MX29LV320ABTI-70 [Macronix]

32M-BIT [4M x 8 / 2M x 16] SINGLE VOLTAGE 3V ONLY FLASH MEMORY; 32M - BIT [ 4M ×8 / 2M ×16 ]单电压3V仅限于Flash存储器
MX29LV320ABTI-70
型号: MX29LV320ABTI-70
厂家: MACRONIX INTERNATIONAL    MACRONIX INTERNATIONAL
描述:

32M-BIT [4M x 8 / 2M x 16] SINGLE VOLTAGE 3V ONLY FLASH MEMORY
32M - BIT [ 4M ×8 / 2M ×16 ]单电压3V仅限于Flash存储器

存储
文件: 总60页 (文件大小:604K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MX29LV320AT/B  
32M-BIT[4Mx8/2Mx16]SINGLEVOLTAGE  
3VONLYFLASHMEMORY  
FEATURES  
• Low Power Consumption  
GENERAL FEATURES  
- Low active read current: 10mA (typical) at 5MHz  
- Low standby current: 200nA (typical)  
• Minimum 100,000 erase/program cycle  
• 10 years data retention  
• 4,194,304 x 8 / 2,097,152 x 16 switchable  
• Sector Structure  
- 8K-Byte x 8 and 64K-Byte x 63  
• Extra 64K-Byte sector for security  
- Features factory locked and identifiable, and cus-  
tomer lockable  
SOFTWARE FEATURES  
• Erase Suspend/ Erase Resume  
- Suspends sector erase operation to read data from  
or program data to another sector which is not being  
erased  
Twenty-Four Sector Groups  
- Provides sector group protect function to prevent pro-  
gram or erase operation in the protected sector group  
- Provides chip unprotect function to allow code chang-  
ing  
• Status Reply  
- Data polling & Toggle bits provide detection of pro-  
gram and erase operation completion  
• Support Common Flash Interface (CFI)  
- Provides temporary sector group unprotect function  
for code changing in previously protected sector groups  
• Single Power Supply Operation  
- 2.7 to 3.6 volt for read, erase, and program opera-  
tions  
HARDWARE FEATURES  
• Latch-up protected to 250mA from -1V to Vcc + 1V  
• Low Vcc write inhibit is equal to or less than 1.4V  
• Compatible with JEDEC standard  
- Pinout and software compatible to single power sup-  
ply Flash  
• Ready/Busy (RY/BY) Output  
- Provides a hardware method of detecting program  
and erase operation completion  
• Hardware Reset (RESET) Input  
- Provides a hardware method to reset the internal state  
machine to read mode  
2nd generation of 3V/32M Flash product  
- Fully compatible with MX29LV320T/B device  
• WP/ACC input pin  
- Provides accelerated program capability  
PERFORMANCE  
• High Performance  
PACKAGE  
- Fast access time: 70/90ns  
- Fast program time:7us/word typical utilizing acceler-  
ate function  
• 48-PinTSOP  
• 48-Ball CSP  
- Fast erase time: 0.9s/sector, 35s/chip (typical)  
GENERAL DESCRIPTION  
The MX29LV320AT/B is a 32-mega bit Flash memory  
organized as 4M bytes of 8 bits and 2M words of 16 bits.  
MXIC's Flash memories offer the most cost-effective and  
reliable read/write non-volatile random access memory.  
The MX29LV320AT/B is packaged in 48-pin TSOP and  
48-ball CSP. It is designed to be reprogrammed and  
erased in system or in standard EPROM programmers.  
MXIC's Flash memories augment EPROM functionality  
with in-circuit electrical erasure and programming. The  
MX29LV320AT/B uses a command register to manage  
this functionality.  
MXIC Flash technology reliably stores memory  
contents even after 100,000 erase and program  
cycles. The MXIC cell is designed to optimize the  
erase and program mechanisms. In addition, the  
combination of advanced tunnel oxide processing  
and low internal electric fields for erase and  
programming operations produces reliable cycling.  
The standard MX29LV320AT/B offers access time as  
fast as 70ns, allowing operation of high-speed micropro-  
cessors without wait states. To eliminate bus conten-  
tion, the MX29LV320AT/B has separate chip enable (CE)  
and output enable (OE) controls.  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
1
MX29LV320AT/B  
The MX29LV320AT/B uses a 2.7V to 3.6V VCC  
supply to perform the High Reliability Erase and  
auto Program/Erase algorithms.  
modes allow sectors of the array to be erased in one  
erase cycle. The Automatic Sector Erase algorithm  
automatically programs the specified sector(s) prior to  
electrical erase. The timing and verification of  
electrical erase are controlled internally within the  
device.  
The highest degree of latch-up protection is  
achieved with MXIC's proprietary non-epi process.  
Latch-up protection is proved for stresses up to 100  
milliamperes on address and data pin from -1V to  
VCC + 1V.  
AUTOMATIC ERASE ALGORITHM  
MXIC's Automatic Erase algorithm requires the user to  
write commands to the command register using stand-  
ard microprocessor write timings. The device will auto-  
matically pre-program and verify the entire array. Then  
the device automatically times the erase pulse width,  
provides the erase verification, and counts the number  
of sequences. A status bit toggling between consecu-  
tive read cycles provides feedback to the user as to the  
status of the programming operation.  
AUTOMATIC PROGRAMMING  
The MX29LV320AT/B is byte/word programmable using  
the Automatic Programming algorithm. The Automatic  
Programming algorithm makes the external system do  
not need to have time out sequence nor to verify the  
data programmed. The typical chip programming time at  
room temperature of the MX29LV320AT/B is less than  
36 seconds.  
Register contents serve as inputs to an internal state-  
machine which controls the erase and programming cir-  
cuitry. During write cycles, the command register inter-  
nally latches address and data needed for the program-  
ming and erase operations. During a system write cycle,  
addresses are latched on the falling edge, and data are  
latched on the rising edge of WE .  
AUTOMATIC PROGRAMMING ALGORITHM  
MXIC's Automatic Programming algorithm require the user  
to only write program set-up commands (including 2 un-  
lock write cycle and A0H) and a program command (pro-  
gram data and address). The device automatically times  
the programming pulse width, provides the program veri-  
fication, and counts the number of sequences. A status  
bit similar to DATA polling and a status bit toggling be-  
tween consecutive read cycles, provide feedback to the  
user as to the status of the programming operation.  
MXIC's Flash technology combines years of EPROM  
experience to produce the highest levels of quality, relia-  
bility, and cost effectiveness.The MX29LV320AT/B elec-  
trically erases all bits simultaneously using Fowler-Nord-  
heim tunneling. The bytes/words are programmed by  
using the EPROM programming mechanism of hot elec-  
tron injection.  
AUTOMATIC CHIP ERASE  
During a program cycle, the state-machine will control  
the program sequences and command register will not  
respond to any command set. During a Sector Erase  
cycle, the command register will only respond to Erase  
Suspend command. After Erase Suspend is completed,  
the device stays in read mode. After the state machine  
has completed its task, it will allow the command regis-  
ter to respond to its full command set.  
The entire chip is bulk erased using 50 ms erase pulses  
according to MXIC's Automatic Chip Erase algorithm.  
Typical erasure at room temperature is accomplished in  
less than 35 seconds. The Automatic Erase algorithm  
automatically programs the entire array prior to electri-  
cal erase. The timing and verification of electrical erase  
are controlled internally within the device.  
AUTOMATIC SECTOR ERASE  
The MX29LV320AT/B is sector(s) erasable using  
MXIC's Auto Sector Erase algorithm. Sector erase  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
2
MX29LV320AT/B  
PIN CONFIGURATION  
A15  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
A16  
BYTE  
GND  
Q15/A-1  
Q7  
48TSOP  
A14  
A13  
A12  
A11  
A10  
A9  
2
3
4
5
6
Q14  
Q6  
7
A8  
8
Q13  
Q5  
A19  
A20  
WE  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Q12  
Q4  
RESET  
NC  
VCC  
Q11  
Q3  
MX29LV320AT/B  
WP/ACC  
RY/BY  
A18  
A17  
A7  
Q10  
Q2  
Q9  
Q1  
A6  
Q8  
A5  
Q0  
A4  
OE  
A3  
GND  
CE  
A2  
A1  
A0  
48-Ball CSP 6mm x 8mm (Ball Pitch = 0.8 mm),Top View, Balls Facing Down  
A
B
C
D
E
F
G
H
6
5
4
3
2
1
A13  
A9  
WE  
A12  
A14  
A15  
A11  
A19  
A20  
A5  
A16  
Q7  
Q5  
Q2  
Q0  
A0  
BYTE  
Q14  
Q12  
Q10  
Q8  
Q15/A-1 GND  
A8  
A10  
NC  
Q13  
Vcc  
Q11  
Q9  
Q6  
RESET  
Q4  
RY/BY WP/ACC A18  
Q3  
A7  
A3  
A17  
A4  
A6  
A2  
Q1  
A1  
CE  
OE  
GND  
PIN DESCRIPTION  
LOGIC SYMBOL  
SYMBOL  
A0~A20  
Q0~Q14  
Q15/A-1  
PIN NAME  
21  
Address Input  
16 or 8  
15 Data Inputs/Outputs  
A0-A20  
Q0-Q15  
(A-1)  
Q15(Data Input/Output, word mode)  
A-1(LSB Address Input, byte mode)  
Chip Enable Input  
CE  
CE  
WE  
Write Enable Input  
OE  
Output Enable Input  
OE  
BYTE  
RESET  
RY/BY  
VCC  
Word/Byte Selection Input  
Hardware Reset Pin, Active Low  
Read/Busy Output  
WE  
RESET  
BYTE  
3.0 volt-only single power supply  
HardwareWrite Protect/Acceleration  
Pin  
RY/BY  
WP/ACC  
WP/ACC  
GND  
NC  
Device Ground  
Pin Not Connected Internally  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
3
MX29LV320AT/B  
BLOCK DIAGRAM  
WRITE  
STATE  
CE  
OE  
CONTROL  
INPUT  
PROGRAM/ERASE  
HIGH VOLTAGE  
WE  
MACHINE  
(WSM)  
LOGIC  
RESET  
BYTE  
STATE  
MX29LV320AT/B  
FLASH  
ADDRESS  
LATCH  
REGISTER  
ARRAY  
ARRAY  
A0-A20  
AND  
SOURCE  
HV  
BUFFER  
Y-PASS GATE  
COMMAND  
DATA  
DECODER  
PGM  
SENSE  
DATA  
HV  
AMPLIFIER  
COMMAND  
DATA LATCH  
PROGRAM  
DATA LATCH  
Q0-Q15/A-1  
I/O BUFFER  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
4
MX29LV320AT/B  
Table 1.a: MX29LV320AT SECTOR GROUP ARCHITECTURE  
Sector Sector Sector Address  
Sector Size  
(Kbytes/Kwords)  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
(x8)  
(x16)  
Group  
1
A20-A12  
Address Range  
Address Range  
SA0  
000000xxx  
000001xxx  
000010xxx  
000011xxx  
000100xxx  
000101xxx  
000110xxx  
000111xxx  
001000xxx  
001001xxx  
001010xxx  
001011xxx  
001100xxx  
001101xxx  
001110xxx  
001111xxx  
010000xxx  
010001xxx  
010010xxx  
010011xxx  
010100xxx  
010101xxx  
010110xxx  
010111xxx  
011000xxx  
011001xxx  
011010xxx  
011011xxx  
011100xxx  
011101xxx  
011110xxx  
011111xxx  
100000xxx  
100001xxx  
100010xxx  
100011xxx  
100100xxx  
100101xxx  
100110xxx  
100111xxx  
000000h-00FFFFh  
010000h-01FFFFh  
020000h-02FFFFh  
030000h-03FFFFh  
040000h-04FFFFh  
050000h-05FFFFh  
060000h-06FFFFh  
070000h-07FFFFh  
080000h-08FFFFh  
090000h-09FFFFh  
0A0000h-0AFFFFh  
0B0000h-0BFFFFh  
0C0000h-0CFFFFh  
0D0000h-0DFFFFh  
0E0000h-0EFFFFh  
0F0000h-0FFFFFh  
100000h-10FFFFh  
110000h-11FFFFh  
120000h-12FFFFh  
130000h-13FFFFh  
140000h-14FFFFh  
150000h-15FFFFh  
160000h-16FFFFh  
170000h-17FFFFh  
180000h-18FFFFh  
190000h-19FFFFh  
1A0000h-1AFFFFh  
1B0000h-1BFFFFh  
1C0000h-1CFFFFh  
1D0000h-1DFFFFh  
1E0000h-1EFFFFh  
1F0000h-1FFFFFh  
200000h-20FFFFh  
210000h-21FFFFh  
220000h-22FFFFh  
230000h-23FFFFh  
240000h-24FFFFh  
250000h-25FFFFh  
260000h-26FFFFh  
270000h-27FFFFh  
000000h-07FFFh  
008000h-0FFFFh  
010000h-17FFFh  
018000h-01FFFFh  
020000h-027FFFh  
028000h-02FFFFh  
030000h-037FFFh  
038000h-03FFFFh  
040000h-047FFFh  
048000h-04FFFFh  
050000h-057FFFh  
058000h-05FFFFh  
060000h-067FFFh  
068000h-06FFFFh  
070000h-077FFFh  
078000h-07FFFFh  
080000h-087FFFh  
088000h-08FFFFh  
090000h-097FFFh  
098000h-09FFFFh  
0A0000h-0A7FFFh  
0A8000h-0AFFFFh  
0B0000h-0B7FFFh  
0B8000h-0BFFFFh  
0C0000h-0C7FFFh  
0C8000h-0CFFFFh  
0D0000h-0D7FFFh  
0D8000h-0DFFFFh  
0E0000h-0E7FFFh  
0E8000h-0EFFFFh  
0F0000h-0F7FFFh  
0F8000h-0FFFFFh  
100000h-107FFFh  
108000h-10FFFFh  
110000h-117FFFh  
118000h-11FFFFh  
120000h-127FFFh  
128000h-12FFFFh  
130000h-137FFFh  
138000h-13FFFFh  
1
SA1  
1
SA2  
1
SA3  
2
SA4  
2
SA5  
2
SA6  
2
SA7  
3
SA8  
3
SA9  
3
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
3
4
4
4
4
5
5
5
5
6
6
6
6
7
7
7
7
8
8
8
8
9
9
9
9
10  
10  
10  
10  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
5
MX29LV320AT/B  
Sector Sector Sector Address  
Sector Size  
(Kbytes/Kwords)  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
8/4  
(x8)  
(x16)  
Group  
11  
11  
11  
11  
12  
12  
12  
12  
13  
13  
13  
13  
14  
14  
14  
14  
15  
15  
15  
15  
16  
16  
16  
17  
18  
19  
20  
21  
22  
23  
24  
A20-A12  
Address Range  
Address Range  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
101000xxx  
101001xxx  
101010xxx  
101011xxx  
101100xxx  
101101xxx  
101110xxx  
101111xxx  
110000xxx  
110001xxx  
110010xxx  
110011xxx  
110100xxx  
110101xxx  
110110xxx  
110111xxx  
111000xxx  
111001xxx  
111010xxx  
111011xxx  
111100xxx  
111101xxx  
111110xxx  
111111000  
111111001  
111111010  
111111011  
111111100  
111111101  
111111110  
111111111  
280000h-28FFFFh  
290000h-29FFFFh  
2A0000h-2AFFFFh  
2B0000h-2BFFFFh  
2C0000h-2CFFFFh  
2D0000h-2DFFFFh  
2E0000h-2EFFFFh  
2F0000h-2FFFFFh  
300000h-30FFFFh  
310000h-31FFFFh  
320000h-32FFFFh  
330000h-33FFFFh  
340000h-34FFFFh  
350000h-35FFFFh  
360000h-36FFFFh  
370000h-37FFFFh  
380000h-38FFFFh  
390000h-39FFFFh  
3A0000h-3AFFFFh  
3B0000h-3BFFFFh  
3C0000h-3CFFFFh  
3D0000h-3DFFFFh  
3E0000h-3EFFFFh  
3F0000h-3F1FFFh  
3F2000h-3F3FFFh  
3F4000h-3F5FFFh  
3F6000h-3F7FFFh  
3F8000h-3F9FFFh  
3FA000h-3FBFFFh  
3FC000h-3FDFFFh  
3FE000h-3FFFFFh  
140000h-147FFFh  
148000h-14FFFFh  
150000h-157FFFh  
158000h-15FFFFh  
160000h-147FFFh  
168000h-14FFFFh  
170000h-177FFFh  
178000h-17FFFFh  
180000h-187FFFh  
188000h-18FFFFh  
190000h-197FFFh  
198000h-19FFFFh  
1A0000h-1A7FFFh  
1A8000h-1AFFFFh  
1B0000h-1B7FFFh  
1B8000h-1BFFFFh  
1C0000h-1C7FFFh  
1C8000h-1CFFFFh  
1D0000h-1D7FFFh  
1D8000h-1DFFFFh  
1E0000h-1E7FFFh  
1E8000h-1EFFFFh  
1F0000h-1F7FFFh  
1F8000h-1F8FFFh  
1F9000h-1F9FFFh  
1FA000h-1FAFFFh  
1FB000h-1FBFFFh  
1FC000h-1FCFFFh  
1FD000h-1FDFFFh  
1FE000h-1FEFFFh  
1FF000h-1FFFFFh  
8/4  
8/4  
8/4  
8/4  
8/4  
8/4  
8/4  
Note:The address range is A20:A-1 in byte mode (BYTE=VIL) or A20:A0 in word mode (BYTE=VIH)  
Top Boot Security Sector Addresses  
Sector Address  
A20~A12  
Sector Size  
(Kbytes/Kwords)  
64/32  
(x8)  
(x16)  
Address Range  
3F0000h-3FFFFFh  
Address Range  
1F8000h-1FFFFFh  
111111xxx  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
6
MX29LV320AT/B  
Table 1.b: MX29LV320AB SECTOR GROUP ARCHITECTURE  
Sector Sector Sector Address  
Sector Size  
(Kbytes/Kwords)  
8/4  
(x8)  
(x16)  
Group  
1
A20-A12  
Address Range  
Address Range  
SA0  
000000000  
000000001  
000000010  
000000011  
000000100  
000000101  
000000110  
000000111  
000001xxx  
000010xxx  
000011xxx  
000100xxx  
000101xxx  
000110xxx  
000111xxx  
001000xxx  
001001xxx  
001010xxx  
001011xxx  
001100xxx  
001101xxx  
001110xxx  
001111xxx  
010000xxx  
010001xxx  
010010xxx  
010011xxx  
010100xxx  
010101xxx  
010110xxx  
010111xxx  
011000xxx  
011001xxx  
011010xxx  
011011xxx  
011100xxx  
011101xxx  
011110xxx  
011111xxx  
000000h-001FFFh  
002000h-003FFFh  
004000h-005FFFh  
006000h-007FFFh  
008000h-009FFFh  
00A000h-00BFFFh  
00C000h-00DFFFh  
00E000h-00FFFFh  
010000h-01FFFFh  
020000h-02FFFFh  
030000h-03FFFFh  
040000h-04FFFFh  
050000h-05FFFFh  
060000h-06FFFFh  
070000h-07FFFFh  
080000h-08FFFFh  
090000h-09FFFFh  
0A0000h-0AFFFFh  
0B0000h-0BFFFFh  
0C0000h-0CFFFFh  
0D0000h-0DFFFFh  
0E0000h-0EFFFFh  
0F0000h-0FFFFFh  
100000h-10FFFFh  
110000h-11FFFFh  
120000h-12FFFFh  
130000h-13FFFFh  
140000h-14FFFFh  
150000h-15FFFFh  
160000h-16FFFFh  
170000h-17FFFFh  
180000h-18FFFFh  
190000h-19FFFFh  
1A0000h-1AFFFFh  
1B0000h-1BFFFFh  
1C0000h-1CFFFFh  
1D0000h-1DFFFFh  
1E0000h-1EFFFFh  
1F0000h-1FFFFFh  
000000h-000FFFh  
001000h-001FFFh  
002000h-002FFFh  
003000h-003FFFh  
004000h-004FFFh  
005000h-005FFFh  
006000h-006FFFh  
007000h-007FFFh  
008000h-00FFFFh  
010000h-017FFFh  
018000h-01FFFFh  
020000h-027FFFh  
028000h-02FFFFh  
030000h-037FFFh  
038000h-03FFFFh  
040000h-047FFFh  
048000h-04FFFFh  
050000h-057FFFh  
058000h-05FFFFh  
060000h-067FFFh  
068000h-06FFFFh  
070000h-077FFFh  
078000h-07FFFFh  
080000h-087FFFh  
088000h-08FFFFh  
090000h-097FFFh  
098000h-09FFFFh  
0A0000h-0A7FFFh  
0A8000h-0AFFFFh  
0B0000h-0B7FFFh  
0B8000h-0BFFFFh  
0C0000h-0C7FFFh  
0C8000h-0CFFFFh  
0D0000h-0D7FFFh  
0D8000h-0DFFFFh  
0E0000h-0E7FFFh  
0E8000h-0EFFFFh  
0F0000h-0F7FFFh  
0F8000h-0FFFFFh  
2
SA1  
8/4  
3
SA2  
8/4  
4
SA3  
8/4  
5
SA4  
8/4  
6
SA5  
8/4  
7
SA6  
8/4  
8
SA7  
8/4  
9
SA8  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
9
SA9  
9
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
10  
10  
10  
10  
11  
11  
11  
11  
12  
12  
12  
12  
13  
13  
13  
13  
14  
14  
14  
14  
15  
15  
15  
15  
16  
16  
16  
16  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
7
MX29LV320AT/B  
Sector Sector Sector Address  
Sector Size  
(Kbytes/Kwords)  
64/32  
(x8)  
(x16)  
Group  
17  
17  
17  
17  
18  
18  
18  
18  
19  
19  
19  
19  
20  
20  
20  
20  
21  
21  
21  
21  
22  
22  
22  
22  
23  
23  
23  
23  
24  
24  
24  
24  
A20-A12  
Address Range  
Address Range  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
100000xxx  
100001xxx  
100010xxx  
100011xxx  
100100xxx  
100101xxx  
100110xxx  
100111xxx  
101000xxx  
101001xxx  
101010xxx  
101011xxx  
101100xxx  
101101xxx  
101110xxx  
101111xxx  
110000xxx  
110001xxx  
110010xxx  
110011xxx  
110100xxx  
110101xxx  
110110xxx  
110111xxx  
111000xxx  
111001xxx  
111010xxx  
111011xxx  
111100xxx  
111101xxx  
111110xxx  
111111xxx  
200000h-20FFFFh  
210000h-21FFFFh  
220000h-22FFFFh  
230000h-23FFFFh  
240000h-24FFFFh  
250000h-25FFFFh  
260000h-26FFFFh  
270000h-27FFFFh  
280000h-28FFFFh  
290000h-29FFFFh  
2A0000h-2AFFFFh  
2B0000h-2BFFFFh  
2C0000h-2CFFFFh  
2D0000h-2DFFFFh  
2E0000h-2EFFFFh  
2F0000h-2FFFFFh  
300000h-30FFFFh  
310000h-31FFFFh  
320000h-32FFFFh  
330000h-33FFFFh  
340000h-34FFFFh  
350000h-35FFFFh  
360000h-36FFFFh  
370000h-37FFFFh  
380000h-38FFFFh  
390000h-39FFFFh  
3A0000h-3AFFFFh  
3B0000h-3BFFFFh  
3C0000h-3CFFFFh  
3D0000h-3DFFFFh  
3E0000h-3EFFFFh  
3F0000h-3FFFFFh  
100000h-107FFFh  
108000h-10FFFFh  
110000h-117FFFh  
118000h-11FFFFh  
120000h-127FFFh  
128000h-12FFFFh  
130000h-137FFFh  
138000h-13FFFFh  
140000h-147FFFh  
148000h-14FFFFh  
150000h-157FFFh  
158000h-15FFFFh  
160000h-167FFFh  
168000h-16FFFFh  
170000h-177FFFh  
178000h-17FFFFh  
180000h-187FFFh  
188000h-18FFFFh  
190000h-197FFFh  
198000h-19FFFFh  
1A0000h-1A7FFFh  
1A8000h-1AFFFFh  
1B0000h-1B7FFFh  
1B8000h-1BFFFFh  
1C0000h-1C7FFFh  
1C8000h-1CFFFFh  
1D0000h-1D7FFFh  
1D8000h-1DFFFFh  
1E0000h-1E7FFFh  
1E8000h-1EFFFFh  
1F0000h-1F7FFFh  
1F8000h-1FFFFFh  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
Note:The address range is A20:A-1 in byte mode (BYTE=VIL) or A20:A0 in word mode (BYTE=VIH)  
Bottom Boot Security Sector Addresses  
Sector Address  
A20~A12  
Sector Size  
(Kbytes/Kwords)  
64/32  
(x8)  
(x16)  
Address Range  
000000h-00FFFFh  
Address Range  
00000h-07FFFh  
111111xxx  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
8
MX29LV320AT/B  
Table 2. BUS OPERATION--1  
Operation  
CE OE WE RESET WP/ACC  
Addresses  
(Note 2)  
AIN  
Q0~Q7  
Q8 ~ Q15  
Byte=VIH  
Byte=VIL  
Q8-A14  
Read  
L
L
H
H
L/H  
DOUT  
DOUT  
=High-Z  
Q15=A-1  
Write (Note 1)  
Accelerate  
Program  
L
L
H
H
L
L
H
H
Note 3  
VHH  
AIN  
AIN  
DIN  
DIN  
DIN  
DIN  
Standby  
VCC ± X  
X
VCC ±  
0.3V  
H
H
X
High-Z  
High-Z  
High-Z  
0.3V  
Output Disable  
Reset  
L
X
L
H
X
H
H
X
L
L/H  
L/H  
L/H  
X
X
High-Z  
High-Z  
High-Z  
High-Z  
X
High-Z  
High-Z  
X
L
Sector Group  
Protect (Note 2)  
Chip Unprotect  
(Note 2)  
VID  
Sector Addresses, DIN, DOUT  
A6=L, A1=H, A0=L  
L
H
X
L
VID  
VID  
Note 3 Sector Addresses, DIN, DOUT  
A6=H, A1=H, A0=L  
X
X
Temporary Sector  
Group Unprotect  
X
X
Note 3  
AIN  
DIN  
DIN  
High-Z  
Legend:  
L=Logic LOW=VIL, H=Logic High=VIH, VID=12.0±0.5V, VHH=11.5-12.5V, X=Don't Care, AIN=Address IN, DIN=Data IN,  
DOUT=Data OUT  
Notes:  
1. When the WP/ACC pin is at VHH, the device enters the accelerated program mode. See "Accelerated Program  
Operations" for more information.  
2.The sector group protect and chip unprotect functions may also be implemented via programming equipment. See  
the "Sector Group Protection and Chip Unprotection" section.  
3.If WP/ACC=VIL, the two outermost boot sectors remain protected. If WP/ACC=VIH, the two outermost boot sector  
protection depends on whether they were last protected or unprotected using the method described in "Sector/  
Sector Block Protection and Unprotection". If WP/ACC=VHH, all sectors will be unprotected.  
4.DIN or Dout as required by command sequence, data polling, or sector protection algorithm.  
5.Address are A20:A0 in word mode (BYTE=VIH), A20:A-1 in byte mode (BYTE=VIL).  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
9
MX29LV320AT/B  
BUS OPERATION--2  
Operation  
A20 A11 A9  
to to  
A12 A10  
A8  
to  
A6  
A5  
to  
CE OE WE  
A1  
A0 Q0-Q7 Q8-Q15  
A7  
X
A2  
X
Read Silicon ID  
Manufacturer Code  
Read Silicon ID  
MX29LV320AT  
Read Silicon ID  
MX29LV320AB  
Sector Protect  
Verification  
L
L
L
L
L
L
L
L
L
L
H
H
H
H
H
X
X
X
X
X
X
VID  
VID  
VID  
VID  
VID  
L
L
L
L
L
L
L
H
H
L
C2H  
X
X
X
X
X
X
X
X
X
X
L
L
A7H 22h(word)  
X (byte)  
X
A8H 22h(word)  
X (byte)  
SA  
X
H
H
01h(1),  
or 00h  
99h(2),  
or 19h  
X
Security Sector  
Indicater  
H
X
Bit (Q7)  
Notes:  
1.Code=00h means unprotected, or code=01h protected.  
2.Code=99 means factory locked, or code=19h not factory locked.  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
10  
MX29LV320AT/B  
REQUIREMENTS FOR READING ARRAY  
DATA  
ACCELERATED PROGRAM OPERATION  
The device offers accelerated program operations through  
the WP/ACC function. If the system asserts VHH on ACC  
pin, the device will provide the fast programming time to  
user. This function is primarily intended to allow faster  
manufacturing throughput during production. Removing  
VHH from the WP/ACC pin returns the device to normal  
operation. Note that the WP/ACC pin must not be at VHH  
for operations other than accelerated programming, or  
device damage may result.  
To read array data from the outputs, the system must  
drive the CE and OE pins toVIL.CE is the power control  
and selects the device. OE is the output control and gates  
array data to the output pins. WE should remain at VIH.  
The internal state machine is set for reading array data  
upon device power-up, or after a hardware reset. This  
ensures that no spurious alteration of the memory content  
occurs during the power transition. No command is  
necessary in this mode to obtain array data. Standard  
microprocessor read cycles that assert valid address on  
the device address inputs produce valid data on the device  
data outputs.The device remains enabled for read access  
until the command register contents are altered.  
STANDBY MODE  
MX29LV320AT/B can be set into Standby mode with two  
different approaches. One is using both CE and RESET  
pins and the other one is using RESET pin only.  
When using both pins of CE and RESET, a CMOS  
Standby mode is achieved with both pins held at Vcc ±  
0.3V. Under this condition, the current consumed is less  
than 0.2uA (typ.). If both of the CE and RESET are held  
atVIH, but not within the range ofVCC ± 0.3V, the device  
will still be in the standby mode, but the standby current  
will be larger. During Auto Algorithm operation, Vcc ac-  
tive current (ICC2) is required even CE = "H" until the  
operation is completed.The device can be read with stan-  
dard access time (tCE) from either of these standby  
modes.  
WRITE COMMANDS/COMMAND SEQUENCES  
To program data to the device or erase sectors of memory  
, the system must drive WE and CE to VIL, and OE to  
VIH.  
An erase operation can erase one sector, multiple sectors  
, or the entire device.Table 1 indicates the address space  
that each sector occupies. A "sector address" consists  
of the address bits required to uniquely select a sector.  
Writing specific address and data commands or  
sequences into the command register initiates device  
operations. Table 3 defines the valid register command  
sequences.Writing incorrect address and data values or  
writing them in the improper sequence resets the device  
to reading array data. Section has details on erasing a  
sector or the entire chip, or suspending/resuming the erase  
operation.  
When using only RESET, a CMOS standby mode is  
achieved with RESET input held at Vss ± 0.3V, Under  
this condition the current is consumed less than 1uA  
(typ.). Once the RESET pin is taken high, the device is  
back to active without recovery delay.  
In the standby mode the outputs are in the high imped-  
ance state, independent of the OE input.  
After the system writes the Automatic Select command  
sequence, the device enters the Automatic Select mode.  
The system can then read Automatic Select codes from  
the internal register (which is separate from the memory  
array) on Q7-Q0. Standard read cycle timings apply in  
this mode. Refer to the Automatic Select Mode and  
Automatic Select Command Sequence section for more  
information.  
MX29LV320AT/B is capable to provide the Automatic  
Standby Mode to restrain power consumption during read-  
out of data. This mode can be used effectively with an  
application requested low power consumption such as  
handy terminals.  
To active this mode, MX29LV320AT/B automatically  
switch themselves to low power mode when  
MX29LV320AT/B addresses remain stable during access  
time of tACC+30ns. It is not necessary to control CE,  
WE, and OE on the mode. Under the mode, the current  
consumed is typically 0.2uA (CMOS level).  
ICC2 in the DC Characteristics table represents the active  
current specification for the write mode. The "AC  
Characteristics" section contains timing specification  
table and timing diagrams for write operations.  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
11  
MX29LV320AT/B  
The primary method requires VID on the RESET only.  
This method can be implemented either in-system or via  
programming equipment. This method uses standard  
microprocessor bus cycle timing. Refer to Figure 13 for  
timing diagram and Figure 14 illustrates the algorithm for  
the sector group protection operation.  
OUTPUT DISABLE  
With the OE input at a logic high level (VIH), output from  
the devices are disabled.This will cause the output pins  
to be in a high impedance state.  
The alternate method intended only for programming  
equipment, must force VID on address pin A9 and con-  
trol pin OE, (suggest VID = 12V) A6 = VIL and CE =  
VIL(seeTable 2). Programming of the protection circuitry  
begins on the falling edge of the WE pulse and is termi-  
nated on the rising edge. Contact MXIC for details.  
RESET OPERATION  
The RESET pin provides a hardware method of resetting  
the device to reading array data.When the RESET pin is  
driven low for at least a period of tRP, the device  
immediately terminates any operation in progress,  
tristates all output pins, and ignores all read/write  
commands for the duration of the RESET pulse. The  
device also resets the internal state machine to reading  
array data.The operation that was interrupted should be  
reinitiated once the device is ready to accept another  
command sequence, to ensure data integrity  
To verify programming of the protection circuitry, the pro-  
gramming equipment must force VID on address pin A9 (  
with CE and OE at VIL and WE at VIH). When A1=1, it  
will produce a logical "1" code at device output Q0 for a  
protected sector. Otherwise the device will produce 00H  
for the unprotected sector. In this mode, the addresses,  
except for A1, are don't care. Address locations with  
A1= VIL are reserved to read manufacturer and device  
codes.(Read Silicon ID)  
Current is reduced for the duration of the RESET pulse.  
When RESET is held at VSS±0.3V, the device draws  
CMOS standby current (ICC4). If RESET is held at VIL  
but not within VSS±0.3V, the standby current will be  
greater.  
It is also possible to determine if the group is protected  
in the system by writing a Read Silicon ID command.  
Performing a read operation with A1=VIH, it will produce  
a logical "1" at Q0 for the protected sector.  
The RESET pin may be tied to system reset circuitry. A  
system reset would that also reset the Flash memory,  
enabling the system to read the boot-up firm-ware from  
the Flash memory.  
CHIP UNPROTECT OPERATION  
If RESET is asserted during a program or erase  
operation, the RY/BY pin remains a "0" (busy) until the  
internal reset operation is complete, which requires a time  
of tREADY (during Embedded Algorithms).The system  
can thus monitor RY/BY to determine whether the reset  
operation is complete. If RESET is asserted when a  
program or erase operation is not executing (RY/BY pin  
is "1"), the reset operation is completed within a time of  
tREADY (not during Embedded Algorithms).The system  
can read data tRH after the RESET pin returns to VIH.  
The MX29LV320AT/B also features the chip unprotect  
mode, so that all sectors are unprotected after chip  
unprotect is completed to incorporate any changes in  
the code. It is recommended to protect all sectors before  
activating chip unprotect mode.  
The primary method requires VID on the RESET only.  
This method can be implemented either in-system or via  
programming equipment. This method uses standard  
microprocessor bus cycle timing. Refer to Figure 13 for  
timing diagram and Figure 14 illustrates the algorithm for  
the sector group protection operation.  
Refer to the AC Characteristics tables for RESET  
parameters and to Figure 14 for the timing diagram.  
The alternate method intended only for programming  
equipment, must force VID on address pin A9 and con-  
trol pin OE, (suggest VID = 12V) A6 = VIL and CE =  
VIL(seeTable 2). Programming of the protection circuitry  
begins on the falling edge of the WE pulse and is termi-  
nated on the rising edge. Contact MXIC for details.  
SECTOR GROUP PROTECT OPERATION  
The MX29LV320AT/B features hardware sector group  
protection. This feature will disable both program and  
erase operations for these sector group protected. Sec-  
tor protection can be implemented via two methods.  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
12  
MX29LV320AT/B  
It is also possible to determine if the chip is unprotected  
in the system by writing the Read Silicon ID command.  
Performing a read operation with A1=VIH, it will produce  
00H at data outputs(Q0-Q7) for an unprotected sector.It  
is noted that all sectors are unprotected after the chip  
unprotect algorithm is completed.  
AUTOMATIC SELECT OPERATION  
Flash memories are intended for use in applications where  
the local CPU alters memory contents. As such, manu-  
facturer and device codes must be accessible while the  
device resides in the target system. PROM program-  
mers typically access signature codes by raising A9 to  
a high voltage. However, multiplexing high voltage onto  
address lines is not generally desired system design prac-  
tice.  
TEMPORARY SECTOR GROUP UNPROTECT  
OPERATION  
MX29LV320AT/B provides hardware method to access  
the Automatic Select operation.This method requiresVID  
on A9 pin, VIL on CE, OE, A6, and A1 pins.When apply-  
ing VIL on A0 pin, the device will output MXIC's manu-  
facture code of C2H. When applying VIH on A0 pin, the  
device will output MX29LV320AT/B device code of 22A7h  
and 22A8h.  
This feature allows temporary unprotection of previously  
protected sector to change data in-system.The Tempo-  
rary Sector Unprotect mode is activated by setting the  
RESET pin to VID(11.5V-12.5V). During this mode, for-  
merly protected sectors can be programmed or erased  
as un-protected sector. Once VID is remove from the  
RESET pin, all the previously protected sectors are pro-  
tected again.  
VERIFY SECTOR GROUP PROTECT STATUS  
OPERATION  
WRITE PROTECT (WP)  
MX29LV320AT/B provides hardware method for sector  
group protect status verify. This method requires VID on  
A9 pin, VIH on WE and A1 pins, VIL on CE, OE, A6, and  
A0 pins, and sector address on A12 to A20 pins. When  
the identified sector is protected, the device will output  
01H.When the identified sector is not protect, the device  
will output 00H.  
The write protect function provides a hardware method  
to protect boot sectors without using VID.  
If the system asserts VIL on the WP/ACC pin, the de-  
vice disables program and erase functions in the two  
"outermost" 8 Kbyte boot sectors independently of  
whether those sectors were protected or unprotected  
using the method described in Sector/Sector Group Pro-  
tection and Chip Unprotection". The two outermost 8  
Kbyte boot sectors are the two sectors containing the  
lowest addresses in a bottom-boot-configured device, or  
the two sectors containing the highest addresses in a  
top-boot-configured device.  
SECURITY SECTOR FLASH MEMORY REGION  
The Security Sector (Security Sector) feature provides a  
Flash memory region that enables permanent part iden-  
tification through an Electronic Serial Number (ESN).The  
Security Sector is 64 Kbytes (32 Kwords) in length, and  
uses a Security Sector Indicator Bit (Q7) to indicate  
whether or not the Security Sector is locked when shipped  
from the factory. This bit is per-manently set at the fac-  
tory and cannot be changed, which prevents cloning of a  
factory locked part.This ensures the security of the ESN  
once the product is shipped to the field.  
If the system asserts VIH on the WP/ACC pin, the de-  
vice reverts to whether the two outermost 8K Byte boot  
sectors were last set to be protected or unprotected.That  
is, sector protection or unprotection for these two sec-  
tors depends on whether they were last protected or un-  
protected using the method described in "Sector/Sector  
Group Protection and Chip Unprotection".  
MXIC offers the device with the Security Sector either  
factory locked or customer lockable. The factory-locked  
version is always protected when shipped from the fac-  
tory, and has the Security on Silicon Sector (Security  
Sector) Indicator Bit permanently set to a "1". The cus-  
tomer-lockable version is shipped with the unprotected,  
allowing customers to utilize the that sector in any man-  
Note that the WP/ACC pin must not be left floating or  
unconnected; inconsistent behavior of the device may  
result.  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
13  
MX29LV320AT/B  
ner they choose.The customer-lockable version has the  
Security on Silicon Sector (Security Sector) Indicator Bit  
permanently set to a "0".Thus, the Security Sector Indi-  
cator Bit prevents customer-lockable devices from be-  
ing used to replace devices that are factory locked.  
Write the three-cycle Enter Security Region command  
sequence, and then follow the in-system sector group  
protect algorithm as shown in Figure 14, except that RE-  
SET may be at either VIH or VID. This allows in-system  
protection of the without raising any device pin to a high  
voltage. Note that this method is only applicable to the  
Security Sector.  
The system accesses the Security Sector through a  
command sequence (see "Enter Security Sector/Exit  
Security Sector Command Sequence"). After the sys-  
tem has written the Enter Security Sector command se-  
quence, it may read the Security Sector by using the ad-  
dresses normally occupied by the boot sectors. This  
mode of operation continues until the system issues the  
Exit Security Sector command sequence, or until power  
is removed from the device. On power-up, or following a  
hardware reset, the device reverts to sending commands  
to the boot sectors.  
Write the three-cycle Enter Security Region command  
sequence, and then use the alternate method of sector  
protection described in the "Sector/Sector Block Protec-  
tion and Unprotection section.  
Once the Security Sector is locked and verified, the sys-  
tem must write the Exit Security Sector Region com-  
mand sequence to return to reading and writing the re-  
mainder of the array.  
The Security Sector protection must be used with cau-  
tion since, once protected, there is no procedure avail-  
able for unprotecting the Security Sector area and none  
of the bits in the Security Sector memory space can be  
modified in any way.  
Factory Locked: Security Sector Programmed  
and Protected at the Factory  
In a factory locked device, the Security Sector is pro-  
tected when the device is shipped from the factory. The  
Security Sector cannot be modified in any way. The de-  
vice is available preprogrammed with one of the follow-  
ing:  
DATA PROTECTION  
The MX29LV320AT/B is designed to offer protection  
against accidental erasure or programming caused by  
spurious system level signals that may exist during power  
transition. During power up the device automatically re-  
sets the state machine in the Read mode. In addition,  
with its control register architecture, alteration of the  
memory contents only occurs after successful comple-  
tion of specific command sequences. The device also  
incorporates several features to prevent inadvertent write  
cycles resulting fromVCC power-up and power-down tran-  
sition or system noise.  
A random, secure ESN only.  
Customer code through the Express Flash service.  
Both a random, secure ESN and customer code through  
the Express Flash service.  
In devices that have an ESN, a Bottom Boot device will  
have the 16-byte (8-word) ESN in the lowest address-  
able memory area starting at 00000h and ending at  
0000Fh (00007h). In the Top Boot device the starting  
address of the ESN will be at the bottom of the lowest 8  
Kbyte (4 Kword) boot sector starting at 3F0000h  
(1F8000h) and ending at 3F000Fh (1F8007h).  
LOW VCC WRITE INHIBIT  
When VCC is less than VLKO the device does not ac-  
cept any write cycles. This protects data during VCC  
power-up and power-down.The command register and  
all internal program/erase circuits are disabled, and the  
device resets. Subsequent writes are ignored until VCC  
is greater thanVLKO. The system must provide the proper  
signals to the control pins to prevent unintentional write  
whenVCC is greater thanVLKO.  
Customer Lockable: Security Sector NOT Pro-  
grammed or Protected at the Factory  
If the security feature is not required, the Security Sec-  
tor can be treated as an additional Flash memory space,  
expanding the size of the available Flash array by 64  
Kbytes (32 Kwords). The Security Sector can be read,  
programmed, and erased as often as required.The Se-  
curity Sector area can be protected using one of the  
following procedures:  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
14  
MX29LV320AT/B  
WRITE PULSE "GLITCH" PROTECTION  
Noise pulses of less than 5ns (typical) on OE, CE or WE  
will not initiate a write cycle.  
LOGICAL INHIBIT  
Writing is inhibited by holding any one of OE =VIL, CE =  
VIH or WE = VIH. To initiate a write cycle CE and WE  
must be a logical zero while OE is a logical one.  
POWER-UP SEQUENCE  
The MX29LV320AT/B powers up in the Read only mode.  
In addition, the memory contents may only be altered  
after successful completion of the predefined command  
sequences.  
POWER-UP WRITE INHIBIT  
IfWE=CE=VIL and OE=VIH during power up, the device  
does not accept commands on the rising edge of WE.  
The internal state machine is automatically reset to the  
read mode on power-up.  
POWER SUPPLY DECOUPLING  
In order to reduce power switching effect, each device  
should have a 0.1uF ceramic capacitor connected be-  
tween itsVCC and GND.  
SOFTWARE COMMAND DEFINITIONS  
Device operations are selected by writing specific ad-  
dress and data sequences into the command register.  
Writing incorrect address and data values or writing them  
in the improper sequence will reset the device to the  
read mode. Table 3 defines the valid register command  
sequences. Note that the Erase Suspend (B0H) and  
Erase Resume (30H) commands are valid only while the  
Sector Erase operation is in progress. Either of the two  
reset command sequences will reset the device (when  
applicable).  
All addresses are latched on the falling edge of WE or  
CE, whichever happens later.All data are latched on ris-  
ing edge of WE or CE, whichever happens first.  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
15  
MX29LV320AT/B  
TABLE 3. MX29LV320AT/B COMMAND DEFINITIONS  
First Bus  
Cycle  
Second Bus Third Bus  
Cycle Cycle  
Fourth Bus  
Cycle  
Fifth Bus Sixth Bus  
Cycle Cycle  
Command  
Bus  
Cycles Addr Data Addr Data Addr Data Addr  
Data Addr Data Addr Data  
Read(Note 5)  
1
1
RA  
RD  
Reset(Note 4)  
XXX F0  
Automatic Select(Note 5)  
Manufacturer ID  
Word  
Byte  
4
4
4
4
4
4
4
4
3
3
4
4
4
4
6
6
6
6
1
1
1
1
555 AA  
AAA AA  
555 AA  
AAA AA  
555 AA  
AAA AA  
555 AA  
AAA AA  
555 AA  
AAA AA  
555 AA  
AAA AA  
555 AA  
AAA AA  
555 AA  
AAA AA  
555 AA  
AAA AA  
2AA 55  
555 55  
2AA 55  
555 55  
2AA 55  
555 55  
2AA 55  
555 55  
2AA 55  
555 55  
2AA 55  
555 55  
2AA 55  
555 55  
2AA 55  
555 55  
2AA 55  
555 55  
555 90  
AAA 90  
555 90  
AAA 90  
555 90  
AAA 90  
555 90  
AAA 90  
555 88  
AAA 88  
555 90  
AAA 90  
555 A0  
AAA A0  
555 80  
AAA 80  
555 80  
AAA 80  
X00  
X00  
X01  
X02  
X03  
X06  
C2H  
C2H  
ID  
Device ID  
Word  
Byte  
Security Sector Factory Word  
Protect Verify (Note 6) Byte  
Sector Protect Verify Word  
99/19  
(SA)X02 00/01  
(SA)X04  
(Note 7)  
Byte  
Word  
Byte  
Word  
Byte  
Word  
Byte  
Word  
Byte  
Word  
Byte  
Word  
Byte  
Enter Security Sector  
Region  
Exit Security Sector  
XXX  
XXX  
PA  
00  
00  
Program  
PD  
PD  
AA  
AA  
AA  
AA  
PA  
Chip Erase  
555  
AAA  
555  
AAA  
2AA 55 555 10  
555 55 AAA 10  
2AA 55 SA 30  
555 55 SA 30  
Sector Erase  
CFI Query (Note 8)  
55  
98  
98  
B0  
30  
AA  
SA  
SA  
Erase Suspend(Note 9)  
Erase Resume(Note 10)  
Legend:  
X=Don't care  
RA=Address of the memory location to be read.  
PD=Data to be programmed at location PA. Data is latched  
on the rising edge of WE or CE pulse.  
RD=Data read from location RA during read operation.  
PA=Address of the memory location to be programmed.  
Addresses are latched on the falling edge of the WE or CE  
pulse.  
SA=Address of the sector to be erased or verified. Address  
bits A20-A12 uniquely select any sector.  
ID=22A7h(Top), 22A8h(Bottom)  
Notes:  
1. See Table 1 for descriptions of bus operations.  
2. All values are in hexadecimal.  
3. Except when reading array or Automatic Select data, all bus cycles are write operation.  
4. The Reset command is required to return to the read mode when the device is in the Automatic Select mode or if Q5 goes  
high.  
5. The fourth cycle of the Automatic Select command sequence is a read cycle.  
6. The data is 99h for factory locked and 19h for not factory locked.  
7. The data is 00h for an unprotected sector/sector block and 01h for a protected sector/sector block. In the third cycle of the  
command sequence, address bit A20=0 to verify sectors 0~31, A20=1 to verify sectors 32~70 for Top Boot device.  
8. Command is valid when device is ready to read array data or when device is in Automatic Select mode.  
9. The system may read and program functions in non-erasing sectors, or enter the Automatic Select mode, when in the erase  
Suspend mode. The Erase Suspend command is valid only during a sector erase operation.  
10. The Erase Resume command is valid only during the Erase Suspend mode.  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
16  
MX29LV320AT/B  
READING ARRAY DATA  
AUTOMATIC SELECT COMMAND SEQUENCE  
The Automatic Select command sequence allows the  
host system to access the manufacturer and device  
codes, and determine whether or not a sector is pro-  
tected.Table 2 shows the address and data requirements.  
This method is an alternative to that shown in Table 3,  
which is intended for EPROM programmers and requires  
VID on address bit A9.  
The device is automatically set to reading array data  
after device power-up. No commands are required to  
retrieve data.The device is also ready to read array data  
after completing an Automatic Program or Automatic  
Erase algorithm.  
After the device accepts an Erase Suspend command,  
the device enters the Erase Suspend mode. The sys-  
tem can read array data using the standard read tim-  
ings, except that if it reads at an address within erase-  
suspended sectors, the device outputs status data. After  
completing a programming operation in the Erase  
Suspend mode, the system may once again read array  
data with the same exception. See Erase Suspend/Erase  
Resume Commandsfor more information on this mode.  
The system must issue the reset command to re-en-  
able the device for reading array data if Q5 goes high  
during an active program or erase operation, or while in  
the Automatic Select mode. See the "Reset Command"  
section, next.  
The Automatic Select command sequence is initiated  
by writ-ing two unlock cycles, followed by the Automatic  
Select command. The device then enters the Automatic  
Select mode, and the system may read at any address  
any number of times, without initiating another command  
sequence. A read cycle at address XX00h retrieves the  
manufacturer code. A read cycle at address XX01h in  
word mode (or xx02h in byte mode) returns the device  
code. A read cycle containing a sector address (SA) and  
the address 02h on A7-A0 in word mode (or the address  
04h on A6-A-1 in byte mode) returns 01h if that sector is  
protected, or 00h if it is unprotected. Refer to Table 1 for  
valid sector addresses.  
The system must write the reset command to exit the  
Automatic Select mode and return to reading array data.  
RESET COMMAND  
Writing the reset command to the device resets the  
device to reading array data. Address bits are don't care  
for this command.  
ENTER SECURITY SECTOR & EXIT SECURITY  
SECTOR COMMAND SEQUENCE  
The reset command may be written between the se-  
quence cycles in an erase command sequence before  
erasing begins. This resets the device to reading array  
data. Once erasure begins, however, the device ignores  
reset commands until the operation is complete.  
The Security Sector provides a secured area which con-  
tains a random, sixteen-byte electronic serial  
number.(ESN)  
The system can access the Security Sector area by is-  
suing the three-cycle "Enter Security Sector command  
sequence. The device continues to access the security  
section area until the system issues the four-cycle Exit  
Security Sector command sequence. The Exit Security  
Sector command sequence returns the device to normal  
operation.  
The reset command may be written between the se-  
quence cycles in a program command sequence before  
programming begins. This resets the device to reading  
array data (also applies to programming in Erase Suspend  
mode). Once programming begins, however, the device  
ignores reset commands until the operation is complete.  
The reset command may be written between the se-  
quence cycles in an Automatic Select command  
sequence. Once in the Automatic Select mode, the reset  
command must be written to return to reading array data  
(also applies to Automatic Select during Erase Suspend).  
BYTE/WORD PROGRAM COMMAND SEQUENCE  
The device programs one byte/word of data for each  
program operation. The command sequence requires four  
bus cycles, and is initiated by writing two unlock write  
cycles, followed by the program set-up command. The  
program address and data are written next, which in turn  
initiate the Embedded Program algorithm. The system is  
not required to provide further controls or timings. The  
device automatically generates the program pulses and  
If Q5 goes high during a program or erase operation,  
writing the reset command returns the device to read-ing  
array data (also applies during Erase Suspend).  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
17  
MX29LV320AT/B  
verifies the programmed cell margin. Table 3 shows the  
address and data requirements for the byte/word program  
command sequence.  
However, a succeeding read will show that the data is  
still "0". Only erase operations can convert a "0" to a  
"1".  
When the Embedded Program algorithm is complete, the  
device then returns to reading array data and addresses  
are no longer latched. The system can determine the  
status of the program operation by using Q7, Q6, or RY/  
BY. See "Write Operation Status" for information on these  
status bits.  
SETUP AUTOMATIC CHIP/SECTOR ERASE  
Chip erase is a six-bus cycle operation. There are two  
"unlock" write cycles. These are followed by writing the  
"set-up" command 80H. Two more "unlock" write cycles  
are then followed by the chip erase command 10H, or  
the sector erase command 30H.  
Any commands written to the device during the Em-  
bedded Program Algorithm are ignored. Note that a  
hardware reset immediately terminates the programming  
operation. The Byte/Word Program command sequence  
should be reinitiated once the device has reset to reading  
array data, to ensure data integrity.  
The MX29LV320AT/B contains a Silicon-ID-Read opera-  
tion to supplement traditional PROM programming meth-  
odology. The operation is initiated by writing the read  
silicon ID command sequence into the command regis-  
ter. Following the command write, a read cycle with  
A1=VIL,A0=VIL retrieves the manufacturer code of C2H.  
A read cycle with A1=VIL, A0=VIH returns the device  
code of A7H/A8H for MX29LV320AT/B.  
Programming is allowed in any sequence and across  
sector boundaries. A bit cannot be programmed from a  
"0" back to a "1". Attempting to do so may cause the  
device to set Q5 to "1" ,or cause the Data Polling  
algorithm to indicate the operation was successful.  
TABLE 4. SILICON ID CODE  
Pins  
A0 A1 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 Code(Hex)  
Manufacturecode  
VIL VIL  
VIH VIL  
VIH VIL  
1
1
1
1
0
0
0
1
1
0
0
0
0
0
1
0
1
0
1
1
0
0
1
0
C2H  
Device code for MX29LV320AT  
Device code for MX29LV320AB  
22A7H  
22A8H  
be reinitiated once the device has returned to reading  
array data, to ensure data integrity.  
AUTOMATIC CHIP/SECTOR ERASE COMMAND  
The device does not require the system to preprogram  
prior to erase.The Automatic Erase algorithm automati-  
cally preprograms and verifies the entire memory for an  
all zero data pattern prior to electrical erase.The system  
is not required to provide any controls or timings during  
these operations. Table 3 shows the address and data  
requirements for the chip erase command sequence.  
The system can determine the status of the erase op-  
eration by using Q7, Q6, Q2, or RY/BY. See "Write Op-  
eration Status" for information on these status bits.When  
the Automatic Erase algorithm is complete, the device  
returns to reading array data and addresses are no longer  
latched.  
Any commands written to the chip during the Automatic  
Erase algorithm are ignored. Note that a hard-ware reset  
during the chip erase operation immediately terminates  
the operation.The Chip Erase command sequence should  
Figure 5 illustrates the algorithm for the erase opera-tion.  
See the Erase/Program Operations tables in "AC Char-  
acteristics" for parameters, and to Figure 4 for timing  
diagrams.  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
18  
MX29LV320AT/B  
Sector Erase operation. When the Erase Suspend com-  
mand is issued during the sector erase operation, the  
device requires a maximum 20us to suspend the sector  
erase operation.However,When the Erase Suspend com-  
mand is written during the sector erase time-out, the  
device immediately terminates the time-out period and  
suspends the erase operation. After this command has  
been executed, the command register will initiate erase  
suspend mode. The state machine will return to read  
mode automatically after suspend is ready. At this time,  
state machine only allows the command register to re-  
spond to the Erase Resume, program data to, or read  
data from any sector not selected for erasure. The sys-  
tem can use Q7, or Q6 and Q2 together, to determine if  
a sector is actively erasing or is erase-suspended.  
SECTOR ERASE COMMANDS  
The device does not require the system to entirely  
pre-program prior to executing the Automatic Set-up  
Sector Erase command and Automatic Sector Erase  
command. Upon executing the Automatic Sector  
Erase command, the device will automatically  
program and verify the sector(s) memory for an all-  
zero data pattern. The system is not required to  
provide any control or timing during these operations.  
When the sector(s) is automatically verified to  
contain an all-zero pattern, a self-timed sector erase  
and verify begin. The erase and verify operations are  
complete when the data on Q7 is "1" and the data on  
Q6 stops toggling for two consecutive read cycles, at  
which time the device returns to the Read mode. The  
system is not required to provide any control or timing  
during these operations.  
The system can determine the status of the program  
operation using the Q7 or Q6 status bits, just as in the  
standard program operation. After an erase-suspend pro-  
gram operation is complete, the system can once again  
read array data within non-suspended blocks.  
When using the Automatic Sector Erase algorithm,  
note that the erase automatically terminates when  
adequate erase margin has been achieved for the  
memory array (no erase verification command is  
required). Sector erase is a six-bus cycle operation.  
There are two "unlock" write cycles. These are  
followed by writing the set-up command 80H. Two  
more "unlock" write cycles are then followed by the  
sector erase command 30H. The sector address is  
latched on the falling edge of WE or CE, whichever  
happens later , while the command(data) is latched on  
the rising edge of WE or CE, whichever happens first.  
Sector addresses selected are loaded into internal  
register on the sixth falling edge of WE or CE,  
whichever happens later. Each successive sector  
load cycle started by the falling edge of WE or CE,  
whichever happens later must begin within 50us from  
the rising edge of the preceding WE or CE, whichever  
happens first. Otherwise, the loading period ends and  
internal auto sector erase cycle starts. (Monitor Q3 to  
determine if the sector erase timer window is still  
open, see section Q3, Sector Erase Timer.) Any  
command other than Sector Erase(30H) or Erase  
Suspend(B0H) during the time-out period resets the  
device to read mode.  
ERASE RESUME  
This command will cause the command register to clear  
the suspend state and return back to Sector Erase mode  
but only if an Erase Suspend command was previously  
issued. Erase Resume will not have any effect in all  
other conditions. Another Erase Suspend command can  
be written after the chip has resumed erasing.  
ERASE SUSPEND  
This command only has meaning while the state ma-  
chine is executing Automatic Sector Erase operation,  
and therefore will only be responded during Automatic  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
19  
MX29LV320AT/B  
WRITE OPERATION STATUS  
The device provides several bits to determine the sta-  
tus of a write operation:Q2, Q3, Q5, Q6, Q7, and RY/BY.  
Table 5 and the following subsections describe the func-  
tions of these bits. Q7, RY/BY, and Q6 each offer a  
method for determining whether a program or erase op-  
eration is complete or in progress. These three bits are  
discussed first.  
Table 5. Write Operation Status  
Status  
Q7  
Q6  
Q5  
Q3  
Q2 RY/BY  
Note1  
Note2  
Byte/Word Program in Auto Program Algorithm  
Auto Erase Algorithm  
Q7  
Toggle  
Toggle  
0
N/A  
1
No  
0
Toggle  
0
1
0
0
Toggle  
0
1
Erase Suspend Read  
(Erase Suspended Sector)  
No  
Toggle  
N/A Toggle  
In Progress  
Erase Suspended Mode  
Erase Suspend Read  
Data  
Q7  
Data Data Data Data  
1
0
0
(Non-Erase Suspended Sector)  
Erase Suspend Program  
Toggle  
Toggle  
0
1
N/A N/A  
Byte/Word Program in Auto Program Algorithm  
Q7  
N/A  
1
No  
Toggle  
Exceeded  
Time Limits Auto Erase Algorithm  
0
Toggle  
Toggle  
1
1
Toggle  
0
0
Erase Suspend Program  
Q7  
N/A N/A  
Notes:  
1. Performing successive read operations from the erase-suspended sector will cause Q2 to toggle.  
2. Performing successive read operations from any address will cause Q6 to toggle.  
3. Reading the byte/word address being programmed while in the erase-suspend program mode will indicate logic "1"  
at the Q2 bit.  
However, successive reads from the erase-suspended sector will cause Q2 to toggle.  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
20  
MX29LV320AT/B  
after the rising edge of the final WE or CE, whichever  
happens first pulse in the command sequence (prior to  
the program or erase operation), and during the sector  
time-out.  
Q7: Data Polling  
The Data Polling bit, Q7, indicates to the host system  
whether an Automatic Algorithm is in progress or com-  
pleted, or whether the device is in Erase Suspend. Data  
Polling is valid after the rising edge of the final WE pulse  
in the program or erase command sequence.  
During an Automatic Program or Erase algorithm opera-  
tion, successive read cycles to any address cause Q6  
to toggle. The system may use either OE or CE to con-  
trol the read cycles.When the operation is complete, Q6  
stops toggling.  
During the Automatic Program algorithm, the device out-  
puts on Q7 the complement of the datum programmed  
to Q7.This Q7 status also applies to programming dur-  
ing Erase Suspend.When the Automatic Program algo-  
rithm is complete, the device outputs the datum pro-  
grammed to Q7.The system must provide the program  
address to read valid status information on Q7. If a pro-  
gram address falls within a protected sector, Data Poll-  
ing on Q7 is active for approximately 1 us, then the de-  
vice returns to reading array data.  
After an erase command sequence is written, if all sec-  
tors selected for erasing are protected, Q6 toggles for  
100us and returns to reading array data. If not all se-  
lected sectors are protected, the Automatic Erase algo-  
rithm erases the unprotected sectors, and ignores the  
selected sectors that are protected.  
The system can use Q6 and Q2 together to determine  
whether a sector is actively erasing or is erase suspended.  
When the device is actively erasing (that is, the Auto-  
matic Erase algorithm is in progress), Q6 toggling.When  
the device enters the Erase Suspend mode, Q6 stops  
toggling. However, the system must also use Q2 to de-  
termine which sectors are erasing or erase-suspended.  
Alternatively, the system can use Q7.  
During the Automatic Erase algorithm, Data Polling pro-  
duces a "0" on Q7.When the Automatic Erase algorithm  
is complete, or if the device enters the Erase Suspend  
mode, Data Polling produces a "1" on Q7.This is analo-  
gous to the complement/true datum out-put described  
for the Automatic Program algorithm: the erase function  
changes all the bits in a sector to "1" prior to this, the  
device outputs the "complement,or "0".The system  
must provide an address within any of the sectors se-  
lected for erasure to read valid status information on Q7.  
If a program address falls within a protected sector, Q6  
toggles for approximately 2us after the program com-  
mand sequence is written, then returns to reading array  
data.  
After an erase command sequence is written, if all sec-  
tors selected for erasing are protected, Data Polling on  
Q7 is active for approximately 100 us, then the device  
returns to reading array data. If not all selected sectors  
are protected, the Automatic Erase algorithm erases the  
unprotected sectors, and ignores the selected sectors  
that are protected.  
Q6 also toggles during the erase-suspend-program mode,  
and stops toggling once the Automatic Program algo-  
rithm is complete.  
Table 5 shows the outputs for Toggle Bit I on Q6.  
When the system detects Q7 has changed from the  
complement to true data, it can read valid data at Q7-Q0  
on the following read cycles. This is because Q7 may  
change asynchronously with Q0-Q6 while Output Enable  
(OE) is asserted low.  
Q2:Toggle Bit II  
The "Toggle Bit II" on Q2, when used with Q6, indicates  
whether a particular sector is actively erasing (that is,  
the Automatic Erase algorithm is in process), or whether  
that sector is erase-suspended. Toggle Bit II is valid  
after the rising edge of the final WE or CE, whichever  
happens first pulse in the command sequence.  
Q6:Toggle BIT I  
Toggle Bit I on Q6 indicates whether an Automatic Pro-  
gram or Erase algorithm is in progress or complete, or  
whether the device has entered the Erase Suspend mode.  
Toggle Bit I may be read at any address, and is valid  
Q2 toggles when the system reads at addresses within  
those sectors that have been selected for erasure. (The  
system may use either OE or CE to control the read  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
21  
MX29LV320AT/B  
cycles.) But Q2 cannot distinguish whether the sector  
is actively erasing or is erase-suspended. Q6, by com-  
parison, indicates whether the device is actively eras-  
ing, or is in Erase Suspend, but cannot distinguish which  
sectors are selected for erasure. Thus, both status bits  
are required for sectors and mode information. Refer to  
Table 5 to compare outputs for Q2 and Q6.  
only operating functions of the device under this condi-  
tion.  
If this time-out condition occurs during sector erase op-  
eration, it specifies that a particular sector is bad and it  
may not be reused. However, other sectors are still func-  
tional and may be used for the program or erase opera-  
tion. The device must be reset to use other sectors.  
Write the Reset command sequence to the device, and  
then execute program or erase command sequence. This  
allows the system to continue to use the other active  
sectors in the device.  
Reading Toggle Bits Q6/ Q2  
Whenever the system initially begins reading toggle bit  
status, it must read Q7-Q0 at least twice in a row to  
determine whether a toggle bit is toggling. Typically, the  
system would note and store the value of the toggle bit  
after the first read. After the second read, the system  
would compare the new value of the toggle bit with the  
first. If the toggle bit is not toggling, the device has  
completed the program or erase operation. The system  
can read array data on Q7-Q0 on the following read cycle.  
If this time-out condition occurs during the chip erase  
operation, it specifies that the entire chip is bad or com-  
bination of sectors are bad.  
If this time-out condition occurs during the byte/word pro-  
gramming operation, it specifies that the entire sector  
containing that byte/word is bad and this sector maynot  
be reused, (other sectors are still functional and can be  
reused).  
However, if after the initial two read cycles, the system  
determines that the toggle bit is still toggling, the sys-  
tem also should note whether the value of Q5 is high  
(see the section on Q5). If it is, the system should then  
determine again whether the toggle bit is toggling, since  
the toggle bit may have stopped toggling just as Q5 went  
high. If the toggle bit is no longer toggling, the device  
has successfully completed the program or erase opera-  
tion. If it is still toggling, the device did not complete the  
operation successfully, and the system must write the  
reset command to return to reading array data.  
The time-out condition may also appear if a user tries to  
program a non blank location without erasing. In this  
case the device locks out and never completes the Au-  
tomatic Algorithm operation. Hence, the system never  
reads a valid data on Q7 bit and Q6 never stops toggling.  
Once the Device has exceeded timing limits, the Q5 bit  
will indicate a "1". Please note that this is not a device  
failure condition since the device was incorrectly used.  
The Q5 failure condition may appear if the system tries  
to program a "1" to a location that is previously pro-  
grammed to "0". Only an erase operation can change a  
"0" back to a "1".Under this condition, the device halts  
the operation, and when the operation has exceeded the  
timing limits, Q5 produces a "1".  
The remaining scenario is that system initially determines  
that the toggle bit is toggling and Q5 has not gone high.  
The system may continue to monitor the toggle bit and  
Q5 through successive read cycles, determining the sta-  
tus as described in the previous paragraph. Alternatively,  
it may choose to perform other system tasks. In this  
case, the system must start at the beginning of the al-  
gorithm when it returns to determine the status of the  
operation.  
Q3:Sector Erase Timer  
After the completion of the initial sector erase command  
sequence, the sector erase time-out will begin. Q3 will  
remain low until the time-out is complete. Data Polling  
andToggle Bit are valid after the initial sector erase com-  
mand sequence.  
Q5:Program/Erase Timing  
Q5 will indicate if the program or erase time has exceeded  
the specified limits(internal pulse count). Under these  
conditions Q5 will produce a "1". This time-out condition  
indicates that the program or erase cycle was not suc-  
cessfully completed. Data Polling andToggle Bit are the  
If Data Polling or the Toggle Bit indicates the device has  
been written with a valid erase command, Q3 may be  
used to determine if the sector erase timer window is  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
22  
MX29LV320AT/B  
still open. If Q3 is high ("1") the internally controlled  
erase cycle has begun; attempts to write subsequent  
commands to the device will be ignored until the erase  
operation is completed as indicated by Data Polling or  
Toggle Bit. If Q3 is low ("0"), the device will accept addi-  
tional sector erase commands. To insure the command  
has been accepted, the system software should check  
the status of Q3 prior to and following each subsequent  
sector erase command. If Q3 were high on the second  
status check, the command may not have been accepted.  
lect mode. The command is valid only when the device  
is in the CFI mode.  
If the time between additional erase commands from the  
system can be less than 50us, the system need not to  
monitor Q3.  
RY/BY:READY/BUSY OUTPUT  
The RY/BY is a dedicated, open-drain output pin that  
indicates whether an Embedded Algorithm is in progress  
or complete. The RY/BY status is valid after the rising  
edge of the final WE pulse in the command sequence.  
Since RY/BY is an open-drain output, several RY/BY pins  
can be tied together in parallel with a pull-up resistor to  
VCC .  
If the output is low (Busy), the device is actively erasing  
or programming. (This includes programming in the Erase  
Suspend mode.) If the output is high (Ready), the device  
is ready to read array data (includ-ing during the Erase  
Suspend mode), or is in the standby mode.  
QUERY COMMAND AND COMMON FLASH  
INTERFACE (CFI) MODE  
MX29LV320AT/B is capable of operating in the CFI mode.  
This mode all the host system to determine the manu-  
facturer of the device such as operating parameters and  
configuration.Two commands are required in CFI mode.  
Query command of CFI mode is placed first, then the  
Reset command exits CFI mode.These are described in  
Table 3.  
The single cycle Query command is valid only when the  
device is in the Read mode, including Erase Suspend,  
Standby mode, and Automatic Select mode; however, it  
is ignored otherwise.  
The Reset command exits from the CFI mode to the  
Read mode, or Erase Suspend mode, or Automatic Se-  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
23  
MX29LV320AT/B  
Table 6-1. CFI mode: Identification Data Values  
(All values in these tables are in hexadecimal)  
Description  
Address(h)  
Address(h) Data(h)  
(WordMode)  
(ByteMode)  
Query-unique ASCII string "QRY"  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
20  
22  
24  
26  
28  
2A  
2C  
2E  
30  
32  
34  
0051  
0052  
0059  
0002  
0000  
0040  
0000  
0000  
0000  
0000  
0000  
Primary vendor command set and control interface ID code  
Address for primary algorithm extended query table  
Alternate vendor command set and control interface ID code (none)  
Address for secondary algorithm extended query table (none)  
Table 6-2. CFI Mode: System Interface Data Values  
Description  
Address(h)  
Address(h) Data(h)  
(WordMode) (ByteMode)  
VCC supply, minimum (2.7V)  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
36  
38  
3A  
3C  
3E  
40  
42  
44  
46  
48  
4A  
4C  
0027  
0036  
0000  
0000  
0004  
0000  
000A  
0000  
0005  
0000  
0004  
0000  
VCC supply, maximum (3.6V)  
VPP supply, minimum (none)  
VPP supply, maximum (none)  
Typical timeout for single word/byte write (2N us)  
Typical timeout for maximum size buffer write (2N us) (not supported)  
Typical timeout for individual sector erase (2N ms)  
Typical timeout for full chip erase (2N ms)  
Maximum timeout for single word/byte write times (2N X Typ)  
Maximum timeout for maximum size buffer write times (2N X Typ)  
Maximum timeout for individual sector erase times (2N X Typ)  
Maximum timeout for full chip erase times (not supported)  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
24  
MX29LV320AT/B  
Table 6-3. CFI Mode: Device Geometry Data Values  
Description  
Address(h)  
Address(h) Data(h)  
(WordMode) (ByteMode)  
Device size (2N bytes)  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
4E  
50  
52  
54  
56  
58  
5A  
5C  
5E  
60  
62  
64  
66  
68  
6A  
6C  
6E  
70  
72  
74  
76  
78  
0016  
0002  
0000  
0000  
0000  
0002  
0007  
0000  
0020  
0000  
003E  
0000  
0000  
0001  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
Flash device interface code (02=asynchronous x8/x16)  
Maximum number of bytes in multi-byte write (not supported)  
Number of erase sector regions  
Erase Sector Region 1 Information  
[2E,2D] = # of same-size sectors in region 1-1  
[30, 2F] = sector size in multiples of 256-bytes  
Erase Sector Region 2 Information  
Erase Sector Region 3 Information  
Erase Sector Region 4 Information  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
25  
MX29LV320AT/B  
Table 6-4. CFI Mode: Primary Vendor-Specific Extended Query Data Values  
Description  
Address(h)  
Address(h) Data(h)  
(WordMode) (ByteMode)  
Query-unique ASCII string "PRI"  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
80  
82  
84  
86  
88  
8A  
8C  
8E  
90  
92  
94  
96  
98  
9A  
0050  
0052  
0049  
0031  
0031  
0000  
0002  
0004  
0001  
0004  
0000  
0000  
0000  
00B5  
Major version number, ASCII  
Minor version number, ASCII  
Address sensitive unlock (0=required, 1= not required)  
Erase suspend (2= to read and write)  
Sector protect (N= # of sectors/group)  
Temporarysectorunprotect(1=supported)  
Sector protect/Chip unprotect scheme  
SimultaneousR/Woperation(0=notsupported)  
Burst mode type (0=not supported)  
Page mode type (0=not supported)  
ACC (Acceleration) Supply Minimum  
(0=notsupported,D7-D4:Volt,D3-D0:100mV  
ACC (Acceleration) Supply Maximum  
(0=notsupported,D7-D4:Volt,D3-D0:100mV  
Top/Bottom Boot Sector Flag  
4E  
4F  
9C  
9E  
00C5  
000X  
02h=Bottom Boot Device, 03h=Top Boot Device  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
26  
MX29LV320AT/B  
OPERATING RATINGS  
ABSOLUTE MAXIMUM RATINGS  
StorageTemperature  
Commercial (C) Devices  
Plastic Packages . . . . . . . . . . . . . ..... -65oC to +150oC  
Ambient Temperature (TA ). . . . . . . . . . . . 0°C to +70°C  
Industrial (I) Devices  
AmbientTemperature  
with Power Applied. . . . . . . . . . . . . .... -65oC to +125oC  
Voltage with Respect to Ground  
Ambient Temperature (TA ). . . . . . . . . . -40°C to +85° C  
VCC Supply Voltages  
VCC for full voltage range. . . . . . . . . . . +2.7 V to 3.6 V  
VCC (Note 1) . . . . . . . . . . . . . . . . . -0.5 V to +4.0 V  
A9, OE, and  
Operating ranges define those limits between which the  
functionality of the device is guaranteed.  
RESET (Note 2) . . . . . . . . . . . ....-0.5 V to +12.5 V  
All other pins (Note 1) . . . . . . . -0.5 V to VCC +0.5 V  
Output Short Circuit Current (Note 3) . . . . . . 200 mA  
Notes:  
1. Minimum DC voltage on input or I/O pins is -0.5 V.  
During voltage transitions, input or I/O pins may over-  
shoot VSS to -2.0 V for periods of up to 20ns. Maxi-  
mum DC voltage on input or I/O pins is VCC +0.5 V.  
During voltage transitions, input or I/O pins may over-  
shoot to VCC +2.0 V for periods up to 20 ns.  
2. Minimum DC input voltage on pins A9, OE, and  
RESET is -0.5 V. During voltage transitions, A9, OE,  
and RESET may overshoot VSS to -2.0 V for periods  
of up to 20 ns. Maximum DC input voltage on pin A9  
is +12.5 V which may overshoot to 14.0 V for periods  
up to 20 ns.  
3.No more than one output may be shorted to ground at  
a time. Duration of the short circuit should not be  
greater than one second.  
Stresses above those listed under "Absolute Maximum  
Ratings" may cause permanent damage to the device.  
This is a stress rating only; functional operation of the  
device at these or any other conditions above those in-  
dicated in the operational sections of this data sheet is  
not implied. Exposure of the device to absolute maxi-  
mum rating conditions for extended periods may affect  
device reliability.  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
27  
MX29LV320AT/B  
DC CHARACTERISTICS VCC=2.7V~3.6V  
Para- Description  
meter  
Test Conditions  
TA=0°C to 70°C  
Min Typ Max  
±1.0  
TA=-40° C to 85° C  
Min Typ Max Unit  
±1.0 uA  
ILI  
Input Load Current  
(Note 1)  
ILIT A9 Input Load Current  
VIN = VSS to VCC,  
VCC = VCC max  
VCC = VCC max,  
A9=12.5V  
35  
45  
uA  
ILO  
Output Leakage Current  
VOUT = VSS to VCC ,  
VCC = VCC max  
CE= VIL, 5 MHz  
OE = VIH 1 MHz  
CE= VIL , OE = VIH,  
WE=VIL  
±1.0  
±1.0 uA  
ICC1 VCC Active Read Current  
(Notes 2, 3)  
10  
2
16  
4
10  
2
16  
4
mA  
mA  
mA  
ICC2 VCC ActiveWrite Current  
(Notes 2, 4, 6)  
15  
30  
15  
30  
ICC3 VCC Standby Current  
(Note 2)  
CE, RESET,  
0.2  
0.2  
0.2  
15  
15  
15  
0.2  
0.2  
0.2  
15  
15  
15  
uA  
uA  
uA  
WP/ACC = VCC±0.3V  
RESET = VSS ± 0.3V,  
WP/ACC= VCC ±0.3V  
VIH = VCC ± 0.3V;  
VIL = VSS ± 0.3V,  
WP/ACC=VCC±0.3V  
ICC4 VCC Reset Current (Note 2)  
ICC5 Automatic Sleep Mode  
(Notes 2,5)  
IACC WP/ACC Accelerated Program CE=VIL, WP/ACC pin  
5
10  
30  
5
10  
30  
mA  
mA  
V
Current, Word or Byte  
Input LowVoltage  
OE=VIH VCC pin  
15  
15  
VIL  
-0.5  
0.7xVcc  
11.5  
0.8  
-0.5  
0.8  
VIH Input HighVoltage  
VHH Voltage for WP/ACC Sector  
Protect/Unprotect and  
Vcc+0.3 0.7xVcc  
Vcc+0.3 V  
VCC = 3.0 V ±10%  
12.5  
12.5  
0.45  
11.5  
12.5  
12.5  
0.45  
V
Program Acceleration  
VID Voltage for Automatic Select VCC = 3.0 V ±10%  
11.5  
11.5  
V
andTemporary Sector  
Unprotect  
VOL Output LowVoltage  
VOH1 Output HighVoltage  
VOH2  
IOL=4.0mA,  
V
V
V
V
VCC=VCC min  
IOH=-2.0mA,  
VCC=VCC min  
IOH=-100uA,  
VCC = VCC min  
0.85Vcc  
Vcc-0.4  
1.4  
0.85Vcc  
Vcc-0.4  
1.4  
VLKO LowVCC Lock-OutVoltage  
(Note 6)  
2.1  
2.1  
Notes:  
1. On the WP/ACC pin only, the maximum input load current when WP/ACC = VIL is ±5.0uA / VIH is ±3.0uA.  
2. Maximum ICC specifications are tested with VCC = VCC max.  
3.The ICC current listed is typically is less than 2 mA/MHz, with OE atVIH.Typical specifications are for VCC = 3.0V.  
4. ICC active while Embedded Erase or Embedded Program is in progress.  
5.Automatic sleep mode enables the low power mode when addresses remain stable for tACC + 30 ns.Typical sleep  
mode current is 200 nA.  
6. Not 100% tested.  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
28  
MX29LV320AT/B  
SWITCHINGTEST CIRCUITS  
TEST SPECIFICATIONS  
Test Condition  
70  
30  
90  
1TTL gate  
100  
Unit  
pF  
Output Load  
DEVICE UNDER  
TEST  
1.6K ohm  
+3.3V  
Output Load Capacitance,CL  
(including jig capacitance)  
Input Rise and Fall Times  
Input Pulse Levels  
5
ns  
V
CL  
0.0-3.0  
1.5  
6.2K ohm  
DIODES=IN3064  
OR EQUIVALENT  
Input timing measurement  
reference levels  
V
Output timing measurement  
reference levels  
1.5  
V
KEYTO SWITCHINGWAVEFORMS  
WAVEFORM INPUTS  
OUTPUTS  
Steady  
Changing from H to L  
Changing from L to H  
Don't Care, Any Change Permitted  
Does Not Apply  
Changing, State Unknown  
Center Line is High Impedance State(High Z)  
SWITCHINGTEST WAVEFORMS  
3.0V  
0.0V  
1.5V  
Measurement Level  
1.5V  
INPUT  
OUTPUT  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
29  
MX29LV320AT/B  
AC CHARACTERISTICS TA=-40°C to 85° C, VCC=2.7V~3.6V  
Symbol DESCRIPTION  
CONDITION  
70  
90  
Unit  
tACC  
Address to output delay  
CE=VIL  
MAX  
70  
90  
ns  
OE=VIL  
OE=VIL  
tCE  
tOE  
tDF  
tOH  
Chip enable to output delay  
Output enable to output delay  
OE High to output float(Note1)  
Output hold time of from the rising edge of  
Address, CE or OE whichever happens first  
Read cycle time (Note 1)  
Write cycle time (Note 1)  
Command write cycle time(Note 1)  
Address setup time  
MAX  
MAX  
MAX  
MIN  
70  
40  
30  
0
90  
40  
30  
0
ns  
ns  
ns  
ns  
tRC  
MIN  
MIN  
MIN  
MIN  
MIN  
MIN  
MIN  
MIN  
MIN  
MIN  
MIN  
MIN  
MIN  
70  
70  
70  
0
90  
90  
90  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tWC  
tCWC  
tAS  
tAH  
Address hold time  
45  
45  
0
45  
45  
0
tDS  
Data setup time  
tDH  
Data hold time  
tVCS  
tCS  
Vcc setup time(Note 1)  
Chip enable setup time  
Chip enable hold time  
50  
0
50  
0
tCH  
0
0
tOES  
tOEH  
Output enable setup time (Note 1)  
Output enable hold time (Note 1) Read  
Toggle &  
0
0
0
0
10  
10  
Data Polling  
tWES  
tWEH  
tCEP  
WE setup time  
MIN  
MIN  
MIN  
MIN  
MIN  
MIN  
MAX  
MIN  
MIN  
TYP  
TYP  
TYP  
0
0
0
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
us  
us  
us  
WE hold time  
CE pulse width  
45  
30  
45  
30  
90  
0
45  
30  
45  
30  
90  
0
tCEPH  
tWP  
CE pulse width high  
WE pulse width  
tWPH  
tBUSY  
tGHWL  
tGHEL  
WE pulse width high  
Program/Erase valid to RY/BY delay  
Read recovery time before write  
Read recovery time before write  
0
0
tWHWH1 Programming operation  
BYTE  
9
9
WORD  
11  
7
11  
7
Accelerated programming operation word or  
byte  
tWHWH2 Sector erase operation  
tBAL Sector address hold time  
TYP  
0.9  
50  
0.9  
50  
sec  
us  
MAX  
Note: 1.Not 100%Tested  
2.tr = tf = 5ns  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
30  
MX29LV320AT/B  
Fig 1. COMMAND WRITE OPERATION  
VCC  
3V  
VIH  
Addresses  
ADD Valid  
VIL  
tAH  
tAS  
VIH  
VIL  
WE  
tOES  
tWPH  
tWP  
tCWC  
VIH  
VIL  
CE  
OE  
tCS  
tCH  
tDH  
VIH  
VIL  
tDS  
VIH  
VIL  
Data  
DIN  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
31  
MX29LV320AT/B  
READ/RESET OPERATION  
Fig 2. READ TIMING WAVEFORMS  
tRC  
VIH  
ADD Valid  
Addresses  
VIL  
tCE  
VIH  
CE  
VIL  
VIH  
WE  
tDF  
VIL  
tOEH  
tOE  
VIH  
OE  
VIL  
tOH  
tACC  
HIGH Z  
HIGH Z  
VOH  
VOL  
Outputs  
DATA Valid  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
32  
MX29LV320AT/B  
AC CHARACTERISTICS  
Parameter  
Description  
Test Setup All Speed Options Unit  
tREADY1  
RESET PIN Low (During Automatic Algorithms)  
to Read or Write (See Note)  
MAX  
MAX  
MIN  
20  
us  
tREADY2  
RESET PIN Low (NOT During Automatic  
Algorithms) to Read or Write (See Note)  
RESET Pulse Width (During Automatic Algorithms)  
500  
ns  
tRP1  
tRP2  
tRH  
10  
500  
70  
0
us  
ns  
ns  
ns  
ns  
RESET Pulse Width (NOT During Automatic Algorithms) MIN  
RESET HighTime Before Read(See Note)  
RY/BY Recovery Time(to CE, OE go low)  
RY/BY RecoveryTime(to WE go low)  
MIN  
MIN  
MIN  
tRB1  
tRB2  
50  
Note:Not 100% tested  
Fig 3. RESET TIMING WAVEFORM  
RY/BY  
tRH  
CE, OE  
RESET  
tRP2  
tReady2  
Reset Timing NOT during Automatic Algorithms  
tReady1  
RY/BY  
CE, OE  
WE  
tRB1  
tRB2  
RESET  
tRP1  
Reset Timing during Automatic Algorithms  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
33  
MX29LV320AT/B  
ERASE/PROGRAM OPERATION  
Fig 4. AUTOMATIC CHIP ERASE TIMING WAVEFORM  
Erase Command Sequence(last two cycle)  
Read Status Data  
tWC  
tAS  
VA  
VA  
2AAh  
SA  
Address  
555h for chip erase  
tAH  
CE  
tCH  
tGHWL  
OE  
tWHWH2  
tWP  
WE  
tCS  
tWPH  
tDS tDH  
In  
Progress  
55h  
10h  
Complete  
Data  
tBUSY  
tRB  
RY/BY  
tVCS  
VCC  
NOTES:  
SA=sector address(for Sector Erase), VA=Valid Address for reading status data(see "Write Operation Status").  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
34  
MX29LV320AT/B  
Fig 5. AUTOMATIC CHIP ERASE ALGORITHM FLOWCHART  
START  
Write Data AAH Address 555H  
Write Data 55H Address 2AAH  
Write Data 80H Address 555H  
Write Data AAH Address 555H  
Write Data 55H Address 2AAH  
Write Data 10H Address 555H  
Data Poll  
from system  
YES  
No  
DATA = FFh ?  
YES  
Auto Erase Completed  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
35  
MX29LV320AT/B  
Fig 6. AUTOMATIC SECTOR ERASE TIMING WAVEFORM  
Erase Command Sequence(last two cycle)  
Read Status Data  
tWC  
tAS  
Sector  
Sector  
Sector  
Address n  
VA  
VA  
2AAh  
Address  
Address 0  
Address 1  
tAH  
CE  
tCH  
tGHWL  
OE  
tWHWH2  
tBAL  
tWP  
WE  
tCS  
tWPH  
tDS tDH  
In  
Progress  
55h  
30h  
30h  
30h  
Complete  
Data  
tBUSY  
tRB  
RY/BY  
tVCS  
VCC  
NOTES:  
SA=sector address(for Sector Erase), VA=Valid Address for reading status data(see "Write Operation Status").  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
36  
MX29LV320AT/B  
Fig 7. AUTOMATIC SECTOR ERASE ALGORITHM FLOWCHART  
START  
Write Data AAH Address 555H  
Write Data 55H Address 2AAH  
Write Data 80H Address 555H  
Write Data AAH Address 555H  
Write Data 55H Address 2AAH  
Write Data 30H Sector Address  
NO  
Last Sector  
to Erase ?  
YES  
Data Poll from System  
NO  
Data=FFh?  
YES  
Auto Sector Erase Completed  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
37  
MX29LV320AT/B  
Fig 8. ERASE SUSPEND/RESUME FLOWCHART  
START  
Write Data B0H  
ERASE SUSPEND  
NO  
Toggle Bit checking Q6  
not toggled  
YES  
Read Array or  
Program  
Reading or  
NO  
Programming End  
YES  
Write Data 30H  
ERASE RESUME  
Continue Erase  
Another  
NO  
Erase Suspend ?  
YES  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
38  
MX29LV320AT/B  
Fig 9. AUTOMATIC PROGRAM TIMING WAVEFORMS  
Program Command Sequence(last two cycle)  
Read Status Data (last two cycle)  
tWC  
tAS  
PA  
PA  
555h  
PA  
Address  
tAH  
CE  
tCH  
tGHWL  
OE  
tWHWH1  
tWP  
WE  
tCS  
tWPH  
tDS tDH  
Status  
A0h  
PD  
DOUT  
Data  
tBUSY  
tRB  
RY/BY  
tVCS  
VCC  
NOTES:  
1.PA=Program Address, PD=Program Data, DOUT is the true data the program address  
Fig 10. Accelerated Program Timing Diagram  
(11.5V ~ 12.5V)  
VHH  
WP/ACC  
VIL or VIH  
VIL or VIH  
tVHH  
tVHH  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
39  
MX29LV320AT/B  
Fig 11. CE CONTROLLED WRITE TIMING WAVEFORM  
PA for program  
555 for program  
2AA for erase  
SA for sector erase  
555 for chip erase  
Data Polling  
Address  
PA  
tWC  
tWH  
tAS  
tAH  
WE  
OE  
tGHEL  
tCP  
tWHWH1 or 2  
CE  
tWS  
tDS  
tCPH  
tBUSY  
tDH  
DOUT  
Q7  
Data  
PD for program  
30 for sector erase  
10 for chip erase  
A0 for program  
55 for erase  
tRH  
RESET  
RY/BY  
NOTES:  
1. PA=Program Address, PD=Program Data, DOUT=Data Out, Q7=complement of data written to device.  
2. Figure indicates the last two bus cycles of the command sequence.  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
40  
MX29LV320AT/B  
Fig 12. AUTOMATIC PROGRAMMING ALGORITHM FLOWCHART  
START  
Write Data AAH Address 555H  
Write Data 55H Address 2AAH  
Write Data A0H Address 555H  
Write Program Data/Address  
Data Poll  
Increment  
Address  
from system  
No  
No  
Verify Data OK ?  
YES  
Last Address ?  
YES  
Auto Program Completed  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
41  
MX29LV320AT/B  
SECTOR GROUP PROTECT/CHIP UNPROTECT  
Fig 13. Sector Group Protect/Chip Unprotect Waveform (RESET Control)  
VID  
VIH  
RESET  
SA, A6  
A1, A0  
Valid (note2)  
Valid (note2)  
Valid (note2)  
Status  
Sector Group Protect or Chip Unprotect  
Verify  
40h  
Data  
60h  
60h  
Sector Group Protect: 150us  
Chip Unprotect: 15ms  
1us  
CE  
WE  
OE  
Note:  
1. For sector group protect A6=0, A1=1, A0=0 ; for chip unprotect A6=1, A1=1, A0=0  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
42  
MX29LV320AT/B  
Fig 14. IN-SYSTEM SECTOR GROUP PROTECT/CHIP UNPROTECT ALGORITHMS WITH RESET=VID  
START  
START  
Protect all sectors:  
PLSCNT=1  
The indicated portion of  
PLSCNT=1  
the sector protect algorithm  
must be performed  
RESET=VID  
for all unprotected sectors  
RESET=VID  
prior to issuing the first  
sector unprotect address  
Wait 1us  
Wait 1us  
No  
First Write  
Temporary Sector  
Unprotect Mode  
Cycle=60h?  
First Write  
No  
Temporary Sector  
Unprotect Mode  
Cycle=60h?  
Yes  
Yes  
Set up sector address  
No  
All sectors  
protected?  
Sector Protect:  
Write 60h to sector  
address with  
A6=0, A1=1, A0=0  
Yes  
Set up first sector address  
Wait 150us  
Chip Unprotect:  
Write 60h to sector  
address with  
Verify Sector Protect:  
Write 40h to sector  
address with  
Reset  
PLSCNT=1  
A6=1, A1=1, A0=0  
A6=0, A1=1, A0=0  
Increment PLSCNT  
Wait 15ms  
Read from  
sector address  
with  
A6=0, A1=1, A0=0  
Verify Sector Unprotect:  
Write 40h to sector  
address with  
No  
Increment PLSCNT  
A6=1, A1=1, A0=0  
No  
Data=01h?  
Yes  
PLSCNT=25?  
Read from  
sector address  
with  
Yes  
A6=1, A1=1, A0=0  
No  
Device failed  
Reset  
Yes  
Protect another  
sector?  
PLSCNT=1  
No  
PLSCNT=1000?  
Data=00h?  
Yes  
No  
Sector Protect  
Algorithm  
Yes  
Remove VID from RESET  
Device failed  
No  
Last sector  
verified?  
Write reset command  
Yes  
Chip Unprotect  
Algorithm  
Sector Protect complete  
Remove VID from RESET  
Write reset command  
Chip Unprotect complete  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
43  
MX29LV320AT/B  
Table 7. TEMPORARY SECTOR GROUP UNPROTECT  
Parameter Std. Description  
Test Setup All Speed Options Unit  
tVIDR  
tRSP  
VID Rise and Fall Time (See Note)  
Min  
Min  
500  
4
ns  
us  
RESET Setup Time for Temporary Sector Unprotect  
Note:  
Not 100% tested  
Fig 15. TEMPORARY SECTOR GROUP UNPROTECT WAVEFORMS  
12V  
RESET  
0 or 3V  
VIL or VIH  
tVIDR  
tVIDR  
Program or Erase Command Sequence  
CE  
WE  
tRSP  
RY/BY  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
44  
MX29LV320AT/B  
Fig 16. TEMPORARY SECTOR GROUP UNPROTECT FLOWCHART  
Start  
RESET = VID (Note 1)  
Perform Erase or Program Operation  
Operation Completed  
RESET = VIH  
Temporary Sector Unprotect Completed(Note 2)  
Note :  
1. All protected sectors are temporary unprotected. VID=11.5V~12.5V.  
(if WP/ACC=VIL, outermost boot sectors will remain protected)  
2. All previously protected sectors are protected again.  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
45  
MX29LV320AT/B  
Fig 17. SILICON ID READ TIMING WAVEFORM  
VCC  
3V  
VID  
ADD  
A9  
VIH  
VIL  
VIH  
VIL  
ADD  
A0  
tACC  
tACC  
VIH  
VIL  
A1  
VIH  
VIL  
ADD  
CE  
VIH  
VIL  
VIH  
VIL  
tCE  
WE  
OE  
tOE  
VIH  
VIL  
tDF  
tOH  
tOH  
VIH  
VIL  
DATA  
Q0-Q7  
DATA OUT  
C2H  
DATA OUT  
A7H (TOP boot)  
A8H (Bottom boot)  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
46  
MX29LV320AT/B  
WRITE OPERATION STATUS  
Fig 18. DATA POLLING TIMING WAVEFORMS (DURING AUTOMATIC ALGORITHMS)  
tRC  
VA  
VA  
Address  
CE  
tACC  
tCE  
tCH  
tOE  
OE  
tOEH  
tDF  
WE  
tOH  
High Z  
High Z  
Complement  
Status Data  
Status Data  
Status Data  
True  
True  
Valid Data  
Valid Data  
Q7  
Q0-Q6  
tBUSY  
RY/BY  
NOTES:  
VA=Valid address. Figure shows are first status cycle after command sequence, last status read cycle, and array data read cycle.  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
47  
MX29LV320AT/B  
Fig 19. Data Polling Algorithm  
START  
Read Q7~Q0  
Add. = VA (1)  
Yes  
Q7 = Data ?  
No  
No  
Q5 = 1 ?  
Yes  
Read Q7~Q0  
Add. = VA  
Yes  
Q7 = Data ?  
(2)  
No  
PASS  
FAIL  
Notes:  
1.VA=valid address for programming or erasure.  
2. Q7 should be rechecked even Q5="1" because Q7 may change simultaneously with Q5.  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
48  
MX29LV320AT/B  
Fig 20. TOGGLE BIT TIMING WAVEFORMS (DURING AUTOMATIC ALGORITHMS)  
tRC  
VA  
VA  
VA  
VA  
Address  
CE  
tACC  
tCE  
tCH  
tOE  
OE  
tOEH  
tDF  
WE  
tOH  
Valid Status  
(second read)  
Valid Status  
(first read)  
Valid Data  
Valid Data  
Q6/Q2  
(stops toggling)  
tBUSY  
RY/BY  
NOTES:  
VA=Valid address; not required for Q6. Figure shows first two status cycle after command sequence, last status read cycle, and  
array data read cycle.  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
49  
MX29LV320AT/B  
Fig 21. Toggle Bit Algorithm  
START  
Read Q7~Q0  
Read Q7~Q0  
(Note 1)  
NO  
Toggle Bit Q6  
=Toggle?  
YES  
NO  
Q5=1?  
YES  
(Note 1,2)  
Read Q7~Q0 Twice  
Toggle Bit Q6=  
Toggle?  
YES  
Program/Erase Operation Not  
Program/Erase Operation Complete  
Complete, Write Reset Command  
Note:  
1. Read toggle bit twice to determine whether or not it is toggling.  
2. Recheck toggle bit because it may stop toggling as Q5 changes to "1".  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
50  
MX29LV320AT/B  
Fig 22. Q6 versus Q2  
Enter Embedded  
Erasing  
Erase  
Enter Erase  
Erase  
Suspend  
Suspend Program  
Resume  
Erase  
Erase Suspend  
Read  
Erase  
Erase Suspend  
Read  
Erase  
Erase  
WE  
Q6  
Suspend  
Program  
Complete  
Q2  
NOTES:  
The system can use OE or CE to toggle Q2/Q6, Q2 toggles only when read at an address within an erase-suspended  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
51  
MX29LV320AT/B  
AC CHARACTERISTICS  
WORD/BYTE CONFIGURATION (BYTE)  
Parameter  
Description  
Speed Options  
Unit  
JEDEC Std  
-70  
-90  
tELFL/tELFH CE to BYTE Switching Low or High  
Max  
Max  
Min  
5
ns  
ns  
ns  
tFLQZ  
tFHQV  
BYTE Switching Low to Output HIGH Z  
BYTE Switching High to Output Active  
25  
70  
30  
90  
Figure 23. BYTE TIMING WAVEFORM FOR READ OPERATIONS (BYTE switching from byte  
mode to word mode)  
CE  
OE  
tELFH  
BYTE  
DOUT  
(Q0-Q7)  
DOUT  
(Q0-Q14)  
Q0~Q14  
Q15/A-1  
DOUT  
(Q15)  
VA  
tFHQV  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
52  
MX29LV320AT/B  
ERASE AND PROGRAMMING PERFORMANCE(1)  
LIMITS  
PARAMETER  
MIN.  
TYP.(2)  
MAX.  
15  
UNITS  
sec  
sec  
us  
Sector Erase Time  
Chip Erase Time  
0.9  
35  
9
50  
Byte Programming Time  
Word Program Time  
Chip Programming Time  
300  
360  
108  
72  
11  
36  
24  
7
us  
Byte Mode  
Word Mode  
sec  
sec  
us  
Accelerated Byte/Word Program Time  
Erase/Program Cycles  
210  
100,000  
Cycles  
Note: 1.Not 100% Tested, Excludes external system level over head.  
2.Typical values measured at 25°C,3.3V.  
LATCH-UP CHARACTERISTICS  
MIN.  
-1.0V  
MAX.  
Input Voltage with respect to GND on all pins except I/O pins  
Input Voltage with respect to GND on all I/O pins  
VCC Current  
12.5V  
Vcc + 1.0V  
+100mA  
-1.0V  
-100mA  
Includes all pins except Vcc. Test conditions: Vcc = 3.0V, one pin at a time.  
TSOP PIN CAPACITANCE  
Parameter Symbol  
Parameter Description  
Input Capacitance  
Test Set  
VIN=0  
TYP  
MAX  
7.5  
12  
UNIT  
pF  
CIN  
6
COUT  
CIN2  
Output Capacitance  
Control Pin Capacitance  
VOUT=0  
VIN=0  
8.5  
7.5  
pF  
9
pF  
Notes:  
1. Sampled, not 100% tested.  
2.Test conditions TA=25°C, f=1.0MHz  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
53  
MX29LV320AT/B  
ORDERING INFORMATION  
PLASTIC PACKAGE  
PART NO.  
ACCESS TIME  
Ball Pitch/  
Ball Size  
-
PACKAGE  
Remark  
(ns)  
70  
70  
70  
70  
90  
90  
90  
90  
70  
70  
70  
70  
70  
70  
70  
70  
90  
90  
90  
90  
90  
90  
90  
90  
MX29LV320ATTC-70  
MX29LV320ABTC-70  
MX29LV320ATTI-70  
MX29LV320ABTI-70  
MX29LV320ATTC-90  
MX29LV320ABTC-90  
MX29LV320ATTI-90  
MX29LV320ABTI-90  
MX29LV320ATXBC-70  
MX29LV320ABXBC-70  
MX29LV320ATXEC-70  
MX29LV320ABXEC-70  
MX29LV320ATXBI-70  
MX29LV320ABXBI-70  
MX29LV320ATXEI-70  
MX29LV320ABXEI-70  
MX29LV320ATXBC-90  
MX29LV320ABXBC-90  
MX29LV320ATXEC-90  
MX29LV320ABXEC-90  
MX29LV320ATXBI-90  
MX29LV320ABXBI-90  
MX29LV320ATXEI-90  
MX29LV320ABXEI-90  
48 Pin TSOP  
48 Pin TSOP  
48 Pin TSOP  
48 Pin TSOP  
48 Pin TSOP  
48 Pin TSOP  
48 Pin TSOP  
48 Pin TSOP  
48-Ball CSP  
48-Ball CSP  
48-Ball CSP  
48-Ball CSP  
48-Ball CSP  
48-Ball CSP  
48-Ball CSP  
48-Ball CSP  
48-Ball CSP  
48-Ball CSP  
48-Ball CSP  
48-Ball CSP  
48-Ball CSP  
48-Ball CSP  
48-Ball CSP  
48-Ball CSP  
-
-
-
-
-
-
-
0.8mm/0.3mm  
0.8mm/0.3mm  
0.8mm/0.4mm  
0.8mm/0.4mm  
0.8mm/0.3mm  
0.8mm/0.3mm  
0.8mm/0.4mm  
0.8mm/0.4mm  
0.8mm/0.3mm  
0.8mm/0.3mm  
0.8mm/0.4mm  
0.8mm/0.4mm  
0.8mm/0.3mm  
0.8mm/0.3mm  
0.8mm/0.4mm  
0.8mm/0.4mm  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
54  
MX29LV320AT/B  
PART NO.  
ACCESS TIME  
Ball Pitch/  
Ball Size  
-
PACKAGE  
Remark  
(ns)  
70  
70  
70  
70  
90  
90  
90  
90  
MX29LV320ATTC-70G  
MX29LV320ABTC-70G  
MX29LV320ATTI-70G  
MX29LV320ABTI-70G  
MX29LV320ATTC-90G  
MX29LV320ABTC-90G  
MX29LV320ATTI-90G  
MX29LV320ABTI-90G  
48 Pin TSOP  
48 Pin TSOP  
48 Pin TSOP  
48 Pin TSOP  
48 Pin TSOP  
48 Pin TSOP  
48 Pin TSOP  
48 Pin TSOP  
48-Ball CSP  
48-Ball CSP  
48-Ball CSP  
48-Ball CSP  
48-Ball CSP  
48-Ball CSP  
48-Ball CSP  
48-Ball CSP  
48-Ball CSP  
48-Ball CSP  
48-Ball CSP  
48-Ball CSP  
48-Ball CSP  
48-Ball CSP  
48-Ball CSP  
48-Ball CSP  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
-
-
-
-
-
-
-
MX29LV320ATXBC-70G  
MX29LV320ABXBC-70G  
MX29LV320ATXEC-70G  
MX29LV320ABXEC-70G  
MX29LV320ATXBI-70G  
MX29LV320ABXBI-70G  
MX29LV320ATXEI-70G  
MX29LV320ABXEI-70G  
MX29LV320ATXBC-90G  
MX29LV320ABXBC-90G  
MX29LV320ATXEC-90G  
MX29LV320ABXEC-90G  
MX29LV320ATXBI-90G  
MX29LV320ABXBI-90G  
MX29LV320ATXEI-90G  
MX29LV320ABXEI-90G  
70  
70  
70  
70  
70  
70  
70  
70  
90  
90  
90  
90  
90  
90  
90  
90  
0.8mm/0.3mm  
0.8mm/0.3mm  
0.8mm/0.4mm  
0.8mm/0.4mm  
0.8mm/0.3mm  
0.8mm/0.3mm  
0.8mm/0.4mm  
0.8mm/0.4mm  
0.8mm/0.3mm  
0.8mm/0.3mm  
0.8mm/0.4mm  
0.8mm/0.4mm  
0.8mm/0.3mm  
0.8mm/0.3mm  
0.8mm/0.4mm  
0.8mm/0.4mm  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
55  
MX29LV320AT/B  
PACKAGE INFORMATION  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
56  
MX29LV320AT/B  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
57  
MX29LV320AT/B  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
58  
MX29LV320AT/B  
REVISION HISTORY  
Revision No. Description  
Page  
P1  
P53  
Date  
JAN/30/2004  
MAY/28/2004  
1.0  
1.1  
1. Removed "Advanced Information" on page 1  
1. To removed data retention information  
P/N:PM1008  
REV. 1.1, MAY 28, 2004  
59  
MX29LV320AT/B  
MACRONIX INTERNATIONALCO., LTD.  
Headquarters:  
TEL:+886-3-578-6688  
FAX:+886-3-563-2888  
Europe Office :  
TEL:+32-2-456-8020  
FAX:+32-2-456-8021  
Hong Kong Office :  
TEL:+86-755-834-335-79  
FAX:+86-755-834-380-78  
Japan Office :  
Kawasaki Office :  
TEL:+81-44-246-9100  
FAX:+81-44-246-9105  
Osaka Office :  
TEL:+81-6-4807-5460  
FAX:+81-6-4807-5461  
Singapore Office :  
TEL:+65-6346-5505  
FAX:+65-6348-8096  
Taipei Office :  
TEL:+886-2-2509-3300  
FAX:+886-2-2509-2200  
MACRONIX AMERICA, INC.  
TEL:+1-408-262-8887  
FAX:+1-408-262-8810  
http : //www.macronix.com  
MACRONIX INTERNATIONAL CO., LTD. reserves the right to change product and specifications without notice.  

相关型号:

MX29LV320ABTI-70G

32M-BIT [4M x 8 / 2M x 16] SINGLE VOLTAGE 3V ONLY FLASH MEMORY
Macronix

MX29LV320ABTI-90

32M-BIT [4M x 8 / 2M x 16] SINGLE VOLTAGE 3V ONLY FLASH MEMORY
Macronix

MX29LV320ABTI-90G

32M-BIT [4M x 8 / 2M x 16] SINGLE VOLTAGE 3V ONLY FLASH MEMORY
Macronix

MX29LV320ABXBC-70

32M-BIT [4M x 8 / 2M x 16] SINGLE VOLTAGE 3V ONLY FLASH MEMORY
Macronix

MX29LV320ABXBC-70G

32M-BIT [4M x 8 / 2M x 16] SINGLE VOLTAGE 3V ONLY FLASH MEMORY
Macronix

MX29LV320ABXBC-90

32M-BIT [4M x 8 / 2M x 16] SINGLE VOLTAGE 3V ONLY FLASH MEMORY
Macronix

MX29LV320ABXBC-90G

32M-BIT [4M x 8 / 2M x 16] SINGLE VOLTAGE 3V ONLY FLASH MEMORY
Macronix

MX29LV320ABXBI-70

32M-BIT [4M x 8 / 2M x 16] SINGLE VOLTAGE 3V ONLY FLASH MEMORY
Macronix

MX29LV320ABXBI-70G

32M-BIT [4M x 8 / 2M x 16] SINGLE VOLTAGE 3V ONLY FLASH MEMORY
Macronix

MX29LV320ABXBI-90

32M-BIT [4M x 8 / 2M x 16] SINGLE VOLTAGE 3V ONLY FLASH MEMORY
Macronix

MX29LV320ABXBI-90G

32M-BIT [4M x 8 / 2M x 16] SINGLE VOLTAGE 3V ONLY FLASH MEMORY
Macronix

MX29LV320ABXEC-70

32M-BIT [4M x 8 / 2M x 16] SINGLE VOLTAGE 3V ONLY FLASH MEMORY
Macronix