
Toggle  
No  
0
0
1
Toggle N/A  
0
1
N/A Toggle N/A  
Erase  
(Erase Suspended Sector)  
Erase Suspend Read  
Toggle  
Suspended  
Mode  
Data  
Data Data  
Data Data Data  
1
(Non-Erase Suspended Sector)  
Erase Suspend Program  
Q7# Toggle  
0
N/A  
N/A  
N/A  
0
1
Program-SuspendedRead  
(Program-SuspendedSector)  
Program-SuspendedRead  
(Non-Program-SuspendedSector)  
Invalid (not allowed)  
Program  
Suspend  
Data  
1
Write-to-Buffer Busy  
Abort  
Q7# Toggle  
Q7# Toggle  
0
0
N/A  
N/A  
N/A  
N/A  
0
1
0
0
Notes:  
1. Q5 switches to "1" when an Word/Byte Program, Erase, or Write-to-Buffer operation has exceeded the maximum  
timing limits. Refer to the section on Q5 for more information.  
2.Q7 and Q2 require a valid address when reading status information.Refer to the appropriate subsection for further  
details.  
3.The Data# Polling algorithm should be used to monitor the last loaded write-buffer address location.  
4. Q1 switches to "1" when the device has aborted the write-to-buffer operation.  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
25  
MX29LA321M H/L  
happens first pulse in the command sequence (prior to  
the program or erase operation), and during the sector  
time-out.  
Q7: Data# Polling  
The Data# Polling bit, Q7, indicates to the host system  
whether an Automatic Algorithm is in progress or com-  
pleted, or whether the device is in Erase Suspend. Data#  
Polling is valid after the rising edge of the finalWE# pulse  
in the program or erase command sequence.  
During an Automatic Program or Erase algorithm opera-  
tion, successive read cycles to any address cause Q6  
to toggle. The system may use either OE# or CE# to  
control the read cycles.When the operation is complete,  
Q6 stops toggling.  
During the Automatic Program algorithm, the device out-  
puts on Q7 the complement of the datum programmed  
to Q7.This Q7 status also applies to programming dur-  
ing Erase Suspend.When the Automatic Program algo-  
rithm is complete, the device outputs the datum pro-  
grammed to Q7.The system must provide the program  
address to read valid status information on Q7. If a pro-  
gram address falls within a protected sector, Data# Poll-  
ing on Q7 is active for approximately 1 us, then the de-  
vice returns to reading array data.  
After an erase command sequence is written, if all sec-  
tors selected for erasing are protected, Q6 toggles for  
100us and returns to reading array data. If not all se-  
lected sectors are protected, the Automatic Erase algo-  
rithm erases the unprotected sectors, and ignores the  
selected sectors that are protected.  
The system can use Q6 and Q2 together to determine  
whether a sector is actively erasing or is erase suspended.  
When the device is actively erasing (that is, the Auto-  
matic Erase algorithm is in progress), Q6 toggling.When  
the device enters the Erase Suspend mode, Q6 stops  
toggling. However, the system must also use Q2 to de-  
termine which sectors are erasing or erase-suspended.  
Alternatively, the system can use Q7.  
During the Automatic Erase algorithm, Data# Polling pro-  
duces a "0" on Q7.When the Automatic Erase algorithm  
is complete, or if the device enters the Erase Suspend  
mode, Data# Polling produces a "1" on Q7.This is analo-  
gous to the complement/true datum output described for  
the Automatic Program algorithm: the erase function  
changes all the bits in a sector to "1" prior to this, the  
device outputs the "complement," or "0". The system  
must provide an address within any of the sectors se-  
lected for erasure to read valid status information on Q7.  
If a program address falls within a protected sector, Q6  
toggles for approximately 2us after the program com-  
mand sequence is written, then returns to reading array  
data.  
After an erase command sequence is written, if all sec-  
tors selected for erasing are protected, Data# Polling on  
Q7 is active for approximately 100 us, then the device  
returns to reading array data. If not all selected sectors  
are protected, the Automatic Erase algorithm erases the  
unprotected sectors, and ignores the selected sectors  
that are protected.  
Q6 also toggles during the erase-suspend-program mode,  
and stops toggling once the Automatic Program algo-  
rithm is complete.  
Table 5 shows the outputs for Toggle Bit I on Q6.  
When the system detects Q7 has changed from the  
complement to true data, it can read valid data at Q7-Q0  
on the following read cycles. This is because Q7 may  
change asynchronously with Q0-Q6 while Output Enable  
(OE#) is asserted low.  
Q2:Toggle Bit II  
The "Toggle Bit II" on Q2, when used with Q6, indicates  
whether a particular sector is actively erasing (that is,  
the Automatic Erase algorithm is in process), or whether  
that sector is erase-suspended. Toggle Bit II is valid  
after the rising edge of the final WE# or CE#, whichever  
happens first pulse in the command sequence.  
Q6:Toggle BIT I  
Toggle Bit I on Q6 indicates whether an Automatic Pro-  
gram or Erase algorithm is in progress or complete, or  
whether the device has entered the Erase Suspend mode.  
Toggle Bit I may be read at any address, and is valid  
after the rising edge of the final WE# or CE#, whichever  
Q2 toggles when the system reads at addresses within  
those sectors that have been selected for erasure. (The  
system may use either OE# or CE# to control the read  
cycles.) But Q2 cannot distinguish whether the sector  
is actively erasing or is erase-suspended. Q6, by com-  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
26  
MX29LA321M H/L  
parison, indicates whether the device is actively eras-  
ing, or is in Erase Suspend, but cannot distinguish which  
sectors are selected for erasure. Thus, both status bits  
are required for sectors and mode information. Refer to  
Table 5 to compare outputs for Q2 and Q6.  
If this time-out condition occurs during sector erase op-  
eration, it specifies that a particular sector is bad and it  
may not be reused. However, other sectors are still func-  
tional and may be used for the program or erase opera-  
tion. The device must be reset to use other sectors.  
Write the Reset command sequence to the device, and  
then execute program or erase command sequence. This  
allows the system to continue to use the other active  
sectors in the device.  
Reading Toggle Bits Q6/ Q2  
Whenever the system initially begins reading toggle bit  
status, it must read Q7-Q0 at least twice in a row to  
determine whether a toggle bit is toggling. Typically, the  
system would note and store the value of the toggle bit  
after the first read. After the second read, the system  
would compare the new value of the toggle bit with the  
first. If the toggle bit is not toggling, the device has  
completed the program or erase operation. The system  
can read array data on Q7-Q0 on the following read cycle.  
If this time-out condition occurs during the chip erase  
operation, it specifies that the entire chip is bad or com-  
bination of sectors are bad.  
If this time-out condition occurs during the byte/word pro-  
gramming operation, it specifies that the entire sector  
containing that byte is bad and this sector may not be  
reused, (other sectors are still functional and can be re-  
used).  
However, if after the initial two read cycles, the system  
determines that the toggle bit is still toggling, the sys-  
tem also should note whether the value of Q5 is high  
(see the section on Q5). If it is, the system should then  
determine again whether the toggle bit is toggling, since  
the toggle bit may have stopped toggling just as Q5 went  
high. If the toggle bit is no longer toggling, the device  
has successfully completed the program or erase opera-  
tion. If it is still toggling, the device did not complete the  
operation successfully, and the system must write the  
reset command to return to reading array data.  
The time-out condition may also appear if a user tries to  
program a non blank location without erasing. In this  
case the device locks out and never completes the Au-  
tomatic Algorithm operation. Hence, the system never  
reads a valid data on Q7 bit and Q6 never stops toggling.  
Once the Device has exceeded timing limits, the Q5 bit  
will indicate a "1". Please note that this is not a device  
failure condition since the device was incorrectly used.  
The Q5 failure condition may appear if the system tries  
to program a to a "1" location that is previously pro-  
grammed to "0". Only an erase operation can change a  
"0" back to a "1". Under this condition, the device halts  
the operation, and when the operation has exceeded the  
timing limits, Q5 produces a "1".  
The remaining scenario is that system initially determines  
that the toggle bit is toggling and Q5 has not gone high.  
The system may continue to monitor the toggle bit and  
Q5 through successive read cycles, determining the sta-  
tus as described in the previous paragraph. Alternatively,  
it may choose to perform other system tasks. In this  
case, the system must start at the beginning of the al-  
gorithm when it returns to determine the status of the  
operation.  
Q3:Sector Erase Timer  
After the completion of the initial sector erase command  
sequence, the sector erase time-out will begin. Q3 will  
remain low until the time-out is complete. Data# Polling  
andToggle Bit are valid after the initial sector erase com-  
mand sequence.  
Q5:Program/Erase Timing  
Q5 will indicate if the program or erase time has exceeded  
the specified limits (internal pulse count). Under these  
conditions Q5 will produce a "1". This time-out condition  
indicates that the program or erase cycle was not suc-  
cessfully completed. Data# Polling and Toggle Bit are  
the only operating functions of the device under this con-  
dition.  
If Data# Polling or the Toggle Bit indicates the device  
has been written with a valid erase command, Q3 may  
be used to determine if the sector erase timer window is  
still open. If Q3 is high ("1") the internally controlled  
erase cycle has begun; attempts to write subsequent  
commands to the device will be ignored until the erase  
operation is completed as indicated by Data# Polling or  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
27  
MX29LA321M H/L  
Toggle Bit. If Q3 is low ("0"), the device will accept addi-  
tional sector erase commands. To insure the command  
has been accepted, the system software should check  
the status of Q3 prior to and following each subsequent  
sector erase command. If Q3 were high on the second  
status check, the command may not have been accepted.  
If the time between additional erase commands from the  
system can be less than 50us, the system need not to  
monitor Q3.  
Q1: Write-to-Buffer Abort  
Q1 indicates whether a Write-to-Buffer operation was  
aborted.Under these conditions Q1 produces a "1".The  
system must issue theWrite-to-Buffer-Abort-Reset com-  
mand sequence to return the device to reading array data.  
See Write Buffer section for more details.  
RY/BY#:READY/BUSY OUTPUT  
The RY/BY# is a dedicated, open-drain output pin that  
indicates whether an Embedded Algorithm is in progress  
or complete. The RY/BY# status is valid after the rising  
edge of the final WE# pulse in the command sequence.  
Since RY/BY# is an open-drain output, several RY/BY#  
pins can be tied together in parallel with a pull-up resistor  
to VCC .  
If the output is low (Busy), the device is actively erasing  
or programming. (This includes programming in the Erase  
Suspend mode.) If the output is high (Ready), the device  
is ready to read array data (including during the Erase  
Suspend mode), or is in the standby mode.  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
28  
MX29LA321M H/L  
OPERATING RATINGS  
ABSOLUTE MAXIMUM RATINGS  
StorageTemperature  
Commercial (C) Devices  
Plastic Packages . . . . . . . . . . . . . ..... -65oC to +150oC  
Ambient Temperature (TA ). . . . . . . . . . . . . 0° C to +70°C  
Industrial (I) Devices  
AmbientTemperature  
with Power Applied. . . . . . . . . . . . . .... -65oC to +125oC  
Voltage with Respect to Ground  
Ambient Temperature (TA ). . . . . . . . . . . -40°C to +85°C  
VCC Supply Voltages  
VCC for full voltage range. . . . . . . . . . . . +2.7 V to 3.6 V  
VCC for regulated voltage range. . . . . . . +3.0 V to 3.6 V  
VCC (Note 1) . . . . . . . . . . . . . . . . . -0.5 V to +4.0 V  
A10, OE#, and  
RESET# (Note 2) . . . . . . . . . . . ....-0.5 V to +12.5 V  
All other pins (Note 1) . . . . . . . -0.5 V to VCC +0.5 V  
Output Short Circuit Current (Note 3) . . . . . . 200 mA  
Operating ranges define those limits between which the  
functionality of the device is guaranteed.  
Notes:  
1. Minimum DC voltage on input or I/O pins is -0.5 V.  
During voltage transitions, input or I/O pins may over-  
shoot VSS to -2.0 V for periods of up to 20 ns. Maxi-  
mum DC voltage on input or I/O pins is VCC +0.5 V.  
During voltage transitions, input or I/O pins may over-  
shoot to VCC +2.0 V for periods up to 20ns.  
2. Minimum DC input voltage on pins A10, OE#, and  
RESET# is -0.5 V. During voltage transitions, A10,  
OE#, and RESET# may overshoot VSS to -2.0 V for  
periods of up to 20 ns. Maximum DC input voltage on  
pin A10 is +12.5 V which may overshoot to 14.0 V for  
periods up to 20 ns.  
3.No more than one output may be shorted to ground at  
a time. Duration of the short circuit should not be  
greater than one second.  
Stresses above those listed under "Absolute Maximum  
Ratings" may cause permanent damage to the device.  
This is a stress rating only; functional operation of the  
device at these or any other conditions above those in-  
dicated in the operational sections of this data sheet is  
not implied. Exposure of the device to absolute maxi-  
mum rating conditions for extended periods may affect  
device reliability.  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
29  
MX29LA321M H/L  
DC CHARACTERISTICS  
for 70R)  
TA=-40°C to 85°C, VCC=2.7V~3.6V (TA=0°C to 70° C, VCC=3.0V~3.6V  
Para-  
meter Description  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
I LI  
Input Load Current (Note 1)  
VIN = VSS to VCC ,  
VCC = VCC max  
±1.0  
uA  
I LIT A10 Input Leakage Current  
I LO Output Leakage Current  
VCC=VCC max; A10= 12.5V  
VOUT = VSS to VCC ,  
VCC=VCC max  
35  
uA  
uA  
±1.0  
ICC1 VCC Initial Read Current  
(Notes 2,3)  
CE#= VIL,  
OE# = VIH  
10 MHz  
5 MHz  
35  
18  
5
50  
25  
20  
20  
40  
60  
mA  
mA  
mA  
mA  
mA  
mA  
1 MHz  
ICC2 VCC Intra-Page Read  
Current (Notes 2,3)  
ICC3 VCC Active Write Current  
(Notes 2,4,6)  
CE#= VIL ,  
OE# = VIH  
10 MHz  
40 MHz  
5
10  
50  
CE#= VIL , OE# = VIH  
WE#=VIL  
ICC4 VCC Standby Current  
(Note 2)  
CE#,RESET#=VCC±0.3V  
WP#=VIH  
20  
20  
20  
50  
50  
50  
uA  
uA  
uA  
ICC5 VCC Reset Current  
(Note 2)  
RESET#=VSS±0.3V  
WP#=VIH  
ICC6 Automatic Sleep Mode  
(Notes 2,5)  
VIL = V SS ± 0.3 V,  
VIH = VCC ±0.3 V,  
WP#=VIH  
VIL  
Input LowVoltage  
-0.5  
0.7xVCC  
11.5  
0.8  
VCC+0.5  
12.5  
V
V
V
VIH Input HighVoltage  
VHH Voltage for ACC Program  
Acceleration  
VCC = 2.7V ~ 3.6V  
12.0  
12.0  
VID Voltage for Autoselect  
VCC = 3.0 V ±10%  
11.5  
12.5  
0.45  
V
VOL Output LowVoltage  
VOH1 Output HighVoltage  
VOH2  
IOL= 4.0mA,VCC=VCC min  
V
V
V
V
IOH=-2.0mA,VCC=VCC min 0.85VCC  
IOH=-100uA,VCC=VCC min VCC-0.4  
2.3  
VLKO LowVCC Lock-OutVoltage  
(Note 4)  
2.5  
Notes:  
1. On the WP#/ACC pin only, the maximum input load current when WP# = VIL is ±5.0uA.  
2. Maximum ICC specifications are tested with VCC = VCC max.  
3. The ICC current listed is typically is less than 2 mA/MHz, with OE# at VIH. Typical specifications are for VCC =  
3.0V.  
4. ICC active while Embedded Erase or Embedded Program is in progress.  
5. Automatic sleep mode enables the low power mode when addresses remain stable for t ACC + 30 ns.  
6. Not 100% tested.  
7. A9=12.5V whenTA=0°C to 85°C, A9=12V when whenTA=-40°C to 0°C.  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
30  
MX29LA321M H/L  
SWITCHING TEST CIRCUITS  
TEST SPECIFICATIONS  
Test Condition  
All Speeds  
1 TTL gate  
30  
Unit  
pF  
Output Load  
DEVICE UNDER  
TEST  
2.7K ohm  
Output Load Capacitance, CL  
(including jig capacitance)  
Input Rise and Fall Times  
Input Pulse Levels  
3.3V  
5
ns  
V
0.0-3.0  
1.5  
CL  
6.2K ohm  
DIODES=IN3064  
OR EQUIVALENT  
Input timing measurement  
reference levels  
V
Output timing measurement  
reference levels  
1.5  
V
KEY TO SWITCHING WAVEFORMS  
WAVEFORM  
INPUTS  
OUTPUTS  
Steady  
Changing from H to L  
Changing from L to H  
Don't Care, Any Change Permitted  
Does Not Apply  
Changing, State Unknown  
Center Line is High Impedance State(High Z)  
SWITCHING TEST WAVEFORMS  
3.0V  
0.0V  
Measurement Level  
1.5V  
1.5V  
INPUT  
OUTPUT  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
31  
MX29LA321M H/L  
AC CHARACTERISTICS  
Read-Only Operations TA=-40°C to 85°C, VCC=2.7V~3.6V (TA=0°C to 70° C, VCC=3.0V~3.6V for  
70R)  
Parameter  
Std.  
Speed Options  
Description  
Test Setup  
70R  
70  
90  
90  
90  
90  
25  
35  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tRC  
Read CycleTime (Note 1)  
Address to Output Delay  
Min  
CE#, OE#=VIL Max  
tACC  
tCE  
70  
Chip Enable to Output Delay  
Page Access Time  
OE#=VIL  
Max  
Max  
Max  
Max  
Max  
Min  
70  
tPACC  
tOE  
25  
Output Enable to Output Delay  
Chip Enable to Output High Z (Note 1)  
Output Enable to Output High Z (Note 1)  
Output HoldTime From Address, CE#  
or OE#, whichever Occurs First  
Read  
35  
tDF  
16  
16  
0
tDF  
tOH  
Min  
Min  
35  
10  
ns  
ns  
tOEH  
Output Enable HoldTime Toggle and  
(Note 1)  
Data# Polling  
Notes:  
1. Not 100% tested.  
2. See SWITCHING TEST CIRCUITS and TEST SPECIFICATIONS TABLE for test specifications.  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
32  
MX29LA321M H/L  
Figure 1. READ TIMING WAVEFORMS  
tRC  
VIH  
ADD Valid  
Addresses  
VIL  
tCE  
VIH  
CE#  
tRH  
VIL  
tRH  
VIH  
WE#  
tDF  
VIL  
VIH  
VIL  
tOEH  
tOE  
OE#  
tOH  
tACC  
HIGH Z  
HIGH Z  
VOH  
VOL  
Outputs  
DATA Valid  
VIH  
VIL  
RESET#  
RY/BY#  
0V  
Figure 2. PAGE READ TIMING WAVEFORMS  
Same Page  
A3-A21  
(A0), A1~A2  
tACC  
CE#  
tPACC  
tPACC  
tPACC  
OE#  
Qa  
Qb  
Qc  
Qd  
Output  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
33  
MX29LA321M H/L  
AC CHARACTERISTICS  
Parameter Description  
Test Setup All Speed Options Unit  
tREADY1  
RESET# PIN Low (During Automatic Algorithms)  
MAX  
20  
us  
to Read or Write (See Note)  
tREADY2  
RESET# PIN Low (NOT During Automatic Algorithms)  
to Read or Write (See Note)  
MAX  
500  
ns  
tRP  
RESET# Pulse Width (NOT During Automatic Algorithms)  
RESET# HighTime Before Read (See Note)  
RY/BY# Recovery Time(to CE#, OE# go low)  
RESET# Low to Standby Mode  
MIN  
MIN  
MIN  
MIN  
500  
50  
0
ns  
ns  
ns  
us  
tRH  
tRB  
tRPD  
20  
Note:Not 100% tested  
Figure 3. RESET# TIMING WAVEFORM  
RY/BY#  
CE#, OE#  
tRH  
RESET#  
tRP  
tReady2  
Reset Timing NOT during Automatic Algorithms  
tReady1  
RY/BY#  
tRB  
CE#, OE#  
RESET#  
tRP  
Reset Timing during Automatic Algorithms  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
34  
MX29LA321M H/L  
AC CHARACTERISTICS  
Erase and Program Operations  
TA=-40° C to 85°C,VCC=2.7V~3.6V (TA=0°C to 70°C, VCC=3.0V~3.6V for 70R)  
Parameter  
Std.  
Speed Options  
Description  
70R  
90  
Unit  
ns  
tWC  
Write CycleTime (Note 1)  
Address SetupTime  
Min  
Min  
Min  
Min  
Min  
70  
90  
tAS  
0
15  
45  
0
ns  
tASO  
tAH  
Address Setup Time to OE# low during toggle bit polling  
Address HoldTime  
ns  
ns  
tAHT  
Address HoldTime From CE# or OE# high during toggle  
bit polling  
ns  
tDS  
Data SetupTime  
Min  
Min  
Min  
Min  
Min  
35  
0
ns  
ns  
ns  
ns  
ns  
tDH  
Data HoldTime  
tCEPH  
tOEPH  
tGHWL  
CE# High DuringToggle Bit Polling  
Output Enable High during toggle bit polling  
Read RecoveryTime BeforeWrite  
(OE# High to WE# Low)  
20  
20  
0
tGHEL  
tCS  
Read RecoveryTime BeforeWrite  
CE# SetupTime  
Min  
Min  
Min  
Min  
Min  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Min  
Min  
Min  
Min  
Max  
0
0
ns  
ns  
ns  
ns  
ns  
us  
us  
us  
us  
us  
sec  
us  
ns  
ns  
ns  
us  
tCH  
CE# HoldTime  
0
tWP  
Write PulseWidth  
35  
30  
240  
60  
60  
54  
54  
0.5  
50  
0
tWPH  
Write PulseWidth High  
Write Buffer Program Operation (Notes 2,3)  
SingleWord/Byte Program  
Byte  
Word  
Byte  
Word  
tWHWH1  
Operation (Notes 2,5)  
Accelerated Single Word/Byte  
Programming Operation (Notes 2,5)  
Sector Erase Operation (Note 2)  
VCC SetupTime (Note 1)  
tWHWH2  
tVCS  
tRB  
Write RecoveryTime from RY/BY#  
Program/EraseValid to RY/BY# Delay  
VHH Rise and FallTime (Note 1)  
Program Valid Before Status Polling (Note 6)  
tBUSY  
tVHH  
70  
90  
250  
4
tPOLL  
Notes:  
1. Not 100% tested.  
2.See the "Erase And Programming Performance" section for more information.  
3.For 1-16 words/1-32 bytes programmed.  
4. Effective write buffer specification is based upon a 16-word/32-byte write buffer operation.  
5.Word/Byte programming specification is based upon a single word/byte programming operation not utilizing the write  
buffer.  
6.When using the program suspend/resume feature, if the suspend command is issued within tPOLL, tPOLL must be  
fully re-applied upon resuming the programming operation.If the suspend command is issued after tPOLL, tPOLL is  
not required again prior to reading the status bits upon resuming.  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
35  
MX29LA321M H/L  
ERASE/PROGRAM OPERATION  
Figure 4. AUTOMATIC PROGRAM TIMING WAVEFORMS  
Program Command Sequence(last two cycle)  
Read Status Data (last two cycle)  
tWC  
tAS  
PA  
PA  
XXXh  
PA  
Address  
CE#  
tAH  
tCH  
OE#  
WE#  
tWP  
tWHWH1  
tCS  
tWPH  
tDS tDH  
Status  
A0h  
PD  
DOUT  
Data  
tBUSY  
tRB  
RY/BY#  
tVCS  
VCC  
Note :  
1.PA=Program Address, PD=Program Data, DOUT is the true data the program address  
Figure 5. ACCELERATED PROGRAM TIMING DIAGRAM  
VHH  
ACC  
VIL or VIH  
VIL or VIH  
tVHH  
tVHH  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
36  
MX29LA321M H/L  
Figure 6. AUTOMATIC PROGRAMMING ALGORITHM FLOWCHART  
START  
Write Data AAH Address 555H  
Write Data 55H Address 2AAH  
Write Data A0H Address 555H  
Write Program Data/Address  
Data Poll  
Increment  
Address  
from system  
No  
No  
Verify Word Ok ?  
YES  
Last Address ?  
YES  
Auto Program Completed  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
37  
MX29LA321M H/L  
Figure 7. WRITE BUFFER PROGRAMMING ALGORITHM FLOWCHART  
Write "Write to Buffer"  
command and  
Sector Address  
Write number of addresses  
to program minus 1(WC)  
and Sector Address  
Part of "Write to Buffer"  
Command Sequence  
Write first address/data  
Yes  
WC = 0 ?  
No  
Yes  
Write to a different  
sector address  
Abort Write to  
Buffer Operation ?  
No  
Write to buffer ABORTED.  
Must write "Write-to-buffer  
Abort Reset" command sequence  
to return to read mode.  
Write next address/data pair  
(Note 1)  
WC = WC - 1  
Write program buffer  
to flash sector address  
Notes:  
1. When Sector Address is specified, any address in  
Read Q7~Q0 at Last  
Loaded Address  
the selected sector is acceptable. However, when  
loading Write-Buffer address locations with data, all  
addresses must fall within the selected Write-Buffer  
Page.  
Yes  
2. Q7 may change simultaneously with Q5.  
Therefore, Q7 should be verified.  
Q7 = Data ?  
No  
3. If this flowchart location was reached because Q5=  
"1" then the device FAILED. If this flowchart location  
was reached because Q1="1", then the Write to  
Buffer operation was ABORTED. In either case, the  
proper reset command must be written before the  
device can begin another operation. If Q1=1, write  
the Write-Buffer-Programming-Abort-Reset com-  
mand. If Q5=1, write the Reset command.  
4. See Table 3 for command sequences required for  
write buffer programming.  
No  
No  
Q1 = 1 ?  
Yes  
Q5 = 1 ?  
Yes  
Read Q7~Q0 with address  
= Last Loaded Address  
Yes  
(Note 2)  
(Note 3)  
Q7 and Q15 = Data ?  
No  
FAIL or ABORT  
PASS  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
38  
MX29LA321M H/L  
Figure 8. PROGRAM SUSPEND/RESUME FLOWCHART  
Program Operation  
or Write-to-Buffer  
Sequence in Progress  
Write Program Suspend  
Command Sequence  
Command is also valid for  
Erase-suspended-program  
operations  
Write address/data  
XXXh/B0h  
Wait 15us  
Autoselect and Secured Sector  
read operations are also allowed  
Data cannot be read from erase-or  
program-suspended sectors  
Read data as  
required  
No  
Done reading ?  
Yes  
Write Program Resume  
Command Sequence  
Write address/data  
XXXh/30h  
Device reverts to  
operation prior to  
Program Suspend  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
39  
MX29LA321M H/L  
Figure 9. AUTOMATIC CHIP/SECTOR ERASE TIMING WAVEFORM  
Erase Command Sequence(last two cycle)  
Read Status Data  
VA  
tWC  
tAS  
VA  
2AAh  
SA  
Address  
CE#  
555h for chip erase  
tAH  
tCH  
OE#  
WE#  
tWHWH2  
tWP  
tCS  
tWPH  
tDS tDH  
In  
Progress  
55h  
30h  
Complete  
Data  
10 for Chip Erase  
tBUSY  
tRB  
RY/BY#  
tVCS  
VCC  
Note :  
1. SA=sector address(for Sector Erase), VA=Valid Address for reading status data(see "Write Operation Status").  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
40  
MX29LA321M H/L  
Figure 10. AUTOMATIC CHIP ERASE ALGORITHM FLOWCHART  
START  
Write Data AAH Address 555H  
Write Data 55H Address 2AAH  
Write Data 80H Address 555H  
Write Data AAH Address 555H  
Write Data 55H Address 2AAH  
Write Data 10H Address 555H  
Data Poll  
from system  
YES  
No  
DATA = FFh ?  
YES  
Auto Erase Completed  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
41  
MX29LA321M H/L  
Figure 11. AUTOMATIC SECTOR ERASE ALGORITHM FLOWCHART  
START  
Write Data AAH Address 555H  
Write Data 55H Address 2AAH  
Write Data 80H Address 555H  
Write Data AAH Address 555H  
Write Data 55H Address 2AAH  
Write Data 30H Sector Address  
NO  
Last Sector  
to Erase ?  
YES  
Data Poll from System  
NO  
Data=FFh?  
YES  
Auto Sector Erase Completed  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
42  
MX29LA321M H/L  
Figure 12. ERASE SUSPEND/RESUME FLOWCHART  
START  
Write Data B0H  
ERASE SUSPEND  
NO  
Toggle Bit checking Q6  
not toggled  
YES  
Read Array or  
Program  
Reading or  
NO  
Programming End  
YES  
Write Data 30H  
ERASE RESUME  
Continue Erase  
Another  
NO  
Erase Suspend ?  
YES  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
43  
MX29LA321M H/L  
AC CHARACTERISTICS  
Alternate CE# Controlled Erase and Program Operations  
TA=-40°C to 85° C,VCC=2.7V~3.6V (TA=0°C to 70° C, VCC=3.0V~3.6V for 70R)  
Parameter  
Std.  
Speed Options  
Description  
70R  
90  
Unit  
ns  
tWC  
Write CycleTime (Note 1)  
Address SetupTime  
Min  
Min  
Min  
Min  
Min  
Min  
70  
90  
tAS  
0
45  
35  
0
ns  
tAH  
Address HoldTime  
ns  
tDS  
Data SetupTime  
ns  
tDH  
Data HoldTime  
ns  
tGHEL  
Read RecoveryTime Before Write  
(OE# High to WE# Low)  
WE# SetupTime  
0
ns  
tWS  
tWH  
tCP  
Min  
Min  
Min  
Min  
Typ  
Typ  
Typ  
Typ  
Typ  
Typ  
Min  
Max  
0
0
ns  
ns  
ns  
ns  
us  
us  
us  
us  
us  
sec  
ns  
us  
WE# HoldTime  
CE# PulseWidth  
35  
25  
240  
60  
60  
54  
54  
0.5  
50  
4
tCPH  
CE# Pulse Width High  
Write Buffer Program Operation (Notes 2,3)  
SingleWord/Byte Program  
Operation (Notes 2,5)  
Byte  
Word  
Byte  
Word  
tWHWH1  
Accelerated Single Word/Byte  
Programming Operation (Notes 2,5)  
Sector Erase Operation (Note 2)  
RESET HIGHTime BeforeWrite (Note 1)  
Program Valid Before Status Polling (Note 6)  
tWHWH2  
tRH  
tPOLL  
Notes:  
1. Not 100% tested.  
2.See the "Erase And Programming Performance" section for more information.  
3.For 1-16 words/1-32 bytes programmed.  
4.Effective write buffer specification is based upon a 16-word/32-byte write buffer operation.  
5.Word/Byte programming specification is based upon a single word/byte programming operation not utilizing the write  
buffer.  
6.When using the program suspend/resume feature, if the suspend command is issued within tPOLL, tPOLL must be  
fully re-applied upon resuming the programming operation.If the suspend command is issued after tPOLL, tPOLL is  
not required again prior to reading the status bits upon resuming.  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
44  
MX29LA321M H/L  
Figure 13. CE# CONTROLLED PROGRAM TIMING WAVEFORM  
PA for program  
555 for program  
2AA for erase  
SA for sector erase  
555 for chip erase  
Data# Polling  
Address  
PA  
tWC  
tWH  
tAS  
tAH  
WE#  
OE#  
tGHEL  
tCP  
tWHWH1 or 2  
CE#  
Data  
tWS  
tDS  
tCPH  
tBUSY  
tDH  
Q7  
DOUT  
PD for program  
30 for sector erase  
10 for chip erase  
A0 for program  
55 for erase  
tRH  
RESET#  
RY/BY#  
NOTES:  
1.PA=Program Address, PD=Program Data, DOUT=Data Out, Q7=complement of data written to device.  
2.Figure indicates the last two bus cycles of the command sequence.  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
45  
MX29LA321M H/L  
SECTOR GROUP PROTECT/CHIP UNPROTECT  
Figure 14. Sector Group Protect / Chip Unprotect Waveform (RESET# Control)  
VID  
VIH  
RESET#  
SA, A7  
A2, A1  
Valid*  
Valid*  
Valid*  
Sector Group Protect or Chip Unprotect  
Verify  
40h  
Status  
Data  
60h  
60h  
Sector Group Protect:150us  
Chip Unprotect:15ms  
1us  
CE#  
WE#  
OE#  
Note: For sector group protect A7=0, A2=1, A1=0. For chip unprotect A7=1, A2=1, A1=0  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
46  
MX29LA321M H/L  
Figure 15. IN-SYSTEM SECTOR GROUP PROTECT/CHIP UNPROTECT ALGORITHMS WITH  
RESET#=VID  
START  
START  
Protect all sectors:  
The indicated portion of  
the sector protect algorithm  
must be performed  
PLSCNT=1  
RESET#=VID  
Wait 1us  
PLSCNT=1  
RESET#=VID  
Wait 1us  
for all unprotected sectors  
prior to issuing the first  
sector unprotect address  
First Write  
Cycle=60h  
First Write  
Cycle=60h  
Set up sector address  
No  
All sectors  
protected?  
Sector Protect:  
Write 60h to sector  
address with  
A7=0, A2=1, A1=0  
Yes  
Set up first sector address  
Wait 150us  
Sector Unprotect:  
Write 60h to sector  
address with  
Verify Sector Protect:  
Write 40h to sector  
address with  
Reset  
PLSCNT=1  
A7=1, A2=1, A1=0  
A7=0, A2=1, A1=0  
Increment PLSCNT  
Wait 15 ms  
Read from  
sector address  
with  
A7=0, A2=1, A1=0  
Verify Sector Unprotect:  
Write 40h to sector  
address with  
No  
Increment PLSCNT  
A7=1, A2=1, A1=0  
No  
Data=01h?  
Yes  
PLSCNT=25?  
Read from  
sector address  
with  
Yes  
A7=1, A2=1, A1=0  
No  
Device failed  
Reset  
Yes  
Protect another  
sector?  
PLSCNT=1  
No  
PLSCNT=1000?  
Data=00h?  
Yes  
No  
Sector Protect  
Algorithm  
Yes  
Remove VID from RESET#  
Device failed  
No  
Last sector  
verified?  
Write reset command  
Yes  
Chip Unprotect  
Algorithm  
Sector Protect complete  
Remove VID from RESET#  
Write reset command  
Sector Unprotect complete  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
47  
MX29LA321M H/L  
AC CHARACTERISTICS  
Parameter  
tVLHT  
Description  
Test Setup  
Min.  
All Speed Options Unit  
Voltage transition time  
4
100  
4
us  
ns  
us  
tWPP1  
Write pulse width for sector group protect  
OE# setup time to WE# active  
Min.  
tOESP  
Min.  
Figure 16. SECTOR GROUP PROTECT TIMING WAVEFORM (A10, OE# Control)  
A2  
A7  
12V  
3V  
A10  
tVLHT  
Verify  
12V  
3V  
OE#  
tVLHT  
tVLHT  
tWPP 1  
WE#  
tOESP  
CE#  
Data  
01H  
F0H  
tOE  
Sector Address  
A21-A17  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
48  
MX29LA321M H/L  
Figure 17. SECTOR GROUP PROTECTION ALGORITHM (A10, OE# Control)  
START  
Set Up Sector Addr  
PLSCNT=1  
OE#=VID, A10=VID, CE#=VIL  
A7=VIL  
Activate WE# Pulse  
Time Out 150us  
Set WE#=VIH, CE#=OE#=VIL  
A10 should remain VID  
Read from Sector  
Addr=SA, A2=1  
No  
No  
Data=01H?  
PLSCNT=32?  
Yes  
Device Failed  
Yes  
Protect Another  
Sector?  
Remove VID from A10  
Write Reset Command  
Sector Protection  
Complete  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
49  
MX29LA321M H/L  
Figure 18. CHIP UNPROTECT TIMING WAVEFORM (A10, OE# Control)  
A2  
12V  
3V  
A10  
A7  
tVLHT  
Verify  
12V  
3V  
OE#  
tVLHT  
tVLHT  
tWPP 2  
WE#  
CE#  
tOESP  
Data  
00H  
F0H  
tOE  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
50  
MX29LA321M H/L  
Figure 19. CHIP UNPROTECT FLOWCHART (A10, OE# Control)  
START  
Protect All Sectors  
PLSCNT=1  
Set OE#=A10=VID  
CE#=VIL, A7=1  
Activate WE# Pulse  
Time Out 15ms  
Increment  
PLSCNT  
Set OE#=CE#=VIL  
A10=VID, A2=1  
Set Up First Sector Addr  
Read Data from Device  
No  
No  
Data=00H?  
Yes  
PLSCNT=1000?  
Increment  
Sector Addr  
Yes  
Device Failed  
No  
All sectors have  
been verified?  
Yes  
Remove VID from A10  
Write Reset Command  
Chip Unprotect  
Complete  
* It is recommended before unprotect whole chip, all sectors should be protected in advance.  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
51  
MX29LA321M H/L  
Figure 20. SECURED SILICON SECTOR PROTECTED ALGORITHMS FLOWCHART  
START  
Enter Secured Silicon Sector  
Wait 1us  
First Wait Cycle Data=60h  
Second Wait Cycle Data=60h  
A7=0, A2=1, A1=0  
Wait 300us  
No  
Data = 01h ?  
Yes  
Device Failed  
Write Reset Command  
Secured Sector Protect Complete  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
52  
MX29LA321M H/L  
Figure 21. SILICON ID READ TIMING WAVEFORM  
VCC  
3V  
VID  
ADD  
A10  
VIH  
VIL  
VIH  
VIL  
ADD  
A1  
tACC  
tACC  
tACC  
tACC  
VIH  
VIL  
A2  
A3  
VIH  
VIL  
VIH  
VIL  
ADD  
CE#  
VIH  
VIL  
tCE  
VIH  
VIL  
WE#  
OE#  
tOE  
VIH  
VIL  
tDF  
tOH  
tOH  
tOH  
tOH  
VIH  
VIL  
DATA  
Q0-Q15  
DATA OUT  
Manufacturer ID  
DATA OUT  
DATA OUT  
DATA OUT  
Device ID  
Cycle 1  
Device ID  
Cycle 2  
Device ID  
Cycle 3  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
53  
MX29LA321M H/L  
WRITE OPERATION STATUS  
Figure 22. DATA# POLLING TIMING WAVEFORMS (DURING AUTOMATIC ALGORITHMS)  
tRC  
VA  
VA  
VA  
Address  
CE#  
tACC  
tCE  
tCH  
tOE  
OE#  
WE#  
tOEH  
tDF  
tOH  
High Z  
High Z  
Complement  
Status Data  
Status Data  
Status Data  
True  
Valid Data  
Valid Data  
Q7  
Q0-Q6  
True  
tBUSY  
RY/BY#  
Note :  
VA=Valid address. Figure shows are first status cycle after command sequence, last status read cycle, and array data raed cycle.  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
54  
MX29LA321M H/L  
Figure 23. DATA# POLLING ALGORITHM  
Start  
Read Q7~Q0  
Add.=VA(1)  
Yes  
Q7 = Data ?  
No  
No  
Q5 = 1 ?  
Yes  
Read Q7~Q0  
Add.=VA  
Yes  
(2)  
Q7 = Data ?  
No  
FAIL  
Pass  
Notes:  
1.VA=valid address for programming.  
2.Q7 should be rechecked even Q5="1" because Q7 may change simultaneously with Q5.  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
55  
MX29LA321M H/L  
Figure 24. TOGGLE BIT TIMING WAVEFORMS (DURING AUTOMATIC ALGORITHMS)  
tRC  
VA  
VA  
VA  
VA  
Address  
CE#  
tACC  
tCE  
tCH  
tOE  
OE#  
tOEH  
tDF  
WE#  
tOH  
tDH  
Valid Status  
(second read)  
Valid Status  
(first read)  
Valid Data  
Valid Data  
Q6/Q2  
Valid Status  
(stops toggling)  
RY/BY#  
Note :  
VA=Valid address; not required for Q6. Figure shows first two status cycle after command sequence, last status read cycle, and  
array data read cycle.  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
56  
MX29LA321M H/L  
Figure 25. TOGGLE BIT ALGORITHM  
START  
Read Q7~Q0  
Read Q7~Q0  
(Note 1)  
NO  
Toggle Bit Q6  
=Toggle?  
YES  
NO  
Q5=1?  
YES  
(Note 1,2)  
Read Q7~Q0 Twice  
Toggle Bit Q6=  
Toggle?  
YES  
Program/Erase Operation Not  
Program/Erase Operation Complete  
Complete, Write Reset Command  
Notes :  
1. Read toggle bit twice to determine whether or not it is toggling.  
2. Recheck toggle bit because it may stop toggling as Q5 changes to "1".  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
57  
MX29LA321M H/L  
Figure 26. Q6 versus Q2  
Enter Embedded  
Erasing  
Erase  
Enter Erase  
Erase  
Suspend  
Suspend Program  
Resume  
Erase  
Erase Suspend  
Read  
Erase  
Erase Suspend  
Read  
Erase  
Erase  
WE#  
Q6  
Suspend  
Program  
Complete  
Q2  
Note :  
The system can use OE# or CE# to toggle Q2/Q6, Q2 toggles only when read at an address within an erase-suspended  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
58  
MX29LA321M H/L  
RECOMMENDED OPERATING CONDITIONS  
At Device Power-Up  
AC timing illustrated in Figure A is recommended for the supply voltages and the control signals at device power-up.  
If the timing in the figure is ignored, the device may not operate correctly.  
VCC(min)  
VCC  
GND  
tVR  
tACC  
tR or tF  
tR or tF  
VIH  
VIL  
Valid  
ADDRESS  
CE#  
Address  
tF  
tCE  
tR  
VIH  
VIL  
VIH  
VIL  
WE#  
tF  
tOE  
tR  
VIH  
VIL  
OE#  
VIH  
VIL  
WP#/ACC  
DATA  
VOH  
VOL  
High Z  
Valid  
Ouput  
Figure A. ACTiming at Device Power-Up  
Notes  
Symbol  
Parameter  
Min.  
Max.  
Unit  
us/V  
us/V  
us/V  
tVR  
tR  
VCC RiseTime  
1
20  
500000  
20  
Input Signal Rise Time  
Input Signal Fall Time  
1,2  
1,2  
tF  
20  
Notes :  
1. Sampled, not 100% tested.  
2. This specification is applied for not only the device power-up but also the normal operations.  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
59  
MX29LA321M H/L  
ERASE AND PROGRAMMING PERFORMANCE (1)  
PARAMETER  
Typ (Note 1)  
Max (Note 2)  
Unit  
Comments  
Excludes 00h  
programming  
prior to erasure  
Note 6  
Sector Erase Time  
0.5  
2
sec  
Chip Erase Time  
32  
64  
sec  
Total Write Buffer Program Time (Note 4)  
Total Accelerated Effective Write Buffer  
Program Time (Note 4)  
240  
200  
us  
us  
Excludes  
system level  
overhead  
Chip Program Time  
31.5  
sec  
Note 7  
Notes:  
1. Typical program and erase times assume the following conditions: 25° C, 3.0V VCC. Programming specifications  
assume checkboard data pattern.  
2. Maximum values are measured at VCC = 3.0 V, worst case temperature. Maximum values are valid up to and  
including 100,000 program/erase cycles.  
3. Word/Byte programming specification is based upon a single word/byte programming operation not utilizing the  
write buffer.  
4. For 1-16 words or 1-32 bytes programmed in a single write buffer programming operation.  
5. Effective write buffer specification is calculated on a per-word/per-byte basis for a 16-word/32-byte write buffer  
operation.  
6. In the pre-programming step of the Embedded Erase algorithm, all bits are programmed to 00h before erasure.  
7. System-level overhead is the time required to execute the command sequence(s) for the program command.See  
Table 3 for further information on command definitions.  
8. The device has a minimum erase and program cycle endurance of 100,000 cycles.  
LATCH-UP CHARACTERISTICS  
MIN.  
-1.0V  
MAX.  
13.5V  
Input Voltage with respect to GND on all pins except I/O pins  
Input Voltage with respect to GND on all I/O pins  
Current  
-1.0V  
VCC + 1.0V  
+100mA  
-100mA  
Includes all pins except VCC. Test conditions: VCC = 3.0V, one pin at a time.  
DATA RETENTION  
Parameter  
Min  
20  
Unit  
Minimum Pattern Data Retention Time  
Years  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
60  
MX29LA321M H/L  
TSOP PIN AND BGA PACKAGE CAPACITANCE  
Parameter Symbol  
Parameter Description  
Test Set  
TYP  
6
MAX  
7.5  
5.0  
12  
UNIT  
pF  
CIN  
Input Capacitance  
VIN=0  
TSOP  
CSP  
4.2  
8.5  
5.4  
7.5  
3.9  
pF  
COUT  
CIN2  
Output Capacitance  
VOUT=0  
VIN=0  
TSOP  
CSP  
pF  
6.5  
9
pF  
Control Pin Capacitance  
TSOP  
CSP  
pF  
4.7  
pF  
Notes:  
1. Sampled, not 100% tested.  
2.Test conditions TA=25°C, f=1.0MHz  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
61  
MX29LA321M H/L  
ORDERING INFORMATION  
PART NO.  
ACCESS TIME  
Ball Pitch/  
Ball size  
PACKAGE  
Remark  
(ns)  
MX29LA321MHTC-70R  
MX29LA321MHTC-90  
MX29LA321MLTC-70R  
MX29LA321MLTC-90  
MX29LA321MHTI-90  
MX29LA321MLTI-90  
MX29LA321MHTC-90G  
MX29LA321MLTC-90G  
MX29LA321MHTI-90G  
MX29LA321MLTI-90G  
70  
56 Pin TSOP  
(Normal Type)  
56 Pin TSOP  
(Normal Type)  
56 Pin TSOP  
(Normal Type)  
56 Pin TSOP  
(Normal Type)  
56 Pin TSOP  
(Normal Type)  
56 Pin TSOP  
(Normal Type)  
56 Pin TSOP  
(Normal Type)  
56 Pin TSOP  
(Normal Type)  
56 Pin TSOP  
(Normal Type)  
56 Pin TSOP  
(Normal Type)  
64 ball CSP  
64 ball CSP  
64 ball CSP  
64 ball CSP  
64 ball CSP  
64 ball CSP  
64 ball CSP  
64 ball CSP  
64 ball CSP  
64 ball CSP  
64 ball CSP  
64 ball CSP  
90  
70  
90  
90  
90  
90  
90  
90  
90  
PB-free  
PB-free  
PB-free  
PB-free  
MX29LA321MHXCC-70R  
MX29LA321MHXCC-90  
MX29LA321MLXCC-70R  
MX29LA321MLXCC-90  
MX29LA321MHXCI-70R  
MX29LA321MHXCI-90  
MX29LA321MLXCI-70R  
MX29LA321MLXCI-90  
MX29LA321MHXCC-90G  
MX29LA321MLXCC-90G  
MX29LA321MHXCI-90G  
MX29LA321MLXCI-90G  
70  
90  
70  
90  
70  
90  
70  
90  
90  
90  
90  
90  
PB-free  
PB-free  
PB-free  
PB-free  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
62  
MX29LA321M H/L  
PACKAGE INFORMATION  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
63  
MX29LA321M H/L  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
64  
MX29LA321M H/L  
REVISION HISTORY  
Revision No. Description  
Page  
P1  
Date  
FEB/27/2006  
1.0  
1. Removed title "Preliminary"  
2.Removed temporary sector group unprotect information  
All  
3.To add "Recommended operating conditions" for device power-up  
P59  
P/N:PM1145  
REV. 1.0, FEB. 27, 2006  
65  
MX29LA321M H/L  
MACRONIX INTERNATIONALCO., LTD .  
Headquarters:  
TEL:+886-3-578-6688  
FAX:+886-3-563-2888  
Europe Office :  
TEL:+32-2-456-8020  
FAX:+32-2-456-8021  
Hong Kong Office :  
TEL:+86-755-834-335-79  
FAX:+86-755-834-380-78  
Japan Office :  
Kawasaki Office :  
TEL:+81-44-246-9100  
FAX:+81-44-246-9105  
Osaka Office :  
TEL:+81-6-4807-5460  
FAX:+81-6-4807-5461  
Singapore Office :  
TEL:+65-6346-5505  
FAX:+65-6348-8096  
Taipei Office :  
TEL:+886-2-2509-3300  
FAX:+886-2-2509-2200  
MACRONIX AMERICA, INC.  
TEL:+1-408-262-8887  
FAX:+1-408-262-8810  
http : //www.macronix.com  
MACRONIX INTERNATIONAL CO., LTD. reserves the right to change product and specifications without notice.  

相关型号:

MX29LA321MHXCI-90

32M-BIT SINGLE VOLTAGE 3V ONLY UNIFORM SECTOR FLASH MEMORY
Macronix

MX29LA321MHXCI-90G

32M-BIT SINGLE VOLTAGE 3V ONLY UNIFORM SECTOR FLASH MEMORY
Macronix

MX29LA321ML

32M-BIT SINGLE VOLTAGE 3V ONLY UNIFORM SECTOR FLASH MEMORY
Macronix

MX29LA321MLTC-70R

32M-BIT SINGLE VOLTAGE 3V ONLY UNIFORM SECTOR FLASH MEMORY
Macronix

MX29LA321MLTC-90

32M-BIT SINGLE VOLTAGE 3V ONLY UNIFORM SECTOR FLASH MEMORY
Macronix

MX29LA321MLTC-90G

32M-BIT SINGLE VOLTAGE 3V ONLY UNIFORM SECTOR FLASH MEMORY
Macronix

MX29LA321MLTI-90

32M-BIT SINGLE VOLTAGE 3V ONLY UNIFORM SECTOR FLASH MEMORY
Macronix

MX29LA321MLTI-90G

32M-BIT SINGLE VOLTAGE 3V ONLY UNIFORM SECTOR FLASH MEMORY
Macronix

MX29LA321MLXCC-70R

32M-BIT SINGLE VOLTAGE 3V ONLY UNIFORM SECTOR FLASH MEMORY
Macronix

MX29LA321MLXCC-90

32M-BIT SINGLE VOLTAGE 3V ONLY UNIFORM SECTOR FLASH MEMORY
Macronix

MX29LA321MLXCC-90G

32M-BIT SINGLE VOLTAGE 3V ONLY UNIFORM SECTOR FLASH MEMORY
Macronix

MX29LA321MLXCI-70R

32M-BIT SINGLE VOLTAGE 3V ONLY UNIFORM SECTOR FLASH MEMORY
Macronix