UPC494GS-E1 [NEC]

0.25A SWITCHING CONTROLLER, 300kHz SWITCHING FREQ-MAX, PDSO16, 0.300 INCH, PLASTIC, SOP-16;
UPC494GS-E1
型号: UPC494GS-E1
厂家: NEC    NEC
描述:

0.25A SWITCHING CONTROLLER, 300kHz SWITCHING FREQ-MAX, PDSO16, 0.300 INCH, PLASTIC, SOP-16

开关 光电二极管
文件: 总19页 (文件大小:246K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
BIPOLAR ANALOG INTEGRATED CIRCUIT  
μPC494  
SWITCHING REGULATOR CONTROL CIRCUIT  
<R>  
DESCRIPTION  
The μ PC494 is a PWM type switching regulator control circuit.  
Included in this device are a 5 V voltage reference, dual error amplifiers, a variable frequency sawtooth-wave  
generating oscillator, a comparator for dead-time control, a flip flop, dual alternating output switches, and a buffer to  
output source and sink currents.  
Error amplifiers have wide common mode input voltage capability, and circuits for voltage feedback and over current  
protection are easy to configure. The μ PC494 can be applied to all types of switching regulators, including chopper  
type regulators.  
<R>  
FEATURES  
250 mA output buffer to output sink and source currents  
Switchable operation mode between a single-end mode and a push-pull mode  
No double pulsing during transient condition  
Adjustable dead-time (0 to 100%)  
Internal 5 V output voltage reference circuit  
Error amplifiers with phase-compensating function  
Providing master-slave operation (synchronizing multiple ICs)  
With malfunction prevention circuit for low level supply voltage  
Package variations available for different applications  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all products and/or types are available in every country. Please check with an NEC Electronics  
sales representative for availability and additional information.  
Document No. G12649EJ5V0DS00 (5th edition)  
Date Published August 2008 NS  
Printed in Japan  
1988, 2000, 2008  
The mark <R> shows major revised points.  
The revised points can be easily searched by copying an "<R>" in the PDF file and specifying it in the "Find what:" field.  
μPC494  
<R>  
ORDERING INFORMATION  
Part Number  
Package  
Package Type  
plastic magazine  
μ PC494C  
16-pin plastic DIP (7.62 mm (300))  
16-pin plastic SOP (7.62 mm (300))  
16-pin plastic SOP (7.62 mm (300))  
μ PC494GS  
μ PC494GS-E1  
plastic magazine  
embossed taping  
Pin 1 on draw-out side  
2500 pcs/reel  
μ PC494GS-E2  
16-pin plastic SOP (7.62 mm (300))  
embossed taping  
Pin 1 at take-up side  
2500 pcs/reel  
Note  
μ PC494GT-A  
16-pin plastic SOP (9.53 mm (375))  
16-pin plastic SOP (9.53 mm (375))  
plastic magazine  
embossed taping  
Pin 1 on draw-out side  
1500 pcs/reel  
Note  
μ PC494GT-E1-A  
Note  
μ PC494GT-E2-A  
16-pin plastic SOP (9.53 mm (375))  
embossed taping  
Pin 1 at take-up side  
1500 pcs/reel  
Note  
μ PC494GS-A  
16-pin plastic SOP (7.62 mm (300))  
16-pin plastic SOP (7.62 mm (300))  
plastic magazine  
embossed taping  
Pin 1 on draw-out side  
2500 pcs/reel  
Note  
μ PC494GS-E1-A  
Note  
μ PC494GS-E2-A  
16-pin plastic SOP (7.62 mm (300))  
embossed taping  
Pin 1 at take-up side  
2500 pcs/reel  
Note Pb-free (This product does not contain Pb in the external electrode and other parts.)  
2
Data Sheet G12649EJ5V0DS00  
μPC494  
BLOCK DIAGRAM  
Output Control  
13  
V
CC 12  
Reference Low Voltage  
Ref Out 14  
GND 7  
Regulator  
Stop  
8 C  
9 E  
11 C  
10 E  
1
F
T /  
1
F
2
R
C
T
T
6
5
Oscillator  
2
Dead-Time  
+
Comparator  
Dead-Time  
Control  
4
+
EA I  
+
+
Non-Inv. Input 1  
Inv. Input 2  
PWM  
Comparator  
EA II  
Non-Inv. Input 16  
Inv. Input 15  
Feed-Back 3  
PIN CONFIGURATION (Top View)  
μ PC494C, 494GS, 494GT-A, 494GS-A  
<R>  
Non-Inv. Input  
Inv. Input  
1
2
3
4
5
6
7
8
16  
Non-Inv. Input  
Inv. Input  
15  
14  
13  
12  
11  
10  
9
Feed-Back  
Ref Out  
Dead-Time  
Control  
Output Control  
C
T
V
CC  
R
T
C
2
GND  
E
E
2
1
C
1
3
Data Sheet G12649EJ5V0DS00  
μPC494  
<R> ABSOLUTE MAXIMUM RATINGS (TA = 25°C, unless otherwise noted)  
Characteristics  
Supply Voltage  
Symbol  
VCC  
μ PC494C  
μ PC494GS  
μ PC494GT-A  
μ PC494GS-A  
Unit  
V
0.3 to +41  
Error Amplifier Input Voltage  
VICM  
0.3 to VCC +0.3  
0.3 to +5.25  
V
Dead-time Comparator Input  
Voltage  
VDTC  
V
Output Voltage  
VCER  
IC  
0.3 to +41  
V
Output Current  
250  
mA  
mW  
°C  
Note  
Note  
Note  
650  
780  
650  
Total Power Dissipation  
PT  
1000  
Operating Ambient Temperature TA  
Storage Temperature  
20 to +85  
65 to +150  
Tstg  
°C  
Note With 5 cm x 5 cm x 1.6 mmt glass-epoxy substrate.  
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any  
parameter. That is, the absolute maximum ratings are rated values at which the product is on the  
verge of suffering physical damage, and therefore the product must be used under conditions that  
ensure that the absolute maximum ratings are not exceeded.  
RECOMMENDED OPERATING CONDITIONS  
Characteristics  
Supply Voltage  
Symbol  
MIN.  
7
TYP.  
MAX.  
40  
Unit  
V
VCC  
Output Voltage  
VCER  
IC  
0.3  
+40  
V
Output Current (per output stage)  
Error Amplifier Sink Current  
Timing Capacitor  
<R>  
200  
mA  
mA  
nF  
kΩ  
kHz  
°C  
IOAMP  
CT  
0.3  
10000  
500  
0.47  
1.8  
1
Timing Resistance  
RT  
Oscillation Frequency  
Operating Ambient Temperature  
fOSC  
TA  
300  
20  
+70  
Caution The recommended operating range may be exceeded without causing any problems provided that  
the absolute maximum ratings are not exceeded. However, if the device is operated in a way that  
exceeds the recommended operating conditions, the margin between the actual conditions of use  
and the absolute maximum ratings is small, and therefore thorough evaluation is necessary. The  
recommended operating conditions do not imply that the device can be used with all values at their  
maximum values.  
4
Data Sheet G12649EJ5V0DS00  
μPC494  
ELECTRICAL SPECIFICATIONS (VCC = 15 V, f = 10 kHz, 20°C TA +70°C, unless otherwise noted)  
(1/2)  
Note1  
TYP.  
Block  
Characteristics  
Output Voltage  
Symbol  
Conditions  
MIN.  
4.75  
MAX.  
5.25  
25  
Unit  
V
Reference  
Section  
VREF  
IREF = 1 mA, TA = 25°C  
7 V VCC 40 V,  
IREF = 1 mA, TA = 25°C  
1 mA IREF 10 mA,  
TA = 25°C  
5
Line Regulation  
REGIN  
8
mV  
Load Regulation  
REGL  
1
15  
mV  
Temperature Coefficient  
ΔVREF /ΔT 20°C TA +85°C,  
0.01  
0.03  
%/°C  
IREF = 1 mA  
Note2  
Short Circuit Output Current  
Frequency  
ISHORT  
VREF = 0 V  
50  
10  
mA  
Oscillator  
Section  
fOSC  
CT = 0.01 μF,  
RT = 12 kΩ  
kHz  
Note3  
Standard Deviation of Frequency  
Frequency Change with Voltage  
7 V VCC 40 V,  
TA = 25°C, under  
recommended operating  
conditions of CT and RT  
constants.  
10  
%
7 V VCC 40 V,  
TA = 25°C,  
CT = 0.01 μF, RT = 12 kΩ  
0°C TA 70°C,  
CT = 0.01 μF,  
1
1
%
%
Frequency Change with Temperature  
2
RT = 12 kΩ  
Dead- Time Input Bias Current  
0 V VDTC 5.25 V  
VDTC = 0 V  
2  
49  
3
10  
μA  
%
V
Control  
Section  
Maximum Duty Cycle (Each Output)  
Input Threshold Voltage 1  
45  
0
VTH1  
Output pulse 0% duty cycle  
3.3  
Input Threshold Voltage 2  
VTH2  
Output pulse maximum duty  
cycle  
V
Error  
Input Offset Voltage  
Input Offset Current  
Input Bias Current  
VIO  
IIO  
VOAMP = 2.5 V  
2
10  
250  
1
mV  
nA  
μA  
V
Amplifier 1, 2  
Section  
VOAMP = 2.5 V  
25  
0.2  
VOAMP = 2.5 V  
Common Mode  
Input Voltage  
Low level  
High level  
VICM  
7 V VCC 40 V  
0.3  
VCC 2  
60  
Open Loop Voltage Gain  
AV  
VOAMP = 0.5 to 3.5 V,  
TA = 25°C  
80  
dB  
Unity Gain Bandwidth  
TA = 25°C  
500  
65  
830  
80  
kHz  
dB  
mA  
mA  
V
Common Mode Rejection Ratio  
Output Sink Current  
CMR  
VCC = 40 V, TA = 25°C  
VOAMP = 0.7 V  
0.3  
2  
0.7  
10  
4
Output Source Current  
VOAMP = 3.5 V  
PWM  
Input Threshold Voltage (Pin 3)  
Output pulse 0% duty cycle,  
see Figure 1.  
4.5  
Section  
Input Sink Current  
V(Pin 3) = 0.7 V  
0.3  
0.7  
mA  
Notes 1. The TYP. values are values at TA = 25°C, except for the characteristics of temperature.  
2. The short circuit output current flow must be terminated within 1 second.  
Repeated operations are allowed while internal heat accumulation is within a safe range.  
3. Standard deviation is a measure of the statistical distribution about the mean as derived from the formula;  
N
(Xn X)2  
σ =  
n = 1  
N 1  
Calculation expression of frequency fOSC is as follows ;  
1
fOSC ≅  
(Hz)  
[RT] = Ω, [CT] = F  
6
0.817 RT CT + 1.42 10−  
5
Data Sheet G12649EJ5V0DS00  
μPC494  
(2/2)  
Note  
TYP.  
Block  
Output  
Characteristics  
Symbol  
Conditions  
MIN.  
MAX.  
100  
Unit  
Collector Cut-off Current  
ICER  
VCE = 40 V, VCC = 40 V,  
Common Emitter  
μA  
Section  
Emitter Cut-off Current  
VCC = VC = 40 V, VE = 0 V,  
Emitter Follower  
100  
1.3  
μA  
V
Collector Saturation  
Voltage  
Common  
Emitter  
VCE(sat)  
IC = 200 mA, VE = 0 V  
0.95  
Emitter  
VCE(ON)  
IE = 200 mA, VC = 15 V  
1.6  
2.5  
V
Follower  
Output Voltage Rise Time Common  
tr1  
VCC = 15 V, RL = 150 Ω,  
IC 100 mA, TA = 25°C,  
see Figure 1.  
100  
70  
200  
200  
200  
200  
12.5  
ns  
ns  
Emitter  
Output Voltage Fall Time  
tf1  
Output Voltage Rise Time Emitter  
tr2  
VC = 15 V, RL = 150 Ω,  
IE 100 mA, TA = 25°C,  
see Figure 1.  
100  
70  
ns  
Follower  
Output Voltage Fall Time  
tf2  
ns  
Total  
Standby Current  
ICC(S.B)  
VCC = 15 V,  
8
mA  
Device  
all other pins open.  
V(Pin 4) = 2 V, see Figure 1.  
Bias Current  
ICC(BI)  
10  
mA  
Note The TYP. values are values at TA = 25°C, except for the characteristics of temperature.  
6
Data Sheet G12649EJ5V0DS00  
μPC494  
TEST CIRCUIT AND WAVEFORM CHARACTERISTICS  
Figure1. Test Circuit  
VCC = 15 V  
R
L
R
L
(12)  
150 Ω 150 Ω  
2 W 2 W  
VCC  
(4)  
(3)  
(6)  
(5)  
(1)  
(2)  
Dead-Time  
Control  
Feed-Back  
(8)  
(9)  
C
1
1
Output 1  
Output 2  
Test Input  
E
(11)  
(10)  
12 kΩ  
C
E
2
2
RT  
Note  
μ
0.01  
F
CT  
Non-Inv. Input  
Inv. Input  
Non-Inv. Input  
Inv. Input  
(16)  
(15)  
(13)  
Output ControlRef Out (14)  
GND  
(7)  
50 kΩ  
Note Recommend film capacitor.  
Caution When the emitter follower is output, connect C1 and C2 to VCC and E1 and E2 to GND via RL.  
Figure2. Voltage Waveform  
V
CC  
C
1
Output Voltage  
Output Voltage  
0 V  
V
CC  
C
2
0 V  
C
T
Voltage  
sawtooth-wave  
oscillation output  
Threshold Voltage  
Dead-Time Control  
Input Voltage  
0% MAX.  
Threshold Voltage  
0%  
Feed-Back Input  
(E.A. Output)  
0.7 V  
Connection of Output Control Pin (Pin 13)  
Output Control Input (Pin 13)  
Operation Mode  
Ref Out  
GND  
push-pull  
Single-ended operation (common-mode output of C1, C2)  
7
Data Sheet G12649EJ5V0DS00  
μPC494  
TYPICAL PERFORMANCE CHARACTERISTICS  
(Unless otherwise specified, TA = 25°C, VCC = 15 V, Reference)  
MISS-OPERATION PREVENTION  
CIRCUIT CHARACTERISTICS  
MAXIMUM POWER DISSIPATION  
<R>  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
6
5
4
3
2
1
0
Test Circuit  
5 V  
Note With 5 cm x 5 cm x 1.6 mmt  
glass-epoxy substrate  
430 Ω  
μPC494C  
8
Thermal Resistance  
9
VCE  
Rth(J-A)125°C/W  
μPC494GS,  
494GS-A Note  
μPC494GT-A Note  
25  
50  
75  
100  
125  
4
5
6
7
T
A
- Operating Ambient Temperature - °C  
VCC - Supply Voltage - V  
REFERENCE VOLTAGE vs.  
OPERATING AMBIENT TEMPERATURE  
REFERENCE VOLTAGE vs.  
SUPPLY VOLTAGE  
40  
6
5
4
3
2
1
0
V
CC = 15 V  
IREF = 1 mA  
20  
0
–20  
–40  
–60  
–25  
0
25  
50  
75  
100  
5
10 15 20 25 30 35 40  
CC - Supply Voltage - V  
Δ
T
A
- Operating Ambient Temperature - °C  
V
FREQUENCY vs.  
FREQUENCY vs. R  
T
AND C  
T
OPERATING AMBIENT TEMPERATURE  
4
VCC = 15 V  
VCC = 15 V  
500  
200  
R
T
= 12 kΩ  
= 0.01 μF  
2
CT  
0
100  
50  
–2  
–4  
–6  
20  
10  
5
2
1
Δ
2
5
10 20 50 100200 500  
–25  
0
25  
50  
75  
100  
R
T
- Timing Resistance - kΩ  
TA  
- Operating Ambient Temperature - °C  
8
Data Sheet G12649EJ5V0DS00  
μPC494  
OPEN-LOOP VOLTAGE GAIN vs.  
FREQUENCY  
DUTY CYCLE vs. DEAD-TIME  
CONTROL INPUT VOLTAGE  
120  
100  
80  
60  
40  
20  
0
0
10  
20  
30  
40  
50  
V
CC = 15 V  
R
C
T
= 12 kΩ  
= 0.01 μF  
T
0
1
2
3
1
10 100 1 k 10 k 100 k 1 M 10 M  
f - Frequency - Hz  
V
DTC - Dead-Time Control Input Voltage - V  
COLLECTOR SATURATION VOLTAGE  
vs. OUTPUT CURRENT  
STANDBY AND BIAS CURRENT vs.  
SUPPLY VOLTAGE  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
12  
10  
8
6
4
ICC (S.B)  
VCC Terminal Biased.  
Other Terminal Open.  
ICC (BI)  
2
VDTC = 2 V (Pin 4)  
0
0
40  
, I  
80  
120  
160  
200  
10  
20  
30  
40  
I
C
E
- Output Current - mA  
VCC - Supply Voltage - V  
9
Data Sheet G12649EJ5V0DS00  
μPC494  
BASIC APPLICATION CIRCUIT  
VOUT  
Switching regulator  
output pin  
JP2  
GND  
rsense  
VCC  
12 V  
VR3  
R
13  
+
C
47 μF  
6
C1  
R12  
R
110 Ω  
11  
100 Ω  
7.5 kΩ 5 kΩ  
JP1  
R
14  
–Iosense  
+Iosense  
110 Ω  
C
2
R15  
E2  
E1  
C1  
0.01 μF  
100 Ω  
C
2
16  
+
15  
14  
13  
12  
11  
10  
9
V
osense  
R
110 Ω  
9
R
110 Ω  
10  
REFERENCE  
REGULATOR  
ERROR  
AMP  
2
R17  
R
16  
R
3
100 kΩ  
C7  
F/F  
3.9 kΩ R  
1
5.1 kΩ  
ERROR  
AMP  
1
OSCILLATOR  
+
1
2
VR  
1
0.1 V  
3
4
5
6
7
8
2 kΩ  
R
4
C5  
2 kΩ  
240 kΩ  
R2  
R
24 kΩ  
8
5.1 kΩ  
5.1 k  
Ω
VR2  
R5  
C
4
C
3
R
6
R7  
+
7.5 kΩ  
0.01 μF 24 kΩ  
10 μF  
+5 V (VREF  
)
Remark fOSC 40 kHz, C5 = 1000 pF (Recommend film capacitor)  
10  
Data Sheet G12649EJ5V0DS00  
μPC494  
CONNECTION DIAGRAM  
Output Control Input  
Operation Mode  
Output Mode  
Output Voltage Waveform  
(Pin 13)  
C1  
C2  
Push-pull  
Ref Out (Pin 14)  
(JP1 Wired)  
Sink (R9, R10 short)  
E1  
E2  
Source (R11, R12 short)  
C1, C2  
E1, E2  
Single-ended operation  
GND (Pin 7)  
(JP2 Wired)  
Sink (R9, R10 short)  
Source (R11, R12 short)  
11  
Data Sheet G12649EJ5V0DS00  
μPC494  
TYPICAL EXAMPLE OF APPLICATION CIRCUITS  
1) Forward Type  
+VCC  
+
+
V
OUT  
+12 V  
(12)  
VCC  
(8)  
C
1
(13)  
Output  
Control  
To EA II  
(Over Current (Vosense  
Protection )  
To EA I  
(9)  
(7)  
)
E
1
GND  
(14)  
Ref Out GND  
2) Push-pull Type  
(Isolated)  
+VCC  
+
+
V
OUT  
GND  
+12 V  
(12)  
To EA II  
To EA I  
(11)  
(10)  
2 VCC  
C
E
E
2
1
(9)  
(8)  
(7)  
C
1
Output  
Control  
(13)  
(14)  
GND  
Ref Out  
(Non Isolated)  
+VCC  
(40 V MAX.)  
(12)  
(11)  
V
CC  
C
2
+
(10)  
(9)  
+
E
E
2
1
V
OUT  
(13)  
(14)  
Output  
Control  
(8)  
Ref Out  
GND  
C
1
(7)  
To EA II  
To EA I  
GND  
12  
Data Sheet G12649EJ5V0DS00  
μPC494  
3) Step-down Chopper  
+
(40 V MAX.)  
(12)  
+VCC  
+
(11)  
V
CC  
V
OUT  
C
2
(10)  
(9)  
E
E
C
2
1
Output  
Control  
GND  
(8)  
(13)  
1
To EA II  
To EA I  
(7)  
(Over Current  
Protection)  
Remark The dotted line indicates the connection in case of large current.  
EXAMPLE OF MASTER-SLAVE CONNECTION  
To synchronize μ PC494 ICs, connect the pin 6 (RT) of a slave IC to pin 14 (Ref Out) of the same IC, and connect  
both CT pins of master and slave ICs after confirming oscillator of slave IC is stopped.  
+VCC  
(14)  
(6)  
(12)  
(7)  
V
CC Ref Out  
R
T
T
RT  
(M)  
C
(5)  
GND C  
T
(14)  
(6)  
(12)  
(7)  
V
CC Ref Out  
RT  
(S)  
(M) : Master  
(S) : Slave  
(5)  
GND C  
T
13  
Data Sheet G12649EJ5V0DS00  
μPC494  
PACKAGE DRAWINGS (Unit : mm)  
μ PC494C  
16-PIN PLASTIC DIP (7.62mm(300))  
16  
9
1
8
A
J
K
L
P
I
F
C
B
H
R
M
M
N
D
G
NOTES  
ITEM MILLIMETERS  
1. Each lead centerline is located within 0.25 mm of  
its true position (T.P.) at maximum material condition.  
A
B
C
D
F
G
H
I
20.32 MAX.  
1.27 MAX.  
2.54 (T.P.)  
0.50 0.10  
1.1 MIN.  
2. Item "K" to center of leads when formed parallel.  
3.5 0.3  
0.51 MIN.  
4.31 MAX.  
5.08 MAX.  
7.62 (T.P.)  
6.5  
J
K
L
+0.10  
0.25  
M
0.05  
N
P
R
0.25  
1.1 MIN.  
015°  
P16C-100-300B-2  
14  
Data Sheet G12649EJ5V0DS00  
μPC494  
μ PC494GT-A  
<R>  
16-PIN PLASTIC SOP (9.53 mm (375))  
16  
9
detail of lead end  
P
1
8
A
H
I
F
J
G
S
C
B
L
S
N
K
M
D
M
E
NOTE  
ITEM MILLIMETERS  
Each lead centerline is located within 0.12 mm of  
its true position (T.P.) at maximum material condition.  
A
B
C
10.2 0.26  
0.805 MAX.  
1.27 (T.P.)  
+0.08  
0.42  
D
0.07  
E
F
G
H
I
0.125 0.075  
2.9 MAX.  
2.50 0.2  
10.3 0.3  
7.2 0.2  
J
1.6 0.2  
+0.08  
0.17  
K
0.07  
L
M
N
0.8 0.2  
0.12  
0.10  
+7°  
3°  
P
3°  
P16GT-50-375B-2  
15  
Data Sheet G12649EJ5V0DS00  
μPC494  
μ PC494GS, 494GS-A  
16-PIN PLASTIC SOP (7.62 mm (300))  
16  
9
detail of lead end  
P
1
8
A
H
I
F
G
J
S
B
L
N
S
K
C
D
M
M
E
NOTE  
ITEM MILLIMETERS  
Each lead centerline is located within 0.12 mm of  
its true position (T.P.) at maximum material condition.  
A
B
C
10.2 0.2  
0.78 MAX.  
1.27 (T.P.)  
+0.08  
0.42  
D
0.07  
E
F
G
H
I
0.1 0.1  
1.65 0.15  
1.55  
7.7 0.3  
5.6 0.2  
1.1 0.2  
J
+0.08  
0.22  
K
0.07  
L
M
N
0.6 0.2  
0.12  
0.10  
+7°  
3°  
P
3°  
P16GM-50-300B-6  
16  
Data Sheet G12649EJ5V0DS00  
μPC494  
<R>  
RECOMMENDED SOLDERING CONDITIONS  
The μ PC494 should be soldered and mounted under the following recommended conditions.  
For soldering methods and conditions other than those recommended below, contact an NEC Electronics sales  
representative.  
For technical information, see the following website.  
Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)  
Type of Through-hole Device  
μ PC494C: 16-pin plastic DIP (7.62 mm (300))  
Process  
Conditions  
Symbol  
Wave Soldering  
Solder temperature: 260°C or below, Flow time: 10 seconds or less  
WS60-00  
(only to leads)  
Partial Heating Method  
Pin temperature: 300°C or below,  
P300  
Heat time: 3 seconds or less (Per each side of the device)  
Caution For through-hole device, the wave soldering process must be applied only to leads, and make sure  
that the package body does not get jet soldered.  
Type of Surface Mount Device  
μ PC494GS: 16-pin plastic SOP (7.62 mm (300))  
Process  
Conditions  
Symbol  
Infrared Ray Reflow  
Maximum temperature (package’s surface temperature): 235°C or below,  
Time at maximum temperature: 10 seconds or less,  
IR35-00-3  
Time at temperature higher than 210°C: 30 seconds or less,  
Preheating time at 100 to 160°C: 30 to 60 seconds, Times: 3 times,  
Flux: Rosin flux with low chlorine (0.2 Wt% or below) recommended.  
Maximum temperature (package’s surface temperature): 215°C or below,  
Reflow time: 25 to 40 seconds or less (at 200°C or higher),  
Preheating time at 120 to 150°C: 30 to 60 seconds, Times: 3 times,  
Flux: Rosin flux with low chlorine (0.2 Wt% or below) recommended.  
Solder temperature: 260°C or below, Flow time: 10 seconds or less,  
Maximum number of flow processes: 1 time,  
Vapor Phase Soldering  
VP15-00-3  
Wave Soldering  
WS60-00-1  
P350  
Preheating temperature: 120°C MAX. (Package surface temperature).  
Pin temperature: 350°C or below,  
Partial Heating Method  
Heat time: 3 seconds or less (Per each side of the device),  
Flux: Rosin flux with low chlorine (0.2 Wt% or below) recommended.  
Caution Apply only one kind of soldering condition to a device, except for "partial heating method", or the  
device will be damaged by heat stress.  
17  
Data Sheet G12649EJ5V0DS00  
μPC494  
μ PC494GT-A Note1: 16-pin plastic SOP (9.53 mm (375))  
Process  
Conditions  
Symbol  
Infrared Ray Reflow  
Maximum temperature (package’s surface temperature): 260°C or below,  
Time at maximum temperature: 10 seconds or less,  
IR60-207-3  
Time at temperature higher than 220°C: 60 seconds or less,  
Preheating time at 160 to 180°C: 60 to 120 seconds, Times: 3 times,  
Note2  
Exposure limit: 7 days  
(after that, prebake at 125°C for 20 hours),  
Flux: Rosin flux with low chlorine (0.2 Wt% or below) recommended.  
Solder temperature: 260°C or below, Flow time: 10 seconds or less,  
Maximum number of flow processes: 1 time,  
Wave Soldering  
WS60-207-1  
Preheating temperature: 120°C MAX. (Package surface temperature),  
Note2  
Exposure limit: 7 days  
(after that, prebake at 125°C for 20 hours).  
Partial Heating Method  
Pin temperature: 350°C or below,  
P350  
Heat time: 3 seconds or less (Per each side of the device),  
Flux: Rosin flux with low chlorine (0.2 Wt% or below) recommended.  
Notes 1. Pb-free (This product does not contain Pb in the external electrode and other parts.)  
2. After opening the dry pack, store it a 25°C or less and 65% RH or less for the allowable storage period.  
μ PC494GS-A Note: 16-pin plastic SOP (7.62 mm (300))  
Process  
Conditions  
Symbol  
Infrared Ray Reflow  
Maximum temperature (package’s surface temperature): 260°C or below,  
Time at maximum temperature: 10 seconds or less,  
IR60-00-3  
Time at temperature higher than 220°C: 60 seconds or less,  
Preheating time at 160 to 180°C: 60 to 120 seconds, Times: 3 times,  
Flux: Rosin flux with low chlorine (0.2 Wt% or below) recommended.  
Solder temperature: 260°C or below, Flow time: 10 seconds or less,  
Maximum number of flow processes: 1 time,  
Wave Soldering  
WS60-00-1  
P350  
Preheating temperature: 120°C MAX. (Package surface temperature).  
Pin temperature: 350°C or below,  
Partial Heating Method  
Heat time: 3 seconds or less (Per each side of the device),  
Flux: Rosin flux with low chlorine (0.2 Wt% or below) recommended.  
Note Pb-free (This product does not contain Pb in the external electrode and other parts.)  
Caution Apply only one kind of soldering condition to a device, except for "partial heating method", or the  
device will be damaged by heat stress.  
18  
Data Sheet G12649EJ5V0DS00  
μPC494  
The information in this document is current as of August, 2008. The information is subject to  
change without notice. For actual design-in, refer to the latest publications of NEC Electronics data  
sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not  
all products and/or types are available in every country. Please check with an NEC Electronics sales  
representative for availability and additional information.  
No part of this document may be copied or reproduced in any form or by any means without the prior  
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may  
appear in this document.  
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual  
property rights of third parties by or arising from the use of NEC Electronics products listed in this document  
or any other liability arising from the use of such products. No license, express, implied or otherwise, is  
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.  
Descriptions of circuits, software and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these  
circuits, software and information in the design of a customer's equipment shall be done under the full  
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by  
customers or third parties arising from the use of these circuits, software and information.  
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,  
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To  
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC  
Electronics products, customers must incorporate sufficient safety measures in their design, such as  
redundancy, fire-containment and anti-failure features.  
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and  
"Specific".  
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-  
designated "quality assurance program" for a specific application. The recommended applications of an NEC  
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of  
each NEC Electronics product before using it in a particular application.  
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio  
and visual equipment, home electronic appliances, machine tools, personal electronic equipment  
and industrial robots.  
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support).  
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems and medical equipment for life support, etc.  
The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC  
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications  
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to  
determine NEC Electronics' willingness to support a given application.  
(Note)  
(1)  
"NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its  
majority-owned subsidiaries.  
(2)  
"NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as  
defined above).  
M8E 02. 11-1  

相关型号:

UPC494GS-E1-A

Switching Controller, 0.25A, 300kHz Switching Freq-Max, BIPolar, PDSO16, 0.300 INCH, LEAD FREE, PLASTIC, SOP-16
NEC

UPC494GS-E1-A

0.25A SWITCHING CONTROLLER, 300kHz SWITCHING FREQ-MAX, PDSO16, 0.300 INCH, LEAD FREE, PLASTIC, SOP-16
RENESAS

UPC494GS-E2-A

Switching Controller, 0.25A, 300kHz Switching Freq-Max, BIPolar, PDSO16, 0.300 INCH, LEAD FREE, PLASTIC, SOP-16
NEC

UPC494GS-E2-A

0.25A SWITCHING CONTROLLER, 300kHz SWITCHING FREQ-MAX, PDSO16, 0.300 INCH, LEAD FREE, PLASTIC, SOP-16
RENESAS

UPC494GT-A

暂无描述
NEC

UPC494GT-E2-A

Switching Controller, 0.25A, 300kHz Switching Freq-Max, BIPolar, PDSO16, 0.300 INCH, LEAD FREE, PLASTIC, SOP-16
NEC

UPC5020

Analog Master September. 2001 | Pamphlet[09/2001]
ETC

UPC5021

Analog Master September. 2001 | Pamphlet[09/2001]
ETC

UPC5022

Analog Master September. 2001 | Pamphlet[09/2001]
ETC