UPC1663 [NEC]

DC to VHF WIDEBAND DIFFERENTIAL INPUT AND OUTPUT AMPLIFIER IC; DC到VHF宽带差分输入和输出放大器IC
UPC1663
型号: UPC1663
厂家: NEC    NEC
描述:

DC to VHF WIDEBAND DIFFERENTIAL INPUT AND OUTPUT AMPLIFIER IC
DC到VHF宽带差分输入和输出放大器IC

放大器 输出元件 输入元件
文件: 总16页 (文件大小:94K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
BIPOLAR ANALOG INTEGRATED CIRCUIT  
µPC1663  
DC to VHF WIDEBAND DIFFERENTIAL INPUT AND OUTPUT AMPLIFIER IC  
DESCRIPTION  
The µPC1663 is a differential input, differential output wideband amplifier IC that uses an high frequency silicon  
bipolar process. This process improves bandwidth phase characteristics, input noise voltage characteristics, and low  
power consumption when compared to conventional HF-band differential amplifier ICs.  
These features make this device suitable as a wideband amplifier in high-definition TVs, high-resolution monitors,  
broadcasting satellite receivers, and video cameras, as a sense amplifier in high-density CCD and optical pick-up  
products, or as a pulse amplifier for optical data links.  
These ICs are manufactured using NEC’s 6 GHz fT NESATTM I silicon bipolar process. This process uses silicon  
nitride passivation film and gold electrodes. These materials can protect chip surface from external pollution and  
prevent corrosion/migration. Thus, these ICs have excellent performance, uniformity and reliability.  
FEATURES  
Bandwidth and typical gain: 120 MHz @ AVOL = 300  
700 MHz @ AVOL = 10  
Phase delay  
: –85 deg. @ AVOL = 100, 100 MHz  
Input Noise Voltage  
Supply Current  
: 3 µVr.m.s. (RS = 50 , 10 k to 10 MHz)  
±
: 13mA TYP. @ VCC = ±6 V  
Gain adjustable from 10 to 300 with external resistor  
No frequency compensation required (Small phase delay at 10 MHz or less)  
ORDERING INFORMATION  
Part Number  
Package  
Marking  
1663  
Supplying Form  
Embossed tape 12 mm wide.  
µPC1663G-E1  
8-pin plastic SOP (225 mil)  
Pin 1 is in tape pull-out direction.  
Qty 2.5 kp/reel.  
µPC1663GV-E1  
8-pin plastic SSOP (175 mil)  
Embossed tape 8 mm wide.  
Pin 1 is in tape pull-out direction.  
Qty 1 kp/reel.  
Remark To order evaluation samples, please contact your local NEC sales office. (Part number for sample order:  
µPC1663G, µPC1663GV)  
Caution µPC1663C (8-pin plastic DIP) is discontinued.  
Caution Electro-static sensitive devices  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all devices/types available in every country. Please check with local NEC representative for  
availability and additional information.  
Document No. G11024EJ6V0DS00 (6th edition)  
Date Published September 1999 N CP(K)  
Printed in Japan  
The mark  
shows major revised points.  
©
1987, 1999  
µPC1663  
CONNECTION DIAGRAM  
(Top View)  
Pin No.  
Pin Name  
IN2  
1
2
3
4
8
7
6
5
1
2
3
4
5
6
7
8
G1B  
VCC  
OUT2  
OUT1  
VCC+  
G1A  
IN1  
PIN EXPLANATIONS  
In Dual  
Bias  
In Single  
Bias  
Pin  
No.  
Pin  
Functions and Applications  
Input pin  
Internal Equivalent Circuit  
Name  
(V)  
(V)  
8
1
IN1  
IN2  
Pin  
Apply  
voltage  
VCC/2  
voltage  
0
6
5
4
OUT1  
OUT2  
Pin  
Apply  
voltage  
VCC/2  
Output pin  
voltage  
0
6
VCC+  
±2 to ±6.5  
–0.3 to +14 Plus voltage supply pin.  
This pin should be  
8
1
2
5
4
7
Note  
Note  
connected with bypass  
capacitor to minimize AC  
impedance.  
(G2A  
)
(G2B)  
3
VCC–  
GND  
Minus voltage supply pin.  
This pin should be  
3
connected with bypass  
capacitor to minimize AC  
impedance.  
7
2
G1A  
G1B  
Gain adjustment pin.  
External resistor from 0 to  
10 kcan be inserted  
between pin 2 and 7 to  
determine gain value.  
Internal circuit constants should be referred to  
application note.  
Note µPC1664 which had G2A, G2B of the other gain adjustment pins is discontinued.  
2
Data Sheet G11024EJ6V0DS00  
µPC1663  
ABSOLUTE MAXIMUM RATINGS (TA = +25 °C)  
Parameter  
Supply Voltage  
Symbol  
µPC1663G  
±7  
µPC1663GV  
Unit  
V
±
VCC  
±7  
Power Dissipation  
Differential Input Voltage  
Input Voltage  
PD  
VID  
280 (T  
A = +75°C)Note  
280 (TA = +75 °C)Note  
mW  
V
±5  
±5  
±6  
VICM  
±6  
V
(within VCCto VCC+ range)  
(within VCCto VCC+ range)  
Output Current  
IO  
TA  
35  
35  
mA  
°C  
Operating Ambient Temperature  
Storage Temperature  
45 to +75  
55 to +150  
45 to +75  
55 to +150  
Tstg  
°C  
Note Mounted on double sided copper clad 50 × 50 × 1.6 mm epoxy glass PWB  
RECOMMENDED OPERATING CONDITIONS  
Parameter  
Supply Voltage  
Symbol  
MIN.  
±2  
TYP.  
±6  
MAX.  
±6.5  
20  
Unit  
V
±
VCC  
Output Source Current  
Output Sink Current  
IO source  
IO sink  
fopt  
mA  
mA  
MHz  
2.5  
Operating Frequency Range  
DC  
200  
3
Data Sheet G11024EJ6V0DS00  
µPC1663  
±
ELECTRICAL CHARACTERISTICS (TA = +25 °C, VCC = ±6 V)  
Parameter  
Symbol  
Avd  
Conditions  
f = 10 MHzNote 1  
MIN.  
200  
8
TYP.  
320  
10  
MAX.  
500  
12  
Unit  
Differential Voltage Gain  
Gain 1  
Gain 2  
Gain 1  
Gain 2  
Gain 1  
Gain 2  
Gain 1  
Gain 2  
Gain 1  
Gain 2  
f = 10 MHzNote 2  
Bandwidth  
BW  
tr  
RS = 50 (3 dB down point)  
120  
700  
2.9  
2.7  
2
MHz  
ns  
Rise Time  
RS = 50 , Vout = 1 VP-P  
RS = 50 , Vout = 1 VP-P  
Propagation Delay  
Input Resistance  
tpd  
ns  
1.2  
4.0  
180  
2
Rin  
kΩ  
50  
Input Capacitance  
Input Offset Current  
Input Bias Current  
Input Noise Voltage  
Input Voltage Range  
Cin  
IIO  
pF  
µA  
0.4  
20  
5.0  
40  
IB  
µA  
Vn  
RS = 50 , 10 k to 10 MHz  
Vcm = ±1 V, f 100 kHz  
3
µVr.m.s.  
V
VI  
±1.0  
53  
Common Mode  
Rejection Ratio  
Gain 2  
CMR  
94  
dB  
Supply Voltage Rejection Ratio  
Output Offset Voltage Gain 1  
Gain 2  
SVR  
V = ±0.5 V  
50  
70  
0.3  
0.1  
2.9  
4.0  
3.6  
13  
1.5  
1.0  
3.4  
dB  
V
VO(off)  
VO(off) = |OUT1 – OUT2|  
Output Common Mode Voltage  
Output Voltage Swing  
Output Sink Current  
VO(CM)  
VOP-P  
Isink  
2.4  
3.0  
2.5  
V
Single-ended  
VP-P  
mA  
mA  
Power Supply Current  
ICC  
20  
Notes 1. Gain select pins G1A and G1B are connected.  
2. All gain select pins are opened.  
4
Data Sheet G11024EJ6V0DS00  
µPC1663  
TEST CIRCUIT  
50 Ω  
IN  
Z
S
= 50 Ω  
50 Ω  
1
2
3
4
8
7
6
5
µ
0.1  
F
1 000 pF  
1 000 pF  
+
V
CC  
V
CC  
µ
0.1 F  
Measurement value at  
OUT connector should  
be converced into DUT’s  
output value at pin 5.  
Remark  
1 kΩ  
OUT  
950 Ω  
µ
0.1  
F
Z
50 Ω  
L
=
Remark  
Definition and test circuit of each characteristic should be referred to application note ‘Usage of  
µPC1663 (Document No. G12290E)’.  
NOTES ON CORRECT USE  
(1) Observe precautions for handling because of electro-static sensitive devices.  
(2) Form a ground pattern as wide as possible to minimize ground impedance (to prevent undesired  
oscillation).  
(3) The bypass capacitor should be attached to VCC line.  
(4) When gain between Gain 1 and Gain 2 is necessary, insert adjustment resistor (0 to 10 k) between  
G1A and G1B to determine gain value.  
(5) Due to high-frequency characteristics, the physical circuit layout is very critical. Supply voltage line  
bypass, double-sided printed-circuit board, and wide-area ground line layout are necessary for stable  
operation. Two signal resistors connected to both inputs and two load resistors connected to both  
outputs should be balanced for stable operation.  
+
V
CC  
50 Ω  
(150 to )  
(150 to )  
50 Ω  
V
CC  
5
Data Sheet G11024EJ6V0DS00  
µPC1663  
TYPICAL CHARACTERISTICS (Unless otherwise specified TA = +25 °C)  
RELATIVE VOLTAGE GAIN vs. OPERATING  
AMBIENT TEMPERATURE  
SINGLE-ENDED VOLTAGE GAIN vs. FREQUENCY  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.1  
V
CC± = ± 6 V  
60  
50  
40  
30  
20  
10  
0
Gain 2  
Gain 1  
Gain 2  
Gain 1  
100 K  
1 M  
10 M  
100 M  
Frequency f (Hz)  
Remark Differential voltage gain is double of  
single-ended voltage gain.  
±2  
±3  
±4  
±5  
±6  
±7  
±8  
Supply Voltage VCC± (V)  
OUTPUT SINK CURRENT vs. OPERATING  
AMBIENT TEMPERATURE  
RELATIVE GAIN vs. OPERATING AMBIENT  
TEMPERATURE  
1.05  
1.00  
0.95  
0.90  
4.0  
3.5  
3.0  
2.5  
V
CC±= ±6 V  
Gain 2  
Gain 1  
V
CC± = ±6 V  
–20  
0
+20  
+50  
+80  
(°C)  
–20  
0
+20  
+50  
+80  
Operating Ambient Temperature T  
A
Operating Ambient Temperature T (°C)  
A
Remark Relative voltage gains are described based on gains 1.00 at T  
A
= +25°C, VCC± = ±6 V  
6
Data Sheet G11024EJ6V0DS00  
µPC1663  
SINGLE-ENDED OUTPUT VOLTAGE SWING vs.  
OPERATING AMBIENT TEMPERATURE  
DIFFERENTIAL VOLTAGE GAIN vs. GAIN ADJUST  
RESISTANCE  
5.0  
1000  
V
CC± = ±6 V  
4.5  
4.0  
3.5  
3.0  
2.5  
100  
10  
10  
100  
1 k  
10 k  
Gain Adjust Resistance RADJ ()  
V
CC± = ±6 V  
–20  
0
+20  
+50  
+80  
Operating Ambient Temperature T  
A
(°C)  
INPUT BIAS CURRENT vs.  
SUPPLY CURRENT vs.  
OPERATING AMBIENT TEMPERATURE  
OPERATING AMBIENT TEMPERATURE  
CC± = ±6 V  
50  
40  
30  
20  
10  
0
16  
15  
14  
13  
12  
11  
10  
V
V
CC± = ±6 V  
µ
–20  
0
+20  
+50  
+80  
Operating Ambient Temperature T  
A
(°C)  
–20  
0
+20  
+50  
+80  
Operating Ambient Temperature  
TA (°C)  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
30  
15  
10  
5
±2  
±4  
±6  
±8  
±10  
0
Supply Voltage VCC± (V)  
7
Data Sheet G11024EJ6V0DS00  
µPC1663  
APPLICATION CIRCUIT EXAMPLES  
EXAMPLE 1  
Video Line Driver Circuit Example  
+6 V  
COAXIAL  
0.1 F  
µ
Output  
75 Ω  
200 Ω  
75 Ω  
µ
PC1663  
Input  
75 Ω  
75 Ω  
200 Ω  
–6 V  
MAXIMUM OUTPUT VOLTAGE vs. FREQUENCY (VIDEO LINE, SINGLE-ENDED)  
VCC± = ±6 V  
2.0  
1.0  
Remark  
Differential output voltage is double of single-ended output voltage.  
0
100 k  
1 M  
10 M  
100 M  
1 G  
Frequency f (Hz)  
PHASE CHARACTERISTICS vs. FREQUENCY  
CC± = ±6 V  
V
0
–45  
–90  
Gain 2  
Gain 1  
–135  
–180  
100 k  
1 M  
10 M  
100 M  
Frequency f (Hz)  
8
Data Sheet G11024EJ6V0DS00  
µPC1663  
EXAMPLE 2  
VCC single supply application example (Outline)  
VCC  
R1  
R1  
C
µ PC1663  
RL  
R
2
1
R2  
RL  
R
= R  
2
EXAMPLE 3  
Photo signal detector circuit example (Outline)  
V+  
L
+
CC  
V
C
PIN Photo Diode  
NDL2102  
NDL2104  
NDL2208  
NDL5200  
OUT  
OUT  
1
2
RS  
µPC1663  
RL  
RL  
R
S
(Refer to data sheet  
of each part number)  
V
CC  
Caution When signal source impedance for µPC1663 is critical, FET source follower buffer should be  
inserted between PIN Photo diode and µPC1663 input.  
The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.  
Precautions for design in and detail application circuit examples should be referred to application note ‘Usage of  
µPC1663 (Document No. G12290E)’.  
9
Data Sheet G11024EJ6V0DS00  
µPC1663  
PACKAGE DIMENSIONS  
8 PIN PLASTIC SOP (225 mil) (Unit: mm)  
µPC1663G −  
8
5
detail of lead end  
P
1
4
A
H
I
F
J
G
E
S
B
L
N
S
C
K
M
D
M
NOTE  
ITEM MILLIMETERS  
Each lead centerline is located within 0.12 mm of  
its true position (T.P.) at maximum material condition.  
A
5.2±0.2  
B
C
0.85 MAX.  
1.27 (T.P.)  
+0.08  
0.42  
D
0.07  
E
F
G
H
I
0.1±0.1  
1.57±0.2  
1.49  
6.5±0.3  
4.4±0.15  
1.1±0.2  
J
+0.08  
0.17  
K
0.07  
L
M
N
0.6±0.2  
0.12  
0.10  
+7°  
3°  
P
3°  
10  
Data Sheet G11024EJ6V0DS00  
µPC1663  
8 PIN PLASTIC SSOP (175 mil) (Unit: mm)  
µPC1663GV −  
8
5
detail of lead end  
1
4
4.94 ± 0.2  
3.2 ± 0.1  
3.0 MAX.  
0.87 ± 0.2  
0.5 ± 0.2  
0.15  
0.65  
0.575 MAX.  
+0.10  
–0.05  
M
0.10  
0.30  
11  
Data Sheet G11024EJ6V0DS00  
µPC1663  
RECOMMENDED SOLDERING CONDITIONS  
This product should be soldered under the following recommended conditions. For soldering methods and  
conditions other than those recommended below, contact your NEC sales representative.  
Soldering Method  
Infrared Reflow  
Soldering Conditions  
Recommended Condition Symbol  
IR35-00-3  
Package peak temperature: 235 °C or below  
Time: 30 seconds or less (at 210 °C)  
Count: 3, Exposure limit: NoneNote  
VPS  
Package peak temperature: 215 °C or below  
Time: 40 seconds or less (at 200 °C)  
Count: 3, Exposure limit: NoneNote  
VP15-00-3  
WS60-00-1  
Wave Soldering  
Partial Heating  
Soldering bath temperature: 260 °C or below  
Time: 10 seconds or less  
Count: 1, Exposure limit: NoneNote  
Pin temperature: 300 °C  
Time: 3 seconds or less (per side of device)  
Exposure limit: NoneNote  
Note After opening the dry pack, keep it in a place below 25 °C and 65 % RH for the allowable storage period.  
Caution Do not use different soldering methods together (except for partial heating).  
For details of recommended soldering conditions for surface mounting, refer to information document  
SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E)  
12  
Data Sheet G11024EJ6V0DS00  
µPC1663  
[MEMO]  
13  
Data Sheet G11024EJ6V0DS00  
µPC1663  
[MEMO]  
14  
Data Sheet G11024EJ6V0DS00  
µPC1663  
[MEMO]  
15  
Data Sheet G11024EJ6V0DS00  
µPC1663  
ATTENTION  
OBSERVE PRECAUTIONS  
FOR HANDLING  
ELECTROSTATIC  
SENSITIVE  
DEVICES  
NESAT (NEC Silicon Advanced Technology) is a trademark of NEC Corporation.  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
No part of this document may be copied or reproduced in any form or by any means without the prior written  
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in  
this document.  
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property  
rights of third parties by or arising from use of a device described herein or any other liability arising from use  
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other  
intellectual property rights of NEC Corporation or others.  
Descriptions of circuits, software, and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these circuits,  
software, and information in the design of the customer's equipment shall be done under the full responsibility  
of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third  
parties arising from the use of these circuits, software, and information.  
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,  
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or  
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety  
measures in its design, such as redundancy, fire-containment, and anti-failure features.  
NEC devices are classified into the following three quality grades:  
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a  
customer designated "quality assurance program" for a specific application. The recommended applications of  
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device  
before using it in a particular application.  
Standard: Computers, office equipment, communications equipment, test and measurement equipment,  
audio and visual equipment, home electronic appliances, machine tools, personal electronic  
equipment and industrial robots  
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems or medical equipment for life support, etc.  
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.  
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,  
they should contact an NEC sales representative in advance.  
M7 98. 8  

相关型号:

UPC1663B

Analog IC
ETC

UPC1663C

Analog IC
ETC

UPC1663G

ULTRA-WIDEBAND DIFFERENTIAL VIDEO AMPLIFIER
NEC

UPC1663G-E1

ULTRA-WIDEBAND DIFFERENTIAL VIDEO AMPLIFIER
NEC

UPC1663GV

ULTRA-WIDEBAND DIFFERENTIAL VIDEO AMPLIFIER
CEL

UPC1663GV-A

UPC1663GV-A
RENESAS

UPC1663GV-E1

DC to VHF WIDEBAND DIFFERENTIAL INPUT AND OUTPUT AMPLIFIER IC
NEC

UPC1663GV-E1-A

ULTRA-WIDEBAND DIFFERENTIAL VIDEO AMPLIFIER
CEL

UPC1663GV-E1-A

UPC1663GV-E1-A
RENESAS

UPC1663P

Analog IC
ETC

UPC1664C

Analog IC
ETC

UPC1668B

Analog IC
ETC