D485505G [NEC]

LINE BUFFER 5K-WORD BY 8-BIT; 行缓冲器5K - WORD ×8位
D485505G
型号: D485505G
厂家: NEC    NEC
描述:

LINE BUFFER 5K-WORD BY 8-BIT
行缓冲器5K - WORD ×8位

文件: 总20页 (文件大小:174K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD485505  
LINE BUFFER  
5K-WORD BY 8-BIT  
Description  
The µPD485505 is a 5,048 words by 8 bits high speed FIFO (First In First Out) line buffer. Its CMOS static circuitry  
provides high speed access and low power consumption.  
The µPD485505 can be used for one line delay and time axis conversion in high speed facsimile machines and  
digital copiers.  
Moreover, the µPD485505 can execute read and write operations independently on an asynchronous basis. Thus  
the µPD485505 is suitable as a buffer for data transfer between units with different transfer rates and as a buffer for  
the synchronization of multiple input signals. There are three versions, E, K, P, and L. This data sheet can be applied  
to the version P and L. These versions operate with different specifications. Each version is identified with its lot  
number (refer to 7. Example of Stamping).  
Features  
5,048 words by 8 bits  
Asynchronous read/write operations available  
Variable length delay bits; 21 to 5,048 bits (Cycle time: 25 ns)  
15 to 5,048 bits (Cycle time: 35 ns)  
Power supply voltage VCC = 5.0 V ± 0.5 V  
Suitable for sampling one line of A3 size paper (16 dots/mm)  
All input/output TTL compatible  
3-state output  
Full static operation; data hold time = infinity  
Ordering Information  
Part Number  
µPD485505G-25  
µPD485505G-35  
R/W Cycle Time  
Package  
25 ns  
35 ns  
24-pin plastic SOP  
(11.43 mm (450))  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all devices/types available in every country. Please check with local NEC representative for availability  
and additional information.  
Document No. M10059EJ7V0DSJ1 (7th edition)  
Date Published December 2000 N CP(K)  
Printed in Japan  
The mark shows major revised points.  
1994,1996  
©
µPD485505  
Pin Configuration (Marking side)  
24-pin plastic SOP (11.43 mm (450))  
[µPD485505G]  
D
D
D
D
OUT0  
OUT1  
OUT2  
OUT3  
RE  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
D
D
D
D
IN0  
IN1  
IN2  
IN3  
2
3
4
5
WE  
RSTR  
GND  
RCK  
6
RSTW  
7
V
CC  
8
WCK  
DOUT4  
DOUT5  
DOUT6  
DOUT7  
9
DIN4  
DIN5  
DIN6  
DIN7  
10  
11  
12  
DIN0 - DIN7  
: Data Inputs  
DOUT0 - DOUT7 : Data Outputs  
WCK  
RCK  
WE  
: Write Clock Input  
: Read Clock Input  
: Write Enable Input  
: Read Enable Input  
: Reset Write Input  
: Reset Read Input  
: +5.0 V Power Supply  
: Ground  
RE  
RSTW  
RSTR  
VCC  
GND  
Remark Refer to 5. Package Drawing for the 1-pin index mark.  
2
Data Sheet M10059EJ7V0DS00  
µPD485505  
Block Diagram  
V
CC  
GND  
WCK  
RSTW  
RE  
Write Address Pointer  
DIN0  
DIN1  
DIN2  
DIN3  
DIN4  
DIN5  
DIN6  
DIN7  
DOUT0  
DOUT1  
DOUT2  
DOUT3  
DOUT4  
DOUT5  
DOUT6  
DOUT7  
Memory Cell Array  
40,384 bits  
(5,048 words by 8 bits)  
WE  
Read Address Pointer  
RCK  
RSTR  
Data Sheet M10059EJ7V0DS00  
3
µPD485505  
1. Input/Output Pin Function  
Pin  
I/O  
In  
Function  
Pin  
Pin  
Symbol  
Number  
Name  
Write data input pins.  
24 - 21  
DIN0  
|
Data  
Input  
The data inputs are strobed by the rising edge of WCK at the end of a cycle  
and the setup and hold times (tDS, tDH) are defined at this point.  
16 - 13  
1 - 4  
DIN7  
Out  
In  
Read data output pins.  
DOUT0  
Data  
Output  
|
The access time is regulated from the rising edge of RCK at the beginning of a  
cycle and defined by tAC.  
9 - 12  
19  
DOUT7  
RSTW  
Reset  
Write  
Input  
Reset input pin for the initialization of the write address pointer.  
The state of RSTW is strobed by the rising edge of WCK at the beginning of a  
cycle and the setup and hold times (tRS, tRH) are defined.  
6
20  
5
RSTR  
WE  
Reset  
Read  
Input  
In  
Reset input pin for the initialization of the read address pointer.  
The state of RSTR is strobed by the rising edge of RCK at the beginning of a  
cycle and the setup and hold times (tRS, tRH) are defined.  
Write  
Enable  
Input  
In  
Write operation control signal input pin.  
When WE is in the disable mode (“H” level), the internal write operation is  
inhibited and the write address pointer stops at the current position.  
RE  
Read  
Enable  
Input  
In  
Read operation control signal input pin.  
When RE is in the disable mode (“H” level), the internal read operation is  
inhibited and the read address pointer stops at the current position. The output  
changes to high impedance.  
17  
8
WCK  
RCK  
Write  
Clock  
Input  
In  
In  
Write clock input pin.  
When WE is enabled (“L” level), the write operation is executed in  
synchronization with the write clock. The write address pointer is incremented  
simultaneously.  
Read  
Clock  
Input  
Read clock input pin.  
When RE is enabled (“L” level), the read operation is executed in synchroniza-  
tion with the read clock. The read address pointer is incremented  
simultaneously.  
4
Data Sheet M10059EJ7V0DS00  
µPD485505  
2. Operation Mode  
µPD485505 is a synchronous memory. All signals are strobed at the rising edge of the clock (RCK, WCK).  
For this reason, setup time and hold time are specified for the rising edge of the clock (RCK, WCK).  
2.1 Write Cycle  
When the WE input is enabled (“L” level), a write cycle is executed in synchronization with the WCK clock  
input.  
The data inputs are strobed by the rising edge of the clock at the end of a cycle so that read data after a one-  
line (5,048 bits) delay and write data can be processed with the same clock. Refer to Write Cycle Timing Chart.  
When WE is disabled (“H” level) in a write cycle, the write operation is not performed during the cycle which  
the WCK rising edge is in the WE = “H” level (tWEW). The WCK does not increment the write address pointer  
at this time.  
Unless inhibited by WE, the internal write address will automatically wrap around from 5,047 to 0 and begin  
incrementing again.  
2.2 Read Cycle  
When the RE input is enabled (“L” level), a read cycle is executed in synchronization with the RCK clock input  
and data is output after tAC. Refer to Read Cycle Timing Chart.  
When RE is disabled (“H” level) in a read cycle, the read operation is not performed during the cycle which  
the RCK rising edge is in the RE = “H” level (tREW). The RCK does not increment the read address pointer at  
this time.  
2.3 Write Reset Cycle/Read Reset Cycle  
After power up, the µPD485505 requires the initialization of internal circuits because the read and write  
address pointers are not defined at that time.  
It is necessary to satisfy setup requirements and hold times as measured from the rising edge of WCK and  
RCK, and then input the RSTW and RSTR signals to initialize the circuit.  
Write and read reset cycles can be executed at any time and the address pointer returns zero. Refer to Write  
Reset Cycle Timing Chart, Read Reset Cycle Timing Chart.  
Remark Write and read reset cycles can be executed at any time and do not depend on the state of RE or WE.  
Data Sheet M10059EJ7V0DS00  
5
µPD485505  
Operation-related Restriction  
Following restriction exists to read data written in a write cycle.  
Read the written data after an elapse of 1/2 write cycle + tWAR since the write cycle ends (see Figure 2.1).  
If tWAR is not satisfied, the output data may undefined.  
Figure 2.1 Delay Bits Restriction Timing Chart  
0
1
2
3
WCK  
RCK  
1/2 write cycle  
t
WAR  
0
1
2
High  
impedance  
0
1
2
3
DIN  
t
AC  
High impedance  
DOUT  
0
1
2
3
Remark This timing chart describes only the delay bits restriction, and does not defines the WE, RE, RSTW, RSTR  
signals.  
6
Data Sheet M10059EJ7V0DS00  
µPD485505  
3. Electrical Specifications  
All voltages are referenced to GND.  
Absolute Maximum Ratings  
Parameter  
Voltage on any pin relative to GND  
Supply voltage  
Symbol  
VT  
Condition  
Rating  
Unit  
Note  
–0.5  
to VCC + 0.5  
V
V
VCC  
IO  
–0.5 to +7.0  
20  
Output current  
mA  
˚C  
˚C  
Operating ambient temperature  
Storage temperature  
TA  
0 to 70  
Tstg  
–55 to +125  
Note –3.0 V MIN. (Pulse width = 10 ns)  
Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause  
permanent damage. The device is not meant to be operated under conditions outside the limits  
described in the operational section of this specification. Exposure to Absolute Maximum Rating  
conditions for extended periods may affect device reliability.  
Recommended Operating Conditions  
Parameter  
Supply voltage  
Symbol  
VCC  
VIH  
Condition  
MIN.  
4.5  
TYP.  
5.0  
MAX.  
5.5  
Unit  
V
High level input voltage  
Low level input voltage  
Operating ambient temperature  
2.4  
VCC + 0.5  
+0.8  
V
Note  
VIL  
–0.3  
V
TA  
0
70  
˚C  
Note –3.0 V MIN. (Pulse width = 10 ns)  
DC Characteristics (Recommended Operating Conditions unless otherwise noted)  
Parameter  
Symbol  
Test Condition  
MIN.  
TYP.  
MAX.  
80  
Unit  
mA  
Operating current  
ICC  
Input leakage current  
Output leakage current  
II  
VI = 0 to VCC, Other Input 0 V  
VO = 0 to VCC,  
–10  
–10  
+10  
+10  
µA  
µA  
IO  
DOUT: High impedance  
High level output voltage  
Low level output voltage  
VOH  
VOL  
IOH = –1 mA  
IOL = 2 mA  
2.4  
V
V
0.4  
Capacitance (TA = 25 ˚C, f = 1 MHz)  
Parameter  
Input capacitance  
Output capacitance  
Symbol  
CI  
Test Condition  
MIN.  
TYP.  
MAX.  
10  
Unit  
pF  
CO  
10  
pF  
Data Sheet M10059EJ7V0DS00  
7
µPD485505  
AC Characteristics (Recommended Operating Conditions unless otherwise noted)Notes 1, 2, 3  
µPD485505-25  
µPD485505-35  
Parameter  
Symbol  
Unit  
Notes  
MIN.  
25  
MAX.  
MIN.  
35  
MAX.  
Write clock cycle time  
Write clock pulse width  
Write clock precharge time  
Read clock cycle time  
Read clock pulse width  
Read clock precharge time  
Access time  
tWCK  
tWCW  
tWCP  
tRCK  
tRCW  
tRCP  
tAC  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ms  
ms  
ms  
ns  
11  
12  
11  
12  
25  
35  
11  
12  
11  
12  
18  
25  
Write data-read delay time  
Output hold time  
tWAR  
tOH  
470  
5
5
5
7
3
7
3
3
7
7
3
3
7
7
3
3
7
0
0
0
0
3
470  
5
Output low-impedance time  
Output high-impedance time  
Input data setup time  
Input data hold time  
RSTW/RSTR Setup time  
RSTW/RSTR Hold time  
RSTW/RSTR Deselected time (1)  
RSTW/RSTR Deselected time (2)  
WE Setup time  
tLZ  
18  
18  
5
25  
25  
4
4
tHZ  
5
tDS  
10  
3
tDH  
tRS  
10  
3
5
5
tRH  
tRN1  
tRN2  
tWES  
tWEH  
tWEN1  
tWEN2  
tRES  
tREH  
tREN1  
tREN2  
tWEW  
tREW  
tRSTW  
tRSTR  
tT  
3
6
10  
10  
3
6
7
WE Hold time  
7
WE Deselected time (1)  
WE Deselected time (2)  
RE Setup time  
3
8
10  
10  
3
8
9
RE Hold time  
9
RE Deselected time (1)  
RE Deselected time (2)  
WE Disable time  
3
10  
10  
10  
0
RE Disable time  
0
Write reset time  
0
Read reset time  
0
Transition time  
35  
3
35  
8
Data Sheet M10059EJ7V0DS00  
µPD485505  
Notes 1. AC measurements assume tT = 5 ns.  
2. AC Characteristics test condition  
Input Timing Specification  
3.0 V  
1.5 V  
0 V  
Test points  
t
T
= 5 ns  
t
T
= 5 ns  
Output Timing Specification  
2.0 V  
0.8 V  
High impedance  
High impedance  
Test points  
Output Loads for Timing  
VCC  
VCC  
1.8 k  
1.8 kΩ  
DOUT  
DOUT  
1.1 kΩ  
1.1 kΩ  
30 pF  
5 pF  
(tAC, tOH)  
(tLZ, tHZ)  
3. Input timing reference levels = 1.5 V. Output timing reference levels; VOH = 2.0 V, VOL = 0.8 V.  
4. tLZ and tHZ are measured at ±200 mV from the steady state voltage. Under any conditions, tLZ tHZ  
5. If either tRS or tRH is less than the specified value, reset operations are not guaranteed.  
.
6. If either tRN1 or tRN2 is less than the specified value, reset operations may extend to cycles preceding or  
following the period of reset operations.  
7. If either tWES or tWEH is less than the specified value, write disable operations are not guaranteed.  
8. If either tWEN1 or tWEN2 is less than the specified value, internal write disable operations may extend to cycles  
preceding or following the period of write disable operations.  
9. If either tRES or tREH is less than the specified value, read disable operations are not guaranteed.  
10. If either tREN1 or tREN2 is less than the specified value, internal read disable operations may extend to cycles  
preceding or following the period of read disable operations.  
Data Sheet M10059EJ7V0DS00  
9
µPD485505  
Write Cycle Timing Chart  
Cycle n  
Cycle n+1  
Cycle n+2  
Disable Cycle  
Cycle n+3  
t
WCK  
t
WCP  
WCK (Input)  
WE (Input)  
tWCW  
t
WEN1  
t
WES  
t
WEH  
t
WEN2  
t
WEW  
t
DS  
t
DH  
t
DS  
t
DH  
D
IN (Input)  
(n)  
(n+1)  
(n+2)  
(n+3)  
Remark RSTW = “H” level  
Read Cycle Timing Chart  
Cycle n  
Cycle n+1  
Cycle n+2  
Disable Cycle  
Cycle n+3  
t
RCK  
t
RCP  
RCK (Input)  
RE (Input)  
t
RCW  
t
REN1  
t
RES  
t
REH  
t
REN2  
t
OH  
t
AC  
t
REW  
tAC  
t
LZ  
t
HZ  
t
LZ  
High impedance  
High impedance  
DOUT (Output)  
(n)  
(n+1)  
(n+2)  
(n+3)  
Remark RSTR = “H” level  
10  
Data Sheet M10059EJ7V0DS00  
µPD485505  
Write Reset Cycle Timing Chart (WE = Active)  
Cycle n  
Reset Cycle  
Cycle 0  
Cycle 1  
WCK (Input)  
Note  
t
RN1  
t
RS  
t
RSTW  
t
RH  
tRN2  
RSTW (Input)  
WE (Input)  
“L” Level  
(n–1)  
tDS  
t
DH  
t
DS  
t
DH  
(n)  
(0)  
(1)  
D
IN (Input)  
Note In write reset cycle, reset operation is executed even without a reset cycle (tRSTW).  
WCK can be input any number of times in a reset cycle.  
Write Reset Cycle Timing Chart (WE = Inactive)  
Cycle n  
Disable Cycle  
Cycle 0  
Reset Cycle  
WCK (Input)  
Note  
t
RH  
t
RS  
t
RN1  
t
RSTW  
t
RN2  
RSTW (Input)  
WE (Input)  
t
WEH  
t
WEN2  
t
WEN1  
t
WES  
t
WEW  
t
DS  
t
DS  
t
DH  
(n)  
(n–1)  
(0)  
DIN (Input)  
Note In write reset cycle, reset operation is executed even without a reset cycle (tRSTW).  
WCK can be input any number of times in a reset cycle.  
Data Sheet M10059EJ7V0DS00  
11  
µPD485505  
Read Reset Cycle Timing Chart (RE = Active)  
Cycle n  
Reset Cycle  
Cycle 0  
Cycle 1  
RCK (Input)  
Note  
RSTR  
t
RN2  
t
RH  
t
t
RS  
t
RN1  
RSTR (Input)  
RE (Input)  
“L” Level  
t
AC  
t
AC  
t
AC  
t
AC  
(n–1)  
(1)  
DOUT (Output)  
(n)  
(0)  
(0)  
t
OH  
t
OH  
t
OH  
Note In read reset cycle, reset operation is executed even without a reset cycle (tRSTR).  
RCK can be input any number of times in a reset cycle.  
Read Reset Cycle Timing Chart (RE = Inactive)  
Cycle n  
Disable Cycle  
Cycle 0  
Reset Cycle  
RCK (Input)  
Note  
tRN2  
tRH  
tRSTR  
tRS  
tRN1  
RSTR (Input)  
tRES  
tREN1  
tREH  
tREN2  
RE (Input)  
tREW  
tAC  
tAC  
tHZ  
tLZ  
High impedance  
(n–1)  
DOUT (Output)  
(n)  
(0)  
tOH  
tOH  
Note In read reset cycle, reset operation is executed even without a reset cycle (tRSTR).  
RCK can be input any number of times in a reset cycle.  
12  
Data Sheet M10059EJ7V0DS00  
µPD485505  
4. Application  
4.1 1 H Delay Line  
µPD485505 easily allows a 1 H (5,048 bits) delay line (see Figure 4.1).  
Figure 4.1 1 H Delay Line Circuit  
40 MHz Clock  
Reset  
WCK  
RCK  
Data Input  
Data Output  
8
DIN  
DOUT  
8
WE  
RSTW  
RE  
RSTR  
Figure 4.2 1 H Delay Line Timing Chart  
1 H  
2 H  
(5,048 Cycles)  
(5,048 Cycles)  
t
t
WCK  
RCK  
Cycle 0  
Cycle 1  
Cycle 2  
Cycle 5,047  
Cycle 0’  
Cycle 0  
Cycle 1’  
Cycle 2’  
Cycle 2  
Cycle 3’  
Cycle 3  
Write  
Read  
Cycle 1  
t
t
WCW  
RCW  
t
t
WCP  
RCP  
WCK/RCK  
(Input)  
t
RS  
t
RH  
RSTW /  
RSTR  
t
DS  
t
DS  
(Input)  
t
DH  
t
DH  
D
IN  
(0)  
(1)  
(2)  
(5,046)  
(5,047)  
(0’)  
(1’)  
(2’)  
(3’)  
(Input)  
t
AC  
t
OH  
D
OUT  
(0)  
(1)  
(2)  
(3)  
(Output)  
Remark RE, WE = “L” level  
Data Sheet M10059EJ7V0DS00  
13  
µPD485505  
4.2 n Bit Delay  
It is possible to make delay read from the write data with the µPD485505.  
(1) Perform a reset operation in the cycle proportionate to the delay length. (Figure 4.3)  
(2) Shift the input timing of write reset (RSTW) and read reset (RSTR) depending on the delay length. (Figure 4.4)  
(3) Shift the address by disabling RE for the period proportionate to the delay length. (Figure 4.5)  
n bit: Delay bits from write cycle to read cycle correspond to a same address cell.  
Restrictions  
Delay bits n can be set from minimum bits to maximum bits depending on the operating cycle time. Refer  
to 2. Operation Mode Operation-related Restriction.  
Cycle time  
25 ns  
MIN.  
MAX.  
21 bits  
15 bits  
5,048 bits  
5,048 bits  
35 ns  
Figure 4.3 n-Bit Delay Line Timing Chart (1)  
1 H  
2 H  
(n Cycles)  
(n Cycles)  
t
t
WCK  
RCK  
Cycle 0  
Cycle 1  
Cycle 2  
Cycle n–1  
Cycle 0’  
Cycle 0  
Cycle 1’  
Cycle 1  
Cycle 2’  
Cycle 2  
Cycle 3’  
Cycle 3  
Write  
Read  
t
t
WCW  
t
t
WCP  
RCP  
RCW  
WCK/RCK  
(Input)  
t
RS  
t
RS  
t
RH  
t
RH  
RSTW /  
RSTR  
(Input)  
t
DS  
t
DS  
t
WAR  
t
DH  
t
DH  
D
IN  
(0)  
(1)  
(2)  
(n–2)  
(n–1)  
(0’)  
(1’)  
(2’)  
(3’)  
(Input)  
t
AC  
t
OH  
D
OUT  
(0)  
(1)  
(2)  
(3)  
(Output)  
Remark RE, WE = “L” level  
14  
Data Sheet M10059EJ7V0DS00  
µPD485505  
Figure 4.4 n-Bit Delay Line Timing Chart (2)  
t
t
WCK  
RCK  
Cycle 0  
Cycle 1  
Cycle 2  
Cycle n  
Cycle 0  
Cycle n+1 Cycle n+2 Cycle n+3  
Cycle n–1  
Write  
Read  
Cycle 1  
Cycle 2  
Cycle 3  
t
t
WCW  
RCW  
t
t
WCP  
RCP  
WCK/RCK  
(Input)  
t
RS  
t
WAR  
t
RH  
t
RS  
RSTW  
(Input)  
t
RH  
RSTR  
(Input)  
tDS  
t
DS  
t
DH  
t
DH  
D
IN  
(0)  
(1)  
n Cycles  
(2)  
(n–2)  
(n–1)  
(n)  
(n+1)  
(n+2)  
(n+3)  
(Input)  
t
AC  
t
OH  
D
OUT  
(0)  
(1)  
(2)  
(3)  
(Output)  
Remark RE, WE = “L” level  
Figure 4.5 n-Bit Delay Line Timing Chart (3)  
t
t
WCK  
RCK  
Cycle 0  
Cycle 1  
Cycle 2  
Cycle n  
Cycle 0  
Cycle n+1 Cycle n+2 Cycle n+3  
Cycle 1 Cycle 2 Cycle 3  
Cycle n–1  
Write  
Read  
t
t
WCW  
RCW  
t
t
WCP  
RCP  
WCK/RCK  
(Input)  
t
RS  
t
WAR  
t
RH  
RSTW/  
RSTR  
(Input)  
t
REH  
t
REN2  
RE  
(Input)  
t
DS  
t
DS  
t
DH  
t
DH  
D
IN  
(0)  
(1)  
n Cycles  
(2)  
(n–2)  
(n–1)  
(n)  
(n+1)  
(n+2)  
(n+3)  
(Input)  
t
AC  
t
OH  
High impedance  
D
OUT  
(0)  
(1)  
(2)  
(3)  
(Output)  
Remark WE = “L” level  
Data Sheet M10059EJ7V0DS00  
15  
µPD485505  
4.3 Double-speed Conversion  
Figure 4.6 shows an example timing chart of double-speed and twice reading operation (fR = 2fW, 5,048 by  
2 cycle) for a write operation (fW = 5,048 cycle).  
Caution The read operation collide with the write operation on the same line, last n bits output data  
(5,048–n to 5,048) in the first read operation will be undefined (see Figure 4.6 Double-speed  
Conversion Timing Chart).  
Undefined bits mentioned above depend on the cycle time.  
Read cycle time  
25 ns  
Undefined bits  
21 bits  
35 ns  
15 bits  
Figure 4.6 Double-speed Conversion Timing Chart  
1H  
2H  
(5,048 Cycle)  
(5,048 Cycle)  
0
1
2
5046 5047  
0'  
1'  
2'  
5046' 5047' 0"  
WCK  
(Input)  
RSTW  
(Input)  
D
IN  
0
1
2
5046 5047 0'  
1'  
2'  
5046' 5047'  
0"  
(Input)  
1H  
1H  
(5,048 Cycle)  
Second read cycle  
2H  
(5,048 Cycle)  
First read cycle  
(5,048 Cycle)  
First read cycle  
RCK  
(Input)  
RSTR  
(Input)  
t
AC  
D
OUT  
5046 5047  
5046 5047  
5046' 5047'  
0' 1'  
0
1
2
0
1
2
0' 1' 2'  
(Output)  
n bits output data will be undefined.  
n bits output data will be undefined.  
Remark RE, WE = “L” level  
16  
Data Sheet M10059EJ7V0DS00  
µPD485505  
5. Package Drawing  
24-PIN PLASTIC SOP (11.43 mm (450))  
24  
13  
detail of lead end  
P
1
12  
A
F
H
I
G
J
S
B
L
C
N
S
M
D
M
K
E
NOTE  
Each lead centerline is located within 0.12 mm of  
its true position (T.P.) at maximum material condition.  
ITEM MILLIMETERS  
A
B
C
D
E
F
G
H
I
15.5±0.2  
1.27 MAX.  
1.27 (T.P.)  
0.42±0.08  
0.1±0.1  
2.1±0.2  
2.0  
12.2±0.3  
8.4±0.2  
1.9±0.2  
J
+0.08  
0.17  
K
0.07  
L
M
N
P
0.9±0.2  
0.12  
0.10  
5°±5°  
P24GM-50-450A-4  
Data Sheet M10059EJ7V0DS00  
17  
µPD485505  
6. Recommended Soldering Conditions  
Please consult with our sales offices for soldering conditions of the µPD485505.  
Type of Surface Mount Device  
µPD485505G: 24-pin plastic SOP (11.43 mm (450))  
7. Example of Stamping  
Letter E in the fifth character position in a lot number signifies version E, letter K, version K, letter P, version  
P, and letter L, version L.  
JAPAN  
D485505  
Lot number  
18  
Data Sheet M10059EJ7V0DS00  
µPD485505  
NOTES FOR CMOS DEVICES  
1
PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note:  
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity  
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control  
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using  
insulators that easily build static electricity. Semiconductor devices must be stored and trans-  
ported in an anti-static container, static shielding bag or conductive material. All test and  
measurement tools including work bench and floor should be grounded. The operator should be  
grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar  
precautions need to be taken for PW boards with semiconductor devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note:  
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided  
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence  
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input  
levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each  
unused pin should be connected to VDD or GND with a resistor, if it is considered to have a  
possibility of being an output pin. All handling related to the unused pins must be judged device  
by device and related specifications governing the devices.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note:  
Power-on does not necessarily define initial status of MOS device. Production process of MOS  
does not define the initial operation status of the device. Immediately after the power source is  
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does  
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until  
the reset signal is received. Reset operation must be executed immediately after power-on for  
devices having reset function.  
Data Sheet M10059EJ7V0DS00  
19  
µPD485505  
[MEMO]  
The information in this document is current as of December, 2000. The information is subject to  
change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or  
data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all  
products and/or types are available in every country. Please check with an NEC sales representative  
for availability and additional information.  
No part of this document may be copied or reproduced in any form or by any means without prior  
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.  
NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of  
third parties by or arising from the use of NEC semiconductor products listed in this document or any other  
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any  
patents, copyrights or other intellectual property rights of NEC or others.  
Descriptions of circuits, software and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these  
circuits, software and information in the design of customer's equipment shall be done under the full  
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third  
parties arising from the use of these circuits, software and information.  
While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers  
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize  
risks of damage to property or injury (including death) to persons arising from defects in NEC  
semiconductor products, customers must incorporate sufficient safety measures in their design, such as  
redundancy, fire-containment, and anti-failure features.  
NEC semiconductor products are classified into the following three quality grades:  
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products  
developed based on a customer-designated "quality assurance program" for a specific application. The  
recommended applications of a semiconductor product depend on its quality grade, as indicated below.  
Customers must check the quality grade of each semiconductor product before using it in a particular  
application.  
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio  
and visual equipment, home electronic appliances, machine tools, personal electronic equipment  
and industrial robots  
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems and medical equipment for life support, etc.  
The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's  
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not  
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness  
to support a given application.  
(Note)  
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.  
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for  
NEC (as defined above).  
M8E 00. 4  

相关型号:

D4875

panel mount
CRYDOM

D4875FHT-10

Panel Mount
CRYDOM

D4875FSH-10

Panel Mount
CRYDOM

D4875H

Trigger Output SSR, 1-Channel, 4000V Isolation, PLASTIC PACKAGE-4
CRYDOM

D4875H-10

Trigger Output SSR, 1-Channel, 4000V Isolation, ROHS COMPLIANT, PLASTIC PACKAGE-4
CRYDOM

D4875HT

Trigger Output SSR,
CRYDOM

D4875HT-10

Trigger Output SSR,
CRYDOM

D4875K

Trigger Output SSR,
CRYDOM

D4875KHT-10

Panel Mount
CRYDOM