UPC8002 [NEC]

SECOND MIXER IF AMPLIFIER FOR DIGITAL CORDLESS TELEPHONES; 第二混频器的IF放大器,数字无绳电话
UPC8002
型号: UPC8002
厂家: NEC    NEC
描述:

SECOND MIXER IF AMPLIFIER FOR DIGITAL CORDLESS TELEPHONES
第二混频器的IF放大器,数字无绳电话

放大器 无绳技术 电话
文件: 总32页 (文件大小:209K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
BIPOLAR ANALOG INTEGRATED CIRCUIT  
µPC8002  
SECOND MIXER + IF AMPLIFIER  
FOR DIGITAL CORDLESS TELEPHONES  
The µPC8002 is a monolithic IC developed for use in digital cordless telephones. Its internal equivalent circuits  
comprise a double balanced mixer (DBM), IF amplifier circuit, and RSSI (Received Signal Strength Indicator) circuit.  
The µPC8002 can operate on a wide range of power supply voltages from 2.7 V to 5.5 V, and incorporates a power-  
off function, making it ideal for achieving low set power consumption.  
The package is a 20-pin plastic shrink SOP (225 mil) suitable for high-density surface mounting.  
FEATURES  
Low-voltage, low-consumption-current operation possible (VCC = 2.7 to 5.5 V, ICC = 3.4 mA at VCC = 3 V)  
Wide mixer input frequency range (fMIX = 250 MHz (TYP.) to 500 MHz (MAX.))  
Wide IF amplifier input frequency range (fIF = 8 MHz (MIN.) to 12 MHz (MAX.), 10.7 MHz (TYP.))  
High limiting sensitivity (SL = –100 dBm (TYP.))  
Wide RSSI dynamic range (DR = 85 dB (TYP.))  
On-chip power-off function  
Use of 20-pin plastic shrink SOP (225 mil) allows high-density surface mounting  
BLOCK DIAGRAM  
GND  
V
CC  
BYPASS1 IF1 IN BYPASS2 IF1 OUT BYPASS4 IF2 IN BYPASS3 (IF OUT) (IF OUT) IF2 OUT  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
IF Amp 1  
IF Amp 2  
Output Stage  
Power ON/OFF  
RSSI  
RSSI  
2nd MIXER  
1
2
3
4
5
6
7
8
9
10  
PD  
MIX OUT  
V
CC (IF)  
V
CC (MIX) LO IN GND(IF) GND(MIX) MIX IN1 MIX IN2 RSSI OUT  
ORDERING INFORMATION  
Part Number  
Package  
µPC8002GR  
20-pin plastic shrink SOP (225 mil)  
µPC8002GR-E1  
20-pin plastic shrink SOP (225 mil)  
Embossed carrier taping (pin 1 is tape unwinding direction)  
µPC8002GR-E2  
20-pin plastic shrink SOP (225 mil)  
Embossed carrier taping (pin 1 is tape winding direction)  
The information in this document is subject to change without notice.  
Document No. S10717EJ2V0DS00 (2nd edition)  
Date Published March 1997 N  
Printed in Japan  
1997  
©
µPC8002  
Application Circuit Example 1 (Using 2 BPFs)  
V
CC  
1
2
3
4
5
6
7
8
9
PD  
BYPASS1 20  
IF1 IN 19  
1000 pF  
1000 pF  
0.01 µF  
0.01 µF  
MIX OUT  
V
V
CC  
V
CC (IF)  
BYPASS2 18  
IF1 OUT 17  
1 µF  
1000 pF  
CC  
VCC (MIX)  
1 µF  
1000 pF  
470 pF  
LO IN  
BYPASS4 16  
IF2 IN 15  
GND (IF)  
GND (MIX)  
MIX IN1  
MIX IN2  
BYPASS3 14  
GND (IF OUT) 13  
470 pF  
470 pF  
V
CC  
V
CC (IF OUT) 12  
1 µF  
1000 pF  
IF2 OUT 11  
10 RSSI OUT  
Caution Ensure that the pin voltage does not exceed the power supply voltage.  
Remark The VCC pass capacitors (1 µF, 1000 pF) should be located close to the respective VCC pins.  
Chip laminated ceramic capacitors (MURATA GRM36 or equivalent) should be used.  
2
µPC8002  
Application Circuit Example 2 (Using 1 BPF)  
V
CC  
1
2
3
4
5
6
7
8
9
PD  
BYPASS1 20  
IF1 IN 19  
1000 pF  
1000 pF  
0.01 µF  
MIX OUT  
V
CC  
V
CC (IF)  
BYPASS2 18  
IF1 OUT 17  
1µ F  
1000 pF  
V
CC  
VCC (MIX)  
1
F
µ
1000 pF  
470 pF  
LO IN  
BYPASS4 16  
IF2 IN 15  
GND (IF)  
GND (MIX)  
MIX IN1  
MIX IN2  
BYPASS3 14  
GND (IF OUT) 13  
0.01  
F
µ
470 pF  
470 pF  
V
CC  
V
CC (IF OUT) 12  
1µ F  
1000 pF  
IF2 OUT 11  
10 RSSI OUT  
Cautions 1. Ensure that the pin voltage does not exceed the power supply voltage.  
2. With this application circuit, confirm that there is not problem with interfering wave  
characteristics.  
Remark The VCC pass capacitors (1 µF, 1000 pF) should be located close to the respective VCC pins.  
Chip laminated ceramic capacitors (MURATA GRM36 or equivalent) should be used.  
3
µPC8002  
Application Circuit Example 3 (Using 1 BPF)  
V
CC  
1
2
3
4
5
6
7
8
9
PD  
BYPASS1 20  
IF1 IN 19  
1000 pF  
MIX OUT  
V
CC  
V
CC (IF)  
BYPASS2 18  
IF1 OUT 17  
1000 pF  
1µ F  
1000 pF  
V
CC  
VCC (MIX)  
390 Ω  
1
F
µ
1000 pF  
470 pF  
LO IN  
BYPASS4 16  
IF2 IN 15  
0.01 µF  
GND (IF)  
GND (MIX)  
MIX IN1  
MIX IN2  
1000 pF  
BYPASS3 14  
GND (IF OUT) 13  
0.01 µF  
470 pF  
470 pF  
V
CC  
V
CC (IF OUT) 12  
1 µF  
1000 pF  
IF2 OUT 11  
10 RSSI OUT  
Cautions 1. With this application circuit, good interfering wave characteristics are obtained with a single  
BPF. However, there is a drop in sensitivity.  
2. Ensure that the pin voltage does not exceed the power supply voltage.  
Remark The VCC pass capacitors (1 µF, 1000 pF) should be located close to the respective VCC pins.  
Chip laminated ceramic capacitors (MURATA GRM36 or equivalent) should be used.  
4
µPC8002  
Application Circuit Example 4 (Using 1 BPF)  
V
CC  
1
2
3
4
5
6
7
8
9
PD  
BYPASS1 20  
IF1 IN 19  
1000 pF  
MIX OUT  
V
CC  
V
CC (IF)  
BYPASS2 18  
IF1 OUT 17  
1000 pF  
390 Ω  
1
F
µ
1000 pF  
V
CC  
VCC (MIX)  
1
F
µ
1000 pF  
470 pF  
LO IN  
BYPASS4 16  
IF2 IN 15  
0.01 µF  
1000 pF  
0.01 µF  
GND (IF)  
GND (MIX)  
MIX IN1  
MIX IN2  
1.5 µH  
150 pF  
BYPASS3 14  
GND (IF OUT) 13  
470 pF  
470 pF  
V
CC  
V
CC (IF OUT) 12  
1 µF  
1000 pF  
IF2 OUT 11  
10 RSSI OUT  
Cautions 1. With this application circuit, good interfering wave characteristics are obtained with a single  
BPF (and sensitivity is better than in Application Circuit Example 3).  
2. Ensure that the pin voltage does not exceed the power supply voltage.  
Remark The VCC pass capacitors (1 µF, 1000 pF) should be located close to the respective VCC pins.  
Chip laminated ceramic capacitors (MURATA GRM36 or equivalent) and a chip coil (MURATA LQHIN  
or equivalent) should be used.  
5
µPC8002  
CONTENTS  
1. PIN CONFIGURATION AND PIN FUNCTIONS ....................................................................................7  
2. INPUT/OUTPUT EQUIVALENT CIRCUIT DIAGRAMS ........................................................................9  
3. ELECTRICAL SPECIFICATIONS .......................................................................................................10  
4. CHARACTERISTIC DIAGRAMS ........................................................................................................13  
5. LEVEL DIAGRAMS.............................................................................................................................17  
6. TEST METHODS ................................................................................................................................18  
7. TEST CIRCUIT EXAMPLES ...............................................................................................................19  
8. EVALUATION BOARD MOUNTING EXAMPLE .................................................................................25  
9. WIRING PATTERN CAPACITANCE DIAGRAM (REFERENCE) ........................................................28  
10. PACKAGE DRAWINGS.......................................................................................................................29  
11. RECOMMENDED SOLDERING CONDITIONS..................................................................................30  
6
µPC8002  
1. PIN CONFIGURATION AND PIN FUNCTIONS  
(1) Pin Configuration (Top View)  
20-pin plastic shrink SOP (225 mil)  
PD  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
BYPASS1  
IF1 IN  
MIX OUT  
V
CC (IF)  
BYPASS2  
IF1 OUT  
V
CC (MIX)  
LO IN  
BYPASS4  
IF2 IN  
GND (IF)  
GND (MIX)  
MIX IN1  
BYPASS3  
GND (IF OUT)  
MIX IN2  
VCC (IF OUT)  
RSSI OUT  
IF2 OUT  
Pin Names  
BYPASS1-BYPASS4 : Bypass  
GND (IF)  
: Ground (Intermediate Frequency Amp.)  
GND (IF OUT)  
GND (MIX)  
IF1 IN, IF2 IN  
: Ground (Intermediate Frequency Amp. Output)  
: Ground (Mixer)  
: Intermediate Frequency Amp. Input  
IF1 OUT, IF2 OUT : Intermediate Frequency Amp. Output  
LO IN  
: Local Input  
MIX IN1, MIX IN2  
MIX OUT  
PD  
: Mixer Input  
: Mixer Output  
: Power Down  
RSSI OUT  
VCC (IF)  
: Received Signal Strength Indicator Output  
: Power Supply (Intermediate Frequency Amp.)  
: Power Supply (Intermediate Frequency Amp. Output)  
: Power Supply (Mixer)  
VCC (IF OUT)  
VCC (MIX)  
7
µPC8002  
(2) Pin Functions  
No.  
1
Pin Name  
I/O  
I
Function  
PD  
Power on/off control signal input  
Mixer output  
2
MIX OUT  
VCC (IF)  
O
I
3
IF amplifier and RSSI power supply pin  
Mixer power supply pin  
4
VCC (MIX)  
LO IN  
5
Local input  
6
GND (IF)  
GND (MIX)  
MIX IN1  
I
IF amplifier and RSSI ground pin  
Mixer ground pin  
7
8
Mixer input  
9
MIX IN2  
I
Filter capacitor connection  
RSSI output  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RSSI OUT  
IF2 OUT  
VCC (IF OUT)  
GND (IF OUT)  
BYPASS3  
IF2 IN  
O
O
I
IF amplifier 2 output  
IF amplifier output stage power supply pin  
IF amplifier output stage ground pin  
Filter capacitor connection (IF2 side)  
IF amplifier 2 input  
BYPASS4  
IF1 OUT  
BYPASS2  
IF1 IN  
O
I
Filter capacitor connection (IF2 side)  
IF amplifier 1 output  
Filter capacitor connection (IF1 side)  
IF amplifier 1 input  
BYPASS1  
Filter capacitor connection (IF1 side)  
8
µPC8002  
2. INPUT/OUTPUT EQUIVALENT CIRCUIT DIAGRAMS  
Mixer Input  
1 kΩ  
Mixer Output  
276 Ω  
2
1 kΩ  
700 µA  
8
9
Local Input  
IF Amplifier 1 Output  
IF Amplifier 2 Output  
RSSI Output  
1 kΩ  
207 Ω  
17  
1 kΩ  
250 µA  
5
IF Amplifier 1 Input  
19  
20  
330 Ω  
330 Ω  
11  
18  
290 µA  
14.9 kΩ  
14.9 kΩ  
IF Amplifier 2 Input  
15  
VCC  
32 kΩ  
16  
10  
330 Ω  
330 Ω  
14  
11.8 kΩ  
11.8 kΩ  
2 kΩ  
Power On/Off Input  
50 kΩ  
1
150 kΩ  
9
µPC8002  
3. ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings (TA = 25 °C)  
Parameter  
Power supply voltage  
Total power dissipation  
Storage temperature  
Pin voltage  
Symbol  
VCC  
Test Condition  
Rating  
7
Unit  
V
PT  
TA = 85 °C  
120  
mW  
°C  
V
Tstg  
–40 to +125  
VCC+0.2  
VPIN  
Caution Product quality may suffer if the absolute rating is exceeded for any parameter, even momentarily.  
In other words, an absolute maximum rating is a value at which the possibility of physical damage  
to the product cannot be ruled out. Care must therefore be taken to ensure that the these ratings  
are not exceeded during use of the product.  
Recommended Operating Ratings (TA = 25 °C)  
0 dBm = 223.6 mVrms (at 50 )  
Parameter  
Power supply voltage  
Operating ambient temperature  
Mixer input level  
Symbol  
VCC  
Test Condition  
MIN.  
2.7  
TYP. MAX.  
Unit  
V
3.0  
5.5  
+85  
–18  
–27  
+5  
TA  
–30  
–98  
–107  
–5  
+25  
°C  
VMIX  
50 resistance termination  
dBm  
LC matching (reference value)  
50 resistance termination  
LC matching (reference value)  
Local input level  
VLOC  
dBm  
–20  
–99  
–10  
–14  
500  
12  
IF amplifier input level  
VIF  
fMIX  
fOM  
fIF  
dBm  
MHz  
MHz  
MHz  
pF  
Mixer input frequency  
250  
10.7  
Mixer output frequency  
8
8
IF amplifier input frequency  
RSSI output load capacitance  
IF2 output load capacitance  
10.7  
12  
COI  
COR  
10Note  
10Note  
pF  
Note Includes all capacitances (board, pattern, etc.) applied to the pin.  
10  
µPC8002  
Electrical Specifications (TA = 25 °C, VCC = 3 V)  
(1) Mixer Section (fMIX = 250 MHz, fLOC = 239.3 MHz, VLOC = –5 dBm)  
0 dBm = 223.6 mVrms (at 50 )  
(Where not specified in the Test Condition, input has 50 termination)  
Parameter  
Power supply current  
Conversion gain  
Symbol  
ICCM  
Test Condition  
MIN.  
4
TYP. MAX.  
Unit  
mA  
dB  
No signal  
1.7  
2.2  
GC  
50 resistance termination  
8
17.0  
–10  
–3  
11.0  
LC matching (reference value)  
–1 dB compression output level  
Third order intercept point  
Noise factor  
VOM  
IP3  
–14  
–7  
dBm  
dBm  
dB  
dB  
dB  
Stipulated by output  
Note 1  
Note 2  
NF  
16  
LC matching (reference value)  
Mixer non-input  
7
Local separation  
ISL  
40  
54  
Mixer input impedance  
Local input impedance  
Output resistance  
ZINM  
ZINL  
ROM  
tONM  
tOFM  
ILM  
31-j156  
31-j169  
330  
8
230  
430  
15  
3
Power-on rise time  
VPO = 3 VNote 3  
VPO = 0 VNote 4  
VPO = 0 V  
µs  
Power-off fall time  
1
µs  
Power-off power supply current  
0
5
µA  
Notes 1. f1 = 250.3 MHz, f2 = 250.6 MHz  
2. Leakage from local input to mixer output  
3. Time until the difference between the local input pin power-on and power-off voltages reaches 90 %  
Power-on input voltage (VPO) rise time: 10 ns  
4. Time until the power supply current reaches 10 % of the power-on value  
Power-on input voltage (VPO) fall time: 10 ns  
11  
µPC8002  
(2) IF Amplifier Section (fIF = 10.7 MHz)  
0 dBm = 223.6 mVrms (at 50 )  
Parameter  
Power supply current  
Symbol  
ICCI  
SL  
Test Condition  
MIN.  
TYP. MAX.  
Unit  
mA  
dBm  
deg  
Vp-p  
ns  
No signal  
1.7  
–100  
10  
2.3  
Limiting sensitivity  
–3 dB point  
–97  
IF amplifier phase fluctuation  
IF amplifier output amplitude  
IF amplifier output amplitude rise time  
IF amplifier output amplitude fall time  
IF amplifier input resistance  
IF amplifier input capacitance  
IF amplifier output resistance  
RSSI linearity  
SP  
VIF = –70 to –14 dBm  
IF2 OUT, VIF = –14 dBm  
IF2 OUT, VIF = –14 dBm  
IF2 OUT, VIF = –14 dBm  
IF1 IN, IF2 IN  
Note 1  
VO  
tR  
0.2  
0.3  
8
0.4  
20  
tF  
15  
25  
ns  
Rin  
Cin  
RO  
LR  
230  
230  
18  
330  
3.5  
330  
430  
6.0  
430  
±2  
IF1 IN, IF2 IN  
pF  
IF1 OUT  
VIF = –94 to –14 dBm  
dB  
RSSI slope  
SR  
20  
22  
mV/dB  
RSSI intercept  
IR  
–164.7 –148 –134.4 dBm  
RSSI output voltage 1  
RSSI output voltage 2  
RSSI output voltage 3  
RSSI output voltage 4  
RSSI output temperature stability  
RSSI output dynamic range  
RSSI rise time  
VR1  
VR2  
VR3  
VR4  
ST  
VIF = –14 dBm  
VIF = –54 dBm  
VIF = –94 dBm  
No signal  
2.58  
1.76  
0.88  
2.68  
1.88  
1.08  
0.96  
±2  
2.78  
2.0  
V
V
1.28  
1.23  
V
V
VIF = –94 to –14 dBm  
Note 3  
Note 2  
dB  
dB  
µs  
µs  
mVp-p  
kΩ  
µs  
µs  
µA  
DR  
trf1  
80  
90  
VIF = –14 dBm  
VIF = –14 dBm  
VIF = –14 dBm  
Note 4  
Note 4  
1.0  
4
4
RSSI fall time  
trf2  
1.6  
RSSI output ripple  
RR  
ROR  
tONI  
tOFI  
ILI  
20  
38.4  
10  
3
RSSI output resistance  
Power-on rise time  
25.6  
32  
5
VPO = 3 V, no signalNote 5  
VPO = 0 VNote 6  
Power-off fall time  
1
Power-off power supply current  
VPO = 0 V  
6
10  
Notes 1. Network analyzer RBW = 3 Hz  
2. TA = –30 °C to +85 °C  
3. Input level range for which drift from the regression expression with VIF = –94 to –14 dBm is 2 dB  
4. Time until the RSSI output reaches the final value ±10 %  
5. Time until the RSSI output is within ±10 % of the power-on value  
Power-on input voltage (VPO) rise time: 10 ns  
6. Time until the power supply current reaches 10 % of the power-on value  
Power-on input voltage (VPO) fall time: 10 ns  
(3) Power-On/Off Section  
Parameter  
Power-on input voltage  
Power-off input voltage  
Power-on input current  
Symbol  
VON  
Test Condition  
Power-on at VON or above, VCC or below  
Power-off at VOF or below, GND or above  
VPO = 3 V  
MIN.  
0.6  
TYP. MAX.  
Unit  
V
1.5  
1.2  
40  
2.4  
VOF  
V
ION  
60  
µA  
12  
µPC8002  
4. CHARACTERISTIC DIAGRAMS  
(1) Power supply current vs power supply voltage (IF amplifier section)  
4
3
2
1
0
0
1
2
3
4
5
6
7
[V]  
Power supply voltage  
(2) Power supply current vs power supply voltage (Mixer section)  
5
4
3
2
1
0
0
1
2
3
4
5
6
7
[V]  
Power supply voltage  
13  
µPC8002  
(3) IF amplifier output level vs IF amplifier input level  
0
_
3dB  
_
10  
_
20  
Limiting sensitivity  
_
30  
120  
_
_
_
_
_
_
20  
100  
80  
60  
[dBm]  
IF amplifier input level  
40  
0
(4) IF amplifier output phase vs IF amplifier input level  
140  
130  
120  
Phase fluctuation  
110  
Test input level range  
100  
_
_
_
_
_
_
_
10  
70  
60  
50  
40  
[dBm]  
IF amplifier input level  
30  
20  
_
14  
14  
µPC8002  
(5) RSSI characteristics (a)  
Regression line  
3
2.5  
2
1.5  
1
0.5  
0
_
_
_
_
_
_
20  
120  
100  
80  
60  
40  
0
Regression line  
[dBm]  
IF amplifier input level  
(6) RSSI characteristics (b)  
5
4
3
2
1
0
_
1
_
2
_
3
_
4
_
_
5
120  
_
_
_
_
_
20  
100  
80  
60  
40  
0
[dBm]  
IF amplifier input level  
15  
µPC8002  
(7) Mixer output level vs mixer input level  
50 resistance termination  
0
_
10  
_
20  
_
30  
_
40  
_
50  
_
60  
_
70  
_
80  
_
_
_
_
_
_
_
10  
70  
60  
50  
40  
30  
20  
0
[dBm]  
Mixer input level  
16  
µPC8002  
5. LEVEL DIAGRAMS  
(1) For Application Circuit 1  
µPC8002GR  
IF OUT  
0.3 Vp-p  
MIXER  
BPF  
IF Amp1  
+ 42 dB  
BPF  
IF Amp2  
+ 66 dB  
+ 8 dBNote 1  
4 dB  
_
_
4 dB  
+ 17 dBNote 2  
_
_
10 dBm  
6.5 dBm  
_
_
12 dBm  
52 dBm  
_
14 dBm  
80 dB  
Note 1  
Note 2  
_
_
_
18 dBm  
27 dBm  
16 dBm  
_
56 dBm  
80 dB  
Note 1  
Note 2  
_
_
98 dBm  
90 dBm  
_
107 dBm  
_
94 dBm  
(2) For Application Circuit 2  
µPC8002GR  
IF OUT  
0.3 Vp-p  
MIXER  
IF Amp1  
+ 42 dB  
BPF  
IF Amp2  
+ 66 dB  
330 pF  
+ 8 dBNote 1  
4 dB  
_
+ 17 dBNote 2  
_
_
10 dBm  
6.5 dBm  
_
_
12 dBm  
48 dBm  
Note 1  
Note 2  
_
_
_
18 dBm  
27 dBm  
16 dBm  
52 dBm  
80 dB  
80 dB  
_
Note 1  
Note 2  
_
_
98 dBm  
90 dBm  
_
107 dBm  
Notes 1. 50 resistance termination  
2. LC matching (reference value)  
17  
µPC8002  
6. TEST METHODS  
(1) Mixer input section  
(a) With 50 resistance termination  
(b) With 50 LC matching  
470 pF  
470 pF  
8
8
MIX IN1  
MIX IN1  
CNote  
LNote  
V
MIX  
V
MIX  
50 Ω  
Note Since the values of L and C are affected by the board’s parasitic capacitance and inductance, L and  
C should be adjusted so that the impedance looking at the MIX IN pin side from the signal source is  
50 .  
(2) Third order intercept  
MIX IN1  
MIX OUT  
2
LO IN  
5
8
470 p  
470 p  
50 Ω  
82 pF  
50 Ω  
16.7 Ω  
V
MIX  
f
OSC = 239.3 MHz  
16.7 Ω  
16.7 Ω  
f1 = 250.3 MHz  
f2 = 250.6 MHz  
18  
µPC8002  
7. TEST CIRCUIT EXAMPLES  
In test circuit example 2 onward, only the portion that differs from test circuit example 1 is shown.  
Test Circuit Example 1.  
VCC  
1
2
3
4
5
6
7
8
9
PD  
BYPASS1 20  
IF1 IN 19  
1000 pF  
MIX OUT  
VCC (IF)  
VCC (MIX)  
LO IN  
330 pF  
50 Ω  
82 pF  
VCC  
VCC  
BYPASS2 18  
IF1 OUT 17  
1000 pF  
1 µF  
1 µF  
1000 pF  
1000 pF  
BYPASS4 16  
IF2 IN 15  
0.01 µF  
470 pF  
50 Ω  
GND (IF)  
GND (MIX)  
MIX IN1  
MIX IN2  
BYPASS3 14  
GND (IF OUT) 13  
VCC (IF OUT) 12  
IF2 OUT 11  
0.01 µF  
470 pF  
50 Ω  
VCC  
470 pF  
1 µF  
1000 pF  
10 RSSI OUT  
1000 pF  
10 pF  
10 pF  
10 kΩ  
Caution The 10 pF capacitor value for IF2 OUT and RSSI OUT includes all the capacitances (board,  
pattern, etc.) applied to the pin. Ensure that the recommended load condition (10 pF) is not  
exceeded for IF2 OUT and RSSI OUT.  
Remark Chip laminated ceramic capacitors (MURATA GRM36 or equivalent) should be used.  
19  
µPC8002  
Test Circuit Example 2. (Power supply current, power-off power supply current)  
V
CC (IF)  
3
V
CC (IF OUT)  
12  
V
CC (MIX)  
4
A
A
1 µF  
1000 pF  
1µ F  
1000 pF  
1000 pF  
VCC  
VCC  
Test Circuit Example 3. (Limiting sensitivity, IF amplifier output amplitude, IF amplifier output amplitude rise  
time, IF amplifier output amplitude fall time, RSSI linearity, RSSI slope, RSSI  
intercept, RSSI output voltage, RSSI temperature stability, RSSI output ripple)  
IF1 IN  
19  
RSSI OUT  
10  
IF2 OUT  
11  
330 pF  
1000 pF  
10 pF  
10 kΩ  
50 Ω  
10 pF  
Digital voltmeter  
Spectrum  
analyzer  
Oscilloscope  
SG (Signal generator)  
10.7 MHz  
Oscilloscope  
Caution The 10 pF capacitor value for IF2 OUT and RSSI OUT includes all the capacitances (board,  
pattern, etc.) applied to the pin. Ensure that the recommended load condition (10 pF) is not  
exceeded for IF2 OUT and RSSI OUT.  
20  
µPC8002  
Test Circuit Example 4. (IF amplifier phase fluctuation)  
IF1 IN  
19  
IF2 OUT  
11  
1000 pF  
330 pF  
Attenuator  
50 Ω  
10 kΩ  
10 pF  
Network  
analyzer  
Caution The 10 pF capacitor value for IF2 OUT includes all the capacitance (board, pattern, etc.) applied  
to the pin. Ensure that the recommended load condition (10 pF) is not exceeded.  
Test Circuit Example 5. (RSSI rise time, RSSI fall time)  
... Time until RSSI output is within ±10 % of the final value)  
IF1 IN  
19  
IF1 OUT  
17  
IF2 IN  
15  
RSSI OUT  
10  
330 pF  
330 pF  
For IF1 input  
10 pF  
50 Ω  
50 Ω  
For IF2 input  
SG  
SG  
_
_
10.7 MHz, 14 dBm  
10.7 MHz, 14 dBm  
Storage  
oscilloscope 2  
Storage  
oscilloscope 1  
Input signal from SG  
1 SEC  
50 µSEC  
Caution The 10 pF capacitor value for RSSI OUT includes all the capacitances (board, pattern, etc) applied  
to the pin.  
21  
µPC8002  
Test Circuit Example 6. (Power-on rise time)  
Mixer section : Time until the difference between the local input pin power-on and  
power-off voltage reaches 90 %  
IF section  
: Time until RSSI output is within ±10 % of the power-on value.  
PD  
1
LO IN  
5
RSSI OUT  
10  
10 pF  
SG  
Storage  
oscilloscope 1  
Storage  
oscilloscope 2  
Input signal from SG  
3 V  
0 V  
50 µSEC  
1 SEC  
Remark Power-on input voltage (VPO) rise time: 10 ns  
Caution The 10 pF capacitor value for RSSI OUT includes all the capacitances (board, pattern, etc.)  
applied to the pin. Ensure that the recommended load condition (10 pF) is not exceeded.  
Test Circuit Example 7. (Power-off fall time)  
PD  
1
V
CC (IF OUT)  
V
CC (IF)  
3
V
CC (MIX)  
12  
4
V
CC  
V
CC  
SG  
Storage  
oscilloscope  
Current probe  
Input signal from SG  
3 V  
0 V  
50 µSEC  
1 SEC  
22  
µPC8002  
Test Circuit Example 8. (Conversion gain, –1 dB compression level)  
MIX OUT  
2
LO IN  
5
MIX IN1  
8
470 pF  
470 pF  
82 pF  
50 Ω  
See 6. TEST METHODS (1)  
Spectrum  
analyzer  
SG  
239.3 MHz  
SG  
250 MHz  
Test Circuit Example 9. (Third order intercept output level)  
MIX OUT  
2
LO IN  
5
MIX IN1  
8
470 pF  
470 pF  
82 pF  
50 Ω  
See 6. TEST METHODS (2)  
Spectrum  
analyzer  
SG  
239.3 MHz  
Test Circuit Example 10. (Local separation)  
MIX OUT  
2
LO IN  
5
470 pF  
82 pF  
50 Ω  
Spectrum  
analyzer  
SG  
239.3 MHz  
23  
µPC8002  
Test Circuit Example 11. (Power-on input voltage, power-off input voltage, power-on input current)  
PD  
1
A
V
VCC  
Test Circuit Example 12. (Noise factor)  
MIX OUT  
2
LO IN  
5
MIX IN1  
8
470 pF  
470 pF  
82 pF  
See 6. TEST METHODS (1)  
50 Ω  
NF meter  
Noise Source  
24  
70 mm  
µPC8002  
1
C1  
VCC  
C2  
C3  
C5  
50 mm  
C4  
C6  
IF2 OUT  
C7 R1  
Plated wire  
KC-8002GR  
µ
IF1 IN  
MIX OUT  
VCC  
R2  
C9  
C
8
BPF  
C
10  
C11  
1
C
BPF  
10  
R3  
C
9
C11  
C10  
LOCAL IN  
C12  
C
R4  
13  
L2  
RSSI OUT  
L1  
IF2 OUT  
MIX IN  
µ
µPC8002  
C1 : 1 µF  
R1 : 10 kΩ  
R2 : 50 Ω  
R3 : 50 Ω  
R4 : 50 Ω  
C2 : 1000 pF  
C3 : 1000 pF  
C4 : 1 µF  
C5 : 1 µF  
L1  
L2  
: 58 nH (reference value)  
: 10 nH (reference value)  
C6 : 1000 pF  
C7 : 10 pFNote  
C8 : 330 pF  
C9 : 0.01 µF  
C10 : 0.01 µF  
C11 : 470 pF  
C12 : 470 pF  
C13 : 10 pFNote  
Note For the IF2 OUT and RSSI OUT capacitance values, see 9. WIRING PATTERN CAPACITANCE DIAGRAM  
(REFERENCE).  
Remarks 1. Both L in the case of LC matching and R in the case of 50 termination are connected to MIX IN.  
Remove  
in the case of LC matching, and  
and  
in the case of 50 termination.  
L2  
R4  
2. Change the location of the plated wires according to the evaluation items.  
3. Cut the wiring pattern to connect  
L1  
.
L2  
27  
µPC8002  
9. WIRING PATTERN CAPACITANCE DIAGRAM (REFERENCE)  
The wiring pattern capacitances to ground are shown here.  
For pin 11, the capacitance is 8.1 pF when the entire pattern (from pin 11 to point B) is used. In this case,  
the usable probe input capacitance is 1.9 pF (MAX.).  
From pin 11 up to point A, the capacitance is 1.4 pF, and therefore an 8.6 pF (MAX.) probe can be used.  
For pin 10, the capacitance is 4 pF when the entire pattern is used.  
A
Pin 11  
IF2 OUT  
3.0 pF  
0.9 pF  
0.5 pF  
2.9 pF  
B
0.8 pF  
Pin 10  
RSSI OUT  
28  
µPC8002  
10. PACKAGE DRAWINGS  
20 PIN PLASTIC SHRINK SOP (225mil)  
20  
11  
detail of lead end  
H
I
1
10  
A
J
N
B
L
C
M
M
D
NOTE  
ITEM MILLIMETERS  
INCHES  
Each lead centerline is located within 0.10 mm (0.004 inch) of  
its true position (T.P.) at maximum material condition.  
A
B
C
7.00 MAX.  
0.575 MAX.  
0.65 (T.P.)  
0.276 MAX.  
0.023 MAX.  
0.026 (T.P.)  
+0.10  
0.22  
+0.004  
0.009  
D
–0.05  
–0.003  
E
F
0.1±0.1  
0.004±0.004  
0.057 MAX.  
1.45 MAX.  
+0.005  
0.045  
G
H
I
1.15±0.1  
6.4±0.2  
4.4±0.1  
–0.004  
0.252±0.008  
+0.005  
0.173  
–0.004  
+0.009  
0.039  
J
K
L
1.0±0.2  
–0.008  
+0.10  
0.15  
+0.004  
0.006  
–0.05  
–0.002  
+0.008  
0.020  
0.5±0.2  
–0.009  
M
N
0.10  
0.10  
0.004  
0.004  
+7˚  
3˚  
+7˚  
3˚  
P
–3˚  
–3˚  
P20GR-65-225C-1  
29  
µPC8002  
11. RECOMMENDED SOLDERING CONDITIONS  
The following conditions ( see table below) must be met when soldering this product.  
For more details, refer to our document "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY  
MANUAL" (C10535E).  
Please consult with our sales offices in case other soldering process or condition is used.  
TYPE OF SURFACE MOUNT DEVICE  
µPC8002GR  
Soldering process  
Infrared Ray Reflow  
Symbol  
Soldering conditions  
Peak package's surface temperature: 235 ˚C or below.  
Reflow time : 30 seconds or below (210 ˚C or higher),  
IR35-107-2  
Number of reflow processes : MAX.2  
Note  
Exposure limit  
: 7 days  
(10 hours pre-baking is required at 125 ˚C afterwards)  
VP15-107-2  
Peak package's temperature: 215 ˚C or below.  
VPS  
Reflow time : 40 seconds or below (200 ˚C or higher),  
Number of reflow processes : MAX. 2  
Note  
Exposure limit  
: 7 days  
(10 hours pre-baking is required at 125 ˚C afterwards)  
Partial heating  
method  
Terminal temperature : 300 ˚C or below,  
Time : 3 seconds or below (Per side of pin position)  
Note Exposure limit before soldering after dry-pack package is opened.  
Storage conditions : 25 ˚C and relative humidity at 65 % or less.  
Caution Do not apply more than one soldering method at any one time, except for " Partial heating  
method".  
30  
µPC8002  
[MEMO]  
31  
µPC8002  
The application circuits and their parameters are for references only and are not intended for use in actual design-in's.  
No part of this document may be copied or reproduced in any form or by any means without the prior written  
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in  
this document.  
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property  
rights of third parties by or arising from use of a device described herein or any other liability arising from use  
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other  
intellectual property rights of NEC Corporation or others.  
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,  
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or  
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety  
measures in its design, such as redundancy, fire-containment, and anti-failure features.  
NEC devices are classified into the following three quality grades:  
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a  
customer designated "quality assurance program" for a specific application. The recommended applications of  
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device  
before using it in a particular application.  
Standard: Computers, office equipment, communications equipment, test and measurement equipment,  
audio and visual equipment, home electronic appliances, machine tools, personal electronic  
equipment and industrial robots  
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems or medical equipment for life support, etc.  
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.  
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,  
they should contact an NEC sales representative in advance.  
Anti-radioactive design is not implemented in this product.  
M4 96.5  

相关型号:

UPC8002GR

SECOND MIXER IF AMPLIFIER FOR DIGITAL CORDLESS TELEPHONES
NEC

UPC8002GR-A

IC,RF MIXER,BIPOLAR,SSOP,20PIN,PLASTIC
RENESAS

UPC8002GR-E1

SECOND MIXER IF AMPLIFIER FOR DIGITAL CORDLESS TELEPHONES
NEC

UPC8002GR-E2

SECOND MIXER IF AMPLIFIER FOR DIGITAL CORDLESS TELEPHONES
NEC

UPC801

Bipolar Analog Integrated Circuits
NEC

UPC801C

Operational Amplifier, 1 Func, 20000uV Offset-Max, BIPolar, PDIP8, PLASTIC, DIP-8
NEC

UPC801C-A

UPC801C-A
RENESAS

UPC801D

Operational Amplifier, 1 Func, 20000uV Offset-Max, BIPolar, CDIP8, CERAMIC, DIP-8
NEC

UPC802

Bipolar Analog Integrated Circuits
NEC

UPC8026

30V, 13A N-CHANNEL POWER MOSFET
UTC

UPC8026G-S08-R

30V, 13A N-CHANNEL POWER MOSFET
UTC

UPC8026L-S08-R

30V, 13A N-CHANNEL POWER MOSFET
UTC