MX66L51235FXDI-10G [Macronix]

3V, 512M-BIT [x 1/x 2/x 4] CMOS MXSMIO® (SERIAL MULTI I/O) FLASH MEMORY;
MX66L51235FXDI-10G
型号: MX66L51235FXDI-10G
厂家: MACRONIX INTERNATIONAL    MACRONIX INTERNATIONAL
描述:

3V, 512M-BIT [x 1/x 2/x 4] CMOS MXSMIO® (SERIAL MULTI I/O) FLASH MEMORY

时钟 内存集成电路
文件: 总104页 (文件大小:1762K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MX66L51235F  
MX66L51235F  
3V, 512M-BIT [x 1/x 2/x 4]  
CMOS MXSMIO® (SERIAL MULTI I/O)  
FLASH MEMORY  
Key Features  
• Multi I/O Support - Single I/O, Dual I/O, and Quad I/O  
• Quad Peripheral Interface (QPI)  
• Program/Erase Suspend and Resume operation  
P/N: PM1832  
MX66L51235F  
Contents  
1. FEATURES ..............................................................................................................................................................5  
2. GENERAL DESCRIPTION .....................................................................................................................................6  
Table 1. Read performance Comparison ....................................................................................................6  
3. PIN CONFIGURATIONS .........................................................................................................................................7  
4. PIN DESCRIPTION..................................................................................................................................................7  
5. BLOCK DIAGRAM...................................................................................................................................................8  
6. DATA PROTECTION................................................................................................................................................9  
Table 2. Protected Area Sizes...................................................................................................................10  
Table 3. 4K-bit Secured OTP Definition ....................................................................................................11  
7. Memory Organization...........................................................................................................................................12  
Table 4. Memory Organization ..................................................................................................................12  
8. DEVICE OPERATION............................................................................................................................................13  
8-1. Address Protocol ..................................................................................................................................... 15  
8-2. Quad Peripheral Interface (QPI) Read Mode .......................................................................................... 17  
9. COMMAND DESCRIPTION...................................................................................................................................18  
Table 5. Command Set..............................................................................................................................18  
9-1. Write Enable (WREN).............................................................................................................................. 23  
9-2. Write Disable (WRDI)............................................................................................................................... 24  
9-3. Read Identification (RDID)....................................................................................................................... 25  
9-4. Release from Deep Power-down (RDP), Read Electronic Signature (RES) ........................................... 26  
9-5. Read Electronic Manufacturer ID & Device ID (REMS)........................................................................... 28  
9-6. QPI ID Read (QPIID) ............................................................................................................................... 29  
Table 6. ID Definitions ..............................................................................................................................29  
9-7. Read Status Register (RDSR)................................................................................................................. 30  
9-8. Read Configuration Register (RDCR)...................................................................................................... 31  
9-9. Write Status Register (WRSR)................................................................................................................. 37  
Table 7. Protection Modes.........................................................................................................................38  
9-10. Enter 4-byte mode (EN4B) ...................................................................................................................... 41  
9-11. Exit 4-byte mode (EX4B) ......................................................................................................................... 41  
9-12. Read Data Bytes (READ) ........................................................................................................................ 42  
9-13. Read Data Bytes at Higher Speed (FAST_READ) .................................................................................. 43  
9-14. Dual Output Read Mode (DREAD).......................................................................................................... 44  
9-15. 2 x I/O Read Mode (2READ) ................................................................................................................... 45  
9-16. Quad Read Mode (QREAD) .................................................................................................................... 46  
9-17. 4 x I/O Read Mode (4READ) ................................................................................................................... 47  
9-18. 4 Byte Address Command Set................................................................................................................. 49  
9-19. Burst Read............................................................................................................................................... 51  
9-20. Performance Enhance Mode................................................................................................................... 52  
9-21. Fast Boot ................................................................................................................................................. 55  
Table 8. Fast Boot Register (FBR) ............................................................................................................55  
9-22. Sector Erase (SE).................................................................................................................................... 58  
9-23. Block Erase (BE32K)............................................................................................................................... 59  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
2
MX66L51235F  
9-24. Block Erase (BE) ..................................................................................................................................... 60  
9-25. Chip Erase (CE)....................................................................................................................................... 61  
9-26. Page Program (PP) ................................................................................................................................. 62  
9-27. 4 x I/O Page Program (4PP).................................................................................................................... 64  
9-28. Deep Power-down (DP)........................................................................................................................... 65  
9-29. Enter Secured OTP (ENSO).................................................................................................................... 66  
9-30. Exit Secured OTP (EXSO)....................................................................................................................... 66  
9-31. Read Security Register (RDSCUR)......................................................................................................... 66  
9-32. Write Security Register (WRSCUR)......................................................................................................... 66  
Table 9. Security Register Definition .........................................................................................................67  
9-33. Write Protection Selection (WPSEL)........................................................................................................ 68  
9-34. Advanced Sector Protection .................................................................................................................... 70  
9-35. Program/Erase Suspend/Resume........................................................................................................... 78  
9-36. Erase Suspend ........................................................................................................................................ 78  
9-37. Program Suspend.................................................................................................................................... 78  
9-38. Write-Resume.......................................................................................................................................... 80  
9-39. No Operation (NOP) ................................................................................................................................ 80  
9-40. Software Reset (Reset-Enable (RSTEN) and Reset (RST)) ................................................................... 80  
9-41. Read SFDP Mode (RDSFDP).................................................................................................................. 82  
Table 9. Signature and Parameter Identification Data Values ..................................................................83  
Table 10. Parameter Table (0): JEDEC Flash Parameter Tables..............................................................84  
Table 11. Parameter Table (1): Macronix Flash Parameter Tables............................................................86  
10. RESET..................................................................................................................................................................88  
Table 12. Reset Timing-(Power On)..........................................................................................................88  
Table 13. Reset Timing-(Other Operation) ................................................................................................88  
11. POWER-ON STATE .............................................................................................................................................89  
12. ELECTRICAL SPECIFICATIONS........................................................................................................................90  
Table 14. ABSOLUTE MAXIMUM RATINGS ............................................................................................90  
Table 15. CAPACITANCE TA = 25°C, f = 1.0 MHz....................................................................................90  
Table 16. DC CHARACTERISTICS (Temperature = -40 C to 85 C, VCC = 2.7V - 3.6V) ........................92  
°
°
Table 17. AC CHARACTERISTICS (Temperature = -40 C to 85 C, VCC = 2.7V - 3.6V) .......................93  
°
°
13. OPERATING CONDITIONS.................................................................................................................................94  
Table 18. Power-Up/Down Voltage and Timing ........................................................................................96  
13-1. INITIAL DELIVERY STATE...................................................................................................................... 96  
14. ERASE AND PROGRAMMING PERFORMANCE..............................................................................................97  
15. DATA RETENTION ..............................................................................................................................................97  
16. LATCH-UP CHARACTERISTICS........................................................................................................................97  
17. ORDERING INFORMATION................................................................................................................................98  
18. PART NAME DESCRIPTION...............................................................................................................................99  
19. PACKAGE INFORMATION................................................................................................................................100  
20. REVISION HISTORY .........................................................................................................................................103  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
3
MX66L51235F  
Figures  
Figure 1. Serial Modes Supported...............................................................................................................................................13  
Figure 2. Serial Input Timing........................................................................................................................................................14  
Figure 3. Output Timing ...............................................................................................................................................................14  
Figure 4. EAR Operation Segments ............................................................................................................................................16  
Figure 5. Enable QPI Sequence..................................................................................................................................................17  
Figure 6. Reset QPI Mode...........................................................................................................................................................17  
Figure 7. Write Enable (WREN) Sequence (SPI Mode) ..............................................................................................................23  
Figure 8. Write Enable (WREN) Sequence (QPI Mode)..............................................................................................................23  
Figure 9. Write Disable (WRDI) Sequence (SPI Mode)...............................................................................................................24  
Figure 10. Write Disable (WRDI) Sequence (QPI Mode).............................................................................................................25  
Figure 11. Read Identification (RDID) Sequence (SPI mode only)..............................................................................................25  
Figure 12. Read Electronic Signature (RES) Sequence (SPI Mode)...........................................................................................26  
Figure 13. Read Electronic Signature (RES) Sequence (QPI Mode) .........................................................................................27  
Figure 14. Release from Deep Power-down (RDP) Sequence (SPI Mode) ................................................................................27  
Figure 15. Release from Deep Power-down (RDP) Sequence (QPI Mode)................................................................................27  
Figure 16. Read Electronic Manufacturer & Device ID (REMS) Sequence (SPI Mode only) ......................................................28  
Figure 17. Read Status Register (RDSR) Sequence (SPI Mode) ...............................................................................................30  
Figure 18. Read Status Register (RDSR) Sequence (QPI Mode)...............................................................................................30  
Figure 19. Read Configuration Register (RDCR) Sequence (SPI Mode)....................................................................................31  
Figure 20. Read Configuration Register (RDCR) Sequence (QPI Mode)....................................................................................31  
Figure 21. Program/Erase flow with read array data ...................................................................................................................32  
Figure 22. Program/Erase flow without read array data (read P_FAIL/E_FAIL flag) ...................................................................33  
Figure 23. Write Status Register (WRSR) Sequence (SPI Mode)..............................................................................................37  
Figure 24. Write Status Register (WRSR) Sequence (QPI Mode)..............................................................................................37  
Figure 25. WRSR flow .................................................................................................................................................................39  
Figure 26. WP# Setup Timing and Hold Timing during WRSR when SRWD=1 ..........................................................................40  
Figure 27. Read Data Bytes (READ) Sequence (SPI Mode only)...............................................................................................42  
Figure 28. Read at Higher Speed (FAST_READ) Sequence (SPI Mode) ...................................................................................43  
Figure 29. Dual Read Mode Sequence .......................................................................................................................................44  
Figure 30. 2 x I/O Read Mode Sequence (SPI Mode only) .........................................................................................................45  
Figure 31. Quad Read Mode Sequence......................................................................................................................................46  
Figure 32. 4 x I/O Read Mode Sequence (SPI Mode).................................................................................................................48  
Figure 33. 4 x I/O Read Mode Sequence (QPI Mode).................................................................................................................48  
Figure 34. Read Data Bytes using 4 Byte Address Sequence (READ4B)...................................................................................49  
Figure 35. Read Data Bytes at Higher Speed using 4 Byte Address Sequence (FASTREAD4B)...............................................49  
Figure 36. 2 x I/O Fast Read using 4 Byte Address Sequence (2READ4B)................................................................................50  
Figure 37. 4 I/O Fast Read using 4 Byte Address sequence (4READ4B)...................................................................................50  
Figure 38. SPI Mode....................................................................................................................................................................51  
Figure 39. QPI Mode ...................................................................................................................................................................51  
Figure 40. 4 x I/O Read performance enhance Mode Sequence (SPI Mode) ............................................................................53  
Figure 41. 4 x I/O Read performance enhance Mode Sequence (QPI Mode) ............................................................................54  
Figure 42. Fast Boot Sequence (QE Bit=0).................................................................................................................................56  
Figure 43. Fast Boot Sequence (QE Bit=1).................................................................................................................................56  
Figure 44. Read Fast Boot Register (RDFBR) Sequence ...........................................................................................................57  
Figure 45. Write Fast Boot Register (WRFBR) Sequence...........................................................................................................57  
Figure 46. Erase Fast Boot Register (ESFBR) Sequence...........................................................................................................57  
Figure 47. Sector Erase (SE) Sequence (SPI Mode) ..................................................................................................................58  
Figure 48. Sector Erase (SE) Sequence (QPI Mode)..................................................................................................................58  
Figure 49. Block Erase 32KB (BE32K) Sequence (SPI Mode)....................................................................................................59  
Figure 50. Block Erase 32KB (BE32K) Sequence (QPI Mode) ...................................................................................................59  
Figure 51. Block Erase (BE) Sequence (SPI Mode)....................................................................................................................60  
Figure 52. Block Erase (BE) Sequence (QPI Mode) ...................................................................................................................60  
Figure 53. Chip Erase (CE) Sequence (SPI Mode).....................................................................................................................61  
Figure 54. Chip Erase (CE) Sequence (QPI Mode).....................................................................................................................61  
Figure 55. Page Program (PP) Sequence (SPI Mode)................................................................................................................63  
Figure 56. Page Program (PP) Sequence (QPI Mode) ...............................................................................................................63  
Figure 57. 4 x I/O Page Program (4PP) Sequence (SPI Mode only)...........................................................................................64  
Figure 58. Deep Power-down (DP) Sequence (SPI Mode) .........................................................................................................65  
Figure 59. Deep Power-down (DP) Sequence (QPI Mode)........................................................................................................65  
Figure 60. WPSEL Flow...............................................................................................................................................................69  
Figure 61. Advanced Sector Protection Overview .......................................................................................................................70  
Figure 63. Read Lock Register (RDLR) Sequence......................................................................................................................71  
Figure 62. Write Lock Register (WRLR) Sequence (SPI Mode)..................................................................................................71  
Figure 64. SPB Lock Bit Set (SPBLK) Sequence........................................................................................................................72  
Figure 65. Read SPB Lock Register (RDSPBLK) Sequence ......................................................................................................72  
Figure 66. Read SPB Status (RDSPB) Sequence.......................................................................................................................74  
Figure 67. SPB Erase (ESSPB) Sequence .................................................................................................................................74  
Figure 68. SPB Program (WRSPB) Sequence............................................................................................................................74  
Figure 69. Read DPB Register (RDDPB) Sequence...................................................................................................................75  
Figure 70. Write DPB Register (WRDPB) Sequence...................................................................................................................75  
Figure 71. Suspend to Read Latency ..........................................................................................................................................79  
Figure 72. Resume to Read Latency...........................................................................................................................................79  
Figure 73. Resume to Suspend Latency .....................................................................................................................................79  
Figure 74. Software Reset Recovery...........................................................................................................................................81  
Figure 75. Reset Sequence (SPI mode)......................................................................................................................................81  
Figure 76. Reset Sequence (QPI mode) .....................................................................................................................................81  
Figure 77. Read Serial Flash Discoverable Parameter (RDSFDP) Sequence............................................................................82  
Figure 78. RESET Timing............................................................................................................................................................88  
Figure 79. Maximum Negative Overshoot Waveform..................................................................................................................90  
Figure 80. Maximum Positive Overshoot Waveform....................................................................................................................90  
Figure 81. INPUT TEST WAVEFORMS AND MEASUREMENT LEVEL.....................................................................................91  
Figure 82. OUTPUT LOADING...................................................................................................................................................91  
Figure 83. AC Timing at Device Power-Up ..................................................................................................................................94  
Figure 84. Power-Down Sequence..............................................................................................................................................95  
Figure 85. Power-up Timing.........................................................................................................................................................95  
Figure 86. Power Up/Down and Voltage Drop.............................................................................................................................96  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
4
MX66L51235F  
3V 512M-BIT [x 1/x 2/x 4] CMOS MXSMIO® (SERIAL MULTI I/O)  
FLASH MEMORY  
1. FEATURES  
GENERAL  
Command Reset  
Supports Serial Peripheral Interface -- Mode 0 and  
Mode 3  
Program/Erase Suspend and Resume operation  
Electronic Identification  
Single Power Supply Operation  
- 2.7 to 3.6 volt for read, erase, and program opera-  
tions  
JEDEC 1-byte manufacturer ID and 2-byte device  
ID  
-
- RES command for 1-byte Device ID  
- REMS command for 1-byte manufacturer ID and  
1-byte device ID  
Support Serial Flash Discoverable Parameters  
(SFDP) mode  
536,870,912 x 1 bit structure or 268,435,456 x 2 bits  
(two I/O mode) structure or 134,217,728 x 4 bits (four  
I/O mode) structure  
Protocol Support  
- Single I/O, Dual I/O and Quad I/O  
Latch-up protected to 100mA from -1V to Vcc +1V  
Low Vcc write inhibit is from 2.3V to 2.5V  
Fast read for SPI mode  
HARDWARE FEATURES  
SCLK Input  
- Serial clock input  
SI/SIO0  
- Support clock frequency up to 133MHz for all  
protocols  
- Serial Data Input or Serial Data Input/Output for 2  
x I/O read mode and 4 x I/O read mode  
SO/SIO1  
- Serial Data Output or Serial Data Input/Output for  
2 x I/O read mode and 4 x I/O read mode  
WP#/SIO2  
- Hardware write protection or serial data Input/Out-  
put for 4 x I/O read mode  
DNU/SIO3  
- Support Fast Read, 2READ, DREAD, 4READ,  
QREAD instructions.  
- Configurable dummy cycle number for fast read  
operation  
Quad Peripheral Interface (QPI) available  
Equal Sectors with 4K byte each, or Equal Blocks  
with 32K byte each or Equal Blocks with 64K byte  
each  
- Do not use or serial data Input/Output for 4 x I/O  
read mode  
- Any Block can be erased individually  
Programming :  
RESET#  
- Hardware Reset pin  
PACKAGE  
- 256byte page buffer  
- Quad Input/Output page program(4PP) to enhance  
program performance  
-16-pin SOP (300mil)  
-8-land WSON (8x6mm)  
Typical 100,000 erase/program cycles  
20 years data retention  
-24-Ball BGA (5x5 ball array)  
-All devices are RoHS Compliant and Halogen-  
free  
SOFTWARE FEATURES  
Input Data Format  
- 1-byte Command code  
Advanced Security Features  
- Block lock protection  
The BP0-BP3 and T/B status bits define the size of  
the area to be protected against program and erase  
instructions  
- Advanced sector protection function (Solid and  
Password Protect)  
Additional 4K bit security OTP  
Features unique identifier  
factory locked identifiable, and customer lockable  
-
-
P/N: PM1832  
Rev. 1.1, August 02, 2016  
5
MX66L51235F  
2. GENERAL DESCRIPTION  
MX66L51235F is 512Mb bits Serial NOR Flash memory, which is configured as 67,108,864 x 8 internally. When it is  
in two or four I/O mode, the structure becomes 268,435,456 bits x 2 or 134,217,728 bits x 4.  
MX66L51235F features a serial peripheral interface and software protocol allowing operation on a simple 3-wire  
bus while it is in single I/O mode. The three bus signals are a clock input (SCLK), a serial data input (SI), and a  
serial data output (SO). Serial access to the device is enabled by CS# input.  
When it is in two I/O read mode, the SI pin and SO pin become SIO0 pin and SIO1 pin for address/dummy bits  
input and data output. When it is in four I/O read mode, the SI pin, SO pin, WP# and RESET# pin become SIO0  
pin, SIO1 pin, SIO2 pin and SIO3 pin for address/dummy bits input and data output.  
The MX66L51235F MXSMIO® (Serial Multi I/O) provides sequential read operation on whole chip.  
After program/erase command is issued, auto program/erase algorithms which program/erase and verify the  
specified page or sector/block locations will be executed. Program command is executed on byte basis, or page (256  
bytes) basis, or word basis for erase command is executed on sector (4K-byte), block (32K-byte), or block (64K-byte),  
or whole chip basis.  
To provide user with ease of interface, a status register is included to indicate the status of the chip. The status read  
command can be issued to detect completion status of a program or erase operation via WIP bit.  
Advanced security features enhance the protection and security functions, please see security features section for  
more details.  
When the device is not in operation and CS# is high, it is put in standby mode.  
The MX66L51235F utilizes Macronix's proprietary memory cell, which reliably stores memory contents even after  
100,000 program and erase cycles.  
Table 1. Read performance Comparison  
Dual Output  
Fast Read  
(MHz)  
Quad Output  
Fast Read  
(MHz)  
Dual IO  
Fast Read  
(MHz)  
Quad IO  
Fast Read  
(MHz)  
Numbers of  
Dummy Cycles  
Fast Read  
(MHz)  
4
6
-
-
-
84*  
104  
104  
133  
70  
104  
104*  
133  
104  
104*  
133  
84  
84*  
104  
133  
8
104*  
133  
10  
Note: * mean default status  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
6
MX66L51235F  
4. PIN DESCRIPTION  
3. PIN CONFIGURATIONS  
16-PIN SOP (300mil)  
SYMBOL  
DESCRIPTION  
CS#  
Chip Select  
1
2
3
4
5
6
7
8
SCLK  
SI/SIO0  
NC  
DNU/SIO3  
VCC  
16  
15  
14  
13  
12  
11  
10  
9
Serial Data Input (for 1 x I/O)/ Serial  
Data Input & Output (for 2xI/O or  
4xI/O read mode)  
Serial Data Output (for 1 x I/O)/  
Serial Data Input & Output (for 2xI/O  
or 4xI/O read mode)  
SI/SIO0  
RESET#  
NC  
NC  
NC  
NC  
NC  
NC  
GND  
WP#/SIO2  
CS#  
SO/SIO1  
SCLK  
SO/SIO1  
Clock Input  
Write protection: connect to GND or  
Serial Data Input & Output (for 4xI/O  
read mode)  
WP#/SIO2  
8-WSON (8x6mm)  
Hardware Reset Pin Active low or  
Serial Data Input & Output (for 4xI/O  
read mode)N1 ote  
RESET#/SIO3  
(8WSON)  
1
VCC  
CS#  
SO/SIO1  
WP#/SIO2  
GND  
8
7
6
5
2
3
4
RESET#/SIO3  
SCLK  
DNU/SIO3 Note 2 Do Not Use or Serial Data Input &  
(16SOP, 24BGA) Output (for 4xI/O read mode)  
SI/SIO0  
VCC  
+ 3V Power Supply  
GND  
Ground  
Notes:  
(1). RESET# pin has internal pull up.  
(2). When using 1 I/O or 2 I/O (QE bit not enabled), the  
DNU/SIO3 pin of 16SOP & 24BGA can not connect  
to GND. We suggest user to connect this pin to  
VCC or floating.  
24-BALL BGA (5x5 ball array)  
5
NC  
NC  
NC  
NC  
NC  
NC  
4
3
2
1
DNU/SIO3  
RESET#  
VCC  
WP#/SIO2  
NC  
NC  
GND  
NC  
SI/SIO0  
NC  
SCLK  
NC  
SO/SIO1  
NC  
NC  
NC  
CS#  
NC  
A
B
C
D
E
P/N: PM1832  
Rev. 1.1, August 02, 2016  
7
MX66L51235F  
5. BLOCK DIAGRAM  
Address  
Generator  
Memory Array  
Page Buffer  
Data  
Register  
SI/SIO0  
Y-Decoder  
SRAM  
Buffer  
Sense  
Amplifier  
CS#  
WP#/SIO2  
Reset#/SIO3*(1)  
DNU/SIO3*(2)  
Mode  
Logic  
State  
Machine  
HV  
Generator  
SCLK  
Clock Generator  
Output  
Buffer  
SO/SIO1  
Notes:  
(1). For 8WSON.  
(2). For 16SOP or 24BGA.  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
8
MX66L51235F  
6. DATA PROTECTION  
During power transition, there may be some false system level signals which result in inadvertent erasure or  
programming. The device is designed to protect itself from these accidental write cycles.  
The state machine will be reset as standby mode automatically during power up. In addition, the control register  
architecture of the device constrains that the memory contents can only be changed after specific command  
sequences have completed successfully.  
In the following, there are several features to protect the system from the accidental write cycles during VCC power-  
up and power-down or from system noise.  
• Valid command length checking: The command length will be checked whether it is at byte base and completed  
on byte boundary.  
• Write Enable (WREN) command: WREN command is required to set the Write Enable Latch bit (WEL) before  
other command to change data.  
Deep Power Down Mode: By entering deep power down mode, the flash device also is under protected from  
writing all commands except Release from deep power down mode command (RDP) and Read Electronic  
Signature command (RES), and softreset command.  
Advanced Security Features: there are some protection and security features which protect content from  
inadvertent write and hostile access.  
I. Block lock protection  
- The Software Protected Mode (SPM) use (BP3, BP2, BP1, BP0 and T/B) bits to allow part of memory to be  
protected as read only. The protected area definition is shown as Table 2 Protected Area Sizes, the protected  
areas are more flexible which may protect various area by setting value of BP0-BP3 bits.  
- The Hardware Proteced Mode (HPM) use WP#/SIO2 to protect the (BP3, BP2, BP1, BP0) bits and Status  
Register Write Protect bit.  
- In four I/O and QPI mode, the feature of HPM will be disabled.  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
9
MX66L51235F  
Table 2. Protected Area Sizes  
Protected Area Sizes (T/B bit = 0)  
Status bit  
Protect Level  
512Mb  
BP3  
0
BP2  
0
BP1  
0
BP0  
0
0 (none)  
0
0
0
1
1 (1 block, protected block 1023rd)  
0
0
1
0
2 (2 blocks, protected block 1022nd~1023rd)  
3 (4 blocks, protected block 1020th~1023rd)  
4 (8 blocks, protected block 1016th~1023rd)  
5 (16 blocks, protected block 1008th~1023rd)  
6 (32 blocks, protected block 992nd~1023rd)  
7 (64 blocks, protected block 960th~1023rd)  
8 (128 blocks, protected block 896th~1023rd)  
9 (256 blocks, protected block 768th~1023rd)  
10 (512 blocks, protected block 512nd~1023rd)  
11 (1024 blocks, protected all)  
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
1
0
1
0
1
1
1
1
0
0
12 (1024 blocks, protected all)  
1
1
0
1
13 (1024 blocks, protected all)  
1
1
1
0
14 (1024 blocks, protected all)  
1
1
1
1
15 (1024 blocks, protected all)  
Protected Area Sizes (T/B bit = 1)  
Status bit  
Protect Level  
512Mb  
BP3  
0
BP2  
0
BP1  
0
BP0  
0
0 (none)  
0
0
0
1
1 (1 block, protected block 0th)  
2 (2 blocks, protected block 0th~1th)  
3 (4 blocks, protected block 0th~3rd)  
4 (8 blocks, protected block 0th~7th)  
5 (16 blocks, protected block 0th~15th)  
6 (32 blocks, protected block 0th~31st)  
7 (64 blocks, protected block 0th~63rd)  
8 (128 blocks, protected block 0th~127th)  
9 (256 blocks, protected block 0th~255th)  
10 (512 blocks, protected block 0th~511st)  
11 (1024 blocks, protected all)  
12 (1024 blocks, protected all)  
13 (1024 blocks, protected all)  
14 (1024 blocks, protected all)  
15 (1024 blocks, protected all)  
0
0
1
0
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
1
0
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
P/N: PM1832  
Rev. 1.1, August 02, 2016  
10  
MX66L51235F  
II. Additional 4K-bit secured OTP for unique identifier: to provide 4K-bit one-time program area for setting  
device unique serial number - Which may be set by factory or system customer.  
- Security register bit 0 indicates whether the chip is locked by factory or not.  
- To program the 4K-bit secured OTP by entering 4K-bit secured OTP mode (with Enter Security OTP command),  
and going through normal program procedure, and then exiting 4K-bit secured OTP mode by writing Exit Security  
OTP command.  
- Customer may lock-down the customer lockable secured OTP by writing WRSCUR(write security register)  
command to set customer lock-down bit1 as "1". Please refer to "Table 9. Security Register Definition" for  
security register bit definition and "Table 3. 4K-bit Secured OTP Definition" for address range definition.  
- Note: Once lock-down whatever by factory or customer, it cannot be changed any more. While in 4K-bit secured  
OTP mode, array access is not allowed.  
Table 3. 4K-bit Secured OTP Definition  
Address range  
xxx000~xxx00F  
xxx010~xxx1FF  
Size  
Standard Factory Lock  
ESN (electrical serial number)  
N/A  
Customer Lock  
128-bit  
3968-bit  
Determined by customer  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
11  
MX66L51235F  
7. Memory Organization  
Table 4. Memory Organization  
Block(64K-byte) Block(32K-byte)  
Sector  
16383  
Address Range  
3FFF000h  
3FFFFFFh  
2047  
individual 16 sectors  
lock/unlock unit:4K-byte  
16376  
16375  
3FF8000h  
3FF7000h  
3FF8FFFh  
3FF7FFFh  
1023  
2046  
2045  
2044  
2043  
2042  
16368  
16367  
3FF0000h  
3FEF000h  
3FF0FFFh  
3FEFFFFh  
16360  
16359  
3FE8000h  
3FE7000h  
3FE8FFFh  
3FE7FFFh  
1022  
individual block  
lock/unlock unit:64K-byte  
16352  
16351  
3FE0000h  
3FDF000h  
3FE0FFFh  
3FDFFFFh  
16344  
16343  
3FD8000h  
3FD7000h  
3FD8FFFh  
3FD7FFFh  
1021  
16336  
3FD0000h  
3FD0FFFh  
individual block  
lock/unlock unit:64K-byte  
47  
002F000h  
002FFFFh  
5
4
3
2
1
0
40  
39  
0028000h  
027000h  
0028FFFh  
0027FFFh  
2
1
individual block  
lock/unlock unit:64K-byte  
32  
31  
0020000h  
001F000h  
0020FFFh  
001FFFFh  
24  
23  
0018000h  
0017000h  
0018FFFh  
0017FFFh  
16  
15  
0010000h  
000F000h  
0010FFFh  
000FFFFh  
individual 16 sectors  
lock/unlock unit:4K-byte  
8
7
0008000h  
0007000h  
0008FFFh  
0007FFFh  
0
0
0000000h  
0000FFFh  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
12  
MX66L51235F  
8. DEVICE OPERATION  
1. Before a command is issued, status register should be checked to ensure device is ready for the intended  
operation.  
2. When incorrect command is inputted to this device, this device becomes standby mode and keeps the standby  
mode until next CS# falling edge. In standby mode, SO pin of this device should be High-Z.  
3. When correct command is inputted to this device, this device becomes active mode and keeps the active mode  
until next CS# rising edge.  
4. Input data is latched on the rising edge of Serial Clock (SCLK) and data shifts out on the falling edge of SCLK.  
The difference of Serial mode 0 and mode 3 is shown as "Serial Modes Supported".  
5. For the following instructions: RDID, RDSR, RDSCUR, READ/READ4B, FAST_READ/FAST_READ4B,  
2READ/2READ4B, DREAD/DREAD4B, 4READ/4READ4B, QREAD/QREAD4B, RDSFDP, RES, REMS, QPIID,  
RDDPB, RDSPB, RDPASS, RDLR, RDEAR, RDFBR, RDSPBLK, RDCR, the shifted-in instruction sequence is  
followed by a data-out sequence. After any bit of data being shifted out, the CS# can be high. For the following  
instructions: WREN, WRDI, WRSR, SE/SE4B, BE32K/BE32K4B, BE/BE4B, CE, PP/PP4B, 4PP/4PP4B, DP,  
ENSO, EXSO, WRSCUR, EN4B, EX4B, WPSEL, GBLK, GBULK, SPBLK, SUSPEND, RESUME, NOP, RSTEN,  
RST, EQIO, RSTQIO the CS# must go high exactly at the byte boundary; otherwise, the instruction will be  
rejected and not executed.  
6. During the progress of Write Status Register, Program, Erase operation, to access the memory array is  
neglected and not affect the current operation of Write Status Register, Program, Erase.  
Figure 1. Serial Modes Supported  
CPOL CPHA  
shift in  
shift out  
SCLK  
SCLK  
(Serial mode 0)  
(Serial mode 3)  
0
1
0
1
SI  
MSB  
SO  
MSB  
Note:  
CPOL indicates clock polarity of Serial master, CPOL=1 for SCLK high while idle, CPOL=0 for SCLK low while not  
transmitting. CPHA indicates clock phase. The combination of CPOL bit and CPHA bit decides which Serial mode is  
supported.  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
13  
MX66L51235F  
Figure 2. Serial Input Timing  
tSHSL  
tSHCH  
tCHCL  
CS#  
tCHSL  
tSLCH  
tCHSH  
SCLK  
tDVCH  
tCHDX  
tCLCH  
MSB  
LSB  
SI  
High-Z  
SO  
Figure 3. Output Timing  
CS#  
tCH  
SCLK  
tCLQV  
tCLQV  
tCL  
tSHQZ  
tCLQX  
SO  
tCLQX  
LSB  
ADDR.LSB IN  
SI  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
14  
MX66L51235F  
8-1. Address Protocol  
The original 24 bit address protocol of serial Flash can only access density size below 128Mb. For the memory  
above 128Mb, the 32bit address is requested for access higher memory size. The MX66L51235F has three different  
methods ot access the whole density:  
(1)Command entry 4-byte address mode  
(2)Extended Address Register (EAR)  
(3)4-byte Address Command Set  
Enter 4-Byte Address Mode  
In 4-byte Address mode, all instructions are 32-bits address clock cycles. Two dedicated instructions are available  
to enter/exit this modality:  
● Enter 4-byte address mode (EN4B)  
● Exit 4-byte address mode (EX4B)  
When 4-byte address mode is enabled, the EAR<1-0> becomes "don't care" for all instructions requiring 4-byte  
address.  
Extended Address Register (Configurable)  
The device provides an 8-bit volatile register for extended Address Register: it indentifies the extended address  
(A31~A24) above 128Mb density by using original 3-byte address.  
Extended Address Register (EAR)  
Bit 7  
A31  
Bit 6  
A30  
Bit 5  
A29  
Bit 4  
A28  
Bit 3  
A27  
Bit 2  
A26  
Bit 1  
A25  
Bit 0  
A24  
For the MX66L51235F the A31 to A26 are Don’t Care. During EAR, reading these bits will read as 0. The bit <1-0>  
is default as "0".  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
15  
MX66L51235F  
Figure 4. EAR Operation Segments  
03FFFFFFh  
EAR<1-0>= 11  
03000000h  
02FFFFFFh  
EAR<1-0>= 10  
EAR<1-0>= 01  
02000000h  
01FFFFFFh  
01000000h  
00FFFFFFh  
EAR<1-0>= 00  
00000000h  
When under EAR mode, Read, Program, Erase operates in the selected segment by using 3-byte address mode.  
For the read operation, the whole array data can be continually read out with one command. Data output starts from  
the selected 128Mb, but it can cross the boundary. When the last byte of the segment is reached, the next byte (in  
a continuous reading) is the first byte of the next segment. However, the EAR (Extended Address Register) value  
does not change. The random access reading can only be operated in the selected segment.  
The Chip erase command will erase the whole chip and is not limited by EAR selected segment.  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
16  
MX66L51235F  
8-2. Quad Peripheral Interface (QPI) Read Mode  
QPI protocol enables user to take full advantage of Quad I/O Serial Flash by providing the Quad I/O interface in  
command cycles, address cycles and as well as data output cycles.  
Enable QPI mode  
By issuing 35H command, the QPI mode is enable. After QPI mode is enabled, the device enters quad mode (4-4-4)  
without QE bit status changed.  
Figure 5. Enable QPI Sequence  
CS#  
MODE 3  
MODE 0  
2
3
4
5
6
7
0
1
SCLK  
SIO0  
35h  
SIO[3:1]  
Reset QPI (RSTQIO)  
To reset the QPI mode, the RSTQIO (F5H) command is required. After the RSTQIO command is issued, the device  
returns from QPI mode (4 I/O interface in command cycles) to SPI mode (1 I/O interface in command cycles).  
Note: For EQIO and RSTQIO commands, CS# high width has to follow "write spec" tSHSL for next instruction.  
Figure 6. Reset QPI Mode  
CS#  
SCLK  
SIO[3:0]  
F5h  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
17  
MX66L51235F  
9. COMMAND DESCRIPTION  
Table 5. Command Set  
Read/Write Array Commands  
2READ  
(2 x I/O read  
command)  
Command  
(byte)  
READ  
(normal read)  
FAST READ  
(fast read data)  
DREAD  
(1I 2O read)  
QREAD  
(1I 4O read)  
4READ  
Mode  
Address Bytes  
1st byte  
SPI  
3/4  
SPI  
3/4  
SPI  
3/4  
SPI  
3/4  
SPI/QPI  
3/4  
SPI  
3/4  
03 (hex)  
ADD1  
ADD2  
ADD3  
0B (hex)  
ADD1  
ADD2  
ADD3  
Dummy*  
BB (hex)  
ADD1  
ADD2  
ADD3  
Dummy*  
3B (hex)  
ADD1  
ADD2  
ADD3  
Dummy*  
EB (hex)  
ADD1  
6B (hex)  
ADD1  
ADD2  
ADD3  
Dummy*  
2nd byte  
3rd byte  
ADD2  
4th byte  
ADD3  
5th byte  
Dummy*  
Data Cycles  
n bytes read out n bytes read out n bytes read out n bytes read out  
Quad I/O read  
with 6 dummy  
cycles  
n bytes read out  
by Quad output  
until CS# goes  
high  
until CS# goes  
high  
until CS# goes  
high  
by 2 x I/O until  
CS# goes high  
by Dual output  
until CS# goes  
high  
Action  
4PP  
(quad page  
program)  
BE 32K  
(block erase  
32KB)  
BE  
Command  
(byte)  
PP  
SE  
CE  
(chip erase)  
(block erase  
64KB)  
(page program)  
(sector erase)  
Mode  
Address Bytes  
1st byte  
SPI/QPI  
3/4  
SPI  
3/4  
SPI/QPI  
3/4  
SPI/QPI  
3/4  
SPI/QPI  
3/4  
SPI/QPI  
0
02 (hex)  
38 (hex)  
ADD1  
ADD2  
ADD3  
20 (hex)  
ADD1  
ADD2  
ADD3  
52 (hex)  
ADD1  
ADD2  
ADD3  
D8 (hex)  
ADD1  
ADD2  
ADD3  
60 or C7 (hex)  
2nd byte  
3rd byte  
4th byte  
5th byte  
1-256  
1-256  
Data Cycles  
to program the  
selected page  
quad input to  
program the  
selected page  
to erase the  
selected sector  
to erase the  
selected 32K  
block  
to erase the  
selected block  
to erase whole  
chip  
Action  
* Dummy cycle numbers will be different depending on the bit6 & bit 7 (DC0 & DC1) setting in configuration register.  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
18  
MX66L51235F  
Read/Write Array Commands (4 Byte Address Command Set)  
Command  
(byte)  
READ4B  
FAST READ4B  
2READ4B  
DREAD4B  
4READ4B  
QREAD4B  
Mode  
SPI  
4
SPI  
4
SPI  
4
SPI  
4
SPI/QPI  
4
SPI  
4
Address Bytes  
1st byte  
2nd byte  
3rd byte  
13 (hex)  
0C (hex)  
BC (hex)  
3C (hex)  
EC (hex)  
6C (hex)  
ADD1  
ADD2  
ADD3  
ADD4  
ADD1  
ADD2  
ADD3  
ADD4  
Dummy  
ADD1  
ADD2  
ADD3  
ADD4  
Dummy  
ADD1  
ADD2  
ADD3  
ADD4  
Dummy  
ADD1  
ADD2  
ADD3  
ADD4  
Dummy  
ADD1  
ADD2  
ADD3  
ADD4  
Dummy  
4th byte  
5th byte  
6th byte  
Data Cycles  
read data byte by read data byte by read data byte by Read data byte by read data byte by Read data byte by  
Action  
4 byte address  
4 byte address 2 x I/O with 4 byte Dual Output with 4 x I/O with 4 byte Quad Output with  
address  
4 byte address  
address  
4 byte address  
BE4B  
(block erase  
64KB)  
BE32K4B  
(block erase  
32KB)  
SE4B  
(Sector erase  
4KB)  
Command  
(byte)  
PP4B  
4PP4B  
Mode  
SPI/QPI  
4
SPI  
4
SPI/QPI  
4
SPI/QPI  
4
SPI/QPI  
4
Address Bytes  
1st byte  
2nd byte  
3rd byte  
12 (hex)  
3E (hex)  
DC (hex)  
5C (hex)  
21 (hex)  
ADD1  
ADD2  
ADD3  
ADD4  
ADD1  
ADD2  
ADD3  
ADD4  
ADD1  
ADD2  
ADD3  
ADD4  
ADD1  
ADD2  
ADD3  
ADD4  
ADD1  
ADD2  
ADD3  
ADD4  
4th byte  
5th byte  
6th byte  
Data Cycles  
1-256  
1-256  
to program the  
selected page  
with 4byte  
Quad input to  
program the  
selected page  
with 4byte  
to erase the  
to erase the  
to erase the  
selected (64KB) selected (32KB) selected (4KB)  
block with 4byte block with 4byte sector with 4byte  
Action  
address  
address  
address  
address  
address  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
19  
MX66L51235F  
Register/Setting Commands  
RDCR  
(read  
WRSR  
RDEAR  
WREAR  
RDSR  
(read status  
register)  
Command  
(byte)  
WREN  
WRDI  
(write status/ (read extended (write extended  
(write enable) (write disable)  
configuration configuration  
address  
register)  
address  
register)  
register)  
SPI/QPI  
15 (hex)  
register)  
SPI/QPI  
01 (hex)  
Values  
Mode  
1st byte  
SPI/QPI  
06 (hex)  
SPI/QPI  
04 (hex)  
SPI/QPI  
05 (hex)  
SPI/QPI  
C8 (hex)  
SPI/QPI  
C5 (hex)  
2nd byte  
3rd byte  
4th byte  
Values  
5th byte  
Data Cycles  
1-2  
1
sets the (WEL)  
write enable  
latch bit  
resets the  
(WEL) write  
enable latch bit status register configuration  
to read out the to read out the to write new read extended write extended  
values of the values of the values of the  
address  
register  
address  
register  
status/  
configuration  
register  
Action  
register  
PGM/ERS  
Suspend  
(Suspends  
Program/  
Erase)  
PGM/ERS  
Resume  
(Resumes  
Program/  
Erase)  
WPSEL  
(Write Protect  
Selection)  
EN4B  
(enter 4-byte  
mode)  
EX4B  
(exit 4-byte  
mode)  
Command  
(byte)  
EQIO  
(Enable QPI)  
RSTQIO  
(Reset QPI)  
Mode  
1st byte  
SPI/QPI  
68 (hex)  
SPI  
QPI  
SPI/QPI  
B7 (hex)  
SPI/QPI  
E9 (hex)  
SPI/QPI  
SPI/QPI  
35 (hex)  
F5 (hex)  
B0 (hex)  
30 (hex)  
2nd byte  
3rd byte  
4th byte  
5th byte  
Data Cycles  
to enter and  
Entering the Exiting the QPI to enter 4-byte to exit 4-byte  
enable individal QPI mode  
block protect  
mode  
mode and set mode and clear  
4BYTE bit as 4BYTE bit to  
Action  
mode  
"1"  
be "0"  
RDP (Release  
DP (Deep  
SBL  
RDFBR  
WRFBR  
ESFBR  
Command  
(byte)  
from deep  
(Set Burst  
Length)  
SPI/QPI  
(read fast boot (write fast boot (erase fast  
power down)  
power down)  
register)  
SPI  
register)  
SPI  
boot register)  
Mode  
1st byte  
SPI/QPI  
B9 (hex)  
SPI/QPI  
AB (hex)  
SPI  
C0 (hex)  
16(hex)  
17(hex)  
18(hex)  
2nd byte  
3rd byte  
4th byte  
5th byte  
Data Cycles  
1-4  
4
enters deep  
power down  
mode  
release from  
deep power  
down mode  
to set Burst  
length  
Action  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
20  
MX66L51235F  
ID/Security Commands  
REMS  
(read electronic  
manufacturer & (QPI ID Read)  
device ID)  
RDID  
RES  
ENSO  
EXSO  
Command  
(byte)  
QPIID  
(read identific- (read electronic  
RDSFDP  
(enter secured (exit secured  
ation)  
ID)  
OTP)  
OTP)  
Mode  
Address Bytes  
SPI  
0
SPI/QPI  
0
SPI  
0
QPI  
0
SPI/QPI  
3
SPI/QPI  
0
SPI/QPI  
0
1st byte  
2nd byte  
3rd byte  
4th byte  
5th byte  
9F (hex)  
AB (hex)  
90 (hex)  
AF (hex)  
5A (hex)  
B1 (hex)  
C1 (hex)  
x
x
x
ADD1  
ADD2  
x
ADD1 (Note 1)  
ADD3  
Dummy (8)  
outputs JEDEC to read out  
output the  
ID in QPI  
interface  
Read SFDP  
mode  
to enter the  
4K-bit secured 4K-bit secured  
OTP mode  
to exit the  
ID: 1-byte  
Manufacturer  
ID & 2-byte  
Device ID  
1-byte Device Manufacturer  
ID  
ID & Device ID  
OTP mode  
Action  
WRSCUR  
(write  
security  
register)  
SPI/QPI  
WRPASS  
(write  
password  
register)  
SPI  
RDPASS  
(read  
password  
register)  
SPI  
RDSCUR  
(read security  
register)  
GBLK  
GBULK  
WRLR  
RDLR  
Command  
(byte)  
(gang block (gang block (write Lock (read Lock  
lock)  
unlock)  
register)  
register)  
Mode  
SPI/QPI  
0
SPI/QPI  
0
SPI/QPI  
0
SPI  
0
SPI  
0
Address Bytes  
0
0
0
1st byte  
2nd byte  
3rd byte  
2B (hex)  
2F (hex)  
7E (hex)  
98 (hex)  
2C (hex)  
2D (hex)  
28 (hex)  
27 (hex)  
4th byte  
5th byte  
Data Cycles  
2
2
1-8  
1-8  
to read value to set the  
whole chip whole chip  
of security lock-down bit write protect unprotect  
register  
as "1" (once  
lock-down,  
cannot be  
updated)  
Action  
PASSULK  
(password  
unlock)  
SPI  
WRSPB  
(SPB bit  
program)  
SPI  
ESSPB  
(all SPB bit (read SPB  
erase)  
SPI  
0
RDSPB  
SPBLK  
(SPB lock  
set)  
RDSPBLK  
(SPB lock  
register read) register)  
WRDPB  
(write DPB  
RDDPB  
(read DPB  
register)  
SPI  
Command  
(byte)  
status)  
SPI  
4
Mode  
SPI  
SPI  
0
SPI  
4
Address Bytes  
0
4
0
4
1st byte  
2nd byte  
3rd byte  
29 (hex)  
E3 (hex)  
ADD1  
ADD2  
ADD3  
ADD4  
E4 (hex)  
E2 (hex)  
ADD1  
ADD2  
ADD3  
ADD4  
1
A6 (hex)  
A7 (hex)  
E1 (hex)  
ADD1  
ADD2  
ADD3  
ADD4  
1
E0 (hex)  
ADD1  
ADD2  
ADD3  
ADD4  
1
4th byte  
5th byte  
Data Cycles  
8
2
Action  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
21  
MX66L51235F  
Reset Commands  
RST  
(Reset  
Memory)  
Command  
(byte)  
NOP  
RSTEN  
(No Operation) (Reset Enable)  
Mode  
SPI/QPI  
00 (hex)  
SPI/QPI  
66 (hex)  
SPI/QPI  
99 (hex)  
1st byte  
2nd byte  
3rd byte  
4th byte  
5th byte  
Action  
Note 1: The count base is 4-bit for ADD(2) and Dummy(2) because of 2 x I/O. And the MSB is on SO/SIO1 which is different  
from 1 x I/O condition.  
Note 2: ADD=00H will output the manufacturer ID first and AD=01H will output device ID first.  
Note 3: It is not recommended to adopt any other code not in the command definition table, which will potentially enter the hid-  
den mode.  
Note 4: Before executing RST command, RSTEN command must be executed. If there is any other command to interfere, the  
reset operation will be disabled.  
Note 5: The number in parentheses after "ADD" or "Data" stands for how many clock cycles it has. For example, "Data(8)"  
represents there are 8 clock cycles for the data in. Please note the number after "ADD" are based on 3-byte address  
mode, for 4-byte address mode, which will be increased.  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
22  
MX66L51235F  
9-1. Write Enable (WREN)  
The Write Enable (WREN) instruction is for setting Write Enable Latch (WEL) bit. For those instructions like PP/  
PP4B, 4PP/4PP4B, SE/SE4B, BE32K/BE32K4B, BE/BE4B, CE, and WRSR, which are intended to change the  
device content WEL bit should be set every time after the WREN instruction setting the WEL bit.  
The sequence of issuing WREN instruction is: CS# goes low→sending WREN instruction code→ CS# goes high.  
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care in  
SPI mode.  
Figure 7. Write Enable (WREN) Sequence (SPI Mode)  
CS#  
0
1
2
3
4
5
6
7
Mode 3  
Mode 0  
SCLK  
Command  
06h  
SI  
High-Z  
SO  
Figure 8. Write Enable (WREN) Sequence (QPI Mode)  
CS#  
0
1
Mode 3  
SCLK  
Mode 0  
Command  
SIO[3:0]  
06h  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
23  
MX66L51235F  
9-2. Write Disable (WRDI)  
The Write Disable (WRDI) instruction is to reset Write Enable Latch (WEL) bit.  
The sequence of issuing WRDI instruction is: CS# goes low→sending WRDI instruction code→CS# goes high.  
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care in  
SPI mode.  
The WEL bit is reset by following situations:  
- Power-up  
- Reset# pin driven low  
- WRDI command completion  
- WRSR command completion  
- PP/PP4B command completion  
- 4PP/4PP4B command completion  
- SE/SE4B command completion  
- BE32K/BE32K4B command completion  
- BE/BE4B command completion  
- CE command completion  
- PGM/ERS Suspend command completion  
- Reset command completion  
- WRSCUR command completion  
- WPSEL command completion  
- GBLK command completion  
- GBULK command completion  
- WREAR command completion  
- WRLR command completion  
- WRPASS command completion  
- PASSULK command completion  
- SPBLK command completion  
- WRSPB command completion  
- ESSPB command completion  
- WRDPB command completion  
- WRFBR command completion  
- ESFBR command completion  
Figure 9. Write Disable (WRDI) Sequence (SPI Mode)  
CS#  
Mode 3  
Mode 0  
0
1
2
3
4
5
6
7
SCLK  
Command  
04h  
SI  
High-Z  
SO  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
24  
MX66L51235F  
Figure 10. Write Disable (WRDI) Sequence (QPI Mode)  
CS#  
0
1
Mode 3  
SCLK  
Mode 0  
Command  
SIO[3:0]  
04h  
9-3. Read Identification (RDID)  
The RDID instruction is for reading the manufacturer ID of 1-byte and followed by Device ID of 2-byte. The Macronix  
Manufacturer ID and Device ID are listed as Table 6 ID Definitions.  
The sequence of issuing RDID instruction is: CS# goes low→ sending RDID instruction code→24-bits ID data out  
on SO→ to end RDID operation can drive CS# to high at any time during data out.  
While Program/Erase operation is in progress, it will not decode the RDID instruction, therefore there's no effect on  
the cycle of program/erase operation which is currently in progress. When CS# goes high, the device is at standby  
stage.  
Figure 11. Read Identification (RDID) Sequence (SPI mode only)  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
13 14 15 16 17 18  
28 29 30 31  
Mode 3  
Mode 0  
SCLK  
SI  
Command  
9Fh  
Manufacturer Identification  
Device Identification  
High-Z  
SO  
7
6
5
2
1
0
15 14 13  
MSB  
3
2
1
0
MSB  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
25  
MX66L51235F  
9-4. Release from Deep Power-down (RDP), Read Electronic Signature (RES)  
The Release from Deep Power-down (RDP) instruction is completed by driving Chip Select (CS#) High. When Chip  
Select (CS#) is driven High, the device is put in the Stand-by Power mode. If the device was not previously in the  
Deep Power-down mode, the transition to the Stand-by Power mode is immediate. If the device was previously in  
the Deep Power-down mode, though, the transition to the Stand-by Power mode is delayed by tRES2, and Chip  
Select (CS#) must remain High for at least tRES2(max), as specified in Table 17 AC Characteristics. Once in the  
Stand-by Power mode, the device waits to be selected, so that it can receive, decode and execute instructions. The  
RDP instruction is only for releasing from Deep Power Down Mode. Reset# pin goes low will release the Flash from  
deep power down mode.  
RES instruction is for reading out the old style of 8-bit Electronic Signature, whose values are shown as Table 6 ID  
Definitions. This is not the same as RDID instruction. It is not recommended to use for new design. For new design,  
please use RDID instruction.  
Even in Deep power-down mode, the RDP and RES are also allowed to be executed, only except the device is in  
progress of program/erase/write cycle; there's no effect on the current program/erase/write cycle in progress.  
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care  
when during SPI mode.  
The RES instruction is ended by CS# goes high after the ID been read out at least once. The ID outputs repeatedly  
if continuously send the additional clock cycles on SCLK while CS# is at low. If the device was not previously in  
Deep Power-down mode, the device transition to standby mode is immediate. If the device was previously in Deep  
Power-down mode, there's a delay of tRES2 to transit to standby mode, and CS# must remain to high at least  
tRES2(max). Once in the standby mode, the device waits to be selected, so it can be receive, decode, and execute  
instruction.  
Figure 12. Read Electronic Signature (RES) Sequence (SPI Mode)  
CS#  
Mode 3  
Mode 0  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34 35 36 37 38  
SCLK  
Command  
ABh  
t
3 Dummy Bytes  
RES2  
SI  
23 22 21  
MSB  
3
2
1
0
Electronic Signature Out  
High-Z  
7
6
5
4
3
2
0
1
SO  
MSB  
Deep Power-down Mode  
Stand-by Mode  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
26  
MX66L51235F  
Figure 13. Read Electronic Signature (RES) Sequence (QPI Mode)  
CS#  
MODE 3  
0
1
2
3
4
5
6
7
SCLK  
MODE 0  
3 Dummy Bytes  
Command  
ABh  
SIO[3:0]  
X
X
X
X
X
X
H0 L0  
MSB LSB  
Data Out  
Data In  
Stand-by Mode  
Deep Power-down Mode  
Figure 14. Release from Deep Power-down (RDP) Sequence (SPI Mode)  
CS#  
t
RES1  
0
1
2
3
4
5
6
7
Mode 3  
Mode 0  
SCLK  
SI  
Command  
ABh  
High-Z  
SO  
Deep Power-down Mode  
Stand-by Mode  
Figure 15. Release from Deep Power-down (RDP) Sequence (QPI Mode)  
CS#  
t
RES1  
Mode 3  
Mode 0  
0
1
SCLK  
Command  
SIO[3:0]  
ABh  
Deep Power-down Mode  
Stand-by Mode  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
27  
MX66L51235F  
9-5. Read Electronic Manufacturer ID & Device ID (REMS)  
The REMS instruction is an alternative to the Release from Power-down/Device ID instruction that provides both the  
JEDEC assigned manufacturer ID and the specific device ID.  
The REMS instruction is very similar to the Release from Power-down/Device ID instruction. The instruction is  
initiated by driving the CS# pin low and shift the instruction code "90h" followed by two dummy bytes and one  
bytes address (A7~A0). After which, the Manufacturer ID for Macronix (C2h) and the Device ID are shifted out  
on the falling edge of SCLK with most significant bit (MSB) first. The Device ID values are listed in Table 6 of ID  
Definitions. If the one-byte address is initially set to 01h, then the device ID will be read first and then followed by the  
Manufacturer ID. The Manufacturer and Device IDs can be read continuously, alternating from one to the other. The  
instruction is completed by driving CS# high.  
Figure 16. Read Electronic Manufacturer & Device ID (REMS) Sequence (SPI Mode only)  
CS#  
0
1
2
3
4
5
6
7
8
9 10  
Mode 3  
Mode 0  
SCLK  
Command  
90h  
2 Dummy Bytes  
SI  
15 14 13  
3
2
1
0
High-Z  
SO  
CS#  
47  
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46  
SCLK  
ADD (1)  
7
6
5
4
3
2
0
1
SI  
Manufacturer ID  
Device ID  
7
6
5
4
3
2
1
0
7
7
6
5
4
3
2
0
1
SO  
MSB  
MSB  
MSB  
Notes:  
(1) ADD=00H will output the manufacturer's ID first and ADD=01H will output device ID first.  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
28  
MX66L51235F  
9-6. QPI ID Read (QPIID)  
User can execute this QPIID Read instruction to identify the Device ID and Manufacturer ID. The sequence of issue  
QPIID instruction is CS# goes low→sending QPI ID instruction→Data out on SO→CS# goes high. Most significant  
bit (MSB) first.  
After the command cycle, the device will immediately output data on the falling edge of SCLK. The manufacturer ID,  
memory type, and device ID data byte will be output continuously, until the CS# goes high.  
Table 6. ID Definitions  
Command Type  
MX66L51235F  
Manufactory ID  
C2  
Memory type  
Memory density  
1A  
RDID  
RES  
9Fh  
20  
Electronic ID  
19  
Device ID  
19  
ABh  
90h  
AFh  
Manufactory ID  
REMS  
QPIID  
C2  
Manufactory ID  
C2  
Memory type  
20  
Memory density  
1A  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
29  
MX66L51235F  
9-7. Read Status Register (RDSR)  
The RDSR instruction is for reading Status Register Bits. The Read Status Register can be read at any time (even  
in program/erase/write status register condition). It is recommended to check the Write in Progress (WIP) bit before  
sending a new instruction when a program, erase, or write status register operation is in progress.  
The sequence of issuing RDSR instruction is: CS# goes low→ sending RDSR instruction code→ Status Register data  
out on SO.  
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care  
when during SPI mode.  
Figure 17. Read Status Register (RDSR) Sequence (SPI Mode)  
CS#  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
Mode 3  
Mode 0  
SCLK  
SI  
command  
05h  
Status Register Out  
Status Register Out  
High-Z  
SO  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
MSB  
MSB  
Figure 18. Read Status Register (RDSR) Sequence (QPI Mode)  
CS#  
Mode 3  
Mode 0  
0
1
2
3
4
5
6
7
N
SCLK  
SIO[3:0]  
05h  
H0 L0 H0 L0 H0 L0  
H0 L0  
MSB  
LSB  
Status Byte Status Byte Status Byte  
Status Byte  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
30  
MX66L51235F  
9-8. Read Configuration Register (RDCR)  
The RDCR instruction is for reading Configuration Register Bits. The Read Configuration Register can be read at  
any time (even in program/erase/write configuration register condition). It is recommended to check the Write in  
Progress (WIP) bit before sending a new instruction when a program, erase, or write configuration register operation  
is in progress.  
The sequence of issuing RDCR instruction is: CS# goes low→ sending RDCR instruction code→ Configuration  
Register data out on SO.  
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care  
when during SPI mode.  
Figure 19. Read Configuration Register (RDCR) Sequence (SPI Mode)  
CS#  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
Mode 3  
Mode 0  
SCLK  
SI  
command  
15h  
Configuration register Out  
Configuration register Out  
High-Z  
SO  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
MSB  
MSB  
Figure 20. Read Configuration Register (RDCR) Sequence (QPI Mode)  
CS#  
Mode 3  
Mode 0  
N
0
1
2
3
4
5
6
7
SCLK  
SIO[3:0]  
15h  
H0 L0 H0 L0 H0 L0  
H0 L0  
MSB  
LSB  
Config. Byte Config. Byte Config. Byte  
Config. Byte  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
31  
MX66L51235F  
For user to check if Program/Erase operation is finished or not, RDSR instruction flow are shown as follows:  
Figure 21. Program/Erase flow with read array data  
start  
WREN command  
RDSR command*  
No  
WEL=1?  
Yes  
Program/erase command  
Write program data/address  
(Write erase address)  
RDSR command  
No  
WIP=0?  
Yes  
RDSR command  
Read WEL=0, BP[3:0], QE,  
and SRWD data  
Read array data  
(same address of PGM/ERS)  
No  
Verify OK?  
Yes  
Program/erase successfully  
Program/erase fail  
Yes  
Program/erase  
another block?  
* Issue RDSR to check BP[3:0].  
* If WPSEL = 1, issue RDSPB and RDDPB to check the block status.  
No  
Program/erase completed  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
32  
MX66L51235F  
Figure 22. Program/Erase flow without read array data (read P_FAIL/E_FAIL flag)  
start  
WREN command  
RDSR command*  
No  
WEL=1?  
Yes  
Program/erase command  
Write program data/address  
(Write erase address)  
RDSR command  
No  
WIP=0?  
Yes  
RDSR command  
Read WEL=0, BP[3:0], QE,  
and SRWD data  
RDSCUR command  
P_FAIL/E_FAIL =1 ?  
Yes  
No  
Program/erase successfully  
Program/erase fail  
Yes  
Program/erase  
another block?  
* Issue RDSR to check BP[3:0].  
* If WPSEL = 1, issue RDSPB and RDDPB to check the block status.  
No  
Program/erase completed  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
33  
MX66L51235F  
Status Register  
The definition of the status register bits is as below:  
WIP bit. The Write in Progress (WIP) bit, a volatile bit, indicates whether the device is busy in program/erase/write  
status register progress. When WIP bit sets to 1, which means the device is busy in program/erase/write status  
register progress. When WIP bit sets to 0, which means the device is not in progress of program/erase/write status  
register cycle.  
WEL bit. The Write Enable Latch (WEL) bit, a volatile bit, indicates whether the device is set to internal write enable  
latch. When WEL bit sets to 1, which means the internal write enable latch is set, the device can accept program/  
erase/write status register instruction. When WEL bit sets to 0, which means no internal write enable latch; the  
device will not accept program/erase/write status register instruction. The program/erase command will be ignored  
if it is applied to a protected memory area. To ensure both WIP bit & WEL bit are both set to 0 and available for next  
program/erase/operations, WIP bit needs to be confirm to be 0 before polling WEL bit. After WIP bit confirmed, WEL  
bit needs to be confirm to be 0.  
BP3, BP2, BP1, BP0 bits. The Block Protect (BP3, BP2, BP1, BP0) bits, non-volatile bits, indicate the protected area  
(as defined in Table 2) of the device to against the program/erase instruction without hardware protection mode being  
set. To write the Block Protect (BP3, BP2, BP1, BP0) bits requires the Write Status Register (WRSR) instruction to  
be executed. Those bits define the protected area of the memory to against Page Program (PP), Sector Erase (SE),  
Block Erase 32KB (BE32K), Block Erase (BE) and Chip Erase (CE) instructions (only if Block Protect bits (BP3:BP0)  
set to 0, the CE instruction can be executed). The BP3, BP2, BP1, BP0 bits are "0" as default. Which is unprotected.  
QE bit. The Quad Enable (QE) bit, non-volatile bit, while it is "0" (factory default), it performs non-Quad and WP#,  
RESET# are enable. While QE is "1", it performs Quad I/O mode and WP#, RESET# are disabled. In the other  
word, if the system goes into four I/O mode (QE=1), the feature of HPM and RESET# will be disabled.  
SRWD bit. The Status Register Write Disable (SRWD) bit, non-volatile bit, is operated together with Write Protection  
(WP#/SIO2) pin for providing hardware protection mode. The hardware protection mode requires SRWD sets to 1 and  
WP#/SIO2 pin signal is low stage. In the hardware protection mode, the Write Status Register (WRSR) instruction is  
no longer accepted for execution and the SRWD bit and Block Protect bits (BP3, BP2, BP1, BP0) are read only. The  
SRWD bit defaults to be "0".  
Status Register  
bit7  
bit6  
bit5  
BP3  
(level of  
protected  
block)  
bit4  
BP2  
(level of  
protected  
block)  
bit3  
BP1  
(level of  
protected  
block)  
bit2  
BP0  
(level of  
protected  
block)  
bit1  
bit0  
SRWD (status  
register write  
protect)  
QE  
(Quad  
Enable)  
WEL  
(write enable  
latch)  
WIP  
(write in  
progress bit)  
1=Quad  
Enable  
0=not Quad  
Enable  
1=write  
enable  
0=not write 0=not in write  
1=write  
operation  
1=status  
register write  
disable  
(note 1)  
(note 1)  
(note 1)  
(note 1)  
enable  
operation  
Non-volatile Non-volatile Non-volatile Non-volatile Non-volatile Non-volatile  
bit bit bit bit bit bit  
volatile bit  
volatile bit  
Note 1: see the Table 2 "Protected Area Size".  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
34  
MX66L51235F  
Configuration Register  
The Configuration Register is able to change the default status of Flash memory. Flash memory will be configured  
after the CR bit is set.  
ODS bit  
The output driver strength (ODS2, ODS1, ODS0) bits are volatile bits, which indicate the output driver level (as  
defined in "Output Driver Strength Table") of the device. The Output Driver Strength is defaulted as 30 Ohms when  
delivered from factory. To write the ODS bits requires the Write Status Register (WRSR) instruction to be executed.  
TB bit  
The Top/Bottom (TB) bit is a non-volatile OTP bit. The Top/Bottom (TB) bit is used to configure the Block Protect  
area by BP bit (BP3, BP2, BP1, BP0), starting from TOP or Bottom of the memory array. The TB bit is defaulted as  
“0”, which means Top area protect. When it is set as “1”, the protect area will change to Bottom area of the memory  
device. To write the TB bits requires the Write Status Register (WRSR) instruction to be executed.  
4BYTE Indicator bit  
By writing EN4B instruction, the 4BYTE bit may be set as "1" to access the address length of 32-bit for memory area  
of higher density (large than 128Mb). The default state is "0" as the 24-bit address mode. The 4BYTE bit may be  
cleared by power-off or writing EX4B instruction to reset the state to be "0".  
Configuration Register  
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
DC1  
DC0  
TB  
ODS 2  
ODS 1  
ODS 0  
(Dummy  
cycle 1)  
(Dummy  
cycle 0)  
4 BYTE  
Reserved  
(top/bottom (output driver (output driver (output driver  
selected)  
strength)  
strength)  
strength)  
0=3-byte  
address  
mode  
0=Top area  
protect  
(note 2)  
(note 2)  
1=4-byte  
address  
mode  
x
x
1=Bottom  
area protect  
(Default=0)  
(note 1)  
(note 1)  
(note 1)  
(Default=0)  
volatile bit  
volatile bit  
volatile bit  
OTP  
volatile bit  
volatile bit  
volatile bit  
Note 1: see "Output Driver Strength Table"  
Note 2: see "Dummy Cycle and Frequency Table (MHz)"  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
35  
MX66L51235F  
Output Driver Strength Table  
ODS2  
ODS1  
ODS0  
Description  
Reserved  
90 Ohms  
60 Ohms  
45 Ohms  
Note  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Impedance at VCC/2  
Reserved  
20 Ohms  
15 Ohms  
30 Ohms (Default)  
Dummy Cycle and Frequency Table (MHz)  
Numbers of Dummy  
Dual Output Fast  
Quad Output Fast  
DC[1:0]  
Fast Read  
clock cycles  
Read  
104  
104  
104  
133  
Read  
104  
84  
104  
133  
00 (default)  
8
6
8
104  
104  
104  
133  
01  
10  
11  
10  
Numbers of Dummy  
DC[1:0]  
Dual IO Fast Read  
clock cycles  
00 (default)  
4
6
8
84  
01  
10  
11  
104  
104  
133  
10  
Numbers of Dummy  
DC[1:0]  
Quad IO Fast Read  
clock cycles  
00 (default)  
6
4
8
84  
70  
104  
133  
01  
10  
11  
10  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
36  
MX66L51235F  
9-9. Write Status Register (WRSR)  
The WRSR instruction is for changing the values of Status Register Bits and Configuration Register Bits. Before  
sending WRSR instruction, the Write Enable (WREN) instruction must be decoded and executed to set the Write  
Enable Latch (WEL) bit in advance. The WRSR instruction can change the value of Block Protect (BP3, BP2, BP1,  
BP0) bits to define the protected area of memory (as shown in Table 2). The WRSR also can set or reset the Quad  
enable (QE) bit and set or reset the Status Register Write Disable (SRWD) bit in accordance with Write Protection (WP#/  
SIO2) pin signal, but has no effect on bit1(WEL) and bit0 (WIP) of the status register. The WRSR instruction cannot  
be executed once the Hardware Protected Mode (HPM) is entered.  
The sequence of issuing WRSR instruction is: CS# goes low→ sending WRSR instruction code→ Status Register  
data on SI→CS# goes high.  
The CS# must go high exactly at the 8 bits or 16 bits data boundary; otherwise, the instruction will be rejected and  
not executed. The self-timed Write Status Register cycle time (tW) is initiated as soon as Chip Select (CS#) goes  
high. The Write in Progress (WIP) bit still can be check out during the Write Status Register cycle is in progress.  
The WIP sets 1 during the tW timing, and sets 0 when Write Status Register Cycle is completed, and the Write  
Enable Latch (WEL) bit is reset.  
Figure 23. Write Status Register (WRSR) Sequence (SPI Mode)  
CS#  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  
Mode 3  
Mode 0  
SCLK  
command  
01h  
Status  
Register In  
Configuration  
Register In  
SI  
4
15 14  
13  
12 11  
10 9  
8
2
1
0
7
6
5
3
MSB  
High-Z  
SO  
Note : The CS# must go high exactly at 8 bits or 16 bits data boundary to completed the write register command.  
Figure 24. Write Status Register (WRSR) Sequence (QPI Mode)  
CS#  
Mode 3  
Mode 0  
Mode 3  
Mode 0  
0
1
2
3
4
5
SCLK  
CR in  
SR in  
Command  
01h  
H0 L0 H1 L1  
SIO[3:0]  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
37  
MX66L51235F  
Software Protected Mode (SPM):  
-
When SRWD bit=0, no matter WP#/SIO2 is low or high, the WREN instruction may set the WEL bit and can  
change the values of SRWD, BP3, BP2, BP1, BP0. The protected area, which is defined by BP3, BP2, BP1,  
BP0 and T/B bit, is at software protected mode (SPM).  
-
When SRWD bit=1 and WP#/SIO2 is high, the WREN instruction may set the WEL bit can change the values  
of SRWD, BP3, BP2, BP1, BP0. The protected area, which is defined by BP3, BP2, BP1, BP0 and T/B bit, is at  
software protected mode (SPM)  
Note:  
If SRWD bit=1 but WP#/SIO2 is low, it is impossible to write the Status Register even if the WEL bit has previously  
been set. It is rejected to write the Status Register and not be executed.  
Hardware Protected Mode (HPM):  
-
When SRWD bit=1, and then WP#/SIO2 is low (or WP#/SIO2 is low before SRWD bit=1), it enters the hardware  
protected mode (HPM). The data of the protected area is protected by software protected mode by BP3, BP2,  
BP1, BP0 and T/B bit and hardware protected mode by the WP#/SIO2 to against data modification.  
Note:  
To exit the hardware protected mode requires WP#/SIO2 driving high once the hardware protected mode is entered.  
If the WP#/SIO2 pin is permanently connected to high, the hardware protected mode can never be entered; only  
can use software protected mode via BP3, BP2, BP1, BP0 and T/B bit.  
If the system enter QPI or set QE=1, the feature of HPM will be disabled.  
Table 7. Protection Modes  
Mode  
Status register condition  
WP# and SRWD bit status  
Memory  
Status register can be written  
in (WEL bit is set to "1") and  
the SRWD, BP0-BP3  
Software protection  
mode (SPM)  
WP#=1 and SRWD bit=0, or  
WP#=0 and SRWD bit=0, or  
WP#=1 and SRWD=1  
The protected area  
cannot  
be program or erase.  
bits can be changed  
The SRWD, BP0-BP3 of  
status register bits cannot be  
changed  
The protected area  
cannot  
be program or erase.  
Hardware protection  
mode (HPM)  
WP#=0, SRWD bit=1  
Note:  
1. As defined by the values in the Block Protect (BP3, BP2, BP1, BP0) bits of the Status Register, as shown in  
Table 2.  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
38  
MX66L51235F  
Figure 25. WRSR flow  
start  
WREN command  
RDSR command  
No  
WEL=1?  
Yes  
WRSR command  
Write status register data  
RDSR command  
No  
WIP=0?  
Yes  
RDSR command  
Read WEL=0, BP[3:0], QE,  
and SRWD data  
No  
Verify OK?  
Yes  
WRSR successfully  
WRSR fail  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
39  
MX66L51235F  
Figure 26. WP# Setup Timing and Hold Timing during WRSR when SRWD=1  
WP#  
CS#  
tSHWL  
tWHSL  
0
1
2
3
4
5
6
7
8
9
10 11 12  
13 14  
15  
SCLK  
01h  
SI  
High-Z  
SO  
Note: WP# must be kept high until the embedded operation finish.  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
40  
MX66L51235F  
9-10. Enter 4-byte mode (EN4B)  
The EN4B instruction enables accessing the address length of 32-bit for the memory area of higher density (larger  
than 128Mb). The device default is in 24-bit address mode; after sending out the EN4B instruction, the bit5 (4BYTE  
bit) of security register will be automatically set to "1" to indicate the 4-byte address mode has been enabled. Once  
the 4-byte address mode is enabled, the address length becomes 32-bit instead of the default 24-bit. There are  
three methods to exit the 4-byte mode: writing exit 4-byte mode (EX4B) instruction, Reset or power-off.  
All instructions are accepted normally, and just the address bit is changed from 24-bit to 32-bit.  
The following command don't support 4bye address: RDSFDP, RES and REMS.  
The sequence of issuing EN4B instruction is: CS# goes low → sending EN4B instruction to enter 4-byte mode(  
automatically set 4BYTE bit as "1") → CS# goes high.  
9-11. Exit 4-byte mode (EX4B)  
The EX4B instruction is executed to exit the 4-byte address mode and return to the default 3-bytes address mode.  
After sending out the EX4B instruction, the bit5 (4BYTE bit) of Configuration register will be cleared to be "0" to  
indicate the exit of the 4-byte address mode. Once exiting the 4-byte address mode, the address length will return to  
24-bit.  
The sequence of issuing EX4B instruction is: CS# goes low → sending EX4B instruction to exit 4-byte mode  
(automatically clear the 4BYTE bit to be "0") → CS# goes high.  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
41  
MX66L51235F  
9-12. Read Data Bytes (READ)  
The read instruction is for reading data out. The address is latched on rising edge of SCLK, and data shifts out on  
the falling edge of SCLK at a maximum frequency fR. The first address can't be any location if the device is still in  
3-Byte mode. The address is automatically increased to the next higher address after each byte data is shifted out,  
so the whole memory can be read out at a single READ instruction. The address counter rolls over to 0 when the  
highest address has been reached.  
The default read mode is 3-byte address, to access higher address (4-byte address) which requires to enter the  
4-byte address read mode or to define EAR bit. To enter the 4-byte mode, please refer to the enter 4-byte mode (EN4B)  
Mode section.  
The sequence of issuing READ instruction is: CS# goes low→sending READ instruction code→ 3-byte or 4-byte  
address on SI→ data out on SO→to end READ operation can use CS# to high at any time during data out.  
Figure 27. Read Data Bytes (READ) Sequence (SPI Mode only)  
CS#  
Mode 3  
Mode 0  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34 35 36 37 38 39  
SCLK  
command  
03h  
24-Bit Address  
(Note)  
23 22 21  
MSB  
3
2
1
0
SI  
Data Out 1  
Data Out 2  
High-Z  
2
7
6
5
4
3
1
7
0
SO  
MSB  
Note: Please note the address cycles above are based on 3-byte address mode. For 4-byte address mode, the  
address cycles will be increased.  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
42  
MX66L51235F  
9-13. Read Data Bytes at Higher Speed (FAST_READ)  
The FAST_READ instruction is for quickly reading data out. The address is latched on rising edge of SCLK, and  
data of each bit shifts out on the falling edge of SCLK at a maximum frequency fC. The first address can't be any  
location if the device is still in 3-Byte mode. The address is automatically increased to the next higher address  
after each byte data is shifted out, so the whole memory can be read out at a single FAST_READ instruction. The  
address counter rolls over to 0 when the highest address has been reached.  
The default read mode is 3-byte address, to access higher address (4-byte address) which requires to enter the  
4-byte address read mode or to define EAR bit. To enter the 4-byte mode, please refer to the enter 4-byte mode (EN4B)  
Mode section.  
Read on SPI Mode The sequence of issuing FAST_READ instruction is: CS# goes low→ sending FAST_READ  
instruction code→ 3-byte or 4-byte address on SI→ 8 dummy cycles (default)→ data out on SO→ to end FAST_  
READ operation can use CS# to high at any time during data out.  
While Program/Erase/Write Status Register cycle is in progress, FAST_READ instruction is rejected without any  
impact on the Program/Erase/Write Status Register current cycle.  
Figure 28. Read at Higher Speed (FAST_READ) Sequence (SPI Mode)  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31  
Mode 3  
Mode 0  
SCLK  
Command  
0Bh  
24-Bit Address  
(Note)  
SI  
23 22 21  
3
2
1
0
High-Z  
SO  
CS#  
47  
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46  
SCLK  
Configurable  
Dummy Cycle  
7
6
5
4
3
2
0
1
SI  
DATA OUT 2  
DATA OUT 1  
7
6
5
4
3
2
1
0
7
7
6
5
4
3
2
0
1
SO  
MSB  
MSB  
MSB  
Note: Please note the address cycles above are based on 3-byte address mode. For 4-byte address mode, the  
address cycles will be increased.  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
43  
MX66L51235F  
9-14. Dual Output Read Mode (DREAD)  
The DREAD instruction enable double throughput of Serial Flash in read mode. The address is latched on rising  
edge of SCLK, and data of every two bits (interleave on 2 I/O pins) shift out on the falling edge of SCLK at a  
maximum frequency fT. The first address can't be any location if the device is still in 3-Byte mode. The address is  
automatically increased to the next higher address after each byte data is shifted out, so the whole memory can  
be read out at a single DREAD instruction. The address counter rolls over to 0 when the highest address has been  
reached. Once writing DREAD instruction, the following data out will perform as 2-bit instead of previous 1-bit.  
The default read mode is 3-byte address, to access higher address (4-byte address) which requires to enter the  
4-byte address read mode or to define EAR bit. To enter the 4-byte mode, please refer to the enter 4-byte mode (EN4B)  
Mode section.  
The sequence of issuing DREAD instruction is: CS# goes low  
sending DREAD instruction 3-byte or 4-byte  
address on SIO0 8 dummy cycles (default) on SIO0  
data out interleave on SIO1 & SIO0  
to end DREAD  
operation can use CS# to high at any time during data out.  
While Program/Erase/Write Status Register cycle is in progress, DREAD instruction is rejected without any impact  
on the Program/Erase/Write Status Register current cycle.  
Figure 29. Dual Read Mode Sequence  
CS#  
30 31 32  
39 40 41 42 43 44 45  
0
1
2
3
4
5
6
7
8
9
SCLK  
Data Out  
Data Out  
1
Configurable  
Dummy Cycle  
Command  
24 ADD Cycle  
2
A23 A22  
A1 A0  
D4 D2  
D6 D4  
D7 D5  
3B  
D6  
D7  
D0  
SI/SIO0  
High Impedance  
D1  
D5 D3  
SO/SIO1  
Notes:  
1. Please note the above address cycles are base on 3-byte address mode, for 4-byte address mode, the address  
cycles will be increased.  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
44  
MX66L51235F  
9-15. 2 x I/O Read Mode (2READ)  
The 2READ instruction enable double throughput of Serial Flash in read mode. The address is latched on rising  
edge of SCLK, and data of every two bits (interleave on 2 I/O pins) shift out on the falling edge of SCLK at a  
maximum frequency fT. The first address can't be any location if the device is still in 3-Byte mode. The address is  
automatically increased to the next higher address after each byte data is shifted out, so the whole memory can  
be read out at a single 2READ instruction. The address counter rolls over to 0 when the highest address has been  
reached. Once writing 2READ instruction, the following address/dummy/data out will perform as 2-bit instead of  
previous 1-bit.  
The default read mode is 3-byte address, to access higher address (4-byte address) which requires to enter the  
4-byte address read mode or to define EAR bit. To enter the 4-byte mode, please refer to the enter 4-byte mode (EN4B)  
Mode section.  
The sequence of issuing 2READ instruction is: CS# goes low sending 2READ instruction 3-byte or 4-byte  
address interleave on SIO1 & SIO0 4 dummy cycles (default) on SIO1 & SIO0 data out interleave on SIO1 &  
SIO0 to end 2READ operation can use CS# to high at any time during data out.  
While Program/Erase/Write Status Register cycle is in progress, 2READ instruction is rejected without any impact  
on the Program/Erase/Write Status Register current cycle.  
Figure 30. 2 x I/O Read Mode Sequence (SPI Mode only)  
CS#  
Mode 3  
Mode 0  
Mode 3  
Mode 0  
0
1
2
3
4
5
6
7
8
9
10  
17 18 19 20 21 22 23 24 25 26 27 28 29 30  
SCLK  
Data  
Data  
Configurable  
Dummy Cycle  
12 ADD Cycles  
(Note)  
Command  
Out 1  
Out 2  
D6 D4 D2 D0 D6 D4 D2 D0  
A22 A20 A18  
A4 A2 A0  
BBh  
SI/SIO0  
D7 D5 D3 D1 D7 D5 D3 D1  
A23 A21 A19  
A5 A3 A1  
SO/SIO1  
Note: Please note the address cycles above are based on 3-byte address mode. For 4-byte address mode, the  
address cycles will be increased.  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
45  
MX66L51235F  
9-16. Quad Read Mode (QREAD)  
The QREAD instruction enable quad throughput of Serial Flash in read mode. A Quad Enable (QE) bit of status  
Register must be set to "1" before sending the QREAD instruction. The address is latched on rising edge of SCLK,  
and data of every four bits (interleave on 4 I/O pins) shift out on the falling edge of SCLK at a maximum frequency  
fQ. The first address can't be any location if the device is still in 3-Byte mode. The address is automatically  
increased to the next higher address after each byte data is shifted out, so the whole memory can be read out at a  
single QREAD instruction. The address counter rolls over to 0 when the highest address has been reached. Once  
writing QREAD instruction, the following data out will perform as 4-bit instead of previous 1-bit.  
The default read mode is 3-byte address, to access higher address (4-byte address) which requires to enter the  
4-byte address read mode or to define EAR bit. To enter the 4-byte mode, please refer to the enter 4-byte mode (EN4B)  
Mode section.  
The sequence of issuing QREAD instruction is: CS# goes low  
sending QREAD instruction → 3-byte or 4-byte  
address on SI  
8 dummy cycle (Default)  
data out interleave on SO3, SO2, SO1 & SO0  
to end QREAD  
operation can use CS# to high at any time during data out.  
While Program/Erase/Write Status Register cycle is in progress, QREAD instruction is rejected without any impact  
on the Program/Erase/Write Status Register current cycle.  
Figure 31. Quad Read Mode Sequence  
CS#  
29 30 31 32 33  
38 39 40 41 42  
0
1
2
3
4
5
6
7
8
9
SCLK  
Configurable  
dummy cycles  
Data  
Out 1  
Data Data  
Out 2 Out 3  
Command  
6B  
24 ADD Cycles  
A23A22  
A2 A1 A0  
D4 D0 D4 D0 D4  
SIO0  
SIO1  
SIO2  
SIO3  
High Impedance  
High Impedance  
High Impedance  
D5 D1 D5 D1 D5  
D6 D2 D6 D2 D6  
D7 D3 D7 D3 D7  
Notes:  
1. Please note the above address cycles are base on 3-byte address mode, for 4-byte address mode, the address  
cycles will be increased.  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
46  
MX66L51235F  
9-17. 4 x I/O Read Mode (4READ)  
The 4READ instruction enable quad throughput of Serial Flash in read mode. A Quad Enable (QE) bit of status  
Register must be set to "1" before sending the 4READ instruction. The address is latched on rising edge of SCLK,  
and data of every four bits (interleave on 4 I/O pins) shift out on the falling edge of SCLK at a maximum frequency  
fQ. The first address can't be any location if the device is still in 3-Byte mode. The address is automatically  
increased to the next higher address after each byte data is shifted out, so the whole memory can be read out at a  
single 4READ instruction. The address counter rolls over to 0 when the highest address has been reached. Once  
writing 4READ instruction, the following address/dummy/data out will perform as 4-bit instead of previous 1-bit.  
The default read mode is 3-byte address, to access higher address (4-byte address) which requires to enter the  
4-byte address read mode or to define EAR bit. To enter the 4-byte mode, please refer to the enter 4-byte mode (EN4B)  
Mode section.  
4 x I/O Read on SPI Mode (4READ) The sequence of issuing 4READ instruction is: CS# goes low sending  
4READ instruction 3-byte or 4-byte address interleave on SIO3, SIO2, SIO1 & SIO0 6 dummy cycles (Default)  
data out interleave on SIO3, SIO2, SIO1 & SIO0 to end 4READ operation can use CS# to high at any time  
during data out.  
4 x I/O Read on QPI Mode (4READ) The 4READ instruction also support on QPI command mode. The sequence  
of issuing 4READ instruction QPI mode is: CS# goes low sending 4READ instruction 3-byte or 4-byte address  
interleave on SIO3, SIO2, SIO1 & SIO0 6 dummy cycles (Default) data out interleave on SIO3, SIO2, SIO1 &  
SIO0 to end 4READ operation can use CS# to high at any time during data out.  
While Program/Erase/Write Status Register cycle is in progress, 4READ instruction is rejected without any impact  
on the Program/Erase/Write Status Register current cycle.  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
47  
MX66L51235F  
Figure 32. 4 x I/O Read Mode Sequence (SPI Mode)  
CS#  
23 24  
10 11 12 13 14 15 16 17 18 19 20 21 22  
Mode 3  
Mode 0  
Mode 3  
Mode 0  
0
1
2
3
4
5
6
7
8
9
SCLK  
Data  
Data  
Data  
Command  
6 ADD Cycles  
Performance  
enhance  
Out 1  
Out 2 Out 3  
indicator (Note 1)  
Configurable  
Dummy Cycle (Note 3)  
A20 A16 A12 A8 A4 A0  
D4 D0 D4 D0 D4 D0  
P4 P0  
EBh  
SIO0  
SIO1  
SIO2  
SIO3  
A21 A17 A13 A9 A5 A1  
A22 A18 A14 A10 A6 A2  
D5 D1 D5 D1 D5 D1  
D6 D2 D6 D2 D6 D2  
P5 P1  
P6 P2  
A23 A19 A15 A11 A7 A3  
D7 D3 D7 D3 D7 D3  
P7 P3  
Notes:  
1. Hi-impedance is inhibited for the two clock cycles.  
2. P7≠P3, P6≠P2, P5≠P1 & P4≠P0 (Toggling) is inhibited.  
3. Configuration Dummy cycle numbers will be different depending on the bit6 & bit 7 (DC0 & DC1) setting in  
configuration register.  
Figure 33. 4 x I/O Read Mode Sequence (QPI Mode)  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
MODE 3  
MODE 0  
MODE 3  
MODE 0  
SCLK  
EB  
SIO[3:0]  
H0 L0 H1 L1 H2 L2 H3 L3  
A5 A4 A3 A2 A1 A0  
X
X
X
X
X
X
MSB  
Data Out  
24-bit Address  
(Note)  
Configurable  
Dummy Cycle  
Data In  
Note: Please note the address cycles above are based on 3-byte address mode. For 4-byte address mode, the  
address cycles will be increased.  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
48  
MX66L51235F  
9-18. 4 Byte Address Command Set  
The operation of 4-byte address command set was very similar to original 3-byte address command set. The  
only different is all the 4-byte command set request 4-byte address (A31-A0) followed by instruction code. The  
command set support 4-byte address including: READ4B, Fast_Read4B, DREAD4B, 2READ4B, QREAD4B,  
4READ4B, PP4B, 4PP4B, SE4B, BE32K4B, BE4B. Please note that it is not necessary to issue EN4B command  
before issuing any of 4-byte command set.  
Figure 34. Read Data Bytes using 4 Byte Address Sequence (READ4B)  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
36 37 38 39 40 41 42 43 44 45 46 47  
SCLK  
Command  
13h  
32-bit address  
31 30 29  
MSB  
3
2
1
0
SI  
DataOut 1  
DataOut 2  
7
High Impedance  
2
SO  
7
6
5
4
3
1
0
MSB  
Figure 35. Read Data Bytes at Higher Speed using 4 Byte Address Sequence (FASTREAD4B)  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
36 37 38 39  
SCLK  
Command  
0Ch  
32-bit address  
31 30 29  
3
2
1
0
SI  
High Impedance  
SO  
CS#  
55  
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54  
SCLK  
Configurable  
Dummy cycles  
SI  
7
6
5
4
3
2
0
1
DATAOUT2  
DATAOUT1  
7
6
5
4
3
2
1
0
7
SO  
7
6
5
4
3
2
0
1
MSB  
MSB  
MSB  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
49  
MX66L51235F  
Figure 36. 2 x I/O Fast Read using 4 Byte Address Sequence (2READ4B)  
CS#  
Mode 3  
Mode 0  
Mode 3  
Mode 0  
0
1
2
3
4
5
6
7
8
9
10  
21 22 23 24 25 26 27 28 29 30 31 32 33 34  
SCLK  
Configurable  
Dummy Cycle  
(Note)  
Data  
Out 1  
Data  
Out 2  
16 ADD Cycles  
Command  
D6 D4 D2 D0 D6 D4 D2 D0  
A30 A28 A26  
A31 A29 A27  
A4 A2 A0  
BCh  
SI/SIO0  
D7 D5 D3 D1 D7 D5 D3 D1  
A5 A3 A1  
SO/SIO1  
Note: Configuration Dummy cycle numbers will be different depending on the bit6 & bit 7 (DC0 & DC1) setting in  
configuration register.  
Figure 37. 4 I/O Fast Read using 4 Byte Address sequence (4READ4B)  
CS#  
23 24 25 26  
Mode 3  
Mode 0  
Mode 3  
Mode 0  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22  
SCLK  
Command  
8 ADD Cycles  
Performance  
Data  
Out 1  
Data  
Out 2  
Data  
Out 3  
enhance  
indicator  
Configurable  
Dummy Cycle  
(Note)  
A16  
A12 A8 A4 A0  
D4 D0 D4 D0 D4 D0  
A28 A24  
A29 A25  
A20  
P4 P0  
ECh  
SIO0  
SIO1  
SIO2  
SIO3  
A21 A17 A13 A9 A5 A1  
P5 P1  
P6 P2  
P7 P3  
D5 D1 D5 D1 D5 D1  
D6 D2 D6 D2 D6 D2  
A30 A26 A22 A18 A14 A10 A6 A2  
A31 A27  
A23 A19 A15 A11 A7 A3  
D7 D3 D7 D3 D7 D3  
Note: Configuration Dummy cycle numbers will be different depending on the bit6 & bit 7 (DC0 & DC1) setting in  
configuration register.  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
50  
MX66L51235F  
9-19. Burst Read  
The Burst Read feature allows applications to fill a cache line with a fixed length of data without using multiple read  
commands. Burst Read is disabled by default at power-up or reset. Burst Read is enabled by setting the Burst  
Length. When the Burst Length is set, reads will wrap on the selected boundary (8/16/32/64-bytes) containing the  
initial target address. For example if an 8-byte Wrap Depth is selected, reads will wrap on the 8-byte-page-aligned  
boundary containing the initial read address.  
To set the Burst Length, drive CS# low → send SET BURST LENGTH instruction code → send WRAP CODE  
→drive CS# high. Refer to the table below for valid 8-bit Wrap Codes and their corresponding Wrap Depth.  
Data  
00h  
01h  
02h  
03h  
1xh  
Wrap Around  
Wrap Depth  
8-byte  
Yes  
Yes  
Yes  
Yes  
No  
16-byte  
32-byte  
64-byte  
X
Once Burst Read is enabled, it will remain enabled until the device is power-cycled or reset. The SPI and QPI mode  
4READ and 4READ4B read commands support the wrap around feature after Burst Read is enabled. To change  
the wrap depth, resend the Burst Read instruction with the appropriate Wrap Code. To disable Burst Read, send the  
Burst Read instruction with Wrap Code 1xh. “EBh” supports wrap around feature after wrap around is enabled. Both  
SPI (8 clocks) and QPI (2 clocks) command cycle can be accepted by this instruction. The SIO[3:1] are don't care  
during SPI mode.  
Figure 38. Burst Read - SPI Mode  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
Mode 3  
Mode 0  
SCLK  
SIO  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
C0h  
Figure 39. Burst Read - QPI Mode  
CS#  
0
1
2
3
Mode 3  
Mode 0  
SCLK  
C0h  
H0  
L0  
SIO[3:0]  
MSB LSB  
Note: MSB=Most Significant Bit  
LSB=Least Significant Bit  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
51  
MX66L51235F  
9-20. Performance Enhance Mode  
The device could waive the command cycle bits if the two cycle bits after address cycle toggles.  
Performance enhance mode is supported in both SPI and QPI mode.  
In QPI mode, “EBh” "ECh" and SPI “EBh” "ECh" commands support enhance mode. The performance enhance  
mode is not supported in dual I/O mode.  
To enter performance-enhancing mode, P[7:4] must be toggling with P[3:0]; likewise P[7:0]=A5h, 5Ah, F0h or 0Fh  
can make this mode continue and skip the next 4READ instruction. To leave enhance mode, P[7:4] is no longer  
toggling with P[3:0]; likewise P[7:0]=FFh, 00h, AAh or 55h along with CS# is afterwards raised and then lowered.  
Issuing ”FFh” data cycle can also exit enhance mode. The system then will leave performance enhance mode and  
return to normal operation.  
After entering enhance mode, following CS# go high, the device will stay in the read mode and treat CS# go low of  
the first clock as address instead of command cycle.  
This sequence of issuing 4READ instruction especially useful in random access: CS# goes low→send 4READ  
instruction→3-bytes or 4-bytes address interleave on SIO3, SIO2, SIO1 & SIO0→performance enhance toggling  
bit P[7:0]→ 4 dummy cycles (Default) →data out until CS# goes high → CS# goes low (the following 4READ  
instruction is ignored) → 3-bytes or 4-bytes random access address.  
To conduct the Performance Enhance Mode Reset operation in SPI mode, FFh data cycle(8 clocks in 3-byte  
address mode)/3FFh data cycle(10 clocks in 4-byte address mode), should be issued in 1I/O sequence. In QPI  
Mode, FFFFFFFFh data cycle(8 clocks in 3-byte address mode)/FFFFFFFFFFh data cycle (10 clocks in 4-byte  
address mode), in 4I/O should be issued.  
If the system controller is being Reset during operation, the flash device will return to the standard SPI operation.  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
52  
MX66L51235F  
Figure 40. 4 x I/O Read Performance Enhance Mode Sequence (SPI Mode)  
CS#  
Mode 3  
Mode 0  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22  
n
SCLK  
Data  
Data  
Out 2  
Data  
Out n  
Command  
6 ADD Cycles  
(Note 2)  
Performance  
enhance  
Out 1  
indicator (Note 1)  
Configurable  
Dummy Cycle (Note 2)  
P4 P0  
D4 D0 D4 D0  
D4 D0  
A20 A16 A12 A8 A4 A0  
EBh  
SIO0  
SIO1  
SIO2  
A21 A17 A13 A9 A5 A1  
A22 A18 A14 A10 A6 A2  
D5 D1 D5 D1  
D6 D2 D6 D2  
D5 D1  
D6 D2  
P5 P1  
P6 P2  
A23 A19 A15 A11 A7 A3  
D7 D3 D7 D3  
D7 D3  
P7 P3  
SIO3  
CS#  
n+1  
...........  
n+7......n+9 ........... n+13  
...........  
Mode 3  
Mode 0  
SCLK  
Data  
Out 1  
Data  
Out 2  
Data  
Out n  
6 ADD Cycles  
(Note 2)  
Performance  
enhance  
indicator (Note 1)  
Configurable  
Dummy Cycle (Note 2)  
D4 D0 D4 D0  
D4 D0  
P4 P0  
A20 A16 A12 A8 A4 A0  
SIO0  
SIO1  
SIO2  
SIO3  
D5 D1 D5 D1  
D6 D2 D6 D2  
D5 D1  
D6 D2  
A21 A17 A13 A9 A5 A1  
A22 A18 A14 A10 A6 A2  
P5 P1  
P6 P2  
D7 D3 D7 D3  
D7 D3  
A23 A19 A15 A11 A7 A3  
P7 P3  
Notes:  
1. If not using performance enhance recommend to keep 1 or 0 in performance enhance indicator.  
Reset the performance enhance mode, if P7=P3 or P6=P2 or P5=P1 or P4=P0, ex: AA, 00, FF.  
2. Configuration Dummy cycle numbers will be different depending on the bit6 & bit 7 (DC0 & DC1) setting in  
configuration register.  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
53  
MX66L51235F  
Figure 41. 4 x I/O Read Performance Enhance Mode Sequence (QPI Mode)  
CS#  
Mode 3  
Mode 0  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
SCLK  
EBh  
SIO[3:0]  
X
X
X
X
H0 L0 H1 L1  
MSB LSB MSB LSB  
A5 A4 A3 A2 A1 A0  
P(7:4)P(3:0)  
Data In  
Data Out  
performance  
enhance  
indicator  
Configurable  
Dummy Cycle (Note 1)  
CS#  
SCLK  
n+1 .............  
Mode 0  
SIO[3:0]  
X
X
X
X
H0 L0 H1 L1  
MSB LSB MSB LSB  
A5 A4 A3 A2 A1 A0  
P(7:4)P(3:0)  
Data Out  
6 Address cycles  
(Note)  
performance  
enhance  
indicator  
Configurable  
Dummy Cycle (Note 1)  
Notes:  
1.  
Configuration Dummy cycle numbers will be different depending on the bit6 & bit 7 (DC0 & DC1) setting in  
configuration register.  
2.  
Reset the performance enhance mode, if P7=P3 or P6=P2 or P5=P1 or P4=P0, ex: AA, 00, FF.  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
54  
MX66L51235F  
9-21. Fast Boot  
The Fast Boot Feature provides the ability to automatically execute read operation after power on cycle or reset  
without any read instruction.  
A Fast Boot Register is provided on this device. It can enable the Fast Boot function and also define the number of  
delay cycles and start address (where boot code being transferred). Instruction WRFBR (write fast boot register) and  
ESFBR (erase fast boot register) can be used for the status configuration or alternation of the Fast Boot Register  
bit. RDFBR (read fast boot register) can be used to verify the program state of the Fast Boot Register. The default  
number of delay cycles is 13 cycles, and there is a 16bytes boundary address for the start of boot code access.  
When CS# starts to go low, data begins to output from default address after the delay cycles (default as 13 cycles).  
After CS# returns to go high, the device will go back to standard SPI mode and user can start to input command. In  
the fast boot data out process from CS# goes low to CS# goes high, a minimum of one byte must be output.  
Once Fast Boot feature has been enabled, the device will automatically start a read operation after power on cycle,  
reset command, or hardware reset operation.  
The fast Boot feature can support Single I/O and Quad I/O interface. If the QE bit of Status Register is “0”, the data  
is output by Single I/O interface. If the QE bit of Status Register is set to “1”, the data is output by Quad I/O interface.  
Table 8. Fast Boot Register (FBR)  
Bits  
Description  
FBSA (FastBoot Start  
Address)  
Bit Status  
16 bytes boundary address for the start of boot  
code access.  
Default State  
Type  
Non-  
Volatile  
31 to 4  
FFFFFFF  
Non-  
Volatile  
3
2 to 1  
0
x
1
11  
1
00: 7 delay cycles  
01: 9 delay cycles  
10: 11 delay cycles  
11: 13 delay cycles  
0=FastBoot is enabled.  
1=FastBoot is not enabled.  
FBSD (FastBoot Start  
Delay Cycle)  
Non-  
Volatile  
Non-  
Volatile  
FBE (FastBoot Enable)  
Note: If FBSD = 11, the maximum clock frequency is 133 MHz  
If FBSD = 10, the maximum clock frequency is 104 MHz  
If FBSD = 01, the maximum clock frequency is 84 MHz  
If FBSD = 00, the maximum clock frequency is 70 MHz  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
55  
MX66L51235F  
Figure 42. Fast Boot Sequence (QE Bit=0)  
CS#  
0
-
n+1  
n+13 n+15  
n+12 n+14  
n+10n+11  
Mode 3  
Mode 0  
-
-
-
-
-
n
n+2  
n+4 n+5 n+6  
n+8 n+9  
n+7  
n+3  
SCLK  
SI  
Delay Cycles  
Don’t care or High Impedance  
Data Out 1  
Data Out 2  
High Impedance  
SO  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
MSB  
MSB  
MSB  
Note: If FBSD = 11, delay cycles is 13 and n is 12.  
If FBSD = 10, delay cycles is 11 and n is 10.  
If FBSD = 01, delay cycles is 9 and n is 8.  
If FBSD = 00, delay cycles is 7 and n is 6.  
Figure 43. Fast Boot Sequence (QE Bit=1)  
CS#  
-
-
-
-
-
-
-
n
n+1 n+2 n+3 n+5 n+6 n+7 n+8 n+9  
0
Mode 3  
Mode 0  
SCLK  
Data  
Out 1  
Delay Cycles  
Data  
Data  
Data  
Out 3  
Out 2  
Out 4  
High Impedance  
4
0
0
4
4
4
0
4
0
SIO0  
SIO1  
SIO2  
SIO3  
High Impedance  
High Impedance  
High Impedance  
5
6
7
1
5
6
7
1
5
6
1
5
6
7
1
2
3
5
6
7
2
3
2
3
2
3
7
MSB  
Note: If FBSD = 11, delay cycles is 13 and n is 12.  
If FBSD = 10, delay cycles is 11 and n is 10.  
If FBSD = 01, delay cycles is 9 and n is 8.  
If FBSD = 00, delay cycles is 7 and n is 6.  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
56  
MX66L51235F  
Figure 44. Read Fast Boot Register (RDFBR) Sequence  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
37 38 39 40 41  
Mode 3  
Mode 0  
SCLK  
Command  
16h  
SI  
Data Out 1  
Data Out 2  
26 25 24 7 6  
High-Z  
SO  
7
6
5
MSB  
MSB  
Figure 45. Write Fast Boot Register (WRFBR) Sequence  
CS#  
0
1
2
3
4
5
6
7
8
9
37 38 39  
Mode 3  
Mode 0  
10  
SCLK  
Command  
17h  
Fast Boot Register  
SI  
7
6
26 25 24  
5
MSB  
High-Z  
SO  
Figure 46. Erase Fast Boot Register (ESFBR) Sequence  
CS#  
0
1
2
3
4
5
6
7
Mode 3  
Mode 0  
SCLK  
Command  
18h  
SI  
High-Z  
SO  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
57  
MX66L51235F  
9-22. Sector Erase (SE)  
The Sector Erase (SE) instruction is for erasing the data of the chosen sector to be "1". The instruction is used  
for any 4K-byte sector. A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit  
before sending the Sector Erase (SE). Any address of the sector (Please refer to "Table 4. Memory Organization")  
is a valid address for Sector Erase (SE) instruction. The CS# must go high exactly at the byte boundary (the least  
significant bit of the address byte been latched-in); otherwise, the instruction will be rejected and not executed.  
The default read mode is 3-byte address, to access higher address (4-byte address) which requires to enter the  
4-byte address read mode or to define EAR bit. Address bits [Am-A12] (Am is the most significant address) select  
the sector address.  
To enter the 4-byte address mode, please refer to the "9-10. Enter 4-byte mode (EN4B)" section.  
The sequence of issuing SE instruction is: CS# goes low→ sending SE instruction code→ 3-byte or 4-byte address  
on SI→ CS# goes high.  
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care  
when during SPI mode.  
The self-timed Sector Erase Cycle time (tSE) is initiated as soon as Chip Select (CS#) goes high. The Write in  
Progress (WIP) bit still can be checked while the Sector Erase cycle is in progress. The WIP sets 1 during the tSE  
timing, and clears when Sector Erase Cycle is completed, and the Write Enable Latch (WEL) bit is cleared. If the  
Block is protected by BP bits (WPSEL=0; Block Protect Mode) or SPB/DPB (WPSEL=1; Advanced Sector Protect  
Mode), the Sector Erase (SE) instruction will not be executed on the block.  
Figure 47. Sector Erase (SE) Sequence (SPI Mode)  
CS#  
Mode 3  
Mode 0  
0
1
2
3
4
5
6
7
8
9
29 30 31  
SCLK  
24-Bit Address  
(Note)  
Command  
20h  
SI  
A23 A22  
A2 A1 A0  
MSB  
Note: Please note the address cycles above are based on 3-byte address mode. For 4-byte address mode, the  
address cycles will be increased.  
Figure 48. Sector Erase (SE) Sequence (QPI Mode)  
CS#  
Mode 3  
0
1
2
3
4
5
6
7
SCLK  
Mode 0  
24-Bit Address  
(Note)  
Command  
SIO[3:0]  
20h A5 A4 A3 A2 A1 A0  
MSB  
Note: Please note the address cycles above are based on 3-byte address mode. For 4-byte address mode, the  
address cycles will be increased.  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
58  
MX66L51235F  
9-23. Block Erase (BE32K)  
The Block Erase (BE32K) instruction is for erasing the data of the chosen block to be "1". The instruction is used  
for 32K-byte block erase operation. A Write Enable (WREN) instruction be executed to set the Write Enable Latch  
(WEL) bit before sending the Block Erase (BE32K). Any address of the block (Please refer to "Table 4. Memory  
Organization") is a valid address for Block Erase (BE32K) instruction. The CS# must go high exactly at the byte  
boundary (the least significant bit of address byte been latched-in); otherwise, the instruction will be rejected and not  
executed.  
Address bits [Am-A15] (Am is the most significant address) select the 32KB block address. The default read mode is  
3-byte address, to access higher address (4-byte address) which requires to enter the 4-byte address read mode or  
to define EAR bit. To enter the 4-byte address mode, please refer to the "9-10. Enter 4-byte mode (EN4B)" section.  
The sequence of issuing BE32K instruction is: CS# goes low→ sending BE32K instruction code→ 3-byte or 4-byte  
address on SI→CS# goes high.  
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care  
when during SPI mode.  
The self-timed Block Erase Cycle time (tBE32K) is initiated as soon as Chip Select (CS#) goes high. The Write in  
Progress (WIP) bit still can be checked while during the Block Erase cycle is in progress. The WIP sets during the  
tBE32K timing, and clears when Block Erase Cycle is completed, and the Write Enable Latch (WEL) bit is cleared.  
If the Block is protected by BP bits (WPSEL=0; Block Protect Mode) or SPB/DPB (WPSEL=1; Advanced Sector  
Protect Mode), the Block Erase (BE32K) instruction will not be executed on the block.  
Figure 49. Block Erase 32KB (BE32K) Sequence (SPI Mode)  
CS#  
0
1
2
3
4
5
6
7
8
9
29 30 31  
Mode 3  
Mode 0  
SCLK  
Command  
52h  
24-Bit Address  
(Note)  
SI  
A23 A22  
A2  
A0  
A1  
MSB  
Note: Please note the address cycles above are based on 3-byte address mode. For 4-byte address mode, the  
address cycles will be increased.  
Figure 50. Block Erase 32KB (BE32K) Sequence (QPI Mode)  
CS#  
Mode 3  
Mode 0  
0
1
2
3
4
5
6
7
SCLK  
24-Bit Address  
(Note)  
Command  
SIO[3:0]  
52h A5 A4 A3 A2 A1 A0  
MSB  
Note: Please note the address cycles above are based on 3-byte address mode. For 4-byte address mode, the  
address cycles will be increased.  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
59  
MX66L51235F  
9-24. Block Erase (BE)  
The Block Erase (BE) instruction is for erasing the data of the chosen block to be "1". The instruction is used  
for 64K-byte block erase operation. A Write Enable (WREN) instruction must be executed to set the Write Enable  
Latch (WEL) bit before sending the Block Erase (BE). Any address of the block (Please refer to "Table 4. Memory  
Organization") is a valid address for Block Erase (BE) instruction. The CS# must go high exactly at the byte boundary (the  
least significant bit of address byte been latched-in); otherwise, the instruction will be rejected and not executed.  
The default read mode is 3-byte address, to access higher address (4-byte address) which requires to enter the  
4-byte address read mode or to define EAR bit. To enter the 4-byte address mode, please refer to the "9-10. Enter  
4-byte mode (EN4B)" section.  
The sequence of issuing BE instruction is: CS# goes low→ sending BE instruction code→ 3-byte or 4-byte address  
on SI→ CS# goes high.  
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care  
when during SPI mode.  
The self-timed Block Erase Cycle time (tBE) is initiated as soon as Chip Select (CS#) goes high. The Write in  
Progress (WIP) bit still can be checked while the Block Erase cycle is in progress. The WIP sets during the tBE  
timing, and clears when Block Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the Block  
is protected by BP bits (WPSEL=0; Block Protect Mode) or SPB/DPB (WPSEL=1; Advanced Sector Protect Mode),  
the Block Erase (BE) instruction will not be executed on the block.  
Figure 51. Block Erase (BE) Sequence (SPI Mode)  
CS#  
0
1
2
3
4
5
6
7
8
9
29 30 31  
Mode 3  
Mode 0  
SCLK  
Command  
D8h  
24-Bit Address  
(Note)  
SI  
A23 A22  
A2  
A0  
A1  
MSB  
Note: Please note the address cycles above are based on 3-byte address mode. For 4-byte address mode, the  
address cycles will be increased.  
Figure 52. Block Erase (BE) Sequence (QPI Mode)  
CS#  
Mode 3  
Mode 0  
0
1
2
3
4
5
6
7
SCLK  
24-Bit Address  
(Note)  
Command  
SIO[3:0]  
D8h A5 A4 A3 A2 A1 A0  
MSB  
Note: Please note the address cycles above are based on 3-byte address mode. For 4-byte address mode, the  
address cycles will be increased.  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
60  
MX66L51235F  
9-25. Chip Erase (CE)  
The Chip Erase (CE) instruction is for erasing the data of the whole chip to be "1". A Write Enable (WREN)  
instruction must be executed to set the Write Enable Latch (WEL) bit before sending the Chip Erase (CE). The CS#  
must go high exactly at the byte boundary, otherwise the instruction will be rejected and not executed.  
The sequence of issuing CE instruction is: CS# goes low→sending CE instruction code→CS# goes high.  
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care  
when during SPI mode.  
The self-timed Chip Erase Cycle time (tCE) is initiated as soon as Chip Select (CS#) goes high. The Write in  
Progress (WIP) bit still can be checked while the Chip Erase cycle is in progress. The WIP sets during the tCE  
timing, and clears when Chip Erase Cycle is completed, and the Write Enable Latch (WEL) bit is cleared.  
When the chip is under "Block protect (BP) Mode" (WPSEL=0). The Chip Erase (CE) instruction will not be  
executed, if one (or more) sector is protected by BP3-BP0 bits. It will be only executed when BP3-BP0 all set to "0".  
When the chip is under "Advanced Sector Protect Mode" (WPSEL=1). The Chip Erase (CE) instruction will be  
executed on unprotected block. The protected Block will be skipped. If one (or more) 4K byte sector was protected  
in top or bottom 64K byte block, the protected block will also skip the chip erase command.  
Figure 53. Chip Erase (CE) Sequence (SPI Mode)  
CS#  
Mode 3  
Mode 0  
0
1
2
3
4
5
6
7
SCLK  
SI  
Command  
60h or C7h  
Figure 54. Chip Erase (CE) Sequence (QPI Mode)  
CS#  
0
1
Mode 3  
Mode 0  
SCLK  
Command  
60h or C7h  
SIO[3:0]  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
61  
MX66L51235F  
9-26. Page Program (PP)  
The Page Program (PP) instruction is for programming memory bits to "0". One to 256 bytes can be sent to the  
device to be programmed. A Write Enable (WREN) instruction must be executed to set the Write Enable Latch (WEL)  
bit before sending the Page Program (PP). If more than 256 data bytes are sent to the device, only the last 256  
data bytes will be accepted and the previous data bytes will be disregarded. The Page Program instruction requires  
that all the data bytes fall within the same 256-byte page. The low order address byte A[7:0] specifies the starting  
address within the selected page. Bytes that will cross a page boundary will wrap to the beginning of the selected  
page. The device can accept (256 minus A[7:0]) data bytes without wrapping. If 256 data bytes are going to be  
programmed, A[7:0] should be set to 0.  
The default read mode is 3-byte address, to access higher address (4-byte address) which requires to enter the  
4-byte address read mode or to define EAR bit. To enter the 4-byte address mode, please refer to the "9-10. Enter  
4-byte mode (EN4B)" section.  
The sequence of issuing PP instruction is: CS# goes low→ sending PP instruction code→ 3-byte or 4-byte address  
on SI→ at least 1-byte on data on SI→ CS# goes high.  
The CS# must be kept to low during the whole Page Program cycle; The CS# must go high exactly at the byte  
boundary( the latest eighth bit of data being latched in), otherwise the instruction will be rejected and will not be  
executed.  
The self-timed Page Program Cycle time (tPP) is initiated as soon as Chip Select (CS#) goes high. The Write in  
Progress (WIP) bit still can be checked while the Page Program cycle is in progress. The WIP sets during the tPP  
timing, and clears when Page Program Cycle is completed, and the Write Enable Latch (WEL) bit is cleared. If the  
Block is protected by BP bits (WPSEL=0; Block Protect Mode) or SPB/DPB (WPSEL=1; Advanced Sector Protect  
Mode), the Page Program (PP) instruction will not be executed.  
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care  
when during SPI mode.  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
62  
MX66L51235F  
Figure 55. Page Program (PP) Sequence (SPI Mode)  
CS#  
Mode 3  
Mode 0  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34 35 36 37 38 39  
SCLK  
Command  
02h  
Data Byte 1  
24-Bit Address  
(Note)  
23 22 21  
MSB  
3
2
1
0
7
6
5
4
3
2
0
1
SI  
MSB  
CS#  
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55  
SCLK  
Data Byte 2  
Data Byte 3  
Data Byte 256  
7
6
5
4
3
2
0
7
6
5
4
3
2
0
7
6
5
4
3
2
0
1
1
1
SI  
MSB  
MSB  
MSB  
Note: Please note the address cycles above are based on 3-byte address mode. For 4-byte address mode, the  
address cycles will be increased.  
Figure 56. Page Program (PP) Sequence (QPI Mode)  
CS#  
Mode 3  
Mode 0  
0
1
2
SCLK  
Command  
02h  
24-Bit Address  
(Note)  
H255 L255  
SIO[3:0]  
H0 L0 H1 L1 H2 L2 H3 L3  
Data Byte Data Byte Data Byte Data Byte  
A5 A4 A3 A2 A1 A0  
......  
Data Byte  
256  
Data In  
1
2
3
4
Note: Please note the address cycles above are based on 3-byte address mode. For 4-byte address mode, the  
address cycles will be increased.  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
63  
MX66L51235F  
9-27. 4 x I/O Page Program (4PP)  
The Quad Page Program (4PP) instruction is for programming the memory to be "0". A Write Enable (WREN)  
instruction must be executed to set the Write Enable Latch (WEL) bit and Quad Enable (QE) bit must be set to  
"1" before sending the Quad Page Program (4PP). The Quad Page Programming takes four pins: SIO0, SIO1,  
SIO2, and SIO3 as address and data input, which can improve programmer performance and the effectiveness of  
application. The other function descriptions are as same as standard page program.  
The default read mode is 3-byte address, to access higher address (4-byte address) which requires to enter the  
4-byte address read mode or to define EAR bit. To enter the 4-byte address mode, please refer to the "9-10. Enter  
4-byte mode (EN4B)" section.  
The sequence of issuing 4PP instruction is: CS# goes low→ sending 4PP instruction code→ 3-byte or 4-byte  
address on SIO[3:0]→ at least 1-byte on data on SIO[3:0]→CS# goes high.  
If the page is protected by BP bits (WPSEL=0; Block Protect Mode) or SPB/DPB (WPSEL=1; Advanced Sector  
Protect Mode), the Quad Page Program (4PP) instruction will not be executed.  
Figure 57. 4 x I/O Page Program (4PP) Sequence (SPI Mode only)  
CS#  
10 11 12 13 14 15 16 17 18 19 20 21  
Data Data Data Data  
0
1
2
3
4
5
6
7
8
9
Mode 3  
Mode 0  
SCLK  
Command  
38h  
6 Address cycle  
Byte 1 Byte 2 Byte 3 Byte 4  
A16  
A8 A4 A0  
A12  
A20  
4
0
4
0
4
0
4
0
SIO0  
SIO1  
SIO2  
SIO3  
A21 A17 A13 A9 A5 A1  
5
6
7
1
2
3
5
6
7
1
2
3
5
6
7
1
2
3
5
6
7
1
2
3
A22  
A14 A10 A6 A2  
A18  
A7  
A23 A19 A15 A11  
A3  
Note: Please note the address cycles above are based on 3-byte address mode. For 4-byte address mode, the  
address cycles will be increased.  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
64  
MX66L51235F  
9-28. Deep Power-down (DP)  
The Deep Power-down (DP) instruction places the device into a minimum power consumption state, Deep  
Powerdown mode, in which the quiescent current is reduced from ISB1 to ISB2.  
The sequence of issuing DP instruction: CS# goes low→ send DP instruction code→ CS# goes high. The CS# must  
go high at the byte boundary (after exactly eighth bits of the instruction code have been latched-in); otherwise the  
instruction will not be executed. Both SPI (8 clocks) and QPI (2 clocks) command cycle can be accepted by this  
instruction. SIO[3:1] are "don't care".  
After CS# goes high there is a delay of tDP before the device transitions from Stand-by mode to Deep Power-down  
mode and before the current reduces from ISB1 to ISB2. Once in Deep Power-down mode, all instructions will be  
ignored except Release from Deep Power-down (RDP).  
The device exits Deep Power-down mode and returns to Stand-by mode if it receives a Release from Deep  
Powerdown (RDP) instruction, power-cycle, or reset. Please refer to "Figure 14. Release from Deep Power-down (RDP)  
Sequence (SPI Mode)" and "Figure 15. Release from Deep Power-down (RDP) Sequence (QPI Mode)".  
Figure 58. Deep Power-down (DP) Sequence (SPI Mode)  
CS#  
t
DP  
0
1
2
3
4
5
6
7
Mode 3  
Mode 0  
SCLK  
SI  
Command  
B9h  
Stand-by Mode  
Deep Power-down Mode  
Figure 59. Deep Power-down (DP) Sequence (QPI Mode)  
CS#  
t
DP  
Mode 3  
Mode 0  
0
1
SCLK  
Command  
SIO[3:0]  
B9h  
Stand-by Mode  
Deep Power-down Mode  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
65  
MX66L51235F  
9-29. Enter Secured OTP (ENSO)  
The ENSO instruction is for entering the additional 4K-bit secured OTP mode. While device is in 4K-bit secured  
OTPmode, main array access is not available. The additional 4K-bit secured OTP is independent from main array  
and may be used to store unique serial number for system identifier. After entering the Secured OTP mode, follow  
standard read or program procedure to read out the data or update data. The Secured OTP data cannot be updated  
again once it is lock-down.  
The sequence of issuing ENSO instruction is: CS# goes low→ sending ENSO instruction to enter Secured OTP  
mode→ CS# goes high.  
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care  
when during SPI mode.  
Please note that after issuing ENSO command user can only access secure OTP region with standard read or  
program procedure. Furthermore, once security OTP is lock down, only read related commands are valid.  
9-30. Exit Secured OTP (EXSO)  
The EXSO instruction is for exiting the additional 4K-bit secured OTP mode.  
The sequence of issuing EXSO instruction is: CS# goes low→ sending EXSO instruction to exit Secured OTP  
mode→ CS# goes high.  
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care  
when during SPI mode.  
9-31. Read Security Register (RDSCUR)  
The RDSCUR instruction is for reading the value of Security Register bits. The Read Security Register can be read  
at any time (even in program/erase/write status register/write security register condition) and continuously.  
The sequence of issuing RDSCUR instruction is : CS# goes low→sending RDSCUR instruction→Security Register  
data out on SO→ CS# goes high.  
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care  
when during SPI mode.  
9-32. Write Security Register (WRSCUR)  
The WRSCUR instruction sets the LDSO bit of the Security Register. The WREN (Write Enable) instruction is  
required before issuing WRSCUR instruction. The WRSCUR instruction may change the values of bit1 (LDSO bit)  
for customer to lock-down the 4K-bit Secured OTP area. Once the LDSO bit is set to "1", the Secured OTP area  
cannot be updated any more.  
The sequence of issuing WRSCUR instruction is :CS# goes low→ sending WRSCUR instruction → CS# goes high.  
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care  
when during SPI mode.  
The CS# must go high exactly at the boundary; otherwise, the instruction will be rejected and not executed.  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
66  
MX66L51235F  
Security Register  
The definition of the Security Register bits is as below:  
Write Protection Selection bit. Please reference to "9-33. Write Protection Selection (WPSEL)".  
Erase Fail bit. The Erase Fail bit is a status flag, which shows the status of last Erase operation. It will be set to "1",  
if the erase operation fails. It will be set to "0", if the last operation is successful. Please note that it will not interrupt  
or stop any operation in the flash memory.  
Program Fail bit. The Program Fail bit is a status flag, which shows the status of last Program operation. It will be  
set to "1", if the program operation fails or the program region is protected. It will be set to "0", if the last operation is  
successful. Please note that it will not interrupt or stop any operation in the flash memory.  
Erase Suspend bit. Erase Suspend Bit (ESB) indicates the status of Erase Suspend operation. Users may use  
ESB to identify the state of flash memory. After the flash memory is suspended by Erase Suspend command, ESB  
is set to "1". ESB is cleared to "0" after erase operation resumes.  
Program Suspend bit. Program Suspend Bit (PSB) indicates the status of Program Suspend operation. Users may  
use PSB to identify the state of flash memory. After the flash memory is suspended by Program Suspend command,  
PSB is set to "1". PSB is cleared to "0" after program operation resumes.  
Secured OTP Indicator bit. The Secured OTP indicator bit shows the Secured OTP area is locked by factory or  
not. When it is "0", it indicates non-factory lock; "1" indicates factory-lock.  
Lock-down Secured OTP (LDSO) bit. By writing WRSCUR instruction, the LDSO bit may be set to "1" for  
customer lock-down purpose. However, once the bit is set to "1" (lock-down), the LDSO bit and the 4K-bit Secured  
OTP area cannot be updated any more. While it is in 4K-bit secured OTP mode, main array access is not allowed.  
Table 9. Security Register Definition  
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
ESB  
(Erase  
PSB  
(Program  
LDSO  
(indicate if  
Secured OTP  
indicator bit  
WPSEL  
E_FAIL  
P_FAIL  
Reserved  
Suspend bit) Suspend bit) lock-down)  
0=Block Lock  
(BP) protection  
mode  
1=Advanced  
Sector protection  
mode  
0=normal  
Program  
succeed  
1=indicate  
Program  
failed  
0 = not lock-  
0=normal  
Erase  
succeed  
1=indicate  
Erase failed  
(default=0)  
0=Erase  
is not  
suspended suspended  
1= Erase 1= Program  
suspended suspended  
0=Program  
is not  
down  
1 = lock-down  
(cannot  
0 = non-  
factory  
lock  
1 = factory  
lock  
-
program/  
erase  
OTP)  
(default=0)  
(default=0)  
(default=0)  
(default=0)  
Non-volatile  
bit  
Non-volatile bit  
(OTP)  
Non-volatile  
bit (OTP)  
Volatile bit  
Volatile bit Volatile bit Volatile bit  
Volatile bit  
(OTP)  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
67  
MX66L51235F  
9-33. Write Protection Selection (WPSEL)  
There are two write protection methods provided on this device, (1) Block Lock (BP) protection mode (2) Advanced  
Sector protection mode. If WPSEL=0, flash is under BP protection mode . If WPSEL=1, flash is under Advanced  
Sector protection mode. The default value of WPSEL is “0”. WPSEL command can be used to set WPSEL=1.  
Please note that WPSEL is an OTP bit. Once WPSEL is set to 1, there is no chance to recovery WPSEL back  
to “0”. If the flash is put on BP mode, the Advanced Sector protection mode is disabled. Contrarily, if flash is on the  
Advanced Sector protection mode, the BP mode is disabled.  
Every time after the system is powered-on, and the Security Register bit 7 is checked to be WPSEL=1, all  
the blocks or sectors will be write protected by Dynamic Protected Bit (DPB) in default. User may only unlock  
the blocks or sectors via GBULK instruction. Program or erase functions can only be operated after the Unlock  
instruction is conducted.  
When WPSEL = 0: Block Lock (BP) protection mode,  
Array is protected by BP3~BP0 and BP bits are protected by “SRWD=1 and WP#=0”, where SRWD is bit 7 of status  
register that can be set by WRSR command.  
When WPSEL =1: Advanced Sector protection mode,  
Blocks are individually protected by their own SPB or DPB lock bits which are set to “1” after power up. When the  
system accepts and executes WPSEL instruction, the bit 7 in security register will be set. It will activate WRLR,  
RDLR, WRPASS, RDPASS, PASSULK, WRSPB, ESSPB, SPBLK, RDSPBLK, WRDPB, RDDPB, GBLK, GBULK  
etc instructions to conduct block lock protection and replace the original Software Protect Mode (SPM) use (BP3~BP0)  
indicated block methods. Under the Advanced Sector protection mode (WPSEL=1), hardware protection is  
performed by driving WP#=0. Once WP#=0 all array blocks/sectors are protected regardless of the contents of SPB  
or DPB lock bits.  
The sequence of issuing WPSEL instruction is: CS# goes low → sending WPSEL instruction to enter the individual  
block protect mode → CS# goes high. The WREN command must be executed before issuing the WPSEL  
command.  
Write Protection Selection  
Start  
(Default in BP Mode)  
WPSEL=1  
WPSEL=0  
Set  
WPSEL Bit  
Advanced  
Sector Protection  
Block Protection  
(BP)  
Set  
Bit 1 =0  
Lock Register  
Bit 2 =0  
Password  
Protection  
Solid  
Protection  
Dynamic  
Protection  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
68  
MX66L51235F  
Figure 60. WPSEL Flow  
start  
WREN command  
RDSCUR command  
Yes  
WPSEL=1?  
No  
WPSEL disable,  
block protected by BP[3:0]  
WPSEL command  
RDSR command  
No  
WIP=0?  
Yes  
RDSCUR command  
No  
WPSEL=1?  
Yes  
WPSEL set successfully  
WPSEL set fail  
WPSEL enable.  
Block protected by Advance Sector Protection  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
69  
MX66L51235F  
9-34. Advanced Sector Protection  
There are two ways to implement software Advanced Sector Protection on this device: Password method or Solid  
method. Through these two protection methods, user can disable or enable the programming or erasing operation  
to any individual sector or all sectors.  
There is a non-volatile (SPB) and volatile (DPB) protection bit related to the single sector in main flash array. Each  
of the sectors is protected from programming or erasing operation when the bit is set. The temporary unprotect solid  
write protect bit (USPB) can temporarily unprotect the sectors protected by SPB.  
The figure below helps describing an overview of these methods. The device is default to the Solid mode when  
shipped from factory. The detail algorithm of advanced sector protection is shown as follows:  
Figure 61. Advanced Sector Protection Overview  
Start  
Bit 1=0  
Bit 2=0  
Set  
Lock Register ?  
Solid Protection Mode  
Password Protection Mode  
Set 64 bit Password  
Set  
SPBLK = 0  
SPB Lock bit locked  
All SPB can not be changeable  
SPB Lock Bit ?  
SPBLK = 1  
SPB Lock bit Unlocked  
SPB is changeable  
Temporary Unprotect  
SPB bit (USPB)  
SPB Access Register  
(SPB)  
Dynamic Protect Bit Register  
(DPB)  
Sector Array  
SPB=1 Write Protect  
USPB=0 SPB bit is disabled  
USPB=1 SPB bit is effective  
DPB=1 sector protect  
SPB=0 Write Unprotect  
DPB=0 sector unprotect  
DPB 0  
DPB 1  
SA 0  
SA 1  
SPB 0  
SPB 1  
DPB 2  
SA 2  
SPB 2  
:
:
:
:
:
:
USPB  
DPB N-1  
DPB N  
SA N-1  
SA N  
SPB N-1  
SPB N  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
70  
MX66L51235F  
9-34-1. Lock Register  
User can choose favorite sector protecting method via setting Lock Register bits 1 and 2. Lock Register is a 16-  
bit one-time programmable register. Once bit 1 or bit 2 has been programmed (cleared to "0"), they will be locked  
in that mode and the others will be disabled permanently. Bit 1 and Bit 2 can not be programmed at the same time,  
otherwise the device will abort the operation.  
If user selects Password Protection mode, the password setting is required. User can set password by issuing  
WRPASS command.  
Lock Register  
Bit 15-3  
Bit 2  
Bit 1  
Bit0  
Reserved  
Password Protection Mode Lock Bit  
0=Password Protection Mode Enable  
1= Password Protection Mode not  
enable (Default =1)  
Solid Protection Mode Lock Bit  
Reserved  
0=Solid Protection Mode Enable  
1= Solid Protection Mode not enable (Default =1)  
x
x
OTP  
OTP  
OTP  
OTP  
Notes:  
1. While bit 2 or bit 1 has been "0" status, other bits can't be changed any more. If set lock register program mode,  
program fail will be set to "1".  
2. While bit 2 and bit 1 is "1" status,other bits can be programmed, program fail will be set to "1".  
Figure 63. Read Lock Register (RDLR) Sequence  
CS#  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
Mode 3  
Mode 0  
SCLK  
SI  
command  
2Dh  
Register Out  
Register Out  
High-Z  
SO  
7
6
5
4
3
2
1
0
15 14 13 12 11 10  
MSB  
9
8
7
MSB  
Figure 62. Write Lock Register (WRLR) Sequence (SPI Mode)  
CS#  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  
Mode 3  
Mode 0  
SCLK  
Command  
2Ch  
Lock Register In  
SI  
4
15 14  
12 11  
10  
13  
8
2
1
0
9
7
6
5
3
MSB  
High-Z  
SO  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
71  
MX66L51235F  
9-34-2. SPB Lock Bit (SPBLB)  
The Solid Protection Bit Lock Bit (SPBLB) is assigned to control all SPB status. It is unique and volatile.  
The default status of this register is determined by Lock Register bit 1 and bit 2 status. Refer to SPB Lock Register  
for more SPB Lock information.  
When under Solid Protect Mode, there is no software command sequence requested to unlock this bit. To clear the  
SPB lock bit, just take the device through a reset or a power-up cycle. When under Password Protection Mode, in  
order to prevent modification, the SPB Lock Bit must be set after all SPBs are setting the desired status.  
SPB Lock Register  
Bit  
7-1  
Description  
Reserved  
Bit Status  
X
Default  
0000000  
Type  
Volatile  
0= SPB bit protected  
1= SPB bit unprotected  
Solid protected Mode=1  
Password Protected Mode=0  
0
SPBLK (Lock SPB Bit)  
Volatile  
Figure 64. SPB Lock Bit Set (SPBLK) Sequence  
CS#  
0
1
2
3
4
5
6
7
Mode 3  
Mode 0  
SCLK  
Command  
A6h  
SI  
High-Z  
SO  
Figure 65. Read SPB Lock Register (RDSPBLK) Sequence  
CS#  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
Mode 3  
Mode 0  
SCLK  
SI  
command  
A7h  
Register Out  
Register Out  
High-Z  
SO  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
MSB  
MSB  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
72  
MX66L51235F  
9-34-3. Solid Protection Bits  
The Solid write Protection bit (SPB) is a nonvolatile bit with the same endurances as the Flash memory. It is  
assigned to each sector individually.  
When a SPB is set to “1”, the associated sector may be protected, preventing any program or erase operation on  
this sector. The SPB bits are set individually by WRSPB command. However, it cannot be cleared individually.  
Issuing the ESSPB command will erase all SPB in the same time.  
To unprotect a protected sector (corresponding SPB cleared to “0”), the SPB lock bit must be unlocked first. Under  
password protection mode (lock register bit 2 set as "0"), a PASSULK command is requested before unlocking SPB  
lock bit. However, while the device is under Solid Protection mode (lock register bit 1 set as "0"), just  
a reset or a power-up cycle can unlock the SPB lock bit.  
After the SPB lock bit unlocked, the SPB status can be changed for desired settings. To lock the Solid Protection  
Bits after the modification has finished, the SPB Lock Bit must be set once again.  
To verify the programming state of the SPB for a given sector, issuing a RDSPB Command to the device is required.  
Note:  
1. Once SPB Lock Bit is set, its program or erase command will not be executed and time-out without programming  
or erasing the SPB.  
SPB Register  
Bit  
Description  
Bit Status  
Default  
Type  
00h= SPB for the sector address unprotected  
FFh= SPB for the sector address protected  
7 to 0 SPB (Solid protected Bit)  
00h  
Non-volatile  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
73  
MX66L51235F  
Figure 66. Read SPB Status (RDSPB) Sequence  
CS#  
0
1
2
3
4
5
6
7
8
9
37 38 39 40 41 42 43 44 45 46 47  
Mode 3  
Mode 0  
SCLK  
Command  
E2h  
32-Bit Address  
A31 A30  
A2 A1 A0  
SI  
MSB  
Data Out  
High-Z  
SO  
7
6
5
4
3
2
1
0
MSB  
Figure 67. SPB Erase (ESSPB) Sequence  
CS#  
0
1
2
3
4
5
6
7
Mode 3  
SCLK  
Mode 0  
Command  
E4h  
SI  
High-Z  
SO  
Figure 68. SPB Program (WRSPB) Sequence  
CS#  
0
1
2
3
4
5
6
7
8
9
37 38 39  
Mode 3  
Mode 0  
SCLK  
Command  
E3h  
32-Bit Address  
A31 A30  
A2 A1 A0  
SI  
MSB  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
74  
MX66L51235F  
9-34-4. Dynamic Write Protection Bits  
The Dynamic Protection features a volatile type protection to each individual sector. It can protect sectors from  
unintentional change, and is easy to disable when there are necessary changes.  
All DPBs are default as protected (FFh) after reset or upon power up cycle. Via setting up Dynamic Protection bit (DPB)  
by write DPB command (WRDPB), user can cancel the Dynamic Protection of associated sector.  
The Dynamic Protection only works on those unprotected sectors whose SPBs are cleared. After the DPB state is  
cleared to “0”, the sector can be modified if the SPB state is unprotected state.  
DPB Register  
Bit  
Description  
Bit Status  
Default  
Type  
00h= DPB for the sector address unprotected  
FFh= DPB for the sector address protected  
7 to 0 DPB (Dynamic protected Bit)  
FFh  
Volatile  
Figure 69. Read DPB Register (RDDPB) Sequence  
CS#  
0
1
2
3
4
5
6
7
8
9
37 38 39 40 41 42 43 44 45 46 47  
Mode 3  
Mode 0  
SCLK  
Command  
E0h  
32-Bit Address  
A31 A30  
A2 A1 A0  
SI  
MSB  
Data Out  
High-Z  
SO  
7
6
5
4
3
2
1
0
MSB  
Figure 70. Write DPB Register (WRDPB) Sequence  
CS#  
0
1
2
3
4
5
6
7
8
9
37 38 39 40 41 42 43 44 45 46 47  
Mode 3  
Mode 0  
SCLK  
Command  
E1h  
Data Byte 1  
32-Bit Address  
A31 A30  
A2 A1 A0  
SI  
7
6
5
4
3
2
1
0
MSB  
MSB  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
75  
MX66L51235F  
9-34-5. Temporary Un-protect Solid write protect bit (USPB)  
Temporary Un-protect Solid write Protect Bit is volatile bit. Software can temporarily unprotect write protect sectors  
despite of SPBs' property when DPBs are cleared. While the USPB=1, all the SPBs’ property is masked.  
Notes:  
1. Upon power up, the USPB status is default protected. The USPB can be unprotected (to “0”) or protected (to “1”)  
as often as needed. The hardware reset will reset USPB/DPB to their default values.  
2. Please refer to "9-34-7. Sector Protection States Summary Table" for the sector state with the protection status of  
DPB/SPB/USPB bits.  
9-34-6. Gang Block Lock/Unlock (GBLK/GBULK)  
These instructions are only effective after WPSEL was executed. The GBLK/GBULK instruction is a chip-based  
protected or unprotected operation. It can enable or disable all DPB.  
The WREN (Write Enable) instruction is required before issuing GBLK/GBULK instruction.  
The sequence of issuing GBLK/GBULK instruction is: CS# goes low → send GBLK/GBULK (7Eh/98h) instruction  
→CS# goes high.  
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care  
when during SPI mode.  
The CS# must go high exactly at the byte boundary, otherwise, the instruction will be rejected and not be executed.  
9-34-7. Sector Protection States Summary Table  
Protection Status  
Sector State  
DPB bit  
SPB bit  
USPB bit  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Unprotect  
Unprotect  
Unprotect  
Protect  
Protect  
Protect  
Protect  
Protect  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
76  
MX66L51235F  
9-34-8. SPB Password Protection Mode  
The security level of Password Protection Method is higher than the Solid protection mode. The 64 bit password is  
requested before modify SPB lock bit status. When device is under password protection mode, the SPB lock bit is  
cleared to “0”, after a power-up cycle or Reset Command.  
A correct password is required for PASSULK command, to unlock the SPB lock bit. Await 2us is necessary  
to unlocked the device after valid password is given. After that, the SPB bits are allows to be changed. The  
PASSULK command are issued slower than 2 μs every time, to prevent hacker from trying all the 64-bit password  
combinations.  
To place the device in password protection mode, a few more steps are required. First, prior to entering the  
password protection mode, it is necessary to set a 64-bit password to verify it. Password verification is only  
allowed during the password programming operation. Second, the password protection mode is then activated by  
programming the Password Protection Mode Lock Bit to clear to ”0”. This operation is not reversible. Once the bit is  
programmed, it cannot be erased, and the device remains permanently in password protection mode, and the 64-bit  
password can neither be retrieved nor reprogrammed. Moreover, all commands to the address where the password  
is stored are disabled.  
The password is all “1”s when shipped from the factory, it is only capable of programming "0"s under WRPASS  
command. All 64-bit password combinations are valid as a password. No special address is required for  
programming the password. The password is no longer readable after the Password Protection mode is selected by  
programming Lock register bit 2 to "0".  
Once sector under protected status, device will ignores the program/erase command, enable status polling and  
returns to read mode without contents change. The DPB, SPB and SPB lock bit status of each sector can be  
verified by issuing RDDPB, RDSPB, and RDSPBLK commands.  
● The unlock operation may fail if the password provided by PASSULK command does not match the previously  
entered password. It causes the same result when a programming operation is performed on a protected sector.  
The P_FAIL bit is set to 1 and the WIP Bit remains set.  
● It is not allowed to execute the PASSULK command faster than every 100us ± 20us. The reason behind it is to  
make it impossible to hack into the system by running through all the combinations of a set of 64-bit password (58  
million years). To verify if the device has completed the password unlock command and is available to process  
a new password command, the Read Status Register command is needed to read the WIP bit. When a valid  
password is provided the password unlock command does not insert the 100us delay before returning the WIP  
bit to zero.  
● It is not feasible to set the SPB Lock bit if the password is missing after the Password Mode is selected.  
Password Register (PASS)  
Field  
Name  
Description  
Bits  
Function Type  
Default State  
Non-volatile OTP storage of 64 bit password. The  
password is no longer readable after the password  
protection mode is selected by programming Lock  
register bit 2 to zero.  
Hidden  
Password  
63 to 0 PWD  
OTP FFFFFFFFFFFFFFFFh  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
77  
MX66L51235F  
9-35. Program/Erase Suspend/Resume  
The device allow the interruption of Sector-Erase, Block-Erase or Page-Program operations and conduct other  
operations.  
After issue suspend command, the system can determine if the device has entered the Erase-Suspended mode  
through Bit2 (PSB) and Bit3 (ESB) of security register. (please refer to "Table 9. Security Register Definition")  
The latency time of erase operation :  
Suspend to suspend ready timing: 20us.  
Resume to another suspend timing: 1ms.  
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care  
when during SPI mode.  
9-36. Erase Suspend  
Erase suspend allow the interruption of all erase operations. After the device has entered Erase-Suspended mode,  
the system can read any sector(s) or Block(s) except those being erased by the suspended erase operation.  
Reading the sector or Block being erase suspended is invalid.  
After erase suspend, WEL bit will be clear, only read related, resume and reset command can be accepted. (including:  
03h, 0Bh, 3Bh, 6Bh, BBh, EBh, 5Ah, C0h, 06h, 04h, 2Bh, 9Fh, AFh, 05h, ABh, 90h, B1h, C1h, B0h, 30h, 66h, 99h,  
00h, 35h, F5h, 15h, 2Dh, 27h, A7h, E2h, E0h, 16h)  
If the system issues an Erase Suspend command after the sector erase operation has already begun, the device  
will not enter Erase-Suspended mode until 20us time has elapsed.  
Erase Suspend Bit (ESB) indicates the status of Erase Suspend operation. Users may use ESB to identify the state  
of flash memory. After the flash memory is suspended by Erase Suspend command, ESB is set to "1". ESB is  
cleared to "0" after erase operation resumes.  
9-37. Program Suspend  
Program suspend allows the interruption of all program operations. After the device has entered Program-  
Suspended mode, the system can read any sector(s) or Block(s) except those being programmed by the suspended  
program operation. Reading the sector or Block being program suspended is invalid.  
After program suspend, WEL bit will be cleared, only read related, resume and reset command can be accepted.  
(including: 03h, 0Bh, 3Bh, 6Bh, BBh, EBh, 5Ah, C0h, 06h, 04h, 2Bh, 9Fh, AFh, 05h, ABh, 90h, B1h, C1h, B0h, 30h,  
66h, 99h, 00h, 35h, F5h, 15h, 2Dh, 27h, A7h, E2h, E0h, 16h)  
Program Suspend Bit (PSB) indicates the status of Program Suspend operation. Users may use PSB to identify the  
state of flash memory. After the flash memory is suspended by Program Suspend command, PSB is set to "1". PSB  
is cleared to "0" after program operation resumes.  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
78  
MX66L51235F  
Figure 71. Suspend to Read Latency  
Program latency : 20us  
Erase latency:20us  
Suspend Command  
Read Command  
CS#  
[B0]  
Figure 72. Resume to Read Latency  
TSE/TBE/TPP  
Resume Command  
Read Command  
CS#  
[30]  
Figure 73. Resume to Suspend Latency  
1ms  
Suspend  
Command  
[B0]  
Resume Command  
CS#  
[30]  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
79  
MX66L51235F  
9-38. Write-Resume  
The Write operation is being resumed when Write-Resume instruction issued. ESB or PSB (suspend status bit) in  
Status register will be changed back to “0”  
The operation of Write-Resume is as follows: CS# drives low → send write resume command cycle (30h) → drive  
CS# high. By polling Busy Bit in status register, the internal write operation status could be checked to be completed  
or not. The user may also wait the time lag of TSE, TBE, TPP for Sector-erase, Block-erase or Page-programming.  
WREN (command "06") is not required to issue before resume. Resume to another suspend operation requires  
latency time of 1ms.  
Please note that, if "performance enhance mode" is executed during suspend operation, the device can not  
be resumed. To restart the write command, disable the "performance enhance mode" is required. After the  
"performance enhance mode" is disabled, the write-resume command is effective.  
9-39. No Operation (NOP)  
The “No Operation” command is only able to terminate the Reset Enable (RSTEN) command and will not affect any  
other command.  
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care  
when during SPI mode.  
9-40. Software Reset (Reset-Enable (RSTEN) and Reset (RST))  
The Software Reset operation combines two instructions: Reset-Enable (RSTEN) command following a Reset (RST)  
command. It returns the device to a standby mode. All the volatile bits and settings will be cleared then, which  
makes the device return to the default status as power on.  
To execute Reset command (RST), the Reset-Enable (RSTEN) command must be executed first to perform the  
Reset operation. If there is any other command to interrupt after the Reset-Enable command, the Reset-Enable will  
be invalid.  
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care  
when during SPI mode.  
If the Reset command is executed during program or erase operation, the operation will be disabled, the data under  
processing could be damaged or lost.  
The reset time is different depending on the last operation. For details, please refer to "Table 13. Reset Timing-  
(Other Operation)" for tREADY2.  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
80  
MX66L51235F  
Figure 74. Software Reset Recovery  
Stand-by Mode  
66  
99  
CS#  
tReady2  
Mode  
Note: Refer to "Table 13. Reset Timing-(Other Operation)" for tReady2 data.  
Figure 75. Reset Sequence (SPI mode)  
tSHSL  
CS#  
Mode 3  
Mode 0  
Mode 3  
Mode 0  
SCLK  
SIO0  
Command  
66h  
Command  
99h  
Figure 76. Reset Sequence (QPI mode)  
tSHSL  
CS#  
MODE 3  
MODE 3  
MODE 0  
MODE 3  
MODE 0  
SCLK  
MODE 0  
Command  
Command  
SIO[3:0]  
66h  
99h  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
81  
MX66L51235F  
9-41. Read SFDP Mode (RDSFDP)  
The Serial Flash Discoverable Parameter (SFDP) standard provides a consistent method of describing the functional  
and feature capabilities of serial flash devices in a standard set of internal parameter tables. These parameter tables  
can be interrogated by host system software to enable adjustments needed to accommodate divergent features  
from multiple vendors. The concept is similar to the one found in the Introduction of JEDEC Standard, JESD68 on  
CFI.  
The sequence of issuing RDSFDP instruction is CS# goes low→send RDSFDP instruction (5Ah)→send 3 address  
bytes on SI pin→send 1 dummy byte on SI pin→read SFDP code on SO→to end RDSFDP operation can use CS#  
to high at any time during data out.  
SFDP is a JEDEC standard, JESD216.  
Figure 77. Read Serial Flash Discoverable Parameter (RDSFDP) Sequence  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31  
SCLK  
Command  
5Ah  
24 BIT ADDRESS  
SI  
23 22 21  
3
2
1
0
High-Z  
SO  
CS#  
47  
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46  
SCLK  
Dummy Cycle  
7
6
5
4
3
2
0
1
SI  
DATA OUT 2  
DATA OUT 1  
7
6
5
4
3
2
1
0
7
7
6
5
4
3
2
0
1
SO  
MSB  
MSB  
MSB  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
82  
MX66L51235F  
Table 9. Signature and Parameter Identification Data Values  
SFDP Table (JESD216) below is for MX66L51235FMI-10G, MX66L51235FZ2I-10G and MX66L51235FXDI-10G  
Add (h) DW Add Data (h/b) Data  
Description  
Comment  
(Byte)  
(Bit)  
(Note1)  
(h)  
00h  
07:00  
53h  
53h  
01h  
02h  
03h  
04h  
05h  
15:08  
23:16  
31:24  
07:00  
15:08  
46h  
44h  
50h  
00h  
01h  
46h  
44h  
50h  
00h  
01h  
SFDP Signature  
Fixed: 50444653h  
SFDP Minor Revision Number  
SFDP Major Revision Number  
Start from 00h  
Start from 01h  
This number is 0-based. Therefore,  
0 indicates 1 parameter header.  
Number of Parameter Headers  
Unused  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
23:16  
31:24  
07:00  
15:08  
23:16  
31:24  
01h  
FFh  
00h  
00h  
01h  
09h  
01h  
FFh  
00h  
00h  
01h  
09h  
00h: it indicates a JEDEC specified  
header.  
ID number (JEDEC)  
Parameter Table Minor Revision  
Number  
Parameter Table Major Revision  
Number  
Parameter Table Length  
(in double word)  
Start from 00h  
Start from 01h  
How many DWORDs in the  
Parameter table  
0Ch  
0Dh  
0Eh  
07:00  
15:08  
23:16  
30h  
00h  
00h  
30h  
00h  
00h  
First address of JEDEC Flash  
Parameter table  
Parameter Table Pointer (PTP)  
Unused  
0Fh  
10h  
11h  
12h  
13h  
31:24  
07:00  
15:08  
23:16  
31:24  
FFh  
C2h  
00h  
01h  
04h  
FFh  
C2h  
00h  
01h  
04h  
ID number  
(Macronix manufacturer ID)  
Parameter Table Minor Revision  
Number  
Parameter Table Major Revision  
Number  
it indicates Macronix manufacturer  
ID  
Start from 00h  
Start from 01h  
Parameter Table Length  
(in double word)  
How many DWORDs in the  
Parameter table  
14h  
15h  
16h  
07:00  
15:08  
23:16  
60h  
00h  
00h  
60h  
00h  
00h  
First address of Macronix Flash  
Parameter table  
Parameter Table Pointer (PTP)  
Unused  
17h  
31:24  
FFh  
FFh  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
83  
MX66L51235F  
Table 10. Parameter Table (0): JEDEC Flash Parameter Tables  
SFDP Table below is for MX66L51235FMI-10G, MX66L51235FZ2I-10G and MX66L51235FXDI-10G  
Add (h) DW Add Data (h/b) Data  
Description  
Comment  
(Byte)  
(Bit)  
(Note1)  
(h)  
00: Reserved, 01: 4KB erase,  
10: Reserved,  
11: not support 4KB erase  
Block/Sector Erase sizes  
Write Granularity  
01:00  
01b  
0: 1Byte, 1: 64Byte or larger  
02  
03  
1b  
0b  
Write Enable Instruction Required 0: not required  
for Writing to Volatile Status  
1: required 00h to be written to the  
Registers  
status register  
30h  
E5h  
0: use 50h opcode,  
1: use 06h opcode  
Write Enable Opcode Select for  
Writing to Volatile Status Registers  
Note: If target flash status register is  
nonvolatile, then bits 3 and 4 must  
be set to 00b.  
04  
0b  
Contains 111b and can never be  
changed  
Unused  
07:05  
111b  
4KB Erase Opcode  
31h  
32h  
33h  
15:08  
16  
20h  
1b  
20h  
F3h  
FFh  
(1-1-2) Fast Read (Note2)  
0=not support 1=support  
Address Bytes Number used in  
addressing flash array  
00: 3Byte only, 01: 3 or 4Byte,  
10: 4Byte only, 11: Reserved  
18:17  
19  
01b  
0b  
Double Transfer Rate (DTR)  
Clocking  
0=not support 1=support  
(1-2-2) Fast Read  
(1-4-4) Fast Read  
(1-1-4) Fast Read  
Unused  
0=not support 1=support  
0=not support 1=support  
0=not support 1=support  
20  
21  
1b  
1b  
22  
1b  
23  
1b  
Unused  
31:24  
FFh  
Flash Memory Density  
37h:34h 31:00  
1FFF FFFFh  
(1-4-4) Fast Read Number of Wait 0 0000b: Not supported; 0 0100b: 4  
04:00  
38h  
0 0100b  
states (Note3)  
0 0110b: 6; 0 1000b: 8  
44h  
EBh  
08h  
6Bh  
(1-4-4) Fast Read Number of  
Mode Bits (Note4)  
Mode Bits:  
000b: Not supported; 010b: 2 bits  
07:05  
010b  
EBh  
(1-4-4) Fast Read Opcode  
39h  
3Ah  
3Bh  
15:08  
20:16  
(1-1-4) Fast Read Number of Wait 0 0000b: Not supported; 0 0100b: 4  
0 1000b  
states  
0 0110b: 6; 0 1000b: 8  
(1-1-4) Fast Read Number of  
Mode Bits  
Mode Bits:  
000b: Not supported; 010b: 2 bits  
23:21  
31:24  
000b  
6Bh  
(1-1-4) Fast Read Opcode  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
84  
MX66L51235F  
SFDP Table below is for MX66L51235FMI-10G, MX66L51235FZ2I-10G and MX66L51235FXDI-10G  
Add (h) DW Add Data (h/b) Data  
Description  
Comment  
(Byte)  
(Bit)  
(Note1)  
(h)  
(1-1-2) Fast Read Number of Wait 0 0000b: Not supported; 0 0100b: 4  
04:00  
0 1000b  
states  
0 0110b: 6; 0 1000b: 8  
3Ch  
08h  
(1-1-2) Fast Read Number of  
Mode Bits  
Mode Bits:  
000b: Not supported; 010b: 2 bits  
07:05  
15:08  
20:16  
000b  
3Bh  
(1-1-2) Fast Read Opcode  
3Dh  
3Eh  
3Fh  
3Bh  
04h  
BBh  
(1-2-2) Fast Read Number of Wait 0 0000b: Not supported; 0 0100b: 4  
0 0100b  
states  
0 0110b: 6; 0 1000b: 8  
(1-2-2) Fast Read Number of  
Mode Bits  
Mode Bits:  
000b: Not supported; 010b: 2 bits  
23:21  
000b  
(1-2-2) Fast Read Opcode  
(2-2-2) Fast Read  
Unused  
31:24  
00  
BBh  
0b  
0=not support 1=support  
0=not support 1=support  
03:01  
04  
111b  
1b  
40h  
FEh  
(4-4-4) Fast Read  
Unused  
07:05  
111b  
FFh  
FFh  
Unused  
43h:41h 31:08  
45h:44h 15:00  
FFh  
FFh  
Unused  
(2-2-2) Fast Read Number of Wait 0 0000b: Not supported; 0 0100b: 4  
20:16  
46h  
0 0000b  
000b  
states  
0 0110b: 6; 0 1000b: 8  
00h  
(2-2-2) Fast Read Number of  
Mode Bits  
Mode Bits:  
000b: Not supported; 010b: 2 bits  
23:21  
(2-2-2) Fast Read Opcode  
Unused  
47h  
31:24  
FFh  
FFh  
FFh  
FFh  
49h:48h 15:00  
(4-4-4) Fast Read Number of Wait 0 0000b: Not supported; 0 0100b: 4  
20:16  
4Ah  
0 0100b  
states  
0 0110b: 6; 0 1000b: 8  
44h  
(4-4-4) Fast Read Number of  
Mode Bits  
Mode Bits:  
000b: Not supported; 010b: 2 bits  
23:21  
010b  
EBh  
0Ch  
20h  
0Fh  
52h  
10h  
D8h  
00h  
FFh  
(4-4-4) Fast Read Opcode  
4Bh  
4Ch  
4Dh  
4Eh  
4Fh  
50h  
51h  
52h  
53h  
31:24  
07:00  
15:08  
23:16  
31:24  
07:00  
15:08  
23:16  
31:24  
EBh  
0Ch  
20h  
0Fh  
52h  
10h  
D8h  
00h  
FFh  
Sector/block size = 2^N bytes (Note5)  
0Ch: 4KB; 0Fh: 32KB; 10h: 64KB  
Sector Type 1 Size  
Sector Type 1 erase Opcode  
Sector Type 2 Size  
Sector/block size = 2^N bytes  
00h: N/A; 0Fh: 32KB; 10h: 64KB  
Sector Type 2 erase Opcode  
Sector Type 3 Size  
Sector/block size = 2^N bytes  
00h: N/A; 0Fh: 32KB; 10h: 64KB  
Sector Type 3 erase Opcode  
Sector Type 4 Size  
00h: N/A, This sector type doesn't  
exist  
Sector Type 4 erase Opcode  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
85  
MX66L51235F  
Table 11. Parameter Table (1): Macronix Flash Parameter Tables  
SFDP Table below is for MX66L51235FMI-10G, MX66L51235FZ2I-10G and MX66L51235FXDI-10G  
Add (h) DW Add Data (h/b) Data  
Description  
Comment  
2000h=2.000V  
2700h=2.700V  
3600h=3.600V  
(Byte)  
(Bit)  
(Note1)  
(h)  
07:00  
15:08  
00h  
36h  
00h  
36h  
Vcc Supply Maximum Voltage  
61h:60h  
1650h=1.650V, 1750h=1.750V  
2250h=2.250V, 2300h=2.300V  
2350h=2.350V, 2650h=2.650V  
2700h=2.700V  
23:16  
31:24  
00h  
27h  
00h  
27h  
Vcc Supply Minimum Voltage  
63h:62h  
H/W Reset# pin  
H/W Hold# pin  
0=not support 1=support  
0=not support 1=support  
0=not support 1=support  
0=not support 1=support  
00  
01  
02  
03  
1b  
0b  
1b  
1b  
Deep Power Down Mode  
S/W Reset  
Reset Enable (66h) should be  
issued before Reset Opcode  
1001 1001b  
(99h)  
S/W Reset Opcode  
65h:64h 11:04  
F99Dh  
Program Suspend/Resume  
Erase Suspend/Resume  
Unused  
0=not support 1=support  
0=not support 1=support  
12  
13  
14  
15  
1b  
1b  
1b  
Wrap-Around Read mode  
Wrap-Around Read mode Opcode  
0=not support 1=support  
1b  
66h  
67h  
23:16  
C0h  
C0h  
64h  
08h:support 8B wrap-around read  
16h:8B&16B  
32h:8B&16B&32B  
Wrap-Around Read data length  
31:24  
64h  
64h:8B&16B&32B&64B  
Individual block lock  
0=not support 1=support  
00  
01  
1b  
0b  
Individual block lock bit  
(Volatile/Nonvolatile)  
0=Volatile 1=Nonvolatile  
1110 0001b  
(E1h)  
Individual block lock Opcode  
09:02  
10  
Individual block lock Volatile  
protect bit default protect status  
0=protect 1=unprotect  
0b  
CB85h  
6Bh:68h  
Secured OTP  
Read Lock  
Permanent Lock  
Unused  
0=not support 1=support  
0=not support 1=support  
0=not support 1=support  
11  
12  
1b  
0b  
13  
0b  
15:14  
31:16  
11b  
FFh  
FFh  
Unused  
FFh  
FFh  
Unused  
6Fh:6Ch 31:00  
MX66L51235FMI-10G-SFDP_2016-08-02,SF10  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
86  
MX66L51235F  
Note 1: h/b is hexadecimal or binary.  
Note 2: (x-y-z) means I/O mode nomenclature used to indicate the number of active pins used for the opcode (x),  
address (y), and data (z). At the present time, the only valid Read SFDP instruction modes are: (1-1-1), (2-2-2),  
and (4-4-4)  
Note 3: Wait States is required dummy clock cycles after the address bits or optional mode bits.  
Note 4: Mode Bits is optional control bits that follow the address bits. These bits are driven by the system controller  
if they are specified. (eg,read performance enhance toggling bits)  
Note 5: 4KB=2^0Ch,32KB=2^0Fh,64KB=2^10h  
Note 6: All unused and undefined area data is blank FFh for SFDP Tables that are defined in Parameter  
Identification Header. All other areas beyond defined SFDPTable are reserved by Macronix.  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
87  
MX66L51235F  
10. RESET  
Driving the RESET# pin low for a period of tRLRH or longer will reset the device. After reset cycle, the device is at  
the following states:  
- Standby mode  
- All the volatile bits such as WEL/WIP/SRAM lock bit will return to the default status as power on.  
- 3-byte address mode  
If the device is under programming or erasing, driving the RESET# pin low will also terminate the operation and data  
could be lost. During the resetting cycle, the SO data becomes high impedance and the current will be reduced to  
minimum.  
Figure 78. RESET Timing  
CS#  
tRHSL  
SCLK  
tRH  
tRS  
RESET#  
tRLRH  
tREADY1 / tREADY2  
Table 12. Reset Timing-(Power On)  
Symbol Parameter  
tRHSL Reset# high before CS# low  
Min.  
10  
Typ.  
Max.  
Unit  
us  
tRS  
tRH  
Reset# setup time  
Reset# hold time  
15  
15  
ns  
ns  
tRLRH Reset# low pulse width  
10  
us  
tREADY1 Reset Recovery time  
35  
us  
Table 13. Reset Timing-(Other Operation)  
Symbol Parameter  
tRHSL Reset# high before CS# low  
Min.  
10  
Typ.  
Max.  
Unit  
us  
tRS  
tRH  
Reset# setup time  
Reset# hold time  
15  
15  
ns  
ns  
tRLRH Reset# low pulse width  
10  
us  
Reset Recovery time (During instruction decoding)  
Reset Recovery time (for read operation)  
40  
35  
us  
us  
Reset Recovery time (for program operation)  
tREADY2 Reset Recovery time(for SE4KB operation)  
Reset Recovery time (for BE64K/BE32KB operation)  
Reset Recovery time (for Chip Erase operation)  
Reset Recovery time (for WRSR operation)  
310  
12  
25  
100  
40  
us  
ms  
ms  
ms  
ms  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
88  
MX66L51235F  
11. POWER-ON STATE  
The device is at below states when power-up:  
- Standby mode (please note it is not deep power-down mode)  
- Write Enable Latch (WEL) bit is reset  
The device must not be selected during power-up and power-down stage unless the VCC achieves below correct  
level:  
- VCC minimum at power-up stage and then after a delay of tVSL  
- GND at power-down  
Please note that a pull-up resistor on CS# may ensure a safe and proper power-up/down level.  
An internal power-on reset (POR) circuit may protect the device from data corruption and inadvertent data change  
during power up state. When VCC is lower than VWI (POR threshold voltage value), the internal logic is reset and  
the flash device has no response to any command.  
For further protection on the device, if the VCC does not reach the VCC minimum level, the correct operation is not  
guaranteed. The write, erase, and program command should be sent after the below time delay:  
- tVSL after VCC reached VCC minimum level  
The device can accept read command after VCC reached VCC minimum and a time delay of tVSL.  
Please refer to the "power-up timing".  
Note:  
- To stabilize the VCC level, the VCC rail decoupled by a suitable capacitor close to package pins is  
recommended. (generally around 0.1uF)  
- At power-down stage, the VCC drops below VWI level, all operations are disable and device has no response  
to any command. The data corruption might occur during the stage while a write, program, erase cycle is in  
progress.  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
89  
MX66L51235F  
12. ELECTRICAL SPECIFICATIONS  
Table 14. ABSOLUTE MAXIMUM RATINGS  
RATING  
VALUE  
Ambient Operating Temperature  
Storage Temperature  
Applied Input Voltage  
Applied Output Voltage  
VCC to Ground Potential  
Industrial grade  
-40°C to 85°C  
-65°C to 150°C  
-0.5V to VCC+0.5V  
-0.5V to VCC+0.5V  
-0.5V to 4.0V  
NOTICE:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage  
to the device. This is stress rating only and functional operational sections of this specification is not implied.  
Exposure to absolute maximum rating conditions for extended period may affect reliability.  
2. Specifications contained within the following tables are subject to change.  
3. During voltage transitions, all pins may overshoot Vss to -2.0V and Vcc to +2.0V for periods up to 20ns, see  
Figure 79, and Figure 80.  
Figure 80. Maximum Positive Overshoot Waveform  
Figure 79. Maximum Negative Overshoot Waveform  
20ns  
20ns  
20ns  
Vss  
Vcc + 2.0V  
Vss-2.0V  
Vcc  
20ns  
20ns  
20ns  
Table 15. CAPACITANCE TA = 25°C, f = 1.0 MHz  
Symbol Parameter Min.  
Typ.  
Max.  
35  
Unit  
Conditions  
VIN = 0V  
CIN  
Input Capacitance  
pF  
pF  
COUT Output Capacitance  
32  
VOUT = 0V  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
90  
MX66L51235F  
Figure 81. INPUT TEST WAVEFORMS AND MEASUREMENT LEVEL  
Input timing reference level  
Output timing reference level  
0.8VCC  
0.2VCC  
0.7VCC  
0.8V  
AC  
Measurement  
Level  
0.5VCC  
Note: Input pulse rise and fall time are <5ns  
Figure 82. OUTPUT LOADING  
25K ohm  
+1.8V  
DEVICE UNDER  
TEST  
CL  
25K ohm  
CL=30pF Including jig capacitance  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
91  
MX66L51235F  
Table 16. DC CHARACTERISTICS (Temperature = -40 C to 85 C, VCC = 2.7V - 3.6V)  
°
°
Symbol Parameter  
Notes  
Min.  
Typ.  
Max.  
Units Test Conditions  
VCC = VCC Max,  
uA  
ILI  
Input Load Current  
Output Leakage Current  
1
±4  
VIN = VCC or GND  
VCC = VCC Max,  
uA  
ILO  
1
1
±4  
100  
40  
VOUT = VCC or GND  
VIN = VCC or GND,  
CS# = VCC  
ISB1 VCC Standby Current  
20  
4
uA  
Deep Power-down  
Current  
VIN = VCC or GND,  
CS# = VCC  
ISB2  
uA  
f=104MHz, (4 x I/O read)  
mA SCLK=0.1VCC/0.9VCC,  
SO=Open  
40  
30  
ICC1 VCC Read  
1
1
20  
f=84MHz,  
mA SCLK=0.1VCC/0.9VCC,  
SO=Open  
VCC Program Current  
Program in Progress,  
CS# = VCC  
ICC2  
(PP)  
20  
20  
40  
30  
mA  
VCC Write Status  
ICC3  
Program status register in  
mA  
Register (WRSR) Current  
progress, CS#=VCC  
VCC Sector/Block (32K,  
ICC4 64K) Erase Current  
(SE/BE/BE32K)  
Erase in Progress,  
CS#=VCC  
1
1
20  
30  
40  
mA  
VCC Chip Erase Current  
Erase in Progress,  
CS#=VCC  
ICC5  
(CE)  
50  
mA  
VIL  
VIH  
VOL  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
-0.5  
0.8  
V
0.7VCC  
VCC+0.4  
V
V
V
0.2  
IOL = 100uA  
IOH = -100uA  
VOH Output High Voltage  
Notes:  
VCC-0.2  
1. Typical values at VCC = 3.3V, T = 25 C. These currents are valid for all product versions (package and speeds).  
°
2. Typical value is calculated by simulation.  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
92  
MX66L51235F  
Table 17. AC CHARACTERISTICS (Temperature = -40 C to 85 C, VCC = 2.7V - 3.6V)  
°
°
Symbol Alt. Parameter  
Min.  
Typ.  
Max. Unit  
fSCLK  
fRSCLK  
fC Clock Frequency for all commands (except Read)  
fR Clock Frequency for READ instructions  
fT Clock Frequency for 2READ instructions  
fQ Clock Frequency for 4READ instructions  
D.C.  
133  
50  
MHz  
MHz  
MHz  
MHz  
ns  
84(7)  
84(7)  
fTSCLK  
tCH(1)  
Others (fSCLK)  
3.3  
9
tCLH Clock High Time  
Normal Read (fRSCLK)  
ns  
Others (fSCLK)  
Normal Read (fRSCLK)  
3.3  
9
0.1  
0.1  
3
ns  
ns  
V/ns  
V/ns  
ns  
tCL(1)  
tCLL Clock Low Time  
tCLCH(2)  
tCHCL(2)  
Clock Rise Time (peak to peak)  
Clock Fall Time (peak to peak)  
tSLCH tCSS CS# Active Setup Time (relative to SCLK)  
tCHSL CS# Not Active Hold Time (relative to SCLK)  
tDVCH tDSU Data In Setup Time  
3
2
ns  
ns  
tCHDX  
tCHSH  
tSHCH  
tDH Data In Hold Time  
2
3
3
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
us  
CS# Active Hold Time (relative to SCLK)  
CS# Not Active Setup Time (relative to SCLK)  
Read  
tSHSL(3) tCSH CS# Deselect Time  
Write/Erase/Program  
30  
tSHQZ(2) tDIS Output Disable Time  
8
9
7
Loading: 30pF  
Loading: 15pF  
Clock Low to Output Valid  
tCLQV  
tV  
Loading: 30pF/15pF  
tHO Output Hold Time  
Write Protect Setup Time  
Write Protect Hold Time  
tCLQX  
tWHSL(3)  
tSHWL(3)  
tDP(2)  
1
20  
100  
CS# High to Deep Power-down Mode  
CS# High to Standby Mode without Electronic Signature  
Read  
CS# High to Standby Mode with Electronic Signature Read  
Write Status/Configuration Register Cycle Time  
Write Extended Address Register  
Byte-Program  
10  
30  
tRES1(2)  
us  
tRES2(2)  
tW  
tWREAW  
tBP  
30  
40  
us  
ms  
ns  
40  
16  
30  
us  
tPP  
Page Program Cycle Time  
0.5  
1.5  
ms  
0.008+  
tPP(5)  
Page Program Cycle Time (n bytes)  
(nx0.004)  
1.5  
ms  
(6)  
tSE  
tBE32  
tBE  
Sector Erase Cycle Time  
30  
120  
650  
650  
300  
ms  
ms  
ms  
s
Block Erase (32KB) Cycle Time  
Block Erase (64KB) Cycle Time  
Chip Erase Cycle Time  
150  
280  
110  
tCE  
Notes:  
1. tCH + tCL must be greater than or equal to 1/ Frequency.  
2. Typical values given for TA=25 C. Not 100% tested.  
°
3. Only applicable as a constraint for a WRSR instruction when SRWD is set at 1.  
4. Test condition is shown as Figure 81 and Figure 82.  
5. While programming consecutive bytes, Page Program instruction provides optimized timings by selecting to  
program the whole 256 bytes or only a few bytes between 1~256 bytes.  
6. “n”=how many bytes to program. In the formula, while n=1, byte program time=12us.  
7. By default dummy cycle value. Please refer to the "Table 1. Read performance Comparison".  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
93  
MX66L51235F  
13. OPERATING CONDITIONS  
At Device Power-Up and Power-Down  
AC timing illustrated in Figure 83 and Figure 84 are for the supply voltages and the control signals at device power-  
up and power-down. If the timing in the figures is ignored, the device will not operate correctly.  
During power-up and power-down, CS# needs to follow the voltage applied on VCC to keep the device not to be  
selected. The CS# can be driven low when VCC reach Vcc(min.) and wait a period of tVSL.  
Figure 83. AC Timing at Device Power-Up  
VCC(min)  
VCC  
GND  
tVR  
tSHSL  
CS#  
tSHCH  
tSLCH  
tCHSL  
tCHSH  
SCLK  
tDVCH  
tCHCL  
tCHDX  
tCLCH  
MSB IN  
LSB IN  
SI  
High Impedance  
SO  
Symbol  
Parameter  
Notes  
Min.  
Max.  
Unit  
tVR  
VCC Rise Time  
1
500000  
us/V  
Notes:  
1. Sampled, not 100% tested.  
2. For AC spec tCHSL, tSLCH, tDVCH, tCHDX, tSHSL, tCHSH, tSHCH, tCHCL, tCLCH in the figure, please refer to  
Table 17. AC CHARACTERISTICS.  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
94  
MX66L51235F  
Figure 84. Power-Down Sequence  
During power-down, CS# needs to follow the voltage drop on VCC to avoid mis-operation.  
VCC  
CS#  
SCLK  
Figure 85. Power-up Timing  
V
CC  
V
(max)  
CC  
Chip Selection is Not Allowed  
V
(min)  
CC  
Device is fully accessible  
tVSL  
V
WI  
time  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
95  
MX66L51235F  
Figure 86. Power Up/Down and Voltage Drop  
When powering down the device, VCC must drop below VPWD for at least tPWD to ensure the device will initialize  
correctly during power up. Please refer to "Figure 86. Power Up/Down and Voltage Drop" and "Table 18. Power-Up/  
Down Voltage and Timing" below for more details.  
VCC  
VCC (max.)  
Chip Select is not allowed  
VCC (min.)  
tVSL  
Full Device  
Access  
Allowed  
(max.)  
V
PWD  
tPWD  
Time  
Table 18. Power-Up/Down Voltage and Timing  
Symbol Parameter  
Min.  
Max.  
Unit  
us  
V
tVSL  
VWI  
VPWD  
VCC(min.) to device operation  
Command Inhibit Voltage  
800  
2.3  
2.5  
0.9  
VCC voltage needed to below VPWD for ensuring initialization will occur  
V
tPWD The minimum duration for ensuring initialization will occur  
VCC VCCPower Supply  
300  
2.7  
us  
V
3.6  
Note: These parameters are characterized only.  
13-1. INITIAL DELIVERY STATE  
The device is delivered with the memory array erased: all bits are set to 1 (each byte contains FFh). The Status  
Register contains 00h (all Status Register bits are 0).  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
96  
MX66L51235F  
14. ERASE AND PROGRAMMING PERFORMANCE  
Parameter  
Min.  
Typ. (1)  
Max. (2)  
40  
Unit  
ms  
ms  
s
Write Status Register Cycle Time  
Sector Erase Cycle Time (4KB)  
Block Erase Cycle Time (32KB)  
Block Erase Cycle Time (64KB)  
Chip Erase Cycle Time  
30  
0.15  
0.28  
110  
120  
0.65  
0.65  
300  
30  
s
s
Byte Program Time (via page program command)  
Page Program Time  
16  
us  
0.15  
100,000  
1.5  
ms  
cycles  
Erase/Program Cycle  
Notes:  
1. Typical program and erase time assumes the following conditions: 25 C, 3.3V, and all zero pattern.  
°
2. Under worst conditions of 85 C and 2.7V.  
°
3. System-level overhead is the time required to execute the first-bus-cycle sequence for the programming  
command.  
4. The maximum chip programming time is evaluated under the worst conditions of 0°C, VCC=3.3V, and 100K  
cycle with 90% confidence level.  
15. DATA RETENTION  
Parameter  
Condition  
Min.  
Max.  
Unit  
Data retention  
55˚C  
20  
years  
16. LATCH-UP CHARACTERISTICS  
Min.  
Max.  
Input Voltage with respect to GND on all power pins, SI, CS#  
Input Voltage with respect to GND on SO  
Current  
-1.0V  
-1.0V  
2 VCCmax  
VCC + 1.0V  
+100mA  
-100mA  
Includes all pins except VCC. Test conditions: VCC = 3.0V, one pin at a time.  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
97  
MX66L51235F  
17. ORDERING INFORMATION  
PART NO.  
CLOCK (MHz) TEMPERATURE  
PACKAGE  
Remark  
MX66L51235FMI-10G  
MX66L51235FZ2I-10G  
MX66L51235FXDI-10G  
104  
104  
104  
-40 C to 85 C  
16-SOP (300mil)  
8-WSON (8x6mm)  
°
°
-40 C to 85 C  
°
°
24-Ball BGA  
-40 C to 85 C  
°
°
(5x5 ball array)  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
98  
MX66L51235F  
18. PART NAME DESCRIPTION  
MX 66 51235F Z2  
L
I
10 G  
OPTION:  
G: RoHS Compliant & Halogen-free  
SPEED:  
10: 104MHz  
TEMPERATURE RANGE:  
I: Industrial (-40°C to 85°C)  
PACKAGE:  
M: 16-SOP (300mil)  
Z2: 8-WSON (8x6mm)  
XD: 24-Ball BGA (5x5 ball array)  
DENSITY & MODE:  
51235F: 512Mb  
TYPE:  
L: 3V  
DEVICE:  
66: Serial NOR Flash  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
99  
MX66L51235F  
19. PACKAGE INFORMATION  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
100  
MX66L51235F  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
101  
MX66L51235F  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
102  
MX66L51235F  
20. REVISION HISTORY  
Revision No. Description  
Page  
Date  
1.0  
1. Corrected content error  
P5,7,8,24,32,33, JUN/06/2013  
39,41,43,58-59,65,  
P
71,76,78,80-81,93,96  
P
2. Removed "Advanced Information"  
3. Added USPB information.  
4. Modified Reset timing definition.  
5. Added Power Up/Down and Voltage Drop information  
6. Added note on WP# setup  
P4  
P73,79  
P84,91  
P99  
P40  
7. Modified maximum CIN and COUT.  
P93  
"Figure 81. INPUT TEST WAVEFORMS AND MEASUREMENT LEVEL"  
8. Modified  
. P94  
P92-93  
1.1  
1. Updated parameters for DC/AC Characteristics  
2. Updated Erase and Programming Performance  
3. Content correction  
AUG/02/2016  
P97  
P51-52,62,65,  
67,70-77,96  
P90  
P102  
P100  
4. Modified VCC to Ground Potential parameter  
5. Updated 24-Ball BGA (5x5 ball array) package outline  
6. Updated 16-pin SOP (300mil) package outline  
7. Updated 8-land WSON (8x6mm) package outline  
8. Added Key features  
P101  
P1  
9. Updated tVR descriptions  
P94,96  
P46  
P52-54  
P87  
10. Revised "9-16. Quad Read Mode (QREAD)" descriptions  
11. Revised Performance Enhance Mode Reset descriptions  
12. Revised Note 6 of SFDP Tables  
P/N: PM1832  
Rev. 1.1, August 02, 2016  
103  
MX66L51235F  
Except for customized products which has been expressly identified in the applicable agreement, Macronix's  
products are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or  
household applications only, and not for use in any applications which may, directly or indirectly, cause death,  
personal injury, or severe property damages. In the event Macronix products are used in contradicted to their  
target usage above, the buyer shall take any and all actions to ensure said Macronix's product qualified for its  
actual use in accordance with the applicable laws and regulations; and Macronix as well as it’s suppliers and/or  
distributors shall be released from any and all liability arisen therefrom.  
Copyright© Macronix International Co., Ltd. 2012~2016. All rights reserved, including the trademarks and  
tradename thereof, such as Macronix, MXIC, MXIC Logo, MX Logo, Integrated Solutions Provider, NBit, Nbit,  
NBiit, Macronix NBit, eLiteFlash, HybridNVM, HybridFlash, XtraROM, Phines, KH Logo, BE-SONOS, KSMC,  
Kingtech, MXSMIO, Macronix vEE, Macronix MAP, Rich Audio, Rich Book, Rich TV, and FitCAM. The names  
and brands of third party referred thereto (if any) are for identification purposes only.  
For the contact and order information, please visit Macronix’s Web site at: http://www.macronix.com  
MACRONIX INTERNATIONAL CO., LTD. reserves the right to change product and specifications without notice.  
104  

相关型号:

MX66L51235FXDI10G

3V 512M-BIT [x 1/x 2/x 4] CMOS MXSMIO® (SERIAL MULTI I/O) FLASH MEMORY
Macronix

MX66L51235FZ2I-10G

Flash, 128MX4, PDSO8, WSON-8
Macronix

MX66L51235FZ2I10G

3V 512M-BIT [x 1/x 2/x 4] CMOS MXSMIO® (SERIAL MULTI I/O) FLASH MEMORY
Macronix

MX66LV2000PC-100

Standard SRAM, 512KX8, 100ns, CMOS, PDIP32, 0.600 INCH, PLASTIC, DIP-32
Macronix

MX66LV2000PC-15

Standard SRAM, 512KX8, 150ns, CMOS, PDIP32, 0.600 INCH, PLASTIC, DIP-32
Macronix

MX66LV2000PC-25

Standard SRAM, 512KX8, 250ns, CMOS, PDIP32, 0.600 INCH, PLASTIC, DIP-32
Macronix

MX66LV2000PC-70

Standard SRAM, 512KX8, 70ns, CMOS, PDIP32, 0.600 INCH, PLASTIC, DIP-32
Macronix

MX66LV2000PI-100

Standard SRAM, 512KX8, 100ns, CMOS, PDIP32, 0.600 INCH, PLASTIC, DIP-32
Macronix

MX66LV2000PI-15

Standard SRAM, 512KX8, 150ns, CMOS, PDIP32, 0.600 INCH, PLASTIC, DIP-32
Macronix

MX66LV2000PI-25

Standard SRAM, 512KX8, 250ns, CMOS, PDIP32, 0.600 INCH, PLASTIC, DIP-32
Macronix

MX66LV2000PI-70

Standard SRAM, 512KX8, 70ns, CMOS, PDIP32, 0.600 INCH, PLASTIC, DIP-32
Macronix

MX66LV2000SC-100

Standard SRAM, 512KX8, 100ns, CMOS, PDSO32, 0.525 INCH, PLASTIC, SOP-32
Macronix